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Toward a fully automatic left ventricle segmentation
using cine-MR images

Isabela Silva1,2,3, João Sanches2,3 and Ana G. Almeida4

Abstract—Left ventricle (LV) function is assessed by manually
segmenting short axis cardiac cine magnetic resonance (cine-MR)
images. It is a labor, time-consuming, operator biased task. A
series of difficulties arise from these images, that make automatic
segmentation of the LV a challenging task: (i) misalignment of the
LV along the stack, (ii) signal intensity variation over the stack
and over the slice and (iii) the presence of papillary muscles.

In this thesis, the first steps toward a full automatic LV
segmentation algorithm based on a single view of the LV are
presented:

1) Automatic crop: selects a sub-volume containing the LV in
all images and in all temporal frames from the acquired
data. It is based on three assumptions: (i) the LV is close
of the center of the image, (ii) the LV is circular shaped
and (iii) there is a high temporal variability of the image
intensity in the myocardium boundaries due the heart beat.

2) Alignment-by-reconstruction: novel technique to solve the
misalignment due to respiratory motion, inspired on the
work from Sanches et al. [1] in ultrasound;

3) Segmentation: the LV is segmented using active contours
in an energy minimization formulation with gradient vector
flow (GVF) as external field. The automatic initialization
algorithm here implemented is original, and it is based on
the property of intersecting chords.

Preliminary tests with synthetic and real data from 17 patients
were performed with successful results.

Index Terms—Left ventricle, automatic crop, intra-plane align-
ment, snake initialization.

I. INTRODUCTION

According to World Health Organization (WHO), cardio-
vascular diseases are the leading cause of death and were
responsible for about 30% of all global deaths in 2005 [2].

Attending to these numbers, there is an increasing demand
for technology able to provide qualitative and quantitative
information about morphology and function of the heart.
The available imaging techniques provide 2-D+T and 3-D+T
information with continuously increasing spatial and temporal
resolution. Therefore, a single cardiac examination can result
in a large amount of data. These advances have led to a raising
need for efficient algorithms to automate the extraction of
clinical relevant parameters.

MR imaging (MRI) is one of the preferred diagnostic
techniques due to its high spatial resolution, soft-tissue contrast
and non-ionizing imaging technique. Therefore, it is widely
used to diagnose several heart pathologies and it is now
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considered the “gold standard” to evaluate the left ventricle
(LV) function [3]. One of the most meaningful measures of
the LV pump function is the ejection fraction (EF), a global
index of the LV shortening (Eq. 1):

EF =
EDV − ESV

EDV
, (1)

where EDV is the end-diastolic (ED) volume and ESV the
end-systolic (ES) volume.

To estimate the EF, the physicians have to manually draw
the LV internal contour from a stack of short-axis (SA) cine-
MR images at the ED and ES phases of the cardiac cycles. The
SA stacks are usually composed by 10 up to 16 slices and 15
up to 30 images are acquired per cardiac cycle, corresponding
to different phases of this cycle. Manually processing all this
vast amount of data is time consuming, subjective and com-
promises the accuracy and reproducibility of the quantitative
measurements. Therefore, computer assistance is needed.

However, a series of difficulties arise from these SA cine-
MR images, that make automatic segmentation of the LV a
challenging task:

1) During suspended respiration, there is a displacement of
the diaphragm and the heart does not return to the same
position on consecutive heart beats [4]. Additionally,
the initial position of the diaphragm might change over
all the requested apnea periods [4,5]. This can lead to
blurring effects and misalignment of the LV along the
stack.

2) These images present signal intensity variation: (i) over
the stack due to different sensitivity along the coil; (ii)
and over the slice due to cardiac flow dynamics [6].
This makes tissue classification with low-level image
processing techniques a non-trivial task.

3) Normally, the number of slices acquired exceeds the
size of the LV. Physicians are trained to draw contours
while at least 50% of the blood pool is surounded by
myocardium in both ED and ES [7]. The apical slice is
defined as the final slice showing intracavity blood pool
at both ED and ES. Papillary muscles (PM) are to be
included in the volume calculations. This makes manual
delineation prone to inter- and intra-observer variability,
highly dependant on the physician experience [7].

Due to the stated reasons, there is a growing demand for
objective, reproducible and automated technique for quantifi-
cation of the LV function. However, an infallible automatic
segmentation algorithm is now impossible to achieve, therefore
the physician will be essential by supervising the outcome and
adjusting the result if needed.
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II. PROBLEM FORMULATION

LV function is assessed by using SA cine-MR images that
represent large amounts of data. Therefore, a reduction of
the matrix dimension is needed to reduce the computational
burden associated with the pre-processing, alignment and
segmentation algorithms required to solve the problems listed
above. The development of an automatic crop function suits
for a first step in the LV segmentation.

To estimate a ROI containing the LV it is necessary to locate
it. In the literature, two different approaches were identified.
One is based in the high temporal variability of the image
intensity in the myocardium boundaries [8]. The other one uses
a size invariant circular Hough transform (HT) [9] to locate
the LV [10]. The automatic crop algorithm here proposed is
based on three assumptions: (i) the LV is close of the center of
the image, (ii) the LV is circular shaped and (iii) there is a high
temporal variability of the image intensity in the myocardium
boundaries due the heart beat.

The second problem to be addressed is misalignment of
the LV along the stack. The alignment of the cardiac planes
is a non-trivial registration task because there is no rigid-
body transformation that gives the minimal energy between
the different planes. The problem here is to align a set of
misaligned consecutive anatomic planes instead of registering
different views of the same object (see Fig. 1). The use of mu-
tual information itself, used in the registration of images from
different imaging modalities [11] or to build statistical models
[12], is not the most adequate method to solve this problem.
Here, a joint image registration and volume reconstruction
is proposed, inspired on the previous work from Sanches et
al. [1] in ultrasound. It is the second step of the algorithm,
preceding the segmentation. This is essential to be able to use
the initialization of the snake in one slice on the consecutive
ones.

After the alignment, the segmentation is finally performed.

(a) Misaligned synthetics (b) Aligned synthetics

(c) Misaligned real image (d) Aligned real image

Fig. 1. Misalignment in cardiac images: example with synthetics and real
images

The LV is segmented using active contours in an energy
minimization formulation with GVF as external field. The au-
tomatic initialization algorithm here implemented is original,
and it is based on the property of intersecting chords.

The Fig. 2 presents the work flow of the solution here
proposed.

A. MRI data

The presented algorithm was tested on 17 cardiac patients
identified with the letters from A to Q from Sociedade
Portuguesa de Ressonância Magnética (SPRM) where the LV
function was studied. Prof. Ana G. Almeida was the physician
in charge, who also validated the obtained results. The images
were acquired on a 3T Philips scanner, using a Philips SENSE
cardiac coil six-elements and saved in DICOM format (Digital
Imaging and Communications in Medicine). The cine-MR
study was gated to the electrocardiogram (ECG) and acquired
with steady state free precession imaging sequence.

B. Notation

Over the report, the notations used to access the 3-D+T
data-set are listed in the table bellow:

TABLE I
3-D+T NOTATION

Notation Description
(i, j) Pixel coordinates, 1 < i, j < M, N

[M, N ] Image size
(i, j, s, t) Voxel coordinates, 1 < i, j, s, t < M, N, S, T

s Slice index, 1 < s < S
t Time frame index, 1 < t < T

[M, N, S, T ] Data-set dimensions

III. AUTOMATIC CROP

The algorithm was implemented by estimating the center of
a fixed-size predefined width ROI based on the circular HT.
This ROI is then extended to the entire stack of images over all
the cardiac cycle frames, resulting in a 3-D+T cropped image
volume.

A standard deviation (STD) map is computed according
to Eq.2, using all temporal slices from the middle plane of
the SA images stack. As [8] suggested, high STD is found
between the myocardium and the blood-pool. Additionally,
this map will introduce extra ringing around the LV borders,
i.e., more circular shapes. Therefore, the a priori knowledge
of the circular shape is used to locate the LV in the STD map
using the HT.

STD(i, j) =

√√√√ 1
T

∑
t

(
x

(
i, j,

S

2
, t

)
− µt

(
i, j,

S

2

))2

(2)

Before calculating the STD map, the images are filtered by a
Gaussian mask to reduce the noise. This reduction is important
guarantee that the STD map observed is mainly generated by
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Fig. 2. Algorithm setup

temporal variations and not by spatial noise. The Canny edge-
detector [13] is used over the STD map to get an edge-map
to be used in the circular HT algorithm.

The circular HT algorithm here implemented1 is computed
for a fixed radius and the output is an accumulator Acc with
the same dimensions of the input image [M, N ]. The value
at Accr(i, j) represents the number of circles with radius r
centered at the edge pixels that intersect the (i, j)th pixel.

Based on the knowledge that the LV centroid is the center
of multiple circles (the ring generated in the STD map and
of the epicardial and endocardial border) and that the LV has
variable size, the HT is computed for a set of different radius
values. The maximum radius of the LV (at the end of the
diastole) can range from 18mm to 28mm [14]. Using this
interval as reference, the HT was calculated for radius ranging
from 15mm to 40mm . The maximum radius was increased
to 40mm in order to include the epicardial border of the LV,
and the minimum was decreased to 15mm because the middle
plane of the stack might not correspond to the largest section
of the LV. With steps of 2mm of interval, the circular HT
is processed for all the radius from 15mm to 40mm and the
accumulators are added at each step (Eq.3). The AccTotal

incorporates the whole information about circles with every
radius in the range, amplifying its common center location.
Adding the accumulators will ensure that the maximum will
be closer to the centroid of the LV.

AccTotal(i, j) =
∑

r

Accr(i, j) (3)

Based on the assumption that the LV is always close to
the center of the image, the circles detected close to it will
be favored. The AccTotal is then multiplied by a mask that
has unitary value in a circular region around the center of the
image and with decreasing values up to the borders, following
Eq.4.

h(x) =

{
1 if ‖x − c‖ ≤ R(

1
‖x−c‖ − 1

‖c‖
)
· R if ‖x − c‖ > R

(4)

where c ∈ R2 represents the center of the image, x ∈ R2

the position of a mask element and R = 50mm, related
with human anatomy. This value is fixed and was selected

1“Circle detection via standard Hough Transform”
from Amin Sarafraz, downloaded from Matlab Central
http://www.mathworks.com/matlabcentral/fileexchange/

based on experimental tests and on the results from [6]. This
reference radius determines the maximum possible distance
from which the LV centroid is apart from the center of the
image and the circular region where the AccTotal has unitary
weight. Outside this region the AccTotal is weighted by
smaller values, reducing the importance of the detected circles
in this area. The mask is zero at the corners of the image.
The new ROI is squared and centered at the coordinates of
the maximum of the AccTotal. The side dimensions of this
bounding box (BB) were set to (2+ε)rmax = 120 mm, where
ε = 1 is a safety coefficient and rmax = 40 mm.

IV. ALIGNMENT-BY-RECONSTRUCTION

Let Yk
t be the edge map of the volume data set of the

tth time frame, at the kth iteration step of the algorithm and
Y(i, j, s) be the (i, j)th voxel in the sth slice, where 1 <
i, j, s < M, N, S:

1) Pre-processing: normalization, histogram equalization,
power-law transform I′ = κIγ (where κ = 10 and
α = 1.3 to enhance contrast), median filtering and
Canny edge detector;

2) Filter Yk
t with a broad Gaussian mask to diffuse the

contour information;
3) First alignment task: the translation vector T1 is esti-

mated by calculating the cross-correlation between con-
secutive planes of the volume and its average subtracted
according to Eq.5: let Y(x) = Y(i, j),

xk+1(s) = xk(s) + T k
1 (s) − 1

S

S∑
s

T k
1 (s). (5)

4) Recontruction: The previously aligned set of planes
Y0

IntraPlanesAlignedT1
is used to reconstructed the vol-

ume F0. The reconstruction is an iterative process where
the following energy function is minimized:

E =
M,N,S∑

i,j,s

(Fi,j,s − Yi,j,s)
2

+ α

M,N,S,Nb∑
i,j,s,δ

(Fi,j,s − Fi,j,s,δ)
2
, (6)

where Nb is the number of neighbors of each voxel and
F is the unknown volume computed from the original
data Y and influenced by its volume neighbors δ with
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and weighting factor α. To compute the minimizer of
E, F, Eq.6 must be derived and equal to zero:

∂E
∂Fi,j,s

= (Fi,j,s − Yi,j,s) + αNb

(
Fi,j,s − F̄i,j,s

)
= 0,

(7)

where F̄i,j,s =
1

Nb

Nb∑
δ

Fi,j,s.

To find the solution for this energy minimization, the
Newton-Raphson method is used: let Fk

l be the lth

iteration step to estimate Fk,

Fk
l+1(i, j, s) = (1 + K)Yk(i, j, s) + KF̄k

l (i, j, s), (8)

where K =
αNb

1 + αNb
.

This is an iterative process, initialized with F0 = Y,
α = 0.9 and Nb = 6, and with the stop criterion:∥∥Fk

l+1 − Fk
l

∥∥∥∥Fk
l+1

∥∥ < 0.1 (9)

5) Second alignment task: the translation vector T2 is
estimated by calculating the cross-correlation between
the reconstructed and the original planes of the volume
and its average subtracted according to Eq.5.

This iterative process stops when T2 reaches the equilibrium:

∆k

∆k−1
< 0.1, where ∆k =

∥∥∥∥∥
S∑
s

∣∣T̄ k
2 (s) − T̄ k−1

2 (s)
∣∣∥∥∥∥∥ (10)

The figure bellow illustrates the algorithm work flow:

Fig. 3. Alignment-by-reconstruction algorithm

V. SEGMENTATION

To perform the segmentation task, the 2-D formulation of
the deformable models will be used, also known as snakes
or active contours. The problem is going to be formulated in
terms of the parametric model and in the energy minimization
framework.

The parametric active contour is a curve C(s) =
(x(s),y(s)), s ∈ [0, 1], which moves through the spatial
domain of an image to minimize the energy functional from
Eq. 11:

E(C) =
∫ 1

0

α(s)
∣∣∣∣∂C
∂s

∣∣∣∣
2

+ β(s)
∣∣∣∣∂2C
∂s2

∣∣∣∣
2

ds+

+
∫ 1

0

P(C)ds. (11)

The first integral corresponds to the internal energy, the regu-
larization term and second to the potential energy. Typically,

the potential function is based on the gradient of the image:
given a gray-level image I : R2 → R, viewed as a function
of continuous positions variables, a typical potential energy
function designed in such a way that intensity transitions
become associated to valleys of the potential is

P(x, y) = −we |∇[Gσ(x, y) ∗ I(x, y)]|2 , (12)

where we is a positive weighting factor, Gσ(x, y) is a 2-D
Gaussian function with standard deviation σ, ∇ is the gradient
operator and ∗ is the 2-D convolution operator.

The problem of finding a curve C(s) that minimizes the
energy functional E (Eq. 11) is known as variational problem.
The curve that minimizes E must satisfy the following Euler-
Lagrange equation Eq. 13a, that can also be analyzed as a
force balance equation Eq. 13b.

∂

∂s

(
α

∂C
∂s

)
− ∂2

∂s2

(
β

∂2C
∂s2

)
−∇P(C) = 0. (13a)

Fint(C) + Fpot(C) = 0. (13b)

To find the object boundary, parametric curves are initialized
within the image domain (manually or automatically), and are
forced to move toward the potential energy minima under the
influence of both these forces. To find the solution to Eq. 13a,
the active contour is made dynamic by treating C(s) as a
function of time t → C(s, t). The time zero contour, C(s, 0),
is given by the initialization contour. Then the snake evolves
iteratively according to Eq. 14:

∂C
∂t

= Fint(C) + Fpot(C). (14)

The main advantages of the snakes are their ability to
generate a parametric and smooth curve from the image.
However, most of the active contour models are sensitive to
noise due to their purely edge-based nature and low attraction
range of the gradient. For this reason it will be implemented
the gradient vector flow (GVF) presented by Xu and Prince
[15] and an automatic initialization algorithm as well.

A. Gradient Vector Flow

Let f : R2 → R be the edge map derived from the image
I and Fpot(x, y) = v(x, y) = [u(x, y), v(x, y)] be the GVF
field that minimizes the energy functional from Eq. 15:

ε =
∫∫

µ(u2
x + u2

y + v2
x + v2

y) + |∇f |2|v −∇f |2)dxdy. (15)

The edge map f(x, y) has three general properties: (i) the
gradient of an edge map ∇f has vectors pointing toward the
edges, (ii) these vectors generally have large magnitudes only
in the vicinity of the edges, and (iii) in homogeneous regions,
where I(x, y) is nearly constant, ∇f is nearly zero.

According to f properties, the variational formulation in Eq.
15 makes the result smooth when the region is homogeneous.
In particular, when |∇f | is small, the energy is dominated by
the partial derivatives of the vector field. On the other hand,
when |∇f | is large, the second term dominates the integrand
and is minimized by setting v = |∇f |. The parameter µ is
a regularization parameter and should be set according to the
amount of noise present in the image.
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Euler equations are again used to solve this variational
problem and calculate the GVF field:

µ∇2u − (u − fx)(f2
x + f2

y ) = 0 (16a)

µ∇2v − (v − fy)(f2
x + f2

y ) = 0 (16b)

where ∇2 is the Laplacian operator.

B. Automatic snake initialization

The snake initialization is a very important step in segmen-
tation, determinant for a good convergence.

LV imaging has special characteristics that make this issue
important. In one hand, edge detectors are not able to fully
detect the endocardium border without detecting other spuri-
ous structures as well. These noisy structures present in the
blood pool have contrast transitions close to some weak edges
(compare Canny performance for different thresholds in Fig.4)
and are generated by turbulent blood-flow.

(a) Weak edges, Canny default
threshold

(b) Spurious edges, Canny 0.01 - 0.1

Fig. 4. Weak edges in cine-MR images using Canny edge-detector. The dark
lines represent the edges over the original image

On the other hand, HT does not give a satisfying cen-
ter/radius estimation to initialize the contour with a circum-
ference based on those parameters. It is a very sensitive
system, and the circumference can fall out of the borders
and compromise the convergence of the contour leading to
a mixed epicardium-endocardium final contour or be stuck in
the spurious structures such as PM.

Our approach is robust to all the difficulties in LV seg-
mentation because is based on the gray-scale image and not
on the edge-map. The only request is that the center of the
image must be inside the blood-pool, which is accomplished
in section ??. Inspired from [16], the property of intersecting
chords is used, where the perpendicular bisector of any chord
passes through the center of the circumference.

Using two chords, the center can be estimated but with
no error associated. Therefore, four chords will be used to
estimate more accurately the best circumference center (see
Fig.5). The signal profiles from four direction in the image
are collected: horizontal, vertical and two diagonals.

C. Implementation

The data-set from the alignment-by reconstruction step (the
aligned and pre-processed data-set) is the input for this final
step. The setup in Fig.6 explains the work flow of this process.

The process starts at the first frame and middle slice, s =
S/2. The first frame is collected at the QRS complex from

Fig. 5. Signal profile directions collected from the middle plane: the arrows
point the way the signal was collected. The points ‘B’ and ‘E’ define the
chord.

the ECG, that represents the start of the systole, therefore, the
end of the diastole. After the initialization, the segmentation
algorithm is used and the contour is expanded in space and
time through its neighbors, as exemplified in Fig.6(b).

Over the time, the area is measured and the ES frame (ESF)
is the one with minimum area. It is expected to find the
ESF at about 40% of the time course (the systole is shorter
then the dyastole [17]) in normal heart-beat conditions. After
estimating the ESF, the contour is initialized in the midle slice
with the contour from the segmentation of the time series.
Then, the contours are again propagated over the space.

After each segmentation step, the results are displayed and
can be manually changed. The spurious slices have to be
manually excluded.

VI. RESULTS AND DISCUSSION

LV function is assessed by using SA cardiac cine-MRI
that represent large amounts of data: 10 up to 17 volume
images over 15 up to 30 frames in the cardiac cycle. This
data is inspected manually by the expert and contours are
drew manually to extract the EF value. It is a time consuming
process and its full automatization is of great interest.

The work here presented describes three automatic first
steps toward a full automatization of the LV segmentation in
cine-MR images: crop, registration and initialization of the
segmentation. The segmentation step itself, based on active
contours, still requires human intervention for a satisfying
result. The algorithms here proposed was tuned and tested
with images acquired from 17 patients identified with letters
from A to Q. The most important results from the three steps
are summarized in Table II.

Automatic crop

The success of the cropping algorithm depends on whether
the BB is able to fully contain the LV. The contents of the
estimated BB for all the data-sets were visually inspected for
every slice over all time frames. The quantification of the
image size reduction is presented in the summary Table II.

All the tested data-sets had successful results, i.e., the LV
was always within its borders. Even considering the misalign-
ment between consecutive planes, the LV endocardial and
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(a) Work flow

(b) Expansion of the contours in space

Fig. 6. Segmentation work flow.

epicardial borders were always inside the estimated fixed-size
window. Here, the reduction only depends on the resolution of
the image. In most of the cases, the size of the cropped images
is equal to 30.0% of the original image. The biggest reduction
was 25.4% with patient J, and the worst case was observed in
patient Q, with a reduction to 34.0% of the original size (see
Table II).

In Fig.7(a) and Fig.7(b) it is possible to observe the esti-
mated ROI in images with resolutions different from the usual,
where the algorithm performed successfully: 672 × 672 in
patient J and 256×256 in patient Q. As previously mentioned,
the signal intensity is not constant over the volume due to
differences in the sensitivity along the coil and also along the
slice due to cardiac flow dynamics [6]. This algorithm proved
to be robust to signal variation over the image, which is usually
a difficulty that must be dealt with. The proposed algorithm
is able to cope with this problem because it does not depend
directly on the original image but on the STD map, which
decreases its sensitivity to these fluctuations.

Although the algorithm only takes the middle slice to calcu-
late the BB, it has proven to be robust to plane misalignment,
mainly because they are usually small and the cropped window
is big enough to fit them. It is not, however, able to consistently
locate the exact center of the LV because usually it is not a
trivial task to define it. This is shown in the results from patient
H and I in Fig.7(c) and Fig.7(d) respectively. Although the
center was not located successfully, the center of the BB is
close enough from the LV centroid and the whole LV is inside
the BB. This algorithm located another circular structure close
to the LV, like the myocardium that encloses the LV and the
right ventricle, who’s center is close to the LV. Despite the
fact that the whole LV is inside the BB, the LV centroid is

(a) Patient J, resolution 672×672 (b) Patient Q, resolution 256×256

(c) Patient H (d) Patient I

Fig. 7. Automatic crop results

slightly away from its center.
These SA images typically have 560× 560 pixels covering

a field of view (FOV) containing the heart and much more.
Reduction of matrix dimension is an important first step to
exclude unnecessary information and speed up the processing
tasks. In this work it is presented a fully automated crop
function that successfully performed this task over the data
from 17 patients.

Alignment-by-reconstruction

The alignment of the planes is needed for an efficient seg-
mentation. Here, a method called alignment-by-reconstruction
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is used, where and intermediate reconstruction step is imple-
mented. Experimental tests were performed with the algorithm
here presented: with synthetic and real data.

The synthetic volume has a 5 slices. In each slice there
is a central circumference and two smaller circumferences
placed periferically. The radius of the central circumference
increased from plane 1 → 5 and the radius of the smaller ones
is fixed. Pseudorandom noise (signal between [0, 1]) normally
distributed with amplitude of 10% of the signal, i.e., about
−10.8dB, was also included.

To simulate the misalignment that can be found in real
data, these planes were misaligned with a translation vector
randomly generated with normally distributed components
(Fig.1(a)), with 0 mean and standard deviation σ. The σ
represents how much the plane will be misaligned from its
original position.

In order to confirm the importance of the reconstruction,
the first synthetic tests missed that step. The synthetic data
was misaligned with a fixed translation vector, generated with
σ = 3. The performance of the algorithms was accessed by
estimating the error of the translation (Eq.17). With α = 1.5,
the translation error for the algorithm without reconstruction
was 3.2, while the error with the reconstruction step was 0.4.
Comparing the translation errors, it is clear that the reconstruc-
tion step is essential. The importance of the reconstruction step
is based on the information that each plane incorporates about
its neighbors.

‖�e‖ =

∥∥∥∥∥ 1
S

S∑
s

Toriginal(s) + Testimated(s)

∥∥∥∥∥ . (17)

In what concerns to the real data, the algorithm was tested
in 17 cardiac patients. The performance of the algorithm
could only be accessed in a qualitative way, by observing the
segmentation results where the deformed contour from slice
s = n was used to initialize the neighbor planes s = n + 1.

The observed results were generally good. The α parameter
was set to 0.9 for all patients. Depending on the amount of
data (number of slices mainly), the algorithm could require
more iteration steps to converge. The time series were also
analyzed, where it was observed that there is no misalignment
over the time dimension.

Segmentation

After proper tuning of the snake parameters, the data from
17 patients were segmented and manually changed with expert
supervision.

Automatic snake initialization: The initialization algorithm
was tested over the available patient data. This is the first
step where segmentation takes part. Based on the intersecting
chords property, a set of points (8 to 16) is estimated and
linearly interpolated. This curve with sharp edges (see green
dots in Fig.8), is the initialization contour for the snake
deformation, from the middle slice s = S/2 and time frame
t = 1, corresponding to the ED phase. The initialization is
considered good once the myocardium border is segmented
with the contour (see the magenta line in Fig.8).

Over all the data, the user intervention was most of the times
necessary to manually change the automatic initialization con-
tour into a good initialization. In this step, human intervention
is essential since the criteria to segment the myocardium are
highly experience-dependent specially due to PM.

This algorithm was tested with two values for the maximum
length of the chords: 56mm and 65mm. The first one is the
double of the normal maximum radius (see section III) and
the second is used to include pathological dilated hearts. See
summary Table II at the end of this section, the percentage of
the segmented contour manually generated.

These two diameters were tested because some difficulties
came up, for instance in patients K and N, where the maximum
diameter of 56mm was not enough, i.e., there were no sets
of chords who fulfilled all the criteria. For this reason, a
higher maximum diameter was tested and it performed better
in some cases, where probably the heart is dilated. However,
in average it performed worse and in two cases the amount
of candidate chords caused problems of memory (patients F
and O). Therefore, the maximum normal diameter 56mm is
the best option.

The best results were observed in patients A, B and D,
where human intervention was very small. The PM are respon-
sible for most of the required manual changes (Fig.9(a)). They
are small structures located in the blood cavity or in the my-
ocardium borders with the same contrast of the myocardium,
therefore, their borders might be better ranked than the points
resulting from transitions in the endocardium. However, only
an expert is qualified to define where the contour should pass,
specially when the PM are in the myocardium border (see
Fig.8 to Fig.9 to see different types of PM).

Another problem that affected the performance of the au-
tomatic initialization was the centering alteration after the
alignment task, presented in Fig.9(b). This happened with the
patient K. In this patient, there was no set of initialization
points that fulfill the requirements, and therefore the initial-
ization has to be performed completely manually.

For each patient, the segmentation parameters were tunned.
Most of the patients could be grouped with similar param-
eters. The ideal contour estimated from this step is used to
initialize the contours for both time and space segmentation,
as described in the next sections.

ESF estimation: With the correct setup of the segmentation
parameters, the ESF was automatically estimated for most
of the patients (9 out of 17). The initialization for the ESV
estimation was also estimated in this step, where 7 out of 17
were correctly automatically segmented. The estimated ESF
are listed in Table II along with the correct ESF. An example
is showed in Fig.10.

Analyzing the results presented in Table II, in most of the
cases where the ESF is miss-estimated, the error is normally
of 1 time frame (exception for patients N and P).

The segmentation in the time domain is less prone to
difficulties since the temporal resolution is generally high
and the transition between frames is smooth. However, the
PM might introduce error in the ESF estimation or in ESF
segmentation and there are difficulties when the cavity at the
ESF is very small. Therefore, the expert supervision is very
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(a) patient A, 22.8% changed (b) patient B, 25.7% changed (c) patient D, 24.6% changed

Fig. 8. Automatic initialization results. (blue star) points from intersecting chords (green cross) linear interpolation from the beginning points (magenta
dashed) contour after segmentation algorithm

(a) Papillary muscles, patient N (b) Bad centering after alignment, pa-
tient L

Fig. 9. Automatic initialization results: difficulties. (magenta) contour after segmentation algorithm, (yellow) Initialization contour, (red) manual changing a
segment of the contour.

important.
The segmentation of the time series was also used to prove

the hypothesis assumed that the first time frame corresponded
to the ED phase. The area of the frame t = T was smaller
that t = 1 for all the tested patients. Additionally, when the
estimated ESF is about half of the time course, it can be an
indication for taquicardia.

Snake deformation: In the last step of the segmentation
process, the ED and ES volumes are segmented. For every
patient, the set of segmentation parameters was tunned in the
ED and ES phase. For some patients, the same set was used
for both cardiac phases.

Thanks to the alignment step, the contour propagation
method worked successfully in most of cases. However, two
main difficulties came up: (i) the PM stopped the evolution
of the snake into the myocardium and (ii) the abrupt radius
variation of the LV section at base and appex did not allowed
the use of the neighbor contours in these cases. Fortunately,
in most of the cases these are also the disposable slices,
where there was no LV left or did not fulfill the criteria to
be accounted to the EF estimation (see section I).

In the example presented in the figures Fig.11, the contour
propagation in the middle planes is smooth. However, closer
to the appical planes the PM increase their influence and the
results have to be manually changed.The LV radius decrease
from 3 → 4 is high and therefore the segmentation is poorer.

In the presented example, the diastolic slices required no
changes in 6, 7, minor changes in 4, 5 and major interventions
in 1, 2, 3. The systolic slices required no changes in 3, 6, 7,
minor changes in 4 and major interventions in 1, 2, 5. Once

the segmentation parameters can be automatically setup, these
results represent great improvement to the clinical routine,
because only minor changes have to be performed.

These results were inspected by an expert and the EF was
estimated and compared with the software in the workstation.
The main difficulties found in the presented solution concern
the user interface, where zooming and contrast change is no
option. Therefore, the manual changes introduced have low
reproducibility. The software result was EF = 63% and the
presented algorithm showed values between 62% and 67%.

The incorporation of shape information, or the elimination
of the PM are the two main steps that follow in order to be
less sensitive to the segmentation parameters.

VII. CONCLUSIONS

The LV function analysis is currently performed manually
in the clinical routine in a labor, time-consuming, operator
biased task. In most of the proposed algorithms only a part of
the stated difficulties are addressed. According to this lack, a
new approach must be used, combining most of the proposed
models and methodologies and attending to all the SA cine-
MR difficulties in order to achieve an improved, robust and
fully automated LV segmentation.

Based on the HT, the automatic crop algorithm was able to
robustly reduce the image size for all the data tested to about
30% of the original size, reducing the computation burden for
the tasks that follow.

The alignment-by-reconstruction step had encouraging re-
sults with the synthetic data, highlighting the importance of
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Fig. 10. Segmented time series around the ESF, patient E. (yellow cross)
linear interpolation from the beginning points (magenta dashed) contour after
segmentation algorithm (graphic) area estimation over all time series.

the reconstruction step. With the real data, the observed results
were also important, as they allowed an efficient segmentation.

In what concerns to the segmentation, the automatic snake
initialization algorithm implemented showed some limitations
due to the PM, however represents a refreshing contribution
to solve this problem where expert intervention is generally
smaller. The ESF was successfully automatically identified in
9 out of 17 patients.

A full volume segmentation is also implemented. The major
limitation here is the setup of the segmentation parameters.
This difficulty can be overcome with future work, introducing
shape information and reducing the importance of the internal
forces. However, the importance of this step is to validate
the previously described algorithms, that represent a great
contribution toward a fully automatic LV segmentation.
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(a) Diastole, slice 3 (b) Systole, slice 3

(c) Diastole, slice 4 (d) Systole, slice 4

(e) Diastole, slice 5 (f) Systole, slice 5

(g) Diastole, slice 6 (h) Systole, slice 6

Fig. 11. Segmentation results, plane 3 to 6, patient G. (magenta) contour after segmentation algorithm, (yellow) Initialization contour.
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