
Web 2.0 nas Comunicações Multimédia SIP

(IMS)

Tânia de Almeida Serrano

Dissertação para obtenção do grau de Mestre em:

Engenharia de Redes de Comunicações

Júri

Presidente: Professor Lúıs Eduardo Teixeira Rodrigues

Orientador 1: Professor Fernando Henrique Corte Real Mira da Silva

Orientador 2: Engenheiro Paulo Chainho

Vogal 1: Professor Paulo Rogério Barreiros D’Almeida Pereira

Setembro de 2008

Acknowledgments

First, I would like to thank Professor Fernando Mira da Silva and Engenheiro Paulo Chainho for their

help and advice along the development of the dissertation.

Second, I would like to thank to my parents and family for the values of life that taught me, and what

makes me the person I am today.

Finally, and most importantly, I would like to thank to my boyfriend for all the support during the

last years. He was who prevented me of quitting in the most difficult times, especially during this last

year.

Sumário

O principal objectivo desta dissertação é adicionar um conjunto de novas funcionalidades num serviço

de conferência e colaboração na Internet. Este serviço está em desenvolvimento na PT Inovação e tem o

nome de Tagarela. As novas funcionalidades permitem que, uma vez dentro de uma sala de conferência,

os utilizadores possam partilhar os seus desktops (desktop sharing), ou um conjunto de imagens pré-

adicionadas e seleccionadas (slideshow sharing), tendo sempre um canal de voz dispońıvel.

No âmbito desta dissertação também foi desenvolvida uma análise de alguns webphones existentes.

Esta análise foi realizada com o intuito de substituir uma solução comercial, que estava a ser utilizada,

por uma solução open source. A análise dos webphones foi feita tendo em conta um conjunto de requisitos

pré-definidos. Depois do processo de análise, a solução escolhida foi integrada na interface do serviço de

conferência.

Ao longo desta dissertação serão apresentados, não só um conjunto de serviços de comunicação web,

mas também como é que essas tecnologias foram integradas, por forma a enriquecer o Tagarela com

novas funcionalidades. Por fim, através da realização de testes de usabilidade torna-se posśıvel provar

que as novas funcionalidades não trazem dificuldades acrescidas à utilização do Tagarela. Isto acontece

porque, com um número reduzido de acções, é posśıvel interagir com o serviço, por forma a usar as novas

funcionalidades.

Palavras-chave

Integração, Partilha de Informação, Conferência, Colaboração.

i

Abstract

The main objective of this dissertation is to add a set of new features into a conference and collaboration

service on the Internet. This service is in development at PT Inovação and is named Tagarela. The new

features allows that, once inside a conference room, the users may share their desktops (desktop sharing),

or a set of pre-added and selected images (slideshow sharing), having always a voice channel available.

In the scope of this dissertation it was also developed an analysis of some existing webphones. This

analysis was made with the intention of replacing a commercial solution, which was being used, by an

open source solution. The analysis of those webphones was done taking into account a set of pre-defined

requirements. After this process of analysis, the selected solution was integrated into the conference

service interface.

Along this dissertation are presented, not just a set of web communication services, but also how

those technologies were integrated, in order to enrich the Tagarela with new features. At last, through

the realization of usability tests becomes possible to prove that the new features do not bring any greater

difficulty to the use of Tagarela. This happens because, with a reduced number of actions, it is possible

to interact with the service, in order to use the new features.

Keywords

Integration, Sharing of Information, Conference, Collaboration.

ii

Contents

Acknowledgments . i

Sumário . i

Abstract . ii

Contents . iii

List of Figures . vii

List of Tables . ix

List of Appendices . xi

List of Acronyms . xiii

1 Introduction 1

1.1 Motivation and Goals . 1

1.2 Organization . 2

2 State of the art 3

2.1 Web 2.0 . 3

2.2 SIP . 3

2.2.1 Brief History . 3

2.2.2 Session Initiation Protocol (SIP) vs. HyperText Transfer Protocol (HTTP) 4

2.2.3 Architectural Components . 5

2.2.4 Messages . 7

2.2.5 Transactions and Dialogs . 7

2.3 IMS . 8

2.3.1 Basic Architecture of IP Multimedia Subsystem (IMS) 9

2.3.2 IMS Architecture of PT Inovação . 12

2.3.3 Centralized Conferencing (XCON) Standard . 14

2.4 Additional Concepts . 15

2.4.1 Applet . 15

2.4.2 Servlet . 16

2.4.3 Model-View-Controller (MVC) Pattern . 16

3 Web Communication Services 19

3.1 Tagarela . 19

3.1.1 Architecture . 19

3.1.2 Main Features . 22

3.1.3 Entities . 23

iii

3.1.4 Web Interface . 24

3.2 WebHuddle . 25

3.2.1 Architecture . 25

3.2.2 Struts . 27

3.2.3 Entities . 30

3.2.4 Features . 30

3.2.5 Work With WebHuddle . 31

3.2.5.1 Standard Features . 32

3.2.5.2 Modified Features . 33

3.2.6 Current WebHuddle Application Programming Interface (API) 34

3.2.7 WebHuddle and Network Address Translation (NAT) 35

3.2.8 Capturing Image for Desktop Sharing . 35

4 Implementation 37

4.1 WebHuddle and Tagarela Integration . 37

4.1.1 Create New Conference . 38

4.1.2 Joining a Conference . 40

4.1.3 Inside of Conference Room . 42

4.1.3.1 Start Desktop Sharing . 42

4.1.3.2 Start Slideshow Sharing . 44

4.1.3.3 Join Desktop or Slideshow Sharing . 46

4.1.3.4 Slide Upload and Management for Slideshow Sharing 47

4.1.3.5 Request Permission . 48

4.2 Webphone Integration . 49

4.2.1 Analysis of Webphone Software Development Kit (SDK)s 50

4.2.1.1 Analysis of Abbeyphone . 50

4.2.1.2 Analysis of eyeP Foundation . 51

4.2.1.3 Analysis of Emansip . 52

4.2.2 Emansip . 52

4.2.3 Webphone Implementation . 54

5 Tests 57

5.1 List of Functional Tests . 57

5.2 Test Procedure . 58

5.3 Results and Analysis . 63

5.3.1 Number of Required Actions . 63

5.3.2 Duration of the Tests . 64

iv

6 Conclusions 67

6.1 Future Work . 67

Appendices 71

v

vi

List of Figures

1 SIP communication stack. 5

2 Example of a SIP request message. 8

3 Example of a session establishment and termination using SIP. 9

4 Simplified view of the IMS architecture. 10

5 Basic architecture of IMS. 12

6 IMS architecture of PT Inovação (simplified). 13

7 Conferencing System Logical Decomposition. 14

8 Representation of the Model-View-Controller (MVC) structure. 17

9 Functional Architecture of Tagarela, before integration with WebHuddle. 20

10 Login page of Tagarela. 24

11 Architecture of WebHuddle. 26

12 Principal components of structure of the WebHuddle framework. 26

13 Example of code that allows to enable a controller servlet. 28

14 Example of an action defined in struts-config.xml. 28

15 Example of a form bean defined in struts-config.xml. 29

16 Definition of the location of the struts-config.xml. 29

17 Description of the buttons that the moderator can use during a slideshow sharing. 31

18 Interface of the WebHuddle Server, at the beginning. 32

19 Changes to the functional architecture of Tagarela, after the integration of the WebHuddle

features (desktop sharing and slideshow sharing). 37

20 Interface to create new thematic conference. 38

21 Sequence diagram of the creation of a new conference room. 39

22 Page with the list of subscribed conferences. 40

23 Sequence diagram of joining a conference room, using a Webphone. 41

24 Sequence diagram of starting one desktop sharing, in Tagarela. 43

25 Sequence diagram of starting one slideshow sharing, in Tagarela. 45

26 Sequence diagram of joining one desktop/slideshow sharing, in Tagarela. 47

27 Sequence diagram of uploading images to use in the slideshow sharing, inside one Tagarela

conference room. 48

28 ModeratorConf receives permission request. 48

29 Interface for ModeratorConf decide if wants to give permission or not. 49

30 Interface of the Emansip softphone. 54

31 Chart with the representation of the tests of usability result. 64

32 Chart representing the maximum, minimum and average duration of each test. 64

vii

33 SIP message structure. 71

34 Request-line of the start-line. 72

35 Status-line of the start-line. 73

36 Interface to create new ad hoc conference. 75

37 Tagarela Floor Control. 76

38 Interface of a desktop sharing, with the description of the available buttons. 77

39 Example of a slideshow sharing page. 78

40 Example of the page that the user, who joined a desktop sharing, will see. 79

41 Example of the page that the user, who joined a slideshow sharing, will see. 80

42 Interface to upload and manage the slides to use in a slideshow sharing. 81

viii

List of Tables

1 Summary table with the result of the study of the webphones. 53

2 Summary table with the features of the libraries used by Emansip. 55

3 Mandatory headers. 72

4 Examples of request methods. 72

5 Types of response messages. 73

6 Classes of response messages. 73

ix

x

List of Appendices

A. More information about SIP 73

B. Example of tables from WebHuddle Server database 74

C. Interface to create new ad hoc conference 75

D. Description of the Floor Control area 76

E. Start Desktop Sharing 77

F. Start Slideshow Sharing 78

G. Additional Information to Join a Desktop/Slideshow Sharing 80

H. More about Upload Files to a Slideshow 81

xi

xii

List of Acronyms

3G Third Generation

3GPP Third Generation Partnership Project

3GPP2 Third Generation Partnership Project 2

AAA Authentication, Authorisation and Accounting

ADSL Asymmetric Digital Subscriber Line

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

AS Application Server

AV Audio and Video

B2BUA Back-to-Back User Agent

CCCF Conference and Collaboration Control Function

CDMA2000 Code-Division Multiple Access version of the IMT-2000 standard

CMTS Cable Modem Termination System

COM Component Object Model

CRBT Color Ring Back Tone

CSCF Call Session Control Function

DLL Dynamic Link Library

DNS Domain Name System

DSL Digital Subscriber Line

DSLAM Digital Subscriber Line Access Multiplexer

DVB Digital Video Broadcasting

DWDM Dense Wavelength Division Multiplexing

EJB Enterprise JavaBeans

ETSI European Telecommunications Standards Institute

xiii

FMC Fixed Mobile Convergence

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

GUI Graphical User Interface

HD High-Definition

HSQLDB Hypersonic SQL

HSS Home Subscriber Server

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

ID Identifier

IE Internet Explorer

IETF Internet Engineering Task Force

iLBC internet Low Bitrate Codec

IMS IP Multimedia Subsystem

IP Internet Protocol

ISDN Integrated Services Digital Network

ISP Internet Service Provider

I-CSCF Interrogating-CSCF

J2EE Java 2 Enterprise Edition

JSLEE Jain Service Logic Execution Environment

JSP JavaServer Page

JVM Java Virtual Machine

LAN Local Area Network

LBS Location Based Services

MGCF Media Gateway Control Function

xiv

MGW Media Gateway

MMS Multimedia Messaging Service

MMUSIC Multiparty Multimedia Session Control

MPLS Multi Protocol Label Switching

MRF Multimedia Resource Function

MRFC MultiMedia Resource Function Controller

MRFP MultiMedia Resource Function Processor

MVC Model-View-Controller

NAT Network Address Translation

NGN Next Generation Networks

OLT Optical Line Terminal

OMA Open Mobile Alliance

OS Operating System

PCM Personal Communication Manager

PDA Personal Digital Assistant

PDF Policy Decision Function

PIN Personal Identification Number

PINT PSTN and Internet Interworking

PT Portugal Telecom

PTT Push-to-talk

PSTN Public Switched Telephone Network

P-CSCF Proxy-CSCF

QoS Quality of Service

RFC Request for Comments

RSM Resources Share Management

xv

RTCP Real-time Transport Control Protocol

RTP Real-time Transport Protocol

SCTP Stream Control Transmission Protocol

SD Standard-Definition

SDK Software Development Kit

SDP Session Description Protocol

SDH Synchronous Digital Hierarchy

SGW Signalling Gateway

ShipNet Service Handling on IP Networks

SIMPLE SIP for Instant Messaging and Presence Leveraging Extensions

SIP Session Initiation Protocol

SIPPING Session Initiation Protocol INvestiGation

SLEE Service Logic Execution Environment

SMS Short Message Service

SMTP Simple Mail Transfer Protocol

SONET Synchronous Optical Networking

SPIRITS Service in the PSTN/IN Requesting Internet Service

SRTP Secure Real-time Transport Protocol

SS Soft Switch

S-CSCF Serving-CSCF

TCP Transmission Control Protocol

TISPAN Telecoms & Internet converged Services & Protocols for Advanced Networks

TLS Transport Layer Security

UA User Agent

UAC User Agent Client

xvi

UAS User Agent Server

UDP User Datagram Protocol

UE User Equipment

ULH Ultra Long Haul

UMTS Universal Mobile Telecommunication System

URI Uniform Resource Identifier

URL Uniform Resource Locator

VB Visual Basic

VCC Voice Call Continuity

VoIP Voice over IP

VOW Voice Over Web

VPN Virtual Private Network

WAR Web application ARchive

WLAN Wireless Local Area Network

XCON Centralized Conferencing

XML eXtensible Markup Language

XMPP eXtensible Messaging and Presence Protocol

xvii

xviii

1 Introduction

The recent evolution of Internet provides a set of features that allows people to share all kinds of informa-

tion, using several types of applications. Nowadays, there are applications that allows the users to share

their pictures (E.g., Hi5 [1]), their movies (E.g., YouTube [2]), and even their own thoughts (E.g., Blogger

[3]). It is also possible for users to choose how they want to organize their webpages (E.g., iGoogle [4]),

adding and removing items, changing the webpage themes, etc. Now more than ever, is important to

develop new applications that allow users to create, manage and share the information that exists on the

Internet.

We live in an age where is increasingly difficult to interact with people personally, because the people

are mostly occupied. So, it is important to have a service that allows people to communicate, not just by

writing text on a page, but also speaking and seeing the person with whom they are talking. Together

with all these factors, the communication also has to be at the lowest possible cost. Now, imagine these

features used not just to talk with one person, but to talk with a lot of people, at the same time, wherever

they are. This whole set of features turns web communications more personal and atractive.

Taking all this into consideration, this dissertation aspires to investigate and try the using of Web 2.0

technologies, in the development of Service Delivery Plataform (SDP), for the ALL-IP networks (e.g.,

Third Generation Partnership Project (3GPP) IMS). For this work, it is also one aim the investigation and

testing of Web 2.0 concepts (e.g., creation/generation of services and contents by the users themselves)

on the services plataforms to the ALL-IP 3GPP IMS networks. This will lead to the development of

new components to facilitate the creation of collaborative and social applications, applied to multimedia

communications.

1.1 Motivation and Goals

Instead of having an open application for audio and video conversation, another application for chating,

and yet another one for file sharing, with this new service the user only needs to open a browser. This

does not only saves computer resources, as yet provides a more organized work environment. This type

of collaboration and conference services allows that, with only an Internet browser, the user can interact

with several people.

So, the main goal of this dissertation is to add features to a service, that has already available some

resources, such as audio conversation, file sharing, video sharing and chat service. The new features

will enrich the service providing two more applications, from where the users can share data with others

participants, in a collaborative environment.

With the intent of reduce even more the number of needed applications, to interact with the service,

another goal is to integrate a webphone. This will avoid the requirement of having a softphone opened

to enter in a conference room and to communicate with the others users.

1

This dissertation can also be an important contribution for companies that have offices throughout

the country, for example. Imagine that there is an employee of the company that is at an office at 300 km

from the headquarters of the company, and must have weekly meetings with the Director. Instead having

to go to meetings, the employee may use the service to start a slideshow sharing with the Director, and

make the presentation of the weekly reports. This will save time travel of the employee, as well as the

money of the company spent on these trips.

Another example of utilization of the new service is the case of a Call Center, from an Internet

operator. When a customer calls to the Call Center, with a question about how to install a program on

the computer, the Call Center employee may use the desktop sharing. Using this resource, it is possible

to show to the customer what is needed to do, in order to install the program.

1.2 Organization

The remainder of this dissertation is organized into five main chapters. The following chapter, chapter

two, provides an introduction to the Session Initiation Protocol (SIP) protocol. This chapter also provides

an overview of the state of the art of IMS architecture, in particular the conceptual IMS architecture of

PT Inovação. At the end of chapter two are explained some additional concepts, that will be used in the

following chapters.

Chapter three provides information about two web communication services: WebHuddle and Tagarela.

For each of these services is presented their architecture, main features and the entities that have. In

chapter four is presented how the implementation of the new features in Tagarela were made. This

chapter also provides information about how one webphone was added to Tagarela interface.

Chapter five consists of the presentation of a list of functional tests, that were made to prove that the

service works. Finally, chapter six draws some final conclusions and lays out foundation for future work

in this area.

2

2 State of the art

In this section, the actual state-of-the-art of SIP protocol and IMS architecture are reviewed. In the first

place will be presented a brief explaination of what is the Web 2.0. After, a summary will be presented

about how did SIP first appears, and its workflow will be also presented. Subsequent, an IMS architecture

will be presented, as well as some of its concepts.

2.1 Web 2.0

The concept of ”Web 2.0” was born of the idea that the web is increasingly important, because of the

exciting new applications and sites that are emerging at the present-day [5]. Today, the term ”Web

2.0” has been widely adopted to describe a new web stage where web applications are increasingly

more collaborative and depend on contents distributed by the final users, instead of conventional static

information repositories.

However there is still a disagreement about what Web 2.0 really means, because some people believe

that the term is just a marketing buzzword and others believe that Web 2.0 is the new conventional

wisdom.

Some examples of applications in Web 1.0 and Web 2.0 are Britannica Online (Web 1.0) vs. Wikipedia

(Web 2.0), Personal websites (Web 1.0) vs. Blogging (Web 2.0), and Content Management Systems (Web

1.0) vs. Wikis (Web 2.0).

2.2 SIP

2.2.1 Brief History

SIP was originally developed by the Internet Engineering Task Force (IETF) Working Group, called

Multiparty Multimedia Session Control (MMUSIC) [6]. The first version of this protocol (Version 1.0)

was submitted in 1997, as an Internet Draft. In 1998 some significant changes were made, resulting on

the second version of the protocol (Version 2.0). In March 1999, the protocol archieved the status of

Proposed Standard and it was published, in April, as Request for Comments (RFC) 2543 [7].

In September 1999 the IETF established one working group about SIP. This happened because of

the growing interest on SIP protocol. In July 2000 it was delivered one Internet-Draft containing bug

fixes and some clarification to SIP. This document was named RFC 2543 ”bis”. Later, it was published

as RFC 3261 [8], replacing the original specifications of RFC 2543. However until now several RFC have

been made as SIP extensions.

The growing popularity of SIP in the IETF allowed the establishing of others working groups related to

SIP. One of these cases is the Session Initiation Protocol INvestiGation (SIPPING), that has the purpose

of investigate new applications of SIP and develop requirements for new SIP extensions. Another group

3

that was established was SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE). This

group is responsible to standardize related protocols for presence and instante messaging. There are an-

other groups that use SIP protocol like, for example, Public Switched Telephone Network (PSTN), PSTN

and Internet Interworking (PINT) and Service in the PSTN/IN Requesting Internet Service (SPIRITS).

SIP includes some elements of two well-known Internet protocols: HyperText Transfer Protocol

(HTTP) [9], that is used for web browsing, and Simple Mail Transfer Protocol (SMTP) [10] for e-mail.

From HTTP SIP uses the client-server model, as well as the usage of Uniform Resource Locator (URL)

[11] and Uniform Resource Identifier (URI) [12]. Of SMTP, SIP applies the text encoding scheme and

the headers style that are used on SMTP messages. Some examples of these headers are To, From and

Subject.

An advantage for SIP from using these elements is related with the possibility of extensions. That

is, SIP can be changed to support new features and services, as call control services, mobility and

interoperability with the telephony systems that already exists.

2.2.2 SIP vs. HTTP

While SIP is based on HTTP, there are some differences between these two protocols [13]. While HTTP

allows the content integration (text, audio, video, etc) on web pages, SIP performs the integration of

different media contents on the session. SIP use the request/response paradigm that is used by HTTP,

as well as headers and codes. One example of used header is ”404: Address not found”. This header

represents one error when one page is not found.

However, there are some key differences between SIP and HTTP. Unlike HTTP, SIP is a peer-to-

peer protocol and a web server, using HTTP, does not originate requests. Besides, SIP can generate

multiple responses, and for multiple destinations, through one single request. Another difference, on the

architecture point of view, is that the HTTP services are, typically, hosted in HTTP servers. These servers

generate responses to the received requests. For the other hand, SIP servers (proxy server, Redirect Server

and Registar) make the service routing.

As was already told, SIP uses URIs that allow us to identify the participants and the resources existing

in one communication session. The SIP URI is similar to an URL mailto, and its usual form is:

sip:user:password@host:port;uri-parameters?headers

Besides this format, there are another SIP URIs like:

• Phone call directly to a PSTN phone:

– sip:1-123-456-7890@redepstn.pt;user=phone;

The SIP parameters can be used to provide additional informations. In this example, user=phone

indicates that this call is made to a phone number.

4

• Internet call:

– sip:123-456789@ist.utl.pt;user=phone; context=privnet;

The parameter context=privnet indicates that we are using a private network.

• Phone call directly to a computer:

– sip:alice@ist.utl.pt

To perform the translation of SIP URIs to Internet Protocol (IP) address, ports and transport proto-

cols, Domain Name System (DNS) is used. DNS is also used to allow servers sending responses to backup

clients, when primary clients fail. For peer-to-peer functionalities and services, like Voice over IP (VoIP),

SIP interact with others protocols. Session Description Protocol (SDP) [14] defines the format to perform

the characteristics and parameters description of the multimedia sessions.

Another used protocol is Real-time Transport Protocol (RTP) [15] that defines the standard format of

the packets, to sending audio and video, through Internet. For the other hand, RTP provides out-of-band

control information about the quality of the RTP data flow. At figure 1 is a representation of the SIP

communication stack.

Figure 1: SIP communication stack.

2.2.3 Architectural Components

In this section it will be described the various components that make part of SIP [16]. A SIP network

have five entities and each of these entities have specific functions, and they can be part of a SIP

communication. The entities can act as a client (making requests), as a server (answering requests), or

act as both. One physical device can have the functionalities of more than one SIP entity. This means

that a network server that is a Proxy can also assume the Registar functionalities.

Generally, it can be said that SIP networks have two basic components: SIP User Agent (UA),

that start and answer calls, and SIP Network Server. The SIP architecture defines the next functional

elements:

5

• User Agent: A SIP UA is a device that can start or receive SIP calls. These devices can be a

terminal like a mobile phone, a Personal Digital Assistant (PDA) or a laptop, or even an endpoint

like a answering machine. SIP supports peer-to-peer and client-server architectures. UAs act like

peers, because they negotiate the session characteristics.

To start and terminate sessions, UA exchange requests and responses between them. In [8] UA are

defined as being an application that contains an UA server and an UA client:

– User Agent Server (UAS): it’s a server application that contact the user, when receives a SIP

request. When this happens, it sends a response in name of the user;

– User Agent Client (UAC): it is a client application that sends a SIP request.

• Proxy Server: The SIP proxy server is a fundamental component of the SIP infrastructure, and it

has routing capabilities and support functions like authentication, accounting, register and security.

The SIP proxy server is the first entity that receive all the SIP UA requests. Then, redirects this

request to the SIP UA that have been called. Normally, there are two SIP proxy server - one on

the caller side and other on the callee side. If necessary, the proxy rewrites the request messages

before forwarding them to the servers.

Proxy Servers can be configured to use stateless and stateful transactions. Proxy Servers that are

stateless receive requests and just sends the responses without saving any information about the

transaction that have just been performed. On the other hand, stateful Proxy Server saves the

information of all received requests, as well as the servers responses, and all messages that have the

servers as origin. Finally, it should be mention that the SIP infrastructure can use a combination

of proxy servers of the two kinds (stateless and statefull);

SIP Proxy Servers have one important function. This is, they can send several equal messages at

once, to multiple devices. In the case of a user that is registered in more than one location, the

forking Proxy Server will send one SIP INVITE message for each of these locations. When a server

receives a SIP OK message, from one of the locations, it sends one SIP CANCEL message to the

remaining locations. But to this function be available it’s needed that the proxy server is configured

to perform stateful transactions;

• Redirect Server: Redirect Server, as the name says, it’s a server that accepts SIP request and

answers with a address, for which the SIP message should be forward. Besides, it maps a destiny

address, in SIP message, to one or more addresses, and gives a new list of addresses. This location

information is on a database in the SIP Registar. Unlike Proxy Server, Redirect Servers can’t

forward the request to others servers;

• Registar Server: This functional element of the SIP architecture receives the users register re-

quests, through Register messages. In other words, Registar is a information location repository of

6

UAs. This element receives the UA register requests and replace the information on the location

database. This information consists of the SIP address and the IP address associated;

The SIP REGISTER message will inform the Registar, and consequently the network, about which

address, or multiple addresses, where the user will be available. When another location change is

made, the UA must send another SIP Register message to the Registar. The location information

that is saved at the repository is then used by the SIP proxy servers, to obtain the UA location of

the callee;

• Back-to-Back User Agent (B2BUA): B2BUA is an entity that receives the requests, process

them as if they were an UAS and, to determine how the request must be replied, act like an UAC

and generate requests. This entity must mantain a state of calls and participate on the requests

and responses transmission. B2BUA have a highest control of a call than the proxy. This happens

because Proxy can’t disconnect a call or change the messages.

2.2.4 Messages

As it was already told before, SIP signaling is used to start, modify and terminate communication and

collaboration sessions. This is all made through messages exchange. There are two kinds of SIP messages:

• Request: the client send a message to the server, to initiate an action (see figure 2);

• Response: message that is a reply to a request. It also indicates the status of the process.

More information about SIP can be found in Appendix A.

2.2.5 Transactions and Dialogs

A SIP transaction is a group of messages that are exchanged by SIP components. A transaction starts

when one of the components sends one request message. When a component receives a request, the

correspondent response messages is sent. To process SIP transactions it’s necessary to keep state infor-

mation. Because of this, SIP components need to be stateful. This means that the components obtains

the identifiers of the transactions, which are part of the SIP messages, and the components will update

the state information, of all transactions that occur, with them.

SIP dialogs are relationships between two SIP endpoints (peer-to-peer relationships). This allow us

to have a context for the sequencing and routing of the messages that are exchanged between SIP UAs.

All dialogs are identified by the next fields at the header of SIP messages: Call-ID, From and To. All

messages of the same dialog have always the same value on these three fields. The field CSeq maintains

the sequence of all messages that are exchanged within a dialog. This field is increased automatically

when a request is made. With this the transactions are identified within a dialog. On figure 3 is an

example of SIP transactions and dialog, and on figure 2 there is an example of an INVITE message.

7

Figure 2: Example of a SIP request message.

2.3 IMS

Currently, an importante architecture that uses SIP is IMS. IMS is an overlay service network architecture

that can be applicable to any kind of IP network as, for example, Code-Division Multiple Access version

of the IMT-2000 standard (CDMA2000), Global System for Mobile Communications (GSM)/General

Packet Radio Service (GPRS), Universal Mobile Telecommunication System (UMTS) and Wireless Local

Area Network (WLAN) [17]. It is a global standard that is supported by 3GPP, Third Generation

Partnership Project 2 (3GPP2), European Telecommunications Standards Institute (ETSI), Open Mobile

Alliance (OMA) and IETF, and it is often considered as the Universal Service Delivery Platform for Next

Generation Networks (NGN), also supporting Fixed Mobile Convergence (FMC). Because there is no

real IMS services that are standardised, for now IMS should only be considered as a service enabler.

A more specific definition of IMS is that it is a platform for multimedia service control. It combines

real time resources, such voice and video-conference, with non-real time services, independently of the

radio technology that is used. The IMS architecture intends to provide the next group of advantages:

• support to sophisticated multimedia services;

• session oriented connections;

8

Figure 3: Example of a session establishment and termination using SIP.

• mobility with no restrictions, allowing also Home Control;

• Quality of Service (QoS);

• FMC of services and network operations;

• support of Legacy services;

One of the greatest benefits of the IMS architecture is the possibility of introducing sophisticated

services, for subscribers. The actual networks already allow the provision of some of these services, but

the following limitations occurs:

• low interaction between service platforms;

• low efficiency in databases administration, since each service platform often requires it own sub-

scribers database, for provisioning. Obviously this is not the best way to implement and work with

new services.

2.3.1 Basic Architecture of IMS

The IMS architecture is divided basically in tree layers (see figure 4):

9

• Application Layer: contains the services platforms (e.g. Push-to-talk (PTT), Location Based

Services (LBS), Short Message Service (SMS)/Multimedia Messaging Service (MMS), etc.);

• Control Layer: responsible for control, including sessions establishment. The Soft Switch (SS) is

the principal element of this layer;

• Access Layer: access media, including wireless interfaces (e.g. CDMA2000 and UMTS) and cable

interfaces (e.g. Asymmetric Digital Subscriber Line (ADSL)).

Figure 4: Simplified view of the IMS architecture.

SS have a main role in the IMS architecture. The SS contains the IMS server functions, being

responsible for the call/session control, provided by the IMS, on the subscriber network (Home Network).

SS manager IP sessions, provide the services, coordinates the session control with the others network

elements, and allocates media resources.

On figure 5 it is shown a representation of the components of the IMS architecture [18]. The three

majors components of this architecture are the following:

• Proxy-CSCF (P-CSCF): it represents the first contact within the IMS. The P-CSCF acts like a

Proxy (as defined in [8] or following versions). This means that the P-CSCF either accepts requests

and services internally or it forwards them. This IMS component must not change the request URI

in the received SIP INVITE message. P-CSCF can also act like an UA (as defined in [8] or following

versions), because it may terminate SIP transactions, as well as generate them. The P-CSCF has

the following functions:

10

– forward the SIP register request received from the User Equipment (UE) to an entry point,

determined using the home domain name, as provided by the UE;

– forward SIP messages received from the UE to the SIP server (e.g. Serving-CSCF (S-CSCF)),

whose name the P-CSCF has received as a result of the registration procedure;

– execute the control policy set by the network operator;

– coordinates with the access network, allowing the resources control and quality of the calls/sessions

(QoS);

– the operators can localy offer services controled by the P-CSCF;

– should realize SIP message compression/decompression.

• Interrogating-CSCF (I-CSCF): this is the contact point in an operator’s network for all con-

nections that are to an user of that network operator, or a roaming user that is actualy located in

that network operator’s service area. It may exist multiples I-CSCF in one network. The executed

functions by the I-CSCF are:

– designating of a S-CSCF to an user, executing a SIP register;

– routing a SIP request received by other network, to a S-CSCF;

– obtaining from the Home Subscriber Server (HSS) the S-CSCF address;

• S-CSCF: is the manager of the SIP session and coordinates, with other network elements, the

call/session control. The S-CSCF is responsible for executing the following functions:

– SIP register: processes the SIP register requests;

– session control: executes the call/session establishment, modification and termination;

– service control: interacts with the Application Server (AS) to services and applications support.

But these are not the only components of the IMS architecture that exists. The others components,

that are represented on figure 5, consist of the following:

• HSS: Contain the primary database with the data of all users, including authorized services, to

which the several logical control entities (Call Session Control Function (CSCF)) may access to

manage the subscribers. The user’s data will be forwarded to the S-CSCF. It also stores the

temporary information with the S-CSCF location where the user is registered, at a given time;

• AS: provides service control for IMS and it may be directly connected to the S-CSCF. The AS

interacts with the HSS to obtain subscriber profile information. It can also suport applications such

as presence and conference control;

11

Figure 5: Basic architecture of IMS.

• MultiMedia Resource Function Controller (MRFC): controls the media resources of the

MultiMedia Resource Function Processor (MRFP). An example of these resources are the ones

required to support a multi-user conference. Another functionality of the MRFC is to interpret the

information coming from an AS through the S-CSCF and to control the MRFP accordingly;

• MRFP: is controlled by the MRFC and have the following functions:

– available resources to be controlled by the MRFC;

– join incoming media streams, from various parties;

– proccesses media streams like, for example, media analysis;

– notify the MRFC when an event has occured.

• Signalling Gateway (SGW): provides the signalling conversion in both directions, on transport

layer, between SS7 and based-IP signalling;

• Media Gateway Control Function (MGCF): has the function interworking of signalling be-

tween the elements of the IMS network and the Legacy networks (PSTN). The MGCF controles a

group of Media Gateway (MGW) through H.248 signalling [19];

• Policy Decision Function (PDF): it is the logical function that implements the decision about

the policy to be applied. To do this, it uses QoS mechanisms at the IP connectivity layer.

2.3.2 IMS Architecture of PT Inovação

Since this Thesis was develloped in collaboration with PT Inovação, PT IMS architecture will be presented

in this section (see figure 6) [20]. This architecture includes the following components:

12

Figure 6: IMS architecture of PT Inovação (simplified).

• ip-Sail : solution that provides the operator with a flexibility tool for the deployment of a NGN

service, with a high level of cofidence in the charging method;

• ip-Jib: is a Next Generation Service Delivery Platform [21] and SIP AS, based on Jain Service

Logic Execution Environment (JSLEE) (Service Logic Execution Environment (SLEE)) [22] and

Java 2 Enterprise Edition (J2EE) technologies;

• ip-Cockpit : based on a modular and distributed architecture in order to achieve high performance,

scalability and fault-tolerance levels. With HSS functions its modular approach allows a phased

implementation, allowing customers to grow up the solution depending on its needs;

• ip-Deck : is the core session control infrastructure in PT Inovação’s IMS compliant end-to-end

service handling architecture Service Handling on IP Networks (ShipNet). It implements the three

core IMS Call Session Control functions: P-CSCF, S-CSCF and I-CSCF;

13

• ip-Windless: is a flexible, open architecture multi-service platform that offers Telecom Operators

and Service Providers a wide range of possibilities for delivering enhanced services over PSTN,

converged and all-IP networks. The ip-Windless Platform allows for the fast development of new

interactive voice and video applications, with efficient resource sharing;

• ip-Rudder : responsible for the admission control of new network flows and for managing its re-

sources, ensuring the QoS;

• ip-Keel : allows the interworking with legacy networks.

2.3.3 Centralized Conferencing (XCON) Standard

An important standard in the IMS Conference Services is the standard Centralized Conferencing (XCON)

[23]. A centralized conference is an association of endpoints (conference participants), with a central

endpoint (conference focus). The focus has a direct relationship with the participants, through the

maintenance of a separate call signaling interface with each of them. So, in the centralized conferencing

model, the call signalling graph is always a star.

Figure 7: Conferencing System Logical Decomposition.

The centralized conferencing system proposed by [23] is built around an important concept of a

conference object. This object provides the data representation of a conference during each stage of

a conference (for example, creation and reservation). A conference object is accessed via the logical

functional elements, with whom a conferencing client interacts, using the several protocols represented

in figure 7. As it can be seen in this figure, the functional elements defined for a conferencing system

described by the framework are: Conference Control Server, Floor Control Server, any number of Foci

and Notification Service. Concerning to the protocols used, they are:

14

• Conference Control Protocol: provides the interface between a conference and media control

client and the conference control server;

• Floor Control Protocol: provides the interface between a floor control client and the floor control

server. E.g., Binary Floor Control Protocol;

• Call Signaling Protocol: provides the interface between a call signaling client and a focus. E.g.,

SIP, H.323, etc.;

• Notification Protocol: provides the interface between the conferencing client and the notification

service. E.g., SIP Notify [24].

A conferencing system can support a subset of the conferencing functions represented in figure 7. But

there are some components that may be used by other advanced functions. An example is the Notification

Service that is used to relate information, such as the list of participants with their media streams, among

several others components.

Concerning with the media graph of a conference it can be centralized, decentralized or any combi-

nation of both. When it is used a centralized media graph, the media sessions are established between a

media mixer controlled by the focus and each of the participants. If it is used a decentralized architec-

ture, the media graph is multicast or multi-unicast mesh among the participants. In this case, the media

processing can be controlled by the focus or by the participants.

2.4 Additional Concepts

Before introducing and explaining the web communication services, and how those services were inte-

grated, some additional concepts must be explained to better understand the implementation phase.

2.4.1 Applet

The applet is a program written in Java that can be included in a HyperText Markup Language (HTML)

page. This is done, basically, in the same way that an image is included in a page. When using a browser

that allows displaying Java technology, in a page containing an applet, the applet code is transferred to

the client system and is executed by the browser Java Virtual Machine (JVM). An applet is delimited

by the applet tag.

Applets are written in a language that is different from scripting or from HTML language that invokes

it. An applet is written in a compiled language, usually java, while the container scripting language is a

interpreted language, thence the higher performance or functionality of the applets.

The applet Application Programming Interface (API) allows to take advantage of the relation that

exists between applets and web browsers. Applets can use the API to:

15

• be notified by milestones (init, start, etc);

• load the specific files concerning to the applet URL or the page where is running;

• show small status frames and make a browser to show a document;

• get parameters specified by the user on tag applet.

2.4.2 Servlet

The servlet is an object that runs in the HTTP server side, and that receives requests and generates

responses, based on those same requests. The basic package of servlet define Java objects, to represent

servlet requests and responses, like objects to reflect the servlet configuration parameters and execution

environment.

The package javax.servlet.http defines specific HTTP subclasses of generic servlet elements, including

session management objects, that track multiples requests and responses between web server and client.

Servlets can be encapsulated in Web application ARchive (WAR) files or as web applications, and can

be generated automatically by JavaServer Page (JSP).

The Java Servlet technology provides the web developers with simple and consistent mechanisms to

extend a web server funcionality, and access to existing business systems. A servlet can be seen as an

applet running on the server side.

The Java Servlet API allows software developers to add dynamic content to a web server, using

the Java platform. The generated content is usually HTML, but it can also be eXtensible Markup

Language (XML) data. The servlets can keep the state between server transactions, using HTTP cookies,

session variables and URL rewrite.

2.4.3 Model-View-Controller (MVC) Pattern

An important architectural pattern used in software engineering is MVC [25]. By applying this pattern

it is possible to separate core business model functionality from the presentation and control logic that

uses this functionality. Such separation allows multiple views to share the same enterprise data model,

which makes supporting multiple clients easier to implement, test and mantain.

As it can be seen in figure 8, the Model represents the information (the data) of the application and

the business rules used to manipulate the data. The View corresponds to elements of the user interface

such as text, checkbox items, etc. Finally, the Controller manages details involving the communication

to the model of the user actions, such as keystrokes and mouse movements.

16

Figure 8: Representation of the MVC structure.

The information in this chapter allowed to understand some of the technologies and the protocols used,

in this dissertation. It was explained how does the SIP works, and how it can be related to HTTP.

Other important information on these chapter is the presetation of a basic IMS architecture and, in

particular, the IMS architecture of PT Inovação. Finally, another two concepts, with relevance to this

work, were presented. These concepts were the XCON Standard and the MVC Pattern.

17

18

3 Web Communication Services

In the context of this Thesis two independent services called Tagarela and WebHuddle were analysed.

The service Tagarela is a solution in development at PT Inovação for conference and collaboration, while

WebHuddle is an open source service for web conferencing as well.

One of the main purposes of this dissertation is to integrate some WebHuddle and Tagarela features

in a single service.

In the following sections these two services will be introduced, as well as the features of each one. It

will also be explained their architectures and the entities available to interact with these services.

3.1 Tagarela

Tagarela is the Conference and Collaboration solution that is under development in PT Inovação, which

is part of an architecture called Shipnet. This architecture includes the family of products to give answer

to challenges and needs of the NGN, in the FMC scenario.

Tagarela provides a wide range of features. These features include chat, video conferencing, file sharing

and audio conversation. Under this Thesis, two new features were added: desktop sharing and slideshow

sharing. These features were implemented using the WebHuddle (it will be presented in section 3.2). To

better understand how does the Tagarela works, there are some concepts that need to be explained [26].

• Focus: Is an SIP UA that is represented by the conference URI, and identifies the session. The

focus keeps the signalization with each one of the conference participants, and it is responsible to

ensure that each participant receives the media that makes part of the conference session;

• Floor: Temporary permission to control some shared resources, inside one session;

• Floor Chair or Moderator: Logical entity that controls a specific floor (gives, denies or repeals

the floor). The entity that takes the place of Floor Chair can, at the same time, take another role,

like for example, it can be one participant;

• Floor Control: Mechanism which provides, to the applications and users, the possibility to access

and change, simultaneously, the conference object;

• Floor Control Server: Logic entity that keeps the state of the floors, including who has the floor

(Floor Chair), which floor users have, etc. The requests to manipulate the floor are sent directly to

the Floor Control Server.

3.1.1 Architecture

The Conference and Collaboration solution, Tagarela, adheres to the 3GPP IMS and ETSI Telecoms &

Internet converged Services & Protocols for Advanced Networks (TISPAN) architecture. In particular it

19

meets conference standards 3GPP TS 24.147 ([27]) and the XCON IETF standard ([28] [29] [30] [31]).

Thus, the PT Inovação conference solution is one application executed in the functional element SIP

AS, which controls the sharing of the resources used at the conference sessions, made available by the

functional elements Multimedia Resource Function (MRF). A representation of the main functional

architecture of Tagarela can be seen at figure 9. It is important to note that this architecture is just a

conceptual architecture.

Figure 9: Functional Architecture of Tagarela, before integration with WebHuddle.

• Calendar Function: it allows to manage the previous scheduling of the Tagarela sessions, by

sending invitations to the participants, while ensuring the availability of the sharing resources

on the sessions. The calendar service is also responsible for sending reminders to the scheduled

sessions, and it may trigger the establishment of the session (Conference and Collaboration Control

Function (CCCF)). This functionality can be provided by an extern calendar server compatible

with the standards iCAL [32];

• Portal: provides the administrators with the necessary tools to create and manage the new Tagarela

services classes, through the definitions of the sessions profiles and respective control policies. The

Portal also makes available self-provisioning functionalities, allowing users to manage their own

20

subscriptions and profiles (using the Profile Repository), as well the scheduling of new sessions,

through the Calendar Function;

• CCCF: entity responsible for the logic that defines the final behavior of the Tagarela services.

CCCF provides the user with the functionalities of Floor Control. This is made through different

user interfaces and to control the several resources shared on the Tagarela sessions (Resources

Share Management (RSM)). With the RSM the user can control the participants audio and video

streaming (MRF), chat sessions (Chat Room Function) and the documents sharing (Documentation

Share Function), including Word, PPT and Excel files.

The events that are generated by the session control (e.g., entry of new participant) are published

and reported by the presence service, in accordance with the received subscriptions from participants

(or anothers applications) (Presence Function).

The sessions are governed by policies (rules) that are in the service and users profiles repository

(Profiles Repository Function). The session establishment can be triggered by received triggers of

the calendar service (Calendar Function), to the previously scheduled sessions at the Portal;

• Profiles Repository Function: implements the functionalities of Conference Policy Server and

it is responsible for the services profiles management and its users, providing reading and writing

functionalities to the Portal, and just reading functionality to the CCCF;

• Notifier Function: provides the required features for the reporting of events related with the

Tagarela session. These features are provided through one normalized event package, specific of the

conference service (Conference Event Package) [30];

• MRF: provides the control funtionalities to the sharing of several resources, including:

– Chat Room Function: functionality of group service that is part of the MRF functionalities,

where, in this case, the media is the text. Allows to control the exchange of instant messages

by group of users;

– Documentation Share Function: another group service funcionality, that allows to control

file transfers (ability to upload files to one central server, to which the other conference par-

ticipants have access, and from which they can do the download of the files), and the sharing

of viewing and editing of different types of documents;

– Audio and Video (AV) Mixer: mix and distribution, in real time, of the audio and video

media flows, by the group of participants in the Tagarela sessions. This feature is provided by

the Media IP-Windless server.

• Content Provider: extern entity that provides contents to the MRF, in real time, to share with

the participants of the Tagarela session.

21

3.1.2 Main Features

Tagarela has several features available, but only some will be detailed here. The features that will be

presented are the required ones to understand how Tagarela works, and the main funcionalities available

to the user. There are two types of conferences that can be created using Tagarela: Thematic and Ad

hoc.

• Thematic Conferences: a conference of this type can only be created by the Administrator of

Tagarela, and they only are visible to an user after he has subscribed the room. To access to one

thematic conference the user has one set of processes that can be used. One of them is the prior

knowledge of the conference address, and so the user may enter the room just with one call to that

address.

Another way to access a thematic conference is through the consult of the service page, where there

is the indication of all ongoing sessions, and then the user may request the service to invite him. At

last, the user can be invited by one participant of that session. These accesses to the conferences

can be controlled by sessions subscription or by the number of participants allowed;

• Ad hoc Conferences: this type of conferences can be created by any user. The beginning of one

ad hoc conference may be done through the web interface of the service. On this web interface are

the addresses of the users, that the creator may invite.

The number of participants, in each conference, is limited up to a maximum number, defined at the

time of the conference creation. To enter in one Ad hoc room, to which the user was not invited at

the begin, the user needs to be invited by a participant of that meeting.

These types of conferences (thematic and ad hoc) can also be divide into two, depending on the type

of media supported. They can be audio conferences or video conferences.

• Audio Conference: Tagarela allows users to enter in audio conferences sessions, where the users

share their audio, using VoIP and PSTN terminals. These conferences can, in any moment, support

video and chat between participants. The control of this support is responsability of the business

logic;

• Video Conference: The users of this service can participate in video conferences, so they can

share their video resources among themselves. It will be created one single video stream, with a

mosaic of all participants, to be watched in a client with video support. As other conferences, the

users can also share the audio and the chat features, while participating in the session.

Once inside a conference, whether it is thematic or ad hoc, there are a set of features that the partic-

ipants can use. Some of these features are only available for some type of participants (Administrator or

Moderator). These features are presented and explained below:

22

• Add participant: This feature allows to invite new participants to the ongoing conference. De-

pending on the conference rules, this can be done by the moderator or by any participant;

• Remove participant: The moderator has permissions to remove participants that are disturbing

the room;

• Banish participant: If one specific participant is constantly disturbing the conference, the mod-

erator may decide to banish him. With this feature, the banished user is removed from the room

and he no longer is allowed to enter the room, until the moderator wants to. This action can only

be made by the moderator of the conference room;

• Mute/unmute audio: Allows to mute or unmute one participant, so that the audio sent by that

participant ceases to be listen by the remaining participants;

• Mute/unmute video: This feature works just like the audio mute/unmute, but with the difference

that instead of audio, this feature allows to mute/unmute the participant video. This means that

there will be no more available streaming from the participant;

• Mute/Unmute all but himself: Allows the moderator to silence all the participants except

himself;

• Delegation of moderation: The participant with privileges of moderation can choose to delegate

these privileges to other participant;

• Close/Open conference: At any time it can be defined that is no longer allowed the entry of

more participants in the conference (Close Conference). In the same way, the conference can be

opened to new entries at any time (Open Conference).

3.1.3 Entities

In Tagarela there are different types of users, also called entities, and each one of them has different roles

in the service. They are organized hierarchically, being the Administrator the entity with more privileges.

• Administrator: Entity that is responsible for managing the service. The Administrator is also

responsible for the creation of the Tagarela services classes, and by the definition of the rules of use

(type of shared resources, maximum number of participants, moderator, etc);

• Session Creator: Entity responsible for the creation of the Tagarela session (thematics and/or

ad hoc conference) and definition of the session policies and respective mode of control, according

to the privileges given by the Administrator.

Although the Session Creator is not necessarily a participant of the session created by him, he has

the full control of the session. The only entity superior to the Session Creator is the Administrator

of the service;

23

• Moderator: It is the entity responsible for, in real time, managment the conferences. During

a conference, the moderator has the ability to give, revoke and/or deny the ability to use the

room resources (file sharing, video sharing, chat, download files that are being shared, etc), to

participants. The moderator can also remove a participant from the conference.

The choice of the moderator and his moderation functions are defined according to the policies

defined by the Session Creator. The moderator can also be chosen during the conference creation;

• Participant: This entity represents the user without moderation privileges, when he is in a con-

ference room. Once the user is no longer in the meeting, it will become default to a simple user.

The functionalities of participant control are defined by the Session Creator;

• User: It is the entity that executes the actions outside the sessions. For example, the user is who

does the subscription and scheduling of an ad-hoc meeting.

3.1.4 Web Interface

Tagarela has one web interface available, based on Asynchronous JavaScript and XML (AJAX) technol-

ogy, so that it can improve the user interaction with the service. In figure 10 is represented the login page

of Tagarela. Through this page, the user performs his logon on the service, and he has the possibility of

choosing the language that he wants to use. The options currently available are Portuguese and English.

Figure 10: Login page of Tagarela.

24

3.2 WebHuddle

WebHuddle is a multi-platform open source application, based on a web server, for web and video confer-

encing [33]. The goal of analysing this application is to add two new features into a Conference Service

that is under development at PT Inovação, called Tagarela. The features that were added to the Con-

ference Service are the desktop and slideshow sharing. With these features the user will be able to share

their desktop, pictures and presentations, with the users who are at the meetings.

Key Features:

• Simple: The client runs the service in its browser, through firewalls and proxies, and requires no

installation. Furthermore, it has an intuitive user interface;

• Small: The client applet only needs between 75 to 175 kB of disk space, depending on the platform

and the used features;

• Standard: WebHuddle works in Linux, Windows, Unix and Mac OS, through Java technology. It

also uses the same protocol as browsers, HTTP;

• Open Source: Since it is an open source application, WebHuddle has the advantages of being

transparent and flexible.

Limitations:

• Type of uploaded files: Unfortunately, the format of files supported is limited. For example, it

does not support doc or pdf files, which are two popular format used in documentation exchange;

• Upload before sharing: WebHuddle does not support file upload during a slideshow sharing, so

the files must be uploaded before beginning the shared session;

• View shared area: In a desktop sharing, when is being shared just one area of the desktop, the

user does not have a precise idea of what he/she is sharing.

3.2.1 Architecture

The WebHuddle architecture is composed by a Server that publishes its services on the Internet, through

JBoss [34], in a configurable URL, and the users who access to available services. But the WebHuddle

Server himself acts as a client and a server. This is, the client is the entity that receives the requests from

the browser, and sends these requests to the server entity. Another important feature of WebHuddle is

that it is based on the MVC pattern (defined in section 2.4.3), because the jsp pages are used to render

the View, the Servlet works as Controller and components Enterprise JavaBeans (EJB) act as the Model.

25

Figure 11: Architecture of WebHuddle.

The WebHuddle Server is the entity responsible for the management of all the interactions between

users. Furthermore, as the events are received the server has to perform the required actions. With

regard to the information, this is stored in a Hypersonic SQL (HSQLDB) database, and it has all the

information about the registered users. For example, the pictures that the users have on their accounts,

the meetings that they have attended and the contents (users and pictures) associated to each meeting.

This information is stored in a file at the WebHuddle Server.

To make the service available on the Internet, it is required that the service has been deployed at

JBoss, which then should be started. JBoss is an open source application server, based on J2EE platform.

It is implemented in Java and, because of this, it can be used in any Operating System (OS) that supports

Java, just as what happens with WebHuddle. When the JBoss service is started, the WebHuddle will

be available on the Internet, at the WebHuddle Server IP address. When the service is published on

the Internet, a group of servlets, on the server side, will be available and, on the client side, there are a

group of applets that are loaded on the client browser. A representation of the WebHuddle architecture

is depicted in figure 11.

Figure 12: Principal components of structure of the WebHuddle framework.

26

The framework of WebHuddle is structured in several folders, and the main are: ”applets”, ”client”,

”server” and ”web” (figure 12). Despite what it may seem, the ”applets” folder only has the code

responsible for the applet used to manage the slides, at the Server. The others applets that WebHuddle

use are inside the ”client” folder, maybe because these applets runs on the client side.

At this stage, it is important to explain the difference between script and slide. These two concepts

are only different when the uploaded file is a zip or a presentation. In this case, the script corresponds

to the file uploaded and slide is each image of the zip or each page of the presentation. In the case that

the uploaded file is only one image (bmp, jpg or gif), the script has only one slide.

Summarizing, the script is composed by one or more slides. So, when a slideshow sharing is started,

the content that is shared corresponds to a script, whose idenfitier is inserted in the URL that is used to

start the sharing (example of the URL is presented in section 3.2.6).

To perform the interface between the WebHuddle Server and the database, EJBs are used. When

the service is deployed it creates the database tables (see Appendix B which contains the tables). These

EJBs are inside the ”server” folder, represented in figure 12, and the main ones are the following:

• CustomerBean: stores information about, for example, the user name and e-mail, user IP and

timestamp of the account creation;

• LogonBean: contain information about the logon Identifier (ID), the IP from where the user

performs the login, the user agent (Internet Explorer (IE), Firefox, etc) and the time of the login;

• MeetingBean: stores information about, for example, the meeting ID, meeting name, date and

time of start and end of the meeting;

• ParticipantBean: EJB responsible for storing information about the participation of an user in

a meeting. The information stored is, for example, logon name and e-mail of the user who entered

the meeting, java version, user IP and start and end time of the participation;

• ScriptBean: contains information about the script ID and name;

• ContentslidBean: has information about the size and name of the slides.

3.2.2 Struts

Struts is an open source framework for implementing applications using the MVC design pattern. This

allows developers to concentrate on the business logic, without worrying about the others parts of the

architecture [35].

The Controller is provided by Struts in the form of an ActionServlet class. This class is used for

handling all requests. In order to WebHuddle to allow the use of this servlet controller, the code repre-

sented in figure 13 is included in the deployment descriptor (”web.xml”). In file ”web.xml”, it must also

27

be specified the mapping of WebHuddle URLs to this servlet. The code of figure 13 also defines that any

URL with ”.do” extension calls the ActionServlet to handle the request.

Figure 13: Example of code that allows to enable a controller servlet.

To carry out the required actions when a particular request is received, the ActionServlet need to be

configured using Action Mappings in the ”struts-config.xml” file. An Action Mapping specifies a fully

qualified Action class name, that should be invoked when an URL matching its path is requested. The ex-

ample of an Action Mapping, when the URL http://WebhuddleServerDomain:8080/desktop.do?username

=ConferenceRoom&meetingName=ConferenceRoom is requested, is in figure 14.

Figure 14: Example of an action defined in struts-config.xml.

When an URL for the WebHuddle Server with name ”desktop.do” is called, the ActionServlet looks

for a mapping with the path ”/desktop”. It then instantiates the class defined by the type attribute

(”com.sts.webmeet.com.OpenMeetingAction”) to perform the required action. Any form parameters in

the requested object are passed to the Action class, using the form bean defined by the name attribute

(”openMeetingForm”). This attribute defines a logical name for the form bean, and its mapping is

represented in figure 15. Using this input, the Action class executes operations to serve the request.

Depending on the result of the operation, the user is forwarded to the next view, using the ActionForward

object (see tag forward used in figure 14).

28

Figure 15: Example of a form bean defined in struts-config.xml.

Definition of Action Class

Is an adapter between an incoming HTTP request and the corresponding business logic, that should be

executed to process this request. It should define a method that will be automatically invoked when

a request is received. For each request received, the Controller (ActionServlet class) will select an

appropriate Action class, it will create an instance and it will call the perform method. This method

should be implemented to execute the business logic for serving the request, handle error and navigate

to the appropriate view based on the outcome of the action. Usually, the business logic part of the

implementation is delegated to EJB.

Action Mapping Configuration

For mapping a request from an URL to a particular Action class, the ActionServlet class uses the

ActionMapping interface, in order to be provided with suitable information. Struts provides a declarative

way, in the form of XML configuration file, to pass this information to the controller servlet. Then, this

file is parsed by the controller servlet, which in turn gets the required information to handle the incoming

request.

The configuration file, ”struts-config.xml”, was defined and placed in the ”WEB-INF” folder of the

WebHuddle WAR file. The controller servlet knows the configuration file from the ”web.xml”, where it

is declared as represented in figure 16.

Figure 16: Definition of the location of the struts-config.xml.

The ”struts-config.xml” is a configuration file with a well-defined structure. Its important elements

are the following:

• form-beans: contains the definition of the beans used by the application. A form-bean describes

an instance of ActionForm class that will be used to pass the form data to the action class;

29

• global-forwards: defines the forwards that can be used by all action mappings. A forward is an

instance of ActionForward class that maps a resource name to the actual resource in the application.

These forward names are used in the application to forward the control to the next view, based on

the outcome of the request execution;

• action-mappings: element used for defining mapping for various actions using action tags. This

tag is used to map a request URL to a particular action, and to pass the associated information.

3.2.3 Entities

In WebHuddle there are only two entities that interact with the application. They are:

• Moderator: It is the entity that starts a desktop sharing or a slideshow sharing. It controls what

the other users will see, during the sharing:

– In one desktop sharing he is responsible for deciding when to start and to stop the sharing.

The moderator may also decide if wants to share all desktop or just a single area, bounded by

a rectangle;

– In one slideshow sharing he is responsible for choosing the slides that wants to share, and

the order of the presentation of the slides. The moderator also has the ability to do some kind

of edition of the images, through the tools described in the previous section.

• User: Entity that joins into one desktop or slideshow sharing. It has no control on what is

happening during the share.

3.2.4 Features

Besides desktop and slideshow sharing, WebHuddle has a set of services, including chat, VoIP and meeting

recording. However, these services will not be presented, since they are outside the scope of this thesis.

To interact with WebHuddle is necessary to have a registered account and to be logged in. A WebHuddle

user will correspond to a meeting in Tagarela. With this, for example, uploaded files in WebHuddle will

correspond to files that an user wants to present in a meeting at Tagarela. The WebHuddle features that

are used are the following:

• Register: allows the registration of a new user;

• Login: enables a registered user to login into a WebHuddle session;

• Slides upload: provides an authenticated user to upload image(s), called slide(s). The slides

are added to the user account, and become available for when the user wants to start a slideshow

sharing session;

30

• Slides manage: allows an authenticated user to manage the slides that will be associated to the

account. The users can select, from all slides of his account, which will be available in the slideshow

sharing;

• Desktop sharing: allows the coordinator user (moderator) to share his desktop with users that

are at the meeting. The moderator can choose if he wants to share his entire desktop or only a part

of it, and can also control the start and the end of the desktop sharing. To desktop sharing two

available actions exist:

– start: an authenticated user can start a desktop sharing. When the user starts a sharing

he/she becomes the session moderator ;

– join: an user, authenticated or not, can join a sharing session;

• Slideshow sharing: allows the user who starts the meeting (moderator), to share a set of pictures

(slides), with the users that are in that meeting. When the moderator shares more than one slide,

the users only see the slide that the moderator is showing. In a slideshow sharing the moderator

has a set of tools to mark something on the slides. These tools are: undo (undo the last change),

erase all (erase all the changes made during the slideshow sharing), change color (allows to change

the color), rectangle (draw a rectangle area on the image), line (draw a line) and scribble (write or

draw something on the image). At figure 17 can be seen these buttons and their description.

– start: authenticated user can start a slideshow sharing. When the user starts a sharing he/she

becomes the session moderator ;

– join: an user, authenticated or not, can join a sharing session;

Figure 17: Description of the buttons that the moderator can use during a slideshow sharing.

3.2.5 Work With WebHuddle

There are a set of actions that are used by WebHuddle. However some changes were made to the way how

WebHuddle works, so that the integration with Tagarela could be made. Next, it will be explained these

set of actions, and the changes that were made. At figure 18 it can be seen how is the initial interface of

WebHuddle, after user do the login.

31

Figure 18: Interface of the WebHuddle Server, at the beginning.

3.2.5.1 Standard Features

In this section it will be explained the features available in WebHuddle, before the changes made to

integrate it with Tagarela.

• Register: If an user wants to register in the service, he must indicate the first and last name,

e-mail address and country initials. The supported countries are Portugal (pt), Spain (es), England

(en), France (fr), Germany (de), Finland (fi), Netherlands (nl), Slovakia (sk) and Hungary (hu).

The field country initials allows all the WebHuddle features to be written in the respective language.

When the user ends the register, WebHuddle generates a random password, that is sent to the user

e-mail. Then the user can change the password in the ”Profile” menu;

• Login: When a user wants to login in the service, he has to enter the e-mail and password;

• Profile: Feature that allows an authenticated user to change some values of his/her account. These

values are the user first and last name, password and e-mail address;

• Upload: When an user wants to perform a slide upload, he/she has to write the slide name and

browse the image that wants to upload. The user also needs to define the size that wants to assign

to the image. The size can be 320x240, 640x480, 800x600 or 1024x768.

The uploaded files can only be one of the next types: gif, jpg, bmp or zip (containing those types).

WebHuddle also allows the upload of presentation with ppt or sxi extensions. But to do this, the

WebHuddle Server need to have an OpenOffice instance running, because WebHuddle uses this

application during the upload of the presetations, to convert each page into an image;

• Begin Meeting: Allows a logged user to create a new meeting. This feature has a set of fields

to be filled by the user. These are: meeting name, meeting description, slides to share, meeting

password and options to choose the recording and VoIP features.

Is also worth noting that the meetings have the two services embedded (desktop and slideshow

sharing). The moderator can choose, during the meeting, which service wants to use, through the

buttons and , respectively;

32

• Join Meeting: This feature allows an user, authenticated or not, to join a meeting. WebHuddle

needs the next four fields, to join an user into a meeting: e-mail address and name of the user

that wants to join, e-mail address of the moderator and the meeting password (defined during the

meeting creation);

• Schedule: Allows to schedule meetings, defining day and time to start the meeting;

• Recording: Feature that allows the moderator to choose if he wants to record, or not, the meeting.

This is set when the user is creating the meeting.

3.2.5.2 Modified Features

In this section it will be explained the features available in WebHuddle, that were modified after the

integration with Tagarela.

• Register: The register function is used when a meeting is created in Tagarela. When a meeting

is created, it is sent an URL to the WebHuddle Server, to do the login, with the new account

username. The Server verifies that this account does not exist, and creates it. There is no need to

insert a password, because instead of generating a password to the new user, the account password

is equal to the username (in this case, the Tagarela meeting name);

• Login: To login the user only has to enter the username. It is important to note that the username

is the value assigned to the e-mail field;

• Profile: This features allows to change the account name. When, in Tagarela, a conference name

is changed, it is sent a request to WebHuddle, in order to perform the change on the account name;

• Upload: The user only need to browse the image to upload. The name of the slide will be the

uploaded file name, and the scale is pre-defined to 800x600;

• Begin Meeting: Now to create a meeting, while in a conference room of Tagarela, is called an URL

of WebHuddle API, with the type of meeting (desktop or slideshow sharing), the meeting name and

the WebHuddle’s username. To identify the moderator of the created meeting in WebHuddle, the

value of the meeting name and the username is the name of the conference room of Tagarela;

• Join Meeting: After the integration with Tagarela, when an user wants to join a meeting, is called

an URL of WebHuddle API. This URL has the type of sharing that wants to join, the meeting

name, the name of the conference room and the username of the user that wants to join the meeting;

• Schedule: This feature was removed after the integration with Tagarela, because this service was

already available;

33

• Recording: Since this feature was not on the scope of this Thesis, it was removed from WebHuddle.

3.2.6 Current WebHuddle API

The WebHuddle API is used to create meetings (desktop and/or slideshow sharing), to add participants

to it and it also allows to manage slides for using at the slideshow sharing.

Conceptually, a meeting belongs to a logged user (moderator) and each meeting has one or more

participants. To create a meeting, the API needs the type of meeting (desktop or slideshow), the username

and the meeting name. After an user is authenticated it is possible to create a meeting he/she only has

to set the meeting name and username.

The descriptions of the URLs that are used by the WebHuddle Server API are the following:

• Login and Registration: the difference between the login and registration is that when WebHud-

dle receives a login username of an account that does not exists, it creates it.

– http://WebhuddleServerDomain:8080/logon.do?username=Room

• Desktop Sharing:

– http://WebHuddleServerDomain:8080/desktop.do?meetingName=Room&username=Room

• Slideshow Sharing:

– http://WebHuddleServerDomain:8080/slideshow.do?meetingName=Room&username=Room&

scriptID=Number

• Join Desktop Sharing:

– http://WebHuddleServerDomain:8080/enterroomDesktop.do?action=enter&meetingName=

Room&hostEmail=Room&participantName=User

• Join Slideshow Sharing:

– http://WebHuddleServerDomain:8080/enterroomSlideshow.do?action=enter&meetingName=

Room&hostEmail=Room&participantName=User

Because the list above is composed by examples, some parameters must be explained:

• WebhuddleServerDomain: it must be replaced by the WebHuddle Server IP;

• Room: corresponds to a Tagarela room name. For WebHuddle Server this Room parameter is one

user account;

34

• User: is the name of the participant that wants to join a sharing. This user does not need to be

registered in WebHuddle, because in WebHuddle only are registered the Tagarela conference rooms;

• Number: is the value assigned to scriptID, and represents the script that the user wants to share

in the slideshow sharing that he/she is going to start.

3.2.7 WebHuddle and Network Address Translation (NAT)

A very important benefit of WebHuddle is that it works through Network Address Translation (NAT)

[36]. To best understand what NAT is, a brief definition is presented in the following. NAT enables

private networks addresses to access public IP addresses through a translation service. Most of the NAT

configurations maps all of the private IP address, on a home network, to just one IP address. This

allows all the computers on a Local Area Network (LAN) to share a single Internet connection. Another

advantage of NAT is that it enhances LAN network security by limiting the access of external computers

into the home IP network space.

NAT acts by snooping the incoming and outgoing IP datagrams on the Internet, and if it is needed it

modifies the source or the destination address, respectively, in the IP header (and the affected checksums)

to reflect the configured address mapping. NAT is usually used on router and other gateway devices at

the LAN boundary. Since all the interaction made with WebHuddle Server are made through HTTP,

using the port 8080, this service works through firewalls.

3.2.8 Capturing Image for Desktop Sharing

When the desktop sharing applet is loaded, there are a set of functions that are called by it. The desktop

applet, ”AWTClientDesktop.java”, creates a new instance of the ”ContentManager” object. This object

is responsible for the invocation of all the necessary functions, to interact with the applications, and to

associate this functions to buttons that are presented in the applet interface.

During the creation of the applet, it is also called an object that will be responsible for doing the

desktop sharing interface, ”AppView”. In this object there are functions that will detect the area that

the moderator wants to share (all desktop or just a specific area). It also detects the events during the

sharing, such as the resize of the rectangle and the in and out of the mouse from the sharing area.

When the ”Play” button of the applet interface, is clicked a thread is launched to start the desktop

sharing. This thread receives the data that is being shared, and sends this data to the Server, so it can

forward the data to the participants of the sharing. This thread is created in the file ”AbstractScreen-

Scraper.java”. In this file is the function responsible for capturing the image to share, that is called

”doScrape()”. This function is being executed until the moderator clicks on the ”Stop” button.

During the execution of the ”doScrape()” function, is made a ”sleep” on the thread during a time, that

is specified in a WebHuddle properties file (E.g., webhuddle.property.appshare.pixels.per.millisecond=240).

35

This time is used for controlling the bandwidth use. For example, if the moderator is sharing a desktop

that is 800x600, the screen scrape will be done every two seconds (800x600 / 240 = 2000 miliseconds).

Within this chapter the web communication services used, in this dissertation, were presented. It was

explained the architecture, the features available and how these services can be used.

For example, for Tagarela the existing entities were presented. Concerning to WebHuddle, it was

explained how the service receives the HTTP request and interprets them, in order to trigger the required

actions.

36

4 Implementation

4.1 WebHuddle and Tagarela Integration

In this section it will be presented how the new features were added in the Tagarela service. At figure

9, of section 3.1.1, it was presented the Tagarela architecture before adding the desktop and slideshow

sharing, through WebHuddle. In figure 19 the changes made, in Tagarela architecture are shown, after

the integration process. In this figure it can be seen two new components of the architecture. These

components will be presented in the following.

Figure 19: Changes to the functional architecture of Tagarela, after the integration of the WebHuddle

features (desktop sharing and slideshow sharing).

• Desktop Share Function: this new service group functionality allows to control the desktop

sharing. It provides the ability to show, to others participants, what is happening on the desktop

of the user that started this type of sharing. This does not allow others participants to access the

desktop that is being shared;

• Slideshow Share Function: this new group service functionality allows the users to share and

control a set of pre-uploaded pictures and presentations.

It is important to make a distinction between two concepts. Both in Tagarela and in WebHuddle, there

is an entity called Moderator. After the integration, the Moderator of Tagarela (from now on designated

as ModeratorConf) may not correspond to the same as the WebHuddle’s (from now on designated as

ModeratorWH). In brief, the ModeratorConf is the responsible for managing the conference room of

37

Tagarela, and the ModeratorWH is the participant of Tagarela who starts the desktop or the slideshow

sharing.

The entities ModeratorWH and ModeratorConf do not need to be the same entity, because the desktop

sharing or slideshow sharing do not need to be started by the moderator of a conference room. It means

that a participant that is not the moderator may want to start a sharing, if he/she has permission to do

that.

4.1.1 Create New Conference

Figure 20: Interface to create new thematic conference.

In the Tagarela interface (see figure 20), when an user creates a new conference room (Thematic or

Ad hoc), it will be also created a new account in WebHuddle. This means that one new Tagarela’s room

corresponds to a new WebHuddle’s account. This works this way because the slides that the users want

to show, in one conference room, must have been uploaded to one account at WebHuddle. Summarizing,

a room called ”ThematicRoom” will use a WebHuddle’s account with the same name. If the Session

Creator creates one new ad hoc conference, (see Appendix C for a representation of the interface), the

new WebHuddle’s account is created the same way.

38

After the integration with WebHuddle it became possible to create one conference with the desktop

and/or slideshow sharing resources. It is possible to choose this type of resources the same way as the

other resources are chosen. Every time that is created one new conference, it is also created one account

in WebHuddle Server, with the name of the conference. The request to create a new WebHuddle’s account

is made through an URL, as for example:

• http://WebhuddleServerDomain:8080/logon.do?username=NewRoom

When this URL is received by WebHuddle Server, it gets the username and, because this account is

not registered, it creates the new account. At figure 21 is the sequence diagram for the creation of a new

conference room, showing the interaction between the Webhuddle Server and Tagarela.

Figure 21: Sequence diagram of the creation of a new conference room.

As it can be seen in figure 21, there are a set of steps that are needed, before an user is able to create

a new conference room. If the user is not an administrator, the user is not allowed to create a thematic

conference, but he/she can create a new ad hoc conference room.

First the user need to login in Tagarela, and if he/she is administrator of the system, it is needed

to click in the ”Admin” tab, of the interface. After this step the user needs to choose the Enterprise to

which he/she wants to add the new thematic conference, and must click in the ”Create New Conference”

button.

39

In the next stage of the creation of a new conference, the user need to fill all the fields of the setup

page (see figure 20), and next he/she needs to click in the ”Create Conference” button, at the bottom of

the page. When Tagarela receives the new conference event, if all fields are well filled, the new room is

inserted in the database.

In the case that the conference room is created successfully, by Tagarela, a flag is assigned with a

specific value. At the end of the creation process, the flag value is verified. If the flag has the wanted

value, a request of login is sent to WebHuddle, with the new conference name as parameter. Because

WebHuddle notes that this account is not registered, it creates a new account with the room name,

obtained from the request URL. This is the last step to create a new conference room.

4.1.2 Joining a Conference

If one user wants to join in one conference room, he/she must choose the conference to join. After

choosing the conference room, the user must provides the SIP account that wants to use, in order to join

the conference room (see figure 22).

Figure 22: Page with the list of subscribed conferences.

After the user has selected the SIP account, one call will be made to that account, and the call must

be answered, in order to join the room. Finally the user joins the room and becomes a participant. At

figure 23 is the sequence diagram for joining a conference room, showing the interaction between the

Webhuddle Server and Tagarela.

40

Figure 23: Sequence diagram of joining a conference room, using a Webphone.

Regarding to the SIP account, the user may use several types of phones (physical phone, softphone

or webphone), depending on the preferences of the user and the existing information in the database.

For example, if the user is using IE and in the database he has an identity associated with him, with

the structure ”web:SipUsername@Domain/SipPassword”, then the user can join the room using the

webphone. If, on the other hand, the user is not using IE, although he has that type of entity, he can not

use webphone. This happens because the webphone is only available when using IE (this is explained at

the section 4.2.3). At last, if the user has only the entity ”sip:SipUsername@Domain”, he can not use

the webphone, whatever browser he is using.

At last, every time that someone joins one conference room the logon URL is sent to the WebHuddle

Server. This means that a WebHuddle session is started to that conference in the participant browser.

This is important when the participant wants to start a desktop or a slideshow sharing, because such

actions can only be made after the user has done the login at the WebHuddle Server.

As it can be seen at figure 23, to join a conference room, first the user needs to login in Tagarela, and

he/she will get a list of the subscribed conferences (thematic and/or ad hoc). The user must join to the

wanted conference room. Next, Tagarela will ask the user to choose the SIP address to use.

In this example of sequence diagram (figure 23) is represented the interaction with Tagarela when

the user is able to use the webphone, instead of another kind of phone. So, when the user choose the

conference room to join, Tagarela makes a call to the Webphone, that it will be answered automatically.

After the call is answered, Tagarela will load the conference room page into the browser of the user. Once

the user has joined, it is sent a request to WebHuddle to login, using the conference name as parameter.

41

4.1.3 Inside of Conference Room

Once an user joined a conference room in Tagarela, there is an area where there is a list of the users that

are in that room, and the resources that each user has, according to the resources that the room has

available (see Appendix D to have a description of the information available at the Floor Control area).

The ModeratorConf of the room has the ability to remove/add the permissions for participants to

use the resources. When a participant wants to use one resource, but does not have permission, needs

to request the respective resource, and then the ModeratorConf receives the permission request. When

receiving the request, the ModeratorConf decides if wants to accept the required permission or deny it.

The page of a conference is divided into several areas. There is a Floor Control area, where the

participants can have access to, for example:

• who else is in the meeting;

• resources that can be used into the conference;

• available resources of each participant;

• chat area;

Another area that exists is the one where the participants can see the video captured from the

webcameras of the participants that are sharing video. When a video-conference is taking place, is in

this section that the video is presented. There is also an area where the participants can see the files that

have been shared, in the current conference.

Finally, there is one area where the participants can manage the files to be in the slideshow sharing.

In this section, the participants can upload images (.jpeg, .jpg, .gif, .bmp), zip files (with images) and

presentations (.ppt, .sxi). The participants can also decide which images they want to present, and can

also delete images.

4.1.3.1 Start Desktop Sharing

Figure 24 represents the interactions between participant, Tagarela and WebHuddle when the participant

wants to start a desktop sharing, inside a conference room. The first step is to login in Tagarela and

choose the conference that the user wants to join. When the page of the conference is being loaded, is

made the login of this conference in WebHuddle, so that there is a session on that service, to allow the

desktop and slideshow sharing, if it will be needed.

During the conference, when a participant pretends to start a desktop sharing, a set of verifications

are performed, to see if that request is possible to be attended or not. The function that is used to

verify the desktop sharing permission is called doVerifyDesktopResourcePermission() and the verifications

performed are the following:

42

Figure 24: Sequence diagram of starting one desktop sharing, in Tagarela.

• participant has permission to use the desktop sharing resource?:

– if no, then is sent a request to the ModeratorConf to request permission;

– if yes, a flag is used to check if there is another desktop sharing ongoing, in that conference

room;

∗ if no:

· the permission to start desktop sharing is going to be removed from all users, using

the function called doChangeAllPermission();

· the participant icon will have a picture indicating that the participant is sharing the

desktop. This action is performed by the function doSetDesktopSharing();

· using the function createTabDesktopSharing() is going to be open a new tab with the

43

content of loading, through the request URL, the applet responsible for the desktop

sharing;

· the flag that indicates that there is a sharing ongoing is assigned with a specific value.

This is done to prevent the creation of another desktop sharing, at the conference;

∗ if there is already a desktop sharing ongoing, the participant will receive a message to

inform about it.

In Appendix E there is more information about the verifications made before start a desktop sharing,

and the messages received by a participant, as result of these verifications.

4.1.3.2 Start Slideshow Sharing

Figure 25 represents the interactions between participant, Tagarela and WebHuddle when the participant

wants to start a slideshow sharing, inside a conference room. The first step is login in Tagarela and choose

the conference that the user wants to join. When the page of the conference is being loaded, is made the

login of this conference in WebHuddle, so that there is a session on that service, to allow the desktop and

slideshow sharing, if it will be needed.

During the conference, when a participant pretends to start a slideshow sharing, a set of verifications

are performed, to see if that request is possible to be attended or not. The function that is used to verify

the slideshow sharing permission is called doVerifySlideshowResourcePermission() and the verifications

performed are the following:

• participant has permission to use the slideshow sharing resource?:

– if no, then is sent a request to the ModeratorConf to request permission;

– if yes, a flag is used to check if there is another slideshow sharing ongoing, in that conference

room;

∗ if no, the actual value of the scriptID is going to be get from WebHuddle. In the case

that scriptID is different from null, its value is going to be used in the request URL of

WebHuddle. If it is null it means that the conference does not have any script to use in

the slideshow sharing, and this parameter is not sent in the request URL.

Whatever the scriptID value, the following steps are made, with the exception that the

URL is different, as explained above:

· the permission to start slideshow sharing is going to be removed from all users, using

the function doChangeAllPermission();

· the participant icon will have a picture indicating that the participant is sharing a

slideshow. This action is performed by the function doSetSlideshowSharing(); ;

44

· using the function called createTabSlideshow() is going to be open a new tab with the

content of loading, through the request URL, the applet responsible for the slideshow

sharing;

· the flag that indicates that there is a sharing ongoing is assigned with a specific value.

This is done to prevent the creation of another slideshow sharing, at the conference;

∗ if there is already a slideshow sharing ongoing, the participant will receive a message to

inform about it.

Figure 25: Sequence diagram of starting one slideshow sharing, in Tagarela.

In Appendix F there is more information about the verifications made before start a slideshow sharing,

45

and the messages received by a participant, as result of these verifications.

Because of some difficulties on the implementation, when the ModeratorWH wants to change the

selected tab (tab of desktop or slideshow sharing), he/she will receive a message saying: ”Because you

are moderator of this sharing, leaving this window will end the sharing. Do you really wants to leave?”.

If the ModeratorWH choose ”yes”, then the sharing will be ended, and the participant of that sharing

will be informed, at the status bar.

This problem happens because when the user changes to another tab, the context of the applet is

destroyed. So, when the participant who started the desktop sharing, for example, returns to that sharing

tab, the URL responsible for loading the applet is called again, creating a new session of the sharing.

And if there are participants who have already joined the sharing, they will be in another session of the

sharing, without any ModeratorWH. Because of this problem, it was implemented the notification of the

ModeratorWH, when he/she wants to change of selected tab.

4.1.3.3 Join Desktop or Slideshow Sharing

In order to a participant to be able to join one desktop/slideshow sharing, needs that there is actually

one desktop/slideshow sharing going on. See Appendix G for more information about the steps executed

by Tagarela, when a participant wants to join a desktop/slideshow sharing.

Figure 26 represents the sequence of actions needed to an user to join a sharing (desktop or slideshow).

After login, the user needs to choose the conference that he/she wants to join. Once inside the conference,

when the user pretends to join a desktop sharing or a slideshow sharing the functions doJoinDesktop()

and doJoinSlideshow() are called, respectively. Inside these functions the following verifications are

performed:

• if there is a desktop/slideshow sharing ongoing;

• if the participant is not already in that kind of sharing;

In the case that the sharing is ongoing and the participant is not in it, a request is sent to WebHuddle,

through an URL. The content resulting from this request will be shown in a new tab, created for this

purpose, using the functions createTabJoinDesktop() and createTabJoinSlideshow(), depending on the

case.

When the participant decides to leave the sharing, closing the respective tab, WebHuddle detects this

action, and removes the user from the sharing. After, Tagarela calls doFreeResource(), that is responsible

for updating the variables associate to that user. The flags used to know if the user is in a sharing, will

be assigned with a specific value. This will indicate that the user is not in the sharing anymore.

46

Figure 26: Sequence diagram of joining one desktop/slideshow sharing, in Tagarela.

4.1.3.4 Slide Upload and Management for Slideshow Sharing

There is an area, corresponding to the bottom of the page of the conference room, where the participants

can upload images to the conference. It is also possible to manage the images that the participant wants

to share, in the slideshow sharing. In Appendix H is represented the interface that allow to do this.

As it can be seen in figure 27, before being able to upload files, the user needs to login in Tagarela

and join a conference room, and the login in WebHuddle is consequently made. After these actions, the

participant can upload the slides to start a slideshow sharing.

When the user wants to manage the slideshow files associated to the conference room, he/she has

access to an interface, that allows the uploading of new slides and managing the existing ones. The

interface is obtained after sending the request URL to WebHuddle Server, and then the respective applet

will be loaded.

Then, when the user wants to upload a new slide, he/she needs to choose the slide and upload it. In

the case of management the slides, the participant can decide to delete a slide or change the order of it,

or even change the name of the slide.

Whenever any change is made with the slides, the event is sent to WebHuddle Server, that updates

the script identifier. This script identifier will be used to start a slideshow sharing, when a participant

47

Figure 27: Sequence diagram of uploading images to use in the slideshow sharing, inside one Tagarela

conference room.

request this action.

4.1.3.5 Request Permission

Once inside a conference room, the ModeratorConf can revoke any resource permission to the participants,

using the function doSwitchResourcePermission(). In the case that the resource revoked is the desktop

sharing or the slideshow sharing, and the participant wants to use the resource, he/she can click in one

of two buttons: or in the resource next to his/her name, or in the button at the bottom of the Floor

Control area.

When the participant request the permission to use a revoked resource, the ModeratorConf will receive

the information shown in figure 28.

Figure 28: ModeratorConf receives permission request.

48

The ModeratorConf when sees the request permission may click on the resource and a window will

be opened, as the one that is presented in figure 29. Now, the ModeratorConf may decide if wants to

accept or deny the request permission.

Figure 29: Interface for ModeratorConf decide if wants to give permission or not.

4.2 Webphone Integration

In order to integrate a webphone into the Tagarela webpage it was done an analysis on two webphone Soft-

ware Development Kit (SDK)s and then it was analysed one open source softphone. After implementing

some changes on the softphone, it was created one plug-in that was then integrated into Tagarela.

Webphone vs Softphone

First of all, it is important to make a distinction between a softphone and a webphone, so that their

differences can be understood. Softphone is a software application, that is installed in the computer, and

allows to make calls over the Internet, using the mouse or keyboard to dial phone numbers. To use a

softphone, the computer must have a sound card, plus a speakers or headset, and a microphone. On the

other hand, a webphone has the same feature as a softphone, but with the difference that it does not

have to be directly installed in the computer. Instead, the webphone is integrated in the HTML code of

a webpage, and automatically downloaded by the browser whenever it is required.

This analysis was made with the aim of replacing an existing webphone solution, at Tagarela. The

purpose of the webphone, inside the Tagarela webpage, is to allow the users to use Tagarela, without the

need to launch a softphone application. Thus, if the users want to use Tagarela, they only need to open

the Internet browser.

The two webphones that were tested and analysed were Abbeyphone Voice Over Web (VOW) of

Abbeynet [37] and eyeP Foundation of eyeP Media [38]. The softphone which was used to be integrated

in Tagarela is called Emansip [39]. This softphone is based in one open source softphone called Linphone

[40].

49

4.2.1 Analysis of Webphone SDKs

In order to analyse the given webphones, it was provided one list of requirements that the SDKs should

meet. Those requirements were (see table 1 with a resume of the analysis):

• comparison with the existing solution;

• possibility of replacement of the used solution at the Tagarela service;

• support of the following browsers:

– IE, version 6 and 7;

– Firefox;

– Safari;

– Opera;

• support in the next OS:

– Windows XP and Vista;

– Mac OS;

– Linux;

• support of earlymedia [41];

• audio/video codecs, including Speex and H.264;

• video resolution: Standard-Definition (SD)/High-Definition (HD);

• installation of the plug-in in a way that should be transparent to the user;

• the installation/use should be possible to users without privileges of administration;

• support of SIP Transport Layer Security (TLS) and Secure Real-time Transport Protocol (SRTP).

4.2.1.1 Analysis of Abbeyphone

Considering the set of criteria listed above, only a few are met with Abbeyphone. These criteria are:

1. the application works in IE, versions 6 and 7, as in Firefox. However, due to the fact that the

application use ActiveX, it only works on Windows XP and Vista, not working in Mac OS or

Linux. Because of this limitation, the Abbeyphone does not work in Safari and in Opera;

2. the supported codecs are:

(a) Audio: G.711;

50

(b) Video: H.261 and H.263;

3. about the installation of the plug-in in a transparent manner, the solution of Abbeynet, meets

this requirement. The same happens with the installation/use by an user without privileges of

administration.

The Abbeyphone does not support SIP TLS or SRTP, and there are some criteria for which was not

found any information. These criteria are about the support of earlymedia and the support to the video

resolution SD/HD.

In the course of testing the application there were some problems. Among them:

• the same code did not worked in all computers that were tested;

• in the computers that worked, when a call was answered, the browser crashed;

• it was only possible to establish a call between the abbeyphone and the eyeBeam. And this estab-

lished call only transmitted audio.

4.2.1.2 Analysis of eyeP Foundation

With the webphone called eyeP Foundation only the following criteria were verified:

1. the information that is described at the point 1, of the section of Analysis of Abbeyphone, stated

above, also applies to this solution. With the exception of that the eyeP Foundation does not work

with Firefox too;

2. this solution supports the following codecs:

(a) audio: G.711 u-Law and A-Law, G.722, G.726, Speex (8 and 16 kHz) and internet Low Bitrate

Codec (iLBC);

(b) video: H.261, H.263 and H.264.

On the other hand, the requirements which were not met by the eyeP Media solution were the

following:

• as it happens with Abbeyphone, eyeP Foundation does not support SIP TLS nor SRTP;

• the installation of the plug-in is not done in a transparent manner, like in the Abbeyphone. To

install of the eyeP Media plug-in, it will be needed to download an executable file, which will install

the needed libraries. This installation process requires the user to make some decisions, like, for

example, select the folder to where the installation should be done. However, the installation/use

of this solution can be done by users without administration privileges.

It is worth noting that, the installation of this plug-in is done much in the same way that the plug-in

of eyeBeam is done.

51

Finally, as it happened with Abbeynet solution, some information is missing on eyeP Media specifica-

tions. So, there is no information about:

• support of earlymedia;

• type of video resolution: SD/HD

4.2.1.3 Analysis of Emansip

To end this analysis, the Emansip solution met the following criteria:

1. the information that is described at the point 1, of the section of Analysis of Abbeyphone, stated

above, also applies to this solution. With the exception of that the Emansip does not work with

Firefox too;

2. the solution supports the following codecs:

(a) audio: G.711, Speex, iLBC, GSM, G.723, G.729, G.726, G.721;

(b) video: H.263-1998, H.264, Theora, MPEG4.

3. unlike the other two solutions, Emansip supports SIP TLS and SRTP.

On the other hand, the criteria which were not met by the Emansip solution were the following:

• as it happens with Abbeyphone and eyeP Foundation, there is missing information about the type

of video resolution;

• is also missing information about the support of earlymedia;

• because Emansip is a softphone, instead of being a webphone, there is no plug-in to be installed in

the computer. So, there is no information about the transparent installation and the installation

without administration privileges.

4.2.2 Emansip

Emansip is a softphone based on the open source softphone, called Linphone. With Emansip the users

can make and receive audio and video calls, as with others softphones. An example of the Emansip

interface is at figure 30.

The Emansip Toolkit is developed in C++ and it uses three main libraries: amsip, eXosip2 and

mediastreamer2. At table 2 it can be seen some features of each of these libraries.

In order to implement and integrate the webphone, in Tagarela, through the Emansip softphone, it

was provided the Emansip toolkit. In the code of this toolkit there is a Graphical User Interface (GUI) to

test the Emansip features, as register one SIP account, and make and receive calls with video included.

52

Table 1: Summary table with the result of the study of the webphones.

Through this application, developed in Visual Basic (VB), it was made some changes to the toolkit, as it

is explained in the following section. After this, it was generated a Dynamic Link Library (DLL) that was

then used to create an ActiveX object. This object was later used to create a webphone and integrate it

into Tagarela.

An ActiveX object is a Component Object Model (COM) developed by Microsoft for Windows

plataforms. Through the use of COM runtime, it is possible to develop software components, that

perform functions. Several Microsoft Windows applications, such as IE and Microsoft Office, use Ac-

tiveX controls to build their feature set, as well as encapsulate their functionality as ActiveX controls,

so that the features can be embedded in other applications. IE also allows the ActiveX controls to be

embedded inside web pages.

53

Figure 30: Interface of the Emansip softphone.

4.2.3 Webphone Implementation

In the Tagarela interface there is an area where it can be seen one icon corresponding to the state of

the webphone registration. When using IE, this icon is available and allows that, depending on the color

that it has, the user can see if the webphone account is:

• disabled: indicates that the webphone is not registered;

• registering: informs that the webphone is being registered;

• ready: indicates that the webphone is registered and ready to use;

In the Tagarela code, when is detected that the user is using IE and he has a webphone account at

the database, the application informs the user to wait for the registration of the webphone. Then, it is

called a function, called initWebphone, with three parameters: webUser, webPassword and webDomain.

This values are those that are obtained from the database when the user has an entity started by ”web:”.

Inside the function initWebphone() is created an ActiveX object, with the name ”plugin”. After,

this object is used to call a function, called initialize(), with the same parameters that were used for

initWebphone(). Inside initialize() is used the following set of functions:

54

Table 2: Summary table with the features of the libraries used by Emansip.

• API am config(webUser, webPassword, webDomain): function responsible for assigning

some global variables, with the arguments received. These values are used during all the execution

of the plug-in;

• API save am config(”Webphone/amsip cfg.xml”): this function save the values assigned

with the previous function, to the file received as parameter;

• API am init(pbVideo.Handle): function that executes a set of steps, that are needed to send

and receive video, during a call. The pbVideo is the location, inside the HTML page, where the

image of the webcam is going to be displayed;

• API am option find out sound card(sndcard): obtain the available devices for sound output;

• API am option find in sound card(sndcard): obtain the available devices for sound input;

After the execution of the function initialize(), from the ActiveX object, it is called a function, from

this same object, to register the SIP account, API am register(). This function is only used to call another

one, am register start(), at the amsip library, of the Emansip toolkit. The function am register start()

configures the webphone to be registered with the SIP account of the user. When the initialization of the

webphone is finished, the user is informed through the next message: ”Your webphone is registered and

ready to use!”. With this, the user may use the webphone to join any conference room.

When the participant wants to join a conference room, using the webphone, only needs to click on the

”Join the Conference” button and choose the account of the webphone. After this, the application starts

the call to the webphone with the username equals to ”webUser”, and then the call will be answered.

To make possible the integration of the webphone, into Tagarela, it was made a change to the way how

55

the calls were answered by the toolkit. This is, the calls received by the plug-in must be answered

automatically.

When the event of receiving a call is detected, by the function API process event(), the call is answered

automatically. This is done by calling the function ClickHoldCall(). The calls that the webphone receives

are answered automatically, reducing the number of actions that the user needs to perform, in order to

interact with the service.

To end a phone call is used the function ClickStopCall(). Inside Tagarela this function is called when

the participant ends his/her participation on the conference room.

The information in this chapter allowed to understand how the WebHuddle’s features were integrated

into Tagarela, and how does it changed the architecture of Tagarela.

The sequence diagrams with the required actions to perform the communication between user, Tagarela

and WebHuddle, were presented and explained.

At the end of this chapter, the webphone integration was presented. It was explained how the

development of the softphone in a webphone plug-in was made.

56

5 Tests

To assess the effectiveness of adding the three new features into Tagarela, several functional tests were

performed. The list of those tests is presented in the following section (section 5.1). These tests only

check the functionality of the product, since this Thesis represents a proof of concept of adding three new

features to a web conferencing service: desktop sharing, slideshow sharing and webphone.

To the realization of the tests two computers were used: one that was the server and other that was

the client. The required tools were an Internet browser, Mozilla Firefox or IE, depending on the type of

test that was being done, and a softphone or a webphone with a SIP account registered, also depending

on the test.

After listing the functional tests, is presented the required procedure to realize the tests successfully

(see section 5.2). Some of the tests require that another test is done first. But these situations are

explained during the test procedure. Finally, in section 5.3 it can be seen the result of tests that were

made, and the conclusions that can be drawn from these results.

5.1 List of Functional Tests

The list of the functional tests is presented bellow. These tests allows to verify if all the features added

to Tagarela are working or not, doing a set of actions.

1. T1. Create new thematic conference, with desktop and/or slideshow sharing resources;

2. T2. Create new ad hoc conference, with desktop and/or slideshow sharing resources;

3. T3. Register account of webphone, after using IE to login in the Tagarela homepage;

4. T4. Use the webphone to join one conference room;

5. T5. Use a softphone to join one conference room;

6. T6. Start one desktop sharing;

7. T7. Start one slideshow sharing;

8. T8. Join one desktop sharing;

9. T9. Join one slideshow sharing;

10. T10. Ask permission to use the desktop sharing resource;

11. T11. Ask permission to use the slideshow sharing resource;

12. T12. Upload one presentation;

57

13. T13. Try to start a desktop/slideshow sharing, when there is one already underway;

14. T14. Try to join one desktop/slideshow sharing, when there is no sharing going on;

15. T15. Manage the folder of slides to use in a slideshow sharing (add or remove slides);

16. T16. Send/receive audio through the webphone, inside a conference;

5.2 Test Procedure

The realization of all the following test cases presupposes that the user is already authenticated in

Tagarela. To do this, the user need to login in Tagarela, writing the login and password values on the

webpage, choosing the language to use (Portuguese or English) and then clicking on the ”Entrar” button.

Although the login process is not described in the test procedures, the login is a necessary part of all

the listed tests. Hence, and to avoid unnecessary repetition, the login was described above. However, the

number of actions needed to login are part of the number of actions needed to execute the tests, as well

as in the time of execution, that are described in the test results (see section 5.3).

T1. Create new thematic conference, with desktop and/or slideshow sharing resources

In order to perform the action of creation a new thematic conference room, with desktop and/or slideshow

sharing resources, the following actions are needed:

1. On the main page, select the ”Admin” tab and choose the Enterprise in which the conference room

will be created;

2. Click on ”Create New Conference” button at the ”Available Thematic Conferences” area;

3. Fill all the parameters and check the desktop and/or slideshow resource, and click on the ”Create

Conference” button.

T2. Create new ad hoc conference, with desktop and/or slideshow sharing resources

In order to perform the action of creation a new ad hoc conference room, with desktop and/or slideshow

sharing resources, the following actions are needed:

1. On the main page, select the ”Admin” tab and choose the Enterprise in which the conference room

will be created;

2. In the ”Available Ad-hoc Services” area, click on ”Create New Service” button;

3. Fill all the parameters and check the desktop and/or slideshow resource, and click on the ”Create

Conference” button.

58

T3. Register account of webphone, after using IE to login in the Tagarela homepage

If the Tagarela user is using the IE browser, and has a webphone account available at the database, he/she

can use a webphone to interact with Tagarela. Next the actions needed to register the user webphone

will be explained.

1. After login, it will appear the following message: ”Wait for the registration of your webphone,

please!”. When the ”OK” button is clicked, the registration of the webphone will be performed;

2. While the registration is being done, an icon at the top of the page will be orange, to indicate that

the webphone registration is going on (see section 4.2.3 for more information);

3. When the registration is successful, the next message will appear: ”Your webphone is registered and

ready to use!”. Is needed to click on the ”OK” button to continue using the Tagarela;

4. The button that the indicates the state of the webphone, at the top of the page, will turn green. This

means that the webphone is registered and ready to use (see section 4.2.3 for more information).

T4. Use the webphone to join one conference room

To be able to use the webphone to join one conference room, the webphone need to be previously regis-

tered. The process of the webphone registration was explained in T3. After the webphone registration,

in order to join one conference room, the following actions are needed:

1. On the main page, choose the conference that wants to join, by clicking on the respective ”Join the

Conference” button;

2. A pop-up window will appear, where must choose what address wants to use. Is presented an

address that corresponds to the webphone account, and is also possible to write a new address.

But, because this test is about joining a conference with the webphone, click on the ”Join the

Conference” button of the webphone account;

3. After choosen the webphone address, the service makes a call to that number, that will answer

automatically;

4. When the service receives the event that the call have been answered, the conference page is loaded,

and the user joins the conference room, becoming a participant.

T5. Use a softphone to join one conference room

To realize the test of joining a conference room using a softphone with a SIP account, the following

actions must be performed:

59

1. Start a softphone with a registered SIP account;

2. On the main page, choose the conference in which wants to join, by clicking on the respective ”Join

the Conference” button;

3. A pop-up window will appear, where must choose what address wants to use. Is presented an address

that corresponds to the webphone account, and is also possible to write a new address. Because this

test is about joining a conference with a softphone, must write a new address, for example 341916

(value of a registered SIP account), and click on the respective ”Join the Conference” button;

4. When the softphone receives the event call, must anwser the call.

T6. Start one desktop sharing

In order to be able to start a desktop sharing, the following actions need to be performed:

1. Join one conference room, which must have the desktop sharing resource available (see tests T4. or

T5., depending if wants to join the conference using a webphone or a softphone);

2. Once inside the conference room, click on the ”Start Desktop Sharing” button, and a new tab will

open with the content of the desktop sharing applet.

T7. Start one slideshow sharing

To be able to start a slideshow sharing, the following actions need to be performed:

1. Join one conference room, which must have the slideshow sharing resource available (see tests T4.

or T5., depending if wants to enter in the conference using a webphone or a softphone);

2. Once inside the conference room, go to the ”Slideshow Resource” area, and select the script which

wants to use by clicking on the ”Select Script” button, choosing the script and then click on the

”OK” button;

3. Click on the ”Start Slideshow Sharing” button, at the Floor Control area, and a new tab will open

with the content of the slideshow sharing applet.

T8. Join one desktop sharing

In order to be able to join a desktop sharing, the following actions need to be performed:

1. Enter in one conference room, which must have the desktop sharing resource available (see tests

T4. or T5., depending if wants to join the conference using a webphone or a softphone);

2. Once inside the conference room, click on the ”Join Desktop Sharing” button, and a new tab will

open with the content of the desktop sharing applet.

60

T9. Join one slideshow sharing

To be able to join a slideshow sharing, the following actions need to be performed:

1. Join one conference room, which must have the slideshow sharing resource available (see tests T4.

or T5., depending if wants to join the conference using a webphone or a softphone);

2. Once inside the conference room, click on the ”Join Slideshow Sharing” button, and a new tab will

open with the content of the slideshow sharing applet.

T10. Ask permission to use the desktop sharing resource

In order to be able to start a desktop sharing when the user does not have permission, the following

actions need to be performed:

1. Join one conference room, which must have the desktop sharing resource available (see tests T4. or

T5., depending if wants to join the conference using a webphone or a softphone);

2. Once inside the conference room, wait for the ModeratorConf to revoke the desktop permission;

3. Click on the ”Start Desktop Sharing” button, and because the user does not have permission to

start a desktop sharing, a permission request is sent to the ModeratorConf ;

4. ModeratorConf receives the request and decides if he/she wants to give permission or not;

5. After the ModeratorConf accepted or denied the request permission, the resource icon will reflect

the choice of ModeratorConf.

T11. Ask permission to use the slideshow sharing resource

To be able to start a slideshow sharing when the user does not have permission, the following actions

need to be performed:

1. Join one conference room, which must have the slideshow sharing resource available (see tests T4.

or T5., depending if wants to join the conference using a webphone or a softphone);

2. Once inside the conference room, wait for the ModeratorConf to revoke the slideshow permission;

3. Click on the ”Start Slideshow Sharing” button, and because the user does not have permission to

start a slideshow sharing, a permission request is sent to the ModeratorConf ;

4. ModeratorConf receives the request and decides if he/she wants to give permission or not;

5. After the ModeratorConf accepted or denied the request permission, the resource icon will reflect

the choice of ModeratorConf.

61

T12. Upload one presentation

In order to upload one presentation for later use in a slideshow sharing, the following actions need to be

executed:

1. Join one conference room, which must have the slideshow sharing resource available (see tests T4.

or T5., depending if wants to join the conference using a webphone or a softphone);

2. Once inside a conference room, in the ”Slideshow Resources” area, is an interface that allows to

upload new files;

3. To upload the presentation, browse the computer to select the desired presentation;

4. After choose the presentation, must click on the ”Upload” button.

T13. Try to start a desktop/slideshow sharing, when there is one already underway

To realize this test case, the following actions need to be performed:

1. Join one conference room, which must have the desktop/slideshow sharing resource available (see

tests T4. or T5., depending if wants to join the conference using a webphone or a softphone);

2. Once inside the conference, click on the ”Start Desktop Sharing”/”Start Slideshow Sharing” button;

3. Because there is already a desktop/slideshow sharing going on, it will appear the next message:

”There is a desktop/slideshow sharing”.

T14. Try to join one desktop/slideshow sharing, when there is no sharing going on

To realize this test case, the following actions need to be performed:

1. Join one conference room, which must have the desktop/slideshow sharing resource available (see

tests T4. or T5., depending if wants to join the conference using a webphone or a softphone)

2. Once inside the conference, click on the ”Join Desktop Sharing”/”Join Slideshow Sharing” button;

3. Because the user is already in a desktop/slideshow sharing, it will appear the next message: ”User

is already in this desktop/slideshow sharing”.

T15. Manage the folder of slides to use in a slideshow sharing (add or remove slides)

In order to manage the folder of slides to use in a slideshow sharing, the following actions must be

performed:

1. Join one conference room, which must have the slideshow sharing resource available (see tests T4.

or T5., depending if wants to join the conference using a webphone or a softphone);

62

2. Once inside the conference, at the ”Slideshow Resources” area is an interface that allows to manage

the slides available;

3. In this interface click on the ”Select Script” button and choose the script that wants to manage;

4. After clicking on the ”OK” button, choose the slide to delete and click on the ”Delete” button;

5. Finally, click on the ”Save” button to update the information in the database.

T16. Send/receive audio through the webphone, inside a conference

To send and receive audio through the webphone, once inside a conference room, the following actions

must be performed:

1. Procede with the webphone registration (see test T3.);

2. Join one conference room (see tests T4. or T5., depending if wants to join the conference using a

webphone or a softphone);

3. Once inside the conference room, if the participant has the permission to use the audio resource, it

is possible to send and receive audio through the webphone.

5.3 Results and Analysis

Before presenting the test results, there are some details that need to be mentioned. Almost all the

tests were made using two computers. One computer was the server, because is where the service was

running, and the other computer represents the client of the service. The only exceptions were the tests

T3, T4 and T15. Because these tests were the ones that included the webphone, and the plug-in was

only installed on the server.

Another important information is about tests T10 and T11, because the ModeratorConf only can

revokes a resource permission after the participant have joined the conference room. So, to do these

tests, the participant need to join the conference, and wait that the ModeratorConf has removed the

permission.

5.3.1 Number of Required Actions

In this section are presented the results of the usability tests. In figure 31 it can be seen the number

of actions that are required, in order to perform the respective tests. Concerning to tests T1 and T2,

although in those tests must write various parameters, this writing was considered only as one action.

Through figure 31 it can be seen that the tests T7, T12 and T15 are those that need more steps to

be executed. This is no coincidence, because these tests are testing the funcionalities that are associated

with slideshow sharing. So, it is also need to choose the slides that wants to share, besides clicking on

63

Figure 31: Chart with the representation of the tests of usability result.

the same buttons that are used in desktop sharing. Apart from these three exceptions, the most tests

only need nine steps to be executed.

Concluding, through figure 31 it may be seen that, concerning to the usability, the adding of the new

features in Tagarela was successfully, because the new features can be used as easily as the original ones.

5.3.2 Duration of the Tests

Another type of tests that was done had as purpose the measurement of time. For each test five measure-

ments were made, with the aim of having a more reliable result. In figure 32 is depicted the maximum,

minimum and average values of the measurements made for each test.

Figure 32: Chart representing the maximum, minimum and average duration of each test.

64

Through this figure it can be seen that T1 and T2 are the tests that need more time to be executed.

This is due to the fact that the user must fill several parameters to create the conference room. However,

T1 and T2 have a difference of a few seconds, because T2 has less parameters to fill, and so it takes less

time.

There is also a considerable difference in the times of T6 and T7, because for T7 the service need to

load the images to the applet, while to start the desktop sharing is only need to load the applet. And if

the number of slides is big, more time will be needed to start the slideshow sharing.

Another conclusion that can be taken from figure 32 is that the times of test T4 and T16 are similar.

This happens because the only difference between them is the fact that the user need to say something,

to be heard at the conference. So test T16 is supposed to take longer than T4, but only a few seconds.

About tests T10 and T11, they also need more time to be executed because, once inside the conference

room, the participant have to wait for the ModeratorConf to remove the permission, and then ask for it.

Another conclusion that can be taken from figure 32 is that the execution time for test T12 depends

on the number of pages that the uploaded presentation has. So, the greater the number of pages, the

longer it will take for the presentation uploading. Finally, the time that the test T15 needs to be done,

with successful, depends on the number of slides that the participants wants to modify. For this test, it

was selected the folder that wanted to share, and then it was deleted only one slide.

65

66

6 Conclusions

This dissertation proposes to investigate and test the use of the Web 2.0 concepts (e.g., creation and

generation of service and contents by users themselves) on the platforms for services to the networks

ALL-IP 3GPP IMS.

During this document it was explained the technologies that were studied and used, how was im-

plemented the integration of two specific services, and finally the list of the executed tests to verify the

functionality of the new features were presented.

Through the tests it was verified that the new features are easy to use. They do not only need relatively

few actions to be executed, nor are slow to be made. The majority of the tests need around nine actions,

including the login where the user need to write the username, password and desired language.

With this dissertation the Tagarela service was enriched with three new features: desktop sharing,

slideshow sharing and a webphone. These features are important, because it is unusual for a conference

service to have features that are not only audio, video and chat conversation.

6.1 Future Work

Before the sharing service is started, the service must perform some verifications. These verifications are

required to know if the participant has permission to use the resource, or if the resource is not being used

already. Depending on the result of the verifications, the participant may be informed that can not use

the resource, or that the sharing is already started.

A possible feature that could be studied and implemented as future work is replacing the way how

the transmission of the content of the new resources is made. Instead of using HTTP to verify resource

permissions and transmit the content of the sharings, it could be used SIP to do the verifications and the

content of the sharing could be sent inside video stream.

After the integration of the video feature in the webphone plug-in, the information exchanged during

the desktop sharing and the slideshow sharing can be sent as video stream. In order to do this, instead

of doing the resources admission via HTTP, this control could be done using SIP. A possibility of

implementation could be through the following steps:

• when a participant wants to start a desktop or slideshow sharing, could be sent an INVITE message

to all the participants that are in the conference room;

• in this INVITE message it will be sent, within the video header, the information about the sharing;

• when the participants receive the INVITE message, may decide if want to send the OK message,

accepting the invite to join the sharing;

• when the ModeratorWH decides to end the sharing, the respective BYE message will be sent to

the participants inside that sharing.

67

Besides this, it is also needed to end the development of the webphone plug-in. Due to the lack

of time the plug-in does not have the video feature, only allowing audio conversation. One possible

solution to implement this feature is, after capturing the video from the webcamera, present it in the

Tagarela webpage. Once inside the conference room, the communication with the webphone is established,

transmitting audio and video to the room.

There is still another feature that could be implemented in future work. If this service is used, for

example, in a Call Center, whenever a customer calls with a question all the interaction can be recorded,

including the desktop sharing. This recording can be later sent to the customer, and if the customer ever

again has the same problem, he/she will not need to call to the Call Center. The implementation of this

feature could be done using the WebHuddle, since it is already available.

68

References

[1] http://www.hi5.com/ (on-line September 2008)

[2] http://www.youtube.com/ (on-line September 2008)

[3] https://www.blogger.com/ (on-line September 2008)

[4] http://www.google.com/ig (on-line September 2008)

[5] O’Reilly, Tim, ”What Is Web 2.0 ”, September 30, 2005.

[6] Johnston, Alan B., ”textitSIP: undestanding the Session Initiation Protocol”, 2nd edition, 2004.

[7] IETF RFC 2543: ”SIP: Session Initiation Protocol”, March 1999.

[8] IETF RFC 3261: ”SIP: Session Initiation Protocol”, June 2002.

[9] IETF RFC 2616: ”Hypertext Transfer Protocol – HTTP/1.1 ”, June 1999.

[10] IETF RFC 821: ”Simple Mail Transfer Protocol”, August 1982.

[11] IETF RFC 1738: ”Uniform Resource Locators (URL)”, December 1994.

[12] IETF RFC 2396: ”Uniform Resource Identifiers (URI): Generic Syntax”, August 1998.

[13] IBM RedBooks,”Developing SIP and IP Multimedia Subsystem (IMS) Applications”, 1st edition,

February 2007.

[14] IETF RFC 4566: ”SDP: Session Description Protocol”, July 2006.

[15] IETF RFC 1889: ”RTP: A Transport Protocol for Real-Time Applications”, January 1996.

[16] Radvision,”Session Initiation Protocol (SIP), Technical Overview”, April 2005.

[17] Lauretti, Samuel R., ”Evolução das Redes de Telecomunicação: Arquitetura IMS”, December 06,

2004.

[18] 3GPP TS 23.228: ”IP Multimedia Subsystem (IMS)”.

[19] ITU-T H.248: ”Gateway control protocol”.

[20] PT Inovação, ”SHipNET”, http://www.ptinovacao.pt (on-line July 2008)

[21] PT Inovação, ”ip-Jib Whitepaper”. (on-line January, 2008)

[22] ”JAIN SLEE Tutorial - Introduction JAIN SLEE”, http://jainslee.org/downloads/jainslee-tutorial-

04.pdf (on-line August)

69

[23] IETF RFC 5239: ”A Framework for Centralized Conferencing”, June 2008.

[24] IETF RFC 3265: ”Session Initiation Protocol (SIP)-Specific Event Notification”, June 2002.

[25] ”Java BluePrints: Model-View-Controller”, http://java.sun.com/blueprints/patterns/MVC-

detailed.html (on-line August, 2008)

[26] PT Inovação, ”Conferência e Colaboração - Descrição Técnica”, Version 1.0.

[27] ”3GPP TS 24.147, Conferencing using the IP Multimedia (IM) Core Network (CN) subsystem”,

Stage 3, Release 7.

[28] IETF RFC 4353: ”A Framework for Conferencing with the Session Initiation Protocol (SIP)”, Febru-

ary 2006.

[29] IETF RFC 4579: ”Session Initiation Protocol Call Control - Conferencing for User Agents”, August

2006.

[30] IETF RFC 4575: ”A Session Initiation Protocol (SIP) Event Package for Conference State”, August

2006.

[31] IETF RFC 4597: ”Conferencing Scenarios”, July 2006.

[32] IETF RFC 2445, Internet Calendaring and Scheduling Core Object Specification (iCalendar), Novem-

ber 1998.

[33] http://www.webhuddle.com. (on-line November, 2007)

[34] http://www.jboss.org. (on-line July, 2008)

[35] http://www.oracle.com/technology/sample code/tech/java/j2ee/jintdemo/tutorials/Struts.html

(on-line August, 2008)

[36] IETF RFC 1631: ”The IP Network Address Translator (NAT)”, May 1994.

[37] http://www.abbeyphone.com/.(on-line May, 2008)

[38] http://www.eyepmedia.com/products/toolkits/. (on-line May, 2008)

[39] http://www.antisip.com/. (on-line June, 2008)

[40] http://www.linphone.org/index.php/eng. (on-line June 2008)

[41] IETF RFC 3960, Early Media and Ringing Tone Generation in the Session Initiation Protocol (SIP),

December 2004.

70

Appendices

A. More information about SIP

As was already told, SIP messages can be of two kinds: Request and Response. This messages have a

common format which is represented in figure 33. The messages are composed for three parts: start-line,

message-hearder and message-body.

Figure 33: SIP message structure.

In the SIP messages the start-line can be a request or just a status line. The request-line is used

to define the type of the request. On the other hand, the status-line indicates if the processing of the

request is sucessful or not.

The hearders of SIP messages are made of fields with groups of name and value. There are some fields

that are optional, like content-type and length, but there are obviously some mandatory fields for all SIP

messages, like To, From and Call-ID. The table 3 represents this mandatory fields.

Finally, the message body describes the session that is going to be initiated. For example, in a

multimedia session the body may include audio and video codec types. Message bodies can exist in request

and/or in response message. An advantage of SIP is that it makes a distinction between information

used for signaling, inserted in the SIP start-line and headers, and session description information.

Requests

The SIP request messages, as all SIP messages, follows the structure of a SIP message represented on

figure 33, but the fields have differents values depending the type of message. At the start-line the

message have a Request-Line, whose format is on figure 34. It is formed by three fields separated by a

single space character.

• Method: In the case of a SIP request message, this field can be equal to REGISTER, INVITE,

ACK, CANCEL, BYE or OPTIONS depending the method to be performed. This are not the

71

Table 3: Mandatory headers.

Figure 34: Request-line of the start-line.

only methods that are defined. SIP extensions, that are documented in other RFCs, have others

additional methods defined. The table 4 have a simple description of the methods previously

mentioned;

• Request-URI: Field corresponding to a SIP URI or multiples SIP URIs. It indicates the user/service

for which the request is addressed;

• SIP-version: Identifies the version of SIP protocol in use.

Table 4: Examples of request methods.

72

Responses

When a UA or a proxy server receives a request message, it originates a response that is sent as a SIP

response message. This type of message is different from the request ones, because they have status-line

in their start-line, instead of request-line. The status-line have also three fields (see figure 35).

Figure 35: Status-line of the start-line.

• SIP-version: Identifies the version of the SIP protocol in use;

• Status-code: is a three digit code that represents the result of request processing. This code can be

a number between 100 and 699 and all response messages have one of this numeric code associated.

The codes have two types of responses and six classes, and are partlybased on the HTTP response

codes. This types and classes of codes are represented on table 5 and table 6;

• Reason-phrase: is a textual description of the status-code. While the status-code is to be used on

the machine processing, the reason-phrase is a message to be readable by humans.

Table 5: Types of response messages.

Table 6: Classes of response messages.

73

B. Example of tables from WebHuddle Server database

• CREATE MEMORY TABLE CUSTOMERS (CUSTOMER ID INTEGER NOT NULL, FIRST NAME VARCHAR(256),

ORIGINAL IP VARCHAR(256), EXTERNAL ID VARCHAR(256), EMAIL VARCHAR(256), CREATION TIMESTAMP,

HAS ACCOUNT BOOLEAN NOT NULL, PASSWORDHASH VARBINARY, SALT VARBINARY,

LOCALE LANGUAGE VARCHAR(256), LOCALE COUNTRY VARCHAR(256), COUNTRY VARCHAR(256),

CONSTRAINT PK CUSTOMERS PRIMARY KEY(CUSTOMER ID));

• CREATE MEMORY TABLE LOGONS (LOGON ID INTEGER NOT NULL, LOGON IP VARCHAR(256),

USERAGENT VARCHAR(256), DATE TIMESTAMP, CUSTOMER ID FK INTEGER,

CONSTRAINT PK LOGONS PRIMARY KEY(LOGON ID));

• CREATE MEMORY TABLE MEETINGS (MEETING ID INTEGER NOT NULL,

CIPHER LENGTH INTEGER, NAME VARCHAR(256), EXTERNAL CONTEXT VARCHAR(256),

SCHEDULED START VARCHAR(256), DESCRIPTION VARCHAR(256), MEETING KEY VARCHAR(256),

MODERATOR KEY VARCHAR(256), DELETED BOOLEAN NOT NULL, SANDBOX CLIENT BOOLEAN NOT NULL,

EMBEDDED BOOLEAN NOT NULL, PUBLISH BOOLEAN NOT NULL, DONE PAGE VARCHAR(256),

MEETING START TIMESTAMP, MEETING END TIMESTAMP, SCRIPT ID FK INTEGER, CUSTOMER ID FK INTEGER,

CONSTRAINT PK MEETINGS PRIMARY KEY(MEETING ID), CONSTRAINT FK MEETINGS SCRIPT FOREIGN KEY(SCRIPT ID FK)

REFERENCES SCRIPTS(SCRIPT ID), CONSTRAINT FK MEETINGS CUSTOMER FOREIGN KEY(CUSTOMER ID FK) REFERENCES CUS-

TOMERS(CUSTOMER ID));

• CREATE MEMORY TABLE PARTICIPATIONS (PARTICIPATION ID VARCHAR(256) NOT NULL,

LOGON NAME VARCHAR(256), EMAIL VARCHAR(256), IP ADDR VARCHAR(256), JAVA VENDOR VARCHAR(256),

JAVA VERSION VARCHAR(256), OS NAME VARCHAR(256), OS VERSION VARCHAR(256), OS ARCH VARCHAR(256),

BEGINTIME TIMESTAMP, ENDTIME TIMESTAMP, MEETING ID FK INTEGER,

CONSTRAINT PK PARTICIPATIONS PRIMARY KEY(PARTICIPATION ID),

CONSTRAINT FK PARTICIPATIONS MEETING FOREIGN KEY(MEETING ID FK) REFERENCES

MEETINGS(MEETING ID));

• CREATE MEMORY TABLE SCRIPTS (SCRIPT ID INTEGER NOT NULL, NAME VARCHAR(256),

DESCRIPTION VARCHAR(256), CUSTOMER ID FK INTEGER,

CONSTRAINT PK SCRIPTS PRIMARY KEY(SCRIPT ID), CONSTRAINT FK SCRIPTS CUSTOMER FOREIGN

KEY(CUSTOMER ID FK) REFERENCES CUSTOMERS(CUSTOMER ID));

• CREATE MEMORY TABLE CONTENTSLIDES (CONTENTSLIDE ID INTEGER NOT NULL, SLIDE SIZE INTEGER NOT NULL,

SLIDE NAME VARCHAR(256), SLIDE DESCRIPTION VARCHAR(256), CONTENTUPLOAD ID FK INTEGER,

CONSTRAINT PK CONTENTSLIDES PRIMARY KEY(CONTENTSLIDE ID)).

74

C. Interface to create new ad hoc conference

At figure 36 it can be seen the interface, of Tagarela, to create a new ad hoc conference. It is also

marked the three fields that are different to create this type of conference, comparing with the thematics

conferences.

Figure 36: Interface to create new ad hoc conference.

75

D. Description of the Floor Control area

Figure 37: Tagarela Floor Control.

In the Floor Control area the participants have available a set of buttons that provides interaction

with Tagarela. This buttons are the following:

• invite a user to join the meeting;

• share files;

• start a desktop sharing;

• join a desktop sharing;

• start a slideshow sharing;

• join a slideshow sharing;

• exit the meeting;

• show/hide the interface to manage the slides used for the slideshow sharing.

76

E. Start Desktop Sharing

Once inside the conference, a participant can decide to start one desktop sharing. To do this, it is only

required that the room has the desktop sharing resource available, and to click in the ”Start Desktop

Sharing” button, at the Floor Control area.

The participant may not have permission to start a desktop sharing. In this case, when he clicks in

the ”Start Desktop Sharing” button, it will be sent one permission request to the ModeratorConf, and

the participant will receive the next message: ”Your request has been successfully sent. It may take a few

seconds to process”. If there is already one desktop sharing underway, at the conference room, then the

participant will receive the next message: ”There is a desktop sharing”.

In the case that the user has permission to start a desktop sharing, and there is no sharing of this

type underway, then a new tab will be open with the content represented in figure 38.

Figure 38: Interface of a desktop sharing, with the description of the available buttons.

77

F. Start Slideshow Sharing

When the participant is inside the conference, he can decide to start one slideshow sharing. To do this,

it is only required that the room has the slideshow sharing resource available, and to click in the ”Start

Slideshow Sharing” button, at the Floor Control area.

The participant may not have permission to start a slideshow sharing. In this case, when he clicks in

the ”Start Slideshow Sharing” button, it will be sent one permission request to the ModeratorConf, and

the participant will receive the next message: ”Your request has been successfully sent. It may take a few

seconds to process”. If there is already one slideshow sharing underway, at the conference room, then the

participant will receive the next message: ”There is a slideshow sharing”.

In the case that the user has permission to start a slideshow sharing, and there is no sharing of this

type underway, then a new tab will be open with the content represented in figure 39.

Figure 39: Example of a slideshow sharing page.

78

G. Additional Information to Join a Desktop/Slideshow Sharing

To join the sharing, the participant only needs to click in the ”Join Desktop Sharing” button ()or in

the ”Join Slideshow Sharing” button (), that there is at the Floor Control area.

When a participant wants to join a sharing and there is no sharing underway, then the participant

will receive a message to explain it. It will be: ”There isn’t any desktop sharing” or ”There isn’t any

slideshow sharing”. If, on the other way, the participant is already inside the desktop/slideshow sharing,

of the actual conference room, then he/she will receive one of the following message, depending the type

of the sharing wanted: ”User is already in this desktop sharing” or ”User is already in this slideshow

sharing”.

In the case that the user can join a desktop sharing that is underway, then a new tab will be open

with the content represented at figure 40. In this example, the ModeratorWH is only showing only a

part of his desktop, and not the all desktop. Because of this, the user only sees the area inside the green

rectangle.

Figure 40: Example of the page that the user, who joined a desktop sharing, will see.

79

In the case that the user can join a slideshow sharing that is underway, then a new tab will be open

with the content represented at figure 41. In this example, the ModeratorWH is showing an image where

he/she has already made some changes in it, using the tools available by the WebHuddle.

Figure 41: Example of the page that the user, who joined a slideshow sharing, will see.

80

H. More about Upload Files to a Slideshow

When a participant clicks in the ”Manage Slideshow Files” button (), at the Floor Control area,

it show or hide an area where the participant can upload or manage files to the slideshow sharing (see

figure 42).

Figure 42: Interface to upload and manage the slides to use in a slideshow sharing.

81

