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Abstract 

Electronic voting technology enables institutions to deploy anonymous elections over wide networks in 

ways that secure voter privacy and election robustness while offering a wide range of new benefits that 

come with modern information systems. We propose the introduction of a new feature to voting systems –  a 

feature we have come to name traceability - that allows votes from the same voter to be related across elec-

tions, without compromising voter anonymity. A brief survey is presented to functionally compare modern 

approaches to electronic voting, and we then focus our attention on one particular approach - blind signa-

tures - for which we establish a traceability mechanism. We describe the resulting protocol and explain its 

design. Finally, we attempt to discuss both applicability and shortcomings of the system we have designed. 

 Keywords: E-voting, Electronic surveys, Blind Signatures, Demographics  

Resumo 

A tecnologia de voto electrónico torna hoje possível às organizações realizar eleições anónimas sobre redes 

de computadores de pequena e larga escala, mantendo a privacidade do votante e a da segurança da eleição, 

com a panóplia de mais-valias que advêm dos sistemas de informção modernos. Neste trabalho, propõe-se a 

introdução de uma nova característica ao voto electronico – a que chamamos rastreabilidade –  que permite 

correlacionar votos do mesmo votante em eleições distintas, sem comprometer o anonimato do votante. 

Procura-se apresentar um panorama das abordagens de voto electronico que permita uma comparação 

funcional entre elas e um enquadramento geral. A partir de uma destas abordagens (a que recorre a  

assinaturas cegas), desenvolve-se então um mecanismo de rastreabilidade Descreve-se o protocolo 

resultante, procurando explicar os passos envolvidos no desenho desse protocolo. Finalmente, discute-se a 

aplicabilidade e as limitações do sistema desenvolvido.  

Keywords: E-voting, Voto Electrónico, Questionário Electronico, Inquérito Electrónico, Assinaturas cegas  
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1. Introduction 

The use of Voting and Polling1 has been a popular issue for debate over the last decades, due both to the prom-

ise of clearer elections, easier voting and lower abstention rates and to the increasingly distributed and digital 

nature of modern organizations. Many countries have already adopted some national or regional form of elec-

tronic voting, and companies now frequently use computerized ways to poll employees and costumers.  

 

Electronic voting initiatives attempt to offer democratic communities the properties of conventional voting 

(soundness and anonymity) with the added benefits of modern information systems. These added benefits in-

clude speed, ease-of-use, the possibility of conducting elections over distributed communication networks and 

the promise of more transparent, verifiable election processes. Electronic voting systems thus provide the simul-

taneous delivery of the involved security requirements and of a practical recollection/analysis of results, a com-

bination that is difficult to achieve in conventional elections. All this and the low cost of deployments keeps the 

adoption count growing and opens new possibilities for democratic decision-making and opinion polling. 

 

There is a broad scope of electronic voting models. They vary on the level of technology they use and the nature 

of that technology. On one end, there are paper-based solutions that rely only on paper up to the counting step, 

and only apply computer/electronic technology to scan the bulk of submitted papers and count them. This hy-

brid model allows nations and other institutions with established voting traditions to perform a smooth transition 

to electronic voting, obtaining part of the benefits with a minimum of technology shock. On the other end there 

is full-fledged computer voting, for which everything happens in the digital domain; the voter’s interface with 

the election is through software running on the voter’s own home hardware and over a wide area network such 

as the internet. The latter stretch of the spectrum provides the lowest cost of deployment and the greatest level 

of flexibility, as no special equipment is required and components may be setup with non-dedicated systems 

machinery.  

 

The present work focuses on a software-based, networked scenario. We attempt to briefly describe several ex-

isting approaches with this profile. Afterwards, we choose one over which to implement a new feature we are 

about to introduce.  

We now proceed to describe this new feature. 

                                                           

 

1 The terms ‘voting’ and ‘polling’ will henceforth be used interchangeably throughout the document with the same seman-

tics, though ‘polling’ may include systems with less question/answer restrictions, whereas ‘voting’ might more often than 

not refer to more strict, multiple-choice based polling. We will also aim to look at processes from a more general, ‘poll-

ing’ perspective, expecting a poll to include free text fields or binary data. 
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2. Traceability 

2.1. Motivation, Example Scenarios 

Let us conceive a universe where college students evaluate the courses they take every semester by taking an 

anonymous authorized poll using a secure e-voting system. Supposing everything works as promised, at the end 

of every course students submit their evaluations confident that their anonymity is being preserved, and college 

administration and faculty can read the anonymous results without identifying students. They can elaborate on 

those results, but only to a limited extent - they can not correlate between different courses. 

 

Let us suppose they find out the student population is divided between those who highly evaluate the impor-

tance of mathematics and those who believe mathematics is of little relevance for their curriculum. Let us fur-

ther imagine that the same happens with physics. It is easy to imagine someone suggesting ‘These results mean 

that some students like theoretical courses, and others don’t.’ - implying a correlation between answers for the 

two courses. To prove this, we would have to find a way to trace votes between elections. 

 

As another example, imagine a country where a referendum is taken to legalize light drugs. Shortly after, an-

other one is conduced on the decriminalizing of abortion, and the results are numerically close. Some observers 

might claim ‘Most of the population is being conservative and generally averse to change’. If we could prove, 

for instance, that the majority of people who voted to reject the second referendum voted approval on the first 

one, we would have proven this assumption wrong. 

2.2. The Concept of Traceability and Traceability Tokens 

To establish these correlations between votes in different elections, we propose the introduction of traceable 

tokens, or pseudonyms, as identifiers of voter origin that should be separated and impossible to associate with 

the voter’s true identity, but remain constant for each voter throughout elections.  

It is a very simple notion, but we have found no literature on the subject. It is likely that work on traceability 

exists under different naming. 

 

2.3. Traceability (token) Requirements  

Consistency: A voter should not be able to submit votes with different pseudonyms in different elections. 

Collision-free: Pseudonyms from different voters should not collide. 
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Secrecy: Pseudonyms must not be stored or accessible alongside data that may reveal voter identity. This means 

it must never be available to administrators. 

Coercion: To prevent proof of vote, pseudonyms must be unknown to voters. If a voter is able to prove his 

vote, he may be coerced to vote in a predefined way. For this reason, the pseudonym should be handled in a 

secure and transient way by voter software. 

2.4. Levels of traceability 

We can think of three different levels of traceability: 

 

1. Weak: users can include pseudonym in their votes in different elections, but there is no way to verify they 

keep using the same token, so voters are given the liberty to choose whether their votes are to be associated. 

There is also no way to verify that no two users share the same token, so votes from different voters may be 

incorrectly associated. Under the requirement definitions above, weak traceability systems provide no consis-

tency. This level of traceability can be trivially added whenever there is flexibility to provide a free-form field 

in the ballot: the user simply uses a predefined form to fill in, if he opts to, a pseudonym of his choice, without 

any verification. 

 

2. Strong: users are forced to use their token consistently throughout elections, and that token is guaranteed to 

be unique. 
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3. Conventional voting requirements 

To successfully design or use an electronic voting system, the requirements expected of the system should be 

established early on. 

We may recognize, among the expected requirements, different requirement scopes:  

� Core Requirements, those consensually established as intrinsic to the problem of voting 

� Usability Requirements, those that measure ease-of-use for a system (usually centered on the effort or 

knowledge demanded of the voter). 

� Operational/Resilience requirements, evaluating how a system depends on the technological/operational 

platform, how much demanding it is on resources, and how far it is able to work properly under partial fail-

ure of those resources or deliberate attacks on the protocol. 

3.1. Core Requirements 

Accuracy 

A system is said to be accurate if it can assure: (1) No legitimate vote can be ignored in the final tally; (2) No 

illegitimate vote can be counted as valid; (3) Votes can not be tampered with (changed) after submission. 

 

Democracy 

Democracy is understood to be the proper (equal) weighting of votes: (1) All legitimate voters can vote. (2) 

Legitimate votes are counted only once (all votes have equal weight). 

 

Privacy 

The ability of a system to assure: (1) No party can associate a vote with the originating voter (voting is anony-

mous); (2) Voters may not prove how they have voted. 

Special attention should be drawn on this second privacy property. When it is required, the inability of a voter 

to prove the contents of their vote is intended to avoid the selling/extortion of votes. The problem with this 

requirement is that it is incompatible with free-text fields in ballots (any unconstrained answering can be used to 

mark votes and later prove their authorship), and it also often limits verifiability: if users know how they voted 

but cannot prove it, even if they verify their vote was miscounted they can not prove that either. Systems de-

signed in a way that does not allow for vote proof (as traditional elections have so far been) are also called re-

ceipt-free. 
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Verifiability 

Verifiability may be either (1) Universal, so that voters, administrative entities and third-parties can verify each 

vote was properly authorized and counted for; or (2) Partial, enabling only some of the involved parties (a con-

stituted observer or an administrator) to verify results, or possibly permitting only the verification of part of the 

results (as when a voter is only able to verify the correctness of his own vote). 

 

Flexibility 

The flexibility of a system is understood as the freedom it allows for in the structure/contents of ballots. Flexible 

systems are those that do not impose any restrictions on the formats of neither questions nor answers. 

3.2. Usability Requirements 

Ease-of-use 

This evaluates how easy it is to vote, including all steps necessary (registering, preparing, understanding the 

rules and tasks involved, actually voting and verifying results, where possible). 

 

Mobility 

Mobility is the ability of a system to take votes from different physical locations.  

3.3. Operational Requirements and Robustness 

Availability 

In a practical implementation, availability refers to: (1) How a system maintains functionality and stability from 

the beginning to the end of an election; (2) The ability of a system to receive votes from all voters equally and at 

any time when the election is open. 

 

Collusion Resistance 

A system is as resistant to collusion as it is hard to gather enough parties to effectively compromise the core 

requirements, mostly considering Privacy and Availability. Measurements of collusion resistance are often 

given in terms of how many entities are necessary to collusion. 

 

Scalability 

Scalability measures how well a system applies to larger scales. Scaling is said to be efficient if computa-

tional/communication costs are linear to the number of voters. 
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4. Available (modern) approaches to e-voting 

We will now attempt to provide a brief overview of the e-voting landscape and how it may interest us for the 

development of a traceable e-voting system.  

First we give concise descriptions of the available tools used by the various solutions we have come to know of, 

and afterwards we attempt to describe each in a succinct way. For each one, we will try to summarize its short-

comings and how we see it meet the applicability for our tracing goal. 

Afterwards, we try to describe the workings of Blind Signature protocols, as we have chosen that approach to 

develop traceability on, presenting the interactions involved and the basic operation of each component. 

We end by naming the succession of blind signature protocol implementations we studied up to the present 

moment, providing a brief description and references for each. 

4.1. Techniques used in E-Voting 

This section presents a brief list of the main building blocks of e-voting protocols. Most of them involve at least 

intermediate mathematics to be completely understood, but all have a relatively simple use. Some reference 

pointers are included. 

4.1.1. Public key Cryptography 

Public key cryptography [RSA78] is the most essential building block in all modern e-voting protocols for both 

signing and encrypting. Essentially, a user holds a mathematically related public/private key pair, such that a 

message encrypted with one can only be decrypted by the other. To send a message secretly to a user, it is 

enough to encrypt it with the user’s public key. To sign a message, a user encrypts it with his/her private key 

(decrypting it with the public key allows anyone to verify authorship). 

4.1.2. Anonymous Channels 

Anonymous channels allow information to be sent in a way that makes it impossible to trace who sent it. Exam-

ples include Onion Routing [Reed96] or remailing systems. Most E-voting protocols assume, unless stated oth-

erwise, that communication is done through anonymous channels. 
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4.1.3. Bulletin Boards 

A bulletin board is any public repository on which anyone (of a given public) can write and read, but can not 

remove or change information published. This can be used, for instance, to publish public keys (or private keys 

made public at the end of an election) or election results. 

4.1.4. Digital Hashes 

A digital hash function provides a way to fingerprint a large block of data in a small number of bytes. Secure 

hash algorithms are designed so that it is very hard to tamper input in such a way as to keep the same hash out-

put. They are widely used for signing or zero-knowledge proofs (see below). 

4.1.5. Zero Knowledge Proofs 

Zero Knowledge proofs [GMR85] are protocols/mechanisms to prove knowledge of information without reveal-

ing it. Zero Knowledge proving is deeply related to bit commitment. For a soft, entertaining introduction, see 

[Naor99]. 

4.1.6. Bit Commitment 

Bit commitment schemes are ways to assure information will not be changed by a user without forcing the user 

to reveal it. An obvious example is a secure hash function: if we have a hash function of some data, we can be 

sure that data stays untampered under penalty of hash mismatching, even if we do not it. 

4.1.7. Homomorphism 

Homomorphism, in e-voting, relates to the use of the preservation of an aggregating function in a special data 

space. The typical case is the resort to a special kind of cipher e for which e(x1) + e(x2) = e(x1+x2). For the 

first paper on an approach to e-voting based on Homomorphism by Cohen and Fischer, see [CF85]. 

4.1.8. Mix-Nets 

A Mix-Net is a group of servers each of which has the purpose of hiding the correspondence between input and 

output. In E-Voting, it is used to destroy information on the origin of a vote. For the original introduction to 

Mix-Nets by David Chaum, see [Cha81]. 
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4.1.9. Blind Signatures 

Blind signatures, first purposed by David Chaum in [Cha82], provide a way for a user to sign data it cannot 

read. To obtain a blind signature, the message author first blinds the message to be signed with a private blind-

ing factor. The signer receives it blinded, and signs it as it would another message. After devolution, the author 

unblinds the message using the same factor used for blinding, and as a result obtains a valid signature on the 

original unblinded message. The first proposed use of blind signatures for e-voting in [FOO92] led to a series of 

variations with well-known implementations, in at chain at the end of each is REVS, on which our prototypical 

traceable voting system was developed. 

 

The steps to requesting and providing blind signatures go as follows: 

A message m is prepared for signing by calculating m’, which is submitted to the signer: 

),(' mXBlindm = , where x is a secret blinding factor chosen randomly. 

The signer signs the blinded message, producing a blind signature: 

)'(' mSigns =  

Upon receiving this blind signature, the final signature may be calculated by unblinding:  

))'(,( mSignxUnblinds =  

 

For RSA, blind signing is available as: 

[ ]Nxmm e mod)(' ⋅≡ , for any random x such that 1),gcd( =Nx  

[ ]Nxmxms dde mod))((' ⋅≡⋅≡  

and finally 

[ ]Nmsxs d mod'1
≡⋅≡

−
 

Where x is the secret blinding factor chosen randomly and (e,d) is a public/private key pair for RSA. 

For more information on blind signatures, please see [Cha82]. 

4.2. Simplistic Voting Protocols 

The following protocols do not meet the requirements we listed before, when we considered what an e-voting 

system should have. They are described merely to illustrate the challenges involved in protocol design without 

any particular tools. 
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4.2.1. A One Agency Protocol 

In the simplest protocol conceivable, users submit their anonymous votes to a counter. At the end of the elec-

tion, the counter publishes the results. 

Problems: The counter cannot distinguish votes from different users, so anyone can vote. Furthermore, there is 

no way to assure each voter only votes once. Finally, there is no control that the tallier does not forge votes. 

Traceability: Weak traceability is easy to implement by adding an extra free-form question to the ballot. 

4.2.2. Another One Agency Protocol 

It is easy to modify the previous example so that authorization and accuracy are supported, but with the cost of 

anonymity. The same protocol is executed with the users signing their votes. Now the tallier can verify votes 

come from different and legitimate users, but it also knows who voted for whom. 

Problems: No anonymity; the tallier can see who votes what. It can also still forge votes. 

Traceability: Not applicable. 

 

We can infer from the two previous examples that anonymity and authorization can not be achieved using a 

single entity – Authentication involves identification, and identification destroys anonymity. 

4.2.3. Two Agencies 

Separating validation and counting, both anonymity and authorization can be achieved. Users vote by first iden-

tifying themselves with a Validator and requesting a unique random id. The Validator only gives one id to each 

voter. Users then submit their votes, with the unique ids attached, to the tallier. At the end of the election the 

Validator publishes a list of the given ids, dissociated from the voters identities. The tallier discards votes that 

are not in that list of votes with used ids, and publishes all vote/id pairs. At the end, users can verify their vote is 

published. 

Problems: The Validator can still forge votes (if votes forged are less than the voters who abstain, this goes 

undetected), and if Validator and Administrator collude, they can identify votes. Additionally, attacks can be 

made using random ids to attempt to vote for other people (though this may be arbitrarily hardened by using 

large data and good random value generation). 

Traceability: Traceability could be achieved by the Validator giving the tallier a second token apart from the 

random value, but then the Validator could use the new token to identify votes. 
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4.2.4. Two Agencies, late Tally 

A variation of the two agency protocol described above includes encryption by the voter on the votes submitted, 

so that the results are first published and only then decrypted. The voters submit their votes and ids encrypted, 

the tallier publishes all encrypted votes, and only then do voters publish the decryption keys for their votes, for 

everyone to decrypt. 

Problems: Apart from the problems of the previous protocol, this one includes the inconvenience of introducing 

an extra step and thus forcing the users to interact twice during the election. 

Traceability: Same as for Two Agencies. 

4.3. Full Protocols 

The following protocols are full-fledged, i.e., they obey all the core requirements presented earlier, and thus 

represent viable e-voting solutions.  

4.3.1. One Agency, ANDOS Distribution 

Another variation purposes that a single agency distributes and counts votes, but the distribution is done with a 

special protocol that provides All-Or-Nothing disclosure (ANDOS) [BCR87], that assures all authorized users 

receive a valid voting id, and get that id in anonymity. 

Problems: ANDOS requires all voters must participate in the distribution of validation tokens (this could be 

avoided at the cost of an extra election step where abstaining voters identify themselves – but thus breaking part 

of the privacy property). The validation id also serves as a receipt, so users can prove how they have voted. 

Another drawback is that ANDOS is said to be computationally demanding. 

Traceability: Validation tokens could be repeatedly used throughout elections, but that would only work as 

long as the electorate didn’t change, which is in practice unfeasible but for a rare number of elections. 

4.3.2. The Homomorphism Approach 

The approaches resorting to Homomorphism rely on the preservation of some aggregating function (typically 

addition), so that tallying can be performed without decrypting individual votes, and decryption is done on the 

tallied result. As votes are not individually decrypted, they can safely be signed for authorization and openly 

published. Some systems require that the voter also submit a zero-knowledge proof that the vote is valid, so as 

not to disrupt tallying. For references to implementations of Homomorphic approaches to e-voting, please fol-

low the work of Hirt and Sako [HS00] and its developments. 
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Problems: The foremost problem with this approach is the restrictions it imposes on ballots to allow for a func-

tion that preserves tallying on the encrypted votes. Yes/No votes are straightforward, but multiple choice votes 

are more complex, and it is still unpractical to implement homomorphism on ballots with free text fields. 

Traceability: As results cannot be given per vote, but only on the aggregated result, no tracing is applicable. 

4.3.3. Mix-net based protocols 

Mix-Nets essentially solve anonymity by having voters encrypt their votes successively with the public keys of 

the various Mix-Servers used and submitting votes to the server with the outermost key used. The last Mix-

Server to decrypt a vote publishes it in a Bulletin Board. 

For pointers to Mix-Net developments please refer to [JJR02], [PIK93], [SK95] or [OKST97]. [Joa05] includes 

a richer set of references on Mix-Nets. 

Problems: The largest drawbacks with applying Mix-Nets to voting is the complexity of the zero-knowledge 

proofs required to validate correct behavior on the part of the mix-servers, and the low level of fault tolerance 

on Mix servers. 

As for robustness, a variation has been purposed to tolerate less than a half of the servers to present faults, and 

work has been recently developed to make Mix-Net protocols more robust and practical. 

Traceability: The original Mix-Net protocol proposed by Chaum suggests the inclusion of a pseudonym used 

to sign ballot but as with the ANDOS approach, traceability is restricted to fixed electorates - or at least grow-

ing electorates, as the removal of a voter prevents that pseudonyms can be reused. 

 

4.3.4. Blind Signatures 

Blind signature protocols rely on the fact that, with blind signatures, the validating authority does not know 

what it is actually signing, so the signed information can be submitted for tally and then openly published with-

out compromising the voter’s authority. The main problem is then the trust placed in validation - so as not to 

allow validators to forge votes - but this can be arbitrarily reduced if we distribute this trust among several vali-

dators by requiring the signature of a number of them.  

Problems: The biggest problem with the blind signature scheme seems so far to be that the blinding factor and 

the blinded signature returned from the validator can be used to prove the vote. We should note this is only true 

if the voter can use a self-modified voting module to disclose the blinding factors used (which is commonplace 

when voting is done remotely). Research is being done at INESC-ID to establish a TCB on the voter module of 

a voting system to assure the voter must use an official module, and this official version can be designed not to 

reveal the blinding factors. 
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Traceability: The same way a validator blindly signs a ballot for the voter, it can sign a blinded version of the 

voter’s traceability token (pseudonym), and refuse to sign two different blinded tokens for the same user, so that 

the user is always forced to use the first one chosen. 

 

4.4. Choosing Blind Signatures and REVS for Traceability 

From the protocols we have covered, it seems the most simple and effective way to alter an existing voting 

scheme to include traceability is to follow a blind signature protocol in a recent open implementation such as 

REVS. A simple design change can have Administrators perform pseudonym regulation, and most effort will be 

put on altering the voter module to encompass the extra interactions and validations. 

 

We therefore used REVS to implement a working prototype of a traceable voting system. 

 

It must be stated that REVS is the platform we had most information on, so our evaluation is based on limited 

scrutiny2. We should also mention that work on Mix-Nets has been developing rapidly, and if a solution is 

reached that is capable of braking the constraint of the election pseudonym - native to the protocol - to a first 

election’s electorate, Mix-Nets may prove to be a competitive way. 

Finally, we would like to emphasize E-Voting is not a stagnant area, so the landscape is bound to change rapidly 

in a matter of few years (as much in theoretic grounds, with new papers proposing new protocols and solving 

limitations of current ones, as in practical), and it may be rewarding to reevaluate the choice we have made for 

the present  

4.5. Workings of a Blind Signature Voting Protocol 

We next present a simplified version of a blind signature protocol.  

 

For the sake of simplicity, we will skip the step of ballot distribution and the details of election setup. The 

reader may conceive a public catalog of current ongoing elections and the respective ballots, and that voter 

authentication is done only at the validation step. The anonymizing step is optional, and may be substituted by 

an anonymous submission channel from voter to counter. For more comprehensive descriptions and details of 

practical implementation issues in the case of REVS, please see [JZF03] or [Joa05].  

 

                                                           

 

2 The author would be grateful to receive insight on other modern implementations over blind signatures or any other ap-

proach. 
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After election discovery and ballot provision, a voter’s filled ballot is validated prior to submission by requiring 

the blind signature of at least a half plus one of all available administrators. Blinding is done with a random 

blinding factor that is generated for each blind signature operation (thus for every administrator and every elec-

tion), and discarded as soon as the administrator’s signature is retrieved and unblinded.  

The validation of votes requires voter authentication. This could be done by (a) having voters obtaining certifi-

cates for their public signatures and presenting these certificates to administrators, or in alternative by (b) set-

ting passwords for each voter-administrator pair. In the case of REVS, the latter option was adopted, and a 

password generation scheme was used to require the voter to memorize a single password, after which all the 

administrator-specific passwords are generated, through a digesting scheme. 

 

When the election ends, submissions are gathered among all counters and decrypted. Two different approaches 

may be taken two ensure that counters can only open votes after the election ends. Either (a) a single entity may 

be trusted to only publish the elections private key (with which votes are encrypted) after the designated period 

for the election has terminated3 or (b) by having the election key pair generate a shared private key4. Votes are 

then validated with respect to the number of administrator signatures they present and the authenticity of those 

signatures. Duplicate Votes are discarded, and results are published along with all the signatures involved. 

 

Figure 1 - Simplified diagram of a blind signature protocol 

The above diagram attempts to summarize the basic flow of a blind signature voting protocol. 

                                                           

 

3 This is the choice in REVS, and consequently in our traceable voting implementation, where the Commissioner is trusted 

with this responsibility. 
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4.6. Implementations of Blind Signature Protocols 

4.6.1. FOO 

The FOO protocol [FOO92] by Fujioka et al. proposed the use of blind signatures in e-voting to guarantee most 

of the core properties. One of its caveats was that every voter had to be involved in a tallying step of the elec-

tion, as is discussed at length in [Dur99]. 

4.6.2. Sensus 

Sensus [CC97] was the first real-world implementation of the FOO protocol with a Validator/Pollster/Tallier 

architecture to run for a real electorate (a college campus). 

4.6.3. EVOX 

The EVOX system [Her97] was a reimplementation of the same protocol, but removing the extra step necessary 

at tallying, allowing users to vote and walk away. It also introduced the Anonymizer entity as a middleman 

between Voter and Tallier. 

4.6.4. EVOX-MA 

To solve the excess of power placed on the Administrator module (previous systems allowed administrators to 

forge votes by voting as absent registered voters), Durette [Dur99] introduced with EVOX – Managed Adminis-

trators the decentralizing of validation in several parallel entities, requiring that voters obtain several signatures, 

so that forging votes would require collusion between administrators. 

4.6.5. REVS 

REVS [JZF03] is an E-Voting system first implemented in 2003 at IST that promises to consolidate the proto-

col used in EVOX-MA tackling real world operational issues for the Internet environment and hardening the 

system to both denial-of-service and intrinsic protocol attacks. It provides measures of availability and proofs of 

correctness. It separates in Distribution, Validation (Administration), Collection (Anonymizing) and Tallying 

                                                                                                                                                                                   

 

4 With shared secret key encryption, only with the collaboration of a fraction n of the total t shares (1<n<=t) of the secret 

key may decryption occur. Systems that use shared secrets for collaborative decryption/singing are referred to as Thresh-

old cryptosystems. For information on threshold implementation of RSA functions, please see [GJKR96b] or [Rab98]. 
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modules. Like EVOX-MA, REVS supports distributed Administration, and introduces the distribution of the 

other modules (Distributors, Anonymizers and Talliers). 
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5. Traceability for Blind Signature voting 

5.1. Incorporating Pseudonyms into a Blind Signature Voting Protocol 

To achieve the traceability goal described earlier, the need arises to incorporate a special token in the protocol 

that should be published alongside each vote for every election, as it terminates. 

To ensure that votes are consistently submitted with the correct pseudonym token, these tokens must necessarily 

constitute a part of validation, therefore also be blindly signed. To enforce consistency, administrators must 

keep a copy of the pseudonym blind signature requests so that they can refuse to sign a second pseudonym for 

the same voter. The blinding of pseudonyms for signing provides pseudonym secrecy in what regards adminis-

trators. To ensure secrecy with respect to the voter and prevent coercion, we must ensure that the voter runs in a 

trusted computing base that does not disclose the pseudonym when it is being operated upon. With this intent of 

avoiding pseudonym leakage to the voter, we design the whole protocol to not require pseudonym storage.  The 

problem of pseudonym collision is addressed by generating the token as a random number within a very large 

interval5.  We thus modify the administrator so that, apart from signing votes, it also signs pseudonyms, but only 

one for each voter. This entails the need for three extra interaction steps for the voter: 

 

(a) a registration step, executed the first time a voter participates in an election - this step consists of registering 

a randomly chosen pseudonym with all administrators; the following is a diagram of this step: 

 

Figure 2 - Registration with an Administrator 

                                                           

 

5 In our implementation, the random pseudonym is a number with 128 bits, thus with a random space of 2^128 possibilities. 
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 (b) A pseudonym blind signature request step, executed once for each election and each administrator, whereby 

a voter obtains the pseudonym’s blind signature to include in his vote submission along with the vote signature 

of that administrator; 

 

(c) A blinded pseudonym request step, executed whenever the need arises to recover a pseudonym that has 

previously been created for an election. Through this step, the voter can obtain the unsigned, blinded pseudo-

nym previously submitted, from which he can reconstruct the plain pseudonym6 that must be part of the vote. 

 

Step (c) serves a twofold purpose: 

To recover voting pseudonyms after the first election, if the voter does not store the pseudonym, as may be 

required to prevent coercion. 

To perform registration with an administrator by using a reconstructed pseudonym obtained from other (previ-

ously registered) administrators. This is only required when a new administrator registration is needed for a 

previously created pseudonym. This happens when the voter meets an administrator it could not register in the 

original pseudonym creation and registration step, either because that administrator was newly deployed, or 

because some availability problem prevented the voter to interact with that particular administrator before. 

 

Finally, the blinding factors used when blinding pseudonyms differ from those used for vote signing in that they 

must not change for all elections, to maintain coherence with the blinded versions stored by administrators. To 

solve this challenge in practice, our prototypical implementation derived from REVS uses a second password 

that generates blind factors for all administrators that differ from each other, but are consistent across elections. 

The scheme used to generate the blind factors from this second password is the one used by revs to generate 

administrator passwords from a single password, and is described in [JZF03]. 

 

The following diagram portrays the complete voting sequence, apart from step (c) (which, if used, is only pre-

sent after the first election). 

                                                           

 

6 For this reason, instead of using the conventional technique substituting data to be signed by a zero-knowledge commit-

ment of the data, such as a hash value, the pseudonym is itself submitted for signing, and afterwards signed. 
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Vid, Vp(Ai), Eid, Blind(X, P+B)

sign(Ai, Blind(X, P+B))

{ P + B, sign(Ai, P+B), sign(Ai, P)}Kpub

{ P+B, sign(Ai, P+B), sign(Ai, P)}Kpub

Counter

Anonymizer

Validation

Submission

Voter

Vid, Vp(Ai), Eid

Sign(Ai, Blind(Y, P))

Administrator i

Voter uses Y to unblind

P, Sign(Ai, P)

 

Figure 3 - Summary of the Traceable Voting Protocol 

As we can more easily recognize in the above diagram, the final submission package includes everything re-

quired to validate the vote, the pseudonym, and both as a pair. 

 

Packages are submitted as described earlier for a non-traceable protocol, and counting is done in a likely man-

ner, with the exception that pseudonym signatures must also be validated, and in sufficient number. Also, and 

most importantly, the published results now include pseudonyms alongside votes, as we intended. 
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6. Traceable REVS: The REVS software package and changes in the Traceable 

version 

This section very briefly walks through some implementation aspects of Traceable REVS, only insomuch as it is 

necessary to understand the effort of altering it to implement traceability. 

For a detailed description of the inner workings and implementation choices in REVS, the reader is encouraged 

to refer to [Joa05]. 

6.1. Architecture 

As required by the protocol, REVS modules run multiple instances of each kind of server that voters may ac-

cess, according to protocol sequence. The architecture of a running complete REVS deployment is as follows: 

Figure 4 - The REVS Architecture 

6.2. Technology 

REVS is written in the Java Language, version 1.4.  

• In addition to the common utility packages of the Java runtime API, the following software is used: 

• JBCL – The JBuilder JavaBean Component Library, a set of GUI components built on top of swing 

• The logi.crypto cryptographic library, used in RSA key manipulation. 

• The java.security API, both for digesting and keystore functionality. 

• java.rmi and javax.net.ssl for secure communication. 

• The Xerces DOM Parser for XML manipulation. 
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To provide persistence, REVS relies on 

• The JDBC API and the JDBC MySQL driver for database access from the application. 

• The MySQL Database server for the persistence backend. 

 

6.3. Software Design 

6.3.1. Component Structure 

 

Figure 5 - REVS Component Structure 

 

A clear distinction is drawn, in REVS, between the server and the client layer, as server components share much 

of their functionality.  The database layer is also kept apart: each server instance accesses its own database 

repository through a common set of database abstraction code using JDBC to connect with the database man-

agement system (currently MySQL, but this should be flexible as JDBC is designed for database independence 

and REVS requires no vendor-specific functionality). 

A Commissioner application is used to generate configuration files that regulate the behavior of all the other 

components. 
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6.4. Implementation and Changes on the Server Layer 

As much of the functionality required for server operation is shared, the classes implementing the server layer 

follow a carefully designed hierarchic structure to promote code reuse. 

The following class diagram of the server layer attempts to illustrate this hierarchy. 

 

We include only the most meaningful methods for each class. 

 

Figure 6 - REVS Server Layer Classes 
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6.4.1. Administrator Changes 

The three underlined methods in the IAdministrator interface indicate the interface changes required to imple-

ment traceability, as described earlier. 

 

6.4.2. Counter Changes 

The Counter code also had to be changed, but without altering its method prototypes. Changes were applied to 

achieve: 

• Correct vote validation: Validation now depends on the correctness and consistency of the pseudo-

Id signatures for each administrator. 

• Pseudo-id publishing: The published XML files with the answers from each voter now have to in-

clude the pseudo-Id of the corresponding voter. Thus, counter code was changed so that the pseudo-

Id is appended as an attribute to the ballotAnswer node in Base64 encoded form. 

6.5. Database Layer Changes 

Changes are also needed in the database layer, as the administrator now is required to hold additional storage 

for each user’s pseudonym. 

 

The two methods in the DB_Administrator class are the methods added for our traceability goal – simply set or 

get the blind pseudonym from the voter row in the voter table of the administrator’s database. 

 

The DDL statements in the SQL code for the creation of the Administrator tables were also altered to reflect the 

added administrator column for the Id commitment. 

 

In the following diagram we see the REVS classes responsible for handling database access (by using the JDBC 

API to send predefined queries to the database). It is interesting to note how there is a class of each of the dif-

ferent server types, and how two other classes are used to group database functionality: Anonymizers and 

counters don’t have to hold voter information, whereas distributors, commissioners and administrators do. 
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Figure 7 - The REVS Database Layer 

In the future, is traceability is to be incorporated in the main REVS package, then the database layer will also 

have to be modified so that the election configuration data model also includes information on whether elections 

are to be traced, and which. 

6.6. Changes in the client layer 

6.6.1. Commissioner 

No changes were required on the commissioner. The module is kept intact from non-traceable REVS. 

 

6.6.2. Voter 

The voter modules required most of the modification work. 

 The following diagram attempts to describe the voting process, and how pseudonym management code is in-

troduced.  
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Figure 8 - The voting client process flow 

The preparation and submission parts of the voting code were essentially kept intact, with minor changes as to 

the contents of the messages exchanged. 
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The pseudonym management block is next presented in more detail. 

 

Loop through existing servers to obtain 

blind pseudo-ids already registered

Ask for Pseudonym Password

(master pseudo-id blinding factor)

Generate pseudo-id blinding factors.

Some Pseudo-ids

already registered?

Generate new 

pseudo-Id

Generate per server 

blinded values of 

pseudo-Id

NO

All pseudo-Id 

values consistent?

YES

Report Possible 

Mischief

Abort voting
Registered with unregistered admins

Preparation

Signing

Submission

 

Figure 9 - The pseudonym management process required in the client code 

In the above diagram we see the basic flow followed in the voting modules to handle pseudo-Ids. We use the 

terms “pseudonym” and pseudo-Id to distinguish the pseudonym perceived by the user from the actual pseudo-

nym token published with the election results. Here, “pseudonym” is actually the pseudonym password used to 

generate the per-server pseudo-Id blinding factor. 
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7. Requirement Evaluation 

We now attempt to review the protocol with respect to the voting requirements stated earlier, both those for 

regular voting and those for traceability. We try to mention, for each requirement, how it could be attacked (or 

generally how it could fail), and the effort for that attack. 

7.1. Voting Requirements 

Accuracy 

(1) No legitimate vote can be ignored in the final tally. 

To have a vote ignored, an attacker must obtain the collusion of all counters (or of the majority of administra-

tors). One thing that changes in this respect is that a new attack is made possible by traceability. If an attacker 

has the voter’s password before the first election, he can not only vote for the victim but also, by registering his 

own pseudonym, prevent the victim from using the administrator in the future. 

(2) No illegitimate vote can be counted as valid; For a vote to be valid, it requires the signatures of more than 

half of the available administrators. As such, unless that many administrators cooperate in foul play, it is vote 

that is impossible for an attacker to submit and have counted a vote without obtaining all the signatures, which 

can be made only once per election per voter. 

(3) Votes can not be tampered with (changed) after submission. If an attacker (a counter) tampers with a vote, 

he is invalidating the administrator signatures, and thus invalidating the vote. We then fall in the first of the two 

situations described above in (1) – without the cooperation of all counters, the attack fails. 

 

Democracy 

(1) All legitimate voters can vote. Attacking this requirement can only be made by either (a) Hindering avail-

ability of administrators, anonymizers or counters or (b) have those servers conspire to deny voting to a group 

of voters (or all). As with REVS and EVOX-MA, the number of servers can be arbitrarily enlarged, and the 

servers spread on different points of the network, so both denial-of-service attack damage and the risk of collu-

sion can be minimized as need be. 

(2) Legitimate votes are counted only once (all votes have equal weight).By the design of REVS, repeated votes 

are discarded, not counted twice, so vote weighting is not possible through vote injection. The only possibility 

of a voter to vote by someone else is to hold their private password and pseudonym password. 

 

1. Privacy 

 (1) No party can associate a vote with the originating voter (voting is anonymous) 
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As long as submission is done through an anonymous channel (i.e., there are no identifiable traces in the net-

working from voter to anonymizer/counter), the only way to identify voters is by registering the order by which 

votes are cast, and only for sparse elections (that is, where votes are separated in time), can anonymity be at 

risk, and only by a collusion of administrator, anonymizer and counter. To perform such an attack, anonymizer 

and counter must restore the order of submissions and compare it to the signing order of a colluding administra-

tor. 

A second aspect is to be considered though, as traceability is introduced – that of voter narrowing. For elections 

sets where all elections are universal (i.e. all voters can vote), privacy is fully kept. For elections where voters 

are grouped into groups that are publicly known, and that control which election voters participate in, an at-

tacker could analyze pseudonym information and census data and narrow the voter identity possibilities for a 

particular set of votes. We will mention this again ahead in section 8.2 (voter narrowing). 

 

(2) Voters may not prove how they have voted. 

REVS is not receipt-free, so users may proof their votes by taking hold of either (a) the blinding factors or (b) 

their pseudonyms, both of which can be used as proof of vote. As mentioned above, to avoid this requires that 

the voter module run in a trusted computing base that prevents the voter from modifying software behavior, and 

revokes him access to both pseudonym and blinding factors. 

 

Universal verifiability 

Voters, administrative entities and third-parties can verify each vote was properly authorized and counted for. 

This is held valid. At the end of an election, the results are published, and for each vote anyone must be able to 

see the pseudonym, the pseudonym signature, the vote and the signature of the compound 

)(),(,, psbpsbp ii +  

with the sufficient number of signatures, one for each administrator i . 

 

Flexibility 

We understand the resulting system to be flexible, as it imposes no particular restrictions on the format or con-

tent of ballots. 

7.2. Usability Requirements 

Ease-of-use 

Though voting - where usability is most important - is relatively straightforward for voters in REVS, election 

configuration and setup is still an effort-consuming step, and some technical understanding is required to start 

an election 
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Mobility 

The system, as REVS, is inherently mobile, as it is conceived to permit voting over arbitrarily large networks, 

and poses no restrictions on voter position on the network. It relies on the networking layers to provide this, so 

voter mobility is fundamentally the network mobility available. 

7.3. Operational Requirements and Robustness 

Availability 

(1) How a system maintains functionality and stability from the beginning to the end of an election. This is 

provided, as servers may be replicated arbitrarily to prevent denial of service attacks, and there is no central 

vulnerable target to halt or bog down the complete protocol. 

(2) The ability of a system to receive votes from all voters equally and at any time when the election is open. 

We see no discriminating vulnerability that could reduce system availability to some users. 

 

One issue that should be mentioned at this point, and kept in mind when deploying in elections in wide (or oth-

erwise unsupervised) networks, is that the network itself is vulnerable to attacks, so an attack on user connec-

tivity may lock out individual voters or whole voter subnetworks. We do not consider this as a limitation or 

particularity of the protocol, but instead as a fundamental consequence of network use to security-sensitive 

computing that should be always kept in mind. 

 

Collusion Resistance 

Collusion resistance can be made arbitrarily high by enlarging the number of servers involved, and the number 

of administrator signatures required accordingly. 

 

Scalability 

We consider REVS, and our variant, scalable with respect to the size of the voting population. In what regards 

servers, however, we believe scalability could prove problematic as the number of administrators enlarging 

increases the number of interactions necessary to vote, and thus hinders availability and the affects the time 

required to vote. 
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8. Limitations and possible attacks 

8.1. Prevented Attacks 

Administrator Collusion 

Obtaining control of a majority of administrators (over half), an attacker could deny voting, by either not re-

sponding to disfavored voters or returning false blinded pseudonyms (so the voter cannot retrieve a previously 

registered pseudonym 

 

8.2. Voter-narrowing in non-universal elections 

There is a theoretical, fundamental caveat to traceability for scenarios where voters are not required to vote in 

every election: just by analyzing the results of successive elections, and data on who participated in what elec-

tions, pseudonyms can be successively narrowed down to smaller sets of possible voters, and ultimately to a 

single voter. 

 

This is especially problematic in the frequently occurring scenario where voters are grouped in publicly known 

subsets, and these subsets determine which elections voters are part of. Consider, as a concrete example, the 

student course evaluation setting described in the introduction. If students participate only in courses they take, 

and course enrollment is free to a significant degree (i.e., students choose their own curricula), it might likely be 

the case that there is only one student with a particular enrollment history. If that history is public, anyone may 

compare it with election results and identify the student with the set of votes. As an alternative, you may imag-

ine a nation-wide election system where citizens vote for state/district elections, and people move often. Elec-

tion registration, if public, may be compared with results throughout the years, narrowing down voter identity. 

 

8.3. Cryptographic limitations 

 

Any cryptographic protocol is subject to the limitations of the cryptographic schemes it uses. In the case of 

blind signature voting this means special attention should be given to the choice of hash, signing and encryption 

functions to use. REVS choices (1024bit RSA, SHA1) are at present trusted enough for their widespread use in 
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security critical industry applications to continue, but new implementations should choose up to date standard 

functions.7 

 

8.4. Ease of use 

We find the ease of use should be significantly improved. As with REVS election deployment involves a num-

ber of steps that could be made easier with a configuration/setup script. At the moment, a number of command 

line scripts have to be run with different concerns in order to get REVS running. This is however expected to 

fade away as new versions and variations of the implementation are produced. 

 

8.5. Vote resuming versus Pseudonym storage  

REVS currently supports the possibility of vote saving and resuming allowing the voter to collect parts of the 

signatures in distinct moments in time. This has been kept active in the current implementation of the traceable 

REVS, but we must bear in mind that it may lead to pseudonym disclosure to the voter (and eventually vote 

proof) if the voter modules run under a non-trusted computing base that gives the voter access to the saved 

voting state. This is somehow inevitable, as the voting state must include administrator signatures that are 

unique to the voter’s pseudonym. In the end, a choice must be made between: 

(1) providing a completely trusted computing base for the voter module (where the saved vote is inaccessible to 

a malicious voter), which permits secure vote saving and eradicates proof of vote 

(2) yielding the proof of vote to voters who either recover the pseudonym from the saved state or who inspect 

voter execution and locate the pseudonym (and the vote blinding factor) used. 

                                                           

 

7 In fact, SHA1 remains safe for practical use in 2007, the strong attacks on SHA0 and the recent discovery of an attack 

faster than brute force (with 2^63 hash operations) on SHA1 [WYH05] has made several agencies recommend that new 

applications choose the new SHA2 succeeding variants in detriment of SHA1. 
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9. Possibilities of further development 

9.1. Merging with other REVS projects 

The most immediate advance to expect is the integration of our traceable version of REVS into REVS projects 

(REVS, MobileREVS and other work being developed), so that the same software could produce:  

(a) Traceable and non-traceable elections, according to a per-election configuration option; 

(b) Elections with optional tracing (where voters could either include their pseudonym or omit it). 

We expect this merge to hold no great effort or theoretical challenges. 

9.2. Pseudonym storage 

 

If either proof of vote is allowed or a safe pseudonym storage mechanism is available, a cumbersome part of the 

protocol – retrieval of pseudonym from blinded versions stored at administrators - could be skipped. Though it 

would serve no great purpose to completely exclude from the software the possibility of storageless traceable 

voting, having the option of pseudonym storage could avoid leaving to the user the responsibility of deciding 

whether to generate a pseudonym (first-time process), as is done now.  
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10. Ending Note 

We find to have successfully developed a viable e-voting traceability mechanism without significant shortcom-

ings (for as long as the cryptosystem may, as at present, be made arbitrarily secure), and expect it to be applica-

ble to a large number of election and survey scenarios, where voter narrowing is not a major problem. In those 

cases, we expect that vote tracing will bring added value to statistics, and through that enhance the role of elec-

tronic voting in democratic communities and community-concerned institutions. 
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