
Agents for Massive On-line Strategy Turn Based Games

Lúıs Miguel Landeiro Ribeiro

November 25, 2007

Abstract

Strategy games have two predominant factors that are
present in every games. At the highest level, the player
impersonates a strategist, managing resources; military
and tecnological investiments; global economy. At the
lowest level, the player assumes control over operational
decisions, e.g. setting up the army disposition; coordinat-
ing armies; buys and sells resources. This work focus on
the lower level, creating an agent architecture that eases
the burden of development. This work shows how massive
multiplayer strategy on-line games can be improved by the
introduction of an agent oriented engine. Development of
complex interactions becomes more manageable; creation
of realistic and amuzing environments, while keeping
under control the performance requirements, becomes
possible.

1 Introduction

Believability is the buzzword in the computer games ar-
tificial intelligence 1, games focus on creating the illusion
of reality. The longer it takes the players to realize the
limitations of the virtual world the longer they will play.
Massive multiplayer on-line games 2 face specific problems
which affect them harder than other genres. Scalability
is often cited as the main issue, with thousand even
millions of virtual entities (player controlled or non-player
controller) roaming around a virtual world it is hard for
performance to be good.

The multi-agent paradigm is increasingly more impor-
tant in MMOGs because it addresses the main problems,
the creation of a virtual world and the distribution of
load. Agents act as individuals and constitute the most

1AI - Artificial Intelligence is the science and engineering of
making machines, with special emphasis on intelligent computer
programs[1]

2MMOG - Massive multiplayer on-line games are played over the
internet with thousands of human players at the same time

dynamic parts of the virtual world. Agents who are
independent and autonomous can be decoupled from the
world core, solving the scaling needs just by offloading
their processing to other machines.

1.1 Problem

Turn based strategy MMOGs have an even more peculiar
set of problems to solve. Turns are processed at specific
dates and therefore have a fixed time duration, during
which time only player actions are collected. The game
processing only happens at the end of turn. A third
issue arises by applying multi-agent systems to turn-based
strategy massive multiplayer online games (TBSMMOGs)
3.

1.2 Goals

This work lays down an agent oriented architecture to
introduce AI into Almansur. The architecture has the
following objectives:

• Flexibility - The framework should allow for the
development of new content and agents without
significant addicional effort

• Performance - The framework performance must be
good enough to support thousands of agents running
at the same time

• Ease of use - No special configuration should be
needed for things to work out of the box

• Simulation Realism - The framework should pro-
vide the means to create special unique agents only by
customizing their behaviors, which can be influenced
by a human player controlling them.

3The combination of turn-based strategy games with massive
multiplayer online games

1

1.3 Contribution

The main contribution of this work is the introduction
of AI capabilities into turn-based strategy massive mul-
tiplayer on-line games. This is new ground, since no
such game is known to date. The ability to influence
the agents behavior by direct orders of the players is
also a contribution to this active research field of human-
computer interaction. A new domain specific language,
simple yet powerfull, where the agents behavior can
be configured without changing the core code or, even
more powerfully, it can be changed by the agent itself,
to simulate the learning of new abilities or even create
offsprings.

2 Almansur 1.0

Figure 1: Almansur Screenshot

Almansur in seven sentences [4]: In the game, each
player controls a Land, the objective being to increase
the size, richness and power of that Land. Each Land
is made of territories (represented by hexes on the map).
Territories are the economic and recruitment cells of the
Land, and possess natural resources. Each territory can
have a Facility of each type and different Populations
living there. Facilities can be built in a territory and
give economic or military benefits. Resource gathering
facilities are only useful in territories which are rich in
the specific resource. Armies are formed with contingents
of troops. Contingents are recruited from territory popu-
lations.

Issues that prevent Almansur from being considered a
revolutionary game.

• No single player mode, where the new players can
learn the game at their own pace

• Almansur has no AI, which is a distinct trace of next
generation games

• Players drop-out and without AI there is no quick re-
placement for quitters. This degrades other player’s
experience.

• Dull repetitive tasks

• An overly static world

This work is an attempt to address the previous issues.

3 Almansur Agent Architecture

Figure 2: Agent Architecture

Figure 2 shows the outline of the architecture. The
environment is accessible to the agents through standard
sensors. Also accessible through the sensors is the com-
mon knowledge pool, denoted whiteboard. The agents can
try to modify the environment through their effectors.
Effectors can either succeed or fail and when they fail none
of their effects are propagated to the world. Through its
effectors an agent can modify the content of his group
whiteboard.

Each agent can have an internal state, this state can be
shared with other agents if the agent allows it. Two types
of sensors exist, the passive sensors which are received
by the agent by event notification; and the active sensors
which are used explicitly by the agent.

2

Agents can communicate with other agents in two
ways. Passively, they simply write information in or pose
questions to the whiteboard and check for changes later
in pooling mode. Actively, the agent notifies another
agent explicitly and waits for his response. The agents
are grouped according to the master they work for and
only have access to their group’s whiteboard.

Intelligence is provided by the behaviors available to
each agent, the combination of different behaviors spec-
ified and emergent higher level behaviors can be man-
ifested by the interaction of the simpler ones. Each
behavior has a set of pre-conditions that need to be valid
for the behavior to be enabled. The horizontal nature of
the architecture allows multiple behaviors to be started
at the same time if the proper conditions are met.

3.1 Environment

The virtual world of Almansur is a partially observ-
able, non-deterministic, sequential, dynamic, discrete and
multi-agent environment. It is not fully observable be-
cause other players actions or agents from outside groups
are not known. The non-deterministic nature also derives
from the actions of other players or competitive agents.
The actions can have repercutions for many turns, making
the environment sequential. It is a dynamic environment
because multiple agents compete for the same actions at
the same time, causing some agents effectors to fail if they
are done too late. While the number of percepts can be
extremely large it is still a finite set, so it is a discrete
environment. Several agents roam the Almansur world,
creating a multi-agent environment. Agents are typically
cooperative inside the same group and competitive against
different agent groups.

3.2 Agents

Several types of agents exist in this architecture, which
will be detailed in the next sections. All of them follow the
core design, having a hybrid architecture. The internal
state is optional, agents can be fully reactive whenever
appropriate. Because the performance is of the utmost
importance and because several thousands of games can
be active at the same time it is not feasible to have millions
of agents active at the same time. The agents thus need
to be loaded only when needed and made dormant when
there is nothing for them to do.

3.2.1 Behaviors

Behaviors are the core of the agent’s mind, an agent
being only as intelligent as its behaviors and the emergent
interactions they provide. For instance, for an agent to be
social it must possess some sort of behavior that enables
communication. The behaviors are loaded at each agent’s
initialization. Connected to the behaviors are the agent’s
sensors and effectors.

3.2.2 Sensors

Each Agent can have two types of sensors: passive sensors,
with which the agent cannot control the action, it is
notified when some event is detected and can chose to
react to that event or simply ignore it; and active sensors
that can be used whenever it deems it necessary to acquire
information from the world or other agents or from the
common knowledge pool. The agent’s internal state
is accessed directly, it is not necessary to go through
its sensors. The sensors are only required to acquire
information from outside the agent.

3.2.3 Effectors

Effectors are the standard way for an agent to influence
the environment, other agents or to write to the group
knowledge pool. They can have two outcomes: either
they succeed and the environment reflects all the actions
they represent; or they fail and none of the actions
they represent are actually performed. This can happen
when some other competitive agent performs a conflicting
action at the same instant.

3.2.4 Domain Specific Language

The configuration of the behaviors requires some degrees
of flexibility. To create a simple yet powerfull way of
allowing configuration a custom domain specific language
(DSL) was developed. Throughout this work will be
refered to as Agent Modeling Language (AML).

This language is used to specify which behavior each
agent can have, and which preconditions they have.

3.3 Initialization

When the turn is processed, all the agents need to be
loaded. Behaviors are grouped into modules by function-
ality. Loading a module into an agent causes the agent
to learn how to execute all the behaviors in that module.

3

But only behaviors that are configured are electable to be
executed.

The loading process follows the algorithm for each
agent:

1. Load custom modules or fallback to default
modules

2. Load sensors for configured modules

3. Load effectors for configured modules

4. to load behaviors = Custom Behaviors

5. to load behaviors = Default Behaviors unless
Custom Behaviors

6. for each behavior in to load behaviors

(a) agent behaviors[behavior] = new Array

(b) for each precondition in
behavior.preconditions

i. agent preconditions[precondition]
||= new Array

ii. agent preconditions[precondition].push
behavior

(c) end

7. end

If no custom behaviors are specified the agent will fall
back to the default behaviors. This feature is useful
to avoid repetition of customization of equal agents. A
template can be created and all instances will share the
same default configuration.

Each agent maintains a list of behaviors. The modules
specify which sensors and effectors an agent must have to
be able to execute the behaviors present in the module.
This ensures an agent is always technically able to execute
the configured behavior. When the module is loaded into
the agent, the sensors and effectors are also injected into
the agent.

3.4 Events

Events are the multi purpose system for communication.
All events are under the control of the event manager
module.

The event manager is responsible for keeping a record
of which agents are registered for a given event type. Any
agent can create new events and ask the event manager
to process them. The event creator can specify filters

Figure 3: Event System

that must determine a subset of agents entitled to receive
such an event. The event can be filled with whatever
information the event creator wants, so they can be used
to transport all kinds of information back and forth in an
object-oriented way.

3.4.1 Synchronous Events

When an agent registers a new event with the event
manager he has the chance of specifying that the event
be processed in a synchronous form. The workflow below
exemplifies what happens:

1. Agent creates a new event

2. Agent sends the event created in 1. to the
event manager

(a) Agent declares the event should be
processed in a synchronous form

(b) Agent sends out the filters each other
agent much pass to receive the event

(c) Agent is blocked until the event
manager’s execution is finished

3. The event manager receives the event and
filters

4. Event manager retrieves all the agents
registered to receive notification of event
types with the same type as the received
event

5. Event manager selects all agents from 4.
that pass the received filters

6. Event manager notifies all agents from 5.
with the received event

7. Each notified agent processes the received
event

4

8. Event manager sends feedback to the caller
agent

9. Agent unblocks

By the time the workflow ends the agent is sure
everyone else was notified about the raised event.

3.4.2 Asynchronous Events

Asynchronous events do not block the caller agent while
they are processed. Furthermore, the caller agent has no
callback to notify that the event is indeed processed by
everyone else. They follow the workflow below:

1. Agent creates a new event

2. Agent sends the event created in 1. to the
event manager

(a) Agent declares the event should be
processed in a asynchronous form

(b) Agent sends the filters each other
agent much satisfy to receive the event

3. The event manager receives the event and
filters

4. Event manager retrieves all the agents
registered to receive notification of event
types with the same type as the received
event

5. Event manager selects all agents from 4.
that pass the received filters

6. Event manager notifies all agents from 5.
with the received event

3.5 Whiteboards

The second form of communication are the whiteboards.
Whiteboards are simply a shared pool of knowledge that
can be accessed by a group of agents. Agents are denied
access to whiteboards outside their group. They do not
even know they exist so all whiteboard information can
be considered if all members of the group are honorable
and trustworthy.

3.6 Event Processing

Event processing in multi-agent systems requires some
form of arbitration to resolve conflicting actions.

3.6.1 One-Phased cycle

For performance reasons, when it is clear that an event
will not cause multiple action to conflict, the event
manager can notify agents to perform a combined feel-
effect cycle. Agents can act on their percepts without
worrying about them getting outdated. This mode follows
this workflow:

1. Event manager receives the event and
filters

2. Event manager retrieves all the agents
registered to receive notification of event
types with the same type as the received
event

3. Event manager selects all agents from 2.
that pass the received filters

4. Event manager notifies all agents from 3.
with the received event and specifying its
a feel-effect cycle.

5. Agents receive an event with a feel-effect
cycle.

6. Agents uses their active sensors to extract
information from the environment

7. Agents uses their effectors to perform
changes on the environment

3.6.2 Two-Phased cycle

When actions from multiple agents may be conflitcting,
all agents need to be coordinated to acquire information
from the environment at the same time. Otherwise, some
agents would have an unfair advantage over others since
the accuracy of the information gathered would change.
Essentially, the processing is done in two steps: a feel
phase where all agents update their information about
the current state of the world; and an effect phase, where
the agents use the knowledge acquired from the previous
phase to select what actions to take, and to effectively
send them to the environment.

This mode follows this workflow:

1. Event manager receives the event and
filters

2. Event manager retrieves all the agents
registered to receive notification of event
types with the same type as the received
event

5

3. Event manager selects all agents from 2.
that pass the received filters

4. Event manager notifies all agents from 3.
with the received event and specifying its
a feel phase.

5. Agents receive an event with a feel cycle.

6. Agents uses their active sensors to extract
information from the environment

7. Event manager notifies all agents from 3.
with the received event and specifying its
a effect phase.

8. Agents receive and event with a effect
cycle.

9. Agents uses their effectors to perform
changes on the environment

4 Almansur 2.0

Version 2.0 of Almansur departs from the old central
paradigm, where everything at turn processessing was
pooled by the game. Now, at the core we have a virtual
world that stimulates its agents to act. The game flow is
controlled by what type of events the world generates,
and the game impartial features are under the belt of
special agents called managers. The managers can be
seen as demi-gods in the virtual world, whose task it is
to ensure the agents abide by their rules by any means
necessary. For this reason the managers live outside
the effectors/sensors jail and can manipulate any other
agent’s internal state directly.

4.1 Turn flow 2.0

Turn flow uses the introduced events to get the core going.
During the processing of the core events the agents can
raise their own events and create a recursive feedback
loop. This effect needs to be taken into consideration
when electing an agent to raise events, or else we can
raise an infinite feedback loop and bring the game down.

The Almansur 2.0 core is run from the simple pseudo
code below.

1. Create a new Event Manager

2. Create a new Agent Manager

3. Request the Agent Manager to load all
Agents

4. Loads whiteboards for the current game from
the persistent support

5. Raise a synchronous start turn event

6. Retrieve current day from Game Agent

7. For each day in number of days per turn

(a) Raise a synchronous start day event
with current day

(b) Request event manager to raise all
in-game events scheduled to happen at
current day

(c) Increments current day

8. Raise a synchronous production event

9. Raise a synchronous market event

10. Raise a synchronous reproduction event

11. Raise a synchronous economy event

12. Raise a synchronous end turn event

13. Request event manager to raise all queued
events

14. Saves modifications to whiteboards to a
persistent support

5 Tests and Results

In this section version 2.0 is tested under the same
environment of version 1.0 and both are compared in
performance issues and simulation issues.

5.1 Test Machine

All the tests where done under the same environment.
Hardware - Intel(R) Core(TM)2 CPU 6400, 2GB of RAM
Software - Ubuntu 7.04, Ruby 1.8.5 (2006-08-25) and
lighttpd-1.4.13

5.2 Scenarios

The smallest scenario, 2HNoSea, has a reference point for
a bare minimum scenario to be played in a multiplayer
set. The timings achieved in this scenario are the best
and represent the weight the architecture carries.

6

Game P
op

u
la

ti
on

s

C
on

ti
n
ge

n
ts

U
n
it

s

T
er

ri
to

ri
es

L
an

d
s

F
ac

il
it

ie
s

R
es

ou
rc

es

P
er

so
n
al

it
ie

s

A
ge

n
ts

B
eh

av
io

rs

P
ro

ce
ss

ed

U
n
p
ro

ce
ss

ed

FTS4 45 28 4 99 4 12 159 44 223 1854 1359 495
CM40 2362 190 40 1989 40 80 2036 440 5024 26404 14723 11681
AB101 876 515 101 1881 101 2130 10790 1111 4487 34779 28038 6741
WOT20 589 130 25 1188 25 849 4025 275 2210 13138 8681 4457
Crejak10 341 40 10 528 10 227 1321 110 1032 5546 3040 2506
QI 980 644 107 1815 107 1285 8798 1177 4726 39584 29395 10189
Final 2144 351 60 1419 60 1025 9479 660 4637 29885 19789 10096
Juri 84 84 12 340 12 312 984 132 655 5350 3838 1512
OF6 54 33 6 280 6 72 492 66 442 2911 1810 1101
OF20 637 110 20 990 20 320 2916 220 1980 11548 6794 4754
2PL 17 14 2 140 2 26 190 22 198 1312 840 472
2PLT 2 14 2 56 2 14 46 22 99 916 690 226
2HNoSea 2 14 2 2 2 14 46 22 45 700 636 64

Table 1: Test scenarios

5.3 Simulation

To measure the simulation improvements of version 2.0
over version 1.0 the scenario 2PL is putted to the test.

Figure 4: Scenario 2PL

The test begin with a vanilla scenario, it has two
lands slice and dice. The player ruling slice increases
all territory taxes to 99% while dice maintains the taxes
at the default value 5%. Three turns are processed on
each version of the game, after each turn the different
behaviors are interpreted. Because populations are the
most affected from the tax change, a visual representation
of the number of citizens living in each territory is pre-
sented. This visual representation varies from dark orange
(low population density) to bright yellow (high population

density). Figure 5 represents the initial distribution of the
populations.

Figure 5: Initial population distribution

To better compare the inner works of the game, the
following properties are measured between each turn
processing:

• Lawfull - The number of law abiding citizens in the
territory [0 - everybody is a criminal, 1 - everybody
follows the rules]

• Loyalty - How loyal a population is to its territory [0
- rebelion about to happen, 1 - they love the territory
where they live]

7

T
u
rn

T
er

ri
to

ry

L
aw

fu
ll

L
oy

al
ty

P
op

u
la

ti
on

S
ta

b
il
it
y

T
ax

B
as

e

T
ax

0 ”H6” 0.95 1 20000 1 19900 0.05
0 ”F6” 0.95 1 30000 1 29900 0.99
0 ”G5” 0.95 1 20000 1 19900 0.99
0 ”I5” 0.95 1 20000 1 19900 0.05
0 ”J6” 0.95 1 30000 1 29900 0.05
1 ”H6” 0.96 1 20517 1 20619 0.05
1 ”F6” 0.84 0.5 30848 0.59 27356 0.99
1 ”G5” 0.84 0.5 20517 0.53 18157 0.99
1 ”I5” 0.96 1 20517 1 20619 0.05
1 ”J6” 0.96 1 30848 1 31058 0.05
2 ”H6” 0.97 1 21047 1 21361 0.05
2 ”F6” 0.62 0.25 31479 0.36 21006 0.99
2 ”G5” 0.6 0.25 20881 0.3 13474 0.99
2 ”I5” 0.97 1 21047 1 21361 0.05
2 ”J6” 0.97 1 31719 1 32257 0.05

Table 2: 2PL scenario test on version 1.0

• Population - The number of citizens living in the
territory

• Stability - How peaceful and stable the territory is

• Tax Base - The potential value a territory can collect
in taxes

• Tax - The actual tax value for the territory

5.4 Version 1.0

After the third turn the population distribution is still
very similar between Slice and Dice as it can be seen in
figure 6. Stability and Loyalty fall by similar amounts,
which the lawfull property decreases slower. Still after
three turns the population reproduction difference is small
and the only the tax base is much better for the Dice
player. Slice has collected much more money in taxes, and
the populations keep on paying even though on smaller
percentages.

5.5 Version 2.0

Version 2.0 starts with the same population distribution,
but because the population effects are much more notice-
able, a visual representation after each turn is provided.

Figure 6: Population distribution for v1.0 after 3rd turn

Because version 2.0 is more complex and harder to
analyze, it’s necessary to check the log files to explain
the current state.

Partial log from turn 1:

37 migrating from F5 to E5
61 migrating from F5 to F6
56 migrating from F5 to G5

T
u
rn

T
er

ri
to

ry

L
aw

fu
ll

L
oy

al
ty

P
op

u
la

ti
on

S
ta

b
il
it
y

T
ax

B
as

e

T
ax

0 ”H6” 0.95 1 20000 1 19900 0.05
0 ”F6” 0.95 1 30000 1 29900 0.99
0 ”G5” 0.95 1 20000 1 19900 0.99
0 ”I5” 0.95 1 20000 1 19900 0.05
0 ”J6” 0.95 1 30000 1 29900 0.05
1 ”H6” 0.95 0.95 21734 1 21484 0.05
1 ”F6” 0.73 0.03 32058 0.59 24803 0.99
1 ”G5” 0.73 0.03 18487 0.53 14396 0.99
1 ”I5” 0.96 1 20517 1 20596 0.05
1 ”J6” 0.96 1 30819 1 30986 0.05
2 ”H6” 0.94 0.93 23391 1 22903 0.05
2 ”F6” 0.57 0.02 33225 0.36 20328 0.99
2 ”G5” 0.55 0.02 16390 0.3 9914 0.99
2 ”I5” 0.97 1 21047 1 21315 0.05
2 ”J6” 0.97 1 31658 1 32108 0.05
3 ”H6” 0.95 0.96 24007 1 23745 0.05
3 ”F6” 0.42 0.01 2151 0.23 2298 0.99
3 ”G5” 0.39 0.01 131 0.18 951 0.99
3 ”I5” 0.97 1 21589 1 21841 0.05
3 ”J6” 0.97 1 32518 1 32942 0.05

Table 3: 2PL scenario test on version 2.0

8

Figure 7: Population distribution of v2.0 after turn 1

After the first turn is processed, the populations of Slice
start migrating to territories with better taxes. Since
Slice’s capital is surrounded by other territories with high
taxes, they don’t have where to go, and that explains
why the populations increases in territory F6. Loyalty
now falls much faster than in version 1.0, stability varies
slower than loyalty but still faster than in version 1.0. The
percentage of lawfull population also changes faster than
in version 1.0, but slower than loyalty or stability.

Figure 7 shows a slight darker color on the slices side,
a very small difference yet.

Figure 8: Population distribution of v2.0 after turn 2

Partial log from turn 2:

The Humans are unhappy, and 2407
of them decided to migrate

The Humans are unhappy,
some of them are tempted to migrate

The Humans in E5 are revolting against you
The Humans in E6 are revolting against you

The second turn the populations start to revolt against
Slice, figure 5.5 show a massive contrast from the previous

Figure 9: Population distribution of v2.0 after turn 3

turn. Also the number of populations migrating increased
to much larger numbers.

Figure 9 shows now a darker picture for Slice’s side, it
possesses almost no population, and will soon disappear.

Partial log from turn 3:

The Humans in G6 are revolting against you
The Humans in F7 are revolting against you
The Humans in F6 tried to revolt against you,
armies loyal to you stopped this uprising

The Humans in E6 are revolting against you
The Humans in F6 are revolting against you

After the third turn with a taxes at 99%, almost all the
population of Slice has abandoned him. They also formed
armed militias that are now enemies of Slice. That’s why
the population dropped so much on every territory. In F6,
Slice has it’s army and it’s able to stop smaller revolts
from taking place, but the large numbers of revolting
populations are finally able to defeat Slice’s army.

5.6 Turn processing times

During the turn processing phase version 2.0 is consis-
tently slower than version 1.0. The added overhead
from the agent’s framework can be shaken off by the
improvements at the schema level. CM40 is the scenario
with the highest agents:lands and agents:territories ratio,
and it demonstrates most heavily the agent’s overhead.
The global picture looks promising for, even though many
new behaviors have been added, version 2.0 is only 10%
slower.

Another important factor to consider is, version 2.0 can
process multiple games at the same time. On a machine
with multiple cores version 2.0 can theoretically provide
an almost linear with each added cpu.

9

Game 1.0 2.0 Speedup Var
AB101 289.67 295.65 0.98 -2%
QI 191.85 192.5 1 0%
Final 146.16 161.22 0.91 -9%
CM40 92.05 150.71 0.61 -39%
WOT20 92.55 96.99 0.95 -5%
OF20 42.61 54.06 0.79 -21%
CJK10 20.33 26.85 0.76 -24%
Juri 20.41 19.71 1.04 4%
OF6 10.17 11.88 0.86 -14%
FTS4 7.55 6.03 1.25 25%
2PL 5.11 6.52 0.78 -22%
2PLT 3.56 3.09 1.15 15%
2HNoSea 3.52 2.04 1.72 72%
Total 925.54 1027.25 0.9 -10%

Table 4: Turn Processing Comparison

6 Conclusions and future work

The AAA was applied to Almansur creating version 2.0
of the game 4. Two main areas where tested to compare
version 1.0 and 2.0: simulation and performance. Simu-
lation tests try to identify if version 2.0 really improves
over the world of version 1.0. The performance tests are
focused on the turn processing times, which is the main
bottleneck of the game.

6.1 Simulation

The basic blocks for developing AI in Almansur were
accomplished. The virtual world is now more dynamic
and with the improved behaviors of populations and other
agents, it’s expected to be more interesting for players.

Version 2.0 resolved some of the main issues of simula-
tion present in version 1.0.

• Populations were easy to exploit, now they have a
mind of their own and players must keep them happy
if they want populations to stay with them

• The contingents used to magically provide food for
themselves, this lead for major balance issues. The
richer lands could simply recruit huge stacks, until
they overpower the poor ones. Now it’s necessary to
feed every alive agent, making it harder to sustains
huge armies.

The other great advantage of version 2.0 is the clear
separation of modules. New agents and behaviors can
be implemented without changing the game core. It’s

now easier to produce new content for the game without
having the risk of introducing new bugs on other parts of
the game.

6.2 Turn Processing

Even with the overhead introduced by AAA the game
performance stayed at the same levels. The increased
flexibility of version 2.0 allows for futher developments to
be easily introduced, no more changes to the game core
are necessary.

This work fixed the major issues with the turn process-
ing of version 1.0, the major issue that remains is the
time it takes to process each turn. A few hypotheses are
possible to improve that area,

• Change the implementation language. Currently
the game core is implemented in ruby 4 which is
a beautiful and elegant programming language, but
it is dead slow. Reimplementing the core on other
language like c++ or java might be the only safe way
to really scale the game to millions of players.

• Change the ruby interpreter. Multiple implementa-
tions of ruby are surfacing today, within some time
they might solve the performance issues on their own.

References

[1] John McCarthy, What is artificial Intelligence, On-
line,, last accessed on 1 September of 2007

[2] An Introduction to MultiAgent Systems, Michael
Wooldridge, 2002, John Wiley and Sons, ISBN
047149691

[3] http://www.almansur.net/game/, online, last access
9th September 2007

[4] http://www.almansur.net/forum/viewtopic.php?
pid=1554, online, last access 30th September 2007

[5] http://www.ruby-lang.org/en, online, last access on
10th Setember 2007

[6] http://softwareengineering.vazexqi.com/
files/pattern.html , online, last access on 10th
Setember 2007

4Ruby is a language of careful balance. Its creator, Yukihiro
“matz” Matsumoto, blended parts of his favorite languages (Perl,
Smalltalk, Eiffel, Ada, and Lisp) to form a new language that
balanced functional programming with imperative programming.[5]

10

