
Universidade Técnica de Lisboa

Instituto Superior Técnico

Departamento de Informática

Agents for Massive On-line Strategy Turn Based

Games

Lúıs Miguel Landeiro Ribeiro

Dissertation for the degree of

Master in Science of Information Technology and Computer Engineering

Research Advisors:

Pedro Santos

Rui Prada

Setember 2007

Resumo

Nos jogos de estratégia existem tipicamente dois factores predominantes que se encontram presentes
em quaisquer jogos. Um jogador veste a pele de um estratega em duas fases, ao mais alto ńıvel controlando
a gestão de recursos, investimentos tecnológicos e militares, economia. Ao mais baixo ńıvel assume o
controlo das decisões operacionais como a disposição de exércitos, coordenação e movimentos militares,
compra e venda de recursos. O ńıvel mais alto requer decisões estratégicas de médio e longo prazo,
enquanto o ńıvel mais baixo lida com decisões de curto prazo. Com introdução constante de simulações
mais detalhadas os jogos tornam-se cada dia mais complexos. Complexos por serem mais dif́ıceis de
desenhar e implementar, e pela necessidade de se tornarem cada vez mais realistas.

As arquitecturas de agentes providenciam os meios para desenvolver jogos com interfaces múltiplas em
ambientes complexos. Este trabalho pretende demonstrar como se pode melhorar o panorama actual de
jogos de estratégia massivos on-line, com a introdução de um motor baseado em agentes. Para produzir
um ambiente mais realista e divertido, cumprindo os requisitos de performance e as particularidades
impostas por este tipo de jogos.

Palavras chaves

Agente, Inteligência Artificial, Jogo de Estratégia por Turnos, Jogo Multi-jogador

i

Abstract

Strategy games have two predominant factors that are present in every games. At the highest level,
the player impersonates a strategist, managing resources; military and tecnological investiments; global
economy. At the lowest level, the player assumes control over operational decisions, e.g. setting up the
army disposition; coordinating armies; buys and sells resources. Mid-long term decisions are addressed
at the highest level and imediate decisions are addressed at the lowest level. With the continuous
introduction of details, to high and low levels simulations, the strategy games become more complex
every day. The need for more realistic simulations, makes this kind of games harder to design and
implement.

This work pretends to demonstrate, how massive multiplayer strategy on-line games can be improved
by the introduction of an agent oriented engine. These engines make the development of complex inter-
actions more manageable, create a more realistic and amuzing environment, keeping under control the
performance requirements.

Keywords

Agent, Artificial Intelligence , Turn-based strategy game, Multiplayer game

ii

Acknowledges

To my wife for her endless support and love, for pushing me when I lacked self motivation.
To my family for being so understanding even when I become progressively more distante.
To my friends for being there.
To my cats for always offering the right distraction when needed.
To Pedro Santos for his guidance even when the hours were long.
To Rui Prada for his technical pragmatism.
To PDM&FC and Almansur for providing the means to create great things.

iii

Contents

Acknowledges iii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem . 1

1.3 Goals . 2

1.4 Contribution . 3

1.5 Outline . 3

2 Common Techniques 5

2.1 Introduction . 5

2.2 Common Game Techniques . 5

2.2.1 A* . 6

2.2.2 Hierarchical AI . 6

2.2.3 Terrain Analysis . 6

2.2.4 Event System . 7

2.2.5 Scripting . 7

2.2.6 Finite State Machine . 7

2.3 Academic Research . 8

2.4 Classical AI . 8

2.4.1 Rule Based Systems . 8

2.4.2 Planning . 9

2.5 Machine Learning . 9

2.5.1 Bayesian Networks . 9

2.5.2 Artificial Neural Networks . 10

2.5.3 Decision Trees . 10

2.6 Agent Architectures . 11

2.6.1 Agent . 11

2.6.2 Agent Types . 12

2.6.3 Environment . 12

2.6.4 Multi-agent Systems . 13

2.6.5 Brook’s Subsumption Architecture . 13

2.6.6 Belief, Desire and Intention (BDI) . 14

2.6.7 Hybrid Architectures . 15

iv

3 Case Studies 17

3.1 Introduction . 17
3.2 FPS Games . 17

3.2.1 Introduction . 17
3.2.2 Fear . 18

3.3 Strategy Games . 21
3.3.1 Introduction . 21
3.3.2 Empire Earth . 21
3.3.3 Axis & Allies . 23

3.4 Analysis . 26
3.4.1 Taxonomy . 26
3.4.2 RTS vs TBS vs FPS . 27
3.4.3 Fear vs Empire Earth vs Axis & Allies . 28

3.5 Conclusions . 29

4 Almansur 1.0 31

4.1 Description . 31
4.2 Architecture . 33

4.2.1 Scenario Import . 33
4.2.2 Game Cloning . 34
4.2.3 Turn Processing . 34
4.2.4 Website . 36

5 Almansur Agent Architecture 37

5.1 Introduction . 37
5.2 Environment . 38
5.3 Agents . 39

5.3.1 Behaviors . 39
5.3.2 Sensors . 39
5.3.3 Effectors . 39
5.3.4 Domain Specific Language . 39

5.4 Initialization . 40
5.5 Agent Types . 41

5.5.1 Reactive . 41
5.5.2 Proactive . 41
5.5.3 Managers . 41
5.5.4 Personalities . 41

5.6 Communication . 42
5.6.1 Events . 42
5.6.2 Whiteboards . 44

5.7 Deletion . 44
5.8 Hibernation . 44
5.9 Reproduction . 44

5.9.1 Clones . 45
5.10 Event Processing . 45

v

5.10.1 One-Phased cycle . 45

5.10.2 Two-Phased cycle . 46

5.10.3 Usage . 46

6 Almansur 2.0 47

6.1 Scenario Import . 47

6.2 Game Cloning . 49

6.3 Turn Processing . 50

6.3.1 Agents . 50

6.3.2 World . 50

6.3.3 Units . 52

6.3.4 Contingents . 52

6.3.5 Populations . 53

6.3.6 Territories . 54

6.3.7 Personalities . 55

6.3.8 Battle Manager . 57

6.3.9 Hostile Action Manager . 57

6.3.10 Game . 57

6.4 Website . 58

6.5 Tests and Results . 60

6.5.1 Methodology . 60

6.5.2 Test Machine . 60

6.5.3 Taxonomy . 61

6.5.4 Performance . 61

6.5.5 Scenarios . 62

6.5.6 Simulation . 63

6.5.7 Version 1.0 . 64

6.5.8 Version 2.0 . 65

6.6 Performance . 68

6.6.1 Version 1.0 . 68

6.6.2 Version 2.0 . 69

6.6.3 Importer times . 69

6.6.4 Cloning times . 70

6.6.5 Turn processing times . 71

7 Conclusions and future work 73

7.1 Simulation . 74

7.2 Turn Processing . 74

7.3 AI . 74

7.4 Architecture . 75

A Almansur 1.0 76

vi

B Agent Minds 78

B.1 BNF for AML . 78
B.2 Unit . 79
B.3 Contingent . 80
B.4 Population . 81
B.5 Territory . 83
B.6 Personality . 84
B.7 Battle Manager . 84
B.8 Hostile Action Manager . 84
B.9 Game . 85

vii

List of Figures

2.1 Influence Map . 7
2.2 Finite State Machine Example . 8
2.3 Academic Research Overview . 9
2.4 Artificial Neural Network Example . 10
2.5 Decision Tree Example . 11
2.6 Subsumption Architecture . 14
2.7 Generic BDI . 15
2.8 Horizontal Architecture . 15
2.9 Vertical Architecture . 16

3.1 Fear Screenshot . 18
3.2 Fear FSM . 19
3.3 Empire Earth Screenshot . 22
3.4 Empire Earth Architecture [9] . 23
3.5 Axis & Allies Screenshot . 23
3.6 Axis & Allies Architecture [24] . 24

4.1 Almansur Screenshot . 32

5.1 Agent Architecture . 38
5.2 Event System . 43

6.1 Almansur new contingents . 53
6.2 Scenario 2PL . 63
6.3 Initial population distribution . 64
6.4 Population distribution for version 1.0 after 3rd turn . 65
6.5 Population distribution of version 2.0 after turn 1 . 66
6.6 Population distribution of version 2.0 after turn 2 . 67
6.7 Population distribution of version 2.0 after turn 3 . 67

viii

List of Tables

2.1 Agent Properties . 11
2.2 Agent Types . 12
2.3 Environment Properties . 13

3.1 Fear FSM’s States . 19
3.2 Definitions . 20
3.3 Actions . 20
3.4 Plan . 20
3.5 RTS vs TBS vs FPS . 27
3.6 Fear vs EE vs AA . 28

4.1 Almansur’s lands file format . 33

6.1 Almansur’s lands file format . 48
6.2 Races, Social States, Facilities and Resources . 48
6.3 Almansur’s territories file format . 49
6.4 Events (Almansur 2.0) . 51
6.5 Unit behaviors . 52
6.6 Contingent behaviors . 53
6.7 Population behaviors . 54
6.8 Population behaviors . 54
6.9 Personality properties . 55
6.10 Personality properties . 55
6.11 Personality skill list . 56
6.12 Population behaviors . 57
6.13 Battle Manager behaviors . 57
6.14 Battle Manager behaviors . 58
6.16 Test metric version 2.0 . 61
6.17 Test scenarios . 63
6.18 2PL scenario test on version 1.0 . 64
6.19 2PL scenario test on version 2.0 . 66
6.20 Version 1.0 times in seconds . 68
6.21 Version 2.0 times in seconds . 69
6.22 Scenario Import Comparison . 69
6.23 Scenario Import Comparison . 70
6.24 Turn Processing Comparison . 71

ix

A.1 Almansur’s territories file format . 77

x

Chapter 1

Introduction

Things are what they are, and behind them

there is ... nothing

Sartre

“AI and emergent gameplay is demonstrably more realistic than anything that could practi-
cally be implemented in a hardcoded way” [1]

1.1 Motivation

Believability is the buzzword in the computer games artificial intelligence 1 , games focus on creating the
illusion of reality. The longer it takes the players to realize the limitations of the virtual world the longer
they will play.

Massive multiplayer on-line games 2 face specific problems which affect them harder than other genres.
Scalability is often cited as the main issue, with thousand even millions of virtual entities (player controlled
or non-player controller) roaming around a virtual world it is hard for performance to be good.

The multi-agent paradigm is increasingly more important in MMOGs because it addresses the main
problems, the creation of a virtual world and the distribution of load. Agents act as individuals and
constitute the most dynamic parts of the virtual world. Agents who are independent and autonomous
can be decoupled from the world core, solving the scaling needs just by offloading their processing to
other machines.

Developing a virtual world with the old game paradigms (everything centralized on the main thinking
cycle), becomes a cobersome task. To ease up this task, game developers often develop/reuse frameworks
to deal with recurrent core issues. This lets them spend more time solving the specific game issues.

1.2 Problem

Turn based strategy MMOGs have a peculiar set of problems to solve. Turns are processed at specific
dates and therefore have a fixed time duration, during which time only player actions are collected. The

1AI - Artificial Intelligence is the science and engineering of making machines, with special emphasis on intelligent
computer programs [2]

2MMOG - Massive multiplayer on-line games are played over the internet with thousands of human players at the same
time

1

game processing only happens at the end of turn. All the processing is done together, which means the
turns can take a very long time to process. Furthermore, turn processing time increases with the number
of player inputs and the number of game “days” each turn represents.

A third issue arises by applying multi-agent systems to turn-based strategy massive multiplayer online
games (TBSMMOGs) 3 .Agents are dormant for most of the time, only becoming active at the turn
processing. This adds the need for each agent to save any internal state (at the end of turn processing)
into a solid state support, and to load said state when the new turn processing begins.

Almansur is a turn based game played on-line by multiple players. Being a TBSMMOG, Almansur
faces the issues presented previously and a few more specific problems:

• No single player mode, new players lack a learning playground

• No artificial intelligence, stopping a single player mode from being developed

• Players drop-out, without AI there is no quick replacement for quitters

• Repetitive tasks

• Static world

• Perfomance Issues

The major challenge of this work is to provide an alternative implementation of the Almansur, that
surpasses the shortcommings of the actual version.

1.3 Goals

This work lays down an agent oriented architecture to introduce AI into Almansur. The architecture has
the following objectives:

• Flexibility - The framework should allow for the development of new content and agents without
significant addicional effort

• Performance - The framework performance must be good enough to support thousands of agents
running at the same time

• Ease of use - No special configuration should be needed for things to work out of the box

• Configurable - The framework should provide the means to create special unique agents only by
customizing their behaviors

• Human Interaction - The human players should be able to influence how their subjects agents’s
behavior

The developed architecture is applied to Almansur to create a second version of the game. Version
2.0 aims to surpass the original version on three levels: flexibility, performance, simulation realism.

3The combination of turn-based strategy games with massive multiplayer online games

2

1.4 Contribution

The main contribution of this work is the introduction of AI capabilities into turn-based strategy massive
multiplayer on-line games. This is new ground, since no such game is known to date. The ability to
influence the agents behavior by direct orders of the players is also a contribution to this active research
field of human-computer interaction. A new domain specific language, simple yet powerfull, where the
agents behavior can be configured without changing the core code or, even more powerfully, it can be
changed by the agent itself, to simulate the learning of new abilities or even create offsprings.

1.5 Outline

On Chapter 2 the core concepts behind games artificial intelligence and academic research are explained.
These are the bases required to understand the main problems addressed by this thesis. Chapter 3
focuses on games with outstanding AI, which are some of the best development of game AI in the last
years. Analyses the AI techniques commonly used in games. On chapter 4 the version 1.0 of Almansur
which serves as base for the current’s work implementation is presented. Chapter 5 addresses architecture
developed to introduce multi agent processing into TBSMMOG in general, the implementation of this
architecture can be seen on chapter 6 Chapter 7 details the test taxonomy and tests performed followed
by the results. Chapter 8 presents the conclusions and brings suggestions for further work.

3

4

Chapter 2

Common Techniques

2.1 Introduction

The main focus of academic research is to build smart AI and ultimately create an AI that can fool a
human inspector on the Turing test. The Turing test is a proposal made by Alan Turing in the 1950’s,
consisting in having a human expert inspector interviewing two parties through natural language, one
comprised by a human and the other by a computer. The test would be successfully passed by the AI if
the human inspector was unable to determine which party was the computer by the end of the test. Up
until now this kind of high level cognitive ability has not been delivered by the academic research and
is considered by many the Holy Grail of AI research, a computer intelligent enough to fool the human
inspector could be declared truly intelligen and at a human level on the intelligence scale.

For the past 50 years the AI field has been blooming and producing many techniques in an attempt
to simulate human-level reasoning, such as finite state machines, rule based systems, planning. These
techniques lacked the ability to learn progressively the way a human brain does, giving rise to other
techniques which incorporated direct learning and adaptation. Most noteworthy are the neural networks
(an attempt to simulate the human brain inside a computer), decision trees (highly efficient during both
the learning phase and the look-up phase) and Bayesian networks (which cope well with uncertainty).

In the past 20 years the behavior architectures have changed the landscape of the AI field. The new
generation authors recognized the failure in previous attempts of the classical AI and started creating
small basic behaviors and allowing the complex high level behaviors to emerge naturally (less is more)
instead of embarking upon a megalomaniac venture (modeling human-like cognitive abilities). The main
reasons for their success are the simplicity of development and the cost effectiveness. A psychological
factor is also determinant: the highly motivating force of seeing something work. This happens because it
is easier to produce a working prototype with behavior oriented architectures than with classical methods.

In the next sections the most common techniques used in games will be outlined.

2.2 Common Game Techniques

Some common techniques are frequently found in games. They are generic algorithms or techniques
that are adequate for a large set of problems. Before developing any AI such techniques should become
familiar to the developer for they solve complex problems and prevent one from reinventing the wheel.
On the following subsections the predominant techniques used on strategy games are presented, each

5

with a citation reference recommended for those in need of deeper knowledge.

2.2.1 A*

A* is a generic algorithm that searchs trough a graph and finds the path from the start node to the end
node. A* is very competitive with other search algorithms, it fast and easy to understand. It uses an
heuristic that estimates the cost to reach a node from the current point. The heuristic determines the
best node to explore in order to potentially find the optimal path. The better the heuristic the faster the
search will be processed. A good heuristic is one that never overestimates the cost to reaching a node
and provides a good estimate and is fast to process. [5]

2.2.2 Hierarchical AI

The hierarchical AI follows the military structure to decision making. It divides the decision process
into a chain of command, each level having to deal with problem at its own granularity level. High
level(Strategic decisions) are planned at the top level, which then delegates local tactics on a middle
level sergeant which in turn passes the orders along to the individual troops. The lower the level the
more immediate the decisions should be, and the less decision power is available there is. Decisions made
at each level are isolated from other levels, this divide and conquer technique represents a big problem
(control of an army) and is divided into smaller problems and conquered bit by bit. [6]

2.2.3 Terrain Analysis

Terrain analysis is a generic name given to specialized map analysis, it basically turning in-game terrain
details into manageable data. Every RTS 1 needs to implement some kind of terrain analysis to identify
strategic locations, resource rich zones, military ambush points, and choice of facilities or walls location.

A common problem with strategy games is the recognition of strategic dispositions and identification
of the strategic dispositions of armies in a landscape. For a human player it is relatively easy to spot the
location of weak and strong points self or enemy armies. It is far more difficult for a computer to do so.
Influence maps can help, providing an estimate of the current army strength present in the known areas
of the map. They overlap a grid over the map and create multiple layers on each grid cell. Each layer
obeys a custom formula whose common principle is to sum the strengths of self and allies and subtract
the strength of enemies. After the raw data is computed, negative values represent zones where the
enemy is stronger and high positive values represent zones where friendly units prevail. Each layer can
provide information on a different aspect of the game, e.g., we can have an openness layer whose paths
are free to be used; a military layer can identify where our armies exert influence and where the enemy is
stronger or weaker; an area occupancy layer can identify the fog of war. Information provided by these
layers can be used to make strategical decisions as to which zones to attack or which weak points should
be reinforced. [7]

To assist in higher level decision making it is common to propagate the influence of some cell to his
neighbors, which provided a better picture of what is may potentially happen. On the example provided
by figure 2.1 the gray cells represent neutral influence areas. Blue cells represent allied units strength
(The darker the stronger), and red cells represent the enemy units strength [6]

1Real-time strategy, often abbreviated (RTS), is a genre of computer games characterized by war games which take place
in real time, with resource gathering, base building, technology development and direct control over individual units as its
key components.[12]

6

Figure 2.1: Influence Map

This is an example of symmetrical forces, if the forces are unbalanced then the resulting gradient will
lose its symmetry. Areas with the greatest gradient represent the center of the mass of army. This can
be used to determine the position of a unit in the battlefield (front, reserve, flank, etc..) [8]

2.2.4 Event System

An Event System manages all the event that can happen in the world environment and registers which
agents want to be notified by each event type and location. Having all events centralized in an event
system avoids all the issues related to agent polling. Polling requires that each agent directly contact
the world to find out any events he might have interest in. Furthermore the querying agent might be
required to query every other agent in its vicinity to acquire complete information about an event. It is
CPU intensive task, as well as terribly inefficient. [6]

The best approach is to keep everything centralized in one place, when events occur the event system
notifies all interested agents. If no one is interested, then nothing needs to be processed at all. Additionally
some event processing can be cut by grouping agents together. Imagine a battlefield with all types of
soldiers, if some high level event occurs that requires the commanding officer to act instead of sending
this event to everyone, only the highest ranking units needs to receive it. [9]

2.2.5 Scripting

Scripting languages are extensively used in games because they are less complex to use than C or C++
and allow for faster development. They hide many complexity issues of the game, and allow for non-
programmers to develop content more easily. Offloading the AI into scripting languages allows tuning
of AI to be done on the fly without requiring the recompilation of the code. This tuning can also be
handled by designers and facilitate the AI programmers’s task since the scripting languages are usually
simple to use and do not require advanced programming skills. Due to their dynamic nature it is fairly
easy to provide external APIs that allow the AI to be improved without changing the game. This can be
very interesting for the fan-based community, and allows for greater longevity for the game, different AI
providing different experiences.[6]

Some problems persist, mainly regarding the lack of performance and the difficulty to debug custom-
made script languages without the proper tools already available for more established programming
languages. Offloading the work to designers can turn into a double-sided razor because their weaker
programming abilities can lead to spaghetti code, which is very hard to maintain. The time to support
an extra language has to be factored into the development costs as well.

2.2.6 Finite State Machine

Finite-state machines (FSMs) are finite automata with states and transitions. Each state represents an
action or behavior, while the transitions represent the event that causes the active state to change to

7

another state. The state transition has some pre-conditions which determine whether the trigger can be
activated. Since there is only one transition trigger at a time FSMs are used to encode deterministic
behavior. FSMs are commonly represented with UML 2 state transition diagrams. State transition
diagrams depict states as circles and transitions from state to state as directed arrows which ultimately
provide a directed asserted graph. [22]

Example:

Figure 2.2: Finite State Machine Example

An agent following this state machine would start in an idle state and when an enemy is spotted the
agent attacks it. When its health drops below a lower bound the agent retreats until it loses his enemy.
This example shows how easy it is to build a simple deterministic behavior with a FSM.

2.3 Academic Research

Figure 2.3 shows a classification of the prominent research branchs of the Artificial Intelligence field.
These fields will be described and analyzed for usefullness to produce the AI for a game throughout the
next sections.

2.4 Classical AI

Traditional AI is strongly connected to knowledge representation and symbolic manipulation to produce
more knowledge. This section describes the classical methods for knowledge inference.

2.4.1 Rule Based Systems

RBS were considered the state of the art for AI research in the 70’s and are also know as expert systems.
A RBS is built using a database to contain the facts known by the AI (expert knowledge, hence the name)
and a set of IF-Then rules. The RBS matches the rules against the knowledge available in the database.
More than one rule can match so a mediator is necessary to decide which rule has higher priority. The
best known mediator method is the algorithm RETE 3 and is the key component for the performance of
the system as a whole. The power of an RBS is directly related to its inference engine, which is also the
most complex and inefficient component.

2The Unified Modeling Language (UML) is OMG’s most-used specification and the way the world models not only
application structure, behavior, and architecture but also business process and data structure. OMG is a not-for-profit
computer industry specifications consortium [21]

3RETE is an algorithm that provides a generalized logical description of an implementation of functionality responsible
for matching data tuples (‘facts’) against productions (‘rules’) in a pattern-matching production system.

8

Figure 2.3: Academic Research Overview

2.4.2 Planning

During planning each agent has their goals and actions and they search through theirs means (actions)
in order to attain their objective (goals). Planning can be viewed as the declarative way of creating AI.

The world state is represented by logical symbolisms, which represent the knowledge available to the
AI. A planner is used on the world current knowledge to infer more knowledge. The planner is responsible
for discovering which actions must be performed to execute a plan or if their plan is untenable.

Planning systems decouple actions from goals making it simple to implement layered behaviors. The
decoupling allows for new behaviors to added without requering changes to the core system. The problems
of planning systems are tied to the complexity of the planner engines, and to the difficulty of finding a
symbolic representation that expresses all the concepts present in a virtual world.

2.5 Machine Learning

Machine Learning(ML), techniques are used to capture generic pattern from training data and create
a model. This section describes the techniques that most frequently appear in games and the domains
where each technique yields better results.

2.5.1 Bayesian Networks

A Bayesian network estimates the probability governing a group of variables with a specification of the
conditional independence properties that apply on a subset of variables. In other words, the Bayesian
network represents the probability distribution over a group of variables. The performance of Bayesian

9

networks has been shown to be comparable to other highly efficient ML methods such as decision trees
and neural networks. Bayesian networks excel at classifying text and have achieved a notable reputation
fighting email spam. In strategy games they can be used to classify incoming messages, attempting to
determine the tone of the message (i.e. aggressive, friendly, neutral); in games that feature fog of war
(FOW) they can predict what may exist beyond the known frontier, with a degree of probability, e.g.
estimating the location of an enemy base.

For a complete reference on the algorithms used to implement Bayesian networks refer to the Machine
Learning book by Tom Mitchell [19].

2.5.2 Artificial Neural Networks

Figure 2.4: Artificial Neural Network Example

This is a method created for learning real, discrete, vector valued functions from some previously
gathered train data. Inspired by biology, it tries to simulate a human brain by creating a complex
network of interconnected neurons. Inside each neuron a function f(w0*x0,w1*x1..wn*xn) = y evaluates
the input to produce an output. Each neuron can receive multiple inputs (from sensors or other neurons)
and only output on a single value. Typically each neuron has an associated weight (wi) with each input,
plus a corrective value x0. The training of the network is done by modifying the weight values on each
neuron to match the desired output [19].

ANN are best suited for problems where:

• The input data comes from a noisy source like a sensor camera. They excel in image processing
problems.

• The time required to train the network is not an issue. This normally invalidates neural networks
for in-game learning because it may take them a long time to converge into interesting models.

• The time required to evaluate the target function is restricted. After the network has modeled the
detected patterns, feeding the network with custom data yields a quick response

• The model generated is not required to be human-readable. Neural networks generate complex
models which most humans can not understand.

2.5.3 Decision Trees

Decision trees are a technique for estimating discrete functions by representing it in a decision tree form.
The decision tree is learned from existing data and is able to produce credible results for a variety of
domains even in the presence of noisy information. The Occam’s Razor principle, which states that when
choosing between two solutions of approximate value to the same problem the simplest one is usually the

10

Figure 2.5: Example of a decision tree for a picnic friendly day

best, is used to choose between several different trees. This principle reduces the probability of choosing
an overfitted tree for biased data and tries to capture the generic details as being the most important.[19]

Decision trees are best suited for problems where:

• The instances can be represented by key-value pairs such as “weather”, which can take two values
(sunny, rain).

• Discrete target functions, like “yes” or “no”. Decisions trees can be expanded to support real value
functions but their performance diminishes.

• The training data are error-prone or, in some instances, misses some attributes such as performing
data mining over incomplete forms.

• The training data are small and the learning times are necessary to be short

2.6 Agent Architectures

2.6.1 Agent

Wooldridge and Jennings define Agent [20] as

... a hardware or (more usually) software-based computer system that enjoys the following
properties:

autonomy agents operate without the direct intervention of humans or others, and have some
kind of control over their actions and internal state

social ability agents interact with other agents (and possibly humans) via some kind of agent-
communication language

reactivity agents perceive their environment, (which may be the physical world, a user via a
graphical user interface, a collection of other agents, the INTERNET, or perhaps
all of these combined), and respond in a timely fashion to changes that occur in it

pro-activeness agents do not simply act in response to their environment, they are able to exhibit
goal-directed behavior by taking the initiative

Table 2.1: Agent Properties

11

An agent can be caracterized by several more properties, but for us this are the most
important for the current work.

Pattie Maes has a another definition:

A Software Agent is a computational system which has goals, sensors, and ef-
fectors, and decides autonomously which actions to take, and when

While there is no univeral definition of what an agent is, in this work an agent is something
that perceives information from an environment, possesses some kind of effectors that allow
him to perform actions that modify the surrounding environment. An agent is, therefore, the
composition of its architecture and the mind that controls its actions.

2.6.2 Agent Types

There are a variety of agent designs, most noteworthy [28]:

Reflex agents they respond immediately with some action for a given perception

Reflex agents with

internal state

they keep record of passed events to help guide them on their action
decision

Goal-Based agents sometimes percepts are insufficient to determine the proper path of ac-
tion. This happens when the right action is dependent of a specific goal

Utility-Based agents when several actions are possible at a given situation the agent mind
needs a way to choose the best one. If it can estimate the potential
value of the next state, it can determine what action would bring the
higher return. These agents possess an utility function that maps a world
state in a numeric value. The agent uses these values to determine the
quality of the competing actions

Learning Agents they can become better as they become more experienced. Every agent
can be turned into a learning agent by evolution means. For example,
a reflex agent can dynamically change his tripping points to perform
better under different environments

Table 2.2: Agent Types

2.6.3 Environment

The environment is the world where the agent lives. Each environment can be classified on
the following properties

Accessible vs Inaccessible On an accessible environment, the agent’s sensors are able to fully
determine all the relevant properties. Environment can be full ob-
servable, partially observable or inaccessible

Deterministic vs Non-

Deterministic

An environment is deterministic if the next state of the environment
can be completely determined by the current state and the action of
the agent

12

Episodic vs Sequential An episodic environment means that the actions only affect one state,
and that states are totally independent

Static vs Dynamic Static environments do not change while the agents are deliberating.
Semi-dynamic environments do not change, but affect the agent’s
performance as time passes.

Discrete vs Continuous Environments are discrete if the number of distinct percepts and ac-
tions is finite and limited by the environment

Single vs Multi-Agent If more than one agent lives on the same environment, its a multi-
agent environment, otherwise it’s single agent. Multi-agent environ-
ment can be competitive or cooperative or both

Table 2.3: Environment Properties

As an example the real world is partially observable, stochastic, sequential, dynamic,
continuous, multi-agent. [28]

2.6.4 Multi-agent Systems

Multi Agent systems are platforms for several agents to interact at the same time. Two aca-
demic definitions exist for the term multi-agent system (MAS). The first one from Distributed
Artificial Intelligence (DAI)

“As seen , a multi-agent system is a loosely coupled network of problem-solver
entities that work together to find answers to problems that are beyond the indi-
vidual capabilities or knowledge of each entity” [3]

The second and more generic and recent one

“All types of systems composed of multiple autonomous components showing
the following characteristics ”[4]:

• each agent has incomplete capabilities to solve a problem

• no global system control

• data is decentralized

• computation is asynchronous

2.6.5 Brook’s Subsumption Architecture

Developed by Rodney Brooks [20] as an alternative form of creating AI agents with the limited
resources available, his work is based upon three fundamental bases and two main ideas

1. Intelligence without symbolic representation

2. Intelligence without abstract reasoning

3. Intelligence as an emergent property from simples systems interacting together to provide
complexity

13

The ideas surface from their fundamental bases, and Brooks advocates that real intelligence
can only be seen in conjunction with a world body in a specific situation. As a result, only
embodied agents with real actions can be considered intelligent, automatic theorem provers
are just programmed machines. The second idea relates to emergence behaviors, AI cannot
be considered a property of some sort, but it should be new unexpected behaviors should be
able to surface from an embodied agent facing unanticipated situations in a virtual or real
world.

The Figure 2.6 picture exemplifies the generic subsumption architecture.

Figure 2.6: Subsumption Architecture

The agent’s decisions are chosen from a set of task-oriented behaviors which are built over
FSMs without any symbolic world representation. The world changes at such a fast rate that
any model would always be outdated. Each behavior maps a situation given by the sensor
to a set of actions that are mapped on the effectors. The lower levels provide reflex-like
behavior, have the highest priority and deal with more concrete matters. The higher levels
become progressively more abstract and low/mid term behaviors. Because the lower levels
have higher priority, if they are always being used, the higher levels may suffer starvation (are
blocked from use due to more immediate actions required).

This architecture shines in its simplicity, ease of development and robustness against fail-
ure. If a component fails the others will fill in, albeit with lesser capacity. The greatest novelty
brought by this architecture is the emergence behavior that is reckoned with intelligence.

Without any world models only local information is available which hinders the elaboration
of long-term plans. This, added to the fact that the agents are purely reactive, makes this
architecture ill-suited for non-local actions or creating adequate emergent intelligence for long-
lasting plans.

2.6.6 Belief, Desire and Intention (BDI)

Developed by Michael Bratman it is an attempt to model human reasoning. This architecture
is characterized by the three properties an agent has:

Beliefs – The information about the environment surrounding the agent. This is subject
to error, it being the world as the agent can see it.

14

Figure 2.7: Generic BDI

Desires – The agent’s goals

Intentions – The commitments made by the agent to achieve certain goals, the plans
currently in execution.

2.6.7 Hybrid Architectures

Hybrid agent architectures have some multiple layers, which can be classified into three dif-
ferent types: reactive, deliberative and social. The main difference for the subsumption
architecture lays in the higher level layers, which can include world representation and plan-
ning capabilities. The hybrid systems tries to explore the best part of each architecture and
solve the shortcomings of subsumption. The deliberative layers can provide long-term plan-
ning abilities, and the social layers provide the share of communication between different
entities.[20]

Two types of layer stacking are possible: horizontal and vertical.

Figure 2.8: Horizontal Architecture

In the horizontal approach each layer is connected to the inputs and runs in parallel, and
one output per layer can be suggested. It is up to the mediator to decide which behavior
should be executed. The main advantages of this approach are the conceptual simplicity and
the possibility of ensuring each layer has only one behavior. The major drawback is the need
for an explicit mediator, which becomes the bottleneck.

In the vertical approach each layer has an input and output interface with the direct higher
layer and direct lower layer. The perceptions are received by the reactive layer, with each
layer having the responsibility of either forwarding the perceptions upwards or deciding upon

15

Figure 2.9: Vertical Architecture

a course of action. The higher layers delegate the plan implementation details they create
on the lower layers, but because the lower layers have a higher priority they can sometimes
ignore the orders they received if more pressing matters need to be addressed. Each layer
processing is done in serial mode and a layer can filter the information from the higher layers.
Under the right conditions this behavior can starve the higher level layers. This approach is
less flexible than the horizontal layers because the 1-layer 1-behavior mapping is lost.

16

Chapter 3

Case Studies

3.1 Introduction

To create a next generation agents for a strategy game it is wise to analyze what other
companies have done in the past, learn from their experience and establish a high standard
to be met. Many games drive the AI innovation with fun as the primary motivator, from the
high paced first-person shooters 1 to the patient turn based strategy games 2 To create a rich
virtual world where the players like to interact with agents, nothing less than the current best
will suffice. Players are more demanding by the day and require extreme in-game realism,
both in graphics and AI.

In the next sections an analysis of some successful cases is presented in the hopes of
determining which technique is best suited for a strategy game. The focus of the analysis
will be on three different game genres. Firstly, the FPS are introduced as they are the game
genre where higher competition exists, which calls for outstanding innovation in the AI field
to allow them to stand out from all others. Secondly, RTS 3 games are described, which are
the main genre for strategy games and still share all fundamental problems with the third
genre, TBS.

3.2 FPS Games

3.2.1 Introduction

First-person shooters are among the genres which recently started requiring smarter AI. The
new generation games Fear and Far Cry both achieved success within the game community
with innovative AI implementations. Far Cry agents possess group behavior capabilities akin

1First-person shooter (FPS) is a genre of computer and video games which is characterized by an on-screen view that
simulates the in-game character’s point of view and a focus on the use of hand held ranged weapons [11]

2A turn-based game, also known as turn-based strategy (TBS), is a game where the game flow is partitioned into well-
defined and visible parts, called turns or rounds. For example, when the game flow unit is time, turns represent units
of time such as years, months, weeks or days. A player of a turn-based game is allowed a period of analysis (sometimes
bounded, sometimes unbounded) before committing to a game action, ensuring a separation between the game flow and
the thinking process, which in turn presumably leads to more optimal choices. Once every player has taken their turn that
round of play is over, and any special shared processing is done. This is followed by the next round of play. [13]

3Real-time strategy, often abbreviated (RTS), is a genre of computer games characterized by war games which take place
in real time, with resource gathering, base building, technology development and direct control over individual units as its
key components.[12]

17

to models used in real military chains of command[14]. Fear stands out by using real time
planning along with a good enough performance. Doom 3 arrived at nearly the same time
with an old school zombie type AI and was quickly dismissed by many players who were
critical of its poor AI [15]. The analysis itself will focus on Fear, as time and space constraints
do not allow for a detailed analysis of every each individual game previously referred to.

3.2.2 Fear

Description

Figure 3.1: Fear Screenshot

“F.E.A.R., as a first-person shooter, focuses on combat taking place in the first-
person perspective. The game is entirely witnessed through the protagonist’s eyes.
The protagonist’s body is fully present, allowing the player to see his character’s
torso and feet while looking down; also, within scripted sequences, such as rising
from a lying position or fast-roping from a helicopter, the hands and legs of the
protagonist can be seen performing the relevant actions” [10]

F.E.A.R.’s AI allows computer-controlled characters a large degree of action; enemies can
duck in order to move through crawlspaces, jump through windows, vault over railings, jump
down to a lower level, climb ladders, push over large objects to create cover, and flank players.
Various opponents may act as a team, taking back routes to surprise the player, and using
suppressive fire or taking cover if under fire.[16]

18

Architecture

Like the majority of games, under the wood F.E.A.R. uses a FSM to control character. Fear
goes a step further by including a planner to dynamically compute the best course of action,
based on a goal oriented architecture. The planner is a modified version of STRIPS 4 with
a custom made knowledge representation based on the formalized logic symbolisms specified
by STRIPS. The FSM for characters in F.E.A.R has only three states:

Figure 3.2: Fear Finite State Machine

Goto Moves to some location
Animate Default action on some target entity
UseSmartObject Custom version of animate

Table 3.1: Fear Finite State Machine’s States

In concept it is only a two state FSM because UseSmartObject is as a special version of
Animate. The AI decision making is just moving or playing animations, the logic behind the
state transitions (when to move from one state to another) is where the AI team of F.E.A.R.
innovates.

Instead of hard-coding the AI logic, the F.E.A.R team created a data-driven architecture
and stored the tunable data on an external repository so it could be changed without requiring
recompilation of the core code. The AI logic remained in the data that are inserted into the
planning system 5 (Data-oriented AI).

The planning system keeps the complexity of evolved behavior manageable. If every
behavior were to be implemented in hard coded FSM the number of states and transitions
would be terribly high.

To perform the planning the developers used a modified version of STRIPS. The planner
uses a specific knowledge representation using logic formalized symbolisms. The major con-
cepts are behind planning, states, actions, goals. A state is a current view of the environment,
an actions is an update on the environment only possible if some pre-conditions are met, a

4STRIPS was developed at Stanford University in 1970 and the name is simply an acronym for the STanford Research
Institute Problem Solver. STRIPS consists of goals and actions, where goals describe some desired state of the world to
attain and actions are defined in terms of preconditions and effects. An action may only execute if all of its preconditions
are met, and each action changes the state of the world in some way [16]

5Planning is an AI technique that formalizes the process of transversing a search space looking for a sequence of actions
which accomplish a desired goal

19

goal is the objective state (what is required to be accomplished). Each state of the world
is represented by an assignment over a set of variables. Each goal is also represented by a
partial or full assignment over a set of variables and can be understood as the target state,
and each action is defined as a set of pre-conditions represented by a state or partial state
(partial assignment of the set of variables) and its effects (assignments of variables it changes).
To help visualize it here are some examples:

Logical Formalism: Enemies(None)^At(Warehouse)

Assignment: (Enemies,At,Killed) = (None,Warehouse,0)

Meta State: (Enemies,At,Killed)

State: (Enemies,At,Killed) = (None, Warehouse,0)

Goal: First Kill (Killed) = (1)

Table 3.2: Definitions

Action Meta State Preconditions Postconditions

Goto(X,Y) (PosX,PosY) Not (X,Y) (X,Y)

Attack (Visible,Killed) (Enemy, 0) (Not Enemy, 1)

Table 3.3: Actions

Action Meta State Preconditions Postconditions

Goto(1,1) (PosX,PosY,Visible,Killed) (0,0,-,0) (1,1,-,0)

Goto(2,2) (PosX,PosY,Visible,Killed) (1,1,-,0) (2,2,-,0)

Attack(Enemy) (PosX,PosY,Visible,Killed) (2,2,Enemy,0) (2,2,-,1)

Table 3.4: Plan

To reach a goal the planner will search through a sequence of actions which can change
the current world state to the goal state. F.E.AR.’s AI is given a set of goals each with
its own priority, the goals are fed to the planner which then produces a plan to satisfy the
highest priority goal attainable. To satisfy this goals a set of possible actions is specified for
each agent’s personality. This allows for different personalities with the same goals to react
differently when facing the same situations.

Planning can be a CPU expensive task as the search space grows to an unmanageable size
with just a few dozen states. To work around this issue the F.E.A.R. team added a cost to
each action. This allows the introduction of A* to guide the search through the cost metric
and find the lowest cost sequence of actions which meet a goal [16].

20

3.3 Strategy Games

3.3.1 Introduction

Most strategy games follow the 4X axiom. 4X refers to a genre of strategy game, usually a
computer game, with four primary goals: explore, expand, exploit and exterminate. A 4x
game can be turn-based or real-time. The 4X stands for the following goals [17]:

• explore – The player starts off with a limited knowledge of the playing area and must
send some units into unknown areas to map it. The map can start all blacked out or
partial information may be visible

• expand – The player needs to conquer more territories to do his bidding, create new
settlements or improve the existing ones

• exploit – The player uses owned resources to produce the highest benefits possible

• exterminate – The player conquers his neighbors lands as part of his expansion plan
which in turn enables him to exhaust their resources instead of their own

4X games fall into one of two categories, real time or turn-based strategy games, both
with specialized needs but sharing most of the AI problems. The following games provide the
state of the art for the RTS and TBS genres.

3.3.2 Empire Earth

Description

Empire Earth is a 4X strategy game. It is an RTS game with multiple historic scenarios.
The game has some remarkable innovations, namely the morale system that allows for better
military combat simulation and a hero system that allows for unique specialized units which
award combat bonuses to any army they command.

Architecture

Civilization Manager - responsible for developing economy. Coordinates the build, unit,
resource sand research managers giving them their budgets. Handles the exploration and
expansion as well as buildings and units upgrades. Also decides when the AI should advance
to the next era.

Build Manager - responsible for choosing the location where facilities and walls will be
built. Other managers request him to select the optimal place for a given facility. Uses terrain
analysis to provide facts that serve as the basis for the decision process.

Unit Manager - responsible for training units and for tracking the total unit count. This
module tries to match the human players current strength to provide an adequate challenge.
This prevents overwhelming human players with military units and them being dead in the
water when the human player finally attacks.

21

Figure 3.3: Empire Earth, in-game screenshot

Resource Manager - responsible for selecting which resources the villagers should gather.
Also responsible for exploring new areas. The priority of resource gathering is updated with
the requests arising from other managers. For instance the build manager wants to build a
given facility but lacks the necessary resources, it then asks the resource manager to gather
the missing resources at high priority.

Research Manager - responsible for determining which technologies should be pursue by
the AI by estimating their usefulness per cost ratio

Combat Manager - responsible for commanding units on the field. It coordinates group
attacks and defense of weak or valuable positions. Performs multiple terrain analysis to
identify weak spots on the enemy stronghold and its own base, identifies resource-rich locations
and finds potentially hazardous locations where units can be ambushed.

Details

Each manager has a channel of communication to every other manager. And through this
channel it can send a request that is available to the other manager public API. This archi-
tecture assumes every modules is trustworthy and that everyone works for the common good.
A single disloyal manager could bring all cooperation to a halt. The managers are given the
liberty to accomplish the tasks they are responsible for. For tasks dependent on multiple
managers all managers need to agree on the same task. The tasks that are not immediate

22

Figure 3.4: Empire Earth Architecture [9]

require some wrapping up in the form of a callback to notify the starting manager that they
have been completed.

3.3.3 Axis & Allies

Description

Figure 3.5: Axis & Allies, in-game screenshot

Axis & Allies is a 4X RTS & TBS game where players will relive and experience the most
epic struggle in the history of mankind, World War II. Players will be able to direct the
military and economic destiny of any one of the world’s most powerful countries - United
States, England, Germany, The Soviet Union or Japan. Confronted with the strategic and

23

tactical situations experienced by the top generals and national leaders of the period, players
will have to make critical decisions that determine the fate and the destiny of world [18]

Architecture

Figure 3.6: Axis & Allies Architecture [24]

Goal Manager - Responsible for making the strategic decisions. Determines which goals
to pursue, which actions are required to achieve the selected goals and the location where said
actions should be undertaken.

Actors - Entities that are directly or indirectly controlled by the player or AI, that have
some in-game effect. Examples: Buildings, Units.

Goals - Represent every action the player or AI can undertake while following the game
rules. Examples: Explore, Attack, Recruit, Build, Repair. Each goal has four properties: list
of resources, status, base priority, current priority.

• List of Resources, the limited entities or commodities currently assigned to a goal

• Status, the current status of the goal, can be one of the following:

– Active – The goal is ready to be executed

– Inactive – The goal can not be executed right now, some preconditions is missing

– Selected – The goal is in executions

– Finished – The goal can no longer repeat itself and can be deleted

• Base Priority, the priority of a goal at the current world state (discarding the resources
it requires to be executed)

• Current Priority, base priority weighted with the resources required for the goal to be
executed, e.g. if a building is under attack a goal for that building has the base priority
of the building value, and the current priority equals the building values multiplied by
the unit force ratio between attacking and defending units .

Resources - Represent any commodity that is limited and therefore act as a strategic factor
(e.g. Gold, Iron, Wood).

24

Details

The Axis & Allies use a hybrid AI architecture 6, with intelligent behaviors (Strategical
Plans) provided by deliberative AI and immediate decisions and plans details worked out by
the reactive AI. The reactive layer is always on, while the deliberative layer only runs once or
twice a minute.

Terrain Analysis - The AI needs to retrieve information from the world convert into into
facts it can understand and act on those facts. The conversion is done by three different
terrain analysis techniques, region analysis, path-finding and influence maps. The region
analysis determines the space and dimension of the a map zone with the same terrain topology
(water, mountain, plain) this information is then used by the path finding and influence maps
to optimize them. Path finding is done hierarchically to connect conceptual regions, which
breaks down the global path finding into smaller less expensive region path findings. The
influence maps determine the military balance of a certain region.

Egos - Even tough the AI decides on its own what actions to take, a set of configurable
parameters influence the AI deciding thresholds. An assignment of variables over this set of
parameters is called an ego, and it is simple to create multiple egos and in-game diversity.
Each ego can represent a different strategy with, say, some focused on expansion and others
on economic development. The AI chooses which ego estimates will fare better in the current
situation.

Deliberative AI - The goal engine is checked at regular intervals because each iteration
over the think cycle is CPU intensive. This window of time can not be too short or it will
bring the game to a halt. The window slide can be specified by each ego but some exceptions
can be created using an event-driven system.

Main Cycle:

1. Select the ego for this iteration

2. Delete finished goals and cull inactive goals from the decision list

3. Compute the base priority for each active goal

4. Assign initial resources to goals. A greedy algorithm that selects higher priority goals first
and gives just enough resources to match the base priority or all the available resources
if the first can not be accomplished

5. Optimize resource allocation. Tries to move resources around active goals to maximize
the total current priority

6. Marks each goal with current priority >= base priority with selected status

The key behind this architecture is the goal priority selection, and the prioritizing mech-
anism presents three problems:

• Balance between predictable and random. If the priority is always computed in a deter-
ministic way, the AI will always play the same way and will be highly predictable. To

6See Agent Architectures for more details on hybrid architectures

25

work around this issue a small random value is added to each base cost. If this value
is too small the AI remains highly predictable, on the other hand, if the value is too
high the AI will simply exhibit have random behaviors. A delicate balance must be
established by trial and error.

• Flipping around same priority goals. To ensure that the AI sticks to a plan a small offset
is added to the base priority of each selected goal. This prevents AI from switching back
and forth between equal priority goals. Again, a delicate balance needs to be achieved
for if the value is too high the AI can become stuck on a previous goal even after the
world situation has changed dramatically.

• Long time goals (bigger than one main cycle iteration). If no special mechanism is
used the long-term goals are never selected by the AI because they lack the necessary
resources spent on cheaper goals. To solve this issue the AI determines how it needs to
save resources to be able to select a long-term goal and if this value is lower than a value
stipulated by the ego. The long-term goal is selected to acquire the necessary goals but
it is executed only when the full amount of resources is reached.

Reactive AI - While the ego is dormant between being main cycle iterations a faster
reactive AI takes the lead. This reactive module is responsible for carrying out the orders laid
out by the ego and dealing with immediate problems.

3.4 Analysis

3.4.1 Taxonomy

The three game genres presented (RTS, TBS, FPS) will be analyzed in 4 areas:

• Complexity - How elaborate the gameplay is. Complexity indicates how hard it will be
to play the game.

• Learning Curve - How long it will take to learn to properly play the game. Complex
games typically have higher learning curves.

• Satisfaction - How long it will take for the player to feel good about playing a game.
This measures some sense of achievement.

• Results - How strong the satisfaction will be.

The previous areas help us understand the different nature of each game genre. The
following areas provide insight into the different AI implementations and what we can expect
from AI.

Each game will have a detailed comparison on the following criteria:

• Success - How important was the AI was for this game success?

• Fun - How much does the AI contribute to this game fun factor?

• Scripts - Does it support scripted scenarios well? Are specific game flows supported?

• Adaptation - How does the AI fair on new worlds?

26

3.4.2 RTS vs TBS vs FPS

The next table provides a comparison between the two genres.

Genre RTS TBS FPS

Complexity Medium High Low

Learning curve Gradual Gradual slower Steep

Satisfaction Fast Slow (Turn Time) Immediate

Results Moderate Strong Weak

Table 3.5: RTS vs TBS vs FPS

Complexity

FPS normally have a straightforward story and are quite simple to play so their complexity
is low. RTS have a fair amount of complexity but are usually fairly easy to learn. TBS are
complex by nature and take a longer time to get used to.

Learning Curve

On TBS games the learning curve is gradual and slow, the players only becoming comfortable
with the game after having played it a few times since these games are complex and hard to
master.

RTS games are very similar to each other so the players already are somewhat familiar
with the gameplay, and even though they take a little time to master they are easier than
TBSs.

The fast-paced action of FPS makes it necessary for the gameplay to be very easy to learn
so the learning curve is very steep and the players are able to master the controls in a very
short while.

Satisfaction

Complex games require a greater time investment to produce satisfaction but also can pro-
vide the most intense return. TBSs are then amongst the games with slower retribution of
satisfaction due to their slow nature and complex gameplay.

RTS games are faster to provide satisfaction than TBS, they are, after all, played in real
time but the player still needs to finish a level to feel some sense of achievement.

At the other end of the satisfaction specter are the FPS, which you derive satisfaction
from from the very first kill.

Results

On FPS games, results come in small doses of instant satisfaction. RTS provide stronger
satisfaction but it takes longer to achieve it. TBS requires the longest time to provide the
high satisfaction levels.

27

3.4.3 Fear vs Empire Earth vs Axis & Allies

The next table provides a comparison between the two genres.

Game Fear Empire Earth Axis & Allies

Success Medium High Very High

Fun High High Very High

Scripts Poor Good Good

Adaptation Good Excellent Very Good

Table 3.6: Fear vs EE vs AA

Success

AI is crucial for any non-multiplayer TBS, the player’s only objective is to beat the computer.
The computer must put up a decent fight to give the player the feeling of achievement or else
the player will lose interest. Even on multiplayer TBS it is important to have some kind of
AI to create better simulations and to replace drop-out players.

On RTS games AI also plays an important role, in single player games the military part
of the game is very tactical and requires a degree of intelligence to be stimulating.

FPS games can stand out with good AI implementations but the graphics still typically
hold the key factor for the game’s success.

Fun

In strategy games AI is fundamental, either it cheats to be competitive or it performs well
on the same level as the human player. Without AI you do not have a game and this is even
truer for turn-based games.

FPS can depend on other features because they provide satisfaction in lesser and more
frequent doses. Still, a good AI is funnier to play with than dumb zombies. Because good
AI and large numbers can be too much for a player to handle, FEAR and FPS dumb down
the AI. This dumbing down can easily increase the fun of an FPS. Methods used in FPS to
improve fun when facing multiple enemies are:

• Kung-Fu style - only some of them attack the human player, the others are honorable
enough to await their turn

• Reduced damage - opponents‘ damage is proportionally reduced with the number of
enemies

• Reduced accuracy – opponents’ accuracy is proportionally reduced with the number of
enemies

Scripts

FEAR’s planning system makes it very hard to follow specific behaviors on some scenes. The
AI plans are computed dynamically by a planner. Scripted actions are not easilly supported
by them, hence the difficulty to support custom behaviors.

Empire Earth’s AI supports templates, which are particulary useful for specifying building
combinations. Axis & Allies needs custom events to support historical gameplay so scripts are

28

well supported at the core. Any game attempting to recreate past events requires scripting
of some kind.

Adaptation

All three games have adaptative AI’s. It is less of an effort to create an AI that does well
in random situations than to hardcore AI for each level of a game. Also for games with
multiplayer modes it is very important for AI’s to be able to cope with different and unexpected
scenarios.

3.5 Conclusions

In this chapter we analysed three case studies: F.E.A.R., Empire Earth, Axis & Allies.
F.E.A.R. was selected for being a successful FPS game with a publicly acclaim AI. Em-
pire Earth is an RTS that possesses many interesting AI concepts, like hierarquical AI that
can be applied to TBS games as well. Finally we analysed Axis&Allies to help us understand
what special problems a TBS game has to overcome.

A few techniques prove fundamental on every genre. Path-finding always requires an A*
star of some kind to be efficient. Creating an in-game storytelling still requires scripting to
work out the rigid details. It is important to have knowledge of those techniques and they
are absolutely necessary to avoid reinventing the wheel.

F.E.A.R shows that it is possible to use academic research techniques in FPS games,
techniques which once where considered CPU intensive now provide decent results in real
time games, even though some changes needed to be introduced to make the planning more
efficient on the domain at hand. This sort of innovation shows the best bonding between
game industry and academic research and has opened up the door for future collaboration. If
any pertinent conclusions can be drawn from F.E.A.R we can foresee that the proper way to
bring innovative research from academia into the games industry will be by slightly modifying
the researched techniques to solve the right problems for games. In the game industry the
resources available to AI are much scarcer (they need to be shared with other parts of the
game), thus requiring greater resource efficiency.

RTS are among the game genres where it is harder to design good AI’s. Empire Earth
developers took a wise path and designed a clean hierarchical AI that serves as reference for
any RTS. Each manager solves a domain of problems, avoiding the cluttering of centralizing
everything. This allows for emergent behavior to occur: if the combat manager sends a mes-
sage to the unit manager requesting a unit from the next epoch the unit manager recognizes
the restrictions involved in building such a unit and sends off a request to the build manager
to consider the epoch advancement as a goal.

Axis & Allies mixes RTS and TBS and as such deals with the unique challenges presented
by turn-based games. In TBS the AI cannot be predictable because the game has fixed turn
times and the human player can replay the exact same game in different time frames. Where
is the fun in that? But a greater problem surface: a dedicated player can reverse-engineer all
AI decisions by trial and error, which eventually leads to the discovery of exploits, creating
shortcuts to finish the game not anticipated by the developers. For these reasons it is necessary
to introduce some random factors into the decision-making process. A&A has done it with

29

two different methods: firstly, they created multiple egos for the same entities and one ego
is chosen at the beginning of each think cycle. This variation factor is controlled by the
designers and can be tested deterministically. The other factor is the introduction of small
random values to the base cost of each goal, ensuring the player, receives a different experience
every single time.

30

Chapter 4

Almansur 1.0

Almansur is a massive multiplayer on-line turn-based strategy game. Being a web game, it
requires an internet connection and a browser to be played. It focuses on the operational
warfare with deep influences from classical board games. The players face each other in
historical and fantasy worlds on multiple games at the same time. Each player can play any
number of games in parallel and, each game server can run thousands of games at the same
time.

4.1 Description

“Almansur is a strategy game of politics, economy and war, set in the early
middle ages and in some scenarios, fantasy world. You play the role of a lord, to
whom fell the job of guiding your land to greatness and glory. ” [25]

Version 1.0 was released in 2007, after a one year of beta testing. The game is targeted at
hardcore board players. Players who prefer accuracy of simulation and details to trivial and
over simplified games.

Almansur in seven sentences [26]:

1. In the game, each player controls a Land, the objective being to increase the size, richness
and power of that Land

2. Each Land is made of territories (represented by hexes on the map)

3. Territories are the economic and recruitment cells of the Land, and possess natural
resources

4. Each territory can have a Facility of each type and different Populations living there

5. Facilities can be built in a territory and give economic or military benefits

6. Resource gathering facilities are only useful in territories which are rich in the specific
resource

7. Armies are formed with contingents of troops. Contingents are recruited from territory
populations

31

Figure 4.1: Almansur Screenshot

Almansur is targeted to be a next generation game 1 and it possesses some characteristics
that may allow for that classification, namely:

• Uses web 2.0 technology, requires internet connection, browser with javascript, AJAX
and flash capabilities

• Is a massive game, thousands of players can participate at the same time

• Focuses on skill over time instead of time over skill. The common MMOGs reward the
players who spend the most time in front of the computer, in clear detriment of the
player’s skill

Still, some issues that prevent Almansur from being considered a revolutionary game.

• No single player mode, where the new players can learn the game at their own pace

• Almansur has no AI, which is a distinct trace of next generation games

• Players drop-out and without AI there is no quick replacement for quitters. This degrades
other player’s experience.

• Dull repetitive tasks

• An overly static world

This work is an attempt to address the previous issues. Below are the unique challenges
that make the creation of AI for this game interesting:

1Next generation games is a term associated with innovative games that surpass current game in a set of features. Some
games are so innovative they are considered revolutionary

32

• No MMOGTBS with AI exists so it is new ground

• Massive games have thousands of players playing at the same time, causing performance
to be a major issue

• Strategy games are among the hardest games to develop AI, mainly because the world
is quite complex and has only a partially accessible environment

• The combination of MMO + TBS makes it totally impossible to have millions of agents
running at the same time, so they need to be dormant for a certain length of time period
and will only wake up at turn processing time.

4.2 Architecture

To create playable game scenario, Almansur requires four steps. Step 1 consists of importing
human-designed scenarios to the game. Once the scenario is imported the second step starts,
each new game is a clone from an imported scenario. Step 3 is the periodic turn processing
which starts when the game is cloned and stops when the game is finished (by sudden death
or victory points). The web interface is the fourth step, it is the vessel used by the players to
interact with the game.

4.2.1 Scenario Import

Each scenario is built by hand and later imported into the game by a web request. It is
built from two files: a Lands file which determines the names and characteristics of the lands
present game; and a Territories file, which specifies the properties of each hexagonal territory
present in the game. Both files are in the coma separated values (csv) format. The first line
represents the name of each column, the subsequent lines are the rows of data.

Lands Format

The lands format specifies the main properties of each land. No two lands can have the same
name or the same capital. Below is the description of the format of this file and an explanation
for each column.

Column Description

name The name by which the land will be known inside the game

name male The title of the ruler of the land

type The political organization that rules the land, or the lands culture for his-
toric scenarios

capital The location of each land capital in the format numberXnumber where the
first number is the horizontal location and the last one is the vertical location
in the scenario

description A short introduction that provides some background on the land

Table 4.1: Almansur’s lands file format

33

Territories Format

The territories format specifies the properties for each territory in the scenario. For a complete
format specification refer to table A.1 in appendix A.

The current format has some issues that impare the scenario creation.

• Inflexible format, the column names are fixed and must be present even if not in use.

• Limited format, not all combinations of populations with social states are supported by
this format. Also those column-specified. It is also impossible to specify units present in
each territory.

Because the scenario format is so rigid and limited the full game scenario expressiveness
is not available during the import phase. This limits the quality of created scenarios. For
instance it is impossible to recreate historical battles because the import format will not allow
it.

4.2.2 Game Cloning

After a scenario is imported into Almansur it can be cloned any number of times. This allows
for multiple games to be running at the same time on the same scenario. During this phase
scenario topology is cloned and the game is initialized. The game initialization consists of:

• Allocating resources for each land (multiplied by a factor specified by the person cloning
the game)

• Creating a default army for each land (multiplied by a factor specified by the person
cloning the game)

• Initializing the market’s offer/demand for each land

• Collecting the turn statistics for each land

To work around the importer flaws this game phase has been given extra powers. Along
with choosing the unique characteristic for each game during this phase the following are
determined:

• Will this game include alliances? This would make much more sense if it was present in
the importer phase, where not only would it be possible to specify whether alliances are
possible but also whether some initial alliance should already be present.

• Initial army multiplier. A factor that multiplies the default contingents a land should
start with.

• Initial resources multiplier. A factor that multiplies the default resources a land should
start with

The main problem with the augmented cloning phase is the loss of flexibility, compared
to the extra functionally provided if those steps were done in the importer phase.

4.2.3 Turn Processing

The game turn processing is where all the player input is processed by the game and it is
Almansur’s main performance bottleneck. The process is monolithic and centralized on each
game. All the players actions are processed at this time. Chaos effect of the combination of

34

different players actions is the where the fun of the game resides. The more actions a player
can take, the greater number of possibilities exist for each game and the longer Almansur can
last.

Turn processing flow:

1. backup all games - A complete database dump is done at the start of each game

turn processing

2. for each day in days per turn

(a) process battles - Enemy units in the same territories face each other.

The winner stays in the current territory, the loser if alive retreats

to another territory.

(b) for each unit in game units

i. for each contingent in unit contingents

A. process current order - modify status, experience, quantity according

to rules for the current order the unit has

ii. kill unit if all contingents are dead

iii. if unit still alive

A. active the next order if new order starting today and unit without

uninterruptible order

(c) auto reject expired diplomacy proposals

(d) process assaults - units in enemy territories with fortresses and with

a conquer order, attempt to conquest the fortress by assault. If the assault

is successful the territory changes owner

(e) start sieges - units in enemy territories force populations to garrison

inside the territory fortress

(f) update sieges - populations of sieged territories consume the food for

the day, if the food runs out the siege ends and the territory changes

owner. The siege is lifted if current sieging units do not have enough

man power to sustain the siege.

(g) start conquers - units start conquering the enemy territory they are present

if they have a conquer order in execution

(h) update conquers - if all the population is subdued the territory changes

owner. If current conquering units do not have enough man power to sustain

the territory conquest, the conquer is suspended until reinforcements arrive.

(i) process day events - any event scheduled to happen today is processed

(j) if last day in turn

i. process production - facilities send their resources to the land owner

ii. charge credits - players are charged for credits

iii. kill lands - lands without enough territories and without money are

eliminated

(k) if last day in month

i. process market - the markets demand/offer values are updated

35

ii. process resource growth - any live resources are reproduced

iii. for each land in live lands

A. process month economy - creates the economy resume for the current

month

iv. increase month count

(l) increase day count

3. increase turn count

4. calculate next turn processing time

5. create turn statistics for each land

6. update map views - recalculates the fog of war based on the current units

and territory ownerships

7. update alliance rulers - check is an alliance has a new leader

8. end game if finish rules satisfied - ends the game when any ending rule is

satisfied

By itself turn processing limits the number of games a server can run simultaneously The
formula(4.3) below illustrates how many games can be active at the same time on the same
server

fT (game) = Number of minutes taken to process a game turn (4.1)

fD(game) = Number of real days between each game turn processing (4.2)

n = 60 ∗ 24 ∗ fD(game)
fT (game)

(4.3)

Where n represents the maximum number of games active before If a daily game takes 30
minutes to process then a server can only have at n = 60 * 24 * 1 / 30 = 48 games at the
same time.

This limit does not take into account the number of CPU cores, due to a limitation of
version 1. No two games can be processed at the same time. This problem comes from two
issues:

• Inflexible backups (all databases need to be dumped to backup a single game)

• Concurrency issues (when a game is being processed, other games can suffer currency
issues)

4.2.4 Website

The website is the face of the game. It is has to be attractive or players will not be interested
in finding out the games inner complexity. The main issues currently plaguing the game are:

• Complex interfaces, hard for new players to learn

• Too deep interfaces, some actions require too many steeps

In the next chapter an architecture will be introduced which deals with all the difficulties
of this game. This work will focus the lower level of AI, introducing agent oriented processing
and creating a more dynamic and immersive world in the process which better simulates the
historical reality, as well as the foundations for higher level AIs to be developed.

36

Chapter 5

Almansur Agent Architecture

Man discusses, Nature acts

Voltaire

This chapter introduces the multi-agent architecture created to address the issues of the
turn-based strategy massive multiplayer on-line game Almansur.

5.1 Introduction

The agent’s mind follows the hybrid horizontal approach, which is a good fit for this game
genre for the following reasons:

• Good performance

• Custom agents, the 1 layer - 1 behavior mapping provided by horizontal hybrid archi-
tectures make it easy to configure different agents, starting from the same template

• Allows for complex behaviors to be added when needed. Even though some agents can
be only reactive, there is no hard restriction that forces them to be that way

Figure 5.1 shows the outline of the architecture. The environment is accessible to the agents
through standard sensors. Also accessible through the sensors is the common knowledge pool,
denoted whiteboard. The agents can try to modify the environment through their effectors.
Effectors can either succeed or fail and when they fail none of their effects are propagated to
the world. Through its effectors an agent can modify the content of his group whiteboard.

Each agent can have an internal state, this state can be shared with other agents if the
agent allows it. Two types of sensors exist, the passive sensors which are received by the agent
by event notification; and the active sensors which are used explicitly by the agent.

Agents can communicate with other agents in two ways. Passively, they simply write
information in or pose questions to the whiteboard and check for changes later in pooling
mode. Actively, the agent notifies another agent explicitly and waits for his response. The
agents are grouped according to the master they work for and only have access to their group’s
whiteboard.

Intelligence is provided by the behaviors available to each agent, the combination of dif-
ferent behaviors specified and emergent higher level behaviors can be manifested by the in-

37

Figure 5.1: Agent Architecture

teraction of the simpler ones. Each behavior has a set of pre-conditions that need to be valid
for the behavior to be enabled. The horizontal nature of the architecture allows multiple
behaviors to be started at the same time if the proper conditions are met.

The event manager is the component responsible for creating the intelligent environment.
Agents register themselves on the event manager to receive certain types of events. When
such events arise the event manager selects the ones who should receive that event and in
which order.

5.2 Environment

The virtual world of Almansur is a partially observable, non-deterministic, sequential, dy-
namic, discrete and multi-agent environment. It is not fully observable because other players
actions or agents from outside groups are not known. The non-deterministic nature also
derives from the actions of other players or competitive agents. The actions can have reper-
cutions for many turns, making the environment sequential. It is a dynamic environment
because multiple agents compete for the same actions at the same time, causing some agents’
effectors to fail if they are done too late. While the number of percepts can be extremely
large it is still a finite set, so it is a discrete environment. Several agents roam the Almansur
world, creating a multi-agent environment. Agents are typically cooperative inside the same
group and competitive against different agent groups.

38

5.3 Agents

Several types of agents exist in this architecture, which will be detailed in the next sections.
All of them follow the core design, having a hybrid architecture. The internal state is optional,
agents can be fully reactive whenever appropriate. Because the performance is of the utmost
importance and because several thousands of games can be active at the same time it is not
feasible to have millions of agents active at the same time. The agents thus need to be loaded
only when needed and made dormant when there is nothing for them to do.

5.3.1 Behaviors

Behaviors are the core of the agent’s mind, an agent being only as intelligent as its behaviors
and the emergent interactions they provide. For instance, for an agent to be social it must
possess some sort of behavior that enables communication.

The behaviors are loaded at each agent’s initialization. Connected to the behaviors are
the agent’s sensors and effectors.

5.3.2 Sensors

Each Agent can have two types of sensors: passive sensors, with which the agent cannot
control the action, it is notified when some event is detected and can choose to react to that
event or simply ignore it; and active sensors that can be used whenever it deems it necessary
to acquire information from the world or other agents or from the common knowledge pool.
The agent’s internal state is accessed directly, it is not necessary to go through its sensors.
The sensors are only required to acquire information from outside the agent.

5.3.3 Effectors

Effectors are the standard way for an agent to influence the environment, other agents or to
write to the group knowledge pool. They can have two outcomes: either they succeed and
the environment reflects all the actions they represent; or they fail and none of the actions
they represent are actually performed. This can happen when some other competitive agent
performs a conflicting action at the same instant.

5.3.4 Domain Specific Language

The configuration of the behaviors requires some degrees of flexibility. To create a simple
yet powerfull way of allowing configuration a custom domain specific language (DSL) was
developed. Throughout this work will be refered to as Agent Modeling Language (AML).

This language is used to specify which behavior each agent can have, and which precon-
ditions they have. For a complete reference of AML in BNF 1 refer to section B.1.

1BNF stands for either Backus-Naur Form or Backus Normal Form, it is a formal and precise metalanguage used to
describe the grammar of a programming language [27]

39

E.g. of a population behavior configuration:

:revolt => {

:EventType =>’end_of_turn’,

:Property => [

{ :name => :happiness, :max => REVOLT_THRESHOLD},

{ :name => :loyalty, :max => REVOLT_THRESHOLD},

{ :name => :in_fortress, :equals => false}

],

:Sensor => [

{ :name => :territory_sensor,

:method => :stability,

:parameters => [:territory_id],

:max => REVOLT_THRESHOLD}

],

},

5.4 Initialization

When the turn is processed, all the agents need to be loaded. Behaviors are grouped into
modules by functionality. Loading a module into an agent causes the agent to learn how to
execute all the behaviors in that module. But only behaviors that are configured are electable
to be executed.

The loading process follows the algorithm for each agent:

1. Load custom modules or fallback to default modules

2. Load sensors for configured modules

3. Load effectors for configured modules

4. to load behaviors = Custom Behaviors

5. to load behaviors = Default Behaviors unless Custom Behaviors

6. agent preconditions = new Hash

7. agent behaviors = new Hash

8. for each behavior in to load behaviors

(a) agent behaviors[behavior] = new Array

(b) for each precondition in behavior.preconditions

i. agent preconditions[precondition] ||= new Array

ii. agent preconditions[precondition].push behavior

(c) end

9. end

If no custom behaviors are specified the agent will fall back to the default behaviors. This
feature is useful to avoid repetition of customization of equal agents. A template can be
created and all instances will share the same default configuration.

40

Each agent maintains a list of behaviors. The modules specify which sensors and effectors
an agent must have to be able to execute the behaviors present in the module. This ensures
an agent is always technically able to execute the configured behavior. When the module is
loaded into the agent, the sensors and effectors are also injected into the agent.

For performance reasons, two hashes are also maintained by each agent. The first indexes
each configured behavior according to the pre-conditions that he requires. This allows for
behavior culling when processing passive sensors (event notifications). Instead of checking if
all behaviors can be performed, the behaviors which lack the current event as a pre-condition
can be trivially ignored. The second keeps record of all the pre-conditions required by a
certain behavior. This is used when the agent needs to determine if the behavior can be
performed or not.

5.5 Agent Types

Four types of agents are proposed to be used with this architecture. Reactive, proactive,
manager and personality.

5.5.1 Reactive

Reactive agents react to the percepts they receive. They may or may not have an internal
state, but they do not do any kind of reasoning or planning ahead. These are the simplest
and fastest agents. They can be easily converted into another type of agent just by adding
new behaviors.

5.5.2 Proactive

Every agent that performs some kind of goal oriented thinking or uses some utility function
to maximize performance is considered a proactive agent. Their main difference to reactive
agents are the higher level behaviors that allow the agent to exhibit more intelligence. All
proactive and reactive agents are bound to use sensors and effectors to interact with the
environment.

5.5.3 Managers

Games have specific needs and the game rules need to be enforced by someone. Managers are
a special kind of agent that enforces the game rules. They are responsible for the arbitrary
decisions the game must take and they determine the outcome of conflits between competitive
agents. As extentions to the game itself, these agent are totally impartial and can have God-
like abilities. They know every agent in the game and can manipulate their internal state at
will.

5.5.4 Personalities

Personalities are another special agent, although they possess abilities of their own, they can
be placed in charge of other agents. When they hold such positions they absorb the capabilities
of the subject agents and take control over the decision-making process. The acquired abilities

41

are only temporary, and when they leave the position they also lose them, even though smart
enough personalities can incorporate learning abilities and be able to retain the knowledge
from the positions they occupied.

Personalities try to simulate real persons, they have needs such as requiring a good salary
or being employed, and when employed they have all responsibility and control over their
decisions. Logically, once they leave their job they also lose responsibilities and control.

Each personality has 3 sets of characteristics:

• Status properties, volatile values that represent the internal state of the personality. For
example, how much money it pocesses or how good its health is.

• Personality traits, fixed characteristics that determine the biased behaviors. A person-
ality can be defensive or aggressive, tolerant or intolerant.

• Skills, are the abilities that a personality posssesses, which can be learned or improved.
Skills have a proficiency level and this level improves whenever the skill is used, so the
more an agent uses a skill, the better it becomes.

5.6 Communication

Fundamental to any multi-agent system is multi-agent communication. Communications can
be either synchronous or asynchronous.

Synchronous communications imply that all parties involved must be present at the same
time, which means the information is immediately propagated and an agent will wait for a
response to each question even if it is only a reception acknowledgment.

Asynchronous communications simply require a common communication channel but do
not require all parties to be present. The information can be written on the channel at the
time instant X and be read by other members at instant Y.

The next subsection introduces the two methods available to communicate with other
agent on this architecture.

5.6.1 Events

Events are the multi purpose system for communication. All events are under the control of
the event manager module.

The event manager is responsible for keeping a record of which agents are registered for a
given event type. Any agent can create new events and ask the event manager to process them.
The event creator can specify filters that must determine a subset of agents entitled to receive
such an event. The event can be filled with whatever information the event creator wants, so
they can be used to transport all kinds of information back and forth in an object-oriented
way.

Synchronous Events

When an agent registers a new event with the event manager he has the chance of specifying
that the event be processed in a synchronous form. The workflow below exemplifies what
happens:

42

Figure 5.2: Event System

1. Agent creates a new event

2. Agent sends the event created in 1. to the event manager

(a) Agent declares the event should be processed in a synchronous form

(b) Agent sends out the filters each other agent much pass to receive the event

(c) Agent is blocked until the event manager’s execution is finished

3. The event manager receives the event and filters

4. Event manager retrieves all the agents registered to receive notification

of event types with the same type as the received event

5. Event manager selects all agents from 4. that pass the received filters

6. Event manager notifies all agents from 5. with the received event

7. Each notified agent processes the received event

8. Event manager sends feedback to the caller agent

9. Agent unblocks

By the time the workflow ends the agent is sure everyone else was notified about the raised
event.

Asynchronous Events

Asynchronous events do not block the caller agent while they are processed. Furthermore,
the caller agent has no callback to notify that the event is indeed processed by everyone else.
They follow the workflow below:

1. Agent creates a new event

2. Agent sends the event created in 1. to the event manager

(a) Agent declares the event should be processed in a asynchronous form

(b) Agent sends the filters each other agent much satisfy to receive the event

3. The event manager receives the event and filters

4. Event manager retrieves all the agents registered to receive notification

of event types with the same type as the received event

43

5. Event manager selects all agents from 4. that pass the received filters

6. Event manager notifies all agents from 5. with the received event

Delayed Events

Delayed events are a particular type of asynchronous events that are only processed when all
other events are finished. When the event manager receives this type of events it stores them
in a queue. When the event manager knows that no more events are going to arrive, it fetches
the queued events and processes them one by one using the asynchronous workflow. These
events are particularly usefull for cleaning-up jobs.

5.6.2 Whiteboards

The second form of communication are the whiteboards. Whiteboards are simply a shared
pool of knowledge that can be accessed by a group of agents. To use whiteboards the agents
need to use sensors for reading and effectors for writing. There is no mechanism for controlling
multiple agents writing the same information at the same time, so the persistent information
will be the last to be written. Whiteboards are an indirection, so all communications that go
through it are asynchronous.

Agents are denied access to whiteboards outside their group. They do not even know
they exist so all whiteboard information can be considered if all members of the group are
honorable and trustworthy.

5.7 Deletion

“In life only death is certain” – Anonymous

In many games agents can die, either because they outlived their usefulness or were slain
by some other agent. To kill an agent in this architecture it is necessary for the agents to
remove themselves from the event manager lists. They must notify the event manager that
they no longer exist. This will help the event manager from sending events to dead agents.

5.8 Hibernation

In order for agents to be consistent between multiple turns, it is necessary for agents to save
their internal state. When the turns are over, the current state is written to a persistent media.
When the next turn is processed, all agents are loaded and initialized. During the initialization
process any previous state or learned abilities are also loaded. After the initialization the
agents are at the same state they were in immediately before hibernation.

5.9 Reproduction

“Humans live to breed” – Anonymous

Populations reproduce, it is innate and their only means of long time survival. To properly
simulate that behavior the agents need to be able to reproduce as well.

44

5.9.1 Clones

To replicate itself a population can be divided by being cloned. After the clone is created it
is simply initialized like a normal agent. From that point on two agents exist and their future
experiences and states determine what they will be next, so diversification comes naturally.
But, since reproduction begins with cloning all the parent knowledge is passed to the clone.

5.10 Event Processing

Event processing in multi-agent systems requires some form of arbitration to resolve conflicting
actions. Imagine agent A and agent B are competing for the same objective. Both of them
have to paint a wall. A wants to paint the wall red, B wants to paint the wall blue. Several
possibilities exist:

• Ignore the problem

• Let both agent use the same resource at the same time, and allow the last agent to act
to overwrite the first agent’s actions

• Reserve the shared resource for the first agent to execute the action and force the second
agent to fail

Solution number 1 brings chaos, all predictability and reproducibility being lost. Multiple
runs of the same simulation would provide different results. Solution number 2 creates oper-
ational and coherency problems. It also is an unnatural solution, in the real world this would
be impossible. Solution number 3 requires transactional support. Still it is the more natural
solution. This architecture employs solution 3.

5.10.1 One-Phased cycle

For performance reasons, when it is clear that an event will not cause multiple action to
conflict, the event manager can notify agents to perform a combined feel-effect cycle. Agents
can act on their percepts without worrying about them getting outdated. This mode follows
this workflow:

1. Event manager receives the event and filters

2. Event manager retrieves all the agents registered to receive notification

of event types with the same type as the received event

3. Event manager selects all agents from 2. that pass the received filters

4. Event manager notifies all agents from 3. with the received event and specifying

its a feel-effect cycle.

5. Agents receive an event with a feel-effect cycle.

6. Agents uses their active sensors to extract information from the environment

7. Agents uses their effectors to perform changes on the environment

45

5.10.2 Two-Phased cycle

When actions from multiple agents may be conflitcting, all agents need to be coordinated to
acquire information from the environment at the same time. Otherwise, some agents would
have an unfair advantage over others since the accuracy of the information gathered would
change. Essentially, the processing is done in two steps: a feel phase where all agents update
their information about the current state of the world; and an effect phase, where the agents
use the knowledge acquired from the previous phase to select what actions to take, and to
effectively send them to the environment. The agents can only act after all other agents have
finished the feel phase.

This mode follows this workflow:

1. Event manager receives the event and filters

2. Event manager retrieves all the agents registered to receive notification

of event types with the same type as the received event

3. Event manager selects all agents from 2. that pass the received filters

4. Event manager notifies all agents from 3. with the received event and specifying

its a feel phase.

5. Agents receive an event with a feel cycle.

6. Agents uses their active sensors to extract information from the environment

7. Event manager notifies all agents from 3. with the received event and specifying

its a effect phase.

8. Agents receive and event with a effect cycle.

9. Agents uses their effectors to perform changes on the environment

5.10.3 Usage

One-phased cycle is used for events that are conflict free. It’s imperative that no two agents
compete for the same resource. If the agents compete for the same resources or require
synchronization, when responding to an event, a two-phased cycle is necessary. One-phased
cycle has better performance and should be prefered whenever the events are guarateed to be
conflict free.

46

Chapter 6

Almansur 2.0

After introducing the Almansur game in chapter 4 and the developed architecture in chapter 5,
the application of the developed architecture to Almansur is described. The architecture was
developed with the main objective of integrating AI into Almansur, but the known issues with
Almansur were also tackled when possible. Version 2.0 will not bring any major improvement
to the web interface of the game, it will focus on the game core. The improved parts of
version 2.0 are, therefore, the scenario import, game cloning and turn processing. The turn
processing modules suffered the most transformations, with the application of the proposed
agent architecture. Over the next sections the modifications that produced Almansur 2.0 are
explained, following the taxonomy from chapter 4.

6.1 Scenario Import

CSV files were kept as the file format for hand made scenarios but to overcome some of its
problems the importer was refactored to support flexible headers and new requirements.

Lands Format

The new header format introduces the race column, It is the only difference from version 1.0.
This modification is done by need, since in version 2.0 each land also has a new field that
identifies the ruling race / culture.

Column Description

name The name by which the land will be known inside the game

name male The title of the ruler of the land

type The political organization that rules the land, or the lands culture for his-
toric scenarios

capital The location of each land capital in the format numberXnumber where the
first number is the horizontal location and the last one is the vertical location
in the scenario

race The name of the race/culture that rules this land

description A short introduction that provides some background on the land

47

Table 6.1: Almansur’s lands file format

Description

Territories Format

Major changes were done on the territories file. If a header does not have any data, then it
makes no sense to require it. So in version 2.0 the concept of required and optional columns
is introduced.

Required columns must be present in any territory file. They are the bare minimum that
classifies a territory. Examples are the territory coordinates, without them it is impossible to
place the territory on the scenario.

Optional columns can be present or absentin a territory file. They also have the interesting
property of being in sync with the database data. For instance any new resource type that
is introduced into the Almansur’s database is immediately available in the importer. This
type of flexibility creates a much more robust importer allowing the format to grow without
actually changing any code.

Facilities Resources Races Social States

Cattle Raising Gold Barbarian Free

City Iron Berber Slave

Encampment Stone Christian Noble

Farm Wood Dwarf
Fortified Villages Fish Elf
Fortress Trees Goth
Ironworks Grain Human
Lumber Mill Salted Meat Jewish
Market Salter Fish Muwallad
Mine Gold Horses Orc
Mine Iron Cattle Roman
Pig Farm Pigs Uruk hai
Port Wargs Vandal
Recruitment Center Wild Game
Roads Slaves
Shipyard
Stables
Stone Quarry
Underground City
Warg dump
Church
Mosque

Table 6.2: Races, Social States, Facilities and Resources

48

Table 6.2. represents the possible substitutions currently available for the territory files.
The name under brackets means the column name can assume any value shown on table 6.2.

The new format ends up being more powerfull and yet simpler to memorize. All the header
names adhere to the same pattern, and follow the principle of least surprise1.

Column Required Description

x required Horizontal coordinate for the territory

y required Vertical coordinate for the territory

mov class required Type of territory, L - Land, S - Sea

altitude required Territory average distance to the sea level in meters. It’s
a positive value for shore and negative for water covered
territories

relief required Average sharpness of the territory, a regular territory will
have a low relief. While a cliff will be a very high relief

swampness required Average swampness of the territory

fertility required Average tax of reproduction of this territory

[resource type] optional Quantity in tons or heads for resource naturally available
in the wild, in this territory

terr name optional Name of the territory (Empty for the name to be based on
the territory coordinates)

[population]
[social state]

optional Quantity for any combinations of populations with so-
cial states present in this territory

[facility type]
[name]

optional Name of for the facility of the type [facility type](Empty for
the facility name to be “[facility type] [terr name]”) present
in this territory

[facility type] optional Level of the facility of type [facility type] (Zero is no such
facility exists) present in this territory

territory resource
[resource type]

optional Quantity in tons or heads for the resource present in this
territory warehouses and populations

pe name required Name of the land that owns this territory (must be an entry
from the lands files under the column name)

Table 6.3: Almansur’s territories file format

Description

6.2 Game Cloning

After changing the core paradigm to use the agent architecture presented on chapter 5, it
becomes necessary to create the agents at the end of the game cloning phase. Because these
agents use a whiteboard as a means of communication, the whiteboards for each agent group
also need to be created and populated.

1The principle of least surprise states that, when elements of an interface conflict or are ambiguous, the behavior should
be that which will least surprise the human user or programmer at the time the conflict or ambiguous situation arises.

49

The initialization procedure specified on section 5.4 shows that if the agent has no custom
behaviors then the default behaviors are loaded instead. Since most of the agents belonging
to the same type use the same behaviors if the default behaviors are chosen carefully nothing
is required to create the game agents. So by sticking to the design pattern Convention over
configuration 2 a lot of boiler plate code can be avoided.

6.3 Turn Processing

The most radical changes occurred on the turn processing part of Almansur. The version
2.0 not only introduces AI but also solves the issues that previously plagued version 1.0. By
creating a framework that makes it possible to manage games individually (create, backup,
delete) it is now possible to process multiple games at the same time without suffering any
concurrency issues.

Such framework allows the revisiting of the formula 6.2, and introduces the number of
CPU cores into the calculation.

fC(computer) = Number of processor cores a computer possesses (6.1)

n = 60 ∗ 24 ∗ fC(computer) ∗ fD(game)
fT (game)

(6.2)

Assuming the major bottleneck is the CPU processing3 the number of processed games
can now increase almost linearly with the number of processor cores available.

6.3.1 Agents

Version 2.0 of Almansur departs from the old central paradigm, where everything at turn
processessing was pooled by the game. Now, at the core we have a virtual world that stimulates
its agents to act. The game flow is controlled by what type of events the world generates,
and the game impartial features are under the belt of special agents called managers. The
managers can be seen as demi-gods in the virtual world, whose task it is to ensure the agents
abide by their rules by any means necessary. For this reason the managers live outside the
effectors/sensors jail and can manipulate any other agent’s internal state directly.

For a complete reference on the agent minds, specified on the DSL presented on section
5.3.4 refer to appendix B.

6.3.2 World

The world is the environment where all agents are inserted. All agents interact with the
world through sensors and effectors even managers. The game flow is determined by the
events raised by the world. The next subsections document the parts that compose the world.

2Convention over configuration is a design pattern which privilege the use of the most common thread of execution as
the default action to take. This allows for easier to setup frameworks without compromising the flexibility provided by
configuration. [32]

3Ignoring IO wait eases the theoric calculations, and can be minimized in pratice by offloading the database load to a
dedicated server, through a high speed connection

50

Events

Behind the agent architecture is an event system, every tidbit of game flow is generaly con-
trolled by the type of events raised. Below is the exhaustive list of all events that can occur
in version 2.0.

Event Description

start turn The beginning of a new turn (agents that have ahead of turn
actions to do need to listen to this event)

upgrade A facility has finished its upgrade

downgrade A facility has finished its downgrade

conquer A territory has been conquered by some land

tribute A mandatory tribut needs to be paid

newcapital A land has successfull moved its capital to a new territory

arrival A unit has arrival at a new territory

start day The beginning of a new day (agents that have daily actions to do,
need to listen to this event)

production Facilities have stocked enough production to send to the land ruler

reproduction Alive agents are allowed to increase their quantity

economy New financial data is available

end turn The turn processed has ended (agents that need to do last minute
actions, need to listen to this event)

market The market stocks are being refilled

start siege A siege action just started a specific territory

siege canceled An undergoing siege action was canceled

diplomatic

change

The diplomatic relation between two lands changed (for better or
worst)

new population A new population arrived at a territory

tax change The tax collected by some territory changed

update siege A new day has passed, the territory in question needs to feed the
enclosed units

Table 6.4: Events (Almansur 2.0)

Turn flow 2.0

Turn flow uses the introduced events to get the core going. During the processing of the core
events the agents can raise their own events and create a recursive feedback loop. This effect
needs to be taken into consideration when electing an agent to raise events, or else we can
raise an infinite feedback loop and bring the game down.

The Almansur 2.0 core is run from the simple pseudo code below.

1. Create a new Event Manager

2. Create a new Agent Manager

3. Request the Agent Manager to load all Agents

51

4. Loads whiteboards for the current game from the persistent support

5. Raise a synchronous start turn event

6. Retrieve current day from Game Agent

7. For each day in number of days per turn

(a) Raise a synchronous start day event with current day

(b) Request event manager to raise all in-game events scheduled to happen at current
day

(c) Increments current day

8. Raise a synchronous production event

9. Raise a synchronous market event

10. Raise a synchronous reproduction event

11. Raise a synchronous economy event

12. Raise a synchronous end turn event

13. Request event manager to raise all queued events

14. Save modifications to whiteboards to a persistent support

6.3.3 Units

Units represent a container of contingents, whose main purpose is to conduce the military
warfare. Each unit allows one general, this job can be filled by a personality. A simbiotic
relations is created between a personality and a unit. The personalities gain all the unit’s
behaviors (and gains the change of using its skill and gain more experience). Units gain bonus
from the personalities skill modifiers. Table 6.5 presents all the behaviors a unit can have. For
the details on the preconditions necessary for each behavior to be exectuded refer to appendix
B.

Behavior Description

upkeep Request the salary for the current turn

eat Request the pounds of food necessary for the current turn

revolt When the loyalty is too low, the unit will no longer obey the land ruler

send to land Send the captured resources to the central resource pool

arrival Move to another territory

force rest When the status is low rests for a few days to avoid high territory attrition

identify scouts Attempts to discover any scouts present on the current territory

resume When status is recovered, attempts to resume the current order

Table 6.5: Unit behaviors

6.3.4 Contingents

The contingents are members of units, they have simple behaviors and therefore do not provide
jobs for personalities to fill. Also due to the possibility of having thousands of contingents

52

Figure 6.1: Almansur new contingents

for each land, it would become very hard to manage so many jobs. Below on table 6.6 the
contingent’s behaviors are specified.

Behavior Description

process day Apply the consequences of any queued orders

upkeep Request the salary for the current turn

eat Request the pounds of food necessary to eat for the current turn

disband Converts contingent into settlers at the current location

Table 6.6: Contingent behaviors

6.3.5 Populations

Populations represent different cultures and social states, that live on the territories. On
historical scenarios they are all human, but on fantasy scenarios multiple races are present.
Table 6.2 presents all the different races a population can be.

These agents are now far more intelligent that in version 1.0. To introduce an historical
background, down the Almansur lane the players started to act with less and less honour.
And betrayals and massive taxing were now the rule. On version 1.0, the populations got less
and less loyal, which meant they simply decreased the number of law abiding citizens. Which
in turn would progressively provide less taxes and less recruitable forces. Still they suffered
such abuses without complaining, which lead to several game exploits.

Creating more intelligent behaviors to cope with the situation was deemed necessary.
Now on version 2.0, the new behaviors allow unhappy populations to migrate to better lands,
searching for better opportunies, not unlike humans do in real life. Also populations tend to
prefer pacific lands, and like the diplomatic stability they provide. To better simulate this,
populations now react negatively to war, and positively to peace.

53

Table 6.7 presents all the behaviors implemented for the population agents.

Behavior Description

reproduction Increase population numbers

resource

reproduction

Increase live resources for the population

merge Attempts to merge with another population of the same race and
social state

revolt Uprise against the territory owner if unhappy and the territory is not
protected

react to tax

change

Decreases loyalty and happiness if taxes are raised, has a 1/3 inverse
effect if the taxes are lowered

react to

diplomatic change

Decreases loyalty and happiness if diplomatic ties with another land
degrade. Increases loyalty and happiness when ties improve

react to conquer Adjusts loyalty and happiness in regard to new territory owner

process siege Requests daily supplies of food from the territory warehouses

prepare for siege Seeks refuge in a protection building if enough space is available

Table 6.7: Population behaviors

6.3.6 Territories

A key element of the stategy games is the land occupied, they provide the resources necessary
to sustain wars or invest in development. Still they are mainly reactive agents with little need
for intelligent behaviors.

Table 6.8 presents the territory behaviors.

Behavior Description

produce All production facilities in this territory release stocked resources
to land owner

resource

reproduction

Reproduced the live resources, that belong to the territory

react to diplomatic

changes

Changes territory stability according to the geo-political situation

react to conquer Diminishes territory stability as a result of the current conquest

update stability Recalculates the turn’s territory stability

update available

emergency recruits

Attempts to train more citizens to be part of the men-at-arms
emergency force

update whiteboard Updates territory information on the group whiteboard

react to unit arrival Reports the arrival of known units

upgrade facility Upgrades a facility

downgrade facility Downgrades a facility

Table 6.8: Population behaviors

54

6.3.7 Personalities

Personalities are special agents that can have jobs. When a personality is employed it tem-
porarily gains new behaviors depending on the job it has. A personality can be allocated to
different jobs at different times, but may only have 1 job at a time.

Personalities have an addicional three sets of property:

1. Status, properties that can change frequently represent the internal state of the agent.

2. Traits, properties that represent the personality. These properties specify the way in
which they approach a situation and are immutable over time.

3. Skills, specials abilities that get better with usage. Each time a personality uses a special
skill it increases. When certain threshold is reached, new skills are learned.

Status

The status properties are dynamic characteristics used to represent the personality internal
state. Table 6.9 show a description of all these properties.

Name Description

Status The current physical status of the personality
Loyalty How loyal a personality is to his land
Happiness How happy a personality feels
Salary How much the personality earns per turn
Land To which land the personality is currently associated
Title Which title the personality has achieved
Territory In which territory the personality is
Market When unemployed on which job market a personality is
Time on market How long the personality is unemployed

Table 6.9: Personality properties

Traits

The personality traits are fixed characteristics that influence the way a personality agent de-
cides. A personality with strong militarism will invest most of its money in armies, while
weak militarism will cause a preference for economical development and peace. These char-
acteristics are listed and described in table 6.10

Name Description

Birthday The birthday of the personality
Birth location The territory where the personality was born
Race The personality’s race
Aggressiveness The balance between offense and defense that a personality possesses
Tolerance How tolerant a personality is towards other races
Charisma Whether the personality is reclusive or social by nature
Militarism Whether the personality prefers armies or economic development

Table 6.10: Personality properties

55

Skills

Each personality starts with three random skills. The skills improve with usage and when the
personality’s total experience 4 reaches a certain threshold a new skill can be learn. At most,
personalities can have a total of five skills.

Table 6.11 lists all the skills available and their description.

Name Description

Trade Improves the market power
Build Reduces the time needed to build a facility
Produce Increases resource production
Tax Collect Improves tax collect effiency
Recruit Improves status and experience of new recruits
Espionage Gives unique informations about other lands
Rest Improves the status recuperation associated with a rest order
Train Improves the speed of training
Garrison Improves fortress defensive abilities
March Moves faster between territories
Scout Improves the changes of a scout to remain undetected
Defend Improves the military bonus for the defend order
Conquer Speeds up the time required to conquer a territory
Siege Reduces the military penalties for sieging armies
Attack Improves the military bonuses for attacking armies
Range Improves the damage done during the range combat phase
Shock Improves the damage done during the shock combat phase
Charge Improves the damage done during the charge combat phase
Melee Improves the damage done during the melee combat phase
Pursuit Improves the damage done during the pursuit combat phase
Assault Improves the damage done during assaults

Table 6.11: Personality skill list

As stated before, personalities have the special ability to capture behaviors from other
agents. When a personality is given a job it automatically gains the behaviors associated
with that job. Still all personalities have some core behaviors that belong to them always.

4The sum of all its skills

56

Table 6.12 lists and describes such behaviors:

Behavior Description

upkeep If the personality is employed, it requests his/her salary from the
employer

accept job Evaluates all jobs proposals and accepts the best offer that statisfies
this personality demands. If no such proposal exists, all existing
proposals are rejected

change market When a personality is unemployed for too long on the same local
market5, the personality moves to the global job market.6

Table 6.12: Population behaviors

6.3.8 Battle Manager

This special agent is responsible for all game battles. When enemy units occupy the same
territory at the same day, this agent is responsible for determining the outcome of the conflict.
Units and contingents present in the conflict have their internal state modified by the battle
manager to ensure they abide by the game rules. If some units or contingents die in battle
the battle manager is also responsible for removing the respective agents from the game.

Currently there is only one behavior, since only battle are implemented in the version 2.0.
In a near future a second behavior to process game assaults needs to be implemented.

Behavior Description

process day battles Simulates the battles of enemies in the same territory
Table 6.13: Battle Manager behaviors

6.3.9 Hostile Action Manager

Similar to the battle manager, the hostile action manager controls the military conflicts that
arise from conquests and sieges. Both types of conflict are processed in a similar maner, each
day this manager checks for starting conflicts and notifies the parties involved. This allows,
for instance, for populations to take refuge in fortresses when a territory is under siege.
Afterwards, each ongoing hostile action must verify the minimal conditions to continue, end
in failure or end in success. When success is achieved the territory suffering the hostile action
changes hands.

6.3.10 Game

The game agent is an extention of the world that processes logic common to all lands. Its
behaviors could very well be implemented by the world and destroy this agent altogether but
for the sake of flexibility and future evolution they are separated modules.

5When on local markets only the land that owns the market can place work proposals
6When on the global market, and lands can place work proposals

57

Only two behaviors are yet needed. One for the start of turn actions, and another for end
of turn updates.

Behavior Description

process start turn Resets all the land’s production counters
process end turn rejects expired diplomacy proposals; charges credits; kills dead lands;

increments number of turns; selects next turn time; updates global
market prices; updates alliance rulers; ends game if winning condi-
tions are met

Table 6.14: Battle Manager behaviors

6.4 Website

Minor changes were done on the website, just the bare minimum to support the evolutions
introduced by version 2.0. Most noteworthy is the introduction of a new set of views that
allow the current interaction the personalities agents now available.

58

59

6.5 Tests and Results

In this Chapter version 2.0 is tested under the same environment of version 1.0 and both are
compared in performance issues and simulation issues.

6.5.1 Methodology

To test the application of the architecture to the version 2.0 of Almansur, two different types
of tests are presented: simulation and performance.

With the introduced AI, the existing agents are supposed to help simulate real behavior
better and make the game easier to develop. In version 2.0 the simulation should be closer to
what humans do than it was on version 1.0. These tests are hard to quantify and subjective by
nature. To compare the evolution of behaviors from version 1.0 to version 2.0, the same player
actions are taken, on scenario 2PL, in both versions. Afterwards three turns are processed
and the outcome results are analyzed.

Performance tests measure the difference of clock time regarding the same actions in ver-
sion 1.0 and version 2.0. These tests show whether agent-oriented processing has a negative
or positive impact on game waiting times. Between each test run the test environment is
rebooted so that each test starts out under the same conditions. Rebooting the test environ-
ment means resetting the database to the same point and restart the webserver to avoid any
caching mechanisms which may distort results.

6.5.2 Test Machine

All the tests where done under the same environment.

Hardware Intel(R) Core(TM)2 CPU 6400 @ 2.13GHz 2GB of RAM, DDR2 667MHZ.
OS Linux final 2.6.17-10-server #2 SMP Tue Dec 5 22:29:32 UTC 2006 i686

GNU/Linux Ubuntu 7.04
Ruby ruby 1.8.5 (2006-08-25) [i486-linux]
Webserver lighttpd-1.4.13 (ssl) - a light and fast webserver
Frameworks actionmailer (1.3.3) - Service layer for easy email delivery and testing

actionpack (1.13.3) - Web-flow and rendering Model-view-controller framework
actionwebservice (1.2.3) - Web service support for Action Pack
activerecord (1.15.3) - Implements the ActiveRecord pattern for ORM
activesupport (1.4.2) - Support and utility classes used by the Rails framework
cgi multipart eof fix (2.3) - Fix an exploitable bug in CGI multipart parsing
daemons (1.0.7) - A toolkit to create and control daemons in different ways
fastthread (1.0) - Optimized replacement for thread.rb primitives
gem plugin (0.2.2) - A plugin system based only on rubygems that uses depen-
dencies only
money (1.7.1) - Class aiding in the handling of Money
mongrel (1.0.1) - A small fast HTTP library and server that runs Rails, Camp-
ing, Nitro and Iowa apps
mysql (2.7) - MySQL/Ruby provides the same functions for Ruby programs
that the MySQL C API provides for C programs

60

paypal (2.0.0) - Paypal IPN integration library for rails and other web applica-
tions
PriorityQueue (0.1.2) - This is a fibonacci-heap priority-queue implementation
rails (1.2.3) - Web-application framework with template engine, control-flow
layer and ORM
rake (0.7.3) - Ruby based make-like utility
sources (0.0.1) - This package provides download sources for remote gem in-
stallation

6.5.3 Taxonomy

Each scenario can be qualified under the following metrics:

• Number of territories

• Number of populations

• Number of lands

• Number of units

• Number of personalities

• Number of contingents

• Number of agents

• Number of days per turn

• Number of facilities

• Number of resources

Below are presented some additional metrics which pertain to version 2.0 alone:

Behaviors The number of behaviors analyzed by the game engine
Processed The number of behaviors actually run
Unprocessed The number of behaviors whose preconditions failed and were blocked

Table 6.16: Test metric version 2.0

6.5.4 Performance

For a performance analysis the 3 major issues related to scenarios need to be measured. They
consist of:

• Scenario Import

• Game Cloning

• Turn Processing (this issue will be analyzed over the course of three runs, since results
can differ slightly between different runs)

Scenario import measures the time needed to import a hand-made scenario into the game.
It is a one-time only operation and not executed very often. The need for fast importing
is particularly crucial once the scenario tuning has been accomplished because it often is
re-imported until deemed adequate.

61

Game cloning happens once for each game but each scenario can be cloned up to infinity.
It is a fairly common operation, but since it happens during the first step of the scenario and
without any human participation it does not cause players to have to wait for it to be able to
play. The players’ anxiety felt during turn processing can be totally ignored here.

Turn processing is the most crucial operation. It happens multiple times for each game
and while it is on the players are locked out of the game, so the smaller the processing times
the lesser the impact on the players. Take too long to process and players will simply lose
interest. Turn processing brings feedback on the players’ actions, and on important turns
(e.g. a large battle) some anxiety builds up among the players due to the desire to know the
outcome of their actions combined with the actions of other players.

6.5.5 Scenarios

On table 6.17 the scenarios used for performance tests are classified according to the previously
introduced taxonomy.

The smallest scenario, 2HNoSea, has a reference point for a bare minimum scenario to be
played in a multiplayer set. The timings achieved in this scenario are the best and represent
the weight the architecture carries.

62

Game P
op

u
la

ti
on

s

C
on

ti
n
ge

n
ts

U
n
it

s

T
er

ri
to

ri
es

L
an

d
s

F
ac

il
it

ie
s

R
es

ou
rc

es

P
er

so
n
al

it
ie

s

A
ge

n
ts

B
eh

av
io

rs

P
ro

ce
ss

ed

U
n
p
ro

ce
ss

ed

FTS4 45 28 4 99 4 12 159 44 223 1854 1359 495
CM40 2362 190 40 1989 40 80 2036 440 5024 26404 14723 11681
AB101 876 515 101 1881 101 2130 10790 1111 4487 34779 28038 6741
WOT20 589 130 25 1188 25 849 4025 275 2210 13138 8681 4457
Crejak10 341 40 10 528 10 227 1321 110 1032 5546 3040 2506
QI 980 644 107 1815 107 1285 8798 1177 4726 39584 29395 10189
Final 2144 351 60 1419 60 1025 9479 660 4637 29885 19789 10096
Juri 84 84 12 340 12 312 984 132 655 5350 3838 1512
OF6 54 33 6 280 6 72 492 66 442 2911 1810 1101
OF20 637 110 20 990 20 320 2916 220 1980 11548 6794 4754
2PL 17 14 2 140 2 26 190 22 198 1312 840 472
2PLT 2 14 2 56 2 14 46 22 99 916 690 226
2HNoSea 2 14 2 2 2 14 46 22 45 700 636 64

Table 6.17: Test scenarios

6.5.6 Simulation

To measure the simulation improvements of version 2.0 over version 1.0 the scenario 2PL is
putted to the test.

Figure 6.2: Scenario 2PL

The test begin with a vanilla scenario, it has two lands slice and dice. The player ruling
slice increases all territory taxes to 99% while dice maintains the taxes at the default value
5%. Three turns are processed on each version of the game, after each turn the different
behaviors are interpreted. Because populations are the most affected from the tax change,
a visual representation of the number of citizens living in each territory is presented. This
visual representation varies from dark orange (low population density) to bright yellow (high
population density). Figure 6.3 represents the initial distribution of the populations.

63

Figure 6.3: Initial population distribution

To better compare the inner works of the game, the following properties are measured
between each turn processing:

• Lawfull - The number of law abiding citizens in the territory [0 - everybody is a criminal,
1 - everybody follows the rules]

• Loyalty - How loyal a population is to its territory [0 - rebelion about to happen, 1 -
they love the territory where they live]

• Population - The number of citizens living in the territory

• Stability - How peaceful and stable the territory is

• Tax Base - The potential value a territory can collect in taxes

• Tax - The actual tax value for the territory

6.5.7 Version 1.0

Turn Territory Lawfull Loyalty Population Stability Tax Base Tax

0 ”H6” 0.95 1 20000 1 19900 0.05
0 ”F6” 0.95 1 30000 1 29900 0.99
0 ”G5” 0.95 1 20000 1 19900 0.99
0 ”I5” 0.95 1 20000 1 19900 0.05
0 ”J6” 0.95 1 30000 1 29900 0.05

1 ”H6” 0.96 1 20517 1 20619 0.05
1 ”F6” 0.84 0.5 30848 0.59 27356 0.99
1 ”G5” 0.84 0.5 20517 0.53 18157 0.99
1 ”I5” 0.96 1 20517 1 20619 0.05
1 ”J6” 0.96 1 30848 1 31058 0.05

2 ”H6” 0.97 1 21047 1 21361 0.05
2 ”F6” 0.62 0.25 31479 0.36 21006 0.99
2 ”G5” 0.6 0.25 20881 0.3 13474 0.99
2 ”I5” 0.97 1 21047 1 21361 0.05
2 ”J6” 0.97 1 31719 1 32257 0.05

Table 6.18: 2PL scenario test on version 1.0

64

After the third turn the population distribution is still very similar between Slice and Dice
as it can be seen in figure 6.4. Stability and Loyalty fall by similar amounts, which the lawfull
property decreases slower. Still after three turns the population reproduction difference is
small and the only the tax base is much better for the Dice player. Slice has collected much
more money in taxes, and the populations keep on paying even though on smaller percentages.

Figure 6.4: Population distribution for version 1.0 after 3rd turn

6.5.8 Version 2.0

Version 2.0 starts with the same population distribution, but because the population effects
are much more noticeable, a visual representation after each turn is provided.

Turn Territory Lawfull Loyalty Population Stability Tax Base Tax

0 ”H6” 0.95 1 20000 1 19900 0.05
0 ”F6” 0.95 1 30000 1 29900 0.99
0 ”G5” 0.95 1 20000 1 19900 0.99
0 ”I5” 0.95 1 20000 1 19900 0.05
0 ”J6” 0.95 1 30000 1 29900 0.05

1 ”H6” 0.95 0.95 21734 1 21484 0.05
1 ”F6” 0.73 0.03 32058 0.59 24803 0.99
1 ”G5” 0.73 0.03 18487 0.53 14396 0.99
1 ”I5” 0.96 1 20517 1 20596 0.05
1 ”J6” 0.96 1 30819 1 30986 0.05

2 ”H6” 0.94 0.93 23391 1 22903 0.05
2 ”F6” 0.57 0.02 33225 0.36 20328 0.99
2 ”G5” 0.55 0.02 16390 0.3 9914 0.99
2 ”I5” 0.97 1 21047 1 21315 0.05
2 ”J6” 0.97 1 31658 1 32108 0.05

3 ”H6” 0.95 0.96 24007.89 1 23745.5 0.05
3 ”F6” 0.42 0.01 2151.76 0.23 2298.16 0.99
3 ”G5” 0.39 0.01 131.28 0.18 951.2 0.99
3 ”I5” 0.97 1 21589.55 1 21841.86 0.05
3 ”J6” 0.97 1 32518.03 1 32942.49 0.05

65

Table 6.19: 2PL scenario test on version 2.0

Because version 2.0 is more complex and harder to analyze, it’s necessary to check the log
files to explain the current state. Partial log from turn 1:

37 migrating from F5 to E5

61 migrating from F5 to F6

56 migrating from F5 to G5

Territory (F5) @ The Humans are unhappy, and 349 of them decided to migrate

Territory (F6) @ The Humans are unhappy, some of them are tempted to migrate

After the first turn is processed, the populations of Slice start migrating to territories
with better taxes. Since Slice’s capital is surrounded by other territories with high taxes,
they don’t have where to go, and that explains why the populations increases in territory F6.
Loyalty now falls much faster than in version 1.0, stability varies slower than loyalty but still
faster than in version 1.0. The percentage of lawfull population also changes faster than in
version 1.0, but slower than loyalty or stability.

Figure 6.5 shows a slight darker color on the slices side, a very small difference yet.

Figure 6.5: Population distribution of version 2.0 after turn 1

Partial log from turn 2:

Territory (F5) @ The Humans are unhappy, and 2407 of them decided to migrate

Territory (F6) @ The Humans are unhappy, some of them are tempted to migrate

Territory (E5) @ The Humans in E5 are revolting against you

Territory (E6) @ The Humans in E6 are revolting against you

Territory (F7) @ The Humans in F7 are revolting against you

Territory (F5) @ The Humans in F5 are revolting against you

The second turn the populations start to revolt against Slice, figure 6.5.8 show a massive
contrast from the previous turn. Also the number of populations migrating increased to much
larger numbers.

Partial log from turn 3:

Territory (E5) @ The Humans in E5 are revolting against you

66

Figure 6.6: Population distribution of version 2.0 after turn 2

Figure 6.7: Population distribution of version 2.0 after turn 3

Territory (G5) @ The Humans in G5 are revolting against you

Territory (G6) @ The Humans in G6 are revolting against you

Territory (F7) @ The Humans in F7 are revolting against you

Territory (F6) @ The Humans in F6 tried to revolt against you, armies loyal to you stopped this uprising

Territory (E6) @ The Humans in E6 are revolting against you

Territory (F6) @ The Humans in F6 are revolting against you

After the third turn with a taxes at 99%, almost all the population of Slice has abandoned
him. They also formed armed militias that are now enemies of Slice. That’s why the pop-
ulation dropped so much on every territory. In F6, Slice has it’s army and it’s able to stop
smaller revolts from taking place, but the large numbers of revolting populations are finally
able to defeat Slice’s army.

Figure 6.7 shows now a darker picture for Slice’s side, it possesses almost no population,
and will soon disappear.

67

6.6 Performance

6.6.1 Version 1.0

Game Import Clone Turn 1 Turn 2 Turn 3

AB101 100.87 439.27 286.32 290.63 289.67
QI 51.75 215.85 191.24 191.57 191.85
Final 60.37 178.93 146.87 146.34 146.16
CM40 61.89 92.42 92.9 92.38 92.05
WOT20 38.12 91.95 94.25 92.93 92.55
OF20 21.17 43.62 42.56 42.54 42.61
CJK10 10.56 21.15 20.33 20.34 20.33
Juri 7.21 17.88 20.69 20.72 20.41
OF6 3.85 8.31 10.1 10.2 10.17
FTS4 1.68 4.93 7.44 7.42 7.55
2PL 1.66 4.04 5.15 5.07 5.11
2PLT 0.53 1.84 3.55 3.52 3.56
2PLTNoSea 0.4 1.59 3.61 3.51 3.52

Table 6.20: Version 1.0 times in seconds

The heavier scenarios are, off course, the larger ones. AB101, QI, Final and CM40 are the
slowest to import. AB101 shows an abnormal import time when compared to the other
scenarios. The dominant metrics for the import times seems to be populations, facilities,
territories, lands and resources, which makes sense since those are the data present in the
importer files.

Cloning times show a similar picture, AB101 is by far the heaviest scenario to clone.
Here the dominant metric is the number of facilities. AB101’s high number of facilities and
resources explains why it is so slow to clone.

Because all the tests are done over vanilla scenarios (without player’s orders) the true
height of units and contingents is disguised. Overlooking that fact, we can deduce by com-
paring the results of QI with AB101 that the reason AB101 takes more than 100 seconds to
process is the high number of facilities, because this is the only metric where AB101 signifi-
cantly wins over QI.

68

6.6.2 Version 2.0

Game Import Clone Turn 1 Turn 2 Turn 3

AB101 74.99 311.18 300.87 295.79 290.29
QI 57.17 182.78 201.82 188.25 187.42
Final 60.85 128.12 161.76 160.19 161.71
CM40 42.52 80.91 146.95 160.48 144.68
WOT20 35.85 85.44 97.61 96.87 96.48
OF20 23.99 44.17 54.56 53.82 53.79
CJK10 12.74 21.69 26.81 26.37 27.36
Juri 8.44 20.56 19.6 19.59 19.93
OF6 5.15 11.12 11.8 11.88 11.95
FTS4 2.06 6.02 5.98 5.99 6.12
2PL 2.52 5.4 6.02 6.78 6.76
2PLT 0.99 3.08 3.13 3.08 3.07
2PLNSea 0.44 2.22 2.03 2.04 2.04

Table 6.21: Version 2.0 times in seconds

Version 2.0 shows a picture that is very similar to that of to version 1.0. To better understand
the differences, each column is compared independently in the next subsections..

6.6.3 Importer times

Game Version 1 Version 2 Speedup Percentage

AB101 100.87 74.99 1.35 35%
QI 51.75 57.17 0.91 -9%
Final 60.37 60.85 0.99 -1%
CM40 61.89 42.52 1.46 46%
WOT20 38.12 35.85 1.06 6%
OF20 21.17 23.99 0.88 -12%
CJK10 10.56 12.74 0.83 17%
Juri 7.21 8.44 0.85 -15%
OF6 3.85 5.15 0.75 -25%
FTS4 1.68 2.06 0.81 -19%
2PL 1.66 2.52 0.66 -34%
2PLT 0.53 0.99 0.54 -46%
2PLNSea 0.4 0.5 0.81 -19%

Total 100.87 117.51 0.86 -14%
Table 6.22: Scenario Import Comparison

A direct comparison between import times from version 1 to version 2 reveals a rather curious
fact: the small scenarios are slower to import on the new version but the larger ones are faster!
Several reasons could be responsible for this:

69

- On version 2.0 the tables have more data so writing and reading records takes a tad
longer. This can partially explain why the small scenarios are slower, because they write
a few records only any small increase in each record is more noticeable.

- The database schema of version 2.0 is simpler as far as the facility and territories-related
tables go. This allows for speedups in scenarios with lots of facilities or territories (which
tend to be the slower to import anyway).

Globally, version 2.0 is 14% slower than version 1.0. Still, if only the larger scenarios are
considered version 2.0 comes up further ahead.

6.6.4 Cloning times

Game Version 1 Version 2 Speedup Percentage

AB101 439.27 311.18 1.41 41%
QI 215.85 182.78 1.18 18%
Final 178.93 128.12 1.4 4%
CM40 92.42 80.91 1.14 14%
WOT20 91.95 85.44 1.08 8%
OF20 43.62 44.17 0.99 -1%
CJK10 21.15 21.69 0.97 -3%
Juri 17.88 20.56 0.87 -13%
OF6 8.31 11.12 0.75 -25%
FTS4 4.93 6.02 0.82 -18%
2PL 4.04 5.4 0.75 -25%
2PLT 1.84 3.08 0.6 -4%
2PLNSea 1.59 2.22 0.72 -28%

Total 1121.77 902.7 1.24 24%
Table 6.23: Scenario Import Comparison

The gains of version 2.0 are more noticeable because the slowest map is 41% faster to clone.
By removing AB101 from the comparison, the total times would come to about the same,
but, since version 2.0 is faster on the other big maps, it would still be preferable.

70

6.6.5 Turn processing times

Game Version 1 Version 2 Speedup Percentage

AB101 289.67 295.65 0.98 -2%
QI 191.85 192.5 1 0%
Final 146.16 161.22 0.91 -9%
CM40 92.05 150.71 0.61 -39%
WOT20 92.55 96.99 0.95 -5%
OF20 42.61 54.06 0.79 -21%
CJK10 20.33 26.85 0.76 -24%
Juri 20.41 19.71 1.04 4%
OF6 10.17 11.88 0.86 -14%
FTS4 7.55 6.03 1.25 25%
2PL 5.11 6.52 0.78 -22%
2PLT 3.56 3.09 1.15 15%
2HNoSea 3.52 2.04 1.72 72%

Total 925.54 1027.25 0.9 -10%
Table 6.24: Turn Processing Comparison

During the turn processing phase version 2.0 is consistently slower than version 1.0. The
added overhead from the agent’s framework can be shaken off by the improvements at the
schema level. CM40 is the scenario with the highest agents:lands and agents:territories ratio,
and it demonstrates most heavily the agent’s overhead. The global picture looks promising
for, even though many new behaviors have been added, version 2.0 is only 10% slower.

Another important factor to consider is, version 2.0 can process multiple games at the
same time. On a machine with multiple cores version 2.0 can theoretically provide an almost
linear improvement on the formula 4.3.

For the sake of reasoning, let us imagine that a hypergame exists whose turn time pro-
cessing represents processing all the presented scenarios. Making it a daily game, on a dual
core like the test server, for version 1.0 we have:

n =
60 ∗ 24 ∗ 60s

925.54s
<=> n = 93.35 (6.3)

For version 2.0:

n2 =
60 ∗ 24 ∗ 60s ∗ 2

1027.25s
<=> n2 = 168.21 (6.4)

Computing the speedup we have:

speedup =
n2
n1

= 1.80 (6.5)

This means that version 2.0 can theoretically run 80% more games on a dual core than
version 1.0.

To verify this assertion two Q1 games were cloned from the Q1 scenario and processed in
parallel. The final results are, one Q1 processed in 200.14s and another in 214.94 seconds,

71

and their average is 200.14s+214.94s
2 = 207.54s. Comparing that to the 192s a single Q1 took to

process in the single process test we can calculate the real speedup per extra core and adjust
formula 6.2 with the experimental factor.

192
207.54

= 0.925 (6.6)

And now we have a formula adapted to the experimental data.

n =
60 ∗ 24 ∗ fC(computer) ∗ 0.925(fC(computer)−1) ∗ fD(game)

fT (game)
(6.7)

Using result 6.4 we can extrapolate how many human players can be served by a single
server with the same characteristics has the test server. This only works for vanilla scenarios
and therefore represents an upper bond on the maximum number of players.

Considering that the hypergame has a number of lands equal to the sum of all the test
scenarios it adds up to 391 human players for hypergame, which means that the upper bond
of players per server would be:

168.21 ∗ 391 = 65770 (6.8)

Now, using the live data from the Almansur 1.0 server, where a daily game like Q1 takes
around 26 minutes to process, a more realistic estimate can be calculated using formula 6.7.

n =
60 ∗ 24 ∗ 2 ∗ 0.9252−1 ∗ 1

26
= 102 (6.9)

102 ∗ 107 = 10914 (6.10)

To sum it up, at most 10914 can be supported with the current hardware with 107 player
games. Being limited mainly by the speed of ruby and the multiple access to the database,
the solution to improve the number of players per server may be a port of the game core
to another language. Perhaps porting only the most affected parts is required, so further
benchmarking and profiling are necessary to identify the turn processing bottlenecks.

72

Chapter 7

Conclusions and future work

All good things must come to an end

Chaucer

In the previous Chapters the game Almansur was introduced, the main identified issues
with Almansur were:

• No single player mode, where the new players can learn the game at their own pace

• Almansur has no AI

• An overly static world

• Massive games have thousands of players playing at the same time, causing performance
to be a major issue

• Complex world with partially accessible environment

To overcome these issues, Almansur Agent Architecture (AAA) is presented in Chapter 5.

The developed architecture had the following objectives in mind:

• Flexibility - The framework should allow for the development of new content and agents
without significant additional effort

• Performance - The framework performance must be good enough to support thousands
of agents running at the same time

• Ease of use - No special configuration should be needed for things to work out of the
box

• Configurable - The framework should provide the means to create special unique agents
only by customizing their behaviors

• Human Interaction - The human players should be able to influence how their subjects
agent’s behavior

The AAA was applied to Almansur creating version 2.0 of the game. Two main areas
where tested to compare version 1.0 and 2.0: simulation and performance. Simulation tests
try to identify if version 2.0 really improves over the world of version 1.0. Performance tests
are focused on the turn processing times, which is the main bottleneck of the game.

73

7.1 Simulation

The basic blocks for developing AI in Almansur were accomplished. The virtual world is now
more dynamic and with the improved behaviors of populations and other agents, it’s expected
to be more interesting for players.

Version 2.0 resolved some of the main issues of simulation present in version 1.0.

• Populations were easy to exploit, now they have a mind of their own and players must
keep them happy if they want populations to stay with them

• The contingents used to magically provide food for themselves, this lead for major balance
issues. The richer lands could simply recruit huge stacks, until they overpower the poor
ones. Now it’s necessary to feed the contingents at the end of each turn, making it harder
to sustain huge armies.

The other great advantage of version 2.0 is the clear separation of modules. New agents
and behaviors can be implemented without changing the game core. It’s now easier to produce
new content for the game without having the risk of introducing new bugs.

7.2 Turn Processing

On the tests chapter, only the vanilla scenarios where tested. While this shades some light on
what to expect performance wise, and allows to establish an upper bound on the maximum
number of players using the same game server.

Even with the overhead introduced by AAA the game performance is roughly the same.
The increased flexibility of version 2.0 allows for futher developments to be easily introduced,
no more changes to the game core are necessary.

This work fixed the major issues with the turn processing of version 1.0, the major issue
that remains is the time it takes to process each turn. A few hypotheses are possible to
improve that area,

• Change the implementation language. Currently the game core is implemented in ruby
1 which is a beautiful and elegant programming language, but it is dead slow. Reimple-
menting the core on other language like c++ or java might be the only safe way to really
scale the game to millions of players.

• Change the ruby interpreter. Multiple implementations of ruby are surfacing today,
within some time they might solve the performance issues on their own.

7.3 AI

There are two fields where the AI can be improved. At the lower level, the world can be
evolved to incorporate more core agents. The markets show potential to be regulated by
agents, to more accurately simulate the real world demand/offer price relations. Also the
already developed agents can be improved, new behaviors can be implemented to incorporate

1Ruby is a language of careful balance. Its creator, Yukihiro “matz” Matsumoto, blended parts of his favorite languages
(Perl, Smalltalk, Eiffel, Ada, and Lisp) to form a new language that balanced functional programming with imperative
programming.[30]

74

learning and better social skills. In particular personality agents can be improved to reproduce
human emotions.

On the higher level, AI to replace the human player is surely one of the most important
features. This would solve one of the most problematic areas of the game, drop-out players.
It would also bring new possibilities of gameplay, like a human alliance against the computer.

7.4 Architecture

Due to ruby’s green threading[29] each ruby application uses only one CPU at the time. So no
1-1 mapping between OS threads and ruby threads exist. Knowing that it makes no sense to
create a multi-threading architecture for the current ruby interpreter. The new ruby version
2.0[30] and JRuby 2 support 1-1 native threads. This open new options for future implemen-
tations. With the growing number of cores per CPU, multi-thread programming paradigms
will become more important, over the coming years. Agent architectures are already pretty
good to apply multiple threads, if each agent can process in parallel. Each agent would then
occupy a thread, but creating thousands of threads can hurt the system performance, so a
thread pool system could be the best option.

2JRuby is an 100% pure-Java implementation of the Ruby programming language.[31]

75

Appendix A

Almansur 1.0

Column Description

x Horizontal coordinate for the territory

y Vertical coordinate for the territory

mov class Type of territory, L - Land, S - Sea

altitude Territory’s average distance to the sea level in meters. It is a positive
value for shore and negative for water covered territories

relief Average sharpness of the territory, a regular territory will have a low
relief, while a cliff will have a very high relief

swampness Average swampness of the territory

fertility Average reproduction rate of this territory

arb Average tree density of this territory

goldr Gold naturaly available in this territory

ironr Iron naturaly available in this territory

stoner Stone naturaly available in this territory

pisc Fish naturaly available in this territory

wildcav Free wild horses available in this territory

wildgame Small animals naturaly available in this territory

wildwarg Free wild wargs available in this territory

terrname Name of the territory (Empty for the name to be based on the territory
coordinates)

pophuman Number of free humans present in this territory

poporc Number of free orcs present in this territory

popuruk Number of free uruk-hais present in this territory

popdwarf Number of free dwarfs present in this territory

popelf Number of free elfs present in this territory

popbarb Number of free barbarians present in this territory

slaves Number of human slaves present in this territory

cityname Name of the city (empty for the cityname to be “city territory name”)
present in this territory

citylevel Level of the city (zero is no such facility exists) present in this territory

76

cityorclevel Level of the orc encampment (zero is no such facility exists) present in
this territory

citydwarflevel Level of the underground city (zero is no such facility exists) present in
this territory

portlevel Level of the port facility (zero is no such facility exists) present in this
territory

farmlevel Level of the farm (zero is no such facility exists) present in this territory

walllevel Level of the fortress (zero is no such facility exists) present in this terri-
tory

goldmine Level of the gold mine (zero is no such facility exists) present in this
territory

ironmine Level of the iron mine (zero is no such facility exists) present in this
territory

villagefortlevel Level of the fortified villages facility (zero is no such facility exists)
present in this territory

marketlevel Level of the market facility (zero is no such facility exists) present in this
territory

livcav Number of horses present in this territory warehouses

livgado Number of cattle heads present in this territory warehouses

livpigs Number of pigs present in this territory warehouses

livwargs Number of warg animals present in this territory warehouses

cereal Quantity in tons for the grain resource present in this territory ware-
houses

saltfish Quantity in tons for the salted fish resource present in this territory
warehouses

saltmeat Quantity in tons for the salted meat resource present in this territory
warehouses

pe Name of the land that owns this territory (must be an entry from the
lands files under the column name)

Table A.1: Almansur’s territories file format

77

Appendix B

Agent Minds

Every Arthur needs its Merlin

Hamilton

B.1 BNF for AML

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<integer> ::= <digit> | <integer> <digit>

<number> ::= <integer> | + <integer>.<integer> | - <integer>.<integer>

<letter> ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

<identifier> ::=

<letter>

| <identifier> <letter>

| <identifier> <digit>

<symbol> ::= :<identifier>

<symbol_list> ::= <symbol> | <symbol_list> , <symbol>

<condition> ::= <equals> | <not_equals> | <min> | <max>

<condition_list> ::= <condition> | <conditions_list> , <condition>

<property> ::= "{"

:name => <symbol>, <condition_list>

"}"

<property_list> ::= <property> | <property_list>, <property>

<properties> ::= :Property => "["

<property_list>

"]"

<sensors> ::= "{"

:name => <symbol>,

:method => <symbol>,

<property_list>,

78

:parameters => "[" <symbol_list> "]"

"}"

<event> ::= <symbol> => "’"<identifier>"’"

<behavior> ::= <symbol> => "{"

[<sensors> ,]

[<properties> ,]

[<event>]

"}"

<behavior_list> ::= <behavior> | <behavior_list> , <behavior>

<module> ::= "{" <behavior_list> "}"

<module_list> ::= <module> | <module_list> , <module>

<agent_mind> ::= "{" <module_list> "}"

Here are the mind specifications for Almansur 2.0 agents (using AML).

B.2 Unit

{

:UnitBehavior => {

:upkeep => {

:EventType =>’end_of_turn’

},

:eat => {

:EventType =>’end_of_turn’

},

:revolt => {

:EventType =>’end_of_turn’,

:Property =>[

{ :name => :loyalty, :max => 0.2}

]

},

:send_to_land => {

:EventType =>’end_of_turn’,

:Property =>[{ :name=> :ai, :equals => true }]

},

:arrival => {

:EventType =>’arrival’,

79

},

:force_rest => {

:EventType =>’arrival’,

:Property =>[

{ :name => :ai, :equals => true },

{ :name => :status, :max => 0.2}

],

:Sensor => [

{ :name => :territory_sensor,

:method => :known_friendly_armies_size,

:parameters => [:territory_id],

:max => 0}

]

},

:identify_scouts => {

:EventType => ’arrival’

},

:resume => {

:Property =>[

{ :name => :ai, :equals => true },

{ :name => :status, :min => 0.3},

{ :name => :status_plus_risk_taking, :min => 0.9},

{ :name => :rest?, :equals => true},

{ :name => :has_new_orders?, :equals => true},

],

},

:process_day => {

:EventType =>’start_of_day’

}

}

}

B.3 Contingent

{

:ContingentBehavior => {

:process_day => {

:EventType => ’start_of_day’

},

80

:upkeep => {

:EventType =>’end_of_turn’

},

:eat => {

:EventType =>’end_of_turn’

},

:disband => {

:EventType =>’end_of_turn’,

:Property => [{ :name => :loyalty, :max => 0.2}]

},

}

}

B.4 Population

{

:PopulationBehavior => {

:reproduction => {

:EventType => ’reproduction’,

:Property => [

{ :name => :in_fortress, :equals => false}

]

},

:resource_reproduction => {

:EventType => ’reproduction’,

:Property => [

{ :name => :in_fortress, :equals => false}

]

},

:merge => {

:EventType =>’new_population’,

:Sensor => [

{ :name => :territory_sensor,

:method => :populations_by_race_and_state_size,

:parameters =>[:territory_id, :race_id, :social_state_id, :in_fortress],

:min => 2 }

]

},

:revolt => {

81

:EventType =>’end_of_turn’,

:Property => [

{ :name => :happiness, :max => REVOLT_THRESHOLD},

{ :name => :loyalty, :max => REVOLT_THRESHOLD},

{ :name => :in_fortress, :equals => false}

],

:Sensor => [

{ :name => :territory_sensor,

:method => :stability,

:parameters => [:territory_id],

:max => REVOLT_THRESHOLD}

],

},

:migrate => {

:EventType =>’end_of_turn’,

:Property => [

{ :name => :happiness, :max => HAPPINESS_THRESHOLD},

{ :name => :in_fortress, :equals => false}

]

},

:react_to_tax_change => {

:EventType =>’tax_change’

},

:react_to_diplomatic_changes => {

:EventType =>’diplomatic_change’

},

:react_to_conquer => {

:EventType =>’conquer’

},

:process_siege_day => {

:EventType =>’update_siege’,

:Property => [

{ :name => :in_fortress, :equals => true}

]

},

:prepare_for_siege => {

:EventType =>’start_of_siege’

}

82

}

}

B.5 Territory

{

:TerritoryBehavior => {

:produce => {

:EventType => ’production’

},

:react_to_diplomatic_changes => {

:EventType =>’diplomatic_change’

},

:react_to_conquer => {

:EventType =>’conquer’

},

:update_stability => {

:EventType => ’end_of_turn’

},

:update_available_emergency_recruits => {

:EventType => ’end_of_turn’

},

:update_whiteboard => {

:EventType => ’end_of_turn’

},

:react_to_unit_arrival => {

:EventType => ’arrival’

},

:upgrade_facility => {

:EventType => ’upgrade’

},

:downgrade_facility => {

:EventType => ’downgrade’

}

}

83

}

B.6 Personality

{

:PersonalityBehavior => {

:upkeep => {

:EventType =>’end_of_turn’,

:Property => [{:name => :pe_id, :not_equals => nil}]

},

:accept_job => {

:EventType =>’start_turn’,

:Property => [{:name => :pe_id, :equals => nil}]

},

:change_market => {

:EventType =>’end_of_turn’,

:Property => [

{:name => :turns_unemployeed, :min => MAX_TURNS_ON_MARKET},

{:name => :market_id, :not_equals => GLOBAL_MARKET}

]

}

}

}

B.7 Battle Manager

{

:BattleBehavior => {

:process_day_battles => {

:EventType => ’start_of_day’

}

}

}

B.8 Hostile Action Manager

{

:HostileActionBehavior => {

:process_day_conquers => {

:EventType => ’start_of_day’

},

84

:process_day_sieges => {

:EventType => ’start_of_day’

}

}

}

B.9 Game

{

:GameBehavior => {

:process_start_turn => {

:EventType => ’start_of_turn’

}

:process_end_of_turn=> {

:EventType => ’end_of_turn’

}

}

}

85

Bibliography

[1] Benjamin wooton , Designing for emergence, AI game programming wisdom, Thomson
Delmar Learning, page 53

[2] John McCarthy, What is artificial Intelligence, On-line,, last accessed on 1 September of
2007

[3] Durfee, E.H., Lesser, V.R. and Corkill, D.D. Trends in Cooperative Distributed Problem
Solving. In: IEEE Transactions on Knowledge and Data Engineering, March 1989, KDE-
1(1), pages 63-83.

[4] Roberto A. Flores-Mendez, Standardization of Multi-Agent System Frameworks, ACM
Crossroads 5(4) 1999

[5] Http://en.wikipedia.org/wiki/A*, online, last access on 9th February 2007

[6] AI game programming wisdom 2, Steve Rabin, 2004, Charles River Media, ISBN
1584502894

[7] Remco Straatman, William van der Sterren, Arjen Beij,Killzone’s AI: dynamic procedural
combat tactics, GDC 2005 Procedings

[8] Dave Pottinger, Terrain Analysis in Realtime Strategy Games, Ensemble Studios, GDC
2000 procedings

[9] AI game programming wisdom, Steve Rabin, 2002, Charles River Media, ISBN
1584500778

[10] Http://en.wikipedia.org/wiki/F.E.A.R.,online, last access on 9th February 2007

[11] Http://en.wikipedia.org/wiki/First person shooters, online, last access on 9th February
2007

[12] http://en.wikipedia.org/wiki/Real-time strategy, online, last access on 9th February
2007

[13] Http://en.wikipedia.org/wiki/Turn-based strategy, online, last access on 9th February
2007

[14] Http://pc.ign.com/articles/452/452317p1.html, online, last access on 9th February 2007

[15] Http://www.kantor.com/blog/2005/01/why doom 3 well sucks.shtml, online, last access
on 9th February 2007

[16] Jeff Orkin, Three States and a Plan: The A.I. of F.E.A.R, GDC 2006 procedings

[17] Http://en.wikipedia.org/wiki/4x, online, last access on 9th February 2007

[18] http://www.timegate.com/games.php, online, last access 19th June 2007

86

[19] Machine Learning, Tom Mitchell,1997, McGraw-Hill, ISBN 0070428077

[20] An Introduction to MultiAgent Systems, Michael Wooldridge, 2002, John Wiley and
Sons, ISBN 047149691

[21] http://www.uml.org/, online, last access 19th June 2007

[22] Http://en.wikipedia.org/wiki/Finite state machine,online, last access on 9th February
2007

[23] http://en.wikipedia.org/wiki/Rete algorithm, online, last access on 9th February 2007

[24] AI game programming wisdom 3, Steve Rabin, 2006, Charles River Media, ISBN
1584504579

[25] http://www.almansur.net/game/, online, last access 9th September 2007

[26] http://www.almansur.net/forum/viewtopic.php?pid=1554, online, last access 30th
September 2007

[27] NAUR, Peter (ed.), ”Revised Report on the Algorithmic Language ALGOL 60.”, Com-
munications of the ACM, Vol. 3 No.5, pp. 299-314, May 1960.

[28] Russell S, Norvig P (1995) Artificial Intelligence: A Modern Approach, Prentice Hall
Series in Artificial Intelligence. Englewood Cliffs, New Jersey

[29] http://www.headius.com/rubyspec/index.php/Ruby Threading, online, last access on
10th Setember 2007

[30] http://www.ruby-lang.org/en, online, last access on 10th Setember 2007

[31] http://jruby.codehaus.org, online, last access on 10th Setember 2007

[32] http://softwareengineering.vazexqi.com/files/pattern.html , online, last access on 10th
Setember 2007

87

