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Abstract
Development of software for a multi-robot team is typically a daunting task. As more complex tasks are

required from coordinated teams of robots, roboticists are faced with a huge increase in complexity of the

needed underlying system, requiring an equal huge amount of effort to be built. This thesis describes the

design and application of a development environment tailored to assist roboticists in easily overcoming re-

current problems in robotic applications and helping them concentrate their efforts in higher-level aspects of

the robotic system. The development environment here described offers the roboticist a software middleware

for abstracting from low-level details, a high-level software architecture for structuring the developed software

and tools for runtime visualization and deployment of the system.
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Resumo
O desenvolvimento de software para equipas de vários robôs é, tipicamente, uma tarefa intimidatória dada a

sua dimensão. À medida que são exigidas tarefas cada vez mais complexas a equipas de robôs, há também

um enorme aumento na complexidade e no esforço necessário para construir todo o sistema subjacente à

aplicação que se pretende. Esta tese descreve a concepção e aplicação de um ambiente de desenvolvi-

mento com vista a ajudar a superar facilmente problemas recorrentes em aplicações robóticas. Deste modo,

pretende-se que os investigadores concentrem os seus esforços em problemas de mais alto-nível. O ambi-

ente de desenvolvimento aqui descrito oferece um middleware que abstrai os detalhes de baixo-nível, uma

arquitectura de software de alto-nível para estruturar o software desenvolvido e ferramentas para a visualiza-

ção em tempo de execução e o arranque do sistema.

Palavras-chave: robótica, ambiente de desenvolvimento, middleware

v





Acknowledgements
Aqui, nestas linhas, é pedido que o autor do imenso trabalho (supostamente) intelectual do texto que se segue

agradeça às pessoas que, por alguma eventual razão, mereçam a delicadeza do acto. Gostaria apenas de salientar

que não o faço por me ser pedido que o faça, muito menos por ser suposto que o faça. Faço-o, sim, porque estou

sinceramente grato a todas as pessoas que contribuíram para que eu conseguisse chegar ao ponto de, imagine-se,

completar um mestrado!

Gostaria de começar pelo mais importante: a minha Família. Tudo o que vocês são reflecte-se em mim.

Obrigado Mommy, Daddy e Mana!!

Obrigado a todos os meus Amigos: há uma citação umas páginas á frente dedicada a todos vós. Estou certo

que a irão compreender. :-)

Destaque para a grande EN Team! Nelson, João e Estilita: grandes tempos, heim? Obrigado por terem feito

mais fácil esta passagem pelo "Inferno do Técnico" – que é quase tão difícil como o "Inferno da Luz" :-P

Aos SocRob’ianos! Todos os que participaram no projecto trouxeram algo de novo. Foi uma grande exper-

iência: desafiante e uma fonte de imensas aprendizagens.

And last but definitely not least: gostaria de agradecer aos meus dois grandes Mentores que me propor-

cionaram o acesso a esta grande área que é a robótica: Prof. Ludgero Leote e Prof. Pedro Lima. Marcaram

fortemente o meu percurso e as minhas escolhas nos últimos anos. Obrigado pelo empenho e pela motivação.

Marco

This work was partially supported by a grant from the project URUS Ubiquitous Networking Robotics in

Urban Settings supported by the European Commission through contract # FP6-EU-IST-045062 and also by

the Fundação para a Ciência e Tecnologia (ISR/IST pluriannual funding) through the POS Conhecimento

Program that includes FEDER funds.

vii





Table of Contents

Abstract iii

Resumo v

Acknowledgements vii

List of Figures xi

List of Tables xiii

Listings xv

List of Acronyms xvii

1 Introduction 1

2 Development Environment Requirements for a Multi-Robot Team 3

2.1 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Code Re-usability and Platform Independence . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 High-Level Behavior Description Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.6 Runtime System Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Existing Solutions 7

3.1 Player/Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 CLARAty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 OROCOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 MIRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5 CARMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.6 YARP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.7 Microsoft Robotics Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Developed Solution 11

4.1 MeRMaID::support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.1 ActiveObject Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1.2 Communication Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.3 Data Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1.4 Error Handling Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.5 Memory Management Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.6 Service Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.7 Communication Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ix



4.1.8 Syntactic Sugar Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.9 System Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.10 XML Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.11 Current Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.12 Example on coding simple Services using MeRMaID::support . . . . . . . . . . . . . . 22

4.2 MeRMaID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 MeRMaID High-Level Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 MeRMaID’s Structural Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 mlgen: MeRMaID Loader Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 SIF: SocRob Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.2 Internal Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.3 Integration with MeRMaID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Integration with other Tools 37

5.1 FSMeditor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 JARP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Webots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Solution Application and Results 39

6.1 SIF: SocRob Interface in use during games and development . . . . . . . . . . . . . . . . . . 39

6.2 MeRMaID::support: application in the URUS project . . . . . . . . . . . . . . . . . . . . . . . 39

6.2.1 Demo Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.2 Porting existing code to MeRMaID::support . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.3 Software Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Conclusions 43

7.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography 45

x



List of Figures

4.1 Service Request conceptual diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2 Data Feed conceptual diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 YARP ports for the Service Request interaction mechanism. . . . . . . . . . . . . . . . . . . . 19

4.4 YARP Ports for the Data Feed interaction mechanism. . . . . . . . . . . . . . . . . . . . . . . 20

4.5 MeRMaID High Level Architecture: red lines are data connections, blue lines are event con-

nections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.6 SIF’s Team Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.7 SIF’s Robot Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1 JARP being used to develop a petri-net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Webots simulator used for testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 URUS demo layout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 URUS demo software structure. Each box is a Service and has the available Service Interfaces

indicated by an ’R’ and the Data Feeds provided by each Service indicated with a ’D’. The big

arrows indicate control flow, and the thin arrows indicate data flow. . . . . . . . . . . . . . . . 41

xi





List of Tables

4.1 Textual formats for basic data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2 Value names used in the text-based communication protocol between GUIs and robots . . . . 36

xiii





Listings
4.1 data-structure-example.xml: Example of a simple data structure description file. . . . . . . . . 13

4.2 data-semantics-example.xml: Example of a simple semantic tree. . . . . . . . . . . . . . . . . 14

4.3 YARP Port naming convention for th Service Request and Data Feed mechanisms. . . . . . . 21

4.4 echo-service-description.xml: EchoService description file . . . . . . . . . . . . . . . . . . . . 23

4.5 EchoService.hpp: EchoService declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.6 EchoService.cpp: EchoService implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.7 echo-client-service-description.xml: EchoClientService description file . . . . . . . . . . . . . 25

4.8 EchoClientService.hpp: EchoClientService declaration . . . . . . . . . . . . . . . . . . . . . . 25

4.9 EchoClientService.cpp: EchoClientService implementation . . . . . . . . . . . . . . . . . . . . 27

4.10 Example configuration file for mlgen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xv





List of Acronyms
ACE Adaptive Communication Environment

ASCII American Standard Code for Information Interchange

CORBA Common Object Request Broker Architecture

DOM Document Object Model

DSSA Domain-Specific Software Architecture

FSM Finite State Machine

GUI Graphical User Interface

IDE Integrated Development Environment

IP Internet Protocol

ISR Institute for Systems and Robotics

IST Instituto Superior Técnico

MeRMaID Multiple-Robot Middleware for Intelligent Decision-making

mlgen MeRMaID Loader Generator

MSRS Microsoft Robotics Studio

PC Personal Computer

PDU Protocol Data Unit

PNML Petri Net Markup Language

REST Representational State Transfer

SOAP Service Oriented Architecture Protocol

SIF Socrob InterFace

SOA Service-Oriented Architecture

STL Standard Template Library

TCP Transmission Control Protocol

UDP User Datagram Protocol

XML eXtensible Markup Language

YARP Yet Another Robotic Platform

xvii





"Any intelligent fool can make things bigger, more complex, and more violent. It takes a touch

of genius – and a lot of courage – to move in the opposite direction."

Albert Einstein

"I used to rock and roll all night and party ev-er-y day. Then it was every other day. Now I’m

lucky if I can find half an hour a week in which to get funky"

Homer Simpson

xix





1 Introduction
This work started to be developed in the SocRob project at the Institute for Systems and Robotics (ISR) –

Lisboa. SocRob is a project on Cooperative Robotics and Multi-Agent Systems. The acronym of the project

stands both for "Society of Robots" and "Soccer Robots" which has been the case study of the project since

1998. Due to the fact that soccer robotics is so rich in scientific challenges that are necessary to be overcome

so that a team of robots may display adequate behavior, a huge amount of work has been done in many

different areas. In fact, there has been some overlap with work done by other groups inside ISR, namely work

related to vision and control. The absence of a unified framework and structuring of the developed solutions

has led to the various groups implementing the same algorithms and functionality over and over again, without

any sharing of code between the different groups. Even inside the SocRob project, the existence of two

different robotic platforms made it desirable to have some middleware that would enable code sharing. The

SocRob project was also in need of a tool that would allow the robots’ behavior to be described in a more

higher-level and with differing underlying formalisms.

Apart from the SocRob project that already had a defined software architecture prior to MeRMaID, there

was no standard way of building software for multi-robot applications inside ISR. All the software needed for

new projects was custom-built and difficult to integrate with other projects’ code. With the beginning of the

URUS project, which has a total of 11 partners involved, the need to have a structured way to do integration

of all the software components became even more important. The URUS project (standing for Ubiquitous

Networking Robotics in Urban Scenarios) aims at developing cooperation between humans and robots in ur-

ban areas, dealing with the coordination of several mobile robots, fixed sensors and the always unpredictable

reactions of humans. For such a project, a big amount of software components have to be developed and

integrated. From ISR’s point-of-view, it would be desirable to develop these software components in such a

way that they can be easily integrated and used in other projects.

Within this context and all of these needs, MeRMaID was created. MeRMaID and its associated tools

aim at providing roboticists a more friendly environment in which to develop their research. It consists of

a middleware layer – called MeRMaID::support – and a high-level software architecture. The work done

in this thesis is concentrated on designing and building a new version of MeRMaID::support and additional

tools – SocRob Interface (SIF) and MeRMaID Loader Generator (mlgen) – that are part of the development

environment with which roboticists have to work.

SIF was tested in the SocRob project, while the new MeRMaID::support and mlgen started to be used in

the URUS project.

This thesis will start by specifying the requirements of a development environment for multi-robot teams

in Chapter 2. Chapter 3 focuses on the analysis of software similar to MeRMaID while Chapter 4 is devoted

to the explanation of the newly developed MeRMaID::support, SIF and mlgen. Chapter 5 briefly shows third-

party software that has been integrated with MeRMaID’s development environment. An explanation of the

applications to which the developed solution was applied and its results are present in Chapter 6. Finally,

Chapter 7 contains the conclusions.
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2 Development Environment Requirements for a Multi-Robot Team

Multi-robot systems, like any other reasonably complex system, benefit with the presence of a set of tools

aimed at addressing issues that, although not being directly part of the problem in hand, need to be conve-

niently addressed. For instance, having a compiler for compiling the code is something that no project can live

without, just like having a file editor for editing source code. Debugging tools are also extensively used in any

kind of programming project. These three tools are normally the basis of so-called Integrated Development

Environments (IDEs). Examples of those are Eclipse, KDevelop and Microsoft Visual Studio, just to name a

few.

Besides IDEs, developers normally use several other software packages, known as software libraries, that

implement needed functionalities. There are software libraries for many purposes and normally there are also

several libraries to choose from in order to implement a specific functionality.

These IDEs and software libraries are built in order to be general-purpose and, although many of them

are excellent tools, they are not sufficient to address the specific needs of multi-robot systems.

In the following sections, several requirements relevant for multi-robot systems are described.

2.1 Communication

Cooperative robotic applications can be seen, in general, as distributed systems that must be able to coop-

erate efficiently. This cooperation is achieved by means of the behaviors the robots are able to execute and

the communication between them in order to ensure commitments, synchronization and, in general, other

ingredients of teamwork. Communication between robots can be explicit (in which data is sent across a com-

munication channel) or implicit (in which a robot perceives the intentions of his partners by observing their

behavior).

Although there has been research on the topic of implicit communication, explicit communication is nor-

mally preferred due to the easily available communication systems that may be used (namely the IEEE 802.11

family of protocols) that provide high-bandwidth and low-latency in a wide range of situations. On top of these

protocols, normal IP communication is possible, being up to the robotic system developer to choose which

transport protocol to use (such as TCP or UDP) and, most importantly, to specify the details of the application

layer protocol (following the five-level TCP/IP model [5]).

As there is no widely accepted standard for an inter-robot communication protocol, the robot developer is

faced with the difficulty of needing to specify a new protocol for almost every project. Moreover, the developer

also has to deal with integrating the defined communication mechanism within the other subsystems’ software.

Therefore, we can define as requirements for a cooperative robotic application, to have clearly defined the

following:

Low-level Protocol Stack The protocol stack should be clearly defined for the specific application, from the

physical layer to the transport layer (adopting industry standard protocols is highly encouraged).

Application Layer Protocol The application layer protocol should be clearly defined, namely the PDUs and

the logic behind their use.
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Communication Framework A good framework for accessing the communication protocol should be given

to the developer in order to use it correctly and efficiently. This framework should provide easy access

to the underlying communication protocol and be as less intrusive as possible in its user’s code.

2.2 Concurrency

Robotic systems are concurrent by nature. They are usually fairly complex systems that integrate lots of

technology of different nature. To assemble a system of this kind, the developer is normally faced with the

problem of concurrent access to shared resources. Ensuring reliable concurrent access while maintaining

adequate performance may become a very challenging task as the system grows in complexity. Usually,

locking mechanisms are employed to solve this, but then additional problems must be taken into account, such

as deadlocks, livelocks and starvation (as illustrated by the dining philosophers example [7]). Also, with the

latest developments of multi-core processors, one can expect these to be widely used in robotic applications.

To take full benefits from multi-core processors a concurrent programming model must be followed.

The mechanism for concurrent access management also must be integrated with all the software devel-

oped for the system, so it should be as little invasive as possible (in the sense that it should not force the

developer to take in consideration concurrency problems everywhere throughout the code). In short, concur-

rency issues bring the following requirements:

Concurrent Access Concurrent access to shared resources should be possible while maintaining a consis-

tent state between accesses.

Concurrency Framework A simple framework for handling concurrency issues, such as access to shared

resources and associated locking strategies, should be made available to the developer. This framework

should be as little invasive in the rest of the code as possible.

2.3 Code Re-usability and Platform Independence

Robotic system developers often use similar approaches and/or algorithms for building robotic systems. More

often than what is desirable, developers rewrite their code from scratch either due to poor software engineering

practices or due to differences in the computing platform available for a specific application. This can be quite

a burden for the developer since robotic systems are very diverse when it comes to hardware and operating-

systems they run on. As such, this poses the following requirements:

Incentives for Code Re-usability The development environment should promote good software engineering

practices by providing developers means to develop software components that are loosely coupled with

each other.

Platform Independent Coding The developer should be able to build software that is independent of the un-

derlying computing platform, so that the same code can be easily reused in another computing platform

without change.

4



2.4 Deployment

Even if all the code developed is completely platform independent, it has to be executed in a particular machine

running a particular operating system. This means that the code has to be somehow deployed in the target

system. Depending on the target system this may be very easy or very complex. As an example of a very

complex system for software deployment is Sony’s AIBO robot that requires the developer to place binary files

and a considerable number of configuration files in a fixed directory-structure. This illustrates the need for the

following requirement:

Deployment Tool The user should have a tool that handles the generation of code and/or configuration files

that are able to correctly deploy the code. By using this tool, the developer should be able to use the

same deployment procedure for a wide number of robotic platforms.

2.5 High-Level Behavior Description Formalism

The biggest need for a roboticist is to have an easy way to describe the behavior of the robotic system and

to quickly and easily change it. The representation of the behavior of the system should be in some kind of

formal language. This poses the following requirements:

Formal Description of Robot Behavior The developer should be able to describe the desired behavior of

the robotic system in some kind of formalism.

Robot Behavior Editor The description of the system’s behavior should be editable with some kind of tool

and that should be all that is necessary to change the system’s behavior.

2.6 Runtime System Information

Multi-robot systems have to typically deal with large amounts of data coming from noisy sensors and have to

act using actuators that also have a noisy output. Because of this, it is normally very difficult to understand

exactly how the system is working and what it is really attempting to do. Even if all the sensors and actuators

are simulated with some kind of software, it may still be very difficult to understand what the system is doing

just by looking at how it behaves, especially when the system does not behave as expected. Therefore, while

developing a multi-robot system the following is needed:

Runtime System Information Tool The developer should have a tool that enables him to inspect how the

system is working by being able to read and visualize information relevant for assessing the state of the

system.
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3 Existing Solutions

3.1 Player/Stage

Player/Stage [9] is a collection of tools for interfacing sensors and actuators (with Player) and simulating

them (with Stage). Player is a robot device server. Inside Player several so-called drivers interface with the

physical hardware (both sensors and actuators). Client programs connect to Player to process data and

send commands. Player defines a set of interfaces which the drivers follow so that client programs do not

need to know which particular driver (and which particular hardware component) is sending data. This way,

Player effectively acts as a hardware abstraction layer. Player provides a framework for client components to

communicate with the server. Player does not, however, specify anything about client components and how

should they be built or interact with each other.

Recently, Player has developed abstract drivers that instead of interfacing directly with the hardware use

other drivers as sources for data and sinks for commands. These abstract drivers are intended to encapsulate

useful algorithms so that they can be easily reused.

As for Stage, it serves as a 2D simulator for Player. Stage is able to simulate various robotic platforms,

generating sensor data for virtual sensors, and commanding the virtual robot with commands received from

Player’s clients.

3.2 CLARAty

CLARAty [21] is a system architecture that is divided in two layers: functional layer and decision layer. The

functional layer interfaces with the system hardware and its capabilities which are provided to the decision

layer. The decision layer performs planning and control of the functional layer. It is further separated in a more

high-level planning part and a lower-level executive part, although these are supposed to work as one. A big

emphasis is put on describing the system at different levels of granularity and how that affects both layers’

behavior.

CLARAty’s code is entirely written in C++ and components are hierarchized with C++ class inheritance and

aggregation. Linking or communication with code written in other languages is not supported. Components

in the functional layer abstract from the underlying operating system by separating declaration and implemen-

tation. Class declaration is done using generic classes which state the class’s interface, while specialized

classes do the actual implementation of the class in a specific operating environment.

CLARAty also comes with an extensive framework, covering: motion control, manipulation, mobility and

navigation, perception and vision, communication, resource management, system control and testing, verifi-

cation and simulation. It was developed in NASA’s Jet Propulsion Laboratory and certain parts of CLARAty

have been recently released to public domain with an open-source license. More information can be found at

http://claraty.jpl.nasa.gov/.
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3.3 OROCOS

OROCOS [4], standing for Open Robot Control Software, is an attempt to develop a standard tool for robot

control. OROCOS is composed of several libraries:

RealTime Toolkit the basis of component construction. The main programming primitive is the "TaskCon-

text": an active Component which offers threadsafe and efficient ports for (lock-free) data exchange. It

can react to events, process commands, or execute Finite State Machines in hard real-time. It can be

configured online through a property interface (set/get values) and XML files. It also abstracts access

to interfaces to common robotic hardware, such as encoders, AD/DA conversion, etc.

Orocos Component Library a collection of ready-to-use components that build upon the other libraries.

Kinematics Dynamics Library a framework for modeling and computing kinematic chains such as robots,

biomechanical human models, computer-animated figures, machine tools, etc. It provides class libraries

for geometrical objects (point, frame, line, . . . ), kinematic chains of various families (serial, humanoid,

parallel, mobile, . . . ), and their motion specification and interpolation.

Bayesian Filtering Library a framework for inference in Dynamic Bayesian Networks, i.e., recursive infor-

mation processing and estimation algorithms based on Bayes’ rule, such as (Extended) Kalman Filters,

Particle Filters (or Sequential Monte Carlo methods), etc.

OROCOS doesn’t define any software architecture for how to compose the various components. That is

left for the developer. OROCOS is based on CORBA for network communication and localization indepen-

dence of components.

OROCOS also provides tools to aid testing components and relies on other Open Source Software to

reduce development time and quickly build a working software middleware. Extensive documentation and

some examples are available at http://www.orocos.org/.

3.4 MIRO

MIRO [20] is a middleware for robotic applications. It is strongly based on CORBA and is divided in three

layers:

Miro Device Layer provides object-oriented interface abstractions for all sensory and actuatory facilities of a

robot. This is the platform-dependent part of Miro.

Miro Service Layer provides active service abstractions for sensors and actuators via CORBA interface def-

inition language (IDL) descriptions and implements these services as network transparent objects in a

platform-independent manner. The programmer uses standard CORBA object protocols to interface to

any device, either on a local or a remote robot. Also, event-based communication services based on

the CORBA notification services are available.

Miro Class Framework provides a number of often-used functional modules for mobile robot control, like

modules for mapping, self localization, behavior generation, path planning, logging, and visualization

facilities.
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MIRO doesn’t define how components should be organized and leaves that task for the developer. MIRO

is strongly based on CORBA and expects that the developer knows how CORBA works. Application code

built by the developer will have to access directly the CORBA level. This is an abstraction level violation and

may lead to a less confortable environment for the developer.

3.5 CARMEN

CARMEN [15] is an open-source control software. CARMEN’s goals were to develop a consistent interface

and a basic set of primitives for robotics research on a wide variety of commercial robot platforms. This would

enable faster development with better sharing of developed code and algorithms between different platforms.

CARMEN is divided in three-layers: the base layer is responsible for hardware interface and control. This

layer also provides primitive control primitives such as following a straight line or doing simple rotations. Also

done in this layer is information fusion from different sensors in order to improve estimates of, for example,

robot odometry. There are components in the base layer capable of controlling a wide range of robots.

The middle-layer is used for navigation control, including localization, dynamic object tracking, and motion

planning. The top-layer is the application level which will use primitives made available by the middle-layer.

For inter-component communication, CARMEN uses a framework called IPC which is described in [18].

3.6 YARP

YARP [13], standing for Yet Another Robot Platform, is a middleware concentrating mostly on the commu-

nication aspects between components. It provides communcation and thread synchronization primitives. A

framework for signal processing is also available as well as a framework for device abstraction and access.

YARP provides command-line tools for controlling and monitoring components and connections between com-

ponents. The main abstraction entity in YARP is the Port object. Ports abstract communication in the way

that the developer does not need to know in which underlying protocol the data is being sent. The Ports, in

conjunction with the YARP name server, provide facilities for YARP components to run on several machines

and make the component localization transparent to components who want to access it. Ports also provide

advanced buffering techniques for data sent between components.

3.7 Microsoft Robotics Studio

Microsoft Robotics Studio (MSRS) [1] is Microsoft’s attempt to establish itself as the main developer environ-

ment solution maker for robotics. This product is a result of integration of several other pre-existing products

(such as the .NET platform and Microsoft Visual Studio) and some new ones developed specifically with

robotic applications in mind. At the lowest level there is the Concurrency and Coordination Runtime that is

responsible for low level scheduling and I/O. This low-level software follows a Representational State Transfer

(REST) software architecture [8]. Communication is done using a newly defined protocol named Decentral-

ized Software Services Protocol which is built upon SOAP. The communication protocol forces all software
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components to respond to a very narrow set of pre-defined operations in an attempt that resources that code

information in the same way can communicate with each other without additional effort.

Access to MSRS’s low-level software is restricted to the use of C# and follows a series of patterns that the

developer is forced to incorporate in his code. The developer has also to deal with details of the communication

protocol in order to successfully develop a service, even though those details are not related to the service

logic. A simple mechanism to regularly update a service’s internal state is not provided, requiring extensive

effort from the service developer in manipulating the underlying low-level framework.

A strong positive aspect of MSRS is the ability to formally define generic service contracts which are a

means to specify standard interfaces between services. There is also a visual programming language and

a visual simulation environment that promises to ease and make more efficient the development of robotic

systems.
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4 Developed Solution

To address the need of a suitable development environment and, more specifically, of a middleware targeted

towards robotic applications, MeRMaID (Multiple-Robot Middleware for Intelligent Decision-making) [3] was

created. MeRMaID is defined at two major levels: the first one is called MeRMaID::support which is the real

middleware software and focuses its attention on the low-level issues such as service execution and commu-

nication. At the higher-level, MeRMaID defines a software architecture that gives the developer concepts and

guidelines for building a sound multi-robot system such as robot behaviors.

In the first version of MeRMaID there was no hard separation between the support framework and the

higher-level architecture. With the evolution of the code, including a full re-write and cleaner concepts,

MeRMaID::support is now developed as a software package by its own. In this chapter we’ll start by pre-

senting MeRMaID::support and all the low-level mechanisms it offers to robotic system developers. We’ll

follow by describing the high-level MeRMaID architecture, focusing in the added value that having a clear

high-level architecture offers, even though it may constrain the developers options. Finally, we will present two

auxiliary tools that have also been developed: mlgen and SIF.

4.1 MeRMaID::support

MeRMaID::support is the base on which all of the rest of MeRMaID is based. MeRMaID::support consists

of a collection of frameworks that the developer may use and which provide support for all the require-

ments defined in Chapter 2. The developer doesn’t have to deal with all of the Frameworks that are part

of MeRMaID::support, but they will all be presented here in order to explain in more detail the inner workings

of MeRMaID::support.

4.1.1 ActiveObject Framework

This framework implements a simplified version of the Active Object pattern as described in [11]. The basic

idea behind this pattern is to separate method invocation from method execution in order to simplify synchro-

nized access to an object. In MeRMaID::support, an ActiveObject is a (C++) object which has its own thread

of execution. Since C++ object methods are not first-class entities, developers may use, through inheritance,

the Task object in order to add, in runtime, new "methods" for ActiveObjects to execute. Task objects are

placeholder objects that contain a virtual method (named run) that the developer may overload with a specific

implementation that will do whatever is intended to be done. ActiveObjects by themselves are only capable

of receiving new Tasks and, later, executing them according to their defined schedule, since the Task also

holds information about when it should be executed. What a Task does is entirely up to the framework’s user.

Since an ActiveObject only executes one Task at a time, the Task may access any resource belonging to

that ActiveObject without concurrency concerns. All of the ActiveObject’s methods have a thread-safe

implementation, so they can be called directly from any thread. These methods are the interface the frame-

work’s user has to control the ActiveObjects’ behavior. Tasks should avoid doing actions that could result

in blocking since that would effectively freeze the ActiveObject, as there is no mechanism for interrupting a

Task in order to run another one.
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4.1.2 Communication Framework

This is the framework where all communication resides. All the protocols for communication are implemented

here and are used indirectly by other frameworks through the CommunicationGateway object. This allows

for protocols to be implemented differently in different platforms and for the use of communication libraries

to be completely transparent. Currently communication protocols have been implemented using YARP and

that code is contained inside the Communication Framework. The communication protocol implemented over

YARP is explained in detail in Section 4.1.7.

By using YARP several transport protocols are used, namely TCP and shared memory. UDP and multicast

are also available but have not been used yet. The shared memory protocol is used whenever the two

endpoints of the communication (the transmitter and the receiver) reside in the same machine so that a

common shared memory zone may be created between both. Otherwise, TCP is used and communication is

done through the normal TCP/IP protocol stack. The shared memory protocol is preferable to TCP because of

its better performance as it consists of, at most, one memory copy, compared to the data flowing through the

whole TCP/IP stack. This results in much lower latency and higher bandwidth compared to sending through

TCP inside one machine.

The communication protocols are also responsible for serializing and deserializing data, handling differ-

ences in endianness (i.e. byte and bit ordering in memory) between systems. This is done by this framework

in order to avoid unnecessary serialization/deserialization of data when the protocol used wouldn’t need it.

Therefore the communication protocols need to define standard representations of basic data-types that are

the building blocks of all the data to be transmitted.

The basic data types that are serializable by YARP and used by MeRMaID::support are:

• integer;

• double;

• string;

• list.

All of the data to be transmitted has to be convertible to an arrangement of these basic data-types.

Even though this framework provides abstraction for communication it will not be used directly by

MeRMaID::support users, but it is used internally by other MeRMaID::support frameworks, particularly the

Service Framework.

4.1.3 Data Framework

Having defined communication protocols, it is also necessary to define the structure and meaning of the

data that they communicate. The Data Framework addresses these issues and is divided in two parts: Data

Structure and Data Semantics

4.1.3.1 Data Structure

As the name suggests, this part of the Data Framework addresses the issue of defining a common structure

for data used with MeRMaID. Data structure can be described in an XML file and this description may be used,
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for instance, to validate if data sent in Service Requests contains the correct data structure. The final format

for this data structure description has still not been reached, due to attempts to make this format compatible

with other formats used in other projects, namely the URUS project [17], and also to make it work more closely

with the underlying YARP communication through which data has to be serialized and deserialized.

The description of a data element contains the following information:

data-name The name of the data element.

data-type The basic type of the data. Currently accepted values are: boolean, composite, float, integer and

string.

data-value A textual representation of the value of the data.

For each data-type there must be a textual representation defined for that type. In Table 4.1 the textual

formats for each of the basic data types are described.

Data Type Textual Format

boolean "true" | "false"

composite XML descriptions of composing data items

float [ [(1-9)+ (0-9)* ,?] | [0,] ] (0-9)* ]

integer [ (1-9)+ (0-9)* ]

string any C-valid string

Table 4.1: Textual formats for basic data types

It should be noted that the boolean, float and integer are data-types with fixed-size while composite and

string are not. Composite is the building block of more complex data structures and can be seen as a list-like

structure in which other data types can be inserted (even other composites). In Listing 4.1 an example can

be seen of a file describing a data structure that is a composite of a boolean, an integer, a float and a string.

Listing 4.1: data-structure-example.xml: Example of a simple data structure description file.

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE data SYSTEM "data-structure.dtd">

<data>

<data-name>bigComposite</data-name>

<data-type>composite</data-type>

<data-value>

<data>

<data-name>bool1</data-name>

<data-type>boolean</data-type>

<data-value>true</data-value>

</data>

<data>

<data-name>int1</data-name>

<data-type>integer</data-type>

<data-value>42</data-value>
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</data>

<data>

<data-name>float1</data-name>

<data-type>float</data-type>

<data-value>3.14</data-value>

</data>

<data>

<data-name>string1</data-name>

<data-type>string</data-type>

<data-value>Hello World!</data-value>

</data>

</data-value>

</data>

4.1.3.2 Data Semantics

The Data Semantics framework is an attempt to describe data not only by its structure, but to add to it

semantic meaning. This framework can handle a tree of semantic nodes, being each node a concept. This

way, ontology representations can be built and manipulated automatically in order to support more advanced

functionality regarding manipulation and classification of data. This framework is currently implemented but

not being used. It will prove its usefulness when automated data and service searching are implemented.

The semantic tree may be read from an XML file. In listing 4.2 an example of a semantic tree is shown. With

this example file, the Data Semantics framework is able to answer correctly to the question "are Mammals

Plants?". Using this type of representation it is possible to build a whole ontology of data types and reason

about it. For instance, and using this example file, if one would expect to validate some data and was expecting

to receive Animal, the validation would be successful for any type of animal (like Mammals or Insects) but

would return false for any kind of Plant (like Trees or Algae).

Listing 4.2: data-semantics-example.xml: Example of a simple semantic tree.

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE semantic -tree SYSTEM "semantic -tree.dtd">

<semantic -tree>

<root-node>

<name>Living Beings</name>

<semantic -node>

<name>Animals</name>

<semantic -node>

<name>Mammals</name>

</semantic -node>

<semantic -node>

<name>Insects</name>

</semantic -node>
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</semantic -node>

<semantic -node>

<name>Plants</name>

<semantic -node>

<name>Trees</name>

</semantic -node>

<semantic -node>

<name>Algae</name>

</semantic -node>

</semantic -node>

</root-node>

</semantic -tree>

4.1.4 Error Handling Framework

The error handling framework consists only of a simple class named Exception that is intended to be the

base class of all C++ Exceptions thrown by MeRMaID or user-developed components. This base class only

holds a string that should be set to the reason for throwing the Exception.

4.1.5 Memory Management Framework

MeRMaID::support is implemented in C++ and therefore there is no garbage collection or automated memory

management mechanism provided by the language. Since leaving memory management being done com-

pletely manually was not a viable option due to the amount of expected extra-work on coding and debugging

the problems that this would bring, special template-based "smart pointers" were created. These pointer-like

classes use a reference counting mechanism in order to track references to objects, deleting them when the

reference count reaches 0. These pointers are also typed using C++’s template functionality. Therefore, in-

advertently using one of these pointers to point to objects of a different type will result in a compilation error,

preventing obscure bugs that could arise from using untyped pointers. These pointers are compatible with

STL containers. These pointers should be used by value, even in containers, so no memory management is

necessary even for the pointers themselves.

Two pointer types were created:

CountedPtr A simple reference count pointer. Each copy of the pointer increments the reference count and

each destruction of the pointer decrements the reference count. When the reference count reaches 0

the object to which the pointer points is deleted. Throughout its life, the CountedPtr points always to the

same object.

CowPtr This is a pointer that implements a Copy-On-Write mechanism. This pointer is used in order to

avoid unnecessary copies of data that is going to be only read most of the times. If a write operation

is attempted, a copy of the data is made and other users of the pointer may still access the original,

unmodified, version of the object.
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4.1.6 Service Framework

The Service Framework is the framework that developers using MeRMaID::support have to interact with most

of the time. This framework is what enables MeRMaID to be a Service-Oriented Architecture (SOA). The

design of this framework can be considered as an implementation of the abstract framework described by the

"OASIS Reference Model for Service Oriented Architecture 1.0" [16].

In MeRMaID a Service is viewed in the same way as in the OASIS SOA Reference Model, that is: "A

service is a mechanism to enable access to one or more capabilities, where the access is provided using

a prescribed interface and is exercised consistent with constraints and policies as specified by the service

description". Therefore, a Service will hold the implementation of a certain functionality that is relevant for the

system and whose access mechanisms are clearly defined. The Service Description holds all the information

that is necessary to access and effectively use a determined Service. In MeRMaID a Service Description

consists of an XML file which holds the following information:

name The name by which the Service should be known.

comment An explanation of the functionality that this Service offers.

service-interface A description of all the interfaces available for this Service.

data-feed A description of all the Data Feeds provided by the Service.

update-frequency The frequency at which the Service’s update method should be called.

For each Service Interface the following information is written in the Service Description:

name The name of the interface.

comment An explanation of what is possible to achieve by using this interface.

in-data A description of the expected input data for this interface which is compatible to the Data Structure

XML representation format presented earlier.

out-data A description of the expected output data for this interface which is compatible to the Data Structure

XML representation format presented earlier.

Likewise, for each Data Feed the following information is present in the Service Description:

name The name of the Data Feed.

data A description of the expected data exported by this Data Feed which is compatible to the Data Structure

XML representation format presented earlier.

Access to Service Interfaces is done through Service Requests. A Service Request is what travels be-

tween Services and is processed in the target Service after arriving to the Service Interface. Therefore, the

Service Request should contain the input data for the target Service Interface as well as information about

the target Service Interface in order for it to be delivered.

In Figure 4.1 the Service Request conceptual mechanism is illustrated. Service A sends a Service Re-

quest to Service B. The Service Request carries information about which Service Interface it is targeted to.

After the service receives the request it should "process" it doing whatever is promised in the Service Descrip-

tion. In response to each and every Service Request, a Service Reply should be sent back to the request

sender (in the example, that is Service A).
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Service A Service B
Service Request

Service Reply

Figure 4.1: Service Request conceptual diagram.

Sending a Service Request to a Service Interface triggers some kind of action inside the Service. Although

the mechanisms are the same, we may distinguish, for illustrative purposes, between three different kinds of

actions triggered by the reception of Service Requests that typically occur:

stateless data processing The data received on the input is somehow processed and sent to the output.

Every time the same data is sent, the same output is produced, thus the output doesn’t depend on the

internal state of the Service. For instance, imagine a Calculator Service that is able to sum two integers.

The output of the sum of two given integers is always the same regardless of the internal state of the

Calculator Service.

state dependant data processing The data received on the input is processed taking into account the state

of the Service. Using the Calculator Service example, imagine that it implements an internal accu-

mulator. Every time a Service Request for the accumulator arrives with an integer, it is added to the

accumulator and the new value of the accumulator is returned.

state changing The state of the service is changed. The request may contain data or not and there is no

output data.

It should be noted that the behavior of a Service may change through time, in which case time is con-

sidered as being part of the variables that define the state of the Service. Due to the fact that in robotic

applications it is normal to have the need for updating the Service’s internal state in regular time intervals

(like reading sensors in regular time intervals or time-dependent algorithms that have to be run in a fixed time

period), MeRMaID::support provides the ability for Services to set a regular interval in which a method called

"update" is called. This information is present in the "update-frequency" item of the Service Description.

The other mechanism that enables Services to interact with each other is the Data Feed. Data Feeds are

channels for Services to export data. The rate and the timing at which the data is exported is up to the Service

that is producing the data. Other Services may connect to existing Data Feeds and use the data received for

any purpose of its interest. In figure 4.2, Service A has two data feeds. In one of them, two Services are

connected, while in the other only one Service is connected.
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Service A

Service C

Service B

Service D

Figure 4.2: Data Feed conceptual diagram.

4.1.7 Communication Protocol

As described in Section 3.6, YARP offers a communication abstraction based on the Port concept. Ports

are connected to each other in order to establish a data link. Every Port has a name that is registered in a

name server. The name server is responsible for translating Port names to the Ports’ network location. This

information is then used by YARP to establish connections between Ports.

The YARP-based communication protocol here defined is implemented inside the Communication Frame-

work described in 4.1.2 and implements directly the mechanisms defined for interaction between Services in

the previous section.

This section will follow with the definition of the protocol for both of the Service interaction mechanisms

(Service Request and Data Feed) and will end with a formal definition of the naming convention for the YARP

Ports.

4.1.7.1 Service Request Mechanism implemented in YARP

To implement the Service Request interaction mechanism, each Service has to create YARP Ports following

the port naming convention and send data in the formats here defined.

The Service Request interaction mechanism between two Services involves a total of four YARP ports.

A Service willing to receive Service Requests has to open an input port where it will receive them. To send

the Service Reply, an output port has to be also created. A Service wishing to send Service Requests has to

send them through a port (called the request port) and receive the Service Replies on another one (called the

reply port). An illustration of the arrangement of these ports can be seen in figure 4.3;

The sequence of actions to be taken by a Service sending a Service Request is:

1. Create the Request Port.

2. Create the Reply Port.

3. Build the YARP Bottle containing the Service Request.

4. Connect the Request Port to the other Service’s Input Port.

5. Write the YARP Bottle to the Request Port.
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Service A Service B

Service Request

Service Reply

Request Port

Reply Port

Input Port

Output Port

Figure 4.3: YARP ports for the Service Request interaction mechanism.

6. Read the Reply Port to receive the Service Reply.

Likewise, for the Service that is receiving Service Requests it should do the following sequence of actions:

1. Create the Input Port.

2. Read the Input Port to receive the Service Request.

3. Process the Service Request.

4. Create the Output Port.

5. Build the YARP Bottle containing the Service Reply.

6. Connect the Output Port to the requesting Service’s Reply Port.

7. Write the YARP Bottle to the Output Port.

Service Requests are sent in YARP Bottles. YARP Bottles are special containers provided by YARP

that behave as simple arrays of data and that have a well-defined binary representation, suitable for network

transmission. All of the data going through YARP Ports is, by option, inside a YARP Bottle. This makes

it possible to use tools provided by YARP to inspect the data being received and sent by a Port without

interfering with the normal execution of the system. The Bottle representing a Service Request should have

the following contents in the order and with the data type here described:

1. string: Entity name - the name of the entity in which the Service is running

2. string: Client Service name - the name of the Service which is sending the request

3. string: Service Interface Name - the Service Interface to which the Service Request is targeted

4. int: Request ID - an ID number of the Service Request being send. This number should be unique for

all of the requests sent by a client Service

5. Bottle: Service Request Data - the data sent in the Service Request. The specific format of the data

sent inside this Bottle is up to the target Service to define.

Service Replies, like Service Requests, are also sent in YARP Bottles. The order and data types of the

elements sent in them, are:

1. string: Client Entity name - the name of the entity in which the Client Service is running

2. string: Client Service name - the same that came in the request that originated this reply
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3. int : Request ID - the same that came in the request that originated this reply

4. string : Service Execution Status - it contains the string ’OK’ if service ran successfully, otherwise it

contains a string with the description of the error

5. Bottle: Service Reply Data - the data received with the Service Reply. The specific format of the data

sent inside this Bottle is up to the target Service to define.

If the service execution status is not ’OK’ the reply data Bottle is either empty or has the same structure

as the Service Reply Data (it has to be always a valid YARP Bottle).

4.1.7.2 Data Feed Mechanism implemented in YARP

To implement the Data Feed interaction mechanism the Service producing the data has to create an Output

Port where the data is exported and the Services that want to receive the data have to create an Input Port

where they receive the data. Services that want to receive the data from a Data Feed are also responsible for

connecting the Output Port to their Input Port. Data sent through a Data Feed is always encapsulated inside

a YARP Bottle. In figure 4.4 an example of the layout of these Ports can be seen.

Service A Service B

Data
Output Port Input Port

Figure 4.4: YARP Ports for the Data Feed interaction mechanism.

The sequence of actions to be taken by a Service that wants to export data via a Data Feed is:

1. Create the Output Port.

2. Build the Bottle containing the data to be sent.

3. Write the Bottle to the Output Port.

Likewise, the sequence of actions to be taken by a Service that wants to receive data from a Data Feed

is:

1. Create the Input Port

2. Connect the other Service’s Output Port to its Input Port

3. Read data from the Port

The Data Feed’s data is sent encapsulated inside a YARP Bottle. The contents of the YARP Bottle should

be defined by the Service that is exporting data.
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4.1.7.3 YARP Port Naming Convention

The YARP Ports described in the previous sections should be named using the naming convention described

here in BNF notation:

Listing 4.3: YARP Port naming convention for th Service Request and Data Feed mechanisms.

<port-name> ::= "/" <entity-name> "/" <service-name> "/"

<interaction -specific -suffix>

<interaction -specific -suffix> ::= "service-request/ "<service-request-ports> |

"data-feed/" <data-feed-ports>

<service-request-ports> ::= "request/" <entity-name> "/" <service-name> | "input" |

"output/" <entity-name> "/" <client-service-name> | "reply/" <entity-name> "/"

<service-name>

<data-feed-ports> ::= "output/" <data-feed-name> | "input/" <entity-name> "/"

<data-feed-component -name> "/" <data-feed-name>

The only new field introduced here is the entity-name field. This should be filled with the name of the

robot (or machine) in which the Service is running.

4.1.8 Syntactic Sugar Framework

This framework is simply a placeholder for auxiliary classes and definitions that are used throughout the code

that are useful in order to beautify the code (hence the name).

4.1.9 System Framework

In this framework we have classes that represent an abstraction of specific data types of the underlying com-

puting platform. Its purpose is for Service developers to be able to use functionality that is normally available

in any system while using platform independent code. Currently the only abstract class present in this frame-

work is Time. This class allows developers to represent time in a platform-independent format. In a particular

system this task is instantiated as a class compatible with the underlying system’s time representation format.

4.1.10 XML Framework

All of MeRMaID::support’s configuration files are written in XML and have corresponding XML DTD files for

validation of their content. In order for these to be used in a platform independent way by Service develop-

ers, the XML Framework was created. This framework allows for XML files to be read and validated. This

framework implements an approach similar to the Document Object Model (DOM) Level 1 Specification [2],

although simplified. Since this is not a DOM Level 1-compliant implementation, not all of the possibilities of

XML representation are available, but those that are available have met all the needs of the project until now.
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If more functionality for XML manipulation is needed, this framework should be extended in order to support

it.

4.1.11 Current Implementation

MeRMaID::support currently only uses three libraries: ACE for dealing with ActiveObject execution, libxml2

for reading and validating XML files and YARP for communication (which also uses ACE). The rest of the

code is written using only standard C++ and C++’s Standard Template Library (STL). Both ACE and libxml2

are libraries that are available in a wide variety of systems and were chosen precisely because of that.

Given this, MeRMaID::support is expected to run in all the platforms supported by both of these libraries.

MeRMaID::support has been tested in both Linux and Mac OS X operating systems. Currently

MeRMaID::support is not working on Windows platforms because of several differences between the GCC

compiler used in Linux and Mac OS X and Microsoft’s Visual Studio compiler which cause the code to not

compile in Windows.

The build process of MeRMaID::support is managed by the CMake system which is able to generate

build files for several platforms. CMake is configured by a series of script files which indicate how the code

should be compiled and then generates system native build files. For instance, in a Unix environment, CMake

generates regular makefiles that build the code, while in Windows it can generate Visual C++ projects. CMake

is also available for a wide variety of systems.

4.1.12 Example on coding simple Services using MeRMaID::support

In this section an example of two simple Services that interact with each other is presented. The EchoService

provides a Service Interface to which requests with any type of data may be sent via a Service Request. The

EchoService then just simply sends the data received in the Service Request to the Service Reply, effectively

echoing all data received.

Let us start by writing the Service Description file. The Service Description file states the Service’s name,

a human-readable comment on the Service’s functionality and the description of all of its Service Interfaces.

In this case we will have only one Service Interface named "EchoInterface". Since in this example we don’t

want MeRMaID::support to validate the structure of the data received in the Service Interface, these fields

should be left empty in the Service Description file. The resulting XML can be seen in Listing 4.4.

Next we will build the header file for our Service. To build Services for MeRMaID::support the developer

should inherit from the base Service class. The constructor for the class must follow the same signature as

the base Service class: two arguments, being the first a pointer to the ActiveObject in which the Service is

going to be run and the second a pointer to the XmlDocument containing the Service Description. Additionally

to the constructor we will need a handler function where we will process the Service Requests that will arrive

to the Service via the previously declared Service Interface in the XML Service Description file. The handler

functions receives as arguments pointers to both the Service Request received and to the Service reply that

will be sent back. The handler function should set the data in the Service Reply in accordance to what is

expected to be replied when sending the given request to the Service Interface to which it is associated. The

22



Listing 4.4: echo-service-description.xml: EchoService description file

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE service-description SYSTEM "service-description.dtd">

<service-description>

<name>EchoService</name>

<comment>This services echoes to the reply the data that arrives in the

input</comment>

<service-interface>

<name>EchoInterface</name>

<comment>Echoes the request data back to the requester</comment>

<in-data></in-data>

<out-data></out-data>

</service-interface>

</service-description>

header file with all of these declarations can be seen in Listing 4.5.

Listing 4.5: EchoService.hpp: EchoService declaration

namespace examples

{

class EchoService : public Service

{

public:

EchoService(CountedPtr <ActiveObject > ao, CountedPtr <XmlDocument >

serviceDescription);

static void echoHandler(CountedPtr <ServiceAsynchRequest > request,

CountedPtr <ServiceAsynchReply > reply);

}; // EchoService

} // namespace examples

Now, we will write the code that actually implements EchoService. We don’t need to do any initializations

in EchoService’s constructor, so it will have an empty body, but, just like any other Service, it has to call the

constructor of the base Service class. Other than the constructor the EchoService class only has a handler

function that is responsible for processing the Service Request. In the EchoService this function only has to

set the Service Reply data the same as the data that arrives in the Service Request. The complete code of

the EchoService.cpp file containing both the constructor and the handler function is shown in Listing 4.6.

Having built the EchoService, now follows the construction of a simple Service that is able to interact with
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Listing 4.6: EchoService.cpp: EchoService implementation

#include "EchoService.hpp"

using namespace examples;

EchoService::EchoService(CountedPtr <ActiveObject > ao, CountedPtr <XmlDocument >

serviceDescription) : Service(ao, serviceDescription)

{

registerServiceAsynchRequestHandler("EchoService", &echoHandler);

}; // EchoService()

void EchoService::echoHandler(CountedPtr <ServiceAsynchRequest > request,

CountedPtr <ServiceAsynchReply > reply)

{

//put service request data on a local variable

CowPtr<DataValueVector > data = request->getRequestData();

// set the reply data equal to the request data

reply->setReplyData(data);

}; // echoHandler
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it. EchoClientService simply runs in regular time intervals (say, one time per second) at which it sends data

to the EchoService. It has no Service Interfaces, therefore its description file consists only of its name and a

special field named "update-frequency" that specifies the frequency at which the Service’s update() method

should be invoked by MeRMaID::support. The Service Description XML for EchoClientService can be seen

in listing 4.7.

Listing 4.7: echo-client-service-description.xml: EchoClientService description file

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE service-description SYSTEM "service-description.dtd">

<service-description>

<name>EchoClientService</name>

<comment>This services runs periodically and sends data to the

EchoService</comment>

<update-frequency>1</update-frequency>

</service-description>

Following the same sequence presented for the EchoService, now we’ll write the EchoClientService.hpp

header file. The header file for EchoClientService is in all similar to the header for EchoService, except that

the handler is for receiving a Service Reply instead of a Service Request and the EchoClientService class

implements the update() method. The complete header code can be found in Listing 4.8.

Listing 4.8: EchoClientService.hpp: EchoClientService declaration

namespace examples

{

class EchoClientService : public Service

{

public:

EchoClientService(CountedPtr <ActiveObject > ao, CountedPtr <XmlDocument >

serviceDescription);

static void EchoServiceReplyHandler(CountedPtr <ServiceAsynchReply > reply);

virtual void update();

}; // EchoClientService

} // namespace examples

Finally, the code that implements EchoClientService. Just like EchoService, we don’t need to do anything

in the constructor except for calling the base-class (Service) constructor. The update() method is where

we will send request to EchoService. Having defined the "update-frequency" in EchoClientService’s Service
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Description file, this method is called automatically at the frequency written in that file. To make a new Ser-

viceRequest, we ask the Service class to generate a new one for us via the makeNewServiceAsynchRequest()

method. This method has one argument which is the name of the Service to which the request will be sent.

After having a new Service Request generated, we put some data in it. In this case we simply insert a small

string: "ECHO!". All the data manipulation mechanisms are provided by the Data Framework described in sec-

tion 4.1.3. We put this data inside the Service Request and we send it via the sendServiceAsynchRequest

method, passing as parameters the name of the destination Service Interface, the Service Request and a

pointer to a handler function for the Service Reply. Finally, we have to code the handler for processing the

Service Reply that will later be received in response to the Service Request sent. In this handler we simply

print the Service Request ID number of the originating Service Request (every Service Request sent by a

Service is given a unique ID number, so that it may know which was the originating request of the reply). The

code can be seen in Listing 4.9.

4.2 MeRMaID

The reason for building the middleware layer presented in the previous section called MeRMaID::support

was to be possible to implement platform-independent high-level components for MeRMaID (in the form of

Services). Having a clear definition (and implementation) of Services is still not enough to guarantee that it

is possible to have a modular architecture in which it is easy to replace a certain Service by another one that

is able to perform a certain task. Therefore, MeRMaID defines a high-level architecture design (as described

in [14]), based on Services and how they should interact with each other. As an analogy, MeRMaID::support

can be seen as providing the building blocks (Services) and MeRMaID provides the plan of how to assemble

them in order to build a sound system. Using this "plan" that MeRMaID provides, it is possible to substitute a

block (Service) by another one, as long as the requirements of the "plan" are followed.

An important aspect that should be noted is that while MeRMaID::support is completely domain-indepen-

dent, not having any direct link to robotic applications (although requirements inherent to these applications

were, of course, accounted for in this level), MeRMaID is completely dedicated in describing how Services

should be organized in the domain of cooperative robotics. In fact, MeRMaID can be seen as a Domain-

Specific Software Architecture (DSSA), i.e. "an assemblage of software components, specialized for a par-

ticular type of task (domain), generalized for effective use across that domain, composed in a standardized

structure (topology) effective for building successful applications" [19].

MeRMaID is not currently implemented with the previously described version of MeRMaID::support, but

with an older version that didn’t have such a clear structure. Nevertheless, the structure presented in this

section is completely valid and independent of the implementation of MeRMaID::support.

4.2.1 MeRMaID High-Level Concepts

The design of MeRMaID started by the definition of key-concepts that were result of several years of experi-

ence with soccer robots within the SocRob project [6][12] (http://socrob.isr.ist.utl.pt) at ISR. These concepts

are a way of partitioning the problem of controlling a (team of) robot(s). This is why MeRMaID is so tightly
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Listing 4.9: EchoClientService.cpp: EchoClientService implementation

#include "EchoClientService.hpp"

using namespace examples;

EchoClientService::EchoClientService(CountedPtr <ActiveObject > ao,

CountedPtr <XmlDocument > serviceDescription) : Service(ao, serviceDescription)

{

// nothing to be done apart from calling Service’s constructor

}; // EchoCEchoClientService()

void EchoClientService::update()

{

CountedPtr <ServiceAsynchRequest > sr =

makeNewServiceAsynchRequest("EchoService"); // get a new service request

CowPtr<DataValueVector > data = sr->getRequestData(); // get data vector for this

request

CowPtr<DataValue > s = DataFactory::buildString("ECHO!"); // build a data string

v->pushBack(s); // put the string in the data vector

sr->setRequestData(data); // put the data vector back in the request

sendServiceAsynchRequest("EchoInterface", sr, &EchoServiceReplyHandler); // send

the request

}; // run()

void EchoClientService::EchoServiceReplyHandler(CountedPtr <ServiceAsynchReply >

reply)

{

CowPtr<DataValueVector > data = sr->getReplyData();

std::cout << "Received: " << reply for request #" << reqId << std::endl;

}; // EchoServiceReplyHandler()
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attached to the robotics domain: because it builds on concepts that are mostly applicable only to robotic

applications. These concepts are:

Navigation Primitive A Navigation Primitive is a guidance algorithm which, based on the current and target

robot postures and current self-localization estimate, computes the required actuator commands to

move the robot from the current to the target position avoiding obstacles on the way.

Primitive Action A Primitive Action is the atomic element of a behavior, which can not be further decom-

posed. It usually consists of come calculations (e.g., determination of the desired posture) plus a call to

a navigation primitive or the direct activation of an actuator. Desirably it is designed as a STA (Sense-

Think-Act) loop, i.e., a generalized view of the closed-loop control system concept. This means that

MeRMaID favors a Primitive Action that moves the robot towards its goal while avoiding obstacles,

rather than having one primitive that moves towards the goal and another that avoids obstacles.

Behaviors Behaviors are defined as "macros" of Primitive Actions grouped together using some appropriate

representation. For instance, a behavior may consist of a state machine in which states represent

Primitive Actions and transitions between states have associated Events, but it could also be defined by

a fuzzy decision-making algorithm based on fuzzy rules, used to select sequences of Primitive Actions

to be executed.

Predicates Predicates are boolean relations over the domain of world objects, e.g., see(x), where x can be

ball, pole, or field_line, in the soccer domain, or near(r,x), where r is any of the team robots, and x can

be any world object.

Events An Event is, in general, an instantaneous occurrence which denotes a state change (e.g., of a vari-

able, of a robot). In MeRMaID, we limit the event definition to changes of (logical conditions over)

Predicates from True to False or False to True. Examples of events in robot soccer are: event

lost_object occurs when the predicate has(object) changes its value from True to False, and vice-

versa for event got_object; event found_object occurs when the predicate see(object) changes from

False to True.

Roles Roles are subsets of behaviors, defined over the set of available behaviors. When a role is selected

(e.g., Attacker, Defender, GoalKeeper in the soccer domain), a new set of behaviors becomes en-

abled for selection by the behavior coordination mechanism. In practice, a role constrains the possible

options for a robot selection of behaviors, effectively constraining the overall behavior displayed by the

robot. Note that roles do not form a partition over the set of available behaviors, since there are behav-

iors that may be shared by more than one role (e.g., GetClose2Ball for the Attacker and Defender

roles above).

4.2.2 MeRMaID’s Structural Blocks

MeRMaID is divided in three major structural blocks: Atlas, Wisdom and CORTEX. A diagram with the struc-

ture of MeRMaID’s high level architecture can be seen in Figure 4.5

The three structural blocks of MeRMaID are described in the following subsections.
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Figure 4.5: MeRMaID High Level Architecture: red lines are data connections, blue lines are event connections

4.2.2.1 Atlas

Atlas is viewed as the subsystem that supports the whole system. It is responsible for the tasks most directly

related to the robot’s environment: sensing and acting. The Atlas block is different from the other blocks in the

sense that it does not specify individual Services, but types of Services, being there more than one instance

of each Service. This block is composed by the following types of services:

Devices handle the low level interface with physical-world devices (e.g. motors, sonars, cameras).

Sensors obtain information from the devices (e.g. odometry, obstacle location, ball position).

Information Fusion fuse information from several sensors (which can be sensors onboard the robot or from

external sources).

Primitive Actions see definition in the previous section.

Navigation Primitives see definition in the previous section.

4.2.2.2 Wisdom

This block is named Wisdom in order to denote that it is a very relevant requirement for intelligence to be

displayed. This block acts as a central point of information storage and has the ability to generate events

based on predicate changes. This block is home for the following Services:
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World Info stores general purpose high-level data, relevant for predicate evaluation. World Info may hold

information originating from other external sources of information like other robots or external sensors.

Event Generator generates events based on predicate changes. This service handles all the available pred-

icates and re-evaluates them when every time relevant data changes in World Info (i.e. while a certain

predicate’s input data is not changed, it will not be re-evaluated in order to avoid unnecessary process-

ing). If a predicate’s value changes the Event Generator generates an event that is automatically sent

to all Services that registered for it previously.

4.2.2.3 CORTEX

The name CORTEX comes from CoORdinator, TEam organizer and eXecutor. This block is responsible for

decision-making and is the one which effectively controls the behavior of the robotic system. This block is

composed by three Services from which its name originated:

Team Organizer is responsible for the actual organization of the team in terms of roles. It activates roles in

each of the team’s robots.

Behavior Coordinator is responsible for behavior selection and coordination. It activates a behavior from

the set of behaviors available for the currently selected role.

Behavior Executor is responsible for behavior execution. It activates Primitive Actions, for the currently

selected behavior.

These three services should be implemented using some kind of formal behavior selection mechanism.

Currently there are implementation for finite state machines, Petri net plans and fuzzy logic decision-making-

based behavior selection.

4.3 mlgen: MeRMaID Loader Generator

MeRMaID::support is intended to provide platform-independence and all the Services present in MeRMaID

written in a platform independent way (except those that interact with hardware, of course). However, there

is still one aspect remaining for full platform independence: the deployment of the Services. To address this

issue the MeRMaID Loader generator, or mlgen for short, was created. This utility program is able to generate

code that deploys the Services based on an XML description of the Services to deploy.

The XML file for describing the runtime configuration of the Services to be deployed declares a number

of ActiveObjects and Services that should be run. For each ActiveObject the only information necessary is a

name for identifying it. For each Service the following information is needed:

service description file The filename that contains the Service Description.

header file The .hpp file of the specific Service implementation.

namespace The C++ namespace in which the Service was declared.

class name The C++ class name given to the Service’s concrete implementation.

instance name A name for identifying the instance of the Service.

configuration file A configuration filename to be read by the Service when it is instantiated.
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ActiveObject name The name of the ActiveObject in which this Service should be run.

Currently mlgen is able to generate code for deploying MeRMaID Services for the ACE-based implementa-

tion of MeRMaID::support. In listing 4.10, a sample file for configuring mlgen can be seen. This configuration

file for mlgen is based on the example given in section 4.1.12. In this example we have two ActiveObjects

named "ActiveObject1" and "ActiveObject2" and two Services: "EchoService" and "EchoClientService". Each

Service is set to run in one ActiveObject so that the Services may run concurrently. If the Services could not

be run concurrently because of, for instance, a shared resource, they should be run in the same ActiveObject.

Since there is nothing limiting the Services to run concurrently, we may put them on different ActiveObjects

and gain some performance from it. By running mlgen with this configuration and then compiling the result-

ing output code together with the code of EchoService and EchoClientService we would get an executable

program that deploys and starts execution of both of the Services.

4.4 SIF: SocRob Interface

The SocRob Interface, or SIF for short, was developed in response to certain specific needs of the SocRob

project. In robotic soccer, the teams need to have a so-called base-station. This base-station is typically a

PC connected by an ethernet connection to the computer that is running the referee-box (a special software

that allows the referee to control the state of the game). In the base-station, teams should run a software

that connects to the referee box and that relays the game state information to the team’s robots. the SocRob

Interface acts as this relay during soccer games while giving information about the robots on the screen.

The Java programming language was chosen to develop SIF. The main reason for choosing Java was

that it is supported in a wide number of different Operating Systems and offers a reasonable framework for

designing interfaces.

4.4.1 User Interface

The user interface is divided in several tabs, each tab having its own layout. By default, SIF starts with a

tab showing the Team Layout. In this layout, a general view of the status of the robotic team can be seen.

This layout is dominated by the field view in which the user may see the robots’ postures and other sensing

information like their perceived position of the goals and the ball. There are also controls for connecting to the

referee box and for connecting to the robots. A screenshot of this layout can be seen in Figure 4.6. The other

layouts available in other tabs are all similar and display robot-specific information, i.e., each tab displays

information about only one robot. In these layouts there is information about the robots sonars, batteries and

a text field to which various information about the communication with robot is printed (like connections and

disconnections, sent events, etc.). A screenshot of this layout is seen in Figure 4.7.

4.4.2 Internal Code Structure

SIF’s code follows the model-view-controller architectural pattern [10], i.e., the domain objects and their graph-

ical representation and interaction mechanisms are separated in order to minimize the dependencies between

these aspects. This way, SIF has a collection of domain objects that together represent the state of all objects
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Listing 4.10: Example configuration file for mlgen.

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE runtime-configuration SYSTEM "runtime-configuration.dtd">

<runtime-configuration >

<active-object>

<active-object-name>ActiveObject1 </active-object-name>

</active-object>

<active-object>

<active-object-name>ActiveObject2 </active-object-name>

</active-object>

<service>

<service-description -file>echo-service-description.xml</service-description -file>

<header-file>EchoService.hpp</header-file>

<namespace >examples </namespace >

<class-name>EchoService </class-name>

<instance -name>echoServiceInstance </instance -name>

<configuration -file></configuration -file>

<active-object-name>ActiveObject1 </active-object-name>

</service>

<service>

<service-description -file>echo-client-service-description.xml

</service-description -file>

<header-file>EchoClientService.hpp</header-file>

<namespace >examples </namespace >

<class-name>EchoClientService </class-name>

<instance -name>echoClientServiceInstance </instance -name>

<configuration -file></configuration -file>

<active-object-name>ActiveObject2 </active-object-name>

</service>

</runtime-configuration >
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Figure 4.6: SIF’s Team Layout

Figure 4.7: SIF’s Robot Layout
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on which it has information. The information for updating these domain objects arrives through network con-

nections to the robots and to the referee box. The domain objects are all in the same Java package named

sif.realworld. The objects responsible for showing information to the user (the components) get the re-

quired information from the domain objects so they are decoupled from how (and when) the information is

received from the robots or the referee-box. These components are then assembled in small groups called

widgets. These are simple collections of components that provide information to the user in some kind of

coherent format. For instance, the FieldViewWidget is composed by a Field component which draws the

field representation, on top of which it puts RobotAvatar components representing the robots.

The code is organized in several Java packages and they contain the following:

sif Thread management and event diffusion mechanism among objects.

sif.communication Implementation of the communication protocols with the robots and the RoboCup MSL

Referee Box.

sif.datatypes Datatypes used throughout the code (such as Posture and Obstacle)

sif.layouts Implementation of the GUI layouts. Currently the TeamLayout and the RobotLayout are imple-

mented.

sif.menu Holds the application menu classes.

sif.menu.items Implementation of the menu items.

sif.realworld Domain objects: Ball, Goal, Robot and Team

sif.widgets Implementation of the widgets used in the layouts.

sif.widgets.components Implementation of the components used inside widgets.

4.4.3 Integration with MeRMaID

The SocRob project already had a GUI for displaying information from the robots and for connecting to the

referee-box, named GameIface This interface had been developed without a structured software development

approach and poor documentation, so code maintenance and development became increasingly more diffi-

cult. Nevertheless, GameIface was able to perform its task and being a fundamental part for putting the robotic

team working with the referee-box it could not be abandoned instantly. Furthermore, since it was expected for

the development of SIF to take some time until the code got stable enough to be used in real games, we had

to make a solution that would enable developers to transition gradually from one interface to another and have

always GameIface as a fail-safe backup option. Therefore, it was decided to develop SIF communication to

the robots using the same protocol that was being used by GameIface.

The existing protocol consisted on a simple request-response message exchange pattern working over

TCP/IP. There are two types of requests: a getter request which gets information values from the robot and a

setter request which sets information values in the robot.

The messages are sent in ASCII text, being each message terminated by a newline ASCII character. The

getter request follows the format "GETV <value name>", in which <value name> is the name of the value

being requested. The response to a getter request is structured like "+OK <value>", with <value>, being a

text-representation of the requested value. If an error occurs during the processing of the getter request the

message "-ERR" is returned instead. As for the setter request, it follows a similar format with the addition that
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the value is also sent in the request: "SETV <value name> # <value>". On success, the response is simply

"+OK" or if there was an error "-ERR" is sent.

The value names of the available data are related to the old names used in the previous software archi-

tecture used in the SocRob project. A list of the used names and the meaning of its data is listed in Table

4.2.

This text-based request-response protocol is implemented in SIF in the sif.communication package and

is used by the domain-objects to get data from the robots. In MeRMaID, since this protocol does not conform

to the protocol used between MeRMaID services, a Service named CommunicationManager was developed

to handle communication between the robots and SIF (as well as the old GameIface which followed the same

protocol). This Service is able to handle the GUIs’ requests and translate them into requests understandable

by other relevant MeRMaID Services.
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Value Name Description

local.odometry.x Robot’s posture x component.

local.odometry.y Robot’s posture y component.

local.odometry.theta Robot’s posture theta component.

local.sonarN.dist Distance measured by sonar number N.

local.vision.ball.x Locally viewed ball’s posture x component.

local.vision.ball.y Locally viewed ball’s posture y component.

global.ball.x Global (data-fused) ball’s posture x component.

global.ball.y Global (data-fused) ball’s posture x component.

local.vision.ball.see-ball? Boolean indicating if ball is locally visible or not.

global.ball.see-ball? Boolean indicating if ball is globally visible or not.

BatteryLaptopState State of the robot’s laptop battery.

BatteryRobotState State of the robot’s batteries.

local.vision.yellowgoal.x Yellow goal’s posture x component.

local.vision.yellowgoal.y Yellow goal’s posture y component.

local.vision.yellowgoal.theta Yellow goal’s posture theta component.

local.vision.yellowgoal.see-goal? Boolean indicating if yellow goal is visible.

local.vision.bluegoal.x Blue goal’s posture x component.

local.vision.bluegoal.y Blue goal’s posture y component.

local.vision.bluegoal.theta Blue goal’s posture theta component.

local.vision.bluegoal.see-goal? Boolean indicating if blue goal is visible.

CurrentRole The current role being performed by the robot.

RunningBehavior The current behavior being executed by the robot.

RunningPrimitiveActions The set of currently running Primitive Actions.

isRunning Boolean indicating if the robot is running (i.e. all elec-

tronics on and ready to move).

refevent Value name for setting the last referee event in the

robot.

setposture Value name for setting a global posture in the robot.

Table 4.2: Value names used in the text-based communication protocol between GUIs and robots
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5 Integration with other Tools

MeRMaID has already been integrated with other tools in order to support the development of robotic systems

and the design of their behavior. In this section three tools are described as well as how they are integrated

with MeRMaID.

5.1 FSMeditor

FSMeditor is a visual editor for Finite State Machines (FSMs). Users are able to visually edit a representation

of a FSM and then load it to a FSM implementation of MeRMaID’s CORTEX components.

5.2 JARP

JARP’s purpose is identical to that of FSMeditor but for Petri Nets. Users visually edit a Petri Net, save it

to a Petri Net Markup Language (PNML) file that can be read by an implementation of MeRMaID CORTEX

components that are able to read these files. This way, developers may develop full behaviors at all three

levels of CORTEX using a visual tool. In figure 5.1 an example of a Petri Net being edited in JARP can be

seen.

Figure 5.1: JARP being used to develop a petri-net

5.3 Webots

Webots is a commercial robot simulator made by Cyberbotics (http://www.cyberbotics.com). It has been used

in the SocRob project in order to test and debug the robots’ control code in a controlled environment, where

experiments can be quickly repeated and are free from robot hardware failure. The integration of Webots to

MeRMaID was fairly easy: all it took was to substitute MeRMaID’s Device Services from those that interface

37



with the robots’ physical sensors and actuators with Device Services that would interface with Webots. In

figure 5.2 two full teams of robots ready for playing a robotic soccer match can be seen.

Figure 5.2: Webots simulator used for testing.
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6 Solution Application and Results

6.1 SIF: SocRob Interface in use during games and development

SIF was extensively used during the preparation for RoboCup’07 as well as during the competition games.

RoboCup and, more specifically, its Middle-Size League is a robotic soccer competition in which teams of fully

autonomous robots compete with each other in an environment and with a set of rules in all similar to human

soccer. The main objective of this type of competition is to foster investigation in several important areas for

the development of robotics in a scenario that is attractive to the general public.

Besides the field robots, there is one external machine for each team that typically runs the teams interface

and, most importantly, software to relay information of the game state arriving from a PC where the team of

referees issues its rulings. This is the only way the robots can know if the game is running or not, or if a foul

was issued by the referees. SIF had the responsibility of doing the relay of this information to the robots. It

was a critical component of all the system since failure in working would result in all the robotic team failing.

From the visualization side, although SIF doesn’t provide many new features compared to the previous GUI

used in the SocRob project, the additional information it displays was useful in debugging problems and to

understand how the whole system was working (namely information about the localization of the field goals

from the robot’s perspective). On the other hand, it was expected for SIF’s performance to be better than

what it displayed, being the application not as responsive as desired. This was caused mainly because of the

communication protocol used and the very high latencies in communication at the RoboCup venue, where

packet round-trips to and from the robots can easily be in the order of several hundreds of milliseconds, and

sometimes can become as high as several seconds.

6.2 MeRMaID::support: application in the URUS project

A demo application was prepared in the context of the URUS project. The general objective of the URUS

project is to develop "new ways of cooperation between network robots and human beings and/or the environ-

ment in urban areas" [17]. The project has 11 partners, each participating in several work-packages dedicated

to different aspects of the overall system. Therefore, an important issue arises: integrating all the work de-

veloped by the different partners. The communication protocol described in Section 4.1.7 was accepted as

the communication protocol to be used between the software packages. Thus, MeRMaID::support is already

compatible with the protocol and ready to be used in this project to integrate several software packages.

The main goal of the demo here presented was to demonstrate a fully working deployment of all the

software based on MeRMaID::support and using the defined communication protocol based on YARP. The

demo involved controlling a complete robotic application with both fixed sensors and a mobile robot with

on-board sensors as well.

The task to be accomplished by the system was to identify special markers placed in the environment and

to localize them. Due to the low precision that is given by the fixed camera, the mobile robot should move

nearer to the markers and improve their localization estimate. As the robot did not have any sensor capable

of detecting the object, the demo was simplified to make the robot just go near to the target object.
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6.2.1 Demo Layout

The demo consisted of:

• one USB camera connected to a PC

• one mobile robot (Pioneer) with an on-board PC

• wireless network infrastructure based on the 802.11 family of protocols

A diagram of the layout used can be seen in Figure 6.1.

802.11

Figure 6.1: URUS demo layout diagram

6.2.2 Porting existing code to MeRMaID::support

The code for this system was already fully developed by the time MeRMaID::support was ready. It was using

YARP directly and therefore needed to be ported to MeRMaID::support and had been developed without any

knowledge that it would be later be used with MeRMaID::support. The porting process started by identifying

the communication links between software components and asserting that they could be classified as Service

Request or Data Feed communications. The identification of the communication links and software compo-

nents led to a straightforward definition of how the software components capabilities would be mapped to

MeRMaID::support Service’s as well as the Asynchronous Service Request and Data Feed communication

methods to be used.

6.2.3 Software Structure

A Service built on MeRMaID::support was built for each key functionality of the System. In Figure 6.2 the

software structure of the demo can be seen. The Services created for this demo were:

PioneerControl This Service controls directly the Pioneer robot in which it is running. It is able to set the

robot’s wheel velocities and to export data from the sonar sensors and from the odometry encoders.
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FeatureDetector This Service is able to connect to a USB camera and extract the position in world coordi-

nates of the robot and of the target object.

RobotPostureEstimator This Service collects data from the PioneerControl Service (the robot’s odome-

try encoders) and from the FeatureDetector Service (the location of the robot) and fuses it in order to

provide accurate estimates of the robot’s posture.

RobotController This Service gathers information from the RobotPostureEstimator (the robot’s posture)

and is able to guide the robot to a specific posture. The posture to which it drives the robot is set through

the Service Interfaces it provides: "gotoPosture" and "stop".

GlobalController This Service has the main control logic for implementing the demo. It gets information

from the detected postures of the robot and the target object from the FeatureDetector Service. If the

robot is seen too far away of the target object, it orders the robot to go to a posture near the object by

sending a Service Request to the RobotController’s gotoPosture Service Interface.

Service Requests are used primarily for controlling the behavior of Services. As can be seen, the

GlobalController controls the RobotController that in turn controls the robot (PioneerControl Ser-

vice). Data Feeds are mainly used as means for sharing data between Services.

PioneerControl
R: setVelocity
D: sonar
D: odometry

RobotPostureEstimator
R: registerRobotFeatureEstimator
D: posture

RobotController
R: gotoPosture
R: stop

GlobalController
R: registerFeatureDetector

FeatureDetector

D: objectPosture
D: robotPosture

Figure 6.2: URUS demo software structure. Each box is a Service and has the available Service Interfaces indicated by

an ’R’ and the Data Feeds provided by each Service indicated with a ’D’. The big arrows indicate control flow, and the

thin arrows indicate data flow.

6.2.4 Results

Integration of all the software components was successful and conformance to using MeRMaID::support-

based Services was verified. This demo did not base itself on the MeRMaID high-level architecture but was

an example of how MeRMaID::support and its Service-based approach to separate software components can

be applied.
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7 Conclusions

7.1 Main Contributions

A new version of MeRMaID::support was designed and implemented using the Service-Oriented Architec-

ture (SOA) Reference Model as a guide for structuring the solution. MeRMaID::support also relies on the

Active Object design pattern and implements it using the ACE library which is widely used in the industry.

MeRMaID::support was built in order to ease the developer’s task of developing services and to interact with

other services. The various frameworks available in MeRMaID::support are targeted towards specific needs

and specific requirements of service developers.

A communication protocol built on top of the commonly used YARP library was developed. The simplicity

and clear definition of this protocol enables software components built without using MeRMaID::support to be

able to interact with MeRMaID::support-based Services.

A tool for deploying MeRMaID::support services, mlgen, was developed, further increasing the platform-

independence of the environment in which the Service developer works. By also specifying MeRMaID::support’s

building process using CMake scripts, platform independence is achieved for the whole process from building

MeRMaID::support-based Services to deploying them.

A special GUI for aiding development of SocRob’s project software, the SocRob Interface (SIF), was

developed. This GUI provided visual feedback of the inner workings of MeRMaID Services as well as serving

an important function during robotic soccer competition matches in which it acted also as a base station for

game state reporting to the robots.

7.2 Future Work

As for future work that should follow what has been described, the following is suggested:

• Port SocRob’s code to the newly developed version of MeRMaID::support: porting the code to the new

version would allow all Services to communicate using a more structured communication model and

allow for easier communication between robots, something that was coded manually using the previous

version of MeRMaID::support.

• Implement more advanced mechanisms for invoking services such as service searching capabilities as

well as automatic servicing by type of service (i.e. search for services based on their semantic function).

• Implement semantics-based data diffusion mechanism that would enable automated diffusion of data

about a certain concept, even though it may come from different origins.

• Change SIF’s communication protocol to be compatible with the communication protocol used between

Services. It would also be useful that this communication could be implemented using UDP as the

transport protocol in order to minimize latency (even though delivery is not guaranteed but that is not an

important requisite for SIF).
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