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Abstract 

Ideally, compilers should produce target code that is as good as can be written by hand. 

Unfortunately, this goal cannot be achieved in the usual case, and it’s up to the optimizer to do its best 

job in approximating this ideal situation. 

Traditional optimizing compilers have advanced to the point where the do an excellent job of 

optimizing a single procedure. Accordingly, optimization research has begun to focus on inter-

procedural analysis and optimization. And for OutSystems, the lack of inter-procedural optimizations 

represents a weakness in supporting large-scale applications, with complex inter-procedural 

relationships and modularity requirements. 

In this paper, we present a case study of optimizations in the OutSystems Platform compiler. It is 

presented the theoretic background behind optimization techniques, and it is given focus on designing 

an inter-procedural optimizer for the current OutSystems compiler. 

 

Keywords: Compiler, Optimization, Data-flow analysis, OutSystems, Live variable analysis, Inter-

procedural optimization. 



 

 

Resumo 

Idealmente, os compiladores deveriam produzir código gerado que fosse tão bom quanto é possível 

ser escrito à mão. Infelizmente, esta meta não pode ser atingida no caso geral, e é tarefa do 

optimizador fazer o seu melhor para aproximar-se da solução óptima. 

Os optimizadores tradicionais já avançaram ao ponto de serem satisfatórias as optimizações de um 

único procedimento. Desta forma, a investigação na area de optimização começa a focar-se na 

análise e optimização inter-procedimentais. E, para a OutSystems, a falta de um optimizador inter-

procedimental representa um ponto fraco ao suportar aplicações de larga escala, com interações 

inter-procedimentais complexas, e com requisitos de modularidade. 

Neste trabalho, apresentámos um caso de estudo de optimizações no âmbito do compilador da 

plataforma OutSystems. Apresentam-se os fundamentos teóricos por detrás de técnicas de 

optimização, and é dado foco no desenho de um optimizador inter-procedimental para o compilador 

OutSystems actual. 

 

Keywords: Compiladores, Optimização, Análise de fluxo de dados, OutSystems, Live variable 

analysis, Optimizações inter-procedimentais. 
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1 Introduction 

As the complexity of software grows, developers need more powerful tools to help them build 

applications. Such tools generally provide a set of high level primitives for application building, in order 

to minimize the effort of the developer. 

A good tool for creating applications would provide primitives as simple as possible for the developer 

to use. We can take as example the SQL language which enables to manipulate data through the 

SELECT, UPDATE and DELETE statements. This trend in simplifying primitives also applies for any 

development tool, such as frameworks and components, or even IDE’s. But those simplifications, 

necessary to increase development efficiency of modern applications, can often decrease the runtime 

performance of the same applications, since they are usually not expressive enough to be used 

optimally in every situation. There are alternatives to balance the oversimplification: 

• Provide alternatives for the high level primitives. For example, in network applications the 

developer usually can choose the adequate level of abstraction to use, selecting a desired 

protocol and using its primitives to design the application. Different protocols are available, and 

each of them has its own advantages and limitations. 

• Provide primitives that are able to be automatically optimized. For example, the already cited 

querying language SQL provides primitives that are aimed to be transparently optimized by the 

database engine. Modern programming languages provide primitives for memory allocation that 

are able to be optimized both in compile time, and in runtime through garbage collection 

technologies. 

The first alternative requires support for both high level and low level primitives, which requires 

additional costs in designing and maintaining the primitives. It also adds a burden to the developer, 

which needs to be aware of additional primitives, and needs to decide which set of primitives to use in 

a particular application. 

The second alternative is only possible if the primitives were designed with care, to allow their 

automatic optimization. It uses a technology called optimizing compilers, which aims to reduce 

automatically the runtime inefficiencies, even if the developer is not aware of this process. 

In this thesis we explore the optimizing compiler of the OutSystems platform, in which the main 

concern is the optimization of the performance of web applications: mainly optimizing the database 

access times, and optimizing the size of the data transferred between the browser and the application 

server. 

1.1 Motivation 

As we have seen, the role of the optimizing compiler is to reduce runtime inefficiencies that arise in the 

compiled applications. These inefficiencies can be caused either by bad programming practices, or 

can be inherent to the design of the programming primitives. 

At first sight, it can seem contradictory to have a programming language, by design, impact negatively 

the runtime performance. It could also seem pointless to develop a new optimization technology, just 
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to make up for the deficiencies in the programming language. But there are many benefits that arise 

from this point of view. These are: 

• Dissociation between application logic and performance concerns. If an optimization process 

is added to the compilation of the application, the development can focus on the application logic, 

and leave the performance concerns be addressed by the automatic optimizer. This approach 

requires less development resources, produces clearer code, and with a lower maintenance cost. 

• Benefit from optimizer evolution. As the optimizer process is improved, because of advances in 

the optimization research, all applications would benefit of it, without extra development effort. 

• Simplification of the programming language. Programming languages are used to develop 

applications which will run in computers with limited resources. When designing a programming 

language, the limitations in the current computers should be kept in mind, and the primitives 

should be flexible to be used without performance losses in a variety of scenarios. But if an 

optimizer compiler is provided for the programming language, the language primitives can be 

simplified, hiding from the developer the optimizations that are automatically handled. Ideally, the 

language could be designed for its logic behavior, ignoring completely the limitations of the 

runtime environment. 

It should be clear that completely freeing the developer from the performance concerns is not the aim 

of the optimizer compiler. For instance, the choice of the most suitable data structure or algorithm will 

always be an issue handled by the developer of the particular application. But having automatic 

optimization techniques allows raising the abstraction level of a language, and helps reducing the 

development effort. 

Section 2.2 further motivates the reader, by analyzing the particular case of the OutSystems compiler, 

and the particular inter-procedural optimizations. 

1.2 Objectives 

The scope of this work is to extend the existing OutSystems optimizing compiler, implementing inter-

procedural optimization techniques. 

An algorithm is designed to solve the inter-procedural optimizations relevant to OutSystems. In this 

paper, we will study the properties of the algorithm, implement it, and investigate its static effects when 

compiling real-world applications. Although it would be much more relevant to know the runtime 

effects of the inter-procedural optimizer – such as gains in runtime application memory usage, or 

increased performance – it would require us to analyze not only the application itself, but the users 

and the processes which interact with the application. Thus we follow a more pragmatic measure of 

the gains of an application, by analyzing it statically. 

We also point directions that could be followed as a continuation of this work. 
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1.3 Structure of the Document 

The paper begins with chapter 1, as an introduction to the problem being solved, giving emphasis on a 

motivation for approaching the problem. 

The OutSystems enterprise is introduced in chapter 2, which places the reader in the context of the 

OutSystems business, and unveils the product developed by the company. 

A brief introduction to the state of the art in optimization techniques lies in chapter 4, which presents 

the theoretic foundations to the following chapters. 

In chapter 5, it is formally defined the problem of the inter-procedural optimizations in the OutSystems 

compiler. Based in the foundations built on chapter 4, we present a solution that allows inter-

procedural optimizations in OutSystems compiler. Finally, the measured results of the implementation 

are shown. 

Chapter 6 proposes future work that should be done to improve the current implementation, together 

with ideas that could complement it. 

At last, the conclusions of the paper are stated in chapter 7. 
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2 OutSystems Enterprise 

OutSystems is an international software company created in March 2001. OutSystems main product is 

a platform for developing and deploying web and mobile built-to-change applications. While the 

product supports mobile applications in WAP and SMS, the main business focus of the enterprise is 

on web applications. 

The enterprise focuses on product excellence and total customer satisfaction. These values are 

reflected in high-quality teams and processes and a lean international organization supported by a 

state-of-the-art informational system [1]. 

2.1 The OutSystems Business 

The main customers are IT companies that need to develop web applications that have a great 

amount of evolutionary components, requiring their applications to be easy to maintain and to change. 

The goal of OutSystems is to reduce the code written by the developers, allowing them to focus on 

application logical flow rather than in syntax and integration between several interfaces. The product 

accomplishes this task by providing visual primitives that can be combined to build the applicational 

flow, and a WYSIWYG editor for layout of the presentational screens of the application. 

While the visual components that make up the logic flow can be easily recognized by a human, rather 

than lines of code, they are also tailored for the recurrent patterns in the web applications 

development. There are available primitives such as querying a database, invoking a web service, or 

managing a user and its permissions in the application. The screen editor also has the same 

presentational patterns that arise naturally in the development of a web application, such as listing 

records of a database, or editing a given record. Some scalability issues are also tackled by the 

platform, such as independence of the application from the database driver and schema, and 

independence of the URL structure of the web site. 

With those patterns ready to be used by the programmer, the OutSystems product is a platform for 

quickly building web and mobile applications from scratch, and easily maintaining them afterwards. 

The integration with existing applications, which might be implemented in a different technology, is 

also an issue addressed in OutSystems Platform. It can be accomplished by extending the visual 

primitives, by either using web services, or by writing an extension in a regular programming 

language. 

2.2 Motivation: Business Requirements for Optimizations 

As previously stated, OutSystems Platform aims to give the developer a set of predefined tools 

specially tailored for the life cycle of web and mobile applications. It also focuses in the maintainability 

of the applications developed under the platform, so the developer is kept away from implementation 

details as much as possible. 
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In fact, simple web applications can be made entirely in the OutSystems Platform through visual flows, 

without writing code in any traditional language. This provided independency increases the portability 

of the applications, because the developer would be only compromising the application with the 

OutSystems Platform itself. The application can be deployed in any environment supported by the 

platform. 

One of the side effects of raising the abstraction level of the development tools is that the developer 

has less power on choosing exactly what is under the hood. The less configurable a language is, the 

more it relies on the compiler to generate quality code. 

Fortunately, another side effect of working with higher level languages is that usually they offer more 

opportunities for automatic optimizations, and these optimizations generally have a great impact in the 

developed applications. So a constant research in optimization techniques is something that follows 

every software platform. 

Having a good optimizer adds a great value to the product. If an optimizer compiler addresses a given 

performance concern, the developer can rely in the quality of the code generated, and is free from 

thinking about that same concern. The automatic optimization translates not only in the increased 

performance of the application, but also allows a quick and more focused development cycle. 

The OutSystems compiler currently has an optimization module, which handles the relevant 

optimizations local to a given procedure, but does a conservative analysis of calls between 

procedures. It also causes some local optimizations to be lost, because of pessimistic assumptions 

about called procedures. 

Because of this lack of inter-procedural optimizations, the developers using the OutSystems language 

prefer a small number of big monolithical procedures, instead of many simple procedures that can be 

reused in the application logic. The current development practice also disallows the encapsulation of 

logic inside a procedure, which is needed to define the abstractions of the application, or objects. 

2.3 OutSystems Platform Overview 

The OutSystems Platform is the company main software product. It is composed of a set of three 

independent components, integrated to deliver an agile development environment for professional 

web applications. OutSystems Platform was formerly called OutSystems Hub Edition. 

The most visible of the components is Service Studio, which is used by the designer and developer of 

the web application. It makes up the front-end of the platform for the developer. 
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Figure 1 – Service Studio showing a web application. 
We can see in the left pane the visual primitives that can be used in the application flow. In the center pane, we 
can see the logic behind the DoLogin action, with primitives such as a query to the database (labeled as 
GetUser), a conditional branch (labeled as GetUser.Empty?), and exception handlers (labeled as InvalidLogin). In 
the right pane, we have the designed high-level structure of the application. 

The developer can build its application in Service Studio, and save it. The outcome is a single file 

containing everything needed to successfully deploy the application in a production server, so the 

application can be easily carried between computers, or shared with another developer. The file that is 

saved in the OutSystems Service Studio is called an eSpace, or more informally OML. 

A single eSpace can be developed cooperatively by several teammates at the same time. Each 

teammate can have its own independent personal area for developing the application in the server. 

When the development reaches a milestone, the result of their individual effort can be joined in the 

final eSpace by merging the files they worked on. 

The final eSpace file can be verified against errors, in a similar way that the compiler checks for 

syntactic errors. Some common consistency problems between the several layers of the web 

application are also checked, and warnings are issued if problems are found. If the verification 

succeeds, it can be published in the server for production, if so desired. 

The OutSystems server for deploying applications is called Hub Server, and is another component of 

the platform. It is actually the core of the platform, and control the compilation, deployment and 

execution of the applications. In a gross comparison, we can relate Service Studio with an IDE, and 

Hub Server with the compiler, linker and operating system altogether. 

The Hub Server is composed of: 

• a traditional web application server for hosting the web applications; 

• a database to store the persistent data for the applications; 

• and a couple of OutSystems services which are invoked to compile and deploy the applications. 

Currently, there are actually two kinds of Hub Servers, supporting distinct environments. The .NET 

Hub Server supports compiling an application into .NET code, and deploying it in Microsoft IIS web 
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server1. The second version is a J2EE Hub Server, which supports compiling an application into Java 

code, and deploying in JBoss web server. 

One Hub Server can map to one or more hardware machines, called Hub Nodes, allowing the 

production servers to rely on hardware redundancy for high availability. The database can also be kept 

in a dedicated server, which is a common practice in production environments. 

Publishing an eSpace to a Hub Server involves compiling the OML description of the application into 

the source code of the application, be it .NET code or Java code. The source code can then be 

deployed in the web application server, for each active Hub Node. The source code can also be 

downloaded at any time, for auditing or porting it to another technology. 

A basic versioning mechanism is used in the Hub Server, where each upload of an eSpace increases 

its version number. Reverting to a previous version is allowed in the platform at any time. 

The Hub Server component comes with a web application called Service Center, which can be used to 

manage the eSpaces, and monitor the runtime properties of the platform. Service Center is the portal 

for any developer, or project administrator. 

Finally, the third component of OutSystems Platform is Integration Studio, which is a Windows 

application that can be used to create extensions that can be used inside any eSpace. Extensions can 

be as complex as desired, and the programmer has the power of a traditional programming language 

at hands. The extensions can be used to achieve complex tasks, or to create custom connectors to 

integrate the OutSystems web applications with other applications, possibly implemented in other 

technologies. The extensions can be published to a Hub Server, and then further used inside an 

eSpace. 

 

Figure 2 – OutSystems Platform architecture, highlighting the main components and features. 
This picture shows the Hub Server as the center of the system. Service Studio does 1-click-publish of applications 
to the Hub Server. The applications lie on top of Hub Server infrastructure, and are possibly integrated with other 
enterprise systems through Integration Studio extensions. Service Center is highlighted as an administration 
frontend for Hub Server. Finally, the picture also shows the types of supported interfaces: mobile web (WAP), 
mobile messaging (SMS), email, web, and web services. 

                                                      

1 In the OutSystems Platform 4.1 it was added support for a modified version of the XSP web server, which is a 
lightweight .NET web application server, part of the open source Mono project. 
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3 Compiler Source and Target Languages 

In the previous chapter, we have described the main aspects of the platform, highlighting their 

alignment to the business mission of the OutSystems enterprise. From now on, we will focus on the 

compilation task performed by the OutSystems compiler, which is an integrated part of the Hub Server 

component. 

Informally, the compiler is called OSHEComp2. OSHEComp applies compiler techniques to the OML 

description of the application, and generates the source code of the web application, concretely .NET 

or Java code. We can therefore identify its source and target languages, which are the main subject of 

this chapter. 

3.1 Source Language Definition 

The source language is the eSpace definition, created in the Service Studio. The eSpace file, also 

called OML, contains everything necessary to compile and deploy the application, except its external 

dependencies, if any. In this section, we will describe the relevant aspects of the eSpace definition. 

We will introduce terminology specific to the OutSystems Platform [2], and where applicable we will 

map it to the terminology used in the literature. 

We begin the description of the language by analyzing its procedures. A procedure in OutSystems 

Platform is mainly called an action. There are other procedures which behave basically the same, 

such as web services. An action can have input parameters and output parameters, and also can 

declare local variables. 

The action code is actually a flow of control, designed with some available primitives such as 

conditional branches and for each cycles. In Figure 1 we can see an example of such a flow graph in 

the central pane. 

The user interface of the application is designed through screens, which are some content sent to the 

client browser. OutSystems Platform supports web screens, WAP screens and SMS screens, which 

behave in the same way from the compilers point of view. We will speak of screens generally, 

meaning any supported screen. As we will see, a screen is also another procedure disguised in 

OutSystems Platform. 

A screen can have input parameters, and local screen variables. Each screen, when requested from a 

user, creates its own execution context. The execution context is made of the actual parameters and 

the local variables, and the execution context remains active while the user is interacting with the 

screen. This interaction can last several requests from the browser, each one invoking an action inside 

the screen context. 

The context of a screen is kept between requests through the notion of viewstate. The viewstate is a 

collection of every relevant variable of the application, that needs to persist across requests. As long 

as the user interacts with a  screen, the viewstate is sent to the client browser on the end of a request, 

                                                      

2 OSHEComp stands for OutSystems Hub Edition Compiler, and is also the name of the compiler executable 
bundled with the platform. 
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and the next request comes with the viewstate again, allowing the application server to restore the 

previous state. 

Given this description, we can view the screens as executable objects, which have its own variables 

and flow of execution control. We can therefore identify screens as a more structured procedure in the 

OutSystems source language. We will refer to screen procedures, meaning this identification of a 

screen as a procedure. 

Mechanisms of exception handling are also provided in the platform through special nodes for 

throwing and catching exceptions. 

The basic data types of the source language cover the common scalar types, such as integer, 

numeric, boolean, and text. Other types are domain specific, such as date time, currency, and phone 

number. 

In the OutSystems language, each eSpace also has a set of entities. Entities help the relational data 

modeling for the application. Each entity can have one or more attributes, and at most one identifier 

attribute. The identifier of a given entity also defines a scalar type in the OutSystems language, 

forbidding the developer to use an identifier of entity A where an identifier of B is expected. 

Entities are mapped into the relational database, so that for each entity there is a table in the 

database, and for each attribute of the entity, there exists a column in the entity table. The entire 

database modeling is performed through entities. 

For the memory resident objects, the language provides structures. A structure can have one or more 

attributes, of any type. The only restriction is that recursive types are not supported. 

Entities and structures can be combined in records. A record is a compound type in the OutSystems 

language. 

Records can be stored in record lists, which is another compound type in OutSystems. 

A record list, another compound type, is an array of records. It provides an embedded current pointer, 

and can also be indexed randomly through integer indexes, just like arrays in traditional programming 

languages. 

All assignments in the platform are made by value copy, and not by reference, the only exception 

being record list assignments. An assignment of a variable of type record list does not copy the list 

itself, but creates a copy of its current pointer. A value copy of record lists is possible through a built-in 

function, called ListDuplicate. 

It is also worth of mentioning the available primitives for database querying, as they will be our main 

target for optimizations. 

The OutSystems language provides two primitives for database querying: simple query and advanced 

query. They both have input scalar parameters, and a single output parameter of type record list. The 

only difference between the two primitives is the editor for building the query. Simple queries can be 

constructed through a simplified editor, which abstracts from the final SQL query. Advanced queries 

require the developer to write the exact query, and can be used whenever the simple query is not 

expressive enough. 
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Figure 3 – Simple query editor. 
The simple query editor, a querying primitive in the OutSystems language. The query retrieves the users with a 
given username, ordered by their Is_Active attribute. The input parameters are visible in the Parameters 

folder, and the output parameter is implicitly defined as a record list of the entities and structures present in the 
query. In the above case, the output parameter is a record list of the entity User. 

 

Figure 4 – Advanced query editor. 
The advanced query editor, a querying primitive in the OutSystems language. The query is specified in SQL 
language. The input parameters are visible under the Parameters folder, and the output parameter is a record list 
of the entities and structures present in the Output Structure folder. In the above case, the output parameter is a 
record list of the SummaryEntry structure. 

In Figure 3, the query is automatically created as a SQL SELECT statement. In Figure 4, the SELECT 

statement needs to be defined by the developer. 

We should now clarify some limitations imposed by the design of these primitives, and what the 

automatic optimizer can do to overcome those limitations. 

• A simple query outputs every entity and structure which is used in the query. It is a usual case for 

a query to have many tables joined, but only a few of them is relevant for the application. In SQL, 

we could specify the complete join in the FROM clause, and project only a few of the tables in the 

SELECT clause. This is a manual optimization, and in SQL it would be required to reduce the 

overhead in data transferring between the database and the application. In a simple query, the 
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optimizing compiler should decide which entities are relevant for the application, and automatically 

optimize the underlying SQL query. 

• The outputs of both simple queries and advanced queries are record lists, which contains entire 

entities and structures. It is also a recurrent situation where only a few of the attributes of an entity 

are required for the application, and the technique used in SQL would be to project only the 

relevant columns. In the OutSystems language, it should be the optimizer compiler to decide 

which are the relevant attributes, and automatically perform the projection. 

• Both querying primitives does not specify which is the method used for retrieving the result 

dataset. For instance, there are two main methods: fetching each row on demand, or fetching all 

rows and storing them in memory. If the query result is iterated only once, the best method is to 

fetch each row on demand, as it requires less memory. But if the result is iterated more than once, 

we need to store every row in memory. The optimizing compiler should decide the best method to 

use. 

3.2 Target Language Definition 

The target language is .NET [3] source code generated to be deployed in the Microsoft
®
 IIS. The J2EE 

Hub Server is built as a transformation of the .NET Hub Server, and thus we will omit it in the 

remaining of the paper. 

.NET is a language-neutral environment for writing programs that can easily and securely interoperate.  

Rather than targeting a particular hardware and operating system, programs can be written for .NET, 

and will run wherever .NET is implemented as an execution host environment. 

The .NET Framework has two main components: the common language runtime and the .NET 

Framework class library. 

The common language runtime is the foundation of the .NET Framework. We can think of the runtime 

as an agent that manages code at execution time, providing core services such as memory 

management, thread management, and remoting, while also enforcing strict type safety and other 

forms of code accuracy that promote security and robustness. In fact, the concept of code 

management is a fundamental principle of the runtime. Code that targets the runtime is known as 

managed code, while code that does not target the runtime is known as unmanaged code. 

The runtime is designed to enhance performance. Although the common language runtime provides 

many standard runtime services, managed code is never interpreted. A feature called JIT3 compiling 

enables all managed code to run in the native machine language of the system on which it is 

executing. Meanwhile, the memory manager removes the possibilities of fragmented memory and 

increases memory locality-of-reference to further increase performance. 

The class library, the other main component of the .NET Framework, is a comprehensive, object-

oriented collection of reusable types that you can use to develop applications ranging from traditional 

                                                      

3 JIT compiling, sometimes referred as JIT – abbreviation for Just-In-Time compiling. The term refers to a 
compilation technique which converts, at runtime, code from an intermediate code into machine code. The 
compilation in runtime allows several optimizations that can arise when considering statistics collected from the 
running process. 
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command-line or graphical user interface applications to applications based on the latest innovations 

provided by ASP.NET, such as Web Forms and XML Web services. 

For the OutSystems compiler output, the screen layouts are done in ASP.NET [4], and the application 

logic is targeted as C# [5] source code. This choice of target language was influenced by the market, 

in which those technologies are currently well accepted by the IT market. 

3.3 Optimization Strategy 

The choice of the target language as .NET source code (as opposed to a compiled binary) gives us 

the .NET compiler optimizations without effort. Therefore, the OutSystems optimizer doesn’t have to 

worry about some minor local optimizations, such as constant propagation or dead code analysis. We 

assume that the .NET compiler used when deploying a web application does a good optimization job. 

But there are some other optimizations that can be done in the source language level, that are not 

possible in the target language. Those optimizations are the best to be addressed by the OutSystems 

compiler. These are mainly database retrieval optimizations, which aim to reduce database access 

times. When applied to web applications, these kinds of optimizations are highly desired, mainly 

because web applications perform database intensive tasks, and usually have little algorithmic 

spectra. 

We are also encouraged to perform optimizations in the viewstate parameter kept within the several 

requests, since a large viewstate also degrades the application performance, because a larger 

bandwidth is needed. These optimizations consist on finding the dead variables at the end of each 

request, and removing them from the viewstate. 
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4 Optimization Theory 

Optimizations of a program can be viewed as transformations that are applied to the program 

iteratively, yielding benefits in a given metric, such as running time, allocated memory, or binary size. 

An important aspect of the optimization transformations is that they must be conservative on the 

output of the program. An optimization should be completely transparent to the user of the program. 

The rule of thumb is to never risk changing the meaning of a program. 

The best optimizations are those that yield the most benefits for the least effort. The desired benefits 

should be carefully specified a priori, so the optimizer can be designed to meet its requirements. 

We saw in the previous chapter that the main requirements for the OutSystems optimizer are 

database optimizations. We thus describe in this chapter some theoretic tools for optimization 

techniques, and we evaluate their benefits for the case of OutSystems optimizer. 

4.1 Control Flow Analysis 

The control flow analysis is, for a given source program, determine its control flow structure. The 

nodes in the flow graph represent computations, and the edges represent the flow of control. 

Control flow analysis is useful to collect topological information about the source code, which can be 

used to detect hot spots for optimizations. If we can detect that a given region of code is possibly 

executed many times in a row, we can focus on optimizing this region of code, rather than trying to 

optimize sections of code that run only a couple of times. This selection of optimizations can reduce 

the optimization time, and still perform valuable increases in the program performance. 

Through control flow we can also infer the order of execution of the program statements, and this 

information can be further used for more complex data flow analysis, as we are going to see. 
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We will use as example the following code, which computes the factorial of an integer n. 

Example of a factorial algorithm. 

program fact(n) 

  i := 1; 

  f := 1; 

  while (i <= n) do: 

    f := f*i; 

    i := i+1; 

  end while 

  output f; 

end program 

Below we enumerate the statements of the preceding program. Note that the expression inside the 

while construct is also a statement itself, which computes the boolean value needed by the 

conditional branch of execution. 

Statements of the program fact. 

S1  i := 1 

S2  f := 1 

S3  if not (i <= n) goto S6 

S4  f := f*i 

S5  i := i+1 

S6  output f 

 

Definition 1 – Basic blocks. A basic block is a sequence of statements in which 

execution flow enters at the beginning and leaves at the end, without halt or possibility of 

branching, except possibly at the end of the block [6]. 

Note that a basic block does not have to be a maximal sequence of statements satisfying the 

mentioned property. In fact, each individual statement can be regarded as a unitary basic block, 

although this is of little interest because it yields a graph with more nodes and edges. 

i := 1

f := 1

i <= n

f := f*i

i := i+1
output f

B1

B2

B3

B4

true

false

i := 1

f := 1

i <= n

f := f*i

i := i+1
output f

B1

B2

B3

B4

true

false

 

Figure 5 – Control flow of the program fact. 
Basic blocks are enclosed in rectangles, and arrows are drawn for the possible execution paths. The while can be 
visually identified, as the loop involving B2 and B3. 

In Figure 5 we show the basic blocks of the program fact. Note that the only branch in the program is 

made at the end of B2, which corresponds to either entering the body of the while statement, or 

terminating the cycle and jumping to the end while statement. 

A basic block is a set of statements which can be considered atomic by the optimizer. Basic blocks 

can be optimized individually, and the only requirement for the optimizations made is that the program 

state at the end of the block is preserved. This is a good opportunity for the optimizer to remove 
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redundant and unreachable code, which are often introduced by the compiler. These optimizations are 

called local optimizations, because they consider only the set of statements that belong to a basic 

block [6]. 

Definition 2 – Flow graph. The flow graph is a directed graph, whose nodes are the 

programs basic blocks, and the edges are all the possible flows of execution between the 

blocks [7]. 

The Figure 5 is also the flow graph of the program fact, with B1 being the start node. In OutSystems 

platform, the flow graph is given directly by the source description language, since there’s already a 

graph that describes the flow of execution. Exceptions should be considered with special care, since 

every node can possibly jump to an exception handler by throwing an exception. 

A flow graph provides us a great tool to perform analysis of the source code. The main analysis that 

can be done is the detection of loops in the flow graph. 

Definition 3 – Dominate relationship. We say that node d in the flow graph dominates 

node n (or n is dominated by d) if every path from the initial node to n goes through d [6]. 

For example, in the fact flow graph, B1 dominates all nodes; B2 dominates all nodes 

excluding B1; B3 dominates only itself, as does B4. 

Definition 4 – Natural loop. A natural loop must have a single entry point, called the 

header, which dominates all nodes in the loop. 

Natural loops can be detected by searching for back edges, which goes from a dominated node to a 

dominator. When such edge is found, its nodes must be part of the loop; the dominator is the header 

of the loop and we can travel through the predecessors of the dominated node to build the loop. In the 

fact program, the only back edge is B3→B2, and we can infer that {B2, B3} is a natural loop. 

Natural loops have the interesting property that they are either disjoint, or completely nested within 

another [6]. Thus, we can find inner loops by searching for loops that doesn’t contain any other loop. 

These loops are the most benefited from optimizations, and should be the focus of the optimizer. 

4.2 Data Flow Analysis 

The data flow analysis concentrates in the operations that are applied to variables, and the flow of 

information in the application. This kind of analysis can be used to collect information about the 

relationships between variable values at each point of execution of the program. 

For data flow problems, we concentrate on the manipulation of the program information by a given set 

of consecutive statements Σ=[Si…Sj]. The set Σ can be any set of statements, although for simplicity 

we generally assume that Σ is a basic block. 

We can specify the relevant manipulations according to the problem we are trying to solve. There are 

four standard problems which we will describe in this section, and each one focuses in different 

manipulations of data. For each problem, we will define equations for the transformations that take 
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place in Σ, and solve those equations to find the interesting relations that we are searching for. The 

equations are called data-flow equations [6], and share the form presented in Equation 1. 

out[Σ] = gen[Σ] ∪ (in[Σ] – kill[Σ]) 

Equation 1 – Generic data-flow equation. 
The equation should be read as “the information at the end of Σ is either generated within Σ, or enters at the 
beginning and is not killed as control flows through Σ”. 

We are now able to enumerate some data flow problems, after introducing a few more concepts. 

Definition 5 – Definitions of a variable. We say that a statement S defines a variable v if 

some execution of S might change the value of v. 

The usual definitions of variables are assignments to them. However, in the general case when the 

language allows pointers to variables, for example, we may define a variable v by an indirect 

assignment through a pointer to it. 

We say that a definition S of v is killed by T if there is a valid execution path from S to T, and T defines 

v. 

Definition 6 – Availability of an expression. We say that an expression x+y4 is available 

at the statement T, if it was computed in a previous definition S, and the variables x and y 

could not be changed between S and T. 

The common case of availability of expressions is when the same value is stored in many variables in 

sequence, such as in the following example: 

Example of availability of expressions. 

S1  wheel1_radius := tan
-1 (k*pi/2) 

S2  wheel2_radius := tan
-1 (k*pi/2) 

S3  wheel1_circumference := 2*pi * tan
-1 (k*pi/2) 

In the example given above, the expression tan-1 (k*pi/2) is used three times. But the optimizer 

can avoid recomputation by detecting that this expression is still available at S2 and S3
5, and replacing 

the repeated expressions with a reference to wheel1_radius. This optimization task is also nice for 

the developer, since he does not need to worry about creating temporary variables to optimize by 

hand such things. 

Definition 7 – Live variables. We define a variable v being live at the point S in the 

program, if it can be used in some execution path starting at S. On the other hand, we 

say that the variable v is dead at S if it would never be used after the control reaches S. 

Variables which are dead at a point S can be deallocated from memory when control reaches S, since 

if S is reached, the variables are not needed anymore. 

                                                      

4 Following the same strategy of [6], we use the expression x+y as a particular case for the sake of simplicity, but 
the same definitions can be easily extended to any arbitrary expression, using any combination of operators 
and variables. 

5 The case of S3 would require the optimizer to match against sub-expressions of the right hand side of 
assignments.  
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Definition 8 – Use of a variable. A variable v is used at the statement S if its r-value may 

be required. For example, the statement a[b] := c uses both variables b and c, but not 

a. 

4.2.1 Data Flow Problem: Reaching Definitions 

In the reaching definitions problem, we are interested in discovering which is the last definition of a 

variable v in a given point of the programs execution. 

For example, in the fact program, we have four definitions: S1, S2, S4 and S5. If we are interested in 

knowing which is the last definition of the variable f in the statement S6, we can solve the system of 

equations that arise when applying Equation 1 to each basic block. Note that, in this particular case, 

after the first iteration on the loop {B2, B3}, the gen[S3] is propagated to in[S2], and since they are not 

killed in S2, they propagate further to out[S2]. 

For reference, the solution to the problem for the frac program is: 

 

Equation 2 – Solution to the reaching definitions problem for the frac program. 

Result of applying the Equation 1 to the basic blocks of the frac program. 

As we can see from in[B4], both S2 and S4 which are definitions of f might reach B4, so we cannot tell 

at compile time which of the two results will be printed by the frac program when the execution takes 

place. 

But if we hypothetically had realized that S4 could not reach B4 in the frac program, we could just 

replace the value of f in S6 with the right-hand side of the only definition that reached the output 

statement, resulting in S6 becoming output 1. We could then infer at compile time that the program 

always outputted the value 1, regardless of the execution paths it takes. 

4.2.2 Data Flow Problem: Available Expressions 

In this data flow problem, we are interested in finding what sub-expressions are available at a given 

point in the programs control flow. If we manage to retrieve this information, we can then try to match 

the available expressions with uses of them, and avoid re-computing them by replacing the repeated 

usages with its previously computed value. 

We can define that an expression x+y is killed by a sequence of statements Σ if Σ defines x or y, and 

does not re-compute x+y afterwards. The same expression is generated by Σ if Σ evaluates x+y 

through its execution path, and does not kill it afterwards. The system of data flow equations can be 

in[B1] = ∅ 
out[B1] = gen[B1] = {S1, S2} 

in[B2] = out[B1] ∪ out[B3] = {S1, S2, S4, S5} 
out[B2] = in[B2] = {S1, S2, S4, S5} 
in[B3] = out[B2] = {S1, S2, S4, S5} 

out[B3] = gen[B3] ∪ (in[B3] – kill[B3]) = {S4, S5} 
in[B4] = out[B2] = {S1, S2, S4, S5} 
out[B4] = in[B4] = {S1, S2, S4, S5} 
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solved for in, which represents the set of available expressions at the beginning of each sequence of 

statements. 

4.2.3 Data Flow Problem: Live-Variable Analysis 

In the live variable analysis, we would like to know if a given variable v is live at the point P in the 

program. 

In this kind of problem, we should define the sets in[Σ] to be the set of variables live at the beginning of 

Σ, and out[Σ] to be the set of live variables at the end of Σ. Let def[Σ] be the set of variables assigned 

values in B prior to any use of that variable in Σ. And, finally, let use[Σ] be the set of variables whose 

values may be used in Σ prior to any definition of the variable. Then the data flow equations for this 

problem becomes: 

in[Σ] = use[Σ] ∪ (out[Σ] – def[Σ]) 

Equation 3 – Data flow equations for the live variable analysis problem. 
A variation of the Equation 1, which is used to solve the live variable analysis problem. 

These equations are basically the same as the originals, with the exception that in and out have 

exchanged roles, and use substitutes gen as well as def substitutes kill [6]. 

4.2.4 Data Flow Problem: Use-Definition (UD) Chains 

The ud-chaining problem is to compute for a point S the set of uses of a variable v, such that there is 

at least one path from S that does not redefine v. 

Solving this problem, we are allowed to infer, for a definition S of the variable v, which statements 

might use the value computed at S. 

Just as with live-variable analysis, we use the backward version of the data flow equations: 

in[Σ] = up[Σ] ∪ (out[Σ] – def[Σ]) 

Equation 4 – Data flow equations for the use-definition chains problem. 
A variation of the Equation 1 in its backward form, which is used to solve the use-definition chains. 

4.2.5 Solving Data Flow Equations 

We present now an algorithm described in [6] to iteratively solve the system of data flow equations 

given in Equation 1, in the general case of arbitrary control flows. The other problems can be solved 

by the same mechanism, since their set of equations are equivalent. 

We begin by calculating gen[B] and kill[B] for each basic block B in the program. We then start with 

the estimative of in[B] = ∅ for each basic block B, and iteratively estimate out[B] based on the pre-

calculated values of gen[B] and kill[B]. 

The iteration step is given by the two following equations, which has to be applied for each block B of 

the program.  
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Equation 5 – Iterative method for solving data flow equations in the general case. 
This method solves the data flow equations for both in and out, given gen and kill for every basic block. 

In Equation 5, P1…Pn are the predecessors of B in the flow graph. 

Intuitively, the algorithm propagates the definitions as far as they will go without being killed, in a 

sense simulating all possible executions of the program [6]. 

4.3 Variable Aliases 

In data flow analysis, we commonly assume that every variable is isolated from the others. This 

assumption means that any definition leaves all variables unchanged, except perhaps the defined 

variable. This might not be the case, when the source language allows aliases for variables – also 

called pointers – which consists in two variables a and b sharing the same memory location. In those 

cases, a definition of a also defines b, and a use of a is also a use of b. 

When the language allows generic pointers, we cannot infer properly which variables are aliased, so 

we must assume the worst case. In such cases, a definition of a pointer is also a definition to any 

other variable, and its use is possibly a use of any variable [6]. 

In languages which allows only variables within a same array to be aliased, we say that a pointer a 

could be an alias of b only if they both point to the same array. 

Fortunately, the case in the OutSystems language is the later. The only notion of arrays in 

OutSystems is accomplished by record lists, which are typed linked lists. When a record list is 

assigned to a variable, it is not copied by value, but by reference instead, leaving a list with two 

independent pointers to its elements. Those two pointers may point to the same memory location, and 

thus constitute aliases of one another. 

4.4 Inter-procedural data flow 

When compiling the application, we usually have all the information about its procedures that we can 

use to achieve optimizations. For instance, a procedure might not use one of its input parameters. 

While this can sound a bad design for a procedure, it’s often not. 

Particularly in OutSystems applications, a procedure might receive a record, or record list, as an input 

parameter, and might not use all of its attributes. If the record or record list comes from a database 

query (which is often the case), we may optimize the query not to fetch the attribute value, reducing 

the data transfer between the application and the database management system. 

Several inter-procedural optimizations can be made, such as inlining procedure calls, and optimizing 

call overhead in some cases. Although these optimizations are a good topic for research, we think that 

they are not worth optimizing in the class of web applications. We are inclined to the database 

optimizations, which could lead to greater runtime savings in time, memory and network bandwidth. 

in[B] = out[P1] ∪ out[P2] ∪ … ∪ out[Pn] 

out[B] = gen[B] ∪ (in[B] – kill[B]) 
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Inter-procedural optimizations also can use the extension of data flow to inter-procedural problems. 

We can construct a call graph, whose nodes are procedures, and edges P→Q represent a procedure 

Q call inside procedure P. For each procedure Q, we can define its gen[Q] and kill[Q], and we can 

further use this information in the call sites within P to gather inter-procedural data flow information [8]. 

4.5 Inter-module optimizations 

When an application can refer to outside modules, such as compilation units managed independently, 

we often cannot use optimizations because we have no information about the external module at 

compile time, and we need to consider the most conservative case. 

In OutSystems Platform, in order for an eSpace to be fully successfully published, it must be compiled 

when every needed dependency is available. Thus, we can gather in compile time information about 

the external modules. We thus can use this information to optimize the interactions between the 

application and the external module. 

Although this problem relates to inter-procedural analysis, they are not equivalent because the 

modules are managed independently from the application. However, we can bypass this as an issue 

by doing inter-procedural optimizations when the entire program is presented to the compiler at once, 

or by constructing the call graph iteratively as the modules are linked together [8]. 
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5 Inter-procedural Optimizations in OutSystems Compiler 

In this chapter, we investigate the problem of optimizing procedure calls in the OutSystems language. 

We propose a solution to the problem, and its implementation. Finally, we show the results obtained 

by the chosen solution in real applications. 

5.1 Objective of the OutSystems Compiler 

In previous sections, we have motivated the reader for the data transferring bottleneck in traditional 

web applications. These data transfers can become a bottleneck mainly in two distinct cases. 

• Data being transferred from the database to the application, as a result of a query. 

• Rendered data transferred from the application to the client browser. 

We have already mentioned that the OutSystems language defines two data querying primitives, and 

that both have design limitations that require an optimizing compiler to overcome. Let’s rephrase what 

concerns the optimizer about database transferring. 

• The optimizer should decide the optimal projection to be used in the underlying SELECT SQL 

query. To accomplish this task, it needs to retrieve information about the usage of the output of the 

query in the application, and decide what are the relevant tables and columns in the projection. 

• It is desirable to differentiate between a query whose output is never iterated, or iterated only 

once, or multiple times. Knowing about the iterations of a query helps the optimizer to choose 

whether to fetch the rows one at a time, or all at once. 

To optimize the rendered data, we should optimize the viewstate storage, by serializing only the data 

that is needed. Thus, the compiler needs to know if a given variable can be used after the request is 

sent to the browser. 

5.2 Architecture of OutSystems Compiler 

In the OutSystems language, a program is composed of procedures, which can be screens or actions. 

Both screens and actions have a flow graph, with statements as the graph nodes. The following 

illustration shows a flow graph for the frac program introduced in Section 4.1, implemented in the 

OutSystems language as an action. It is interesting as the application is designed at the control-flow 

level, as can be seen by comparing Figure 6 to Figure 5. 
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Figure 6 – The frac program implemented in OutSystems Service Studio. 

In the central pane, we see the implementation of the frac program. In the right pane, we can see the Frac 

action signature, with an input parameter n, an output parameter f, and a local variable i. 

In OutSystems language, the flow graphs nodes can be assignments, queries, or procedure calls. 

Each node has its set of used variables, and a set of defined variables. For example, query nodes 

have input parameters, which may use variables defined earlier, and an output record list, which is a 

variable defined by the query node. Nodes for procedure calls also have input parameters and output 

parameters, which behave exactly in the same way. 

In fact, a variable of type record list, as in the case of a query result set, can be viewed just as a 

compound of its attributes. We can assume that the attributes can be defined and used individually. 

For this assumption, we define the notion of identifier, which the main data structure handled by the 

optimizing compiler: 

Definition 9 – Identifier. An identifier is an atomic memory location, which can be defined 

or used. Because recursive types are not supported, every variable of any type has a 

finite number of identifiers. 

The advantage of manipulating identifiers, instead of whole variables, is that we can compute the 

usage of each identifier individually. The usages of the attributes of a query output can then help 

optimize the SQL projection used. 

The algorithm used for the OutSystems optimizing compiler is a modified solver for the live variables 

data flow problem, in which we compute liveness of identifiers instead of variables. It optimizes each 
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procedure at a time, and for each procedure returns the set of identifiers that are used in the given 

procedure. 

When optimizing a given procedure, the optimizer acts conservatively, and considers every output 

parameter of the procedure as potentially used. In every procedure call, it also considers every input 

parameter passed to the called procedure as potentially used. 

For a given query node, the liveness of each of its attributes is computed. If a given attribute A is not 

live at the end of the query node, it surely is not used at all in the procedure. The optimization which 

arises from this situation, is that we can exclude the column of attribute A from the underlying SQL 

projection. 

The iteration count of every query is also computed. In case the output of a query is used as input to a 

procedure call, or when it is used as an output parameter, the compiler assumes it is iterated multiple 

times.  

For the viewstate optimization, we can compute which are the live identifiers at the point where the 

screen is rendered and sent to the browser. Each live identifier at this point can potentially be used in 

subsequent requests, and thus must be serialized into the viewstate. 

5.3 Use Case for Inter-procedural Optimizations 

During the motivation presented in Section 2.2, we stated that the lack of inter-procedural 

optimizations implied that the application abstractions could not be optimized. In this section, we 

present a use case where a given abstraction could benefit from inter-procedural optimizations. 

Suppose we have an application to manage users. The User entity is a special entity in OutSystems 

language, and is included in every application by default. The following illustration shows the definition 

of the User entity. 

 

Figure 7 – User entity. 

The User entity, and its attributes. Since it is a system entity, its attributes cannot be changed in the application. 

Suppose we want to create an abstraction for the user to use in the application. We could define the 

following operations: 

• GetUserById(UserId) -> Record<User> 

Retrieves the record of a user, given its id. 

• GetUserByName(Username) -> Record<User> 

Retrieves the record of a user, given its username. 

• GetEnabledUsers() -> RecordList<User> 

Retrieves the list of all users that are enabled in the application. 
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• DisableUsers(RecordList<User>) -> void 

Receives as input parameter a list of users, and disables them all in the application. Returns 

nothing. 

The set of these operations define an API to manipulate users. 

The illustration that follows shows the implementation of one of such operations. 

 

Figure 8 – Implementation of the GetEnabledUsers operation in OutSystems Service Studio. 
The implementation uses a database Simple Query node, labeled EnabledUsersQuery, to retrieve the enabled 
users, and outputs the retrieved record list. 

The GetEnabledUsers action outputs a record list of the User entity, which has several attributes. If 

no inter-procedural optimizations are performed, the worst case needs to be assumed, and every 

attribute from the GetEnabledUsers output needs to be considered potentially used. The lack of 

such optimizations would imply that the query EnabledUsersQuery will not be optimized. 

Enabling inter-procedural optimizations would allow the compiler to compute the actual usages of the 

output of GetEnabledUsers, and not just react pessimistically, but realistically. 

Suppose now that, in our hypothetical application, the output of the GetEnabledUsers is used to 

display a list of their names. This use case would tell an inter-procedural optimizer that not every 

identifier outputted by GetEnabledUsers is actually used by the application. It would tell even more, 

that the only used attribute was the Name attribute, and perhaps the Id. Knowing this information, the 

compiler could optimize the EnabledUsersQuery, and use a underlying SQL projection to only 

retrieve the Name and Id attributes. 
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5.4 Alternatives for Inter-procedural Optimizer Implementations 

The class of data-flow problems can be extended to the corresponding inter-procedural problem. We 

could build a data flow graph for the entire program, in which calls from procedure P to procedure Q 

are replaced with assignment of actual parameters, and a flow of control to the start of Q. 

To solve the data-flow equations in this connected graph we could use the general iterative method in 

Equation 5. 

However, connecting all the graphs of every procedure of a program raises scalability issues. When 

the number of procedures of a program grew, the OutSystems compiler has always scaled with 

approximately constant memory, because each procedure is optimized individually. Solving the data-

flow problem for the whole program would not scale in memory. Additional memory would be required 

to compile the existing applications, which would represent a necessary upgrade cost for OutSystems 

clients. Although we haven’t measured the relative difference in memory requirements, it was clear 

that this approach would impose unwanted scalability constraints in the OutSystems compiler, and we 

had to research for other alternatives. 

The alternative of inlining procedures could not be considered in this case. It consists in replacing the 

call to a procedure with a code equivalent to the called procedure, which is usually accomplished by 

duplicating the procedure code, and injecting it in every call site. It was attractive, because it would 

imply no changes in the optimizer besides the inlining. It would make the application size inevitably 

grow, requiring more memory by the compiled application. And the growth of the application size 

would happen with the growth of the number of procedure calls, which is even worse than the previous 

alternative. 

Other alternative which we found was to extend the existing optimizer, in order to make it aware of the 

inter-procedural optimizations. This ideal could be accomplished by iterative refinement of the inter-

procedural usages of variables. 

We slightly modify the procedural optimizer, in order to provide to it information about the inter-

procedural usage. The procedural optimizer then optimizes a procedure, and making realistic 

decisions upon the inter-procedural boundaries. On the other hand, the optimization of the procedure 

yields refined information about the inter-procedural usages that occur inside it. 

This approach seemed to have a good trade-off between architectural complexity, memory 

requirements, compilation time, and impacts in the compiled application. It could be implemented as a 

layer on top of the existing optimizer, thus having a reduced implementation risk. Since every 

procedure would still be optimized independently, the memory requirements would be almost the 

same, with the only difference being the need to store the inter-procedural usages. 

Unfortunately it would require a longer optimization time, since every procedure would need to be 

optimized many times, until the refinement was complete. Although a small compilation time is a 

desirable feature of a compiler, it is not a critical factor since it does not imply additional hardware 

costs. Users usually accept the compilation time to slightly grow with a newer release of a compiler, 

and are willing to wait for a longer compilation at the exchange of an optimized application. 
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5.5 Inter-procedural Algorithm 

In order to introduce the algorithm used by the inter-procedural optimizer, we first start by some 

notation and definitions. 

The following definitions describe the structure of a program, in what concerns the optimizer. 

Definition 10 – Program ����. A program � is a set of procedures, � = {P1, P2, …, PN}. 

Definition 11 – Variables of a program ����. By �(�) we denote the set of all variables of a 

program �. 

Definition 12 – Variables of a procedure. Given a program � and a procedure P ∈ �, we 

denote var(P) ⊂ �(�) as the set of variables local to procedure P. The output of query 

primitives, and the outputs of procedure calls are also variables. 

Definition 13 – Input parameters of a procedure. Given a program � and a procedure 

P ∈ �, we denote in(P) ⊂ �(�) as the set of input parameters of P. 

Definition 14 – Output parameters of a procedure. Given a program � and a procedure 

P ∈ �, we denote out(P) ⊂ �(�) as the set of output parameters of P. 

Definition 15 – Call graph. For a given program �, we can construct a call graph, which is 

an directed graph with a node for each procedure P ∈ �, and one edge P→Q if P calls Q. 

We should clarify that the set of variables of two procedures are not generally disjoint. When a 

procedure P calls another procedure Q, the output variables of Q become part of the variables of P. 

Lets state this in a corollary. 

Corollary 1 – Inter-procedural scope of variables. Input parameters of P are available 

only in the scope of P. Output parameters of Q are available in the scope of P if and only 

if P calls Q. Formally, we have in(Q) ⊂ var(P) if and only if P = Q, and out(Q) ⊂ var(P) if 

and only if P calls Q. 

The procedural optimizer algorithm, which deals with optimizations local to procedures, is responsible 

for finding the set of used variables inside a procedure P. It evaluates the liveness of each variable in 

every point of the procedure. We now define the properties that are relevant for the variables handled 

by the optimizer. 

Definition 16 – Used variables. A variable v ∈ var(P) is said to be used inside procedure 

P if it is live in at least one point after its definition in P. 

Definition 17 – Local usage predicate. For a given procedure P, we define a function 

called local usage predicate ϕP: var(P)→{true, false}, defined as to have ϕP(v) = true 

if and only if v is used inside P. We might omit the subscript when the procedure P can be 

clearly inferred from the context. 

Definition 18 – Inter-procedural usage predicate. For the program �, we define a 

function called inter-procedural usage Φ: �(�)×�→{true, false}, defined as follows: for 
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every two procedures P, Q ∈ �, and a variable v ∈ Q, we have Φ(v, P) = true if and only 

if v is used inside P. Moreover, we define this function only for input and output 

parameters of the procedures. 

Definition 19 – Total inter-procedural usage predicate. For the program �, we define a 

function called total inter-procedural usage Φ : �(�)→{true, false}, defined as 

Φ (v) = true if and only if v is used in at least one of �’s procedures. The function Φ  can 

also be defined as ∑
∈

Φ=Φ
�P

)P,()( vv , where the Σ operation stands for the boolean OR. 

With the definitions in hand, we are now able to characterize the procedural optimizer algorithm. We 

do not present its implementation, as it is outside the scope of the work, but it follows a modification of 

the data flow solving algorithms described in Equation 5. Nevertheless, we describe its relevant 

properties, which it needs to satisfy in order to be used in the inter-procedural optimizer. 

Function procedureOptimize 

Inputs: Procedure P; Total inter-procedural usage Φ  

Outputs: Local usage ϕ 

The function procedureOptimize optimizes a given procedure P, and outputs the computed local 

usage predicate for the procedure P. It additionally uses the total inter-procedural usage predicate Φ  

in order to be able to optimize the inter-procedural boundaries. It should also obey the following 

corollary: 

Corollary 2 – Dependencies of the local usage predicate. The local procedure usage 

ϕP for a given procedure P depends only of the P structure, the inter-procedural usage of 

its output parameters, and the inter-procedural usage of the input parameters of the 

called procedures. 

Corollary 2 follows directly from the definition of liveness. In the scope of a procedure, the definitions 

of variables flow either to its output parameters, or to the input parameters of other procedures. Thus 

Corollary 2 is not an additional requirement for procedureOptimize. 

We now present the inter-procedural optimizer, which uses the function procedureOptimize 

iteratively to refine the inter-procedural usages of the program. 
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Function optimize 

Inputs: Program � 

Outputs: set of used variables of � 

Algorithm: 

L1 call-graph ← buildCallGraph(�) 

L2 initialize Φ(0) such that: 

 v ∈ in(P) ⇒ Φ(0)(v, P) is true 

 v ∈ out(Q) and P calls Q ⇒ Φ(0)(v, P) is true 

 otherwise Φ(0)(v, P) is false 

L3 i ← 0 

L4 while i = 0 or Φ (i) ≠ Φ (i-1) do: 

L5  i ← i+1 

L6  Φ (i) ← Φ (i-1) 

L7  for each P ∈ � do: 

L8   ϕP
(i) ← procedureOptimize(P, Φ (i)) 

L9   for each v in in(P) do: 

L10    Φ(i)(v, P) ← ϕP
(i)(v) 

L11   for each Q ∈ � such that P calls Q do: 

L12    for each v in out(Q) do: 

L13     Φ(i)(v, P) ← ϕP
(i)(v) 

L14 output {v ∈ �(�) | ϕP
(i)(v) is true for some P ∈ �} 

In line L1, we build the call graph of the program. The call graph is an important data structure for 

inter-procedural problems, since it synthesizes the calls between the procedures of a program. In this 

algorithm, it can be used to efficiently tell if a procedure calls another. 

The initialization in line L2 represents the pessimistic assumption that all input and output parameters 

are potentially used, in the conditions of Corollary 1. 

In L8, the procedural optimizer is called for a procedure P, and returns information about the usages 

inside P. All the following lines, from L9 up to L13, stores into Φ
(i)

 information about the inter-

procedural variables used inside P. They use Corollary 1 to cut down the number of updates to Φ
(i)

. 

Finally, in line L14 after the stabilization of the algorithm, we find all the variables of the program � 

which are used inside some procedure P. For each procedure, we use its most recently calculated 

local usage predicate ϕP
(i)

, to discover its used variables. 

5.5.1 Improvements 

When optimizing a procedure P, there could be two distinct cases where an inter-procedural 

optimization can take place. The first one, is that any variable v which is used only by an output 

parameter o, ceases to be live when Φ (o) = false. The other case, where a variable v is used as 

input parameter i to a procedure Q, and Φ (i) = false implies v being not live. The optimization of v 

could eventually affect Φ , and open opportunities for other optimizations in other procedures. 
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We can describe this effect as a flow in inter-procedural optimizations, where a single optimization 

implies a chain of other optimizations. 

It is interesting if we could perform the entire chain of optimizations in the same iteration. That 

becomes possible if the procedures are optimized in the same order as the chain of optimizations. So 

let’s introduce the topology of the graph which holds the possible optimization chains. 

Definition 20 – Inter-procedural chain. We say that there’s an inter-procedural chain 

from procedure P to procedure Q, with P ≠ Q, if a change in Φ(P, v) from true to false 

implies a change in ϕQ for some variable v ∈ var(P). 

Definition 21 – Inter-procedural chain graph. The inter-procedural chain graph is a 

directed graph, with a node for each procedure P, and an edge from P → Q if there’s an 

inter-procedural chain from P to Q. 

Theorem 1 – Inter-procedural chain graph topology. Given a program �, and its call 

graph G, we define G
-1

 as being a directed graph with a node for each procedure, and an 

edge P → Q if one of P → Q or Q → P is an edge of G. Then the inter-procedural chain 

graph is a sub graph of G
-1

. 

Proof. Theorem 1 is equivalent to say that there’s an inter-procedural chain from P to Q, 

only if either P calls Q or Q calls P. 

In fact, it follows from Corollary 2 that changing the value of Φ(P, v) for v ∈ in(P) could 

possibly impact the callers of P. Also because of Corollary 2, if P calls Q, then changing 

the value of Φ(P, v) for v ∈ out(Q) could have implications Q’s local usage. This proves 

that there’s an inter-procedural chain from P to Q if P calls Q, or Q calls P. 

On the other hand, if P doesn’t call Q, and Q doesn’t call P, it follows from Corollary 2 that 

neither procedure can have influence on the local usage of the other.■ 

Finding a linear ordering of the inter-procedural chain graph is not always possible, because it is a 

cyclic graph. But we can at least improve the ordering to meet a subset of the chain. By spanning a 

maximum acyclic sub graph of G
-1

, we are able to determine a linear ordering of the procedures, which 

is coherent with a subset of the possible chains. The criteria for determining the spanning tree can be 

arbitrary. 

Other improvement which can be made to the algorithm is to note that, from Corollary 2, the 

calculation of ϕP
(i)

 in line L8 depends only in the inter-procedural usage of the inputs of the procedures 

called by P. It follows that, if these usages do not change from iteration i-1 to iteration i, the predicate 

ϕP
(i)

 will be equivalent to ϕP
(i-1)

. This property is useful, so we can avoid recalculating the usages of 

procedures that are already stable, and focus on the procedures that can be further optimized. 
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5.6 Implementation 

The original OutSystems compiler used a data-flow solving algorithm, with a pessimistic strategy for 

inter-procedural interactions. Internally, the algorithm dealt with finding the liveness of identifiers, 

because variables in OutSystems are a well-defined concept. Although we speak of identifiers in the 

context of the OutSystems compiler, this definition is semantically equivalent to the variables referred 

by the literature. 

Upon its initialization, the algorithm calculated every definition and usage for each statement of a 

given procedure. By definition, the start node of a procedure defined the input and output parameters. 

For a node which could yield an output of the program – such as storing a value in the database, 

changing a session variable, or rendering of a widget – the algorithm calculated the used identifiers. 

The end nodes in a procedure, by definition, used all output parameters of the procedure. This allowed 

to compute the liveness of every identifier, assuming that all the outputs of the procedure were used 

when the procedure ended its execution. 

Similarly, when calling a procedure, every actual input parameter was considered as used. 

The first step in the implementation was to discontinue these assumptions. The algorithm should now 

receive as input the information about what are the live inputs and outputs of a procedure. 

There were two modifications to the original algorithm to benefit from this information. The end node of 

the procedure sets the used variables according to its total inter-procedural usage Φ . Also, when a 

procedure is called, we do not set as used the expressions used as input parameters whose total 

inter-procedural usage is false. 

 

Figure 9 – GetEnabledUsers definitions and uses without inter-procedural optimizations. 

The procedure GetEnabledUsers, showing the definitions in the start node, and the uses in the end node. 

Without inter-procedural optimizations, every output is considered to be used after the procedure execution. 
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Figure 10 – GetEnabledUsers definitions and uses with inter-procedural optimizations. 

The procedure GetEnabledUsers, showing the definitions in the start node, and the uses in the end node. With 

inter-procedural optimizations, the end node now holds the realistic assumptions about the usage of the output 
identifiers. 

With the implementation of procedureOptimize in hands, we could finally implement the inter-

procedural optimizer. 

The call graph of the program is built, and a maximum spanning tree algorithm is used to obtain an 

acyclic graph. To calculate the maximum spanning tree, the call graph was labeled with negative 

values, in our implementation proportional to the number of call sites between the procedures. Then a 

minimum spanning tree algorithm was applied, and computing a forest instead of just a tree, to allow 

disconnected call graphs that arise in applications with many entry points. 

The topological order of the forest obtained is used to improve the convergence of the inter-procedural 

chains. We have performed tests to validate this choice, by running the algorithm without any special 

order, and running it with the topological order, and its inverse. 

For the predicate Φ, we used a composed structure called InterProceduralUsage. For the input 

parameters, the structure stored in a hash-table the set of live identifiers, with the procedure as key. 

For the output parameters, we had to use a matrix, that for each pair of procedures (P, Q), stored the 

set of output parameters from P which were used in Q. 

The interprocedural optimizer, at the end of each procedure optimization, updates the usages of the 

input parameters and output parameters in the InterProceduralUsage structure, corresponding to lines 

L9 to L13 in the algorithm. 

When every procedure has been optimized in a given iteration, we store the number of used inputs 

and outputs for each procedure. Since the algorithm is monotonically convergent, this number can 

only decrease. We compare these counts with the counts from last iteration, and if they are equal we 

declare the procedure as being stabilized. The iteration has any changes if at least one procedure is 

not stable. 
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Our implementation also checks for redundant optimizations. It does not optimize a procedure again, if 

it already has stabilized, and every of its called procedures are also stable. This is a consequence of 

Corollary 2. 

The implementation also dealt with several architectural issues, such as having two distinct ways of 

calling a procedure (as an ExecuteAction node, and as a function call), public procedures, and 

assignments of record lists creating aliases. 

During the implementation of the algorithm, it was made three deliverables, to be tested later and 

compare their differences. They were: 

• The naïve implementation of the algorithm, that is to say, without any improvement mentioned in 

5.5.1. This executable was called OSHEComp v1. 

• The optimizer improved to skip unnecessary procedure optimizations. This binary was called 

OSHEComp v2. 

• The final deliverable, which additionally has the improved ordering of the procedures. It was called 

OSHEComp v3. 

5.7 Results 

In this section, we summarize the results gathered throughout this work, and the methodology for 

obtaining them. The raw data supporting the results hereby claimed are available in Annex. 

All results were obtained by using a PC with processor Intel Pentium 4 at 2.8GHz, 2GB of RAM 

memory, and running Microsoft Windows XP with Service Pack 2. The system had OutSystems 

Platform 4.0 .NET installed, with Microsoft SQL 2005 installed locally to support the applications. 

To measure the results of this approach in the OutSystems applications, it was taken a sample of 52 

real world applications, both for OutSystems internal use, and provided by clients. We ran the original 

compiler, and chose the 15 most complex applications to participate in the tests. Our complexity 

measure was the peak memory during the compilation of the application. The following table and chart 

shows the preliminary selection of these 15 applications. 
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Application 
Application Size 

(Compressed MB) 

Compiler Peak 

Memory (MB) 
Compilation Time 

EMS_PV.oml 1.766 588 0:00:54

issues.oml 2.773 452 0:00:42

ECHO_UI.oml 3.813 368 0:02:04

Billing.oml 2.079 343 0:00:44

reg_dashboard40.oml 2.223 323 0:00:26

ServiceCenter.oml 3.256 314 0:00:36

SLSRetail.oml 1.689 294 0:03:34

EMS_Customers.oml 1.855 274 0:00:24

EnergyMeasures.oml 1.359 216 0:00:16

regressiontool.oml 1.739 207 0:00:24

EMS_Assets.oml 1.131 187 0:00:13

EnterpriseManager.oml 1.301 164 0:00:16

EMS_Tennet.oml 0.858 157 0:00:10

IssueManager.oml 1.017 147 0:00:18

EMS_ProdProfile.oml 1.057 142 0:00:13

Table 1 – Preliminary selection results. 
The table shows the 15 applications chosen to participate in the results measurement. The other applications 
were omitted in the table, but appear in the graph in Figure 11. 
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Figure 11 – Graph for the performance of compilation of the available applications. 
Applications are plotted with the compilation peak memory against the compilation time. The chosen applications 
are distinguished from the ignored applications, and it’s clearly visible the low relevance of the ignored 
applications. 

In the graph in Figure 11, we can distinguish three applications which seem to be interesting to 

evaluate in performance terms. They are EMS_PV.oml, ECHO_UI.oml and SLSRetail.oml. The 

EMS_PV.oml application is the one we consider to be the most complex one, since it’s the one that 

takes up more memory. The later applications seem to have a superior compilation time, although 

they do not use as much memory as EMS_PV.oml. 

Given the chosen applications, we proceeded to the measure of the overall compilation performance, 

in different stages of development. We measured the compilation time, and peak memory, aiming to 

compare: 

• the official released compiler (OSHEComp 4.0); 

• the naïve inter-procedural compiler (OSHEComp v1); 

• the inter-procedural optimizer improved to skip unnecessary optimizations (OSHEComp v2); 

• and the final inter-procedural optimizer, with the ordering of the procedures (OSHEComp v3). 
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Every application was compiled four times, for every tested version of the compiler, and the average 

was taken. The peak memory difference between OSHEComp 4.0 and OSHEComp v3 is 20MB, which 

represents 7% of increase in memory requirements. The compilation time was risen by 5 seconds, 

which is 10% of the average compilation time. 
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Figure 12 – Peak memory comparison. 
The graph shows the differences between the peak memory consumption of several versions of the compiler. The 
values represent the average of the peak memory for all the tested applications. 

Time

0:41

0:43

0:45

0:47

0:48

0:50

0:52

4.0 v1 v2 v3

C
o
m

p
il
a
ti
o
n
 T

im
e
  
  
  
  
´

 

Figure 13 – Compilation time comparison. 
The graph shows the differences between the compilation time of several versions of the compiler. The values 
represent the average of the compilation time for all the tested applications. 

For each application, we have performed its compilation with the final inter-procedural compiler, 

OSHEComp v3. We have gathered information about the application itself, and the optimization stage, 

such as the number of iterations, and what are the individual gains at every iteration. We have 

compared the results obtained, with the original algorithm from OSHEComp 4.0. 

The results for every individual application are available in Annex. The query optimizations gains, 

when compared to the old algorithm, vary from 0% in EMS_Tennet.oml to 25,75% in 

EMS_ProdProfile.oml. The average static gain in the applications tested was 7%. 
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Figure 14 – Comparison of the gains in query identifiers between OSHEComp 4.0 and OSHEComp v3. 
The figure shows the absolute and relative gains of the tested applications, when a comparison is made between 
the official compiler OSHEComp 4.0, and the inter-procedural compiler OSHEComp v3. 

The inter-procedural optimizer, as would be expected, is slower than the procedural optimizer. The 

following chart compares the optimization times of the old optimizer in OSHEComp 4.0, and the inter-

procedural optimizer in OSHEComp v3. 
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Figure 15 – Comparison of the optimization times between OSHEComp 4.0 and OSHEComp v3. 
The figure shows a comparison between optimization times of the official compiler, and the inter-procedural 
compiler. 
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The chart in Figure 16 shows the convergence of the applications in the inter-procedural algorithm. 

Each application took a maximum of 4 iterations. It is interesting that, on the average, 66% of all inter-

procedural optimizations of an application will occur in the first iteration. 
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Figure 16 – Normalized convergence of the individual applications for the OSHEComp v3. 
The chart presents the iterations of the applications, and the percentage of used query identifiers in each iteration. 
The reference value, 100%, is the result which would be obtained by OSHEComp 4.0. 
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6 Future Work 

The current implementation of the algorithm in the product lacks support for partial compilation, which 

is a feature of the OutSystems Platform. It allows compiling only the modified procedures of an 

application and maintains the unmodified procedures from a cache. 

With inter-procedural optimizations, this feature needs to be reviewed, since modifying a given 

procedure could invalidate the generated code for an unmodified procedure, because an inter-

procedural optimization no longer applies in the newer version. This is a work beyond the scope of this 

thesis, but should be done before this kind of optimizations is released with the product. 

Related work already exists in the area of partial compilation. The authors of [9] use a framework to 

store the inter-procedural information upon compilation, and to track the changes to the procedures 

source code. If a given module is changed, the framework is capable of knowing which the 

procedures, if any are, that needs recompilation. It is only required that the compilations of a program 

be stored in a database, and that the editing of the source code can only be done through a tool which 

is integrated with the framework. 

In fact, their work is very suitable to be applied at OutSystems. We do have access to a database, 

where we can store inter-procedural information. And every supported editing operation is done by 

Service Studio, to which we have complete control. 

The current implementation also needs several treatments before it is officially a part of OutSystems 

platform. For instance, it lacks testing and quality assurance evaluations. 

We could also perform better optimizations if we specialize the procedures for some frequent usages. 

Suppose we have a procedure P which has outputs {A, B, C}. One typical usage of the procedure 

uses output A, but ignores outputs B and C. But scattered through the same application, there are 

other usages of the same procedure. Sometimes the output B is used, sometimes C, and sometimes 

the three outputs are needed in a given usage. 

In such a situation, our algorithm cannot optimize P, because all of its outputs are live in a given point 

of the application. To be able to tackle this problem, we should specialize the procedure P for its 

typical usages, following an approach similar to procedure inlining. 

We compile twin copies of P, such as P1 and P2. When the procedure P is called and only the output A 

is used, we replace it with P1. In every other usage, we replace P with P2. It follows that our algorithm 

now can perform a relevant optimization in P1, because by definition A is its only live output. 

For such modification of the algorithm, we should be able to determine statically which are the most 

profitable specializations. We could come up with a heuristic to cluster the usages of a procedure. 

Whenever a procedure P is called, we determine what is the subset O of outputs used in the call site. 

Then we determine the N most frequent subsets in the whole application, and specialize those 

procedures. 

The specialization as we described could be performed after the stabilization of the pure algorithm, 

without any modification. At this point, we could easily determine the usages in every call site of the 

application, choose the most profitable specializations, modify the call graph, and continue the 

algorithm until it stabilizes again. The second time the algorithm runs, we expect that most of the 
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procedures will remain stable, and only the specialized procedures and their callers would need to be 

iterated. 

Another way to deal with specialization is to dynamically select which specialization is preferred when 

invoking the procedure in runtime. Suppose we have a procedure P, and we compile some arbitrarily 

chosen specializations P1, P2, …, PN, optimized for output usages O1, O2, …, ON. When a procedure 

calls P, it provides the set of needed outputs in that particular call site. In runtime, the OutSystems 

Platform could decide which specialization fits in the requirements of the call being made. In the worst 

case, it would fall back to the procedure P compiled without inter-procedural optimizations. 

With this approach, the partial compilations would become trivial to implement. It would provide an 

invariant interface to the procedure, supporting transparently any call, and deciding which 

optimizations to use for each particular case. This interface could provide optimizations even to calls 

from outside of the application, from code which was unknown at compile time. 

Such a unified interface would also allow the evolution of the inter-procedural optimizer. Two 

applications compiled with different versions of the inter-procedural optimizer would benefit from inter-

procedural optimizations when communicating, as long as they respect the interface defined. 

OutSystems is inclined to research in the inter-procedural optimizations, with the main focus on the 

specialization of procedures, and with the objective to achieve optimizations even from cross-

application calls. 

We could also use statistical data for an application to base our optimization strategy. For example, 

we could store analytical information about an application in runtime, and use it to make static 

decisions when compiling newer versions. We could concentrate the optimization effort in the most 

executed queries in the history of the application. 

There is also a topic of research, which is to use a runtime profiler to collect information about the 

current execution of the application, and use it to perform dynamic transformations to the code. We 

could follow a JIT strategy, and specialize the procedures in runtime, as they are needed. This would 

require dynamic compilation of code. 
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7 Conclusion 

The main objective of this work, which was to implement inter-procedural optimizations in the 

OutSystems compiler, has been achieved successfully. 

We have presented concrete results, which show that the inter-procedural optimizer performs better 

than the original compiler, according to our static measures, by providing 7% more optimizations over 

the query fields. It was also shown that, for the average of the tested applications, the proposed inter-

procedural optimizer uses 7% more memory than the original, and in average spends 10% more on 

the compilation time.  

Because it was built upon the old procedural optimizer, it involved very few architectural changes, 

highly reducing the risk and cost of the project. Given the current dimension of the compiler, which has 

more than 70.000 lines of C# code, its modularity is becoming a concern. 

As we have said in section 2.2, an inter-procedural optimizer adds a great value to OutSystems 

product, because now the users of the OutSystems platform are able to create structured applications, 

without the performance issues it would incur without inter-procedural optimizations. This work is also 

a strategic step for optimizing the interfaces between two OutSystems applications. 

We are also aware of the bad practices building the OutSystems applications because of lack of inter-

procedural optimizations. We believe that the optimization rate of 7% we have obtained could be 

increased if the applications were better planned, and designed following encapsulation and well-

defined interfaces. 
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Annex 

 Application 

Application Size 

(Compressed MB) 

Compilation Peak 

Memory (MB) 

Compilation 

Time 

EMS_PV_v286.oml 1.766 588 0:54 

issues.oml 2.773 452 0:42 

ECHO_UI_v1908.oml 3.813 368 2:04 

Billing.oml 2.079 343 0:44 

reg_dashboard40.oml 2.223 323 0:26 

ServiceCenter.oml 3.256 314 0:36 

SLSRetail.oml 1.689 294 3:34 

EMS_Customers.oml 1.855 274 0:24 

EnergyMeasures.oml 1.359 216 0:16 

regressiontool.oml 1.739 207 0:24 

EMS_Assets.oml 1.131 187 0:13 

EnterpriseManager.oml 1.301 164 0:16 

EMS_Tennet.oml 0.858 157 0:10 

IssueManager.oml 1.017 147 0:18 

C
h

o
s
e
n

 

EMS_ProdProfile.oml 1.057 142 0:13 

Customer.oml 0.972 139 0:12 

EMS_CustomerPortal.oml 1.037 135 0:10 

IM_Obj.oml 0.813 123 0:13 

RenewalEngine.oml 0.566 109 0:10 

RenewalBO.oml 0.723 106 0:10 

Sales.oml 0.422 103 0:11 

EMS_Nomination.oml 0.433 100 0:06 

EMS_ITron.oml 0.782 99 0:10 

IM_API.oml 0.534 97 0:08 

EMS_ProfileManager.oml 0.645 96 0:08 

EMS_MessageExchange.oml 0.641 92 0:08 

EMS_ECP.oml 0.580 92 0:08 

MVSConnector.oml 0.599 78 0:08 

PushContents.oml 0.300 77 0:05 

EMS_WorkForceBilling.oml 0.474 69 0:06 

EMS_PowerBid.oml 0.322 68 0:05 

EMS_Portal.oml 0.290 65 0:04 

EMS_KW3000.oml 0.322 64 0:05 

EMS_MobileWorkForce.oml 0.273 63 0:06 

Enterprise.oml 0.230 60 0:05 

EMS_ContractManager.oml 0.372 59 0:05 

EMS_CRM_v218.oml 0.669 54 0:05 

EMS_WorkForceConnect.oml 0.185 54 0:05 

PartnerAPI.oml 0.169 50 0:04 

AuditEvents.oml 0.134 49 0:04 

VOS_CombipuntConnect.oml 0.277 48 0:06 

VOS_AxaptaConnector.oml 0.144 45 0:03 

SyncContentsWS.oml 0.165 43 0:03 

SSIE.oml 0.052 41 0:03 

WidgetLibrary40.oml 0.123 38 0:10 

EMS_ECH.oml 0.126 37 0:02 

EMS_SupplierSync.oml 0.089 37 0:03 

EMS_GridOpSync.oml 0.080 36 0:02 

EMS_EnergyICT.oml 0.059 36 0:02 

EMS_Metering.oml 0.055 32 0:02 

InstallBase.oml 0.051 31 0:02 

Ig
n

o
re

d
 

EMS_MessageBroker.oml 0.017 24 0:01 

Annex 1 – Table with statistics for the preliminary selection of the most complex 15 applications. 
The table shows the results of the compilation for the 52 sample applications. The results were sorted by peak 
memory consumption, and the top 15 applications were chosen to participate in the results gathering process. 
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         AVERAGE 

Application Mem. Time Mem. Time Mem. Time Mem. Time Mem. Time 

Billing.oml 341 0:36 343 0:43 343 0:44 342 0:43 342 0:42 

ECHO_UI_v1908.oml 373 2:05 368 2:04 366 2:04 385 2:05 373 2:05 

EMS_Assets.oml 129 0:14 183 0:14 130 0:14 138 0:14 145 0:14 

EMS_Customers.oml 285 0:24 273 0:24 275 0:24 281 0:24 279 0:24 

EMS_ProdProfile.oml 160 0:13 149 0:13 152 0:13 152 0:13 153 0:13 

EMS_PV_v286.oml 565 0:54 582 0:55 563 0:54 589 0:54 575 0:54 

EMS_Tennet.oml 158 0:10 155 0:11 155 0:11 157 0:10 156 0:11 

EnergyMeasures.oml 226 0:16 223 0:16 219 0:15 225 0:16 223 0:16 

EnterpriseManager.oml 164 0:16 165 0:16 174 0:15 163 0:16 167 0:16 

IssueManager.oml 144 0:18 136 0:17 142 0:17 138 0:18 140 0:18 

issues.oml 409 0:41 402 0:42 292 0:41 410 0:41 378 0:41 

regressiontool.oml 207 0:24 207 0:24 197 0:24 197 0:24 202 0:24 

reg_dashboard40.oml 325 0:26 324 0:26 323 0:26 347 0:27 330 0:26 

ServiceCenter.oml 314 0:36 316 0:37 318 0:37 314 0:36 316 0:37 

SLSRetail.oml 294 3:33 295 3:35 293 3:35 295 3:35 294 3:35 

            

AVERAGE 273 0:44 275 0:45 263 0:45 276 0:45 272 0:45 

Annex 2 – Table with the peak memory and compilation time for the OSHEComp 4.0. 
The table presents the measures for the compilation of the applications. Each application was compiled with 
OSHEComp 4.0 four times, and the average was taken in the last column. 

         AVERAGE 

Application Mem. Time Mem. Time Mem. Time Mem. Time Mem. Time 

Billing.oml 327 0:50 327 0:50 326 0:50 327 0:48 327 0:50 

ECHO_UI_v1908.oml 547 2:29 547 2:29 547 2:29 547 2:28 547 2:29 

EMS_Assets.oml 163 0:15 217 0:16 223 0:16 217 0:15 205 0:16 

EMS_Customers.oml 311 0:26 303 0:26 213 0:26 311 0:26 285 0:26 

EMS_ProdProfile.oml 161 0:15 148 0:15 163 0:15 159 0:15 158 0:15 

EMS_PV_v286.oml 622 0:58 624 0:58 622 0:59 622 0:58 623 0:58 

EMS_Tennet.oml 170 0:17 170 0:17 170 0:17 170 0:17 170 0:17 

EnergyMeasures.oml 189 0:18 201 0:18 195 0:18 201 0:18 197 0:18 

EnterpriseManager.oml 208 0:18 209 0:18 208 0:18 208 0:18 208 0:18 

IssueManager.oml 152 0:19 155 0:19 151 0:19 151 0:19 152 0:19 

issues.oml 424 0:58 385 0:57 407 0:57 368 0:57 396 0:57 

regressiontool.oml 283 0:31 283 0:30 302 0:32 301 0:31 292 0:31 

reg_dashboard40.oml 320 0:35 306 0:36 328 0:36 320 0:35 319 0:36 

ServiceCenter.oml 418 0:51 409 0:51 409 0:51 418 0:51 414 0:51 

SLSRetail.oml 299 3:20 288 3:17 298 3:19 298 3:20 296 3:19 

            

AVERAGE 306 0:51 305 0:50 304 0:51 308 0:50 306 0:51 

Annex 3 – Table with the peak memory and compilation time for the OSHEComp v1. 
The table presents the measures for the compilation of the applications. Each application was compiled with 
OSHEComp v1 four times, and the average was taken in the last column. 
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         AVERAGE 

Application Mem. Time Mem. Time Mem. Time Mem. Time Mem. Time 

Billing.oml 379 0:42 359 0:42 359 0:42 359 0:42 364 0:42 

ECHO_UI_v1908.oml 620 2:21 620 2:20 619 2:21 619 2:21 620 2:21 

EMS_Assets.oml 153 0:14 189 0:14 155 0:14 193 0:14 173 0:14 

EMS_Customers.oml 276 0:25 276 0:25 283 0:25 218 0:25 263 0:25 

EMS_ProdProfile.oml 128 0:14 128 0:14 126 0:14 125 0:14 127 0:14 

EMS_PV_v286.oml 601 0:56 597 0:56 593 0:56 601 0:56 598 0:56 

EMS_Tennet.oml 161 0:12 161 0:12 161 0:12 161 0:12 161 0:12 

EnergyMeasures.oml 219 0:16 222 0:16 215 0:16 217 0:16 218 0:16 

EnterpriseManager.oml 218 0:17 168 0:17 166 0:17 167 0:16 180 0:17 

IssueManager.oml 144 0:18 139 0:18 146 0:18 145 0:18 144 0:18 

issues.oml 475 0:47 424 0:46 442 0:45 296 0:46 409 0:46 

regressiontool.oml 202 0:26 200 0:26 202 0:26 204 0:26 202 0:26 

reg_dashboard40.oml 337 0:28 337 0:28 336 0:28 336 0:28 337 0:28 

ServiceCenter.oml 322 0:43 310 0:42 310 0:42 310 0:43 313 0:42 

SLSRetail.oml 307 3:31 310 3:31 310 3:30 310 3:32 309 3:31 

              

AVERAGE 303 0:47 296 0:47 295 0:47 284 0:47 294 0:47 

Annex 4 – Table with the peak memory and compilation time for the OSHEComp v2. 
The table presents the measures for the compilation of the applications. Each application was compiled with 
OSHEComp v2 four times, and the average was taken in the last column. 

         AVERAGE 

Application Mem. Time Mem. Time Mem. Time Mem. Time Mem. Time 

Billing.oml 357 0:42 357 0:44 357 0:42 357 0:41 347 1:24 

ECHO_UI_v1908.oml 615 2:19 619 2:19 409 2:16 579 2:18 556 2:18 

EMS_Assets.oml 192 0:14 133 0:14 195 0:14 130 0:14 163 0:14 

EMS_Customers.oml 286 0:25 232 0:24 285 0:25 198 0:25 250 0:25 

EMS_ProdProfile.oml 128 0:13 130 0:14 159 0:13 128 0:13 136 0:13 

EMS_PV_v286.oml 596 0:54 605 0:56 601 0:55 590 0:55 598 0:55 

EMS_Tennet.oml 148 0:11 163 0:12 161 0:12 151 0:11 156 0:11 

EnergyMeasures.oml 219 0:16 219 0:16 218 0:16 219 0:16 219 0:16 

EnterpriseManager.oml 226 0:16 171 0:16 180 0:16 180 0:16 189 0:16 

IssueManager.oml 153 0:18 147 0:18 148 0:18 149 0:18 149 0:18 

issues.oml 392 0:46 425 0:45 467 0:45 437 0:45 430 0:45 

regressiontool.oml 202 0:26 202 0:26 207 0:25 207 0:26 205 0:26 

reg_dashboard40.oml 338 0:28 337 0:28 334 0:28 336 0:28 336 0:28 

ServiceCenter.oml 312 0:42 326 0:42 325 0:42 335 0:41 325 0:42 

SLSRetail.oml 316 3:31 316 3:31 316 3:30 316 3:30 316 3:30 

              

AVERAGE 295 0:47 292 0:47 291 0:46 287 0:46 292 0:49 

Annex 5 – Table with the peak memory and compilation time for the OSHEComp v3. 
The table presents the measures for the compilation of the applications. Each application was compiled with 
OSHEComp v3 four times, and the average was taken in the last column. 
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Application 
Static Gain in Query 

Optimizations 
Loss in 

Optimization Time 

Billing.oml 0,92% 88% 

ECHO_UI.oml 10,74% 114% 

EMS_Assets.oml 3,99% 70% 

EMS_Customers.oml 2,44% 70% 

EMS_ProdProfile.oml 25,75% 233% 

EMS_PV.oml 2,81% 86% 

EMS_Tennet.oml 0,00% 195% 

EnergyMeasures.oml 2,59% 68% 

EnterpriseManager.oml 4,59% 59% 

IssueManager.oml 8,66% 12% 

issues.oml 11,44% 176% 

regressiontool.oml 4,78% 112% 

reg_dashboard40.oml 5,78% 140% 

ServiceCenter.oml 1,28% 119% 

SLSRetail.oml 21,61% 60% 

   

AVERAGE 7,16% 105% 

Annex 6 – Table with the main results. 
The table shows the gains in query optimizations, and their side-effects exposed as an increase in the 
optimization time. 
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Convergence of the Optimization Algorithm
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Annex 7 – Charts of the convergence of the applications. 
The three charts shows the convergence of the optimization of each application. The data was split into three 
graphs for the sake of legibility. The used query identifiers are plotted relatively to its value without inter-
procedural optimizations, which corresponds to the 100% in the graphs. 


