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Abstract

The goal of this thesis consists in the development of a computational tool capable
of automated Rapid Eye Movement (REM) sleep stage detection making use of data
acquired from standard sleep analysis sources: electromyogram (EMG), electroencephalo-
gram (EEG) and electro-oculogram (EOG).
Sleep identification and classification are major research areas in neurosciences not only
due to common sleep disorders, such as difficulty in falling asleep or other sleep pa-
rameters that can reflect a broad range of pathologies, but also by the recognition and
quantification of each sleep stage and the evaluation of its purpose, promoting a better
understanding of each stage and its relation with the rejuvenative functions attributed to
sleep, e.g. immune system recovery and growth hormone restoration.
Although different approaches have been developed lately, contemporary sleep classifica-
tions still find worldwide acceptance mainly by the visual classification of sleep stages
according to Rechtschaffen & Kales rules (1968), which is an extremely difficult and time
consuming task that must be performed by experienced human scorers. Since these crite-
ria can be objectively defined they can be used as premises in a mathematical tool, stated
as Boolean conditions.
In this sense the project here presented, an automatic REM sleep stage detector, is of
great value in order to reduce time and costs of the analysis and increase the sensitivity
of subsequent statistical analyses. For this purpose an acquisition system for biological
signals has been developed. This device acquires EMG, EEG and EOG channels with
adequate parameters, processing the data in near real-time according to several charac-
teristic criteria of REM sleep stage in frequency and time domain, exporting the result of
each evaluated 30 second epoch in a REM stage probability percentage.

Keywords: REM sleep stage, EEG, EMG, EOG, near real-time REM Automatic de-
tection tool.
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Chapter 1

Introduction

One of the most common phrases concerning sleep is “A normal human being spends
about a third of his live sleeping”. It is also a commonplace to think that sleep is a sort
of loss of time. Contradicting this idea, studies have shown that sleep is indeed one of
the strongest forces guiding human - and animal - behaviour. In extreme situations it has
been proven that forced sleep deprivation can even kill a living being [1].

Yet, it is obvious that one can not compare what it is known from sleep stages when
comparing with other conditions. For instance, we can understand more easily a muscular
contraction or even an organ function than “why is that complicated to avoid sleep and
maintain a vigil state for more than 24 hours?” or “what is the exact function of each
sleep stage? Why does the brain behaves so distinctly and actively during sleep?”.

A better understanding of sleep could explain its functions, justifying what we are
doing during that one third of our lives, as well as identifying pathologies which can be
studied through sleep stages.

Wakefulness can be identified and monitored using several sensors, such as visual and
hearing capabilities, muscular tonus; similarly sleep can also be identified and tracked by
the use of EEG, EMG and EOG analysis.

A particular stage of sleep tends to gather the attention of several researchers. It
attracts so much attention due to “strange” characteristics, such as, encephalic activity
resembling wakefulness (paradoxical sleep), absence of muscular activity only disturbed by
sporadic contractions, and the characteristic that gives the name do this sleep stage, rapid
eye movements. Besides these manifestations it is of special importance to notice that
this stage is associated with memory formation (especially regarding implicit procedural
and emotional learning tasks) [2] as well as dreaming. All this information leads to the
need of a correct REM stage identification so that future work can accurately take place.
This is the goal of the present work.

This chapter will focus on sleep, its stages and the information that can be extracted
throughout the different sources. This will allow a better understanding of the work
guideline.

1.1 Background

Even though brain activity was discovered in 1875 by the hands of Richard Caton,
and the first publication on EEG records took place in Russia in 1912 by the physiologist
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Vladimirovich Pravdich-Neminsky, it is reasonable to consider that sleep studies truly
arose only with Hans Berger invention when EEG was applied to the human being (1924).
It was the first source of data to be related to sleep activity. Before this approach, other
methods were used (some are still) focusing in variations of waking threshold, motility,
breathing and other parameters. Nowadays these parameters can actually give some
information, but in the beginning of the XX century they could only promote divergent
opinions since no sleep stages were known, for sleep was considered a uniform condition,
and in this sense it was a bit disturbing to see that the parameters were varying a lot
throughout a night sleep.

The introduction of sleep stages came in mid XX century with Loomis et al. [3] with
a scale from “A” to “E”, in which “A” would correspond to early drowsiness and “E” would
be deep sleep, later to be known as high-amplitude ∆ waves sleep. In this classification
the REM stage was not considered since it was mistaken with other stages, or even with
arousal since the activity resembled an awoke subject. It was not until the discovery of
rapid eye movements, by Aserinsky and Kleitman [4] that stage REM was identified as
a sleep stage. Later on, justifying the cyclic evidences of sleep condition already noticed
in breathing, cardiac cycle frequency and other parameters, Dement and Kleitman [5]
introduced the cyclic patterns of sleep stages based on their large normative study. The
four non-REM (NREM) stages and REM formed the basis of subsequent polygraphic sleep
studies. These different sleep stages were firstly “created” due to different encephalic waves
throughout sleep.

It is obvious that brain function does not resume to ON/OFF. It has several waves
propagating through the conductive tissue, the brain. For this reason an electrode placed
anywhere on the scalp will detect signals that could easily have been produced somewhere
within the brain. This accumulation of signals complicates the electrode interpretation.
Therefore, throughout time different approaches were tested.

Nowadays, besides the 21 electrode system (Fig.1.1), a single electrode evaluation is
also used. This procedure is adequate due to high conductivity of brain tissue [34]. In
this way redundant information may be avoided.

Figure 1.1: 10-20 system: Odd electrodes=left hemisphere, Even electrodes=right hemisphere; Fp=frontopolar, F=frontal,
C=central, T=temporal, O=occipital, A=auricular. [6]

The brain activity detected by any of these electrodes is to be categorized by frequency
in distinct groups: ∆, θ, α and β. These frequency bands aid in the identification of sleep
phases since the predominance of one of them, or an event associated to a defined band
would suggest a specific stage.
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Using an EEG tool as a feature extractor, associated with other records - EMG and
EOG - it becomes possible to generically study sleep by:

- Identifying sets of characteristics intrinsic to each sleep stage

- Evaluating each stage separately

- Evaluating the ratio of each stage

- Searching for sleep cycles by recognizing repetitive events

- Identifying normal vs. pathological sleep (Appendix A)

Once the tools became available and a good knowledge of sleep gathered, different
analysis took place. Naturally, due to a large set of data to be analysed, different ap-
proaches and subjectivity associated to each researcher, some results were discrepantly
classified by different polysomnographic expert analysts.

The need of a common platform for exchanging data and results was emphasized by
the study of Monroe [7], in which he showed that the inter-rater agreement between
different laboratories was low. This led to the establishment of the committee led by
Rechtschaffen and Kales. The rules of the manual of Rechtschaffen and Kales (R&K) [8]
are more or less a formalization of the Dement and Kleitman criteria. The main goals of
the Committee were to standardize recording and scoring techniques in order to increase
the comparability of results between laboratories (e.g. definition of a sleep time scale
- epoch1). The manual provided the minimum requirements for meaningful comparison
of polygraphic sleep studies of adult humans. The Committee also encouraged the use
of other concepts, and revisions of the manual were suggested, with the addition of new
information. However, instead of providing the necessary reference to novel developments
the rules of the manual became in practice the only method of sleep analysis. As a conse-
quence it became a gold standard and, unintentionally, a restriction to the development
of subsequent sleep research [9].

As mentioned, the proposal to standardize recording techniques and scoring criteria
was intended to increase the comparability of results reported by different investigators.
Researchers who have applied the system correctly have increased the reliability of their
sleep stage scoring. In the several decades since its publication, however, a number of
serious points of unreliability in the 1968 standard scoring system have been identified.
Particularly, researchers developing computer-based automatic sleep staging systems have
encountered numerous vague and ambiguous areas in the current standard.

To increase both the within and between researcher groups agreement in sleep stage
identification and to foster the development of computer algorithms for automatic analyses
of sleep, in 1991 the necessity for additional definitions was recognized, reformulating the
R&K rules to cover information that was identified from 1968 to 1991:

- Redefinition of epoch to a more broad concept. It was suggested that different sleep
epoch discretization could lead to an improvement in sleep stage classification. In
this sense researchers started evaluating sleep epochs from 5 seconds to the standard
30 seconds.

1according to R&K 30s were the time unit to be analysed and identified as a sleep stage
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- Since sleep analysis does not focus only on healthy subjects, R&K rules were refor-
mulated to cover situations such as pathological conditions [10].

It was also suggested that these rules should always be revised and updated with the
moving force of technological breakthroughs and medical improvements.

Results deviation associated with previous mentioned barriers and the fact that sleep
identification is an extremely time consuming task2, have motivated an increased devel-
opment of methodologies capable of detecting unequivocally, if possible, different sleep
stages in the shortest time possible. This assumes significant proportions because cer-
tain sleep stages carry information beyond its sleep stage. For instance, REM sleep is
one of the stages carrying more relevant information - e.g.: the number of rapid eye
movements recorded can inform about a possible schizophrenic situation or depressive
patients [11, 12, 13], [14]; studies of rapid eye movement occurrence in blind subjects [15];
narcolepsy detection; REM sleep behaviour disorder.

Motivated by the presented flaws and relevant research points, this work focus in the
development of a device capable to detect several biosignals, manipulate the data and
export through an interactive interface the output of REM stage identification.

1.2 Sleep

In a “macroscopic” physiological point of view one can identify sleep by system changes
from the awake homeostasis:

Cardiovascular According to the sleep stage there can be a generalized vasodilatation
promoting reductions in heart rate, cardiac output and blood pressure (commonly
associated with NREM). But it can also occur in the opposite direction motivated
by a generalized event variability (related to REM phasic events3 intercalated by
tonic REM4 intervals).

Respiration Some neurons related to breathing stop firing in deep sleep. Overall, there
is slight hypercapnia5, a decrease in total ventilation, and a decreased sensitivity to
inspired CO2.
During NREM there is a slight hypoventilation6 due to a relaxation of upper airway
muscles, as well as a decrease in the firing of inspiratory neurons, which show a
decreased sensitivity to stimuli. Accordingly pCO2 levels rise while pO2 levels fall.
During this stage breathing is under chemical and mechanical feedback control.
During REM there is an overall higher and variable respiratory rate. It appears
as though different processes maintain breathing during REM sleep, and it is not
driven by vagal signals or peripheral or central chemoreceptors. It may be driven
by higher cortical control, which may explain the variable rate. There is a lower
tidal volume, and higher respiratory rate. As REM sleep is associated with a loss
of muscle tone, there is an increase in the resistance of the upper airway.

2Sleep experts identify sleep stages by evaluating each 30 second epoch of a whole night sleep data
3periods with consistently high eye movement densities
4REM sleep periods lacking in REM occurences
5the presence of an abnormally high level of carbon dioxide in the circulating blood
6reduction in the amount of air entering the lungs
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Nervous System Globally, neuronal wave patterns alter in frequency and amplitude, as
well as the origin of depolarization, suggesting different activation areas. Addition-
ally, postsynaptic inhibition of motor neurons takes place, affecting the muscular
function - contraction and tonus.
More specifically, the discharge rate and brain metabolism are decreased during
NREM sleep. During NREM sleep, there is an active inhibition of the reticular
activating system7. Relevant neurons in this inhibition are located in the basal
forebrain (anterior hypothalamus and adjacent forebrain areas); lesions of the basal
forebrain result in insomnia, while electrical stimulation causes a subject to fall
asleep. The thalamus, dorsal raphe, and nucleus tractus solitarius are also impor-
tant in NREM sleep. There is also an increase in parasympathetic activity similar
to relaxed wakefulness; sympathetic drives remain at about the same level as during
relaxed wakefulness.
During REM sleep, many parts of brain (visual cortex, limbic lobe) show increased
firing rate and metabolism. Brain transection studies have shown that the pons
is necessary and sufficient to generate the basic phenomena of REM sleep. During
tonic REM sleep, parasympathetic activity remains about the same as during NREM
sleep, but sympathetic activity decreases, resulting in an overall predominance of
parasympathetic activity. However, during phasic REM sleep, both sympathetic and
parasympathetic activity increase; sympathetic activation is generally favoured.

Endocrinology Deep sleep stages are associated with increased secretion of Growth
Hormone, especially in children approaching puberty. Other important hormones
are differently regulated during sleep, e.g., prolactin8 increases; cortisol9 decreases.

Thermoregulation At sleep onset, the body temperature set point is lowered and body
temperature falls. The body therefore activates heat loss mechanisms (sweating)
to cool down the body to the new set point. Thermoregulatory cells in the cen-
tral nervous system (CNS)10 diminish its activity during NREM sleep, making us
essentially poikilothermic creatures11, only to stop firing entirely during REM sleep
when thermoregulation ceases.

With the main sleep physiological manifestations identified, the methods to assess
its relevant information can be selected. Conventionally, brain activity is monitored, as
well as other sensors focusing on easily measurable correlated variables. As mentioned
previously, for this work EEG, EMG and EOG were chosen. Others like ECG and pulse
oximetry could probably also be used. Nevertheless, for the present study they were not

7name given to part of the brain (the reticular formation and its connections) believed to be the
center of arousal and motivation by its involvement in the circadian rhythm. The activity of this system
is crucial for maintaining the state of consciousness. It is situated at the core of the brain stem between
the myelencephalon - medulla oblongata - and mesencephalon - midbrain

8a hormone secreted by the pituitary gland which affects growth of the mammary glands and secretion
of breast milk

9The body’s natural stress-fighting and anti-inflammatory hormone
10preoptic/anterior hypothalamus
11variable body temperature according to its surroundings; Animals kept at ambient temperatures in

the thermoneutral zone - ambient temperature at which an animal does not have to actively regulate its’
body temperature avoiding raising its metabolism - show maximal levels of REM sleep
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implemented since their data is known to have a higher inter subject variability when
compared with EEG, EMG and EOG registers.

As previously mentioned, the sleep cycle concerns more than sleep and awake. Within
sleep two main stages are to be separated according to electrophysiological patterns -
EEG, EOG and EMG - REM and NREM.

REM features are: EEG - high frequency, low amplitude more irregular waves, with
sporadic sawtooth waves; EOG - rapid and coordinated movement of the eyes; EMG -
extremely weak signal due to muscle tone inhibition.

As opposed, NREM is characterized by: EEG - high amplitude, low frequency waves;
EOG - rolling, uncoordinated and slow movement of the eyes; EMG - passively decreased
muscle tone.

NREM stage can be subsequently separated into 4 different stages (later presented),
characterized by a progressive predominance of decreasing frequencies, increased sensory
thresholds and punctual waveform events [16].

NREM always precedes REM in the adult, and is longer and/or deeper if the waking
period preceding it has been long or contained vigorous exercise. This is valid for both
day to day comparisons in an individual and for species to species comparisons of the
average length of the period. In humans, the average is four to five REM bouts of 90-100
minutes each. The time span of the cycle varies in function of the animal and brain size,
varying among species and individuals [17].

1.3 Detected Biosignals

In order to correctly detect and manipulate the desired data one must adequately rec-
ognize the signals, discarding artefacts and signal components dissociated to the required
bio-potential. Consulted bibliography [18] lead us to the following standard values:

- EEG ought to be band-pass filtered for 0.3 - 100 Hz with amplitudes lower than
500µV.

- EMG does not exactly have unique referred values since different muscular contrac-
tions can be recorded. For the present evaluation, chin muscular contraction, values
were considered to be below 1000µV. Since muscular contractions aren’t evaluated
according to frequency, the only remark is the use of a high-pass filter with cutoff
frequency at 0.3Hz, discarding direct current (DC) component.

- EOG has to be treated in frequency and amplitude. Specifically, bandpass filtered
for 0.5 - 100 Hz, discarding DC component, slow eye movements and high frequency
noise. Amplitude criteria for artefact detection is also established at 500µV like the
EEG.

1.3.1 EEG

As it is known from electrophysiology, neuronal cell membranes at rest maintain an
electric potential difference between the axoplasm (i.e. the intracellular fluid) and the
surrounding extracellular fluid. In result of this mechanism the intra-cellular fluid has a
negative electric potential with respect to the extracellular fluid (in the order of -70 mV). In
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biology this potential difference is called the membrane resting potential (strictly spoken
this is incorrect, because it is a potential difference). A decrease of membrane potential
(i.e. it becomes less negative) is called a depolarisation, and an increase in membrane
potential is called a hyperpolarisation. It is important to note that by convention the
electric potential of the extracellular fluid always serves as a reference. Neurons are
electrically excitable: when the membrane is depolarised to a certain threshold value, an
active mechanism is triggered, the Hodgkin cycle12. The result of this process causes a
transient, spike-shaped fluctuation of the membrane potential, during which the polarity
of the membrane potential temporarily reverses (the intracellular fluid becomes positive
relative to the extracellular environment). The phenomenon is called an action potential.
Action potentials have two important properties:

1. They are a all-or-none phenomenon, meaning that once triggered, nothing can stop
the process anymore. The consequence of this is, that the shape and amplitude of
an action potential of one particular type of neuron is always identical.

2. Once generated at some location in a neuron, the action potential propagate actively
along the cell membrane. Obeying the all-or-none law, the shape and amplitude of
the action potential does not change during its propagation.

Crucial to the description of bio-electric phenomena is the notion of a field potential.
This is the electrical potential that can be measured at a certain distance from a source of
electrical activity. A neuron undergoing membrane potential fluctuations can act as such
a source. Such a fluctuation causes an electrical current to flow in the vicinity of the cell
(there is spatial and temporal summation, as observed in Fig.1.2). These extracellular
ionic currents form the actual origin of the EEG.

Figure 1.2: Neuronal interference: temporal and spatial summation. [31]

Signal characteristics: Time-domain and amplitude

The EEG amplitude characteristics (see Fig.1.3) vary the conditions under which they
are measured as well as the electrode positions. EEG signals may have amplitudes of well
over ±100 µV (and even much higher during epileptic spikes) but often the amplitudes are
limited to a much smaller range. EEG activity that does not exceed ±20 µV is considered
as “low-voltage” EEG [19] which incidentally may be encountered in normal healthy adults
(but never in healthy children). Amplitudes not exceeding ±10 µV are called “very low
amplitude” and must be considered as abnormal. Finally, absence of cerebral activity of

12regenerative, circular sequence of events between depolarization and permeability to sodium occurring
in excitable cells: depolarization increases permeability to sodium, thus increasing the entry of sodium
(Na+) into the cell, and the increased concentration of Na+ further depolarizes the membrane.
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over ±2 µV is considered as “cerebral inactivity” which is a necessary - but not sufficient -
condition to diagnose brain death. Modern EEG amplifiers usually have input amplitude
ranges of ±200 µV or higher. A practical consideration is that although the “true” EEG
has a limited amplitude range, disturbances (artefacts) may very well induce levels of the
input signals that easily lead the amplifiers to saturation, resulting in clipping13 of the
measured signal.

Figure 1.3: One second EEG signal. [30]

Due to the commonly considered noisy14 character - mixed frequencies - of the EEG
signal (see Fig.1.3) a different approach towards the signal analysis gives more relevant
results.

Signal characteristics: Frequency

Power spectrum EEG signal analysis reveals that the signal is band-limited, coloured
noise, i.e., only frequencies below some maximum exist in the spectrum and not all fre-
quencies contribute evenly to the power spectrum. For monitoring purposes, it is generally
assumed that frequencies of interest range from 0.5 to 30 Hz. However, in basic research,
much higher frequencies are investigated, typically up to about 70 Hz. In addition ex-
tremely low-frequency phenomena with frequencies as low as 0.1 Hz often are investigated
in neuro-cognitive research. Frequently the power spectrum contains one clear peak. The
frequency at which this peak occurs is called the peak power, or dominant frequency. This
is in agreement with the observation of the rhythmical EEG patterns we see in the time
domain. Based upon the existence of a dominant frequency, a well known classification
of EEG patterns, ∆, θ, α and β bands are recognized.

- Dominant Frequencies 0-4Hz; ∆ Classification (Fig.1.4).

Figure 1.4: 1second ∆ signal profile. [30]

Low frequency ∆ waves are large, slow brain waves commonly associated with deep
sleep. Physiologically these are present in deep sleep, brain injury situations and
coma. Certain frequencies in the ∆ range also trigger the release of Human Growth

13saturation due to the high levels of signal amplification
14as in random, stochastic, aperiodic signal
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Hormone so beneficial for healing and regeneration. This is why deep restorative
sleep is so essential to the healing process.

- Dominant Frequencies 4-8Hz; θ Classification (Fig.1.5)

Figure 1.5: 1 second θ signal profile. [30]

This rhythm is associated with various sleep and wakefulness states. Besides sleep
stages, θ rhythms are also observed during states of quiet focus, for example med-
itation [21] and short term memory tasks [22]. Studies have shown that θ waves
involve many neurons firing synchronously in the hippocampus and through the
cortex. In this sense it was suggested that θ activity is a monitor for hippocampus
activity [23]. Other studies suggest θ oscillations have a correlation to various vol-
untary behaviours, such as, exploration and spatial navigation. Although θ activity
has been quite studied its origins and functional significance still remain unclear.

- Dominant Frequencies 8-13Hz; α Classification (Fig.1.6)

Figure 1.6: 1 second α signal profile. [30]

Also referred as Berger’s wave, these waves are predominantly found during periods
of relaxation with eyes closed but while still awake. Attenuated with open eyes as
well as by drowsiness and sleep, α waves are thought to represent the activity of the
visual cortex in an idle state.

- Dominant Frequencies 14-30Hz; β Classification (Fig.1.7)

Figure 1.7: 1 second β signal profile. [30]
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This frequency band can be internally divided into High β Waves (≥19Hz) β Waves
(15-18Hz) and Low β Waves (12-15Hz), although they are physiologically associated
to the same events. Beta dominancy is associated with normal awake consciousness.
Low amplitude beta together with multiple and varying frequencies is often associ-
ated with active, busy or anxious thinking and active concentration. Beta rhythm
can be blocked by movement or intention to move (i.e., motor preparation) and
tactile (i.e., somatosensory) stimulation.

Rhythmic beta with a dominant set of frequencies is associated with various patholo-
gies and drug effects.

In literature, other rhythms such as µ and γ are often found. When γ waves (Fig.1.8)
are identified the subject usually is developing a task that required perception and con-
sciousness. Its frequency band is normally situated around 40 Hz with possible deviations
to 26 Hz or 70 Hz (depending on the subject and its condition). Motivating the associ-
ation with perception and conscience, researches have proven a correlation between the
appearance of higher level cognitive activities and the transition of lower frequency γ
waves into the 40 Hz range. Other evaluations have associated γ waves with awakening
and active REM sleep.

Figure 1.8: 1 second γ signal profile. [30]

Concerning µ waves, they are waves in the frequency range of 8-13 Hz and appear as
bursts in the range of 9 - 11 Hz. Its activity decreases with movement or an intent to
move, or when others are observed performing actions. It is frequently associated with
the motor cortex. These, however, have a much smaller expression and therefore their
study is more difficult and its data less informative. Some researchers do not distinguish
γ waves as a distinct class but include them in β brain waves; the same happens with
µ waves which are associated to the α band. Not exactly a frequency band, but some
characteristic waveforms are also recognized and studied (see Fig.1.9)

Figure 1.9: Representation of characteristic wave forms:sleep spindle and K-complex. [30]
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Sleep spindles Brain activity bursts of 12-16 Hz waves occurring with a maximum du-
ration of 3 seconds. These waveforms are thought to have a protective function
of sleep since they inhibit the processing of unnecessary information, which would
interrupt sleep. Due to its function they appear more frequently in light sleep in
order to protect it.

K-complex Quick high-voltage polyphasic transient (more than 100µV) lasting longer
than half a second. These complexes occur when auditory or intrinsic stimulation
takes place. Together with sleep spindles they are thought to maintain a person’s
sleep state. On the other hand, recent findings [33] indicate that spontaneous K-
complexes may be part of the non-REM stages, and their increased occurence would
lead to the deepening of non-REM sleep.

Literature often mentions that the dominant frequency is roughly inversely propor-
tional to the “level of alertness” of the subject. This observation comes from the fact that
in a healthy, alert subject we predominantly see a dominant frequency in the β-range.
When the subject is in a relaxed but awake state (particularly with the eyes closed), often
α rhythms are observed, and some deeper sleep stages often are associated with domi-
nant theta or even delta activity. Even though several studies were realized in order to
prove the previously mentioned considerations, one should keep in mind that sleep criteria
discretization is a somewhat utopic task. Such guidelines only describe generalized prop-
erties of the EEG and can not be considered golden rules. For instance, in normal sleep,
it is common to observe beta-activity during REM (rapid eye movement) sleep, which is
known to be the sleep stage during which subjects are most difficult to wake up. Bottom
line: there are exceptions to all apparent relationships between EEG-related parameters.

Relation between frequency and amplitude characteristics

The most important global relationship between amplitude and frequency parameters
is that EEG signals with a spectral content, which is predominantly in the higher fre-
quency range, usually have smaller amplitudes than signals with dominant frequencies in
the lower range. This is understandable since electrical activity of lower frequencies tend
to sum up (temporal summation is easier in lower frequencies), augmenting its amplitude
making it more visible in the EEG. However, here again one has to be careful not gen-
eralizing too easily since it is also arguable that higher frequency waves have a higher
material penetration hence being easily detected by the electrodes. It is very well possible
that high-frequency EEG patterns have large amplitudes. An extreme example of this is
some types of epileptic activity (see Fig.1.10) which contains high frequency patterns with
sometimes very high amplitudes. Clearly, the number of neuronal populations involved
in EEG generation is of importance in the amplitude of signals.

As stated previously, the standard (and historical) procedure for an EEG analysis
is the 10-20 system (1.1). This approach determines the potential differences between
subsequent pairs of electrodes. It is based on 10% to 20% proportional distances between
anatomic landmarks on the skull and the head (left and right preauricular points, nasion,
inion). The measurements can be achieved by the use of an electrolytic gel between the
electrodes and the scalp improving the electric conductivity at the contact places. Instead
of placing the electrodes one at a time, one may also use an electrode cap.
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Figure 1.10: Frequency analysis of a epileptic attack - high frequencies are highly expressed. [29]

Besides this method (differential) also referenced electrode setups can be used. This
referential technique determines differences in potential with respect to a single common
electrode, allowing an amplitude comparison between the signals recorded at the different
electrodes.

Lately, this second approach has become more used because several workgroups verified
the occurrence of small regional differences between scalp areas critical for the scoring of
sleep stages. In this sense, one derivation means easier setups, fewer artefacts to be
detected15 and consequently less “entropy” in the analysis. A differential setup was used
in this work, as depicted in Fig.1.11.

Figure 1.11: EEG Electrode placement. [26]

15detection of scalp signals; signals detected by the reference electrode
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1.3.2 EMG

This technique serves the purpose of evaluating physiological properties of muscular
tissue at rest and during activity. By detecting the electrical potential of muscular tissue
one can say if it is contracted, relaxed or even without muscular tonus (see Fig.1.12).

Figure 1.12: Generic muscular contraction detection setup. [28]

Depending on the muscular tissue to be evaluated the signals amplitude have a tremen-
dous variability, so it is not strange that EMG signals can have 0 − 10mV peak-to-peak,
or 0 − 1.5mV , or 0 − 1.5mV Root Mean Square16. Focusing on the frequency domain,
the signal is considered to be comprised in the 50 - 150 Hz band. This simply serves the
purpose to inform what bandwidth is to be evaluated, avoiding unnecessary frequencies
(noise); since EMG frequency analysis is not a common procedure. For the manipulation
of the EMG data it is necessary to pay special attention to the fidelity of the signal.
One must avoid contamination from electrical noise, which is extremely common in EMG
setups. For this purpose maximizing the signal-to-noise ratio17 must be performed with
the minimal distortion of the signal.

In this work an electrode is placed in the submental chin muscle (see Fig.1.13) in
order to detect the signal, evaluate its energy and determine whether it is with or without
muscular tonus, since atonia18 is a characteristic of REM sleep stage.

Figure 1.13: EMG Electrode placement. [26]

16defined as the square root of the expectation of - x2

17power ratio between a signal and the background noise
18muscle tonus loss
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1.3.3 EOG

It was not until 1954, with the publication by Aerinsky and Klietman that EOG
became a cardinal sign for the classification of REM sleep stage. These Researchers showed
that a polygraph device could measure electrical changes around the eyes, allowing the
detection of sudden bursts of eye movements cyclically during night. These movements
can be detected due to the Cornea Retinal Potential. The eye can be described as a fixed
dipole with the positive pole at the corneaand the negative pole at the retina. Therefore
electric potentials generated across the Cornea (+) and the Retina (-) (see Fig.1.14) of
the eyes as a result of the movement of eyeballs, produce within the conductive skull
environment a corneoretinal potential that can go up to 1 mV.

Figure 1.14: electro-oculogram signal generated by horizontal movement of the eyes. [27]

For a correct evaluation, electrode placement must be criteriously followed. In this
work, each electrode is placed in the outside of each eye - left outer cantus (LOC) and right
outer cantus (ROC) - one a little above while the other is below the eye line (Fig.1.15).
It is important that the electrodes have the same reference so that left eye movement is
completely out of phase when compared with the right eye movement, allowing the correct
detection of horizontal and vertical eye movement, differentiating them from artefacts.

Figure 1.15: EOG electrode placement. [26]

The EOG information associated with the common practice EEG and EMG can “eas-
ily” identify REM sleep stages.
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1.4 Sleep Stages

Since the early 20th century, human sleep has been described as a cycle, a succession of
waking, non-REM stages and REM stage. Although the transition between the different
stages and the exact function of each stage is still unknown, they are identified by specific
manifestations.

In order to correctly detect and manipulate the desired data one must adequately rec-
ognize the signals, discarding artefacts and signal components dissociated to the required
bio-potential.

Waking (Fig.1.16 and 1.17) is detected as a relaxed wakefulness.

This stage is a “slow down” condition in which the body prepares for sleep, transiting
progressively from a state of tensile muscles with eyes moving erratically into a
muscle and eye movement relaxation. This transition is also characterized by specific
brain activity.

Figure 1.16: Awake subject demonstrating EMG activation and eye movements. [26]

Figure 1.17: Subject with eyes closed and drowsy. Alpha frequency dominates the EEG record. [26]

More specifically, in this stage there are two different types of behaviors:

1) High α background showing occipital α rhythm with closed eyes; low amplitude
mixed-frequency EEG with fast eye movements and blinking with open eyes.
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2) Poor α producers with possible EEG signal maintenance whether eyes are closed
or open.

Some studies evaluated whether α activity is always synonymous of wakefulness [25],
stumbling upon two main α activity bands, one 8-12Hz and the other approximately
2Hz slower, which were associated with wakefulness and drowsiness/sleep, respec-
tively.

Stage 1 - NREM1 (Fig.1.18) is usually the first stage in a sleep episode. It is commonly
referred as light sleep. In this state a person’s eyes are closed, but if aroused from
it, he/she may feel as if he or she has not slept. It is defined by a low voltage mixed
frequency EEG, with prominence in the 2 - 7 Hz band and absence of slow ∆ waves.
This stage is usually a small proportion of a night’s sleep, occurring frequently only
at sleep onset. So when it takes a large proportion of the night it usually indicates
a sleep disturbance (or a misdefinition of the sleep stages).

Figure 1.18: Stage 1 sleep. Alpha frequency EEG is no longer present. The EEG is now a lower frequency and amplitude
than when awake. Slow rolling eye movements can be seen. [26]

Stage 2 - NREM2 (Fig.1.19) is another period of light sleep during which polysomno-
graphic readings show intermittent peaks and valleys, or positive and negative waves.
These waves indicate spontaneous periods of muscle tone mixed with periods of mus-
cle relaxation. Muscle tone of this kind can be seen in other stages of sleep as a
reaction to auditory stimuli. The heart rate slows and the body temperature de-
creases. At this point, the body prepares itself to enter deep sleep. Particularly its
onset is characterized by the appearance of sleep spindles and K-complex in a low
voltage EEG background activity. Onset of Stage 2 is defined by the first appear-
ance of a 13-14 Hz sleep spindle or K-complex on a low voltage background EEG
activity.

On the other hand, and once again introducing entropy into the sleep stages defini-
tion, other definitions consider stage 2 sleep a heterogeneous state, therefore defining
them according to different criteria. It is assumed that delta activity episodes with
amplitude not exceeding 75µV can also be scored as stage 2 sleep, even when sleep
spindles and K-complexes are not prominent. This second definition is mainly mo-
tivated due to the weak definition of K-complex and sleep spindles.
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The recognition of NREM 2 is highly dependent on the decision of what is consid-
ered a sufficiently recognizable sleep spindle and K-complex, with a background ∆
activity <20%.

Figure 1.19: Stage 2 sleep. K-complexes and spindles now appear on the EEG record (highlighted). [26]

Stage 3&4 - NREM3&4 (Fig.1.20 and 1.21) also refered as deep sleep, it is standardly
identified by its predominant ∆ wave component. During these stages (especially
Stage 4) the EMG records slow waves of high amplitude, indicating a pattern of
deep sleep and rhythmic continuity. Observing these stages one may say that as
sleep deepens, ∆ wave activity increases (stage 2 <20%, stage 3 20-50%; stage 4
>50%).

Figure 1.20: Stage 3 sleep. Delta waves (1-2 Hz) now represent at least 50% of the EEG trace. Parallel EOG traces
represent EEG artefact. [26]

The previously mentioned stages are globally defined as non-REM sleep (NREM) and
last from 90 to 120 minutes, each stage taking about 5 to 15 minutes. Sleep deepens
progressively, returning to light sleep and ultimately enters REM stage. A normal sleep
cycle - even though there is nothing standard or predefined in sleep - is WAKING, NREM1,
NREM2, NREM3, NREM4, NREM3, NREM2, NREM1, REM.

The first cycle, which ends after the completion of the first REM stage, usually lasts
up to 100 minutes. Each subsequent cycle REM periods last longer. At the same time
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Figure 1.21: Stage 4 sleep. Delta waves (1-2 Hz) now represent at least 75% of the EEG trace. Parallel EOG traces
represent EEG artefact. [26]

stage 3 and 4 shorten, leading to a reduced slow-wave sleep. At the end, a person may
complete five cycles in a normal night’s sleep, increasing REM stage and decreasing stage
3 and 4 each passing cycle.

REM stage (Fig.1.22) This stage is distinguishable from NREM sleep by more promi-
nent changes in physiological states, including its characteristic rapid eye move-
ments. It is usually called paradoxal sleep because of some manifestations: The
heart rate and breathing speed up and become erratic, while the face, fingers, and
legs may twitch. At the same time paralysis occur simultaneously in the major
voluntary muscle groups, including the submental muscles, chin and neck muscles.

Figure 1.22: Rapid Eye Movement (REM) sleep. Signals similar to Stage 1 with rapid eye movements on the EOG channel
and low amplitude EMG signal with sporadic muscle twitches. [26]

Detected brain activity may resemble the Stage 1 pattern. Sleep spindles and K-
complexes verified during other sleep stages disappear and REM characteristic saw-
tooth waves19 may occur. By evaluating the α frequency band one can distinguish
REM stage from wakefulness by noticing that the α component comprises less than

19superimposed rhythm generally manifest as 2- 3 Hz notched triangular waves that occur serially and
have the appearance of teeth on a saw
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50% of the evaluated epoch and there is no muscle tonus. Motivated by the men-
tioned intense cerebral activity, dreams occur frequently. A possible justification
for the verified atonia is a defence mechanism that avoids the body from acting out
the dreams that occur during this intensely cerebral stage. When this mechanism
fails pathology occurs. The first period of REM typically last from 1 to 10 minutes,
with each recurring REM stage lengthening, and the final one lasting more than half
hour. As with Stage 2, the problem of scoring REM is that it is so heavily based
on the presence of phasic events rather than continuous parameters.

Summarizing, different sleep stages can be catalogued according to different parame-
ters (see Fig.1.23). These assumptions lead to the development of an algorithm for REM
stage detection. This is the main goal of the present work.

Figure 1.23: Summarized sleep stages rules. [32]

19



Chapter 2

Acquisition System

Someone less attentive could tend to forget that the real world around us is not digital1

but an analog world and that consequently any signal processing system starts with the
acquisition of analog signals2.

Signals exist in many and various forms, ranging from drum signals to biopotentials.
They represent a message, which does not necessarily depend on the nature of the signal.
For instance, the mentioned drum signal can be converted by a microphone into an elec-
trical signal for transmission to someplace else, where it will be converted into an optical
signal to be recorded on a CD. For a biosignal the path is “slightly” different, yet the
concept is similar: It detects a signal (transmission and storage), converts it and then
processes it (data manipulation).

Bearing in mind these concepts a data acquisition system (DAQ) was defined [35]
based on the following principles:

- High sampling frequency promoting a good signal resolution

- Adjustable amplification allowing a correct fitting of the acquired signals

- Differential input with high common mode rejection3 (CMR) and input impedance

- Low energy consumption battery powered system (Li-Ion), guaranteeing good au-
tonomy and no hazard for the user

- Portable device

- Electromagnetic compatibility4

- Highest possible flexibility. The use of a microcontroller allies optimal performance
with the required flexibility for the desired purposes

- Universal Serial Bus (USB) communication with a Personal Computer (PC) for
faster data transmission

1discrete signal in time and amplitude
2continuous signal in time and amplitude
3ability to reject a signal which, referenced to “ground” has the same amplitude and phase on both

inputs [36]
4without causing electromagnetic interference (EMI) and without being affected by EMI from other

sources
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- Possibility of system update by altering the embedded system

- Low cost device

The present chapter will give general ideas on the DAQ, the motivation for its design
and main characteristics.

2.1 Overview

2.2 Acquisition System Design

The previously mentioned signal variability reminds us of the differences between bio-
potentials and other measured potentials, as well as the intra-differences among biosignals:
amplitude range varies in several dimensions; different sampling frequency requirements;
relevant bandwidth. Associating this to the environmental bias presented in the following
section, it is emphasized the need of a specific acquisition system device.

2.2.1 Environmental Conditioning

One should have in mind that some conditions and factors interfere directly with the
signal acquisition. The electric signals are extremely small in amplitude and quite often
they are to be acquired in electrically hostile environments. Besides, the human body is
made up of much more than three or four biopotentials. In this sense it is necessary to
take into account that:

- Measuring the desired biosignals is not dissociable from other biosignals such as skin
surface biopotentials; artefacts associated to cardiac rhythm and blood conductivity;
undesirable muscular contractions; etc.

- Different tissues have different bioimpedances, therefore different electrode place-
ment may provide different results.

In this sense it is impossible to conceive a generic DAQ, for it is essential to cor-
rectly define the desired acquisition characteristics so that the designed system meets the
required specifications.

Some interferences can be controlled with the use of filters, others simply have to be
recognized and posteriorly discarded.

Therefore extra attention was paid to [35]:

- Electrode placement

- Possible low tissue conductivity5

- Movement artefacts

- EMI

5corrected by the use of conductive gel
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2.2.2 Specifications

The design of the DAQ was based according to the previously stated requirements,
resulting into a setup like the one presented in Fig.2.1.

Figure 2.1: Structure of the designed biosignal digital analysis system. The upper branch of the scheme represents analog
preprocessing of the signals and the lower branch digital processing steps.DAQ system is highlighted in blue. [31]

According to the suggested structure it is possible to recognize a number of relevant
system components.

Transducers - This component converts energy from one form to another for measure-
ment purposes.

Surface electrodes were used in order to detect biosignals as voltages.

Coupling Module - Improves signal quality by filter and amplification procedures.

Knowing that signals may be detected in inappropriate conditions, it becomes clear
there is a need for signal processing. To meet these objectives filtering and amplifi-
cation are used.

Filtering - Assuming “a priori” knowledge of the desired frequencies, filtering allows
specific and relevant values to be selected, as well as undesirable frequencies to be
discarded (e.g.: band rejection filter for the omnipresent power-line noise). For the
purpose of rejecting precise artefacts and frequency bands, an anti-aliasing filterB
is used as well as a Radio Frequency Interference filter (RFI) 6.

Amplification - Since an analogue-digital converter (ADC) is later used in the setup,
it is necessary to adequate signal’s amplitude to the ADC range. Besides, amplifi-
cation is used to increase signal to noise ratio 7

Acquisition Module - Is considered setup’s core block for it is the one responsible for
the data processing.

6Low pass filter for noise reduction purpose. [35]
7The use of a differential amplifier allows one to selectively amplify signal while maintaining noise as

low as possible [63]
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This module defines the procedures to be taken, scheduling to be respected and
ultimately the communication with the PC. Making a long story short it receives
the analog signals, processes them, converting to digital signals, and transmits the
data to the PC where it will be manipulated and visualized.

For further Digital Signal Processing (DSP) analysis it is relevant to mention that
this block is the one that defines 400 Hz as the sampling frequency, conciliating the
system limitations with the desired information to be acquired.

Once the signal is acquired and converted it is transmitted to the Personal computer
by a USB connection so that it can be manipulated and visualized through a specific
application.

2.3 Interface

As presented in the diagram (Fig.2.2), the defined acquisition system can only play
an important role in this project if there is a way to visualize the results and manipulate
the acquired data.

Data processing, or more accurately, Digital Signal Processing (DSP), will be the focus
of the next chapter. In what concerns visualization and organization of the acquired data,
those topics will be analyzed in this section.

Figure 2.2: Structure of the designed biosignal digital analysis system. The upper branch of the scheme represents analog
preprocessing of the signals and the lower branch digital processing steps.Interface system is highlighted in green. [31]

2.3.1 Features and Objectives

The purpose of an Interface is to allow one to reach and manipulate the acquired
data. Taking this into account the desired graphical interface was created in a MatLabTM

platform, allowing the user to manipulate and visualize data while it is being stored,
enabling later evaluations/visualizations.

Since the environment in which this device is supposed to be used is extremely vast,
user friendliness is a main goal, and therefore highly regarded in the design of the devel-
oped software.
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For this purpose, the main characteristics of the designed Interface are [38]:

- Near real time acquisition and display of the EOG, EMG and EEG signals.

- Fast and stable communication with the acquisition device.

- Efficient management of data and record organization in files.

- Minimization of computing requirements.

- Easy access and navigation through extensive recorded signals.

- User friendly post-processor, in order to avoid operator errors and misinterpretations
of the exploited data.

- Two available time scales for data visualization, a 30 seconds normal epoch and a
more accurate 5 minutes display.

- Optional manual scoring by the use of sleep stage tags.

- Clear display of manual and automatic scoring results.

Data management considerations mainly focused in the amount of data that was
recorded and transmitted to the PC. In this sense fast communication was essential (USB
communication) so that this could not be the limitative factor for the data to be sampled
and analysed.
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Chapter 3

Digital Signal Processing

Having briefly explained the DAQ and Interface modules I will now focus on the
remaining system component and the goal of this thesis, Digital Signal Processing: REM
stage detecting algorithm. First, an overview of several similar (and different) approaches
will be presented, followed by the required tools to understand the DSP algorithm. Finally
algorithm methodology will be described.

3.1 Literature Review

As aforementioned among sleep researcher and clinicians, there is a need for a cost-
effective and easy-to-use tool that can obtain objective, accurate and reliable sleep data
in a free-living environment to assist in the screening, diagnosis and treatment of sleep
disorders. Several approaches have addressed this need:

- V. Krajca et al. [42] approached sleep identification based on processing of time
profiles computed by adaptive segmentation and subsequent classification of signal
graphoelements. Adaptive segmentation algorithm criteria were based on frequency
and amplitude differences. Consequent graphoelements were evaluated and labelled
by experts according to pattern recognition.

- J. E. Heiss et al. [40] developed an Adaptive Neuro-Fuzzy Inference System1 to
classify sleep-waking states. Its methodology is based in the following inputs: five
EEG channels; EOG; chin EMG; electrocardiogram (ECG) and limb movements.
Transducer’s data is evaluated on 20 second epochs assigning the analysed time
span to one of five possible classes - wake, NREM1, NREM2, NREM3&4 or REM -
according to well defined criteria - presence or absence of: slow delta; theta waves;
Sleep spindles; REMs; muscular tone; disturbed cardiac frequency. A neuro-fuzzy
classifier is applied on the detected patterns to perform sleep-waking state-stage
classification.

- Yoshiharu Hiroshige [41] evaluated sleep stages only through slow eye movement
(SEM) evaluation. SEM are a sensitive indicator of lowered consciousness or drowsi-

1A neuro-fuzzy system is a fuzzy system that uses a learning algorithm derived from or inspired
by neural network theory to determine its parameters (fuzzy sets and fuzzy rules) by processing data
samples [54]

25



ness. A linear regression analysis was applied in each moving window for approx-
imation to the tangent line on the electro-oculogram curve. Results revealed that
SEM were more frequent and their duration was shorter at stage wake than at sleep
stages NREM1 and NREM2.

- Commercial Body Media’s Sense Wear Armband device [39] uses a 2-axis accelerom-
eter, heat flux sensor, a galvanic skin response sensor, skin temperature sensor and
near-body ambient temperature sensor to acquire data. Manipulating the gathered
information with the aid of an artificial neural network (ANN)2 the device proved
capable of detecting sleep onset, wake, total sleep time and differentiate sleep stages
by using completely different approaches than those from traditional polysomnog-
raphy (PSG). Besides, since it is a portable device it can also be used for other
purposes such as daytime activity monitoring.

- P. Van Hese et al. presented a method for the detection of sleep stages only recurring
to EEG analysis [43]. This method consists of four steps: 10 second segmentation;
parameter extraction; cluster analysis3; classification. Parameter extraction evalu-
ated three Hjörth time domain parameters4, harmonic parameters and relative band
energy. Last, classification of every point in a cluster is accomplished according to
the manual scoring of the segments corresponding to the constructed codebook vec-
tor.

- P. A. Estevez et al. [44] presented another automated pattern recognition system for
polysomnography data targeted to the sleep-waking state and stage identification.
Five patterns were defined according to: slow-delta and theta wave predominance
in the background EEG activity; presence of sleep spindles in the EEG; presence
of REM in an EOG; and presence of muscle tone in an EMG. The performance of
the automated system was measured indirectly by evaluating sleep staging, based
on the experts accepted methodology. Several noise and artefact rejection methods
were implemented, including filters, fuzzy quality indices, windows5 of variable sizes
and detectors of limb movements and wakefulness.

- Most accepted automatic sleep classifier, Somnolyzer [45] automaticaly classifies
sleep stages based on one central EEG channel, two EOG channels and one chin
EMG channel. It follows the decision rules for visual scoring as closely as pos-
sible and includes a structured quality control procedure by a human expert. It
consists of a raw data quality check, a feature extraction algorithm (density and
intensity of sleep/wake-related patterns such as sleep spindles, delta waves, SEM
and REM), a feature matrix plausibility check, a classifier designed as an expert
system, a rule-based smoothing procedure for the start and the end of stages REM,
and finally a statistical comparison to age- and sex-matched normal healthy controls

2Computer model, loosely inspired by the neural network structure of the brain, consisting of inter-
connected processing units that send signals to one another and turn on or off depending on the sum of
their incoming signals [55]

3method to determine the intrinsic grouping in a set of unlabeled data
4activity - mean power of the signal; mobility - estimate of the mean frequency; complexity - estimate

of the bandwidth of the signal.
5zero-valued function outside a defined interval
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(Siesta Spot ReportTM). The expert system considers different prior probabilities
of stage changes depending on the preceding sleep stage, the occurrence of a move-
ment arousal and the position of the epoch within the NREM/REM sleep cycles.
Validation studies proved the high reliability and validity of the Somnolyzer and
demonstrated its applicability in clinical routine and sleep research.

Clearly, standard PSG approaches are the most common and currently accepted stan-
dards for the diagnosis of some sleep disorders, yet it is not always affordable and ac-
cessible due to the size of the equipment, cost, and use in laboratory settings. Besides,
as mentioned, several sleep evaluations do not require that much information, achieving
their goals only by recurring to one or two parameters. In response, a variety of different
approaches (more affordable and portable devices) have been developed for specific sleep
conditions. Our setup is an example of such specific detection devices (Fig.1.11, 1.13,
1.15), for its objective is real time REM sleep stage automatic detection.

3.2 Tools

Firstly some data manipulation mechanisms must be presented since DSP is not a
simple and obvious task.

3.2.1 FFT

For DSP analysis it is common to study signals spectral density. To do so one must
first convert the original time domain signal into frequency domain by approximating a
function as a sum of sine and cosine terms plus a constant term. This conversion can be
achieved by a tool called Fourier transform. Considering our digital signal, Fast Fourier
Transform (FFT) is the adequate tool to accomplish the task [56, 57, 58, 59, 60]. In
order to explain FFT it is necessary to introduce Discrete Fourier Transform (DFT). We
assume that a data segment of duration T0 is sampled at a sampling frequency fs or with a
sampling interval Ts (relating each other by fs = 1

Ts
). The consequent number of samples

in a segment is N :

N = T0·fs =
T0

Ts

(3.1)

I will further consider a sequence of samples with the notation s[n], with n the sample
index. This means that s[n] is the sample measured at time t = t0 + n · Ts, with t0 the
starting time of the data segment, which by convention will be taken as time 0, so:

t = n
·
Ts =

n

fs

(3.2)

The basis for spectral analysis is the DFT of a data segment s[n] of length N samples
(i.e. 0 ≤ n ≤ N − 1) which is defined by equation3.3.

S[k] =
N−1
∑

n=0

s[n] exp

(

−j2πkn

N

)

(3.3)
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Here, S[k] are the spectral coefficients which commonly are evaluated only for 0 ≤ k ≤

N − 1, and j is the imaginary number with property j2 = −1. Together they form the
Fourier spectrum of the signal under study. The interpretation of this transform can
easily be seen when we look at the formula for a few consecutive values of k. The first
spectral coefficient has k = 0 and consequently the argument of the exponential is 0. Since
exp (0) = 1, this results in simply the sum of all the sample values s[n]. Consequently,
S[0] is equal to N times the mean value, or Direct Current (DC) offset of s[n]. When
k = 1, we get:

S[k] =
N−1
∑

n=0

s[n] exp

(

−j2πn

N

)

(3.4)

In this summation, the argument of the exponential takes values from 0 to −j2π(N−1)/N
in steps of −j2π/N (i.e. N steps) and consequently the real and imaginary parts of the
exponential form exactly one cycle of a cosine and sine, respectively. What happens is
that the original signal x[n] is correlated with a cosine (for the real part) and a sine
(for the imaginary part) with a frequency such that exactly one cycle fits within the
entire signal period. The frequency of such a sinusoid that fits exactly one period in a
segment is called the fundamental frequency. Note that the fundamental frequency is
determined only by the choice of the segment length, and has nothing to do with the
characteristics of the signal itself. It is now easily seen that for increasing k a similar
correlation is made between the original time-domain signal and cosines or sines with
frequencies such that exactly k cycles fit within the data segment. A sinusoid that meets
this criterion is called the kth harmonic of the fundamental frequency. The index k of
a spectral coefficient uniquely determines the frequency associated with that spectral
component, S[k], or spectral line. Given the frequency spectrum S[k] of a signal, it is
possible to reconstruct the original time series with the inverse DFT (IDFT), equation3.5,
where s[n] is evaluated for 0 ≤ n ≤ N − 1.

s[n] =
1

N

N−1
∑

k=0

S[k] exp

(

j2πkn

N

)

(3.5)

Above we noted that the index k in the spectral coefficients is associated with a harmonic
frequency. This means that k is related to the frequency of the kth harmonic. Usually we
are interested in real world frequencies, expressed in Hertz (cycles per second). Since it
is being presented a DSP approach and later on I will be using the DFT to investigate
EEG data segments for presence of ∆, θ, α and β rhythms which are defined as frequency
bands in real-world frequencies, it is necessary to transform normalized DFT parameters
into true frequencies. Initially presented Eq.3.1 and Eq.3.2 relate real-world parameters
(t, T0 and fs) and the sample number n, which in fact is the normalised time, and the
number of samples in the segment, N . Combining these equations with the definition of
the DFT in Eq.3.3 yields:

S[k] =
N−1
∑

n=0

s[n] exp

(

−j2πknTs

NTs

)

=
N−1
∑

n=0

s[n] exp

(

−j2πknTs

T0

)

(3.6)
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To convert an index k of a spectral coefficient to a “real-world” frequency f we will have
to remodel the argument of the exponential in the form −j2πft . Recalling that n

·
Ts = t

we thus can see from Eq.3.6 that

f =
k

T0

(3.7)

It was mentioned that the spectral parameters usually are evaluated for the specific values
of 0 ≤ k ≤ N−1. This is sustained by the evaluation of the DFT definition Eq.3.3. When
calculating S[k] for values of k outside this range, we would obtain a periodic sequence in
k. In other words, S[k] = S[k + N ]. Therefore there is no need to evaluate more than N
values of S[k] for 0 ≤ k ≤ N − 1. Using Eq.3.1 and Eq.3.7 this means that we evaluate
real-world frequencies between 0 and N−1

T0

= fs −
1
T0

.
Bearing in mind Shannon’s Theorem ( B) stating that a continuous signal of limited

bandwidth (i.e. containing only components up to a finite maximum frequency, fmax)
may be completely represented by a set of equally spaced time-domain samples, provided
the sampling frequency is at least 2

·
fmax samples per second. One considers whether it is

relevant to evaluate frequencies up to fs. Even though Eq.3.1 and Eq.3.4 are applicable for
both complex and real valued signals, since the desired data to be evaluated is a real-valued
signal, it will only be necessary to evaluate the first half of the spectral coefficients because
the second half is the mirror image of the first N

2
coefficients. It is simple to demonstrate

this by considering a data segment of 512 samples and 2 sinusoids that match the spectral
coefficients with the index 200 and 150: s[n] = 1.5 · cos(2πn

512
· 200) + 2 · sin(2πn

512
· 150).

Evaluating S[k], Fig.3.1.
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Figure 3.1: Spectral coefficients of the example signal containing only sinusoids.

Four different “spikes” (k=150, 200, 312 and 362) are verified. This confirms that the
right half of the graph (k>256) is the mirror image of the left half: S(k) = S(N−k). This
property holds for any real-valued signal and is a consequence of the even and odd prop-
erties of trigonometric functions, cosine and sine respectively. Due to this phenomenon
the center frequency fs

2
is commonly called folding frequency. This symmetric property

is verified for the magnitude of the spectral coefficients, for the phase an antisymmetrical
relationship exists around the folding frequency, S(k) = −S(N − k).
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These statements yield the sufficiency of calculating the spectral coefficients for 0 ≤

k ≤ N/2. Another premise that must be regarded is the fact that Fourier analysis assumes
a periodic, or repetitive signal. Since the acquired signal is treated as 30 or 5s aperiodic
signal epochs, each segment to be evaluated is assumed to be repetitive (see Fig.3.2). This
can be seen by taking a closer look at the IDFT equation. If one calculates s[n] for values
outside the range 0 ≤ n ≤ N −1 it will verify a periodic extension of the original segment.

Figure 3.2: Periodicity of the DFT’s time domain signal. In the upper figure the signal can be viewed as N samples, while
the lower figure represents the signal as an infinitely long periodic signal. [46]

The consequences of this periodic extension in time implies that at the edge of each
repetition discontinuities occur, caused by different amplitudes in the beginning and end
point of each segment. This happens because a stochastic signal, like the ones measured in
this work, contain frequencies that are not exact harmonics of the fundamental frequency.
Those non-harmonics are associated with frequencies that do not fit exactly within an
integer number of periods in the segment. Consequences arise from this condition. Using
the previous example and applying some modifications so that the signal will contain one
harmonic and one non-harmonic, s[n] = 1.5 · cos(2πn

512
· 200.5) + 2 · sin(2πn

512
· 150), one can

verify signal spectral modifications in Fig.3.3
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Figure 3.3: Spectral coefficients for two example signals. Blue signal consisting of two harmonic sinusoids; Green signal
consisting of a harmonic and one non-harmonic sinusoid.
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Beside the peaks at k = 150 and k = 362, corresponding to the sine-term, two spread
components around k = 200 and k = 312 are also visible. This phenomenon is called
spectral leakage and is caused by discontinuities in the extended signal of the data segment
(see Fig.3.2).

A method to decrease this undesired phenomenon is windowing, a multiplication of
the original signal with a window function so that the discontinuities at the segment edges
are reduced or even completely removed. Even though this operation causes distortion of
the computed spectrum it is in general less severe than the distortion caused by spectral
leakage. In short, the DFT results in a discrete spectrum, containing values for only a
finite number of frequencies. The step-size in the spectrum is uniquely determined by the
duration of the segments, frequency step= 1

T0

.
Let us now pay attention to the efficiency of this processing tool. In the practical

application of the DFT the number of necessary operations is very important, since it
determines the amount of time spent or the required processing capacity of the device.
Assuming a N point DFT, and by looking at Eq.3.3, for each frequency entry S[k], N
multiplications and N − 1 additions occur. For each spectrum N2 multiplications and
N(N − 1) additions are accomplished. The direct calculation of an N-point DFT requires
a number of operations (complex or not), of the order of magnitude of N2. This amount of
operations motivated several researchers to develop numerical methods that require fewer
operations. These procedures intended to calculate a number of DFT’s of shorter length
ant then to combine the results appropriately. These methods are denoted as “Fast Fourier
Transform”. The most widely used, and applied in this work, are the FFT algorithms,
where N is an integer power of 2, so that N = 2X . When the number of samples is
not N = 2X , zero padding is done until N = 2X samples is reached. These algorithms
allow one to reduce the number of operations required to the order of magnitude of
N · log2 N = N · M .

Table3.1 gives a summary of the required operations for each case, and the last column
shows how many times the speed of calculation can be increased by using an FFT instead
of a direct calculation of the DFT.

DFT FFT DFT/FFT
N N2 N · log2 N N/ log2 N
2 4 2 2.00
4 16 8 2.00
8 64 24 2.67
16 256 64 4.00
32 1024 160 6.40
64 4096 384 10.67
128 16384 896 18.29
256 65536 2048 32.00
512 262144 4608 56.89
1024 1048576 10240 102.40
2048 4194304 22528 186.18

Table 3.1: Comparison between the number of operations in a DFT and a FFT
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Plotting the previous table3.1, FFT advantages are even more clear (Fig.3.4).

Figure 3.4: Comparison between the number of operations in a DFT and a FFT

To better comprehend FFT mechanism a N point DFT will be executed by calculating
2 N/2-point DFT’s and combining the result. Assuming a discrete signal s[n] of length
N . Defining 2 signals, each one with a length of N/2 and which consist of the even and
odd values of s[n], s1[n] = s[2n] and s2[n] = s[2n + 1] respectively.

Considering the literature accepted twiddle factor exp
(

−j2π
N

)

= WN , s[n] can be ex-
pressed as:

S[k] =
N−1
∑

n=0

s[n] · W nk
N =

(N/2)−1
∑

n=0

s[2n] · W 2nk
N +

(N/2)−1
∑

n=0

s[2n + 1] · W
(2n+1)k
N (3.8)

Using W 2kn
N = W kn

N/2:

S[k] =

(N/2)−1
∑

n=0

s1[n] · W nk
N/2 + W k

N ·

(N/2)−1
∑

n=0

s1[n] · W nk
N/2 (3.9)

And consequently S[k] = S1[k] + W k
NS2[k], with S1[k] and S2[k] the N/2-point DFT

of s1[n] and s2[n] respectively. Analysing the number of operations associated with these
small DFTs, one verifies that it is of the order of magnitude of (N/2)2, and therefore total
2(N/2)2 = (N)2/2.

There is also the calculation of the W k
NS2[k] and S1[k] + W k

NS2[k] for all the values
of S[k]. For large values of N , the total number of operations nevertheless remains of
the order of magnitude N2/2. This indicates a 50% gain in comparison with a direct
application of DFT to the whole signal.

If one considers each half signal to be even and therefore splitable in half so that this
mechanism can be applied iteratively until 2 point DFT is reached, this algorithm implies
a huge gain when compared with standard DFT.
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The act of combining the “splitted” DFTs can be represented by the FFT butterfly
(Fig.3.5).

Figure 3.5: FFT butterfly. A and B - complex numbers ; W p

N
- Twiddle factor with p an integer between 0 and N − 1

The FFT butterfly with p = 0 represents exactly the relation between the input sam-
ples s[0] = A and s[1] = B with the output samples S[0] = Y and S[1] = Z of a 2-point
DFT. Therefore an 8-point FFT butterfly example can be represented as in Fig.3.6.

Figure 3.6: Detail of an 8-point FFT [47]

Evaluating this 8-point FFT it is verified that there are three successive steps, each
containing four butterflies which each having one complex multiplication factor. In this
way, for an arbitrary N -point FFT (where N is an integer power of 2), a number of
log2 N steps is determined, each containing N/2 butterflies. As initially presented, an
FFT calculation following this pattern requires (N/2) · log2 N complex multiplications.
Other spectral analysis are used in signal processing methodologies, however they require
a larger timespan to process the data, and this is not appropriate for the present work
since real time REM detection requires fast DSP tools. As previously mentioned, “Fast
Fourier Transform (FFT) is the adequate tool to accomplish the task” of DSP.

3.2.2 Digital Filters

Signals passing through different mediums suffer different modifications, therefore it
is not a complete nonsense to say that everything can be considered a filter. But one
must have in mind that some mediums are conceived for that purpose while others are
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not, therefore their interferences in the signal are quite different. In this sense, a more
realistic definition for filter is a circuit (or an algorithm) that converts an input signal
into an output signal whose spectrum is related in a controlled way to the spectrum of
the input signal - suppression and/or attenuation of specific frequencies. There are two
different types of filters.

Analog Filters are used before the signal is digitized. They have the disadvantage of
tending to distort time relationships in the signal because of phase shifting [48].

Digital Filters are applied to the already digitized signal. These do not necessarily
cause temporal distortion in the signal, although they have the disadvantage of
being very expensive from a calculation point of view, especially when long filters
are used and processing time is crucial.

Since I will be focusing on the DSP module, discrete filters are the ones to be applied,
and hence they will be here presented. As mentioned, a digital filter is just a filter that
operates on digital signals by performing numerical calculations on the sampled values.
Hence, a computational routine is sufficient for the purpose.

The design of a discrete filter starts with a specification of the frequency behaviour
required. These specifications usually take the form of a tolerance diagram as it is repre-
sented in Fig.3.7.
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Figure 3.7: Example of a tolerance diagram for the amplitude characteristic of a low pass filter

In order to fulfil the objectives the signal must not leave the delimited areas in the
pass and stop band. The amplitude deviation in the pass band is related to the maximum
error allowed so that ampl ≥ x − δ and x − δ ≥ ampl ≥ x − δ, and for the stop band a
deviation is also considered.

Starting from the presented filter specifications implies that the design process contains
the following stages:

- Deciding whether the desired frequency characteristics will be achieved using a Fi-
nite Impulse Response (FIR) or a Infinite Impulse Response (IIR) filter.

- Defining the filter order and calculate the coefficients of the system function of the
filter.
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FIR filter

The most essential feature of a FIR filter is by definition the finite length of the impulse
length. For this reason the impulse response has a central part in the filter design process.

FIR filters can be designed as presented in the following example: Starting with the
ideal continuous frequency response Hd(expjθ) that one pretends to mimic, a low pass
filter for θ ≤ 0.4π (Fig.3.8).
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Figure 3.8: Example of a tolerance diagram for the amplitude characteristic Hd(exp jθ) of a low pass filter

Making use of the Inverse Discrete Time Fourier Transform (Inverse DTFT6) an ideal
impulse response hd[n] is found in Fig.3.9.
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Figure 3.9: Ideal filter time domain signal hd[n]

However, these coefficients can not be applied immediately as a filter due to: long
(or even infinite) duration of the impulse response; non-causal7 characteristic of hd[n],

6Fourier transform tool that creates a continuous and periodic spectrum from a discrete “time” func-
tion.

7causal systems use only previous samples from the input or output signal
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opposed to the required real-time causal condition of the FIR filter. In order to adapt the
previous impulse response one must: limit the signal’s length (Fig.3.10).
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Figure 3.10: Truncated filter time domain signal hd[n]

Followed by the introduction of sufficient number of delays, as represented in Fig.3.11.
In this way a limited and causal impulse response is obtained, defining the filter coeffi-
cients.
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Figure 3.11: Shifted filter time domain signal hd[n]

Although the described approximations lead to the desired filter they also introduce
recognizable errors. Truncation implies frequency amplitude errors, while the introduced
shifts lead to extra linear phase shift (for further reading on this subject consult [49])
while. These amplitude errors are expressed in different oscillatory variations created in
both the pass and stop band, most prominently in the vicinity of the designed filter steep
transitions.

If one bears in mind that a multiplication in time domain is a convolution in frequency
domain and the truncation is a multiplication of the infinitely long signal in the time do-
main with a rectangular window of the desired length, then, truncation is understandable
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as depicted in Fig.3.12.
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Figure 3.12: Time domain signal truncation. Left column: Time domain multiplication. Right column: Frequency domain
convolution

Data manipulation in Fig.3.12 denotes the previously mentioned introduction of fre-
quency amplitude errors. In order to minimize these interferences it is possible to apply
different window functions, so that windows frequency characteristic (W (expjθ)) have the
narrower main lobe possible and low energy side lobes.

The described design method results in discrete filters which break away from the ideal
filter characteristics mainly near the transition bands.

Away from the transition band such errors are in general much smaller. It is more
logical, however, to distribute these approximation errors as evenly as possible over all the
frequencies. In fact, this procedure provides the smallest maximum error, which occurs not
once, as in the previous method, but several times. Such filters are called Equiripple [61].
The maximum error in the pass band can also be different from the maximum error in the
stop band. Such filter was used in this work due to the previously mentioned advantage
in comparison with other FIR filters.

The IIR filters were not considered since they provided undesirable characteristics
for the purpose of this work: linear phase can only be approximated; the filter can be
unstable; the initial state of the memory elements and any brief interfering signals can
affect the output signal for an infinite length of time (IIR main characteristic).

In opposition, FIR filters: phase characteristic allows a exactly linear phase response;
are always stable; initial state of the memory elements and any brief interfering signals
(e.g. via the supply) can affect the output signal only for the length of the impulsive
response.

Before defining the designed algorithm, another mathematical tool is here introduced.
Independent component analysis (ICA) application was later tested for the removal of
undesired events in specific signals.
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3.2.3 ICA

This mathematical technique is a statistical and computational approach to identify
hidden factors merged into a set of mixed signals. It allows one to separate independent
sources linearly mixed in the acquired signals. As a multivariate data processing tool it
processes the (assumed) linear mixtures of signals in order to identify each independent
component, fraction of the mixed signal. From the starting point, from the acquired
signals, a linear combination of the different sources is represented as Eq.3.10.

xi = ai1s1 + ai2s2 + ... + ainsn (3.10)

Matricial representation lead us to Eq.3.11:

x = A · s, (3.11)

With x the mixed signals, A a matrix with weight factor for each independent compo-
nent and s the independent components. A representative situation of ICA analysis is
depicted in Fig.3.13 and 3.14, in which the original components (assumed independent)
are retrieved from the mixed signal.
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Figure 3.13: Mixed signal
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Figure 3.14: Independent components

The present problem is not linear since the values of matrix A and vector s are un-
known. One can only observe the random vector x, estimating A and s. Therefore, some
assumptions are made to promote its resolution: 1) si components are statistically inde-
pendent; 2) si components have nongaussian distributions. Once matrix A is computed,
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its inverse W is known and si are calculated. The used algorithm for ICA is FastICA
algorithm [71], a computationally highly efficient method for performing the estimation
of ICA. It uses a fixed-point iteration scheme that has been found in independent experi-
ments to be 10-100 times faster than conventional gradient descent methods for ICA. This
methodology uses as starting point the non-independent mixed signals, made up by the
different independent components, and by manipulating the data towards nongaussianity
of the signals it is possible to reach the independent components. Schematically, Fig.3.15.

Figure 3.15: Manipulation towards Independent Components

This methodology has some drawbacks:

- One cannot determine the variances (energies) of the independent components. The
reason is that, both s and A being unknown, any scalar multiplier in one of the
sources si could always be cancelled by dividing the corresponding column ai of A
by the same scalar. As a consequence, we may quite as well fix the magnitudes of
the independent components. As they are random variables, the most natural way
to do this is to assume that each has unit variance. Then the matrix will be adapted
in the ICA solution methods to take into account this restriction, complicating the
energy analysis of the studied signals. Note that this conditions brings another
complication, ambiguity of the sign: we could multiply the independent component
by -1 without affecting the model. While this ambiguity is, fortunately, insignificant
in most applications, for signals such as EOG registers it is unacceptable, since one
expects out of phase registers of the two signals.

- One cannot determine the order of the independent components. The reason is that,
again both s and A being unknown, we can freely change the order of the terms
in the sum in Eq.3.11, and call any of the independent components the first one.
Formally, a permutation matrix and its inverse can be substituted in the model.
The newly defined matrix is just a new unknown mixing matrix, to be solved by the
ICA algorithms. So the problem remains.
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3.3 Algorithm

Having described the required tools for the DSP module, EEG, EMG and EOG signal
processing methodology will now be presented (Fig.3.16). Firstly, three different algo-
rithms were defined for the analysis of each signal. Later on, an “all-in-one” algorithm
was designed with the goal of a real time REM evaluation.

Figure 3.16: Structure of the designed biosignal digital analysis system. The upper branch of the scheme represents analog
signal preprocessing and the lower branch digital processing steps.DSP system is highlighted in red. [31]

3.3.1 EEG Algorithm

As mentioned in chapter1, in what concerns the EEG, the goal of the work was to
identify pattern detection schemes for REM sleep staging. Bearing this in mind, and
Fig.1.23, a well designed algorithm could be conceived, represented in Fig.3.17.

Figure 3.17: Suggested EEG Algorithm.
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This approach uses as inputs: EEG data vector; acquisition time8; duration of the
time fraction to be analyzed at each step; signal duration to analyze. In this study, each
time-step was defined as five seconds intervals. With the inputs specified other impor-
tant variables are defined: sampling frequency; frequency resolution; time and frequency
domain axis specification; number of epochs to be evaluated. These are followed by the
definition of vectors that will be used as outputs: REM epochs identification; epoch effec-
tive energy9; windowed total signal time-step FFT; ratio of epoch’s maximum and effective
value10. This last vector is used to evaluate possible high subject signal variability so that
dynamic criteria definition is implemented if necessary. Fixed values were assumed for
each criterion since EEG biological signals shown low variability (Appendix C). Criteria
were established in order to detect EEG REM sleep stage characteristics. Threshold con-
ditions were defined, based on test subjects signal evaluation, for: total energy value (35
µV RMS); ∆ band energy value (25 µV RMS); low α band expression, with α activity
being less than 50% of the total signal energy, or in poor α wave subjects a predominance
of θ and slow α waves. This last characteristic distinguishes REM sleep stage from awake
condition. Once the starting conditions and criteria have been defined, signal processing
begins with segmentation step (Fig.3.18). This segmentation will always evaluate a 30
second signal period.

0 20 40 60 80 100

−250

−200

−150

−100

−50

0

50

100

Time (s)

A
m

pl
itu

de

Epoch 1 Epoch 2 Epoch 3

Figure 3.18: Example of an EEG signal segmentation.

In order to achieve a better resolution, and consequently a better identification of
REM sleep stage periods, each epoch segment is analyzed according to the defined input
fraction value. Five seconds was the applied window in the present work. A FFT tool is
applied to each five second window in order to assess the desired characteristics.

8The acquisition time is used to calculate the sampling frequency, but the oposite could have been
implemented.

9Epoch effective energy = Epoch energy minus Mean Energy
10Effective value or Root mean Square (RMS) is equal to the standard deviation of the signal considering

the time a real variable with an uniform probability density function - RMS =

√

1/N
∑

x2 [65]
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An example of such process is represented in Fig.3.19.
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Figure 3.19: Example of signal analysis. The upper picture represents a 5 second EEG signal, while the lower picture
represents the corresponding FFT transform.

The vizualized window is analyzed according to well defined features for REM sleep
stage detection:

- Absense of ∆ band activity

- Low α wave activity or predominance of θ and slow α waves

- Low amplitude signal

Once the total epoch has been analyzed, for each criterion, if 2
3

of the epoch time span
verifies the REM sleep stage condition, then that feature attributes a one third probability
that the subject is in REM stage sleep. The one third value is atributed since there are
3 features with equidistributed weights for the EEG analysis.

As well as a REM episod detector, the algorithm exports a energy vector concerning
each epoch and a whole register timestep FFT for criteria and frequency periodicity
analysis, respectively.

3.3.2 EMG Algorithm

The EMG data acquisition system records data from the potential differences of elec-
trodes on the chin, reflecting the muscle tone of a subject.

Knowing that atonia is a characteristic REM feature, the function of this algorithm
is then to detect this occurrence, relating it to REM stage. Besides considering atonia,
one must also bear in mind that possible sporadic muscular contractions may occur in
the middle of a REM stage without disturbing or causing any stage transition.

Therefore periods of muscular atonia as well as periods with higher energy but with
fast muscular contractions are detected as REM epochs.

Since no specific frequency band is attributed to muscular contractions, and no fre-
quency analysis has proven to be relevant for the muscular DSP, only time domain analysis
is performed.
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A schematic of the designed algorithm is presented in Fig.3.20.

Figure 3.20: Suggested EMG Algorithm.

Similarly to the EEG approach, the EMG analysis also requires the following inputs:
EMG data vector; acquisition time; epoch duration; signal duration to analyze. From
these, other variables are defined: sampling frequency; time axis specification; number of
epoch to be evaluated. After these calculations, besides the output vectors common to
the EEG analysis (REM epochs identification; Epoch effective energy; ratio of epoch’s
maximum and effective value), counters for fast and slow muscular contractions were
defined. Criteria definition is the next step of the procedure. Threshold values are defined
constant since there is no significant signal variability (Appendix C). Therefore, atonia
threshold values is defined for 5 µV RMS, while a 7µV amplitude signal variation is
considered for the detection of fast muscular contractions in half second intervals.

Once the starting conditions and these criteria have been met signal processing begins
with segmentation step. This step is similar to the EEG segmentation being timed in
epochs and its energy calculated. If the RMS of the epoch is above the defined threshold
it is possible that the evaluated interval is a NREM stage epoch (Fig.3.21), if not, one
consider it to be a REM epoch (Fig.3.22).
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Figure 3.21: thirty second NREM epoch EMG register.
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Figure 3.22: Thirty second REM epoch EMG register.

For the detection of fast muscular contractions one can not analyze the signal in a
epoch time, instead windowing is applied in order to analyze more precisely each second
of the epoch (see Fig.3.23).
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Figure 3.23: One second EMG data with fast muscular contraction.

This windowed signal is then split into half and both the resulting 0.5 second signals
are evaluated in order to calculate its maximum variation (EMGmax − EMGmin). For
a REM identification the maximum variation of one half second must be below the de-
fined threshold while the other half must be above it. Since continuous fast muscular
contractions may in fact be a slow twitch or even muscular tonus, the algorithm considers
three muscular contractions in a row to be identified as a slow contraction and therefore
discards the possibility of identifying the epoch as a REM period.

EMG analysis will consider an epoch to be REM if atonia is verified or, in cases
where the RMS is higher, if this increase of energy is due to the presence of fast muscular
twitches. Besides the REM stage detector, this algorithm also outputs an energy vector
concerning each epoch and a muscular contraction counter for fast and slow twitches.

44



3.3.3 EOG Algorithm

The acquired EOG signal by measuring potential differences between the front and
back of the ocular globe (see Fig.1.14) allow a correct monitoring of the eye movements.
For this project, identification of REM sleep stage, the detection of synchronous and fast
eye movements is essential. Rapid eye movements are detected as saccadic waves with
phase-reversed synchrony in the left and right EOG channels. In this analysis since the
feature to detect is a phasic event, one must not focus on frequency but only time domain.
A schematic for the automatic detection of REM methodology is represented in Fig.3.24.

Figure 3.24: Suggested of EOG Algorithm.

The inputs for this methodology are: EOG of the ROC; EOG of the LOC; acquisition
time; epoch duration; interval to analyze. With the mentioned inputs, sampling frequency,
time axis specification and number of epochs to be evaluated are specified. Since EOG
registers not only have REM but also Slow Eye Movement (SEM) signals, these two events
must be separated in the initial data vectors. For this purpose a FIR digital bandpass
filter is applied with cutoff frequencies at 1Hz and 5Hz see Fig.3.25. This filter effectively
minimizes any SEM as well as high frequency noise.

Figure 3.25: Tolerance diagram of the implemented digital filter.
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After these calculations, output vectors common to the EEG and EMG analysis are
created (REM epochs identification; Epoch effective energy; ratio of epoch’s maximum
and effective value) as well as a REM counter. The threshold values to be used as selective
criteria are once again assumed constant since the ratio of epoch’s maximum and effec-
tive value revealed little variability between different subjects(Appendix C). Therefore
amplitude variations to be considered as REM manifestations were fixed in 50 µV in each
side of the saccadic wave, or 30 µV and 70 µV (or vice versa) to consider different types
of saccadic waves.

Having defined all the required variables and vectors, the algorithm starts signal analy-
sis by detecting REM candidates. This is achieved by the Negative Instantaneous Product
(NIP) of the two EOG data vectors, equation3.12.

NIP (n) = −LOCfilt(n) · ROCfilt(n) (3.12)

According to this method if ROC and LOC signals are completely out of phase (syn-
chronous eye movement) a positive NIP value will occur. Instead, if eye movements are
not synchronous or some other artefact is present resulting into in-phase signals, a nega-
tive value will be detected in the NIP (see Fig.3.26). This is a powerful discriminatory tool
for REM detection. In Fig.3.26 two different situations are presented, a phase-reversed
synchronous eye movement at 13037 s and artefacts or erratic movement at 13035 s.
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Figure 3.26: EOG data example. At 13037 seconds LOC and ROC registers are completely out of phase - Synchronous
movement. At 13035 seconds data signals are in phase - Artefact or non-synchronous eye movement.

At this stage the data is segmented into 30 seconds epoch fragments as it is done in
the EEG and EMG algorithm, for the purpose of a correct stage labelling. Afterwards,
each epoch is analyzed with one second windows. The consequent one second interval is
evaluated for possible REM by an easy and rapid procedure. The maximum NIP value
(a possible REM) is focused, NIP (x), and its vicinity evaluated 0.2seconds after and
before, NIP (x + 0.2s) and NIP (x − 0.2s) respectively (see Fig.3.27). If the difference
in amplitude of the ROC and LOC registers of these points is bigger than the initially
defined criteria for saccadic amplitude variations (REM steep slopes), a REM event is
considered to be detected.
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Figure 3.27: EOG data example. Instant of NIP maximum is focused and its vicinity evaluated 0.2 seconds before and
after for REM detection

The SEM are rejected as well as some artefacts and non-synchronous eye movements
by filtering and NIP. REMs are identified with the use of a steep slope identification
criterion. Yet, other conditions have been introduced to facilitate REM detection:

- Input LOC or ROC signals above 500µV are considered artefacts and hence no REM
stage can be considered

- No two REM events may be closer than 0.5 seconds

- A signal vicinity is evaluated in order to detect possible false positive surrounded
by artefacts and signal behaviour resembling a NREM interval.

This last condition is clear in Fig.3.28 as one verifies that NIP behaviour has a sudden
change at the 12000 second. Before that instant several artefacts are present inducing a
NREM stage, oppositely, from that point forward an artefact free signal is detected. For
such procedure the vicinity is defined as 20 seconds before and after the signal, artefact
threshold fixed at -1000 µV 2, and the allowed number of artefacts is 1000.
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Figure 3.28: EOG data example. Two clear NIP patterns are recognized. Before reaching 12000 seconds several artefacts
are detected inducing a NREM stage, from that point forward there is an artefact free interval.

This algorithm outputs the REM stage detector (based on the mentioned premises),
an energy vector concerning each epoch and a REM counter.
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3.4 Real Time Algorithm

Having defined the algorithms for the three different biological signals, one must gather
the extracted information to identify REM sleep stage. To do so, the three processing
tools are associated into a unique procedure, so that sinergetically REM sleep stages can
be identified. Since the main purpose of this research is to develop a real time REM stage
detector, some modifications must be implemented to the methodology for its correct
functioning:

Redefinition of temporal analysis. In a real time approach only present and past
signals are available, hence the EOG vicinity data to be evaluated can not comprise
future signals like it was defined in the formerly described algorithm. In the real
time REM detector the vicinity is the total epoch instead of 20 seconds before and
after the evaluated instant.

Optimization to allow DSP while data is being transmitted. The digital EOG fil-
ter must be removed since its processing time is not compatible with the real time
requirement. Alternatively the signal is treated with a moving average calculated
within a 2.5 seconds window. With this method the DC component and the low
frequency variations (typical of SEM) are minimized.
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Chapter 4

Results

The methodologies in chapter 3 were tested and their results assessed for a training
data set acquired by a different acquisition system. This data aggregates six different
subjects1, each with registers for EEG, EMG and EOG analysis, with sampling frequen-
cies of 128, 256 and 128 respectively. Once analyzed, the results were subjected to the
expert evaluation of Professora Teresa Paiva. Since the data vectors gathered a whole
night record, the total analysis approach was used instead of the real time algorithm.
Only afterwards could the designed DAQ system could be used by the real time DSP
methodology.

4.1 Training Data

Using “subject 1” data vectors as inputs for the designed algorithms lead to the fol-
lowing results:

4.1.1 Subject 1

EEG

From the different EEG output vectors one can extract different conclusions.

- REM sleep stage detector (Fig.4.1 middle plot) showed well defined REM intervals,
with the three criteria confirming the event.

- Epoch energy evaluation (Fig.4.1 lower plot) allowed to verify energy variability
and thus conclude whether the defined criteria were correct. It was also possible
to verify that the the signal did not have sudden changes in energy which could be
associated with artefacts.

- The FFT analysis throughout the whole register (Fig.4.2) confirmed the existence
of sleep cycles and its association to particular frequency bands. It is also clear that
EEG signal is not a white signal, it has specific frequencies bands.

1Information kindly donated by Professora Teresa Paiva
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Figure 4.1: Subject 1 EEG analysis. Upper plot - EEG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

Figure 4.2: Total register time-step FFT.
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EMG

With the first subject, and to assess the correct functioning of the algorithm, the
possible situations for REM sleep stage were evaluated. For this purpose it was attributed
different values for atonia and low energy epochs due to fast twitches, 1 and 2 respectively
(Fig.4.3). Once the differentiation was confirmed and the correct identification of both
situations verified, it was established a similar value for both states.
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Figure 4.3: Subject 1 EMG analysis. Upper plot - EMG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

Chin muscular evaluation demonstrated clear periods of muscular atonia (Fig.4.3 mid-
dle plot, value 1) intercalated with sporadic muscular contractions (Fig.4.3 middle plot
with value 2). Epoch effective energy confirmed the absence of possible artefacts and
allowed the evaluation of inter-subjects signal variability. The number of fast muscular
contractions was registered as well as slow muscular contractions (not associated with
REM stage), 448 and 7 respectively.
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EOG

Prior to the REM stage detection it was plotted a methodology which quantified
the number of REM events in each epoch, this allowed to verify if the algorithm had a
high sensibility toward REM events. After having assessed the correct functioning of the
algorithm, value 1 was established for any REM identification.

Results for the EOG evaluation are illustrated in Fig.4.4. Energy values were once
again used to assess the existence of possible artefacts and the inter-subjects signal vari-
ability.
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Figure 4.4: Subject 1 EOG analysis. Upper plot - EOG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

The REM counter verified 231 events during the whole night sleep.
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Global Evaluation

Associating the three different REM identifications a clearer picture is achieved, as it
is depicted in Fig.4.5.
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Figure 4.5: Algorithm evaluation of the presented subject

Confronting the algorithm evaluation, in which REM stage is considered when the
result is above 2.5 (Fig.4.5), with the expert analysis (Fig.4.6) table 4.1 can be defined.

Figure 4.6: Expert evaluation of the presented subject

Identified vs. Expert eval.
Analysis Positive False Positive False Negative
EEG 3 0 0
EMG 3 0 0
EOG 3 0 0

Table 4.1: Matching of identified REM periods with expert evaluation

A perfect match of the events is confirmed. Even though some REM periods were iden-
tified (separately) in the different analysis, they did not combine sinergetically, therefore
one can not consider them to be REM sleep stage periods.

Similar analysis were accomplished for the 5 remaining subjects, with the REM stage
threshold defined as 2.5.
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4.1.2 Subject 2

Using “subject 2” data vectors as inputs for the designed algorithms lead to the fol-
lowing results:
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Figure 4.7: Subject 2 EEG analysis. Upper plot - EEG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

Figure 4.8: Total register time-step FFT.
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EMG
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Figure 4.9: Subject 2 EMG analysis. Upper plot - EMG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

The results for fast muscular contractions was 187 while no slow muscular contractions
were registered.
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Figure 4.10: Subject 2 EOG analysis. Upper plot - EOG data vector; Amplitude µV . Middle plot - REM identifier.
Lower plot - Epoch energy minus mean energy

For “subject 2” 394 REM were detected.
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Global Evaluation

The association of the three different REM identifications is represented in Fig.4.11.
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Figure 4.11: Algorithm evaluation of the presented subject

Confronting the algorithm evaluation with the expert analysis (Fig.4.12) table 4.2 can
be defined.

Figure 4.12: Expert evaluation of the presented subject

Identified vs. Expert eval.
Analysis Positive False Positive False Negative
EEG 3 0 0
EMG 3 1 0
EOG 3 1 0

Table 4.2: Matching of identified REM periods with expert evaluation

Since the expert evaluation only covered 8 hours out of 10, the two remaining hours
were not considered for this evaluation.

EEG : No false positive or false negatives.

EMG : false positives - NREM sleep.

EOG : false positives - awake condition.

As it is visualized in Fig. 4.8, 4.9, 4.10 and 4.12, the separate analysis revealed some
flaws of the process, as each of the analysis identified false positive REM events, associated
to other specific stages. Nevertheless the association of the three vectors clearly identified
the correct REM sleep stage periods, with REM stage identification value above 2.5.
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4.1.3 Subject 3

Using “subject 3” data vectors as inputs for the designed algorithms lead to the fol-
lowing results:
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Figure 4.13: Subject 3 EEG analysis. Upper plot - EEG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

Figure 4.14: Total register time-step FFT.
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EMG
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Figure 4.15: Subject 3 EMG analysis. Upper plot - EMG data vector; Amplitude µV . Middle plot - REM identifier.
Lower plot - Epoch energy minus mean energy

The results for fast muscular contractions was 119 while 1 slow muscular contraction
occured.
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Figure 4.16: Subject 3 EOG analysis. Upper plot - EOG data vector; Amplitude µV . Middle plot - REM identifier.
Lower plot - Epoch energy minus mean energy

For “subject 3” 781 REM were detected.
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Global Evaluation

The association of the three different REM identifications is represented in Fig.4.17.
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Figure 4.17: Algorithm evaluation of the presented subject

Confronting the algorithm evaluation with the expert analysis (Fig.4.18) table 4.3 can
be defined.

Figure 4.18: Expert evaluation of the presented subject

Identified vs. Expert eval.
Analysis Positive False Positive False Negative
EEG 2 1 0
EMG 2 1 0
EOG 2 1 0

Table 4.3: Matching of identified REM periods with expert evaluation

EEG : false positives - awake condition.

EMG : false positives - NREM sleep.

EOG : false positives - awake condition.

The association of the three vectors correctly identified two intervals with high REM
sleep stage probability, Fig.4.17, events confirmed with the expert evaluation, Fig.4.18.
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4.1.4 Subject 4

Using “subject 4” data vectors as inputs for the designed algorithms lead to the fol-
lowing results:
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Figure 4.19: Subject 4 EEG analysis. Upper plot - EEG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

Figure 4.20: Total register time-step FFT.
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EMG
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Figure 4.21: Subject 4 EMG analysis. Upper plot - EMG data vector; Amplitude µV . Middle plot - REM identifier.
Lower plot - Epoch energy minus mean energy

The results for fast muscular contractions was 17 while no slow muscular contractions
was registered.
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Figure 4.22: Subject 4 EOG analysis. Upper plot - EOG data vector; Amplitude µV . Middle plot - REM identifier.
Lower plot - Epoch energy minus mean energy

For “subject 4” 87 REM were detected.
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Global Evaluation

The association of the three different REM identifications is represented in Fig.4.23.
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Figure 4.23: Algorithm evaluation of the presented subject

Confronting the algorithm evaluation with the expert analysis (Fig.4.24) table 4.4 can
be defined.

Figure 4.24: Expert evaluation of the presented subject

Identified vs. Expert eval.
Analysis Positive False Positive False Negative
EEG 2 1 1
EMG 3 1 0
EOG 3 2 0

Table 4.4: Matching of identified REM periods with expert evaluation

EEG : false positives - awake condition.

EMG : false positives - NREM sleep condition.

EOG : false positives - awake condition.

Gathering the three vectors ended up identifying one REM stage period above the
defined value of 2.5. Although if one analyzes Fig.4.23 independently of the defined 2.5
value for REM stage identification, it is clear that the intervals with higher REM stage
probability match the remaining two REM stage intervals detected in the expert evalua-
tion. This result suggested acquisition problems, or a misdefinition of criteria threshold
values, indicating the need of an automatic criteria definition according to the evaluated
test subject.
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4.1.5 Subject 5

Using “subject 5” data vectors as inputs for the designed algorithms lead to the fol-
lowing results:
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Figure 4.25: Subject 5 EEG analysis. Upper plot - EEG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

Figure 4.26: Total register time-step FFT.
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EMG
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Figure 4.27: Subject 5 EMG analysis. Upper plot - EMG data vector; Amplitude µV . Middle plot - REM identifier.
Lower plot - Epoch energy minus mean energy

No fast or slow muscular contractions were registered.
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Figure 4.28: Subject 5 EOG analysis. Upper plot - EOG data vector; Amplitude µV . Middle plot - REM identifier.
Lower plot - Epoch energy minus mean energy

For “subject 5” 17 REM were detected.
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Global Evaluation

The association of the three different REM identifications is represented in Fig.4.29.
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Figure 4.29: Upper plot - Algorithm evaluation of the presented subject. Lower plot - Zoomed algorithm evaluation of
the presented subject

Confronting this result with the expert analysis (Fig.4.30) defines table 4.5.

Figure 4.30: Expert evaluation of the presented subject

Identified vs. Expert eval.
Analysis Positive False Positive False Negative
EEG 2 2 0
EMG 0 0 2
EOG 2 2 0

Table 4.5: Matching of identified REM periods with expert evaluation

EEG : false positives - awake condition.

EMG : The data was corrupted. This can be confirmed by analyzing Fig.4.27 upper
plot, which reveals a constantly saturated signal.

EOG : false positives - awake condition.

The association of the three vectors could not identify the two REM intervals detected
in the expert evaluation. This happened since the EMG data was corrupted, defining
the maximum value for REM identification as 2 instead of 3. Associating this acquisition
problem with a possible misdefinition of criteria, the identification of REM stage periods is
not possible in an absolute perspective but only with a conditional analysis, by comparing
the evaluation of each epoch with the result of the whole register (Fig.4.29 lower plot).
In this sense, the two identified REM periods match the expert identification.
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4.1.6 Subject 6

Using “subject 6” data vectors as inputs for the designed algorithms lead to the fol-
lowing results:

EEG

0 1 2 3 4 5 6 7 8
−1000

0

1000
EEG data Vector

Time (hours)

A
m

pl
itu

de
 (

µV
)

0 1 2 3 4 5 6 7 8
0

0.5

1
REM identifier

Time (hours)R
E

M
 s

ta
ge

 id
en

tif
ie

r

0 1 2 3 4 5 6 7 8
−1

0

1
x 10

4 Epoch Energy minus mean Energy

Time (hours)

A
m

p.
 R

M
S

 (µ
V

)

Figure 4.31: Subject 6 EEG analysis. Upper plot - EEG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

Figure 4.32: Total register time-step FFT.
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EMG
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Figure 4.33: Subject 6 EMG analysis. Upper plot - EMG data vector; Amplitude µV . Middle plot - REM identifier.
Lower plot - Epoch energy minus mean energy

The results for fast muscular contractions was 58 while no slow muscular contractions
were registered.
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Figure 4.34: Subject 6 EOG analysis. Upper plot - EOG data vector; Amplitude µV . Middle plot - REM identifier.
Lower plot - Epoch energy minus mean energy

For “subject 6” 65 REM were detected.
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Global Evaluation

The association of the three different REM identifications is represented in Fig.4.35.
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Figure 4.35: Upper plot - Algorithm evaluation of the presented subject. Lower plot - Zoomed algorithm evaluation of
the presented subject

Confronting the algorithm evaluation with the expert analysis (Fig.4.36) table 4.6 can
be defined.

Figure 4.36: Expert evaluation of the presented subject

Identified vs. Expert eval.
Analysis Positive False Positive False Negative
EEG 1 3 1
EMG 2 2 0
EOG 2 2 0

Table 4.6: Matching of identified REM periods with expert evaluation

EEG : false positives - awake condition.

EMG : false positives - NREM sleep.

EOG : false positives - awake condition.

The association of the three vectors did not identify the two REM stage periods
identified by the expert evaluation. Still, if one disregards the 2.5 REM stage threshold
identification and evaluates the signal focusing on the periods with high REM stage
probability (Fig.4.35 lower plot), it is verified that the algorithm correctly detected the
REM stage intervals as well as a false positive awake period. This indicates that, similarly
to subject 4 and 5, this trial could be caracterized by acquisition problems or possible
misdefinition of criteria thresholds.
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Some of the REM sleep stage detections did not confirm all the criteria, therefore the
REM identifier vector was below the the desired maximum value, 3. This is comprehen-
sible if one bears in mind that some data could not be considered part of the training
set since the values were corrupted or inadequate (e.g. saturation); the training data
set registers were acquired in a sleep evaluation laboratory, being feasible that some of
the subjects could suffer from pathological sleep disturbances with their particular sleep
register patterns; or even a misdefinition of criteria, due to the non adaptation of the
thresholds motivated by the verified small inter-subject energy variability.

False positives of each analysis revealed a pattern: EEG were associated to awake
condition; EMG were associated to deep sleep; EOG were associated to awake.

As previously mentioned, for a correct and precise identification, it is necessary to
define criteria threshold values according to the evaluated test subject. In this sense
there are two possible result interpretations: 1) By strictly considering a detected REM
period when REM stage identification is above 2.5, the designed setup detected 9 positive
detections with 6 false negative events. This statistic reveals a 60% REM detection
percentage. 2) Although if one evaluates the REM detections bearing in mind acquisition
problems and possible criteria threshold misdefinition, and therefore analyzes each epoch
value comparing with the other epoch results of the same subject, a total of 14 positive
detections, 2 false positives and 1 false negative were verified. In this sense the training
data set revealed a satisfactory 82% of REM detection.

This global satisfactory agreement between the tested DSP methodology and the ex-
pert evaluation motivated the following trial of the designed setup.

4.2 DAQ trial

4.2.1 First evaluation

A first trial of the designed DAQ revealed some aspects one should take into account.
A first approach using the real-time algorithm lead to unconclusive results since the signals
did not have sufficient quality for the algorithm to automatically detect REM sleep stage.
This can be confirmed as one observes signals appearance in Fig.4.37.
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Figure 4.37: Designed DAQ signals preliminary analysis. Upper plot - 5 second signal. Lower plot - Frequency analysis
of the acquired signal.

69



It was crucial to filter the signals so that a correct detection could be accomplished.
For the present case, since the analysis was no longer real-time, different filters were
studied and applied according to the processing needs of each independent signal. The
specifications are here presented:

EEG : Low pass filter with cutoff at 45Hz.

EMG : Notch filter for 50Hz.

EOG : Band pass filter for 1 to 5 Hz.

Once the acquired signals were correctly preprocessed, it was possible to apply the
previously defined algorithm for REM sleep stage detection only by making subtle changes.
These adjustments were performed since the signals were acquired by the designed DAQ
(Chapter 2) instead of the previously analysed training data set signals acquired by a
commercial acquisition system used in standard sleep laboratories.

EEG :

1) Total energy value threshold from 35 to 20 µV RMS.

2) ∆ band energy value from 25 to 5 µV RMS.

EMG :

1) Atonia threshold values from 5 to 35 µV RMS.

2) Amplitude signal variation considered for the detection of fast muscular contrac-
tions from 7 to 11 µV .

EOG :

1) Signal vicinity to be evaluated is changed from 20 seconds before and after to the
analyzed epoch, allowing a real-time evaluation.

2) NIP artefact from -1000 to -250 µV 2, and number of artefacts allowed changed
from 1000 to 1.

These adaptations allowed a correct application of the designed algorithm, leading to
the following results.
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Figure 4.38: EEG analysis. Upper plot - EEG data vector; Amplitude µV . Middle plot - REM identifier. Lower plot -
Epoch energy minus mean energy

Figure 4.39: Total register time-step FFT.

As in the training data set, this EEG evaluation revealed clear periods of possible
REM sleep stage as well as the expected cyclical patterns in the cerebral activity during
sleep with characteristic frequency bands.
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EMG
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Figure 4.40: EMG analysis. Upper plot - EMG data vector; Amplitude µV . Middle plot - REM identifier. Lower plot -
Epoch energy minus mean energy

The results for fast muscular contractions was 160 while 3 slow muscular contractions
were registered.
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Figure 4.41: EOG analysis. Upper plot - EOG data vector; Amplitude µV . Middle plot - REM identifier. Lower plot -
Epoch energy minus mean energy

For this trial 120 REM were detected.
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Global Evaluation

The association of the three different REM stage detectors lead to three distinct pos-
sible REM stage periods, as it is represented in Fig.4.42.
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Figure 4.42: Algorithm evaluation of the presented trial

For this case no confrontation of the algorithm evaluation with an expert analysis was
performed since modifications to the acquisition system were necessary to allow a real
time evaluation in further studies. This first trial ended up being useful to detect system
flaws. The identified insufficient signal quality, Fig.4.43 left column2, motivated several
modifications to the acquisition system towards signal quality improvement to allow the
desired real time detection of REM sleep stage.

0 20 40 60
0

500

1000
Raw data

A
m

p.
 (µ

V
)

0 20 40 60
−500

0

500
Analyzed data

0 20 40 60
−500

0

500

1000

A
m

p.
 (µ

V
)

0 20 40 60
−500

0

500

0 20 40 60
−500

0

500

1000

A
m

p.
 (µ

V
)

0 20 40 60
−500

0

500

0 20 40 60
−500

0

500

1000

Time (s)

A
m

p.
 (µ

V
)

0 20 40 60
−200

0

200

Time (s)

Figure 4.43: Raw signal vs. Desired signal quality. Left plots - Raw signal. Right plots - Desired signals.

First evaluation conclusions

Blinding : Protection of the DAQ system to EMI.

Cable : Instead of regular cables, coaxial cables were used reducing noise levels.

DSP : Development of parallel processes: Acquisition ; Preprocessing ; Display. With
this methodology signal loss is avoided.

2in which the represented signals exhibit a fairly good aproximation of the signal quality
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Concerning the last topic, parallel processes, modifications to the preprocessing setup
took place so that signal quality changed from Fig.4.44 middle plot into Fig.4.44 lower
plot3.
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Figure 4.44: EMG analysis. Upper plot - EMG raw data. Middle plot - EMG processed data. Lower plot - EMG new
processed data

The mentioned modifications were not applied instantly, they were being implemented
and the results evaluated in terms of signal quality, as it is expressed in table 4.7.

System configuration
Other Preprocessing steps Final Preprocessing

Regular cables 4 0
Coaxial cables 4 6

Table 4.7: System configuration for different trials

The advantages brought with the preprocessing step modifications focused in noise re-
duction and acquisition of fairly pure signals, contrarily to some tested preprocessing steps
that resulted in impure data. Bearing this in mind one should focus in the acquisitions
in which coaxial cables were used as well as the final preprocessing step implemented.

From the 6 tryouts, only 4 were correctly acquired since the remaining two had the
following acquisition complications: 1) dettachment of the electrodes, 2) low battery of
the acquisition system, which incapacitated a good acquisition and therefore a correct
identification of the REM sleep stage.

In order to validate REM sleep stage automatic detection an expert evaluation is
essencial, for this purpose the acquired data had to be converted from ASCII format into
European Data Format (EDF) (Appendix D) to be read and evaluated in commercial
softwares4 available in sleep laboratories. For the present project SomnologicaTM soft-

3Even though different signal intervals are here represented, differences in signal quality are easily
identified

4Alice SleepwareTM , NicoletTM , DOMINO SomnomedicsTM , SomnologicaTM , etc
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ware was used to read the acquired data, Fig.4.45.

Figure 4.45: Somnologica software interface

The acquired and evaluated registers are presented in the next sections. Only 2 of the
4 trials are presented since the remaining were not confronted with the expert evaluation.
For each presented trial different criteria threshold values were applied to correctly detect
REM intervals. The need to modify these values, associated to the previously mentioned
verified inter-subject criteria threshold variability, motivated the creation of a protocol
for automatic threshold definition based on signals analysis (Appendix E).
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4.2.2 Trial 1

Evaluating the acquired signals from trial 1 lead to the following results:
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Figure 4.46: Trial 1 EEG analysis. Upper plot - EEG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

Figure 4.47: Total register time-step FFT.

The EEG results revealed possible intervals of REM sleep stage and the already pre-
viously identified cyclic pattern of EEG sleep activity.
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EMG
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Figure 4.48: Trial 1 EMG analysis. Upper plot - EMG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

No slow muscular contractions were detected while 25 fast muscular contractions were
detected.
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Figure 4.49: Trial 1 EOG analysis. Upper plot - EOG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

The EOG analysis detected 77 REM.

77



Global Evaluation

The association of the three different REM identifications is represented in Fig.4.50.
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Figure 4.50: Algorithm evaluation of the first trial

Confronting the algorithm evaluation with the expert analysis, (Fig.4.51), table 4.8
can be defined.

Figure 4.51: Expert evaluation of the 1 trial

Identified vs. Expert eval.
Analysis Positive False Positive False Negative
EEG 2 2 0
EMG 2 2 0
EOG 2 2 0

Table 4.8: Matching of identified REM periods with expert evaluation

EEG : false positives - awake condition.

EMG : false positives - awake condition.

EOG : false positives - awake condition.

Similarly to the training data set, EEG analysis and EOG detected false positives in
awake situations. The EMG analysis abnormally detected false positive in awake condition
assumably due to a less strict criteria definition.

The association of the three vectors ended up identifying the correct REM sleep stage
periods, with values above the 2.5 REM stage threshold.
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4.2.3 Trial 2

Trial 2 data vectors evaluation lead to the following results:
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Figure 4.52: Trial 2 EEG analysis. Upper plot - EEG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

Figure 4.53: Total register time-step FFT.

The EEG results revealed 2 well defined possible intervals of REM sleep stage and the
already previously identified cyclic pattern of EEG sleep activity.
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Figure 4.54: Trial 1 EMG analysis. Upper plot - EMG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

The EMG analysis revealed 40 fast muscular contractions and no slow muscular con-
tractions.
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Figure 4.55: Trial 1 EOG analysis. Upper plot - EOG data vector; Amplitude µV . Middle plot - REM identifier. Lower
plot - Epoch energy minus mean energy

The EOG analysis detected 7 REM. Possibly the criteria definition for REM detection
was too strict, allowing the algorithm to detect only 7 events.
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Global Evaluation

The association of the three analysis is represented in Fig.4.56.
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Figure 4.56: Algorithm evaluation of the second trial

Confronting the algorithm evaluation with the expert analysis, (Fig.4.57), table 4.9
can be defined.

Figure 4.57: Expert evaluation of the 2 trial

Identified vs. Expert eval.
Analysis Positive False Positive False Negative
EEG 1 1 0
EMG 1 3 0
EOG 1 1 0

Table 4.9: Matching of identified REM periods with expert evaluation

EEG : false positives - awake condition.

EMG : false positives - awake condition.

EOG : false positives - awake condition.

Similarly to the training data set and trial 1, EEG analysis and EOG detected false
positive REM sleep in awake situations. Identically to trial 1, the EMG analysis abnor-
mally detected false positive in awake condition assumably due to a less strict criteria
definition.

The association of the three vectors ended up identifying the correct REM sleep stage
periods with the REM stage identification above 2.5.
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Trial conclusions

The presented evaluations revealed a satisfactory 100% REM detection. Although the
algorithm achieved maximum correlation with the expert evaluation, the duration of each
REM stage detected was extremely short, reflecting a high specificity, inadequate to the
objective of this project. Considering this, and the verified inter-variability in the first
6 test subjects, it is essential to have an automatic definition of criteria to achieve an
adequate REM detection. For this purpose an algorithm was defined, acquiring 2 minutes
of signal, and with the aid of a protocol respected by the test subject, it defines the
threshold values for each criterium (e.g. ∆ energy in the EEG, atonia energy levels in
EMG, amplitude variation considered in a REM event, etc.) according to the evaluation of
different indicators (Appendix E). The two trials previously presented serve as the starting
point for the definition of a database capable to define these thresholds. Summarizing into
tables, table 4.10, table 4.11 and table 4.12 represent the mean value of each indicator.

EEG indicators
Trial ∆/E θ/E α/E Max/E Energy
1 0,6573 0,0998 0,058 0,1373 6513,9
1 (awake) 0,5499 0,0908 0,0848 0,1249 3039,3
2 0,5808 0,0736 0,0379 0,1696 44122
2 (awake) 0,4197 0,0887 0,088 1,4356 1053800

Table 4.10: EEG indicators

EMG indicators
Trial Max/E Energy
1 0,8816 83,003
1 (awake) 0,4903 561,0341
2 1,6909 9421
2 (awake) 0,9217 233550

Table 4.11: EMG indicators

Right EOG Left EOG
Trial Max/E Energy Max/E Energy
1 0,1768 859,6343 0,1413 1126,3
1 (awake) 0,0986 3953,8 0,0926 6152,6
2 0,1215 485720 0,1584 520160
2 (awake) 0,2158 12072000 0,2391 12959000

Table 4.12: EOG indicators

The analysis of the total register is here introduced, as well as the first 12 minutes of
register, in which the subject is expected to be awake. By analyzing sleep onset intervals
one expects the results to be similar to those acquired with the protocol to be applied for
the automatic definition of criteria thresholds.
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Besides the automatic definition of criteria thresholds, another modification should
be implemented in the signal processing. Interference of ocular (and sometimes even
muscular) signals in the EEG recording was verified, motivating the evaluation of different
techniques to remove such artefacts. The aplication of an ICA tool is here presented.

ICA

This methodology is based on the assumption that if different signals are from dif-
ferent physical processes then those signals are statiscally independent. Therefore, using
mathematical tools it is possible to “search” for the source signals (pure EEG, EMG and
EOG) inside the mixed acquired signals.

With this approach one expects to extract artefacts common to every signal, such
as movement artefacts, as well as separating the different signals so that no ocular or
muscular artefacts are registered in the EEG signal.

Some tests with this tool lead to the following results and interpretations:

Fig.4.58 : The ICA tool, due to its iterative procedure in search of independent com-
ponents can multiply the signals for -1 instead of multiplying the unmixing matrix.
This leads to inverted signals as we can verify in Fig.4.58 in which one of the EOG
signals have been multiplied by -1, resulting in in-phase ocular movements. It can
also swap signal positions, complicating the analysis. Another problem that arises
with the application of ICA tools is data normalization, disallowing the application
of possible threshold values for energy and/or signal voltage.
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Figure 4.58: Upper plot - Raw signal 25 seconds sample. Lower left plot - ICA result. Lower right plot - ICA result (2)
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Fig.4.59 :If an artefact is detected with an extremely high amplitude (ROC EOG artefact
of -6000µV ), it will propagate to the other signals by the application of the ICA
toolbox.
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Figure 4.59: Left plot - Raw signal 25 seconds sample. Right plot - ICA result

Fig.4.60 :The application of the ICA toolbox did not remove efficiently the EOG artefact
in the EEG register.
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Figure 4.60: Left plot - Raw signal 25 seconds sample. Right plot - ICA result

Through these evaluations it became clear that ICA can not be applied to an entire
data vector, expecting it to correctly separate signals and remove the ocular and muscular
artifacts from the EEG register. This unsatisfactory results were assumed to be associ-
ated to the non stationarity of the used signals, due to its long time-span. Therefore,
by applying ICA methodology to subsequent short intervals, followed by the gathering of
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such signals, one assumes that this problem is reduced. Although the previously men-
tioned complications associated to normalization, inversion and signal order switch are
still present.

Hence a methodology was designed to unfold these complications. In such method
ICA is applied to small intervals of 100 points along the analyzed signal, afterwards the
resultant ICA output vectors, normalized, possibly inverted and/or swapped in position,
are correlated to the original vectors. In this way the signals will assume its original values
and it is possible to verify if they have been inverted - correlation will be negative - or
even swapped with other signal - if correlation is maximum with a different vector in the
ICA output.

Since EEG is the signal more susceptible to artefact interference, due to its low am-
plitude, this method was applied in order to remove artefacts from such signal, therefore
combinations of 2 signals were tested: EEG and ROC EOG; EEG and LOC EOG; EEG
and EMG. The results of such method were first tested in a small interval with the fol-
lowing results, Fig.4.61:
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Figure 4.61: Left plot - Raw signal 1.8 second sample. Right plot - ICA result

This method was extended to larger intervals, as depicted in Fig.4.62
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Figure 4.62: Left plot - Raw signal 8 second sample. Right plot - ICA result

From Fig.4.61 and Fig.4.62 it is verified that 1) ICA methodology is capable to extract
ocular artefacts in the EEG data 2) EOG data should only be used in the ICA processing
as input since its processing adulterates the data with EEG components.
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Chapter 5

Conclusions

Sleep has always been a condition that triggered human curiosity and impelled several
questions. These questions motivated approaches from genetics to physiological evalua-
tions. Not surprisingly, sleep analysis is one of the major neuroscience research areas.

The segmentation of sleep according to well characterized intervals allowed researchers
to identify and study sleep events relating them to particular stages. One of the stages
known to be highly related to pathologies and other events such as dreams is REM sleep.
The identification of such stage was the main goal of this study.

For the purpose of detecting REM sleep a designed DAQ [35] system was used to
acquire data from EEG, EMG and EOG channels. The acquired data was manipulated
through a DSP tool and the output visualized and analyzed by an interface [38].

This thesis focused on the development of the DSP tool for real time REM sleep
stage identification. The designed algorithm by detecting characteristic patterns of EEG
(absence of ∆ waves; Low amplitude signal; low α wave expression), EMG (muscular
atonia with possible fast muscular twitches) and EOG (REM events) differentiated REM
sleep from other sleep stages.

Initially, the designed methodology was applied to a training set of 6 subject acquired
by a different DAQ device. The results revealed a 60% agreement between the automatic
detection and the expert evaluation, and 82% agreement if one bear in mind some consid-
erations: the existence of corrupted data; inapropriate data due to possible pathological
situations and possible misdefinition of criteria thresholds. In this later perspective, the
REM stage detection is evaluated by comparing the result of the evaluated epoch with
the result of the remaining epochs of the studied subject, independently of the 2.5 REM
sleep stage threshold.

Besides the identification of REM sleep stage, and its agreement with the expert
evaluation, the algorithm allowed other conclusions:

- EEG signals carry a great amount of information, nevertheless it is extremely com-
plicated to objectively support conclusions from it due to its extremely low ampli-
tude, potential summation of several depolarizations throughout brain tissue and
interference of other electrical signals in the head.

- By evaluating total register time-step FFT one verifies that EEG coloured signal
have a cyclic pattern of prevalence and decrease of slow waves. This is associated
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with deep sleep stages (NREM3 and NREM4) and light sleep (or REM), respec-
tively. These results supported the idea of a sleep cycle as it is depicted in Fig.5.1.

Figure 5.1: Standard sleep cycle. [67]

- Even though the REM counter was not used for any particular purpose of this work,
it has been proven that REM events increase in humans following an intensive learn-
ing period [68] and in pathological situations such as esquizofrenia [11]. Therefore,
future works focusing on this data could lead to important conclusions.

- Fast and slow muscular twitches were registered. Although in the present time these
events do not have a specific relation with sleep studies, in the future probably it
will be possible to assess some information from it.

This satisfactory aggreament lead to a trial with the designed DAQ [35] system. The
results from such trial were not confirmed with an expert evaluation, still the recordings
were used to detect flaws of the designed DAQ. Motivated by the recognized flaws and
poor signal quality, modifications of the system took place: blinding of the DAQ; use
of coaxial cables instead of normal cables; definition of parallel processes for acquisition,
preprocessing and data display so that data was not lost. Besides these modifications,
improvement of the preprocessing step was performed allowing further trials to take place
with no complications.

These later trials data had to be converted to a specific file extension, EDF, so that
they could be evaluated by an expert, contesting the automatic identification made by the
DSP setup. It revealed 100% detection of REM intervals, but the detected intervals were
of extremely short time span, which is not in accordance with the goal of this project.
Instead, it is desired that the DSP setup be sensitive rather than specific since there will
always exist a medical monitorization of the REM sleep stage detection. This, associated
to the previously mentioned variability of criteria thresholds, lead to the development of
a protocol to automatically define criteria thresholds. Besides this modification, in order
to improve signal quality, ICA was tested to remove EOG and EMG artefacts in the EEG
register, as well as separate signals from common artefacts such as movement artefacts.
The results of ICA have proven to be useful when applied to short intervals, so that signal
stationarity is conserved.

Notwithstanding some problems were identified throughout the project development,
the designed algorithm fulfilled the goal of identifying REM sleep for completely acquired
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data vectors, and also the possibility of its implementation in a real-time setup, since it
proved to be capable of processing each epoch’s signal while the data is acquired and
visualized. This implementation will allow future studies of REM dreaming.

5.1 Discussion points and future work

Even though the methodology fulfilled the goal of the project, some discussion points
are here described for further consideration and investigation.

- An improvement to the designed algorithm would be the detection of the various
sleep stages. For such purpose other methodologies must be followed in order to
evaluate EEG signal not only in frequency domain but also for its phasic events, K
complexes and sleep spindles. A possible approach could be wavelet analysis [69]
or correlation methods using previously known waveforms like K complexes. These
approaches would be an improvement to the defined algorithm, although they could
not be employed in a near real time scenario since their processing requirements are
not compatible with the epoch time span.

- The interpretation of EEG signals is extremely context-sensitive. It can be compared
to recognition of handwriting, one not only has to recognize individual patterns,
but the interpretation depends on the specific conditions under which the signals
are acquired. In this way, the designed near real time automated detection of
REM sleep is an extremely complicated task and will only aid the physician by
flagging possible REM events that must be confirmed in loco. Hence, as previously
mentioned sensitivity is preferred rather than specificity, since the physician will
always have to assume the decision of waking up the patient for REM dreaming
evaluations.

- Since the final goal of this work was to detect near real time REM sleep stage,
the designed algorithm was conceived bearing in mind non pathological conditions.
Although, one must be aware that sleep rules are continuously being updated and
therefore it is necessary to implement its conditions in the setup in order to consider
every newly discovered relevant information. For instance, it is becoming common to
consider abnormal sleep stage with EEG signal similar to REM stage, occurrence of
REM events on the EOG and tonic activity intercalated with muscular contractions
in the EMG.

- For the EEG analysis it was used a referenced setup. Future works should consider
reviewing EEG electrode placement towards better EEG signals since no electrode
placement evaluations were done in this work.

- For the present work the epoch was defined as a 30s interval. Bearing in mind that
sleep is a continuous phenomenon, sleep should be engaged without time discretiza-
tion. Since this is not possible, the chosen epoch length is clearly a compromise
between accuracy and laboriousness. One should test different epoch definitions or
even overlapping epoch segments for better results. An implication of long epochs
is the increased frequency resolution for the EEG analysis, while the temporal res-
olution is decreased. By using overlapping segmentation it could be possible to
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know how the transitions occur, hence promoting an easier identification of sleep
stages. Another problem of sleep analysis discretization is that although they may
include two, sometimes even three electrophysiologically different states, they will
only identify one of the stages. This dubious definition of epoch could be controlled
with probabilistic evaluations for sleep transitions. For this purpose, and knowing
the typical sleep cycle, one could attribute a certain probability to each transition
according to the present stage and Fig.5.1.

- Increased frequency resolution could be achieved by a different signal processing.
Instead of the FFT tool a Chirp-Z transform [70] could be used. With this tool,
specific time segments can be evaluated in a controlled frequency band. Focusing
on the low frequency components, known to have higher expression, promotes an
increased frequency resolution.

- Other signals could be used: oximetry, ECG, limb movement, body temperature.
For the present study they were not implemented since their values could not be
as easily controlled as the EMG, EOG and EEG. Artefacts commonly occur in
limb movement registers due to natural body movement during sleep; ECG, body
temperature and oximetry are not as biologically stable as EMG, EOG and EEG,
therefore the threshold definition would have to assume a more dynamic behaviour.

- More tests must be realized to allow a liable definition of criteria values. With only
two registers the threshold definition assume rough and abrupt transitions, as more
tests are realized the intervals will become more specific and therefore the criteria
more adapted to each situation.

- Even though ICA revealed good results, it must be further tested to evaluate whether
it can bring satisfactory results in the time span available for real time identification,
and evaluated using different sample intervals so that the stationarity problem is
resolved with the best solution possible. It should also be tested to remove the
strong signal of ECG frequently acquired in the designed setup.
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Appendix A

Sleep Disorders

Usually, sleep disorders interfere with the quality, duration and onset of sleep. Causes
like sleep deprivation, constantly changing sleep schedule, stress and environment all af-
fect the progression of the sleep cycle, modifying sleep stages duration and rearranging its
natural progression (e.g. Psychological conditions like depression shorten the duration of
rapid eye movement). Motivated by the XXI century lifestyle it is reasonable to consider
that sleep disorders are modern diseases with increasing prevalence. Such statement is
supported by tableA.1. Using Unites States of America sleep disorders data, “US Census
Bureau, Population Estimates, 2004”, and extrapolating to several countries with life stan-
dards above the average, one verifies sleep disorders have a huge impact in modern society.

Country Prevalence Estimated Population
USA 43,184,617 293,655,405
Denmark 796,087 5,413,392
Sweden 1,321,529 8,986,400
United Kingdom 8,863,339 60,270,708
France 8,885,913 60,424,213
Netherlands 2,399,735 16,318,1992
Germany 12,121,265 82,424,609
Portugal 1,547,668 10,524,145
Spain 5,923,644 40,280,780
Italy 8,537,864 58,057,477

Table A.1: United States of America sleep disorders data and extrapolation to several other countries according to its
population. [62]

Some of problematic sleep disorders are here described:

Sleep Apnea is characterized by periodic interruption of breathing and loud interrupted
snoring. This condition affects more than 5% of adult males and can shorten lifespan
more than common problematic issues such as smoking and drinking. This pathol-
ogy is caused by the excessive relaxation of airway muscles during sleep. It can be
treated by wearing a mask that pressurizes the airway, a procedure called Contin-
uous Positive Airway Pressure (CPAP). In mild cases, weight loss and preventing
patients from sleeping on their backs can help.
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Insomnia is the perception or complaint of inadequate or poor-quality sleep because of
one or more of the following: difficulty falling asleep; waking up frequently during
the night with difficulty returning to sleep; waking up too early in the morning; or
unrefreshing sleep. This situation is even more common than sleep apnea. Sleeping
pills can be helpful for short-term insomnia, but may not benefit, and may even
have significant adverse effects, on individuals with long-term insomnia. Insomnia
is more common later in life, but the cause of this is unclear. One syndrome that
is known to produce a profound insomnia is restless legs with periodic movements
during sleep. “Restless legs” refers to an urge to move the legs that increases during
quiescence. Periodic movement during sleep, a frequent accompaniment of restless
legs, is a regular twitching, usually occurring every 5-90 seconds in the legs during
NREM sleep and can also disturb sleep. Restless legs is present in as much as 10%
of the adult population.

Parasomnias are particularly common in children. Night terrors, in which children
scream during the night, sleep walking and bedwetting are some of the most common
and are generally outgrown with age.

REM sleep behavior disorder is a pathology characterized by vigorous movements
occurring during REM sleep as the dreamer acts out his or her dream.

Narcolepsy is a condition that causes patients to fall asleep uncontrollably throughout
the day for periods lasting less than a minute to more than half an hour. These
situations can occur even when a person is active and concentrated in a specific task.
Besides, narcoleptic subjects tend to have a disturbed sleep cycle, with frequent sleep
stage being skipped.
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Appendix B

Signal Processing

Motivated by the way computers are organized, signal must be represented by a finite
number of bytes. This restriction means that both the time axis and the amplitude axis
must be quantized, one must deal with discrete signal. A methodology to correctly quan-
tize the time axis without the introduction of errors was verified by Harold Nyquist, the
Sampling Theorem. When analysing a sampled version of a generic analog signal s(t),
the s(nTs) (with Ts known as the sampling interval), one verifies that the values of the
original signal at the sampling times are preserved, however some considerations must be
respected so that the values between the samples can be reconstructed (Fig.B.1).

Figure B.1: Signal example waveform. Top plot: Continuous representation. Bottom plot: Sampled version of the
signal. [64]

If the sampling procedure is properly done, it is possible to recover the original sig-
nal. To understand how signal values between the samples can be correctly defined, it is
necessary to calculate the sampled signal’s spectrum. Using the Fourier series represen-
tation of the periodic sampling signal:

x(t) =
inf
∑

k=− inf

(

ck · exp

(

−j2πkt

Ts

)

· s(t)

)

(B.1)

Considering each term in the sum separately, we need to know the spectrum of the
product of the complex exponential and the signal.
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Thus, the spectrum of the sampled signal consists of weighted (by the coefficients ck)
and delayed versions of the signal’s spectrum (Fig.B.2).

Figure B.2: Top plot: Bandlimited (to W Hz) signal spectrum. If the sampling interval Ts is chosen too large relative to
the bandwidth W , aliasing will occur. Bottom plot: Sampling interval is chosen sufficiently small to avoid aliasing. Note
that if the signal were not bandlimited, the component spectra would always overlap. [64]

X(t) =
inf
∑

k=− inf

(

ckS

(

f −
k

Ts

))

(B.4)

In general, the terms in this sum overlap each other in the frequency domain, rendering
recovery of the original signal impossible. This phenomenon is known as aliasing.

If, however, two conditions are satisfied: The signal s(t) is bandlimited to W Hz, and
the sampling interval T s is small enough so that the individual components in the sum do
not overlap - Ts < 1/2W , aliasing will not occur. In this case, the original signal can be
recovered by lowpass filtering x(t) with a filter having a cutoff frequency equal to W Hz.
These two conditions ensure the ability to recover a bandlimited signal from its sampled
version: the Sampling Theorem.

In order to avoid the problem of aliasing one must apply a low-pass filter to the signal,
prior to the sampling stage, to remove any frequency components above the Nyquist
frequency.
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Appendix C

Data analysis

C.1 EEG criteria analysis

The EEG signals variability for 6 different subjects is presented in this section. For
each subject five analysis were performed.

A is the ratio between signals maximum and effective value for each epoch.

B is the ratio between signals maximum and signals energy for each 5 second period.

C is the ratio between ∆ band energy and total energy for each 5 second period.

D is the ratio between θ band energy and total energy for each 5 second period.

E is the ratio between α band energy and total energy for each 5 second period.

For B, C, D and E the ratios were calculated discarding energies associated to fre-
quencies below 0.5Hz.
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Figure C.1: A - Epoch’s energy variability evaluation. B - Five second energy variability evaluation. C - Five second ∆
variability evaluation. D - Five second θ variability evaluation. E - Five second α variability evaluation.
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Figure C.2: A - Epoch’s energy variability evaluation. B - Five second energy variability evaluation. C - Five second ∆
variability evaluation. D - Five second θ variability evaluation. E - Five second α variability evaluation.
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C.1.3 Subject 3
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Figure C.3: A - Epoch’s energy variability evaluation. B - Five second energy variability evaluation. C - Five second ∆
variability evaluation. D - Five second θ variability evaluation. E - Five second α variability evaluation.
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Figure C.4: A - Epoch’s energy variability evaluation. B - Five second energy variability evaluation. C - Five second ∆
variability evaluation. D - Five second θ variability evaluation. E - Five second α variability evaluation.
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C.1.5 Subject 5
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Figure C.5: A - Epoch’s energy variability evaluation. B - Five second energy variability evaluation. C - Five second ∆
variability evaluation. D - Five second θ variability evaluation. E - Five second α variability evaluation.
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Figure C.6: A - Epoch’s energy variability evaluation. B - Five second energy variability evaluation. C - Five second ∆
variability evaluation. D - Five second θ variability evaluation. E - Five second α variability evaluation.

All five analysis revealed little variation among subjects hence no dynamic criteria
definition was established. It is also possible to verify that ∆ band (Plot C) is more
represented than other sleep waves, θ (Plot D) and α (Plot E).
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C.2 EMG criteria analysis

The EMG signals variability output for 6 different subjects is presented in this section.
It was evaluated the ratio between signals maximum and effective value for each epoch.
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Figure C.7: Epoch’s energy variability evaluation.

C.2.2 Subject 2
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Figure C.8: Epoch’s energy variability evaluation.
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C.2.3 Subject 3
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Figure C.9: Epoch’s energy variability evaluation.

C.2.4 Subject 4
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Figure C.10: Epoch’s energy variability evaluation.
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C.2.5 Subject 5
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Figure C.11: Epoch’s energy variability evaluation.
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Figure C.12: Epoch’s energy variability evaluation.

From the presented data one can verify that EMG variability is low between different
subjects, therefore no dinamic criteria mechanism is necessary.
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C.3 EOG criteria analysis

The EOG signals variability output for 6 different subjects is presented in this section.
It was evaluated the ratio between signals maximum and effective value for each epoch.
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Figure C.13: Epoch’s energy variability evaluation.ROC - Right Outer Cantus data. LOC - Left Outer Cantus data.
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Figure C.14: Epoch’s energy variability evaluation.ROC - Right Outer Cantus data. LOC - Left Outer Cantus data.
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C.3.3 Subject 3
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Figure C.15: Epoch’s energy variability evaluation.ROC - Right Outer Cantus data. LOC - Left Outer Cantus data.
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Figure C.16: Epoch’s energy variability evaluation.ROC - Right Outer Cantus data. LOC - Left Outer Cantus data.
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C.3.5 Subject 5
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Figure C.17: Epoch’s energy variability evaluation.ROC - Right Outer Cantus data. LOC - Left Outer Cantus data.
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Figure C.18: Epoch’s energy variability evaluation.ROC - Right Outer Cantus data. LOC - Left Outer Cantus data.

Similarly to the other analysis (EEG and EMG), one can verify that EOG variability
is low between different subjects, therefore no dinamic criteria mechanism is necessary.
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Appendix D

European Data Format

This data format was developed in 1990 due to the need of different researchers to
analyse each others registers. It consists of a header record followed by data records.
Within the header record subject and acquisition information is specified, followed by
signals data records. Representing the header and data:

HEADER RECORD
8 ascii : version of this data format (0)
80 ascii : local patient identification
80 ascii : local recording identification
8 ascii : startdate of recording (dd.mm.yy)
8 ascii : starttime of recording (hh.mm.ss)
8 ascii : number of bytes in header record
44 ascii : reserved
8 ascii : number of data records
8 ascii : duration of a data record, in seconds
4 ascii : number of signals (ns) in data record
ns * 16 ascii : ns * label (e.g. EEG Fpz-Cz or Body temp)
ns * 80 ascii : ns * transducer type (e.g. AgAgCl electrode)
ns * 8 ascii : ns * physical dimension (e.g. uV or degreeC)
ns * 8 ascii : ns * physical minimum (e.g. -500 or 34)
ns * 8 ascii : ns * physical maximum (e.g. 500 or 40)
ns * 8 ascii : ns * digital minimum (e.g. -2048)
ns * 8 ascii : ns * digital maximum (e.g. 2047)
ns * 80 ascii : ns * prefiltering (e.g. HP:0.1Hz LP:75Hz)
ns * 8 ascii : ns * number of samples in each data record
ns * 32 ascii : ns * reserved
DATA RECORD
nr of samples[1] * integer : first signal in the data record
.. nr of samples[ns] * integer : last signal
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Appendix E

Criteria analysis

In this section different criteria indicators are represented for the distinct signals of
the two reported trials.
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E.1 EEG indicators

For the EEG it was evaluated: Max/Energy; ∆ Energy/Total energy; θ Energy/Total
energy; α Energy/Total energy. These indicators are here represented:
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Figure E.1: EEG indicators. Top - Epoch Max/Energy. Middle left - 5sec Max/Energy. Middle right - 5sec ∆ Energy/Total
Energy. Bottom left - 5sec θ Energy/Total Energy. Bottom right - 5sec α Energy/Total Energy.
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Figure E.2: EEG indicators. Top - Epoch Max/Energy. Middle left - 5sec Max/Energy. Middle right - 5sec ∆ Energy/Total
Energy. Bottom left - 5sec θ Energy/Total Energy. Bottom right - 5sec α Energy/Total Energy.
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E.2 EMG indicators

For the EMG it was evaluated: Energy; Max/Energy. These indicators are here
represented:
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Figure E.3: EMG indicators. Top - Epoch Energy. Bottom - Max/Energy.
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Figure E.4: EMG indicators. Top - Epoch Energy. Bottom - Max/Energy.
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E.3 EOG indicators

For the EOG it was evaluated: Energy and Max/Energy for each oculogram register.
These indicators are here represented:

E.3.1 Trial 1

0 2 4 6
0

5

10

15
x 10

7

A
m

p.
 R

M
S

 (µ
V

)

Time (hours)

ROC Epoch Energy

0 2 4 6
0

1

2

3
ROC Epoch Maximum/RMS

A
m

pl
itu

de

Time (hours)

0 2 4 6
0

2

4

6

8

10
x 10

7

A
m

p.
 R

M
S

 (µ
V

)

Time (hours)

LOC Epoch energy

0 2 4 6
0

1

2

3
LOC Epoch Maximum/RMS

A
m

pl
itu

de

Time (hours)

Figure E.5: EOG indicators. Top left - ROC epoch Energy. Top right - ROC Max/Energy. Bottom left - LOC epoch
Energy. Bottom right - LOC Max/Energy.
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Figure E.6: EOG indicators. Top left - ROC epoch Energy. Top right - ROC Max/Energy. Bottom left - LOC epoch
Energy. Bottom right - LOC Max/Energy.
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