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Abstract

The present work deals with the finite element
analysis and optimization of structures for flut-
ter instability originated by the action of non-
conservative forces. Three models are considered
for this purpose. The first case considers a can-
tilevered circular beam subjected to a partially non-
conservative end-load, such as the thrust generated
by a single propeller rocket. The second considers a
thick plate subjected to the same type of end load
as the circular beam. Finally the third model fo-
cuses on the problem of a flat panel subjected to
the non-conservative load generated by a low su-
personic flow. As a first optimization method, opti-
mized designs are obtained by varying the column’s
cross-sectional area. In a later stage, plate element
formulation is used to obtain different optimized
structures for equivalent loading conditions. Con-
sidering this plate element formulation, optimized
structures are also obtained for the case of the plate
subjected to a supersonic flow. Results for the sta-
bility analysis and optimized results are presented
and discussed for each model.

1 Introduction

In general terms, flutter is a dynamic instabil-
ity of a body subjected to non-conservative forces
wherein its oscillations increase without bounds.
Hence, this is a serious concern when dealing with
the design and project of any structure subjected
to these forces. In aeronautical terms, flutter is an
aeroelastic self-excited vibration with a sustained or
divergent amplitude, which occurs when a structure
is placed in a flow of sufficiently high velocity.

The present work deals with the stability anal-
ysis of simple structural elements subjected to
non-conservative loads and subsequent optimiza-
tion procedures in order to minimize structural vol-
ume while keeping stability conditions. There are
several engineering areas in which non-conservative
loads are quite common such as automotive, aero-

nautics or even space structures. For all these ap-
plications the importance of optimal designs is re-
inforced by the constant need of lighter structures
with very high stability requirements.

As a first model considered in the present work,
consider a single propeller rocket subjected to
thrust and aerodynamic drag, both good examples
of partial non-conservative forces. The concept of
partial non-conservative force can be explained by
considering the rocket propeller from the mentioned
structure. While the thrust from the rocket engine
is a pure non-conservative force (which may change
in direction and magnitude with time and struc-
tural geometry variations), the weight of the en-
gine itself is a conservative load (does not change
direction or magnitude with time or structural dis-
placement). This complex physical problem can be
simplified to the case of a simple cantilevered col-
umn subjected to a partial non-conservative force
as shown in Fig. 1. Despite generating some con-
troversy (as discussed by Sugiyama et al. (2002);
Langthjem et al. (1999); Elishakoff (2005)), the sim-
plified model allows for insightful and more efficient
analysis and optimization studies. In addition, the
presented model shows equivalent stability charac-
teristics as a full model and the results have been
verified experimentally (by Sugiyama et al. (2000)).

When a structure is subjected to the combined
action of both conservative and non-conservative
forces, different instability modes need to be con-
sidered depending on the loading characteristics.
The presented work shows that when a uniform can-
tilever column is subjected to a pure conservative
load or when the non-conservative load contribu-
tion is relatively small (less than half of the total
applied load), the instability mode presents itself
as divergence. As the non-conservative load compo-
nent increases (above half of the total applied load),
instability occurs as flutter. Flutter instability can
be defined as an unfavorable coupling between dy-
namic and static loads, which results in the loss of
structural stability and, ultimately, structural col-
lapse. The presented formulations developed fol-
low the work by Langthjem and Sugiyama (1999,
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Figure 1: Assumed simplifications to establish the
considered model.

2000a,b).
The differential equations describing the behav-

ior of the presented model are solved using the fi-
nite element method and the stability conditions for
the column are displayed as load-frequency curves.
A first optimization process was implemented, con-
sisting on the minimization of the structural volume
by varying the cross-sectional areas of the column
while maintaining the stability conditions above the
values obtained for the uniform column. For this
optimization process the column was modeled us-
ing bidimensional beam elements.

A second finite element model is considered
for the same physical problem by using three-
dimensional plate element. Stability results are pre-
sented for the uniform case, and a thickness opti-
mization process is implemented in order to obtain
new optimized designs. General studies of plates
subjected to distributed follower loads are presented
by Kim and Park (1998); Kim and Kim (2000) and
Jayaraman and Struthers (2005). Zuo and Schreyer
(1996) developed analysis techniques for divergence
and flutter instability of beams and plates subjected
to follower forces.

Using the same plate finite element formulation,
the problem of a flat plate under a low supersonic
flow is considered. The instability phenomenon that
occurs in these conditions is called panel flutter and
has been studied by Suleman and Venkayya (1994,
1996). Optimization studies for panel flutter have
also been developed by Suleman and Gonçalves
(1997) using piezoelectric patches and Odaka and
Furuya (2005) presents a robust thickness optimiza-
tion for a plate wing.

In order to maintain stability conditions for all
the considered models, constraints had to be ap-
plied to the critical load values during the opti-
mization process. To avoid large jumps in the crit-
ical load between the iterative steps of the opti-
mization process, the frequency curves also required
constraints. It is known that the stability condi-
tions of a structure subjected to a non-conservative
force may not evolve smoothly with small geome-
try changes. Therefore, the optimization process

in these conditions becomes somewhat difficult and
requires strong optimization algorithms based on
sensitivity analysis in order to determine the deriva-
tives of the objective and constraint functions with
respect to the project variables. The optimization
process was performed using the method of moving
asymptotes developed by Svanberg (1987).

A more detailed description of the models pre-
sented and discussed in the present work can be
found in the thesis work developed by Pastilha
(2007).

2 Theoretical Models

2.1 Dynamic Stability of Elastic
Columns Subjected to Non-
Conservative Loads

The mathematical model that describes small
amplitude vibrations on a cantilevered column fol-
lowing the Bernoulli-Euler beam theory takes the
form,

∂2

∂x2

(
EI

∂2w

∂x2

)
+m

∂2w

∂t2
+ p

∂2w

∂x2
= 0, (1)

where E is the elasticity modulus, I = I(x) is the
area moment of inertia, m = m(x) is the mass per
unit length, p is the load applied at the free end of
the column and w = w(x, t) is the transverse dis-
placement at the instant t and at the position x.
Considering that the load p has two components
(conservative and non-conservative, the parameter
η is introduced to define the fraction of the total ap-
plied load that is non-conservative, as represented
in Fig. 2. For a clamped column at x = 0 and free
at x = L, the boundary conditions are given by

w(x = 0, t) = 0,
∂w(x = 0, t)

∂x
= 0,

EI
∂2w(x = L, t)

∂x2
= 0, (2)

∂

∂x

(
EI

∂2w(x = L, t)
∂x2

)
+

p(1− η)
∂w(x = L, t)

∂x
= 0.

Having defined the general equations which de-
scribe the behavior of the column, it is now possi-
ble to formulate the corresponding boundary value
problem by considering that the displacements are
given in the form,

w(x, t) = w̃(x) exp(λt), λ = α+ iω (3)

and scaling the problem variables into a dimension-
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Figure 2: Graphical representation of the load pa-
rameter η.

less form as

x̄ =
x

L
, w̄ =

w̃

L
, p̄ =

pL2

EI0
, m̄(x̄) =

m(x)
m0

,

Ī(x̄) =
I(x)
I0

, t̄ =
t

L2

√
EI0
m0

, λ̄ =
t

t̄
λ, (4)

where the index ’0’ corresponds to a uniform col-
umn. Replacing these dimensionless quantities in
equations 1 and 3, we have,

∂2

∂x̄2

(
Ī
∂2

∂x̄2

(
w̄ exp

(
λ̄t̄
)))

+

m̄
∂2

∂t̄2
(
w̄ exp(λ̄t̄)

)
+

p̄
∂2

∂x̄2

(
w̄ exp

(
λ̄t̄
))

= 0,

w̄(x̄ = 0, t̄) = 0,
∂w̄(x̄ = 0, t̄)

∂x̄
= 0, (5)

Ī
∂2w̄(x̄ = 1, t̄)

∂x̄2
= 0,

∂

∂x̄

(
Ī
∂2w̄(x̄ = 1, t̄)

∂x̄2

)
+

p̄(1− η)
∂w̄(x̄ = 1, t)

∂x̄
= 0.

Having defined the dimensionless problem for the
beam case the over bars will no longer be used, for
notation simplicity. Although it is possible to ob-
tain a semi-analytical solution for this problem, it
is only valid for columns with constant mass and
stiffness distributions. When considering a column
with non-uniform sections, a discretization method
is required in order to obtain the solution for these
equations.

2.2 Dynamic Stability of Plates
Subjected to Non-Conservative
Loads

2.2.1 Dynamic Stability Analysis of a Can-
tilevered Plate Subjected to an End
Load

In order to describe the deformations of a plate
the First Order Shear Deformation Theory, also
known as the Mindlin plate theory, is considered.
This theory is set upon a displacement field given
by (Reddy, 1992),

u1 = u+ zϕx, u2 = v + zϕy, u3 = w, (6)

where (u, v, w) are the displacements of a point with
coordinates (x, y, 0) and ϕx and ϕy are the rotations
of the transverse normal about the y and −x axes,
respectively. For a linear theory based on infinites-
imal strains and orthotropic materials it is possi-
ble to demonstrate that the in-plane displacements
(u, v) are uncoupled from the transverse deflection.
The in-plane displacements are governed by plane
elasticity equations and are not considered in the
present work therefore only the equations governing
the bending deflections (w,ϕx, ϕy) are developed.
For the considered model, represented in figure 3, a
distributed load P is applied to the side of the plate
opposite do the cantilevered face. This load has a
conservative in-plane component Nc and a tangen-
tial component Pf , where the relative magnitude of
each force is determined once again by the parame-
ter η which is defined analogously to the the beam
model as

η =
Pf

Nc + Pf
=
Pf

P
. (7)

Following the assumptions stated by Mindlin, the
strain energy for an isotropic shear deformable plate
is given by,

U =
1
2

∫ ∫
D

[(
∂ϕx

∂x

)2

+ 2ν
∂ϕx

∂x

∂ϕy

∂y
+

(
∂ϕy

∂y

)2

+
1− ν

2

(
∂ϕx

∂y
+
∂ϕy

∂x

)2
]

+ (8)

A

[(
ϕx +

∂w

∂x

)2

+
(
ϕy +

∂w

∂y

)2
]
dxdy,

where D is the bending stiffness of the isotropic
plate and A is the extensional stiffness. Likewise,
the kinetic energy of the plate is,

T =
1
2

∫ ∫
Im

[(
∂ϕx

∂t

)2

+
(
∂ϕx

∂t

)2
]

+

m

(
∂w

∂t

)
dxdy, (9)
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Figure 3: Geometric dimensions and load properties
for the presented model.

where Im corresponds to the mass moment of inertia
and m is the mass per unit area of the plate. The
potential energy corresponding to the conservative
component of P is given by

V =
1
2

∫ ∫
P (ϕx)2

dxdy, (10)

and the virtual work done by the nonconservative
load can be obtained from,

δWf =
∫ ∫

ηP
∂w

∂x
δ̄(x− a)δwdxdy, (11)

where δ̄ is the Dirac delta function. The equations
of motion can now be derived from the previous
equations using the generalized form of Hamilton’s
principle

δ

∫ t̄2

t̄1

[T − U + V +Wf ] dt̄. (12)

Assuming harmonic motion, the global displace-
ment vector can be written as,

u = ũ exp(λt), λ = α+ iω, (13)

Introducing the following dimensionless variables

x̄ =
x

Lx
, ȳ =

y

Lx
, w̄ =

w̃

Lx
,

P̄ =
PL2

x

D0
, Ā =

Ah0

D
, m̄(x̄, ȳ) =

m(x, y)
m0

, (14)

Īm(x̄, ȳ) =
Im(x, y)
m0h2

0

, t̄ =
t

L2

√
D0

m0
, λ̄ =

t

t̄
λ,

where the index ’0’ corresponds to a plate with uni-
form thickness h0. As for the beam model, the over-
bars denoting the dimensionless quantities will no
longer be used for notation simplicity. By replacing
these dimensionless quantities and the displacement
vector defined by 13 into equation 12 it is possible
to obtain the dimensionless equation that can be
discretized from the finite element method.

Figure 4: Simply supported plate under a Super-
sonic Flow.

2.2.2 Dynamic Stability Analysis of a Plate
Under Supersonic Flow

Piston theory is an inviscid unsteady aerody-
namic theory that is used quite often in supersonic
and hypersonic aeroelasticity. With it, it is possi-
ble to determine a relationship between the local
pressure on any point of the considered surface and
the component of fluid velocity normal to the mov-
ing surface. The derivation of this expression uti-
lizes the isentropic simple wave expression for the
pressure on the surface of a moving piston, result-
ing in the following pressure difference distribution
(Odaka and Furuya, 2005),

∆p =
ρ∞U

2
∞√

M2
∞ − 1

(
∂w

∂x

)
, (15)

where a zero flow deflection is assumed for the
panel’s leading and trailing edges and aerodynamic
damping is ignored. The work done by the surface
pressure resulting from the aerodynamic flow can
be obtained from the principle of virtual work as,

δWpf =
∫ ∫

ρ∞U
2
∞√

M2
∞ − 1

(
∂w

∂x

)
δwdxdy. (16)

The governing equation for a plate subjected to a
supersonic flow is then obtained by replacing the
term corresponding to the virtual work developed
by the non-conservative end-load model in equation
12 with the work given by equation 16.

3 Finite Element Analysis

The discretization of the previously introduced
differential equations and corresponding boundary
conditions given in dimensionless form by equations
1 and 3 for the beam model and by equation 12 for
the plate models, are solved using the finite element
method. For the beam model, two node elements
with two degrees of freedom at each node are con-
sidered with full integration. For the plate models,
four node elements are considered with reduced in-
tegration and three degrees of freedom at each node.
Reduced integration is used to minimize the effects
of shear locking verified for thin plates. For the
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beam case, the column is divided into Ne line el-
ements, each with length le and a linear diameter
variation given in element coordinates by,

he = (1− ξ)µe + ξµe+1 (17)

in which µ is the diameter of the beam at node
e. For the plate discretization, the structure is di-
vided into Nex

elements in the x direction and Ney

elements in the y direction, each with a length lx
and height ly. The thickness distribution along the
element is also assumed to have a linear evolution
according to,

he =
4∑

i=1

1
4

(1 + ξξi)(1 + ζζi)µi, (18)

given in the element local reference frame. Using
Hermite cubic interpolation functions for the beam
element discretization and Lagrange linear interpo-
lation functions for the plate problems results in the
following eigenvalue problem,

Lu =
[
K− λ2M− P (Gc − ηGf )

]
u = 0, (19)

where K is the stiffness matrix, M is the mass ma-
trix, Gc and Gf are the load matrices correspond-
ing to the conservative and non-conservative load
components, respectively. These two last matrices
are replaced by the dimensionless dynamic pressure
loading matrix Q in the panel flutter problem.

The solution of equation 19 was implemented us-
ing MATLABr and the solutions are obtained by
defining a set of load points between 0 and pfinal

(Qfinal for the panel flutter model) and extracting
the corresponding frequency eigenvalues and eigen-
modes for each of these loads. Several studies were
developed to determine the adequate number of
load points, to decide upon the value of pfinal and
to define the number of elements necessary to pro-
duce accurate results. A verification study was also
developed for both finite element models, compar-
ing some results from the implemented codes with
results from the commercial software ANSY Sr.
Results have shown a good agreement both for the
beam and plate element codes.

3.1 Stability Results for a Column
Subjected to a Partial Non-
Conservative End Load

The solution for the eigenvalue and eigen-
vector problem presented by equation 19, for
both the beam and plate problems subjected to
non-conservative end loads, was implemented in
MATLABr in order to obtain the eigenvalue fre-
quency and corresponding modes for any given load
p. Evaluating these frequency values, it is possible

Figure 5: Stability diagram of the uniform plate,
presenting also the results from the beam model.

to identify the loads for which the structure loses
rigidity and the corresponding instability mode.
For a given load parameter η, when a frequency
reaches zero, the instability mode is divergence.
Flutter occurs when two frequency values coalesce,
resulting also in the loss of structural rigidity.

The stability diagram presented in figure 5 shows
the evolution of the critical divergence and flutter
loads with different possible load conditions ranging
from (η = 0 to η = 1), as was done before. The re-
sults obtained for the plate are presented along with
the stability results obtained for the beam model.
As it can be seen from the diagram, the instability
mode changes from divergence to flutter at η = 0.5.
From this diagram it is also possible to notice that
as divergence turns into flutter, the stability margin
also increases significantly. This is mainly because
damping effects are not considered in the present
analysis, although it can also be verified in a smaller
degree for damped structures. Another conclusion
that can be taken form the figure is that both the
beam and plate models produce quite similar re-
sults, in spite of the critical loads for the plate model
being generally inferior to the ones obtained from
the beam model.

As mentioned earlier, flutter occurs when fre-
quency coupling is verified at any given load con-
dition. Thus, one of the most important analysis
aspects to consider when studying this type of insta-
bility problems is the structural load-frequency re-
sponse. Figure 6 shows the frequency load curves of
a uniform column with a load parameter of η = 0.5,
representing both the real part of the frequency
and the imaginary part. This load condition was
chosen because at this load condition the main in-
stability mode changes from divergence (η < 0.5)
to flutter (η > 0.5). As the image shows, the
critical load for the structure is divergence and
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Figure 6: Load frequency curves for a load param-
eter of η = 0.5, representing the real and imagi-
nary parts of the frequency values, obtained with
the beam model.

pd = 9.870. Notwithstanding, at this load con-
dition flutter modes are also present. From the
represented imaginary part of the frequency it is
possible to identify two flutter modes. At the flut-
ter load, while the real part of the two adjacent
frequencies coalesce, their imaginary parts become
non-zero and originate the two symmetric branches
presented in the diagram. The first load occurs at
a load of pf = 16.05.

3.2 Stability Results for a Simply
Supported Panel Under a Super-
sonic Flow

The stability analysis was implemented for a sim-
ply supported square panel, with 0.3 × 0.3 meters
and a thickness of 0.01m. These values are only
relevant for the relative thickness with respect to
the characteristic length of the plate, since all the
results are presented in a dimensionless form.

The dimensionless dynamic pressure as a func-
tion of the frequency is presented in the two plots

Figure 7: Dimensionless dynamic pressure as func-
tion of the frequency. Real (left plot) and Imaginary
(right plot) representation.

from figure 7, representing both the real and imagi-
nary evolution of the critical dynamical pressure for
the panel. Comparing these results with the results
presented in figure 6, it is possible to recognize some
similarities in the load frequency curves, especially
in the complex domain, which reflect directly on the
flutter mechanisms that originate such a structural
response. When, for a certain dynamic pressure,
flutter instability is reached, the load values enter
the complex domain in the same way that when flut-
ter occurred in the beam model, the frequency val-
ues presented two complex branches different from
zero.

4 Optimization process

4.1 Problem Formulation

The purpose of the optimization method for the
proposed models is to determine an optimal design
which can allow the same stability boundaries as
the original model. This problem can be presented
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by,
Minimize V

µ
(20)

subject to,

1.Critical Load: pcr ≥ p0
cr

2.Frequency Curves: λn+1 − λn ≥ c
3.Ensure Flutter Instability: λ1 ≥ 0
4.Design Parameters: µmin

j ≤ µi ≤ µmax
j

where V is the dimensionless volume, pcr is the di-
mensionless critical load, λn is the nth dimension-
less frequency and µi is the project variable at node
i (which can be the equivalent dimensionless di-
ameter or thickness, depending on the considered
model).

The optimization algorithm for the beam for-
mulation was implemented iteratively using the
method of moving asymptotes developed and im-
plemented inMATLABr by Svanberg (1987). The
iterative process stops when changes in the objec-
tive function are under 0.01% or when the itera-
tion number reaches 150. In order to avoid large
jumps in the design variables between iterations,
limits where imposed. These limits were defined
depending on the evolution of the optimization pro-
cess, as well as the tuning parameters from MMA,
which were also defined upon experience with the
optimization algorithms.

4.2 Sensitivity Analysis
When implementing a structural optimization

process using gradient based methods, it is neces-
sary to perform a sensitivity analysis of the objec-
tive and constraint functions with respect to the
design variables. The sensitivity analysis method
for eigenvalue problems is fully described by Ped-
ersen (2003). The sensitivities for the critical load,
dynamic pressure and frequency values with respect
to the design variables are given by:

∂pcr

∂µj
=

vT (∂L/∂µj) w
vT (Gc − ηGf ) w

(21)

∂Qcr

∂µj
=

vT (∂L/∂µj) w
vT Aw

(22)

∂λ

∂µj
=

vT (∂L/∂µj) w
vT 2λMw

(23)

and λ = ω for all p < pcr, µe are the design vari-
ables, and v is the nodal solution vector of the prob-
lem adjoint to the finite element formulation pre-
sented by equation 19 and it is calculated solving
the following algebraic equation,

LT v =
[
K− λ2M + p (Gc + ηGf )

]T
v = 0, (24)

where the values of p and λ correspond to the point
for which the sensitivities are being calculated.

In the presented optimization problem, the objec-
tive function is the dimensionless structural volume,
V , which for the beam model is calculated through a
linear combination of the element lengths and nodal
diameters as,

V = aTµ, a = [l1, l1 + l2, l2 + l3, . . . , lNe
] (25)

where l are the element lengths and µ the project
variables. For the plate model, the dimensionless
volume is a linear combination of element lengths
and heights with the nodal thickness, and is given
by,

V =
Ney +1∑

j=1

Nex +1∑
j=1

µkbicj , k = i+(j−1)(Nex
+1)

(26)
with,

b =
[
lx1 , lx1 + lx2 , lx2 + lx3 , . . . , lxNex

]
c =

[
ly1 , ly1 + ly2 , ly2 + ly3 , . . . , lyNey

]
where lx is the element lengths in the x direction
and ly the lengths in the y direction. It is now
possible to write the derivatives of the volume with
respect to changes in the design variables as,

∂V

∂µj
= aj (27)

for the beam model and,

∂V

∂µk
= bicj , k = i+ (j − 1)(Nex

+ 1) (28)

for the plate models. It should be noted that these
derivatives are constant and do not depend on the
design variables.

In order to verify the accuracy of the results from
the analytical derivatives defined by 21, 22 and 23,
they where compared with the numerical approxi-
mation given by the finite differences method. Us-
ing second-degree finite differences formulas to cal-
culate the approximate solution for the derivatives,
it was possible to obtain a very good agreement be-
tween analytical and numerical methods, with er-
rors in the order of 10−6 %. This study confirms
that the analytical expressions for the derivatives
are accurate.

4.3 Optimization Results
4.3.1 Column Subjected to a Partial Non-

Conservative End Load

This section presents the optimized structures
obtained from the dimensionless uniform columns
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Figure 8: Optimized columns for various non-
conservative load parameters. The dashed lines rep-
resent the uniform column.

with stability characteristics as presented in the
previous section. A summary of the optimization
results obtained for the five load conditions con-
sidered in the previous section is presented in the
following table:

η 0.00 0.25 0.50 0.75 1.00
Vopt 0.866 0.476 0.473 0.490 0.374
∆V (%) 13.4 52.4 52.7 50.9 62.6
Reference 0.866 − 0.486 − 0.379
Iterations 8 56 23 82 105

Table 1: Optimization results for the beam model.

These results were obtained using 3000 load steps
for the stability analysis and 20 load points between
0 and pcr for the calculus of the frequency sensitiv-
ities. The maximum and minimum values allowed
for the design variables were selected as µmax = 10
and µmin = 10−8, respectively.

As the results from the table show, the optimiza-
tion process allowed for considerably large volume
reductions while respecting all the imposed con-
straints. Comparing these results with the work
presented by Langthjem and Sugiyama (2000a)
once more, it is possible to verify that, for identical
load conditions, the optimized results are lower, or
equal at the worst, to the ones presented by these
authors. Figure 8 shows the shape of the dimension-
less optimized columns for the presented results.

4.3.2 Plate Subjected to a Partial Non-
Conservative End Load

The optimization results presented in this sec-
tion where obtained starting from the uniform di-
mensionless plate with the stability characteristics
presented in the previous section. As for the beam
model, a summary of the results is presented in the
next table. Since the plate model was developed so

as to have similar properties as the beam model, the
optimized volumes obtained from the beam analysis
are also presented,

η 0.00 0.25 0.50 0.75 1.00
Vopt 0.759 0.547 0.776 0.509 0.577
∆V (%) 24.1 45.3 22.4 49.1 42.3
Iterations 42 32 44 46 33

Table 2: Optimization results for the cantilevered
plate model.

In order to obtain the present results, several pa-
rameters had to be considered, as was the case for
the beam model. The implied stability analysis al-
gorithm used in the optimization process used 500
load steps and, once again, 20 load points between 0
and pcr. The MMA tuning parameters where again
upon experience, as for the previous analysis.

These results also allowed for considerable vol-
ume reductions, although the obtained volume val-
ues where higher than the presented values for the
beam model. This was somewhat unexpected, but
can possibly be justified by a series of reasons. First,
the plate model takes into account the shear stresses
on the structure and, as discussed by Langthjem
and Sugiyama (2000a), this forces the thickness evo-
lution along the plate to be smoother and, conse-
quently inducing another limitation on the volume
reduction. Another possible reason is the relatively
small precision of the performed numerical calcu-
lus, both by the reduced number of elements used
as well as the reduced number of load steps.

Figure 9 shows the evolution of the dimension-
less thickness parameter. The darker tone indicated
areas where material reinforcements are required,
while lighter areas indicate that there is a reduced
need of material in these areas.

4.3.3 Simply Supported Panel Under a Su-
personic Flow

The optimization process developed for the min-
imization of the structural weight of a panel sub-
jected to a low supersonic flow, follows the same
basic considerations of the two previously presented
models and some aspects relating the optimization
of structures subjected to non-conservative loads
were once again confirmed.

The need for frequency constraints in order to
obtain a convergent optimization sequence is dis-
cussed with some level of detail by Odaka and Fu-
ruya (2005). They refer to the fact that when con-
sidering frequency separation in the optimization
process we have a robust optimization scheme, be-
cause by ensuring this frequency separation, the
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Figure 9: Optimized plate designs, showing the di-
mensionless thickness distribution for various non-
conservative load parameters.

structure is optimized taking into account not only
the main flutter instability mode, but also to higher
modes. This robustness comes as a consequence of
avoiding the mentioned convergence problems.

Considering now the frequency constraints in the
optimization process it is possible to obtain a good
convergence of the results in a relatively reduced
number of iterations. Setting the frequency separa-
tion constant as c = 10, it is possible to obtain a vol-
ume reduction of 13.7%, with the thickness distri-
bution represented in figure 10. These results were
obtained with the project variables limited between
µmax = 1.5 and µmin = 0.5 and a slack parameter
set as ε = 0.1.

5 Conclusions and Further re-
marks

From the work described in this article, it is pos-
sible to demonstrate the importance of finding opti-
mal design solutions in flutter instability problems,
since results show that it is possible to greatly re-
duce structural weight while maintaining structural
stability. When considering applications like aero-
nautics, where structural weight and volume are an
important design issue, large volume reductions as
the ones obtained in the present work demonstrate
the need for optimal solutions. It was possible to
verify the well-known fact that flutter instability is
very sensitive to shape and load variations.

From the first implemented model, it is possible
to verify one of the basic characteristics of struc-
tural optimization problems: When a structure is

Figure 10: Dimensionless thickness distribution on
the panel. Results obtained with a frequency sep-
aration constant of c = 10 and constraints on the
project variables.

optimized for a certain load condition, it’s behav-
ior when subjected to loading conditions different
from the project load will be affected. The imple-
mented beam model was tested for several different
load conditions, reproducing results available in the
bibliography for both the stability analysis and op-
timization methods.

It is also important to keep in mind that the ob-
tained optimization results for the plate and panel
flutter models are preliminary and where obtained
while writing the current thesis. Since the opti-
mization process depends upon a large number of
factors that must be adjusted according to the de-
velopers experience and sensitivity to the problem
at hand, it is likely that further work will produce
better results.

As further work to be developed, it is possible to
point out the verification of the developed models
with any available reference examples and data, or
even developing experimental verification models.
The development of the analysis algorithms using
different theoretical principles, such as considering
the beam formulation by the Timoshenko beam and
a Kirchhoff plate formulation. These verifications
would ensure the robustness and accuracy of the
developed models. The implementation of new op-
timization approaches to the problem would also be
greatly valued, as well as a study on the influence
of the different optimization parameters on the fi-
nal optimized results. Finally, the generalization of
the developed models for more realistic and com-
plex structural models would be an excellent follow
up for the present work.
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