
An evolution in the ShRep System

David Rodrigues
IST - Instituto Superior Técnico

L2F-Spoken Language Systems Laboratory - INESC-ID Lisboa
Rua Alves Redol 9, 1000-029 Lisboa, Portugal

David.Rodrigues@l2f.inesc-id.pt

Abstract. The starting point of this work was the ShRep system
developed by João Graça. In it, João Graça presents a solution to
solve some of the problems in the pipes-and-filters architecture,
used mostly in natural language processing. The system replaces
the pipes-and-filters architecture with a client-server architecture.
In this architecture, the server acts as a repository in order to
maintain all the data produced by the tools and to do all the
processing necessary to the correct management of the data, while
the client is composed by the natural language processing tools
that request data from the repository, process it, and save the
results in the repository.
After the MARv tool was fully integrated, the ShRep system pre-
sented a very high processing time. Because of this, some changes
were made in order to optimize the system, namely by reducing
the impact of the communication protocol between the client and
the server. Finally a code model was developed in order to per-
mit the use of the ShRep system in StandAlone mode; this was
achieved by replacing the server with files, with the data being
loaded at the beginning, and stored in the end of the tool pro-
cessing cycle.

1 Introduction

Usually, Natural Language Processing (NLP) systems use pipeline archi-
tectures. This means that each tool processes data supplied by another
tool and supplies the result to yet another tool of the chain. This process
has some problems, related to the following:

– Each tool should know what do with the information that was re-
ceived, and decide which of that information needs to be forwarded
to the next tool;

– If some tools use different data types, conversion modules are required
between then.

The first problem can be solved if each tool produces all the informa-
tion required for the next tools, but this approach requires that each tool



should know the information needed by the other tools. Another approach
consists in each tool forwarding all the information that was received to
it. The later approach adds complexity to the system and performance
penalties.

The second problem requires a conversion module between each tool
that interchanges information with tools that have different data formats.
In a chain with n elements, the system needs, at least, n*n conversion
modules.

The system ShRep - Shared Repository for Natural Language Process-
ing [1], presents an alternative to the pipeline architecture. The architec-
ture of the ShRep system is a framework using client-server architecture.

The server acts as a repository that maintains the data available for the
tools and the relations between the layers of data. The data model defined
in the server is present in figure 1 and is organized in layers, which allows
differentiated analysis and signal data layers. The signal data layer allows
us to describe data that could either be audio or text. The analysis layer
is used to maintain results obtained by the tools that use the system; this
layer also allows defined segmentations as well as defined classifications
that add features to the segments. It’s also possible to define relations
between segments of the same analysis or between segments of different
analysis.

Fig. 1. Data model ShRep system.

The client side of the architecture presented in the ShRep system is the
tool that interacts with the server in order to process the data. The system



provides some client libraries, assigned to some programming languages,
which abstract the connection and the communication protocol between
the tools and the server. This abstraction allows the developer of NLP
tools to concern only with the use of the ShRep data model.

ShRep system solves the pipe and filters system first problem by keep-
ing all the information readily available in the server side. One tool only
pulls the information that it is needed to produce results. Nevertheless,
even if one tool doesn’t use all data existing in the repository, it is still
available for use by other tools. The second presented problem for the pipe
and filters system isn’t eliminated in the ShRep system, but is certainly
reduced. If a tool uses a different data model, conversion module is needed
between the ShRep system and that tool, as well as another conversion
module between the tool and the ShRep system. In an extreme case, if
the system has n tools integrated, the system may need 2*n conversion
modules.

The following tools were integrated in ShRep system, by João Graça:

– Sentence Splitter;
– Smorph which is a word tokenizer and a pos-tagger;
– PAsMo which is a rule-based rewriter.

In the development of this master thesis, two additional tools were
integrated:

– MARv which is a morfo-sintactic disambiguator;
– Palavroso which is a word tokenizer and a pos-tagger, such as Smorph.

The MARv tool processed an XML file with 57 498 words and 102
776 classifications in 8.005 seconds. With the ShRep system as input, the
MARv tool processed the same information in 22 minutes and 43.351
seconds (see table 1).

Parameter XML File ShRep System

Real 8.005s 22m43s351
Tempo User 7.688s 5m46s486

SYS 0.314s 0m45s883
Table 1. Times for MARv tool, with ShRep system and XML file as input.

We detected that the implementation of the solution proposed by João
Graça had some problems, mainly because the tool has very lengthy pro-
cessing time when using the ShRep system, compared with the execution
time of the same tool with XML files as input.



The analysis of the ShRep system shows that the biggest problem lies
in the communication protocol, XML-RPC. The following problems were
detected during the analysis:

– The information presented in the client is duplicated. For each request
of a data model element, a request is made to the server without
first verifying if the desired element already exists in the client. For
instance, if a tool requests the same segment in n different moments,
theclient requests the same segment n times;

– The client produces a server request in each request produced by one
tool. For example, if a tool requires 50 000 segments with 150 000 clas-
sifications and creates 150 000 new classifications, the client performs
350 000 requests to the server;

– A large amount of information is transmitted in each request between
the client to the server;

The proposed solution tries to reduce the problems detected on the
communication protocol:

– Only one representation is kept on the client side, for each element
that a tool requested from the server;

– Reduction in the number of requests made from the client to the
server;

– Reduction in the amount of information transmitted on each request;

We also tried to eliminate the use of a communication protocol by
converting the client into a standalone system.

1.1 Plan of the paper

The rest of this paper is organized as follows. Section 2 presents the pro-
posed solution to reduce the problems in the communication protocol.
Finally, Section 3 concludes and presents some lines for future work.

2 Solution

The difference of MARv tool in processing time between a XML file
and ShRep system as input is associated with some problems existing
in the ShRep system, mainly related with the communication protocol
that bridges the client to the server.

2.1 Increase performance

The first step to solve these problems wat to implement a cache system
in the client. The cache solves the data duplication problem, because the
client first checks if an element is in the cache before executing a remote



call. The cache also reduces the number of remote calls made by the client,
because if a tool needs the same element in two different moments, the
client only makes one remote call and preserves that element in the cache.

In addition to the cache, all the information that was previously trans-
mitted from the client to the server is replaced by identification informa-
tion. For example, if a tool wants to add a classification to a given segment,
the client only needs to send the identification of that segment and the
directly related classification information. By using this identification in-
stead transmitting all the unneeded information related with the segment,
the amount of exchanged information is greatly reduced.

The next problem detected is that the client requests the server all
the elements that are required by a tool. If an analysis requires 20 000
segments, the client makes 20 000 remote calls to the server side. To
solve this problem, a new method was developed that in a single call, a
set of elements is transfered from the server to the client, reducing the
number of remote calls. These elements bring some related information
aggregated, for instance, segments can bring its associated classifications.
This solution requires that the client must have the capacity to keep all
the segments sent by the server, and must give the correct segments to
the tool.

We also tried to reduce the number of calls made by the client to the
server. In the first version of ShRep system, every time a tool wanted to
update some information in the server, it produces a remote call, that
resulted in many calls to the server, each call with a high cost, in terms of
processing time. The new solution accumulates a set of update requests in
the client and only transmits them to the server when it has a significant
amount of requests. The cost of transmitting more information in a single
call is far less than the cost of making a larger number of calls. The
implemented solution decreases the number of remote calls, but requires
that the client overtakes some responsibilities that in the earlier version
belonged to the server, such as:

– The client needs to attribute the new elements id’s and to create
relations between several elements in the domain model. This feature
is important because the client may have some requests where the
necessary information is only available on the client side. This occurs
because the client only makes the update on the server when several
update requests are made;

– The client needs to make all verifications that in the old version
were only made by the server. For instance, one analysis can only
be changed if its state is open;

With these functionalities implemented in the client, the main use of
the server is to keep the data accessible to all other tools integrated in the
system.

To aggregate the requests in the client each request is encapsulated
with the Command Design Pattern [2]. The implementation of the com-



munication protocol has some limitations related to the amount of data
transferred in one single call: the maximum number of commands that is
possible to send from the client to the server is limited to 20 000.

We also reducted the amount of information transmitted between the
client and the server, and between the server and the client. The informa-
tion exchanged was very expressive, which results on lots of information
to describe the data and lots of data itself. The objective is to reduce the
amount of information that describes the data, using a compact version
of the information. An example of this is presented in figure 2.

OLD VERSION

<create-segment-command id="1" type="" description="">

<segmentation-identification id="1" analysis-id="1" />

<region signal-data-id="1">

<start-index><index type="0" value="1"></start-index>

<end-index><index type="0" value="7"></end-index>

</region>

</create-segment-command>

NEW VERSION

<create-segment-command s="1 0 0 1 1 1 1 0 1 0 7 0 0">

Fig. 2. Information reduction example.

Another change made in the ShRep system was the introduction of
hash tables in the server, which reduces the time to search the domain
elements that are referenced by an id.

With these five improvements the processing time of the MARv tool
with the ShRep system was reduced by 98.03%, from the initial 22 minutes
and 43.351 seconds to 26.862 seconds (see table 2). Although still larger
than the use of the MARv tool with an xml file, it turns the use of the
tool in the ShRep system possible.

Parameter XML File Start ShRep system Final ShRep system

Real 8.005s 22m43s351 0m26s862 (-98.03%)
Tempo User 7.688s 5m46s486 0m9s265 (-97.33%)

SYS 0.314s 0m45s883 0m0s440 (-99.04%)
Table 2. Times for MARv tool, with start and final ShRep system and XML
file as input.



2.2 StandAlone version

Another experience made was to avoid the communication protocol. We
developed a new version of the ShRep system, named standalone. In this
version, the server is eliminated and the data is loaded and saved from
a file. The idea of eliminating the communication protocol appeared be-
cause it was one of the biggest problem if the system. With the previous
described changes, the client now has all the functionalities existing in the
domain model of the server. So, the only change necessary in the client
was the ability to work with files, in order to load the data for the ini-
tialization of the data model and to save the data when the tool finishes
the processing. The only change in the tools is that, now, the name of the
input files are given as input instead of the server location.

This version of ShRep system significantly reduces the process time,
from 26.862s in the client/server version to 8.967s (see table 3). However,
this version has a somewhat bad design that implies that all the data is
loaded at the start of the process and is saved at the end of the process.
An implementation where the system only loads the information that will
be necessary for the tool and only saves the information that was created
by the same tool would decrease the overall processing time, making it
closer to the time obtained with the XML file.

Parameter XML File ShRep with Repository ShRep StandAlone

Real 7.508s 26.862s 8.967s
Tempo User 7.253s 9.265s 8.777s

SYS 0.277s 0.440s 0.123s
Table 3. Times for MARv tool, with ShRep system with repository and in
standalone version and XML file as input.

.

3 Results and Future work

This works presents the ShRep system and validates it. The system was
developed by João Graça, but an evaluation was still needed to allow the
identification of existing problems. This work performs that evaluation,
diagnoses some problems in the ShRep system and presents solutions that
were implemented to solve them.

In conclusion, the changes made in the ShRep system turn it usable.
The start version has a large processing time and the new version presents
an acceptable time. This work also offer a new way to use the ShRep
system, in a standalone version. This version presents a processing time



very close to the time presented by the tools using other kind of input
data.

The integration of more tools in the system, the improvement of data
loading/saving in the standalone version and the additional modifications
to the communication protocol, such as the replacement of the XmlRpc by
another communication protocol, are examples of possible improvements.

References

1. João de Almeida Varelas Graça. A framework for integrating natural lan-
guage tools. Master’s thesis, Universidade Técnica de Lisboa, Instituto Su-
perior Técnico, 2006.

2. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns. Addison-Wesley Professional, January 1995.


