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Abstract

The project here described consists in the devel-
opment of a computational tool capable of automated
Rapid eye movement (REM) sleep stage detection mak-
ing use of data acquired from standard sleep analy-
sis sources. For this purpose an acquisition system
for biological signals was developed [1]. It acquires
electromyogram (EMG), electroencephalogram (EEG)
and electro-oculogram (EOG) channels, processing the
data in near real-time according to REM sleep charac-
teristics in frequency and time domain, exporting the re-
sult of each evaluated 30 second epoch in a REM stage
probability indicator. After the designed digital signal
processing (DSP) achieved satisfactory results in pre-
liminary trials using a training data set acquired with a
commercial setup, signals acquired with the developed
device were tested. Flaws were detected revealing the
need of improvements not only in the data acquisition
(DAQ) design but also in the preprocessing methodolo-
gies. Once fixed, trials were done and confronted with
an expert evaluation achieving good results. The ap-
plied DSP module was further tested for better results,
with the development of an automatic definition of cri-
teria thresholds and application of Independent Com-
ponent Analysis (ICA) for artefact removal.

1. INTRODUCTION

The goal of this work is the elaboration of a “path”
according to which it is possible to detect characteristic
sleep features and consequently detect REM sleep.
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1.1. Background

One of the most common phrases concerning sleep
is “A normal human being spends about a third of
his live sleeping”. It is also a commonplace to think
that sleep is a sort of loss of time. Contradicting this
idea, studies have shown that sleep is indeed one of the
strongest forces guiding human behaviour [2]. A bet-
ter understanding of sleep could explain its functions,
justifying what we are doing during that one third of
our lives, as well as identifying pathologies which can
be studied through sleep stages. At the onset of sleep
stage investigation, methods such as variations of wak-
ing threshold, motility and breathing were used. Nowa-
days they can actually give some information but in the
beginning of the XX century could only promote diver-
gent opinions since no sleep stages were known, there-
fore it was impossible for a researcher to know which
events he should seek. Sleep stage definition came with
Loomis et al. [3] and the discovery of REMs by Aserin-
sky and Kleitman [4]. Later on, justifying the cyclic
evidences of sleep condition already noticed in breath-
ing, cardiac cycle frequency and other parameters, De-
ment and Kleitman [5] introduced the cyclic patterns of
sleep stages based on their large normative study. The
four non-REM (NREM) stages and REM stage formed
the basis of subsequent polygraphic sleep studies, as de-
picted in Fig.1.

Figure 1: Standard sleep cycle. [6]

These different sleep stages were firstly “created”
due to different encephalic waves throughout sleep.



Brain activity started being categorized by frequency in
distinct groups:∆, θ , α andβ , represented in table 1.
These bands aid in the sleep identification since the pre-
dominance of one of them, or an event associated to a
defined band would suggest a specific stage.

Table 1: EEG frequency bands

∆ 0 - 4 Hz
θ 4 - 8 Hz
α 8 - 14 Hz
β 14 - 30 Hz

By using an EEG tool as a feature extractor, associ-
ated with other records - e.g. EMG and EOG - it became
possible to generically study sleep. Naturally, due to a
large set of data to be analyzed, different approaches
and subjectivity associated to each researcher, results
were discrepantly classified by different polysomno-
graphic expert analysts. The need of a common plat-
form for exchanging data and results led to the estab-
lishment of a committee, in 1968, led by Rechtschaffen
and Kales (R&K) [7]. The main goals of the committee
were to standardize recording and scoring techniques
in order to increase the comparability of results be-
tween laboratories (e.g. definition of a sleep time scale
- epoch1). A manual was created providing the mini-
mum requirements for meaningful comparison of poly-
graphic sleep studies on adult humans. In search for
both the within and between researcher groups agree-
ment in sleep stage identification and to foster the devel-
opment of computer algorithms for automatic analyses
of sleep, in 1991 the necessity for additional definitions
was recognized, reformulating the R&K rules to cover
information that was identified from 1968 to 1991: 1)
different sleep epoch discretization could lead to an im-
provement in sleep stage classification, therefore sleep
epochs with length from 5 seconds to the standard 30
seconds were evaluated. 2) Since sleep analysis does
not focus only on healthy subjects, R&K rules were re-
formulated to cover pathological conditions [8]. Results
deviation associated with previous mentioned barriers
and the fact that sleep identification is an extremely time
consuming task, have motivated an increased develop-
ment of methodologies capable of detecting unequivo-
cally, if possible, different sleep stages in the shortest
time possible. This assumes significant proportions be-
cause certain sleep stages carry information beyond its
sleep stage. For instance, REM sleep is one of the stages
carrying more relevant information - e.g.: the number

1according to R&K 30s were the time unit to be analysed, identi-
fied as an epoch with a defined sleep stage

of rapid eye movements recorded can inform about a
possible schizophrenic situation or depressive patients
[9, 10, 11, 12]; studies of rapid eye movement occur-
rence in blind subjects [13]; narcolepsy detection; this
stage is associated with memory formation [14] as well
as dreaming. All this lead to the need of a correct REM
stage identification so that future work can accurately
take place. For this purpose an acquisition system for
biological signals was developed, manipulating the ac-
quired data and exporting through an interactive inter-
face the output of REM sleep stage characterization in
a real time scenario. In this sense the project here pre-
sented, is of great value in order to reduce time and cost
of the analysis and increase the sensitivity of subsequent
statistical analysis.

1.2. Sleep Parameters

For a correct and guided determination of sleep
stages it is essencial to adequately recognize its asso-
ciated phisiological manifestations. Since EEG, EMG
and EOG were the chosen signals for the study, it is
important to be aware of the sleep manifestations as-
sociated to each source. For the present work, REM
sleep stage identification, one must be capable to de-
tect “strange” characteristics, such as, encephalic ac-
tivity resembling wakefulness (paradoxical sleep), ab-
sence of muscular activity only disturbed by sporadic
contractions, and the characteristic that gives the name
do this sleep stage, rapid eye movements. The proposed
DSP module uses the mentioned input signals, detecting
patterns and events according to the R&K rules as pre-
sented in Fig.2, differentiating in real time REM sleep
stage.

Figure 2: Characteristics of each sleep stage. [15]



2. DSP

2.1. EEG Algorithm

In what concerns the EEG, the goal of the work
was to identify pattern detection schemes for REM
sleep staging. Bearing this in mind, and Fig.2, a well
designed algorithm could be conceived, Fig.3.

Figure 3: Suggested EEG Algorithm.

This approach segments the acquired EEG data
vector in intervals of 30 seconds, Fig.4, analyzing each
one of them in the frequency domain for the detection
of REM sleep stage EEG charateristics.
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Figure 4: Example of an EEG signal segmentation.

In order to achieve a better resolution, each epoch is
analyzed according to a defined fraction, 5 seconds was
the applied window in the present work. A FFT tool is
applied to each window in order to assess the desired
characteristics. Fig.5 is an example of such process.
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Figure 5: Example of signal analysis. The upper picture represents a 5 second
EEG signal, while the lower picture represents the corresponding FFT trans-
form.

The vizualized window is analyzed according to
well defined features for REM sleep stage detection:

- Absense of∆ band activity

- Low α wave activity or predominance ofθ and
slow α waves

- Low amplitude signal

Once the total epoch has been analyzed, for each
criterion, if 2

3 of the epoch time span verifies the REM
sleep stage condition, then that feature attributes a1

3
probability that the subject is in REM stage sleep. The1

3
value is atributed since there are 3 features with equidis-
tributed weights for the EEG analysis.

As well as a REM episode detector, the algorithm
exports an energy vector concerning each epoch and a
whole register timestep FFT for frequency periodicity
analysis.

2.2. EMG Algorithm

The EMG data acquisition system records data
from the potential differences of electrodes on the chin,
reflecting the muscle tone of a subject. Knowing that
atonia is a characteristic REM feature, this algorithm
tries to detect this occurrence. Besides considering
atonia, one must also bear in mind that possible spo-
radic muscular contractions may occur in the middle of
a REM stage without disturbing or causing any stage
transition. Therefore periods of muscular atonia as well
as periods with higher energy but with fast muscular
contractions are detected as REM epochs. Since
no specific frequency band is attributed to muscular
contractions, and no frequency analysis has proven to
be relevant for the muscular DSP, only time domain
analysis is performed. A schematic of the designed
algorithm is presented in Fig.6.

Figure 6: Suggested EMG Algorithm.

Signal processing begins with the segmentation
step. This step is similar to the EEG segmentation



being timed in epochs and its energy determined. If
the root mean square (RMS) of the epoch is above
a defined threshold it is possible that the evaluated
interval is a NREM stage epoch (Fig.7 left plot), if not,
one considers it to be a REM epoch (Fig.7 right plot).
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Figure 7: Left plot - Thirty second NREM epoch EMG register. Right plot -
Thirty second REM epoch EMG register

For the detection of fast muscular contractions
one can not analyze the signal in a epoch time, instead
windowing is applied in order to evaluate each second
of the epoch (see Fig.8).
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Figure 8: One second EMG data with fast muscular contraction.

This windowed signal is then split into half and
both the resulting 0.5 second signals are evaluated in
order to calculate its maximum variation (EMGmax−

EMGmin). For a REM identification the maximum vari-
ation of one half second must be below a defined thresh-
old while the other half must be above it. Since contin-
uous fast muscular contractions may in fact be a slow
twitch or even muscular tonus, the algorithm considers
three muscular contractions in a row to be identified as
a slow contraction and therefore discards the possibility
of identifying the epoch as a REM period.

EMG analysis will consider an epoch to be REM if
atonia is verified or, in cases where the RMS is higher,
if this increase of energy is due to the presence of fast
muscular twitches. Besides the output vectors common
to the EEG analysis (REM epochs identification; Epoch
effective energy; ratio of epoch’s absolute maximum
and effective value), counters for fast and slow muscular
contractions were defined.

2.3. EOG Algorithm

The EOG signal by measuring potential differences
between the front and back of the ocular globe (see
Fig.9) allows a correct monitoring of the eyes.

Figure 9: EOG signal generated by horizontal movement of the eyes. [16]

For this project, the detection of synchronous and
fast eye movements is essential. REMs are detected
as saccadic waves2 with phase-reversed synchrony in
the left and right EOG channels. In this analysis since
the feature to detect is a phasic eye movement event,
one must not focus on frequency but only on the time
domain. A schematic for the automatic detection of
REM methodology is represented in Fig.10.

Figure 10: Suggested EOG Algorithm.

The designed algorithm starts signal analysis by
detecting REM candidates. This is achieved by the Neg-
ative Instantaneous Product (NIP) of the two EOG data
vectors, eq.1.

NIP(n) = −LOCf ilt (n) ·ROCf ilt (n) (1)

According to this method if ROC and LOC signals are
completely out of phase a positive NIP value will occur.
Instead, if eye movements are not synchronous or some
other artefact is present resulting into in-phase signals,
a negative value will be detected in the NIP.

2high amplitude signals of 1 to 3 Hz frequency



In Fig.11 two different situations are presented, a
phase-reversed synchronous eye movement at 13037 s
and artefacts or erratic movement at 13035 s.
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Figure 11: EOG data example. At 13037 seconds LOC and ROC registers
are completely out of phase - Synchronous movement. At 13035 seconds data
signals are in phase - Artefact or non-synchronous eye movement.

At this stage the data is segmented into 30 seconds
epoch fragments as it is done in the EEG and EMG
algorithm, for the purpose of a correct stage labelling.
Afterwards, each epoch is analyzed with one second
windows. The consequent one second interval is then
evaluated for possible REM events. The maximum
NIP value (a possible REM) is focused,NIP(x), and
its vicinity evaluated 0.2 seconds after and before,
NIP(x + 0.2s) and NIP(x − 0.2s) respectively (see
Fig.12). If the difference in amplitude of the ROC and
LOC registers of these points is bigger than the defined
threshold for saccadic amplitude variations (REM steep
slopes), a REM event is considered to be present.

1.3058 1.3059 1.3059 1.3059 1.3059 1.3059 1.306 1.306 1.306

x 10
4

−80

−60

−40

−20

0

20

40

60

80

Time (s)

A
m

pl
itu

de

 

 
NIP
LOC
ROC

X + 0.2 sXX − 0.2 s

Figure 12: EOG data example. Instant of NIP maximum is focused and its
vicinity evaluated 0.2 seconds before and after for REM detection

This algorithm outputs the REM stage detector, an
energy vector and a REM counter.

3. Training data set

3.1. Training data

The methodologies in section 2 were tested and
their results assessed for a training data set acquired by
a different acquisition system. This data consisted of
6 subjects. Once analyzed, the results were contested
with an expert evaluation, leading to the following con-
clusions. One of the subjects is here represented.

3.1.1. EEG. 1) REM sleep stage detector (Fig.13 mid-
dle plot) showed well defined REM intervals. 2) Epoch
energy evaluation (Fig.13 lower plot) confirmed a low
energy variability indicating a possible correct criteria
definition. It was also possible to verify that the signal
did not have sudden changes in energy which could be
associated to artefacts. 3) The FFT analysis throughout
the whole register (Fig.14) confirmed the existence of
sleep cycles and its associated frequency bands.
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Figure 13: Subject 1 EEG analysis. Upper plot - EEG data vector; Amplitude
µV. Middle plot - REM identifier. Lower plot - Epoch energy minus mean
energy

Figure 14: Total register timestep FFT.

3.1.2. EMG. 1) Demonstrated clear periods of muscu-
lar atonia (Fig.15 middle plot), value 1 intercalated with
sporadic muscular contractions (Fig.15 middle plot)
with value 2. After having assessed the correct func-
tioning of the algorithm, value 1 was established for
both situations, since both define REM sleep. 2) Epoch
effective energy confirmed the absence of possible arte-
facts and the low signal variability inter-subjects.
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Figure 15: Subject 1 EMG analysis. Upper plot - EMG data vector; Amplitude
µV. Middle plot - REM identifier. Lower plot - Epoch energy minus mean
energy



3.1.3. EOG. 1) REM detection sensitivity was evalu-
ated as illustrated in Fig.16, with the number of REMs
being quantified for each epoch. After having assessed
the correct functioning of the algorithm, value 1 was es-
tablished for any REM identification. 2) Energy values
once again assessed the inexistence of possible artefacts
and the low inter-subjects signal variability.
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Figure 16: Subject 1 EOG analysis. Upper plot - EOG data vector; Amplitude
µV. Middle plot - REM identifier. Lower plot - Epoch energy minus mean
energy

3.1.4. Global Evaluation. Associating the 3 different
analysis a clearer picture is achieved, Fig.17 upper plot.
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Figure 17: Upper plot - Algorithm evaluation of the presented subject. Lower
plot - Expert evaluation of the presented subject

Confronting the algorithm evaluation with the ex-
pert analysis (Fig.17 lower plot), a perfect match is
confirmed, with the algorithm correctly identifying the
REM periods with REM stage identifier value above
2.5. Similar analysis were accomplished for the 5 re-
maining subjects, in which some of the REM sleep
stage detections did not confirm all the criteria. This
is comprehensible if one bears in mind that some data
could not be considered part of the training set since
the values were corrupted (e.g. saturation); the training
data set registers were acquired in a sleep laboratory, be-
ing feasible that some of the subjects could suffer from
sleep pathologies with their particular sleep register pat-
terns; or even a misdefinition of criteria, due to the non
adaptation of the thresholds motivated by the verified
small inter-subject energy variability.

Summarizing, by strictly considering a detected
REM period when REM stage identification is above
2.5, the designed setup detected 9 positive detections
with 6 false negative events. This statistic reveals a 60%
REM detection percentage. Although if one evaluates
the REM detections bearing in mind acquisition prob-
lems and possible criteria threshold misdefinition, and
therefore analyzes each epoch value comparing with the
other epoch results of the same subject, a total of 14
positive detections, 2 false positives and 1 false negative
were verified. In this sense the training data set revealed
a very satisfactory 82% of REM detection. This global
satisfactory agreement between the tested DSP method-
ology and the expert evaluation motivated the following
trial of the designed setup.

4. Designed DAQ

4.1. First evaluation

A first trial revealed some aspects one should take
into account. Using the real-time algorithm lead to un-
conclusive results since the signals did not have suffi-
cient quality for the algorithm to automatically detect
REM sleep stage, as confirmed in Fig.18.
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Figure 18: Designed DAQ signals preliminary analysis. Upper plot - 5 second
signal. Lower plot - Frequency analysis of the acquired signal.

It was crucial to filter the signals to allow a correct
detection. Since the analysis was no longer real-time,
different filters were applied according to the process-
ing needs of each signal. The specifications were:EEG
- Low pass filter with cutoff at 45Hz ;EMG - Notch fil-
ter for 50Hz ;EOG - Band pass filter for 1-5Hz. Once
the signals were correctly preprocessed, it was possible
to apply the algorithm for REM sleep stage detection
only by making subtle changes in criteria threshold val-
ues. These adjustments were performed since the sig-
nals were acquired by the designed DAQ instead of the
previously analysed training data set signals acquired
by a commercial acquisition system. This conducted to
the following results.



4.1.1. Global Evaluation. The association of the three
different REM stage detectors lead to three distinct pos-
sible REM stage periods, as it is represented in Fig.19.
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Figure 19: Algorithm evaluation of the presented trial

For this case no confrontation of the algorithm
evaluation with an expert analysis was performed since
modifications to the acquisition system were necessary
to allow a real time evaluation in further studies. This
first trial ended up being useful to detect system flaws.
The identified insufficient signal quality, Fig.20 left col-
umn, motivated several modifications to the acquisition
system towards signal quality improvement to allow the
desired real time detection of REM sleep stage.
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Figure 20: Raw signal vs. Desired signal quality. Left plots - Raw signal. Right
plots - Desired signals.

4.1.2. First evaluation conclusions.

Blinding : Protection of the DAQ system to Electro-
magnetic Interference (EMI).

Cable : Instead of regular cables, coaxial cables were
used reducing noise levels.

DSP : Development of parallel processes to avoid sig-
nal loss: Acquisition ; Preprocessing ; Display.

Concerning the parallel processes, modifications to
the preprocessing setup took place so that signal quality
changed from Fig.21 middle into Fig.21 lower plot3.
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Figure 21: EMG analysis. Upper plot - EMG raw data. Middle plot - EMG
processed data. Lower plot - EMG new processed data

These modifications were not applied instantly,
they were being implemented and the signal quality
evaluated. Four trials using regular cables were per-
formed, followed by four trials with coaxial cables, but
still with non-optimized preprocessing steps, ultimately
six evaluations took place using the coaxial cables and
the later preprocessing step. The advantages brought
with the preprocessing step modifications focused in
noise reduction and acquisition of fairly pure signals,
contrarily to some tested preprocessing steps that re-
sulted in impure data. Hence one should focus in the
acquisitions with the coaxial cables and the final pre-
processing step implemented. From the 6 tryouts, only
4 were correctly acquired since the remaining 2 had the
following acquisition complications: 1) dettachment of
the electrodes, 2) low battery of the acquisition sys-
tem, which incapacitated a good acquisition and conse-
quently a correct identification of the REM sleep stage.

In order to validate the automatic detection an ex-
pert evaluation is essencial. As a result the acquired data
was converted into European Data Format (EDF) to be
read in commercial softwares4 . This format consists
of a header record followed by data records. Within
the header record subject and acquisition information is
specified, followed by signal data records.

From the 4 correct acquisitions, only 2 were con-
fronted with an expert evaluation. One of these evalu-
ated registers is here presented. For each trial different
criteria thresholds were applied to correctly detect REM
intervals. The need to modify these values, associated
with the previously mentioned misdefinition of criteria
thresholds in the training data, motivated the creation of
a protocol for automatic threshold definition based on
signals analysis.

3Even though different intervals are here represented, differences
in signal quality are obvious

4NicoletTM, DOMINO SomnomedicsTM, SomnologicaTM, etc



4.2. Trial 1

4.2.1. Global Evaluation. The association of the three
different REM identifications is represented in Fig.22
upper plot.

0 1 2 3 4 5
0

1

2

3

Time (hours)

R
E

M
 s

ta
ge

 id
en

tif
ie

r

REM Identifier

Figure 22: Upper plot - Algorithm evaluation of the first trial. Lower plot -
Expert evaluation of the first trial

Even though it is not here represented, the con-
frontation of each separate analysis with the expert anal-
ysis verified that, similarly to the training data set, EEG
and EOG detected false positives in awake situations.
The EMG analysis abnormally detected false positive
in awake condition assumably due to a less strict crite-
ria definition. Associating the three vectors ended up
identifying the correct REM periods. For the second
trial the results were similar, detecting uniquivocally the
identified REM.

4.2.2. Trial conclusions. The mentioned evaluations
revealed a satisfactory 100% REM detection. Although
the algorithm achieved maximum correlation with the
expert evaluation, each detected interval was extremely
short reflecting a high specificity, inadequate to the goal
of this project. As such, it was essential to automat-
ically define criteria thresholds for an adequate detec-
tion. For this purpose an algorithm was defined, acquir-
ing 2 minutes of signal, and with the aid of a protocol
respected by the test subject, it defines the threshold val-
ues for each criterium (e.g.∆ energy in the EEG, atonia
energy levels in EMG, amplitude variation considered
in a REM event, etc.) according to the evaluation of
different indicators and ratios. The accomplished trials
served as the starting point for a database capable of es-
tablishing these thresholds. For this task the analysis
of the total register is evaluated, as well as the first 12
minutes of the register, in which the subject is expected
to be awake. By analyzing sleep onset one expects the
results to be similar to those acquired with the protocol
to be further applied in subsequent evaluations. Besides
this, another modification should be implemented in the
signal processing. Interference of ocular (and some-

times even muscular) signals in the EEG was verified,
motivating the evaluation of different techniques to re-
move such artefacts. The aplication of an ICA tool is
here presented.

4.3. ICA

This methodology is based on the assumption that
if different signals are from different physical processes
then those signals are statistically independent. There-
fore, using mathematical tools it is possible to “search”
for the source signals (pure EEG, EMG and EOG) in-
side the mixed acquired signals. With this approach
one expects to extract artefacts common to every signal,
such as movement artefacts, as well as separating the
different signals so that no ocular or muscular artefacts
are registered in the EEG signal. Some tests with this
tool lead to the following results and interpretations:

Fig.23: The ICA tool, due to its iterative procedure
in search of independent components can multiply the
signals for -1 instead of multiplying the unmixing ma-
trix. This leads to inverted signals as we can verify in
Fig.23 lower right plot, in which one of the EOG sig-
nals have been multiplied by -1, resulting in in-phase
ocular movements. It can also swap signal positions,
complicating the analysis, verified in both ICA outputs
(lower left and right plots). Another problem that arises
with the application of ICA tools is data normalization,
disallowing the application of possible threshold values
for energy and/or signal voltage.
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Figure 23: Upper plot - Raw signal 25 seconds sample. Lower left plot - ICA
result. Lower right plot - ICA result (2)



Fig.24: If an artefact is detected with an extremely
high amplitude (ROC EOG artefact of -6000µV), it will
propagate to the other signals by the application of the
ICA toolbox.
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Figure 24: Left plot - Raw signal 25 seconds sample. Right plot - ICA result

Fig.25: The application of the ICA toolbox did not
remove efficiently the EOG artefact in the EEG register.
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Figure 25: Left plot - Raw signal 25 seconds sample. Right plot - ICA result

Through these evaluations it became clear that ICA
can not be applied to an entire data vector, expecting
it to correctly separate signals and remove the ocular
and muscular artifacts from the EEG register. This un-
satisfactory results were assumed to be associated to
the non stationarity of the used signals, due to its long
time-span. Therefore, by applying ICA methodology
to subsequent short intervals, followed by the gather-
ing of such signals, one assumes that this problem is
reduced. Although the previously mentioned complica-
tions associated to normalization, inversion and signal
order switch are still present.

Hence a methodology was designed to unfold these
complications. In such method ICA is applied to small
intervals of 100 points along the analyzed signal, af-
terwards the resultant ICA output vectors, normalized,
possibly inverted and/or swapped in position, are corre-
lated to the original vectors. In this way the signals will
assume its original values and it is possible to verify if
they have been inverted - correlation will be negative
- or even swapped with other signal - if correlation is
maximum with a different vector in the ICA output.

Since EEG is the signal more susceptible to artefact
interference, due to its low amplitude, this method was
applied in order to remove artefacts from such signal,
therefore combinations of 2 signals were tested: EEG
and ROC EOG; EEG and LOC EOG; EEG and EMG.
The results of such method were first tested in a small
interval with the following results, Fig.26:
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Figure 26: Left plot - Raw signal 1.8 second sample. Right plot - ICA result

This method was extended to larger intervals, as
depicted in Fig.27
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Figure 27: Left plot - Raw signal 8 second sample. Right plot - ICA result

From Fig.26 and Fig.27 it is verified that 1) ICA
methodology is capable to extract ocular artefacts in the
EEG data 2) EOG data should only be used in the ICA
processing as input since its processing adulterates the
data with EEG components.

5. Conclusions

This thesis focused on the development of the DSP
tool for real time REM sleep stage identification. The
designed algorithm by detecting characteristic patterns
of EEG (absence of∆ waves; low amplitude signal; low
α wave expression), EMG (muscular atonia with pos-
sible fast muscular twitches) and EOG (REM events)
differentiated REM sleep from other sleep stages.

Initially, the designed methodology was applied to
a training set of 6 subject acquired by a different DAQ
device. The results revealed a 60% agreement between
the automatic detection and the expert evaluation, and
82% agreement if one bear in mind some considera-
tions: the existence of corrupted data; inapropriate data



due to possible pathological situations and possible mis-
definition of criteria thresholds. In this later perspec-
tive, the REM stage detection is evaluated by compar-
ing the result of the evaluated epoch with the result of
the remaining epochs of the studied subject, indepen-
dently of the 2.5 REM sleep stage threshold. This sat-
isfactory aggreament lead to a trial with the designed
DAQ system. The results from such trial were not con-
firmed with an expert evaluation, still the registers were
used to detect flaws of the designed DAQ. Motivated by
the recognized flaws and poor signal quality, modifica-
tions of the system took place: blinding of the DAQ;
use of coaxial cables instead of normal cables; defini-
tion of parallel processes for acquisition, preprocess-
ing and data display so that data was not lost. Besides
these modifications, improvement of the preprocessing
step was performed allowing further trials to take place
with no complications. This later trials data had to be
converted to a specific file extension, EDF, so that they
could be evaluated by an expert, contesting the auto-
matic identification made by the DSP setup. It revealed
100% detection of REM intervals, but the detected in-
tervals were of extremely short time span, which is not
in accordance with the goal of this project. Instead, it
is desired that the DSP setup be sensitive rather than
specific since there will always exist a medical moni-
torization of the REM sleep stage detection. This lead
to the development of a protocol to automatically de-
fine criteria thresholds. Besides this modification, in
order to improve signal quality, ICA was tested to re-
move EOG and EMG artefacts in the EEG register, as
well as separate signals from common artefacts such as
movement artefacts. The results of ICA have proven to
be useful when applied to short intervals, so that signal
stationarity is conserved. Notwithstanding some prob-
lems were identified throughout the project develop-
ment, the designed algorithm fulfilled the goal of identi-
fying REM sleep for completely acquired data vectors,
and also the possibility of its implementation in a real-
time setup, since it proved to be capable of processing
each epoch’s signal while the data is acquired and visu-
alized. This implementation will allow future studies of
REM dreaming. Even though the methodology fulfilled
the aim of the project, some discussion points are here
described for further consideration and investigation.

- Since the final goal of this work was to detect near
real time REM sleep stage, the designed algorithm was
conceived bearing in mind non pathological conditions.
Although, one must be aware that sleep rules are con-
tinuously being updated and therefore it is necessary to
implement its conditions in the setup in order to con-
sider every newly discovered relevant information. For
instance, it is becoming common to consider abnormal

sleep stage by EEG signal similar to REM stage, the oc-
currence of REM events on the EOG and tonic activity
intercalated with muscular contractions in the EMG.

- For the present work the epoch was defined as
a 30s interval. Bearing in mind that sleep is a contin-
uous phenomenon, it should be engaged without time
discretization. Since this is not possible, the chosen
epoch length is clearly a compromise between accuracy
and laboriousness. One should test different epoch def-
initions or even overlapping epoch segments for better
results. An implication of long epochs is the increased
frequency resolution for the EEG analysis, while the
temporal resolution is decreased. By using overlap-
ping segmentation it could be possible to know how
the transitions occur, hence promoting an easier iden-
tification of sleep stages. Another problem of sleep
analysis discretization is that although they may include
various electrophysiologically different states, they will
only identify one of the stages. This dubious definition
of epoch could be controlled with probabilistic evalua-
tions for sleep transitions. For this purpose, one could
attribute a certain probability to each transition accord-
ing to the present stage and the known typical sleep cy-
cle, Fig.1.

- Increased frequency resolution could be achieved
by a different signal processing. Instead of the FFT tool
a Chirp-Z transform [17] could be used. With this tool,
specific time segments can be evaluated in a controlled
frequency band achieving higher resolution. Focusing
on the low frequency components, known to be higher
expressed, promotes an increased frequency resolution.

- Other signals could be used: oximetry, ECG, limb
movement, body temperature. For the present study
they were not implemented since their values could not
be as easily controlled as the EMG, EOG and EEG.
Artefacts commonly occur in limb movement registers
due to natural body movement during sleep; ECG, body
temperature and oximetry are not as biologically stable
as EMG, EOG and EEG, therefore the threshold defini-
tion would have to assume a more dynamic behaviour.

- More tests must be carried out to allow a liable
definition of criteria values. With only two registers
the threshold definition assume rough and abrupt tran-
sitions, as more tests are carried out the intervals will
become more specific and therefore the criteria more
adapted to each situation.

- Even though ICA revealed good results, it must
be further tested to evaluate whether it can bring satis-
factory results in the time span available for real time
identification, and evaluated using different sample in-
tervals so that the stationarity problem is resolved with
the best solution possible. It should also be tested to
remove the strong signal of ECG frequently acquired.
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