

Setembro, 2007

Content Distribution Networks

Integration with IPTV and Study Regarding Network Coding

Rui Dinis Mangueira Bento

EXTENDED ABSTRACT

Dissertation for the Obtainment of the Masters Degree in

Engenharia Informática e de Computadores

(Computer Systems and Engineering)

Comittee

President: Prof. Luís Eduardo Teixeira Rodrigues

Coordinator: Prof. Rodrigo Seromenho Miragaia Rodrigues

 Thesis Committee Member: Prof.ª Teresa Maria Sá Ferreira Vazão

ii

INDEX

INDEX... II

1. INTRODUCTION ... 1

2. CONTEXT AND RELATED WORK ... 1

3. STUDY REGARDING THE APPLICATION OF A CENTRALIZED CDN 3

3.1 DESCRIPTION OF MOBBIT INSIGHT ... 3

3.2 DESCRIPTION OF CISCO ACNS ... 4

3.3 INTEGRATION PLANNING .. 5

4. STUDY REGARDING THE APPLICATION OF NETWORK CODING TO PEER-TO-PEER

CDNS.. 6

4.1 BITTORRENT... 6

4.2 NETWORK CODING ... 6

4.3 APPLICATION MODELS FOR THE SIMULATORS .. 7

4.4 SIMULATION RESULTS AND ANALYSIS ... 8

5. CONCLUSIONS.. 10

1

1. INTRODUCTION

Over the last couple of decades, the Internet has established itself as the main global vehicle for

information sharing. Today, about 18% of the world population, over 1.1 billion people, actively use the

Internet, a figure that is doubling every year. However, although the time to load contents off of key

Internet sites has improved constantly throughout the last several years, the latency to access data on

the World Wide Web remains generally high due to its skyrocketing utilization and growth of bandwidth

intensive contents, affecting its users’ perception of the quality of the service provided. On the other

hand, content is often still served from only one server, which determines a single point of failure is not

scalable and may present serious problems pertaining reliability and performance.

 The approach suggested by Content Distribution Networks (CDNs) to address this problem is

to move the content as close as possible to the end-users. By serving contents from local replicas, the

perceived access latency is typically lowered, while the transfer rates are increased. Additionally, the

loads on the original servers is decreased, yielding reduced infra-structure requirements. Generally

speaking, the global network traffic is also reduced. The purpose of the CDNs is therefore to distribute

specific forms of content, from static web pages to real-time multimedia streams, which usually must

be up-do-date, in a quick manner and with high availability.

 Although the term “CDN” usually refers to World Wide Web content distribution networks, it

can also be interpreted in a broader sense, encompassing the notion of peer-to-peer distribution

networks. These networks leverage on its users’ bandwidth and storage capabilities to replicate the

distributed contents as much as possible, increasing availability, reliability and transfer rates. It is

estimated that about 80% of the overall traffic over a backbone IP connection is due to peer-to-peer

applications. Of these 80%, roughly half is due to BitTorrent, a popular file-sharing application that,

unlike most other alternatives, focuses on increasing the efficiency of content distribution instead of

only finding the content. Recently, approaches such as Network Coding have been suggested to

improve the efficiency of current file-sharing systems such as BitTorrent. Network Coding is a

mechanism designed to maximize the amount of data that can be pushed through a network between

two nodes. The core notion is to allow mixing of data at intermediate network nodes (coding). A

receiver then deduces the original content from the coded blocks received.

 This dissertation has CDNs as its central subject of discussion. It comprises a chapter

regarding how CDNs operate and which are the main challenges to be addressed. Additionally, it

comprises two case studies: the practical application of a centralized CDN to a working system and

the study of the effects of applying Network Coding as a strategy to optimize the dissemination of

contents over peer-to-peer CDNs such as BitTorrent.

 The first study consists on the application of a CDN, developed Cisco Systems, to a

centralized commercial Corporate TV system, managed by Mobbit Systems. The used of the CDN

avoids a situation where the same content has to be transferred through the same link more than

once, inefficiently using the available bandwidth resources.

 After deploying this system, it was realized that the design of the CDN was substantially

simplified by the existence of a relatively static and predefined distribution tree. Hence, in the second

part of the thesis, some of the problems that arise in more dynamic deployments were studied, in

particular, the impact of Network Coding as a form of increasing the efficiency content distribution.

2

2. CONTEXT AND RELATED WORK

Although details underlying the operation of CDNs may vary according to different implementations, it

is possible to identify a number of common challenges that must be addressed, namely: where to

place the replicas, when to replicate contents, how to guarantee that all replicas are consistent and

how to forward client requests.

 Replica placemen deals with the number of replicas each object has and where these should

be placed in the context of a network. These issues refer to two distinct problems: the replica-server

problem and the replica-object problem. The first deals with the selection of network locales where –

server-replicas (servers that contain replicas of the objects being distributed) should be placed, while

the latter pertains the choice of the server-replicas where the replicas of each object should be placed.

Intuitively, the replica-servers should be placed as near to the end-users as possible. There are

several theoretical approaches used to model this problem but, due to its computational complexity,

heuristic approaches are used. On the other hand, there are several mechanisms to choose which

replica-servers should host the replicas of each object. These can be classified according to the

direction of the choice: from the replica-servers to the original servers (pull-based caching) or the other

way around (push replication).

 One of the main goals of CDNs is to reply to requests with contents as up-to-date as possible.

Maintaining consistency among replicas of a certain object can introduce a significant overhead to the

system, especially when the consistent policy is strong (clients are intolerant to non-fresh contents).

Therefore, it is important to determine which consistency models, consistency policies and content

distribution methods according to the consistency requirements. A consistency model defines the

consistency properties of the objects being distributed, such as its time to live or the number of

operations that can be executed over it. A consistency model is usually adopted by a consistency

policy, which defines how, when and which distribution mechanisms should be applied. The latter

specify the protocols through which the replica-servers exchange object updates.

 The request forwarding system deals with the selection of the most adequate replica-server to

serve a certain request from an end-user. The system forwards the users’ requests to the closest

available replica-servers that are likely to be hosting the requested content. Therefore, is necessary to

address a number of issues: determining the distance between requesting users and replica-servers,

determining the availability of a certain replica-server and determining how likely a replica-server is to

host a replica of a certain object. In order to determine the distance between users and servers,

usually methods such as the number of hops (number of nodes through each a data packet goes

through from its origin to its destination) or the round-trip time are used. None of these methods is

exact. The availability of a replica-server depends on the amount of requests it is dealing with in a

certain point in time. Servers can be proactive in periodically stating its availability or might be probed

by clients. How likely a replica-server is to host a replica of a content depends on a number of policies

underlying the CDNs operations, namely the type of contents being served, its update rate, the

storage resources of the servers, amongst others. Several methods can be used to forward a request

to a server: HTTP redirection, DNS indirection, anycasting and peer-to-peer forwarding.

3

3. STUDY REGARDING THE APPLICATION OF A CENTRALIZED

CDN

The purpose of this section is to describe and justify the steps taken to integrate Mobbit InSight, a

Corporate TV system developed by Mobbit Systems, with Cisco ACNS, a private and centralized CDN

developed by Cisco Systems. To properly address the integration of the two systems, it is important to

understand how they operate. Therefore, a brief description of both systems will be provided, stressing

the relevant aspects for the integration.

3.1 Description of Mobbit InSight

Mobbit Systems’ InSight aims at offering a Corporate TV service to a number of clients. In brief, the

purpose of a Corporate TV system is to broadcast stored multimedia contents, arranged in lineups,

through a network of screens (terminals) with the desired geographic dispersion. All of the

management tasks, such as content handling, its assortment in lineups and terminal and client

administration, are done centrally. Therefore, little processing is done at the terminal level, with each

broadcasting the correct contents, following the lineup restrictions.

 This architecture of the system comprises four distinct types of components: the backoffice,

the database, the gateway and the terminals. The backoffice is where the management tasks are

done. The database stores all the system configuration data persistently. The gateway ensures

communication between the backoffice and the systems’ terminals. The terminals receive and display

the contents associated with each lineup on one or more linked screens.

 In order to define how the broadcast management is ensured, it is fundamental to introduce

three important concepts: channel, lineup and playlist. A channel consists of an overlay network,

established between the central server and a number of clients. Tied in with the channel are the

contents to be displayed, as well as the lineups that determine the sequences and schedules in which

these should be displayed. Therefore, all of the terminals belonging to a certain channel display the

same contents, following the same sequence of contents. Although this kind of behaviour might

indicate that contents are multicast, InSight uses unicast exclusively, sending the content to each

terminal separately. A lineup, borrowing the term from traditional television, is a sequence of contents

bearing several kinds of constraints such as time schedule, loop or order restrictions. A playlist is the

compilation of all the information that a terminal requires to correctly perform its function. There is

exactly one playlist per channel, which is generated by the gateway using information from the clients,

contents and lineups.

 All the required information for the system to perform correctly is recorded in files according to

the XML standard. There are several different types of files necessary to ensure the correct broadcast

and display of contents, of which we will solely focus on the playlist. Each channel has a file named

playlist_X.xml linked to it, in which X stands for the alphanumeric ID of the channel. This file

incorporates all of the information that the terminal needs to function properly, such as which contents

to display and where should those contents be fetched from (usually the path to the files stored in the

central server).

4

3.2 Description of Cisco ACNS

Cisco ACNS is a CDN designed by Cisco Systems that operates by placing the contents to be

distributed as close to the end-users as possible. All content distribution management is centralized,

as well as the definition of distribution channels and replica positioning.

 The Cisco ACNS network comprises two relevant components to this project: the Content

Distribution Manager (CDM) and the Content Engines (CE). The main role of the CDM is to centrally

manage all the aspects of the ACNS network, such as the devices that are in the network, the

contents being distributed, how, where and when these contents are fetched, the resources allocated

to the distribution process, amongst many others. ACNS channels are independent sub-networks

used to distribute contents, which are assigned a number of ACNS devices as well as policies and

constraints for the dissemination of information. The CE serves requests for content issued by the

users of the network. The allocation of CEs to channels and which contents each CE should store is

defined at the CDM. The Cisco ACNS system also comprises Content Routers (CR), which we do not

describe sunce they are not relevant to this project.

 Three important concepts must also be defined: root content engine (RCE), edge content

engine (ECE) and manifest file. An RCE is a subtype of a CE that is assigned to obtain the contents

being broadcast through a specific channel on their original servers. There exactly one RCE per

channel. An ECE is a CE that is placed at the nearest location from an end-user and is supposed to

serve its request. A channel can, therefore, be composed by several CEs, organized in a tree

structure that can comprise two or more levels: the RCE is the root of the tree, the ECEs are the

leaves and other CEs compose the interior nodes. Finally, a manifest file is an XML file that consists of

a declaration (explicit or through crawling rules) of objects to be disseminated over a channel. Thus, it

is possible to associate a manifest file to each channel.

 The Cisco ACNS system comprises three fundamental forms of obtaining contents: demand-

pull, pre-positioning and live content. As the contents being distributed in the Mobbit InSight system

are static, the live content approach is inadequate. Furthermore, since contents being distributed are

previously known and defined at the CDM, it is possible to use a pre-positioning approach.

 Focusing on the pre-positioning approach, the contents that will populate the different CEs can

be defined explicitly or using crawling tasks either using a Manifest File or using the graphic interface

of the system. Despite being easy to specify the contents being distributed using its graphical

interface, it requires human intervention whenever a change has to be made, rendering this approach

unusable to the project. On the other hand, it is possible do dynamically generate manifest files for

each ACNS channel based on the playlists created for each InSight channel.

 ACNS comprises three fundamental forms of content obtainment: WCCP, direct proxy routing

and distributed file system. The first refers to transparently forwarding the users’ requests to the ECE

using RCs. The second implies that the clients should explicitly use a CE as a proxy to obtain the

contents through the ACNS network. The latter involves obtaining contents from a distributed file

system giving the illusion that these are being obtained locally. As the first system implies an overhead

in devices added to the network and the second one requires the obtainment of contents via-HTTP

(which may arise access control issues), the third option has been adopted.

5

3.3 Integration Planning

After an analysis of both systems and their points of integration, one can formulate a solution that will

both meet the projected goals, incurring in the lightest technical and economical impact possible since

this was a commercial system already being used in several private and public institutions. Therefore:

1. To the InSight network, composed by a central server and a number of terminals, will be

added the following Cisco ACNS components:

a. A CDM, which has the purpose of managing the ACNS network.

b. An RCE, which will obtain the contents being distributed through the ACNS

network and make them available to the lower level CEs.

c. A number of ECEs, which will be used to directly serve requests issued by the

terminals. Typically, one ECE is supposed so serve a local network of terminals.

d. Eventually, one or more middle-level CE. These devices should be understood as

middle nodes in a tree network and their presence is not mandatory. They are

usually used in more complex networks, either in size or geographic dispersion.

2. One Cisco ACNS channel should be set up for each Mobbit InSight channel. In both

contexts, the term channel has a similar meaning: a virtual network, formed by one or

more sources and one or more receptors, destined to distribute contents, exclusive from

other channels. Therefore, in the case of the ACNS system, a channel will be formed by

one RCE, one or more ECEs and, if necessary, middle-level CEs. Each Mobbit InSight

terminal should obtain the contents it needs in the nearest ECE.

3. The central InSight server must make contents being distributed available to the RCE.

4. The CDM should define, for each ACNS channel, which contents should be distributed.

Thus, for each channel, there should be a manifest file containing all necessary files that

the InSight system will need to function properly (contents and XML configuration files).

5. For each Mobbit InSight channel, whenever playlist is updated, a new manifest file must

be generated. Upon receiving a new manifest file, the CDM orders the CEs accordingly.

The proposed solution is to keep a process running on the central server, periodically

checking each playlist for changes and generating a new manifest file when these occur.

As the CDM checks the manifest files periodically for updates, playlist updates are

eventually propagated to the ACNS system.

6. The Mobbit InSight network topology, meaning the locales of the backoffice and terminals,

will be static. Henceforth, the Cisco ACNS overlay network can also be static, making it

possible to know beforehand which ECE is responsible for the requests of each terminal.

Terminals can obtain the contents from the ECE in a non-transparent form, using the CIFS

protocol.

7. As it happened before the integration, each Mobbit InSight terminal should periodically

check its playlist (now stored at the closest ECE and not at the central server). When a

new content is added to the playlist, the terminal must fetch it from the closest ECE.

8. The upstream flow of data – such as statistical information – is independent from the

Cisco ACNS network. There is no point in passing these contents through the ACNS

networks since they are always different and destined only to the central server.

6

4. STUDY REGARDING THE APPLICATION OF NETWORK CODING

TO PEER-TO-PEER CDNS

As mentioned, in order to study some issues arised by dynamic deployments of CDNs, this section

addresses the application of Network Coding strategies to peer-to-peer CDNs, particularly BitTorrent,

in order to determine how it may increase the efficiency of content distribution. To better analyse the

advantages of Network Coding to these systems, we shall compare the performances of two

BitTorrent simulators: one that simulates the traditional system and another that simulates the system

modified to incorporate Network Coding. In order to understand this analysis properly, a brief

introduction to BitTorrent and to the concept of Network Coding will precede.

4.1 BitTorrent

BitTorrent is currently the most widely used peer-to-peer CDN. A great part of its popularity is due to

the fact that if focuses its efforts on efficiently distributing content, unlike most of its competitors which

focus solely the process of finding the content, yielding inefficient transfer rates.

 The BitTorrent algorithm works by defining one independent overlay network (swarm) for the

distribution of each separate content. For each swarm, the content being distributed is divided into a

large number of fragments (pieces), so that each peer can obtain those pieces concurrently from a

number of peers, maximizing transfer rates. Additionally, any peer can start serving the content being

distributed from the moment it receives its first piece. Each peer only interacts with a subset of all the

nodes in the swarm: its peer set.

 There are essentially two strategies that are responsible for the performance of BitTorrent: the

algorithms for piece selection (rarest first algorithm) and maximization of network bandwidth as a

consequence of the maximization of the download rate of each peer (choke algorithm). The main goal

of the rarest first algorithm is to avoid a problem commonly referred to as the last piece problem: when

the distribution of pieces among peers is asymmetric, some blocks may be more common and others

more rare; thus, if the users who possess the rare blocks decide to leave the swarm, the others are

not able to finish the download. This algorithm aims at attenuating the last piece problem by selecting,

as the next piece to be obtained by each peer, the rarest amongst its peer set. The choke algorithm,

on the other hand, aims at maximizing the download rate of each peer. Since BitTorrent lacks a

central coordination, each node is responsible to maximize its transfer rates and it does so by seeking

to obtain pieces from nodes that provide faster download rates and chooses to serve pieces to nodes

with each it maximizes its upload. This strategy also encourages reciprocity, contributing to reduce the

amount of free-riding (downloading content without serving it).

4.2 Network Coding

Network Coding is a method of attaining maximum information flow in a network. When it first

emerged, around the year 2000, this field of information theory and coding theory and attracted a

7

great deal of attention as it promised to significantly improve the efficiency of content transferring over

a computer network. Briefly, Network Coding is a method that allows intermediate nodes in a network

not only to forward the information flows they receive, but also to process them. This process consists

of linearly combining a number of packets, with random coefficients, forwarding them to other nodes in

the network. Therefore, a receiver ends up being delivered several packets that result of the

combination of multiple other packets, as well as the coefficients used. By arranging the received

packets in a linear equation system, and when enough packets are received, a node is able to recover

the original packets by inverting the equation system.

 This approach contrasts with the traditional packet routing methods. According to these, each

packet is indifferently routed throughout the network so that a receiver must collect all of the original

packets to rebuild the content. It has been mathematically proved, using the max-flow min-cut theorem

of the graph theory, that traditional routing cannot achieve the max value, but Network Coding can.

 The process of content distributing using a Network Coding approach can be summed through

the following steps, without loss of generality:

1. One server possesses one file, B, which wishes to distribute, composed by n pieces.

2. In order to send a piece E1 to a client A, the server combines all of B’s pieces: it chooses

a random vector of n coefficients, C, then multiplies each element i of B by the element i

of C (with 1 ≤ i ≤ n) and adds the results of the multiplications.

3. The server then sends the piece E1, along with the vector C, to A.

4. If A already has a piece E2, generated from original pieces of the content along with the

coding vector C’, suppose A wants to send a piece of information E3 to a client B.

5. Given that A has only two pieces in its possession, it generates E3 by multiplying E1 with a

random coefficient c’’1 and E2 with a random coefficient c’’2.

6. A sends E3 to B, along with its coding vector C’’. Notice that C’’ = c’’1 . c + c’’2 . c’, resulting

in C’’ = {c’’1 c1 + c’’2 c’1, c’’1 c2 + c’’2 c’2, …}.

7. Either A or B, in case they possess n linearly independent pieces, can reconstruct the

original content in a process that is similar to solving a linear equation system.

Notice that the efficiency of a Network Coding bases system depends on the field size in which the

coding vectors are generated: the bigger the field, the smaller the chances of two independent nodes

generating two linearly dependent piece. On the other hand, a Network Coding system also faces the

overhead of sending a coding vector for each generated piece. Therefore, a dimension for the coding

has to be picked in other to achieve a fair trade-off between the probability of linearly dependent

pieces being generated and the size of the coding vector being attached to each piece. It is estimated

that a field of size 2
8
 introduces an overhead of only 3% in the total amount of data traded, yielding a

probability of generation of linearly dependent blocks that is significantly lower than the probability of

the occurrence of other disturbances over the network, such as packet loss.

4.3 Application Models for the Simulators

In the course of this study, two simulators have been used: one emulates the traditional BitTorrent

system and the other emulates a BitTorrent system modified to use Network Coding.

8

 The simulator used to mimic the behaviour of BitTorrent has been developed by Ashwin

Bharambe, Cormac Herley and Venkat Padmanabhan for Microsoft Research and freely distributed

over the Internet. Its goal is to simulate the data plane of BitTorrent as a sequence of discreet events.

The activity of each node is thoroughly modelled, as well as the main mechanisms of the system (the

rarest first and choke algorithms). The simulator allows the definition of different simulation scenarios,

in which is possible to determine sever different aspects such as the size of the file being distributed,

its division in pieces, the number of nodes in the swarm (seeds and lechers), the join and exit rates,

the download and upload bandwidths and the simulation time. Regarding the network model, each

node is defined as having two independent connections: one for upload and another for download.

The bandwidths of the two connections are independent, allowing asymmetric connections to be

modelled. The simulator uses this information to adequately determine the delays in which the transfer

of data incur: this delay accounts for the upload bandwidth of the node sending the piece, the

download bandwidth of the node receiving the piece and the number of connections each node

shares. As outputs, besides the behaviour of each node and a chronological list of all the events that

took place, the simulator has been modified to provide other important information for this analysis,

namely average bandwidth usage for download and average download times. Some details pertaining

BitTorrent are not compass of this simulator, as they do not have a big impact in the analysis of the

performance of the system. Amongst the pretermitted details are, for example, network delays on data

transfers, the modelling of TCP packages or the fact that BitTorrent subdivides pieces into blocks to

take advantage of a pipelining mechanism to increase transfer rates.

 So to reproduce the behaviour of a BitTorrent system modified to use Network Coding, the

original BitTorrent simulator was altered to incorporate this feature specifically for this analysis. The

main issue in adapting the simulator was providing all of the nodes with the capability of generating

innovative pieces of information by linearly combining previously held pieces. Therefore, a leecher no

longer requests a specific original piece since, broadly speaking, any generated piece can be useful in

reconstructing the original content. As a side effect, the rarest first algorithm was suppressed because

as the notions of rare and common pieces ceased to exist. On the other hand, the notions of

innovative and non-innovative nodes were created: for a certain leecher A, the node B is innovative if

it is able to generate a piece that is linearly independent from all the remaining pieces that A already

has. The new piece-scheduling algorithm thus decides to request a piece from a remote node only if

the remote node is innovative. The choke algorithm, on the contrary, was kept since its usefulness is

independent from the chosen routing algorithm.

4.4 Simulation Results and Analysis

The goal of the simulations being conducted is to determine the gain that comes from introducing

Linear Network Coding to BitTorrrent, as well as to identify the situations in which this gain is more

substantial. Hence, the performance of both systems was analyzed by performing simulations

according to the variation of two particular parameters: the bandwidth of the leechers populating the

swarm and the proportion of seeds in the swarm. As to the output, in order do determine the

performance of both systems comparatively, two figures were taken into account: the average

bandwidth used for download purposes and the average download time.

9

 In order to comparatively analyze both

systems, all the parameters remained fixes

throughout the different simulations, except for the

leechers’ bandwidths. The fixed parameters were

defined having in account several observations made

on popular swarms: the simulation referred to a two-

hour period of a 100MB file being distributed (split in

400 pieces), in a swarm composed by 100 fixed

seeds, with 1 leecher joining per second. Each

leecher had a probability of 75% of leaving the

swarm after finishing the download and, it case it remained, it would leave after serving 88% of the

content. The leechers’ bandwidths were modelled to resemble commonly used Internet connection

speeds, from GSM Circuit Switched Data (CSD) to Fiber To The Buildings (FTTB), as well as many

others such as Dial-Up, ISDN, Cable or ADSL. The two systems improved with the increasing

bandwidth capabilities, both in terms of download bandwidth and download time. It was also possible

to observe that the Network Coding system performs better than BitTorrent in nearly all cases and the

difference of performances also increases as the bandwidths grow (fig. 2). The better performance of

the Network Coding system over BitTorrent is mostly due to its piece scheduling system: the fact that

each user must obtain exactly each of the pieces of the original content might cripple the performance

of the system as it might happen that not all pieces be equally available (a consequence of the last

piece problem) or, at least, it might not me possible to obtain all pieces at good transfer rates. As

leechers only have a subset of the original pieces of the content, they’re usefulness as content servers

as limited. Additionally, as some pieces become rarer, they might only be available in few nodes and

the only ones that surely possess them are seeds. Therefore, one can deduct that the BitTorrent

system depends more on seeds than Network Coding since, on the latter system, all leechers are able

to generate innovative pieces. Thus, as the bandwidth of the seeds decreases when compared to that

of the leechers, it becomes a bottleneck and cripples the overall performance of the system.

 The influence of the proportion of seeds in a swarm was analyzing by varying the seeding

period of the nodes, while fixing the remaining

parameters. The node population was modelled

according to ADSL bandwidths, as it is the most

commonly used connection. Compared to the

previous simulation, content size was increased to

300MB to better test the role of the seeds, while the

probability of a leecher to leave upon finishing its

download was set to zero (meaning that all leechers,

when finishing the download, would remain as seeds

for a custom period of time). It was possible to conclude that both systems perform better as the

seeding time increases, as the content availability grows larger. Overall, the Network Coding system

yielded better results than BitTorrent, with its gain being significantly larger as the seeding time

decreases (fig. 3). This result also confirms the previously exposed thesis that BitTorrent depends

more on seeds, as in its quantity and bandwidth capabilities, than the Network Coding system.

Fig. 2: percentual gain of the Network Coding system
relatively to BitTorrent in terms of bandwidth usage.

Fig. 3: percentual gain of the Network Coding system
relatively to BitTorrent in terms of seeding time.

10

5. CONCLUSIONS

The first study carried through in the scope of this dissertation consisted on the integration of a

Corporate TV system, developed by Mobbit Systems, with a commercial CDN, by Cisco Systems. This

integration aimed at solving the problem of an inefficient usage of WAN bandwidth: in case two or

more geographically close located required the same contents from the central server, these would be

requested separately. Therefore, the situation of the same data being transferred several times

through the same WAN link was possible, consisting of a waste of bandwidth resources. By applying a

CDN solution to this system, contents could now be cached near the end-users and would cooperate

in obtaining data from remote locales. The profit that resulted from this integration were clear, though

not linear: they depended on the contents being distributed, on the number and locales of the Mobbit

InSight terminals and on the content lineups drafted for each terminal. Although this project was

essentially practical, the biggest amount of time was invested in analyzing the two systems and on the

most cost-effective way to integrate them, not on actually programming the integration module.

 The second study, on the other hand, referred to a study on how the usage of Network Coding

methods would improve the performance of peer-to-peer CDNs, such as the popular BitTorrent. To

support this analysis, two simulators were used: one to mimic the behaviour of BitTorrent and the

other to emulate a BitTorrent system modified to use Network Coding on content transferring.

Although, broadly speaking, the introduction of Network Coding turned out to be profitable, both in

bandwidth usage and download time, this advantage is especially relevant in specific cases: when the

average bandwidths of the leechers are high (especially when these are higher than the average seed

bandwidths) and when the concentration of seeds in the swarm is scarce. Still, several other issues

must be taken into account: the amount of data transferred in a Network Coding system is higher,

since a coding vector must be sent along with each piece; there is a probability, higher than zero, that

amongst all of the pieces received by a node two or more are linearly dependent; finally, although it

does not pertain to data transfer, in a Network Coding system the content must be reconstructed from

the coded pieces, in an operation that renders this system more computationally complex than

BitTorrent, therefore more prone to errors, and possibly more processor intensive.

