
MERMAID – MULTIPLE-ROBOT

MIDDLEWARE FOR INTELLIGENT

DECISION-MAKING

Marco Barbosa, Nelson Ramos and Pedro Lima

Instituto de Sistemas e Robótica
Instituto Superior Técnico

Av. Rovisco Pais, 1 – 1049-001 Lisboa, PORTUGAL

AbstractThis paper describes the basic concepts and features of MeRMaID
(Multiple-Robot Middleware for Intelligent Decision-making), a robot program-
ming framework whose goal is to provide a simplified and systematic high-level
behavior programming environment for multi-robot teams. MeRMaID constrains,
on purpose, some of the programmer’s options, and can accept plans described
by state machines, Petri nets and other types of decision-making algorithms,
including fuzzy-logic decision-making and rule-based systems. Its current version
enables concurrent multi-platform programming, modularity (for flexible module
replacement and easy module edition/modification), and independence from robot
hardware (since it includes an Hardware Abstraction Layer).

1. INTRODUCTION

Most of the software architectures currently used
with robotic systems enable creating robot test-
beds, reducing the user burden concerning com-
munications and data sharing, but requiring the
user to define the information flow, decision com-
ponents and execution flow. On the other hand,
several behavior coordination methods are avail-
able (Pirjanian, 1999), but usually they are not
associated to a programming environment where
robotic tasks are described at a reasonable level
of abstraction (e.g., programming behaviors as
state machines where states represent primitive
actions).

Several robotic-oriented middleware solutions ex-
ist, but they tend to offer very low level function-
alities to the end developer (e.g., YARP (Metta
et al., 2006) that is mainly focused on communi-
cation issues) or, even if they provide higher-level
components, fail providing the developer with a
precise guideline of how the system should be
built and the recommended software and system

architecture, e.g., MIRO (Utz et al., 2002) and
OROCOS (Bruyninckx, 2001).

In this paper we introduce MeRMaID (Multiple-
Robot Middleware for Intelligent Decision-making),
a robot programming framework whose goal is to
provide a simplified and systematic high-level be-
havior programming environment for multi-robot
teams, which simultaneously constrains some of
the developer options, so as to guide him/her
toward building better and maintainable code. In
MeRMaID, a high-level software architecture is
presented to the developer, who must develop (or
reuse) components that fit the architecture. This
way, MeRMaID ensures that separately developed
components will be more easily assembled to-
gether at integration time. Moreover, MeRMaID
is generic enough so that the developer can im-
plement/use several types of algorithms/methods
throughout the various architecture components
to accomplish a specific task.

MeRMaID is an evolution of previous versions
of the software architecture of the ISR/IST



RoboCup Soccer Middle Size League team ISocRob
(Lima et al., 2003), which have been used since
year 2000 with a team of 4 real cooperative robots.
The current goal is to use this framework in wider
application domains.

The paper is organized as follows: in Section 2
we list the most important requisites of robotic
system middleware, which guided us in the de-
velopment of MeRMaID, whose components are
detailed in Section 3. Section 4 provides an appli-
cation example, where the different components
are involved. The paper ends with the major con-
clusions and a list of ongoing work, in Section 5.

2. SOFTWARE REQUISITES

In developing robotic systems, a considerable
amount of the time spent is centered on software
development. Typically, a robot is equipped with a
standard computer running some Operating Sys-
tem (OS). While OSs already provide some kind
of abstraction from the underlying hardware, this
is not the ideal level in which roboticists would
like to work on. Ideally, one would like to define
the robot global behavior using some kind of high-
level formalism. For instance, if the robot behav-
ior is coordinated by a finite-state machine-based
schema, the developer should only have to define
the finite-state machine to control the robot. This
would require all the software between the OS
and the finite-state machine representation to be
standardized, so as to be used independently of
the underlying system architecture (comprising
both software and hardware components).

Unfortunately, Robotics is still far from achieving
this. Currently, most robot software is custom-
made for each robotic system and for a particular
application. In order to reach the goal of pro-
gramming high-level behavior coordination meth-
ods and the corresponding behaviors, it would
be useful to provide some standardization and
formal organization of the software sitting in-
between. Several projects attempted to create de-
veloper tools in order to accomplish this. These
software components can be generally described as
middleware for robotics application (in the sense
that they stand in the middle of the OS and
the representation of the behavior coordination
formalism). The currently available middleware
usually provides the developer with tools to ad-
dress common useful functional requirements of
the software components in robotic applications.
These functional requirements are:

• Parallelism: more than one software compo-
nent should be running simultaneously.

• Inter-component independency: components
should be as independent from each other as

possible. It should be possible to build and
use a component regardless of which other
components exist.

• Inter-component data sharing: components
should be able to share data among them-
selves.

• Inter-component servicing: components should
be able to request services from other compo-
nents, in the sense that components may ask
other components to do some kind of work
for them.

• Platform independence: components should
not need to know in which underlying plat-
form they are running on. Usually the OS iso-
lates software from the hardware, but compo-
nents should also be isolated from the OS in
order to be able to run the same component
in several platforms.

• Localization independence: components should
not need to know where a specific component
that it uses is located and running.

• Modularity: components should be built and
organized in a way to allow different imple-
mentations and algorithms to be used with-
out affecting other components. For example,
the developer should be able to replace the
current navigation algorithm by a different
one, without needing to make any change on
any other component besides the one respon-
sible for navigation of the robots.

• Multi-paradigm interaction: the middleware
should not put constraints on how compo-
nents should interact with each other (e.g.
event-driven programming vs flow-driven pro-
gramming)

• Real-time execution: certain robot tasks re-
quire to have real-time execution (e.g. com-
ponents that detect that a robot is malfunc-
tioning or if it is putting humans in danger).

Even if one has available a middleware that meets
all of these requisites, there is no guarantee that
a sound solution will be built. Decisions on how
to organize the existing components are required.
Therefore, it is desirable and useful to provide
the developer with a supporting architecture that
has already been tested and proven to work. Such
architectures can be seen as software design pat-
terns and their goal is to guide the developer
in structuring his solution. Even though the de-
sired middleware must be very generic in order
to cope with all the functional requisites, it is
possible (and desirable) to devise an architecture
to handle items that all robotic systems share,
such as sensors, actuators and control software.
This is the main purpose of MeRMaID, and what
distinguishes it from other existing middlewares.



3. MERMAID

3.1 Terminology

Throughout this paper, several software-related
terms are used, such as software architecture,
middleware and framework. Due to the fact that
some of these terms are sometimes used with
different meanings, we start by clarifying how they
should be interpreted in the context of this paper.

The term software architecture is used in various
contexts and there is no common definition of
what it really means. Crispen & Stuckey define
software architecture as (Crispen and Stuckey,
n.d.):

”An Architecture (...) consists of (a) a partition-
ing strategy and (b) a coordination strategy. The
partitioning strategy leads to dividing the entire
system in discrete, non-overlapping parts or com-
ponents. The coordination strategy leads to explic-
itly defined interfaces between those parts”

This is the general definition of software architec-
ture that is used in this paper. Although this def-
inition seems quite good, confusion may still arise
between two different perspectives of a software
architecture: horizontal software architecture and
vertical software architecture. The difference be-
tween these two is that while a horizontal soft-
ware architecture concerns only the organization
and interaction of software components within a
defined abstraction level, a vertical software archi-
tecture defines components and inter-component
communication spanning several abstraction lev-
els.

As an abstraction level we mean a collection of
software entities that provide an abstraction for
all underlying components in a system, be them
other software entities or hardware. The lowest
abstraction level is the computer’s firmware, nor-
mally followed by assembly routines, the operat-
ing system and system libraries, as proposed in
(Tanenbaum, 1979)

For the sake of simple terminology, the vertical
software architecture will be called as the system
architecture while the horizontal software archi-
tecture will be referred simply as the software
architecture.

In addition to the given definitions, we can also
define a software framework or simply framework :
from the developer’s point of view inside a given
abstraction layer, a framework is a collection of
software entities that reside in a lower abstraction
layer and which are used in the current one. These
software entities work cooperatively for a certain
task in a certain domain. A framework exhibits a
certain software architecture that will determine
how other software entities will access/use it.

Finally, software middleware or simply middle-
ware is defined as the collection of abstraction lev-
els that are between the system libraries and end
developer’s programming abstraction level (hence
the name). The end developer’s abstraction level
may be the final abstraction level or not. If not,
it’s up to the developer to build the remaining
levels.

3.2 MeRMaID Entities

The most relevant entities in MeRMaID are roles,
behaviors, primitive actions, navigation primi-
tives, predicates, and events. Their definitions fol-
low:

• Navigation primitive is a guidance algo-
rithm which, based on the current and tar-
get robot postures (position plus orientation)
and current self-localization estimate, com-
putes the required wheel speeds to move the
robot from the current to the target position
avoiding obstacles on the way.

• Primitive action is the atomic element of
a behavior, which can not be further decom-
posed. It usually consists of some calculations
(e.g., determination of the desired posture)
plus a call to a navigation primitive or the
direct activation of an actuator. Desirably,
it is designed as a STA (Sense-Think-Act)
loop, i.e., a generalized view of the closed-
loop control system concept. This means that
our middleware favors a primitive that moves
the robot towards its goal while avoiding
obstacles, rather than having one primitive
that moves towards the goal and another that
avoids obstacles.

• Behaviors are defined as ”macros” of prim-
itive actions grouped together using some
appropriate representation. For instance, a
behavior may consist of a state machine
which states represent primitive actions, and
transitions between states have associated
events, but it could also be defined by a fuzzy
decision-making algorithm based on fuzzy
rules, used to select sequences of primitive
actions to be executed.

• Predicates are Boolean relations over the
domain of world objects, e.g., see(x ), where
x can be ball, pole, or field line, in the soccer
domain, or near(r,x ), where r is any of the
team robots, and x can be any world object.

• Event is, in general, an instantaneous oc-
currence which denotes a state change (e.g.,
of a variable, of a robot). In MeRMaID,
we limit the event definition to changes of
(logical conditions over) predicates from True
to False or False to True (and we call these
internal events), though we include events



received from sources external to a robot
through a communication channel (these ex-
ternal events do in fact meet our definition,
as they could trigger a data change which
would trigger a predicate, resulting in an
event occurrence, but in practice we do not
do it this way, in order to simplify the im-
plementation). Examples of internal events
in robot soccer are: event lost object occurs
when the predicate has(object) changes its
value from True to False, and vice-versa for
event got object; event found object occurs
when the predicate see(object) changes from
False to True. Example of external events in
robot soccer are signals sent by the referee
box telling the robots to stop, execute a goal,
corner kick or a throw-in.

• Roles are subsets of behaviors, defined over
the set of available behaviors. When a role is
selected (e.g., Attacker, Defender, GoalKeeper
in the soccer domain), a new set of behav-
iors becomes enabled for selection by the
behavior coordination mechanism. In prac-
tice, a role constrains the possible options
for a robot selection of behaviors, effectively
constraining the overall behavior displayed
by the robot. Note that roles do not form a
partition over the set of available behaviors,
since there are behaviors that may be shared
by more than one role (e.g., GetClose2Ball for
the Attacker and Defender roles above).

3.3 Current Implementation

Our high-level software architecture is divided in 3
major building blocks, each of them having several
sub-components:

• ATLAS (i.e. the subsystem that supports
the whole system): is responsible for the
tasks most directly related to the robot’s
environment: sensing and acting.

· Devices: handle the low level interface
with physical-world devices (e.g. motors,
sonars, cameras).

· Sensors: obtain information from the de-
vices (e.g. odometry, obstacle location,
ball position)

· Information Fusion: fuses information
from several sensors (which can be sen-
sors onboard the robot or from external
sources)

· Primitive Actions: see definition in pre-
vious section

· Navigation Primitives: see definition in
previous section

• WISDOM (i.e. a very relevant requirement
for intelligence to be displayed): module acts
as a central point of information storage and

has the ability to generate events based on
predicate changes

· World Info: store general purpose high-
level data, relevant for predicate evalu-
ation. World Info may hold information
originating from other robots.

· Event Generator: generates events based
on predicate changes.

• CORTEX (from CoORdinator, TEam orga-
nizer, eXecutor): the decision making module

· Team Organizer: responsible for the ac-
tual organization of the team in terms
of roles. It activates roles in each of the
team robots

· Behavior Coordinator: responsible for
behavior selection and coordination. It
activates a behavior from the set of be-
haviors available for the currently se-
lected role

· Behavior Executor: responsible for be-
havior execution. It activates Primitive
Actions, for the currently selected behav-
ior.

This description of MeRMaID’s software archi-
tecture is intended to be a guide for the system
developer. The developer is still free to choose the
concrete implementation of each component. For
instance, we currently have 3 different possible im-
plementations for components inside CORTEX:
Finite State Machines, Petri Net and Fuzzy Logic-
based Behavior Arbitration. What this high-level
software architecture defines is which components
should exist and how should they interact with
each other. In Figure 1 a diagram of the archi-
tecture is shown, with the relationships that are
expected between components.

Underlying this high-level architecture, we have
developed a low-level software architecture that
we call Support. Issues such as communications
and computing environment abstraction are han-
dled at this level. We base our solution on
the Active Object design pattern (Lavender and
Schmidt, 1996).

All components (e.g., a primitive action) are im-
plemented as Services that run inside Active Ob-
jects. Each Active Object provides a completely
independent context and flow of execution. A suit-
able framework is supplied to the service devel-
oper in order to cope with communication and
interaction with other Services.

We have developed a special object called Ac-
tiveObject. Objects of these kind are able to run
services, so they have their own execution flow as
well as execution context (i.e. ActiveObjects are
completely independent from each other). With
this kind of construction we are able to abstract
completely from the underlying computing plat-
form. Services do not (and should not) need to



Figure 1. MeRMaID high-level software architec-
ture block diagram.

know in which hardware platform they will run,
they just know that they will run inside an Ac-
tiveObject.

All services derive from a common base class
named Service. Every instance of Service that is
running has a reference to an ActiveObject in
which it executes. This way, a useful framework is
supplied to the Service developer (in the form of
methods of the ActiveObject and Service objects).
With this framework, the developer can control
how Services run inside an ActiveObject and are
able to interact with other Services. Currently
implemented methods for Services to interact with
each other are:

• Asynchronous generic data communication
• Synchronous generic data communication
• Publish/Subscribe data diffusion (by name).

The ActiveObject control framework gives the de-
veloper control over how the Service will run.
Start, pause, and stop operations are possible, as
well as defining at which rate should the Service
be regularly run (if any).

Having this kind of framework, we effectively hide
the computational system from the developer.
This way, the Service’s code is platform indepen-
dent, enabling the reuse of algorithms without
needing to re-implement them. As long as a suit-
able implementation for a ActiveObject is built for
the desired platform, all the previously developed
Services should run and behave correctly.

4. APPLICATION EXAMPLE

MeRMaID is currently being used on real soccer
robots in RoboCup Soccer Middle Size League.
Some examples of MeRMaID entities in this do-
main were provided in the previous section. Here,
we work out part of the components needed for
an application where a (humanoid) robot oper-
ates in an urban environment to assist people in
the street by guiding them to a specific location,
though it could be required to act as a surveillance
robot, when needed. The purpose is to illustrate
how the different entities of our middleware work
together to support the required robot behaviors.
We assume that all the sensory and locomotory
components of the robot have been developed
under MeRMaID’s framework (i.e., they were im-
plemented as services running in AOs sensor and
primitive actions in Figure 1) and are ready to
use.

Finite State Machines are used for decision mak-
ing at all three components of CORTEX, therefore
the decision kernel system is purely event-based.
The state machines for the Team Organizer, Be-
havior Coordinator and Behavior Executor are
presented in Figure 2.

security 

alert

security 

restored

AssistanceAgent

SecurityAgent

WaitForWork

InteractWithPerson

GuidePerson

person 

approached

got 

destinationperson 

left

person 

left

AssistanceAgent

AskDestination

ConfirmDestination

SetDestination

got 

answer

confirm 

succeeded

confirm 

failed

InteractWithPerson

B
e
h
a
v
io
rE
x
e
c
u
to
r

B
e
h
a
v
io
rC
o
o
rd
in
a
to
r

T
e
a
m
O
rg
a
n
iz
e
r

Figure 2. State machines of the CORTEX compo-
nents for the human assistant aplication.

Events such as security alert, are triggered
by wireless communication from other involved
agents, such as a patrolling robot, or a human
guard. Other events, such as person approached

are triggered by the boolean value change of a



predicate stored in the World Info, such as
Far(Person). Note that the information about the
person distance to the robot is typically obtained
locally by the robot, but could be the result of the
fusion of the information provided by other robots
in the team observing the person and running
their own instances of MeRMaID. Information
fusion is accomplished at the ATLAS block with
the same name, and may rely either on the infor-
mation communicated by several sensors in one
robot and/or in several team members.

The set of roles, corresponding behaviors and
primitive actions for each behavior are listed next
in this order:

• AssistanceAgent

· WaitForWork

StayPut

· InteractWithPerson

AskDestination

ConfirmDestination

SetDestination

· GuidePerson

Goto(waypoint)

• SecurityAgent

· RandomPatrol

Goto(randomPosition)

ScanArea(randomTime)

· Guard Area

Goto(areaExtremity)

ScanArea(shortTime)

Goto(otherAreaExtremity)

· Alarm+Pursue

IssueAlarm

Goto(nearSuspect)

The state machines in Figure 2 illustrate
how does the robot switch between the two
available roles, how does it switch between
the available behaviors for the AssistanceAgent
role, and how does it switch between the
primitive actions available for the InteractWithPerson
behavior, when this behavior is running.

5. CONCLUSIONS AND ONGOING WORK

In this paper we described MeRMaID, a multiple-
robot middleware that extends current robotic
middleware by defining an entity set and a
decision kernel which standardize the develop-
ment of modules part of the multi-robot system.
Our middleware meets the major requisites for
multiple-robot middleware, such as parallelism,
inter-component independency, data sharing, and
servicing, as well as modularity, multi-paradigm
interaction and real-time execution.

MeRMaID is written in C++ and runs currently
under Linux OS. Ongoing work concerns its im-
plementation in SONY’s OPEN-R OS, so that it

can control SONY AIBO robots as well, simul-
taneously showing an example of platform inde-
pendence. We also intend to enhance our support
level framework by providing communication with
service-based semantics, localization transparency
of Services and various code improvements to sim-
plify the use of MeRMaID. Also in our plan list
is the development of graphical user interfaces to
support code development, execution and debug.

Acknowledgments This work was supported by
the Fundação para a Ciência e a Tecnologia
(ISR/IST pluriannual funding) through the POS Conhecimento
Program that includes FEDER funds.

References

Bruyninckx, H. (2001). Open robot control
software: the orocos project. Proceedings
2001 ICRA. IEEE International Conference
3, 2523– 2528.

Crispen, R. and L. Stuckey (n.d.). Structural
model: Architecture for software designers.
Boeing Defense & Space Group, P.O. Box
240002 M/S JM-70, Huntsville, Alabama
35824.

Lavender, R. Greg and Douglas C. Schmidt
(1996). Active object: an object behav-
ioral pattern for concurrent programming.
pp. 483–499.

Lima, P., L. Custódio, M. Arroz, H. Costelha,
B. Damas, C. Gil, G. Neto, P. Pinheiro
and V. Pires (2003). Isocrob 2003 team de-
scription paper. Proceedings of RoboCup 2003
Symposium.

Metta, Giorgio, Paul Fitzpatrick and Lorenzo Na-
tale (2006). Yarp: Yet another robot platform.
International Journal on Advanced Robotics
Systems, Special Issue on Software Develop-
ment and Integration in Robotics 3(1), 43–48.

Pirjanian, P. (1999). Behavior coordination mech-
anisms - state-of-the-art. Technical Report
IRIS-99-375. Institute for Robotics and Intel-
ligent Systems, University of Southern Cali-
fornia. Los Angeles, CA, USA.

Tanenbaum, A. (1979). Structured Computer Or-
ganization. Prentice-Hall.

Utz, H., S. Sablatnog, Enderle and G. Kraet-
zschmar (2002). Miro - middleware for mo-
bile robot applications. IEEE Transactions
on Robotics and Automation 18(4), 493–497.


	Introduction
	Software Requisites
	MeRMaID
	Terminology
	MeRMaID Entities
	Current Implementation

	Application Example
	Conclusions and Ongoing Work

