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We are at the very beginning of time for the human race. It is not unreasonable that we
grapple with problems. But there are tens of thousands of years in the future. Our respon-
sibility is to do what we can, learn what we can, improve the solutions, and pass them on.

Richard Feynman
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Abstract

The present work deals with the finite element analysis and optimization of structures for
flutter instability originated by the action of non-conservative forces. Three models are considered
for this purpose. The first case considers a cantilevered circular beam subjected to a partially
non-conservative end-load, such as the thrust generated by a single propeller rocket. The second
considers a thick plate subjected to the same type of end load as the circular beam. Finally
the third model focuses on the problem of a flat panel subjected to the non-conservative load
generated by a low supersonic flow.

The aim of the three presented models is first to present a comprehensive development and
formulation of the governing equations for the structural behavior for each model, use numerical
methods to implement the solution of these equations and the development of optimization
processes with the goal of achieving minimal volume structures while maintaining structural
stability within a large interval of excitation frequencies. As a first optimization method, optimal
designs are obtained by varying the column’s cross-sectional area. In a later stage, plate element
formulation is used to obtain different optimized structures for equivalent loading conditions.
Considering this plate element formulation, optimized structures are also obtained for the case
of the plate subjected to a supersonic flow.

Results for the stability analysis and optimized results are presented for each model. These
results are discussed with respect to the stability characteristics, analyzing the mechanisms that
characterize flutter for each considered model, comparing also the results from the different mod-
els and, whenever possible, comparisons with bibliography results are presented. The optimal
designs are also discussed with respect to volume reduction and the influence of the optimiza-
tion process on the structural stability. Considerations are made with respect to the numerical
methods used, limitations and advantages of the considered models and future developments for
the presented work.

Keywords: Dynamic Stability, Flutter, Follower Loads, Panel Flutter, Structural Optimization,
Beck’s Column, Finite Element Analysis.
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Resumo

No presente trabalho apresenta-se uma metodologia de análise e optimização de estruturas
com respeito à instabilidade dinâmica do tipo flutter, originada pela acção de forcas com compo-
nente não conservativa. Três modelos são apresentados e discutidos: O primeiro considera o caso
de uma coluna de secção circular encastrada numa extremidade e com um foguete propulsor na
extremidade livre; O segundo caso refere-se ao mesmo exemplo, mas considerando uma placa no
lugar da coluna; Finalmente, o terceiro modelo considera o fenómeno de panel flutter que ocorre
em painéis sujeitos a escoamentos supersónicos baixos.

O objectivo destes três modelos é, numa primeira instância, o desenvolvimento e formulação
das equações que descrevem o comportamento estrutural de cada modelo, posteriormente aplicar
métodos numéricos para implementar algoritmos para resolver estas equações e, finalmente, o
desenvolvimento de processos de optimização com o propósito de obter estruturas com volume
mínimo garantindo os mesmos parâmetros de estabilidade das estruturas originais. Como um
primeiro método, os resultados optimizados são obtidos variando o diâmetro das colunas consider-
adas. A seguir, introduz-se um modelo de placa, para obter diferentes resultados de optimização
variando a espessura da placa, para condições equivalentes às do modelo de coluna. Usando a
mesma formulação de placa, obtém-se resultados de optimização para um painel simplesmente
apoiado sujeito a um escoamento supersónico incidente.

São apresentados resultados para a análise de estabilidade de cada modelo considerado, sendo
discutidos em termos das características de estabilidade, analisando os mecanismos que carac-
terizam o flutter para cada modelo, comparando também os resultados dos diferentes modelos
entre si e, sempre que possível, comparando os resultados obtidos com resultados existentes na
bibliografia. Os resultados dos processos de optimização são também discutidos, considerando
as reduções de volume obtidas e a influência do processo de optimização na estabilidade das
estruturas finais. São ainda apresentadas considerações sobre os métodos numéricos usados,
vantagens e limitações dos modelos considerados e sua implementação e sugestões de futuros
desenvolvimentos.

Palavras-Chave: Estabilidade Dinâmica, Flutter, Forças Seguidoras, Panel Flutter, Optimiza-
ção estrutural, Coluna de Beck, Elementos Finitos.
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Chapter 1

Introduction

In general terms, flutter is a dynamic instability of a body subjected to non-conservative
forces wherein its oscillations increase without bounds. Hence, this is a serious concern when
dealing with the design and project of any structure subjected to these forces. In aeronautical
terms, flutter is an aeroelastic self-excited vibration with a sustained or divergent amplitude,
which occurs when a structure is placed in a flow of sufficiently high velocity.

The current work presents some formulation for analysis and optimization of simple structural
models subjected to the mentioned non-conservative forces. The three discussed models are:

• Stability of Beams subjected to non-conservative follower loads.

• Stability of Plates subjected to non-conservative follower loads.

• Stability of Plates under supersonic flows.

The main goal in the analysis of these models is the understanding and characterization of the
underlying mechanisms that originate flutter instability, as well as learning to differentiate it
from other instability methods in both cause and effect. The behavior of structures subjected to
non-conservative forces is frequently of difficult interpretation, since these forces require the use
of complex functionals in the problem formulation and, therefore, the intuitive understanding
of the physical results becomes difficult, mostly because the indirect effects may very well be
the determining ones when obtaining the structural response. In spite of this, the present report
intends to contribute for a clear and objective definition and classification of the instability modes
to which the studied structures are subjected.

Having developed the analysis methods that allow the structural stability characterization
for each model, the next goal defined for the current thesis is achieving optimized structural
designs, while preserving the main stability characteristics. Due to the non-conservative nature
of the load conditions, the optimization problems require the study of the sensitivities of the
parameters directly involved in the optimal design (such as the critical instability loads, the
excitation frequencies and the structural volume) with respect to the design variables (such as the
diameter of a beam, or the thickness of a plate). Efficient sensitivity studies are required for the
primary analysis algorithms, which leads to the necessity of effective computational procedures
and algorithms for large eigenvalue problems. Therefore, the importance of the numerical solution
methods is taken into account and the development of the solution algorithms is described with
considerable detail.

Aeroelasticity can be defined as the science which studies the mutual interaction between
aerodynamic, elastic and inertial forces, and the influence of this interaction in aircraft design (as
defined by Bisplinghoff et al. (1996)). Flutter is one of the main concerns within the aeroelasticity
domain and it has influenced the evolution of aircraft design since very early in the development of
aircraft structures. Since these structures must necessarily be light, they can present considerable
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deformations under load. These deformations change the aerodynamic load distribution in the
structure, which in turn changes the deformations and this cyclic process can lead to flutter.

Historically, the first know developments on aeroelasticity and flutter go back to the design
of windmills in The Netherlands, where several structural issues regarding the blades of the
windmills were solved empirically by moving the front spars of the blades from the approximate
mid-chord to the quarter chord position (as investigated by Drees (1978)). Another historical
milestone on the study of aeroelasticity and flutter instability is, oddly enough, related to Civil
Engineering: The instability and collapse of the Tacoma Narrows bridge in 1940. The collapse of
the bridge was originated by heaving and torsional vibration of the bridge deck, as can be seen
in figure 1.1. The collapse of the bridge originated a series of new studies and considerations
on the influence of flutter in Civil Engineering structures (a further discussion on the subject is
presented by Miyata (2003)).

Figure 1.1: Tacoma Narrows bridge under flutter instability (left) which ultimately lead to
structural collapse (right) (courtesy of Bashford and Thompson, 1940).

The first reports of flutter problems relating to aircraft structures go back to a few days
before the historical flight of the Wright brothers when, professor Samuel P. Langley failed his
second attempt to launch a powered flight machine, because of structural collapse, which was
posteriorly considered to happen for flutter instability reasons.

The first documented flutter study was accomplished by F. W. Lanchester during World War
I (Lanchester, 1916). This article studied the cause of the violent antisymmetric oscillations
originated in the tail of a Handley Page 0/400 biplane bomber. The two major conclusions
obtained in this work were that the oscillations did not result from the resonance induced by
vibratory sources, but were self-excited and that the increase of the torsional stiffness of the
elevators could eliminate the problem.

With the evolution of aircraft engineering and designs, the speeds increased and the devel-
opments in aeroelasticity and flutter instability became more and more extensive. Nowadays,
it is possible to see large investments by both small and large companies in the aeronautics
business, both in numerical analysis methods (as as can be seen in figure 1.2) and experimental
wind-tunnel testing (as shown in figure 1.3). The same concern is reflected in the engineering
research developed at universities.

A detailed description of aeroelasticity and flutter evolution throughout the 20th century,
with comprehensive reference data, can be followed through the work presented by Garrick and
Reed (1981) and Dugundji (2003).

As for the present and future of aeroelasticity, Livne (2003) states that, although the main
principles in the area are well established since the 1950s and 1960s, it is still a dynamic and
challenging area. Continuous developments in computational fluid mechanics, numerical struc-
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Figure 1.2: finite element model for the flutter stability analysis of the tail of the Lancair 360
airplane (courtesy of Aircraft Flutter, Inc., 2006).

Figure 1.3: Boeing 777 flutter model for wind-tunnel testing (courtesy of NASA, 2003).

tural analysis methods and optimization processes allow for the development of new and more
accurate developments in the area. In his work, Livne also presents a comprehensive bibliography
relating to various aspects of modern aeroelasticity.

Although generally associated with aircraft design, flutter instability problems are also quite
common in many other engineering applications. Any structure subjected to non-conservative
loads that change with the displacements of the structure is prone to have flutter instability.
Flutter instability problems can even be found in several other areas more or less related to
engineering problems such as medicine, electronics or even music.

One of such problems is the flutter instability of spinning disks due to the aerodynamic
pressure, as presented by Hansen et al. (1999). These problems include the study of disk saws and
computer disk memory storage, since these devices tend to use thinner disks at higher rotation
speeds. The main limitation in the design of these structures becomes the aerodynamically
induced vibrations. Other related developments in the area are presented by Renshaw et al.
(1994) and D’Angelo and Mote (1993).

Amongst other flutter instability problems are the instability of columns subjected to non-
conservative end-loads, also designed as follower forces. As will be further discussed in the present
work, these load conditions can be originated by rocket and jet engines, or the dry friction in
automotive disk brake systems, as can be followed in the review by Kinkaid et al. (2003). A
survey on different examples of beams subjected to follower loads is presented by Langthjem
and Sugiyama (2000b) and a more detailed description for these problems is presented on the
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following chapter. Another structural model which is susceptible to flutter instability, closely
related to the previous problem, is that of fluid conveying pipes. Païdoussis and Li (1993)
present a survey on the problem.

Spacecraft dynamics is another engineering area in which flutter instability problems can
occur. When large space structures need to change orbits or perform any position changes, they
require thrusters. These thrusters are commonly connected to truss-like and plate-like structures
which, due to the non-conservative nature of the forces originated by the thrusters, are quite
susceptible to flutter instability (Kim and Park, 1998). The problem of plates subjected to these
follower forces will also be more thoroughly discussed in the following chapter.

The current work sets upon the problem of obtaining optimized designs of columns subjected
to non-conservative loads, following mainly as the work developed by Langthjem and Sugiyama
(1999, 2000a,b). They developed numerical analysis methods and experimental verification, as
shown in figure 1.4. Three basic models are presented. The first is the case of a cantilevered
circular beam subjected to a partially non-conservative end-load. The second considers a thick
plate subjected to the same type of end load as the circular beam. Finally the third model
focuses on the problem of a flat panel subjected to the non-conservative load generated by a
supersonic flow.

Figure 1.4: Experimental set for the verification of the work developed by Sugiyama et al. (2000).

The stability analysis for the presented models is developed using the finite element method,
using the Euler-Bernoulli beam theory for the beam model and the Mindlin plate theory for the
plate and panel models. These numerical solution schemes where selected based upon the charac-
teristics of each model and the existing models in the bibliography. The optimization process was
developed with a gradient based algorithm using the Method of the Moving Asymptotes (MMA)
developed by Svanberg (1987). This optimization process was selected given that the complexity
of the mechanisms that rule flutter instability problems render the conventional nonlinear opti-
mization methods (such as MATLABr’s fmincon algorithm) inviable for the presented models.

The main purpose of the thesis is first to present a comprehensive development and formula-
tion of the mentioned models, describe the considered numerical implementation for the analysis
and optimization schemes and posteriorly discussing the obtained results. Another aim of the
current work involves the development of a bridge between the initial considered model and other
examples, with the purpose of developing a formulation that can be adapted and used in the
future for a wider area of applications.

The present thesis is composed of four main sections: The first section deals with the theo-
retical formulation of the three considered models, presenting specific bibliographic reviews for
each model. This includes the major bibliographical references, the context of the problem, the
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mathematical formulations, the considered assumptions, approximations and limitations for each
model, and the dimensionless formulation of the model equations.

The second section focuses on the numerical methods used for the solution of the presented
model equations. Finite element formulation is described including numerical integration con-
siderations and the assembly of element equations. The solution schemes used for the eigenvalue
problems are discussed and the computational implementation is also presented.

The third section presents the optimization problem to be considered and describes the
iterative optimization process, including the sensitivity analysis formulation and computational
implementation.

The fourth section presents the obtained results for the three models. The verification of
the codes is presented and, whenever possible comparison with reference results is given and
discussed. The presented results include the stability analysis for each model and the posterior
optimization results.

Finally, the main conclusions and further developments regarding the obtained results, im-
plementation methods and validity of the considered models are presented.
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Chapter 2

Theoretical Models for Dynamic
Stability Analysis

This chapter presents theoretical models which describe the behavior of structures subjected
to both conservative and non-conservative loads. Three models are considered and their ruling
equations, basic assumptions, principles, advantages and limitations are presented and discussed.
The dimensionless formulation for each considered model is also developed in order to simplify
the numerical implementation which will be focused on the next chapter. These models follow
the work developed by other researchers and detailed formulations of the models are presented
developing in greater detail some of the relevant aspects of the formulation.

2.1 Dynamic Stability of Elastic Columns Subjected to
Non-Conservative Loads

2.1.1 Introduction

The first considered model deals with the behavior of cantilevered columns subjected to
conservative compressive loads and tangential non-conservative follower forces. Columns are
solid structures with one of the characteristic dimensions considerably larger than the other two.

The basic principle of a follower force can be widely observed in flexible missiles and spacecraft
structures with end rocket thrusters. These structures are subjected to conservative forces, such
as engine weight and non conservative forces which depend on the structural displacements such
as the engine thrust or aerodynamic loads. A single propelled rocket structure can then be
considered as a free-free beam subjected to a follower force which can be further simplified as
a cantilevered beam subjected to a follower force at the free end. This simplification can be
achieved by considering that the origin of a the fixed spatial coordinate system is located at the
tip of the structure, as represented in figure 2.1 (discussed by Langthjem et al. (1999)).

The mentioned simplifications allow for simpler and faster analysis and optimization algo-
rithms. In addition, the simplified structural response shows basically the same stability char-
acteristics as a full model and the results have been confirmed experimentally (by Sugiyama
et al. (2000)). A general discussion on the legitimacy of follower forces with respect to physical
applications has been developed over the last years. This discussion can be found through many
bibliographical references such as the articles published by Sugiyama et al. (2002); Langthjem
et al. (1999) and more recently Elishakoff has published a comprehensive review on the subject
(Elishakoff, 2005).

Although the present model does not take into account the influence of damping in the
structural stability of the columns and ultimately the optimal designs, several studies are available

6



Figure 2.1: Assumed simplifications to establish the considered model.

in the area. Langthjem published a study on the influence of damping in problems of dynamic
stability optimization (Langthjem, 1994). Another reference study is given by Langthjem and
Sugiyama (2000c) where a follow up for the work presented by Langthjem and Sugiyama (2000a)
is given, in which damping effects are taken into account.

On the influence of the torsional modes in the dynamic response of a beam the work from
Butler and Banerjee (1996) can be followed. This work deals with the optimal design of beams
with coupled bending-torsion loads and constraints in the frequency domain. A quite recent study
on the subject is presented by Luo et al. (2006), where a multi objective programming scheme
is presented for the conceptual design of an aerodynamic missile structure using topological
optimization approaches in which the optimization objectives are set by the eigenfrequencies
and critical loads.

The presented model follows the Euler-Bernoulli beam theory for an isotropic material. In this
theory, it is assumed that plane cross-sections perpendicular to the axis of the beam remain plane
and perpendicular to the axis after deformation (Reddy, 1992). From these basic assumptions,
it is possible to verify that this theory produces accurate results only for small displacement
problems and does not consider the shear deformation of the beam. Taking into account that
the intended optimization process can originate large variations on the cross-sections of the
beam along the length, this simplification may produce less accurate results. Furthermore the
model does not consider rotatory inertia and, therefore no torsional modes are considered in the
analysis. In spite of the shortcomings of the considered model, it stands as a simple, accurate
and didactic analysis for the influence of non-conservative loads on the dynamic stability of a
simple beam element and the corresponding optimal design.

2.1.2 Dynamic Stability Analysis

The mathematical model that describes small amplitude vibrations on a column can be
obtained by the Euler-Bernoulli beam theory as follows:

∂2

∂x2

(
EI

∂2w

∂x2

)
+m

∂2w

∂t2
+ p

∂2w

∂x2
+

∂2

∂x2

(
E∗I

∂3w

∂x2∂t

)
+ C

∂w

∂t
= 0, (2.1)

where E is the elasticity modulus, I = I(x) is the area moment of inertia, E∗ is the coefficient
of dynamic visco-elastic resistance, C is the coefficient of external viscous damping, m = m(x)
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Figure 2.2: Graphical representation of the parameter η.

is the mass per unit length, p is the load applied at the free end of the column and w = w(x, t)
is the transverse displacement at the instant t and at the position x. For the present work, the
effects of damping are neglected and as a consequence, equation 2.1 reduces to,

∂2

∂x2

(
EI

∂2w

∂x2

)
+m

∂2w

∂t2
+ p

∂2w

∂x2
= 0. (2.2)

In order to completely describe the problem, four boundary conditions are required. The
presented model is cantilevered at x = 0 and free at x = L. At the free end, the column is
subjected to a conservative compressive force of magnitude pc and a non-conservative follower
force of magnitude pf as shown in figure 2.2. The resulting load applied to the column has a
magnitude of p = pc + pf and a direction given by the angle η(∂w/∂x)x=L, where η gives the
relation between the two load conditions according to the formula,

η =
pf

pc + pf
=
pf
p
. (2.3)

From this definition, it is possible to note that η = 0 corresponds to a pure conservative load
and therefore the Euler Buckling problem and η = 1 corresponds to a pure follower load and
thus Beck’s flutter problem. With these definitions in mind, the four boundary conditions can
be given by,

w(x = 0, t) = 0,
∂w(x = 0, t)

∂x
= 0, EI

∂2w(x = L, t)
∂x2

= 0,

∂

∂x

(
EI

∂2w(x = L, t)
∂x2

)
+ p(1− η)

∂w(x = L, t)
∂x

= 0. (2.4)

Having defined the general equations which describe the behavior of the column, it is now
possible to formulate the corresponding boundary value problem by considering that the dis-
placements are given in the form,

w(x, t) = w̃(x) exp(λt), λ = α+ iω (2.5)

and scaling the problem variables into a dimensionless form as

x̄ =
x

L
, w̄ =

w̃

L
, p̄ =

pL2

EI0
, m̄(x̄) =

m(x)
m0

,

Ī(x̄) =
I(x)
I0

, t̄ =
t

L2

√
EI0

m0
, λ̄ =

t

t̄
λ, (2.6)
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where the index ’0’ corresponds to a uniform column. Replacing these dimensionless quantities
in equations 2.2 and 2.4, we have,

∂2

∂x̄2

(
Ī
∂2

∂x̄2

(
w̄ exp

(
λ̄t̄
)))

+ m̄
∂2

∂t̄2
(
w̄ exp(λ̄t̄)

)
+ p̄

∂2

∂x̄2

(
w̄ exp

(
λ̄t̄
))

= 0,

w̄(x̄ = 0, t̄) = 0,
∂w̄(x̄ = 0, t̄)

∂x̄
= 0, Ī

∂2w̄(x̄ = 1, t̄)
∂x̄2

= 0, (2.7)

∂

∂x̄

(
Ī
∂2w̄(x̄ = 1, t̄)

∂x̄2

)
+ p̄(1− η)

∂w̄(x̄ = 1, t)
∂x̄

= 0.

The dimensionless boundary value problem can then be obtained by deriving the previous equa-
tion with respect to the dimensionless time resulting in,

Λ(w̄) = (Īw̄′′)′′ + λ2m̄w̄ + p̄w̄′′ = 0,
w̄(0) = 0, w̄′(0) = 0, (2.8)

Īw̄′′(1) = 0, (Īw̄′′)′(1) + p̄(1− η)w̄′(1) = 0,

in which Λ is the differential operator, and the prime is used to denote differentiation with
respect to the dimensionless coordinate x̄. As can be verified from equation 2.8, the presented
dimensionless formulation does not depend on material properties. Considering that the column
has circular cross sections with radius r(x) and constant density it follows that,

Ī(x̄) =
I(x)
I0

=
πr(x)4/4
πr4

0/4
=
(
r2

r2
0

)2

=
(
πr2ρ

πr2
0ρ

)2

=
(
m(x)
m0

)2

= (m̄(x̄))2 . (2.9)

This property will prove to be quite useful for the optimization formulation described in chapter
3. Having defined the dimensionless problem at this point, the over bars will no longer be used
for notation simplicity.

Combining the equations presented in 2.8 and integrating the resulting equation in the di-
mensionless length of the column, the following functional can be obtained,

L(w) =
∫ 1

0

[
Iw′′ + λ2w + pw′

]
dx+ ηpw′(1) (2.10)

which is stationary with respect to variations δw, thus satisfying the kinematic boundary con-
ditions w(0) = 0, w′(0) = 0. This functional stands as the basis for any numerical discretization
method, originating a discretized equation of motion in the form,

Lw =
[
K + λ2M + p (Gc + ηGf )

]
w = 0, (2.11)

where K is the stiffness matrix, M is the mass matrix, Gc and Gf are the load matrices cor-
responding to the conservative and non-conservative load components, respectively. The dis-
cretization method used for the determination of these matrices is described in chapter 2.

It should be noted that from equation 4.23 it is also possible to determine the structural
natural frequencies (by setting p = 0), and the Euler buckling loads (by setting λ = 0 and
η = 0). This allows for a basic validation of the developed algorithms, by comparison with
commercial finite element software such as ANSY Sr as will be shown.
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2.2 Dynamic Stability of Plates Subjected to Non-Conservative
Loads

2.2.1 Introduction

This section focuses on the dynamic equations that describe the behavior of a plate subjected
to non-conservative forces. On a first case, the analysis of a cantilevered plate subjected to
the combined action of distributed conservative and non-conservative loads at the free end, as
represented in figure 2.3, is presented and discussed.

The purpose of the considered model is to reproduce the previously presented beam model
results and to allow for the development of thickness optimization procedures which can allow
for improved optimal results. This is an original approach to the optimization problem of a
structure subjected to a non-conservative load and no published studies have been found on the
subject.

In spite of the lack of published studies on optimization methods for plates subjected to non
conservative loads, several studies concerning the dynamic stability analysis for these problems
can be found. The work developed by Zuo and Schreyer (1996) studies the flutter and divergence
instability of beams and plates, establishing a parallelism between the two models and compares
the stability characteristics for both models and the nature of the non-conservative forces for
both cases. Kim and Park (1998) studied the dynamic stability of rectangular plates subjected
to intermediate follower forces. According to their work these forces can occur in space structures
under the action of control thrusters as previously mentioned. Kim and Kim (2000) present a
study on the dynamic stability of plates under a follower force. In their study, several finite
element models are presented and the influence of the selected finite elements and structural
plate formulation on the stability solution is verified.

The lateral-torsional flutter instability modes is also studies for the plate model presented by
Hodges (2001). In this article, the behavior of a cantilever plate subjected to a lateral follower
force at the tip is investigated. The presented model can be considered as a simplified study of
a high aspect ratio wing with a loading originated by a jet engine. Potapov (2004) developed
a study on the stability of elastic and viscoelastic plates in gas flows. The developed model
takes into account the shear strains for the structure. The plate is subjected to a load in the
plane of the plate (a follower force), originated by a supersonic flow. The stability solutions are
obtained using semi-analytical methods. Recently Jayaraman and Struthers (2005) presented
a work on divergence and flutter instability of elastic specially orthotropic plates subjected to
follower forces. The presented work studies the influence of the non-conservative load component,
the plate’s aspect ratio, the boundary conditions and the material orthotropy on the stability
conditions of the plate, specifically on the instability mode and the critical loads. Another study
is presented by Kumar et al. (2005), where the dynamic instability of doubly curved composite
panels subjected to partially distributed follower forces is analyzed using the first order shear
deformation theory.

As mentioned, the beam model was developed from the Euler-Bernoulli beam theory which
does not consider shear deformations and rotary inertia. For the plate model, the first order
shear deformable Mindlin theory is used to determine the structural behavior of the plate. This
theory allows for the study of both thick plates and the rapid thickness variations that can result
from the optimization process will now have to take into account the shear stresses through the
plate. This model can also consider torsional loading, but for the verification of the previous
beam model the torsional vibration modes should not influence significantly the basic response
of the structure.

The second considered case deals with the response of flat plates subjected to the non-
conservative surface load generated by a supersonic flow. The instability that results from this
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Figure 2.3: Deformed and undeformed shape of a cantilevered plate with a distributed end load.

load condition is known as panel flutter and it is nowadays a large concern when designing
high speed aircraft. An early review on the aeroelastic stability of plates and shells is given
by Dowell (1970). Van Keuren and Eastep (1977), presented an optimization method for the
design of minimum weight square panels with dynamic constraints, using Galerkin’s method for
the numerical stability analysis. The study of panel flutter for composite panels is presented
and discussed by Suleman and Venkayya (1994, 1996). An optimization study considering the
application of piezoelectric actuators is presented by Suleman and Gonçalves (1997).

A study of the effects of hysteretic and aerodynamic damping on supersonic panel flutter
has recently been developed by Koo and Hwang (2004). In this study it is possible to verify
that structural damping has an important role when the aerodynamic damping is low, but does
not affect the stability of the panel when aerodynamic damping effects are more significative.
Odaka and Furuya (2005) presented structural optimization methods for a plate wing under a
supersonic flow. This study shows the importance of the frequency separation constraints for
the convergence of the optimization process and the robustness of the optimal designs.

For the present work, the structural response of the plate is determined by the shear de-
formable Mindlin plate theory (analogously to the plate model subjected to a non-conservative
end-load) and the aerodynamic loading is calculated through the first order Piston theory (as pre-
sented by Odaka and Furuya (2005)). This theory has proven to generate good approximations
for the dynamic pressure for low supersonic regimes.

2.2.2 Dynamic Stability Analysis of a Cantilevered Plate Subjected to an
End Load

In order to describe the deformations of a plate the First Order Shear Deformation Theory,
also known as the Mindlin plate theory, is considered. This theory is set upon a displacement
field given by (Reddy, 1992),

u1 = u+ zϕx, u2 = v + zϕy, u3 = w, (2.12)

where (u, v, w) are the displacements of a point with coordinates (x, y, 0) and ϕx and ϕy are
the rotations of the transverse normal about the y and −x axes, respectively. For a linear
theory based on infinitesimal strains and orthotropic materials it is possible to demonstrate that
the in-plane displacements (u, v) are uncoupled from the transverse deflection. The in-plane
displacements are governed by plane elasticity equations and are not considered in the present
work therefore only the equations governing the bending deflections (w,ϕx, ϕy) are developed.
For the considered model, represented in figure 2.4, a distributed load P is applied to the side of
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the plate opposite do the cantilevered face. This load has a conservative in-plane component Nc

and a tangential component Pf , where the relative magnitude of each force is determined once
again by the parameter η which is defined analogously to the the beam model as

η =
Pf

Nc + Pf
=
Pf
P
. (2.13)

Following the assumptions stated by Mindlin, the strain energy for an isotropic shear deformable
plate is given by,

U =
1
2

∫ ∫
D

[(
∂ϕx
∂x

)2

+ 2ν
∂ϕx
∂x

∂ϕy
∂y

+
(
∂ϕy
∂y

)2

+
1− ν

2

(
∂ϕx
∂y

+
∂ϕy
∂x

)2
]

+

+A

[(
ϕx +

∂w

∂x

)2

+
(
ϕy +

∂w

∂y

)2
]
dxdy, (2.14)

where D is the bending stiffness of the isotropic plate and A is the extensional stiffness, deter-
mined from

D =
Eh3

12 (1− ν2)
, A =

(
5
6

)
Gh, (2.15)

where G is the shear modulus and ν is the Poisson’s ratio. Likewise, the kinetic energy of the
plate is,

T =
1
2

∫ ∫
Im

[(
∂ϕx
∂t

)2

+
(
∂ϕx
∂t

)2
]

+m

(
∂w

∂t

)
dxdy, (2.16)

where Im corresponds to the mass moment of inertia and m is the mass per unit area of the
plate. The potential energy corresponding to the conservative component of P is given by

V =
1
2

∫ ∫
P (ϕx)2 dxdy, (2.17)

and the virtual work done by the nonconservative load can be obtained from,

δWf =
∫ ∫

ηP
∂w

∂x
δ̄(x− a)δwdxdy, (2.18)

where δ̄ is the Dirac delta function. The equations of motion can now be derived from the
previous equations using the generalized form of Hamilton’s principle

δ

∫ t̄2

t̄1

[T − U + V +Wf ] dt̄. (2.19)

Assuming harmonic motion, the global displacement vector can be written as,

u = ũ exp(λt), λ = α+ iω, (2.20)

Introducing the following dimensionless variables

x̄ =
x

Lx
, ȳ =

y

Lx
, w̄ =

w̃

Lx
, P̄ =

PL2
x

D0
, Ā =

Ah0

D
,

m̄(x̄, ȳ) =
m(x, y)
m0

, Īm(x̄, ȳ) =
Im(x, y)
m0h2

0

, t̄ =
t

L2

√
D0

m0
, λ̄ =

t

t̄
λ, (2.21)
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Figure 2.4: Geometric dimensions and load properties for the presented model.

where the index ’0’ corresponds to a plate with uniform thickness h0. As for the beam model,
the overbars denoting the dimensionless quantities will no longer be used for notation simplicity.
By replacing these dimensionless quantities and the displacement vector defined by 2.20 into
equation 2.19 the following functional is obtained,

Lu =
[
K− λ2M− P (Gc − ηGf )

]
u = 0, (2.22)

where K, M, Gc and Gf are the discretized numerical matrices as described in the previous
section. It is possible to note that the discretized functional is identical to the one obtained from
the beam formulation.
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Figure 2.5: Simply supported plate under a Supersonic Flow.

2.2.3 Dynamic Stability Analysis of a Plate Under Supersonic Flow

When a thin plate or shell-like component is subjected to critical loading conditions generated
by high speed passing airflow, self-excited dynamic instability may occur. This instability is
known as Panel Flutter and is a main concern when designing high speed aircraft and missile
surface skins. This dynamic instability normally occurs at supersonic speeds (M > 1) and
depends upon various factors from the airflow Mach number and incidence angle, panel geometry
and boundary conditions, in-plane stresses amongst other characteristics. For the present analysis
model, a simply supported square plate is considered with length a, width b and initial thickness
h0. The upper surface of the plate is subjected to a supersonic flow at a speed of U∞, density
ρ∞ and at a Mach M∞. The lower surface of the panel contains air at rest. The aerodynamic
load applied to the structure can be determined through the first order piston theory.

Piston theory is an inviscid unsteady aerodynamic theory that is used quite often in supersonic
and hypersonic aeroelasticity. With it, it is possible to determine a relationship between the local
pressure on any point of the considered surface and the component of fluid velocity normal to the
moving surface. The derivation of this expression utilizes the isentropic simple wave expression
for the pressure on the surface of a moving piston, resulting in the following pressure difference
distribution (Suleman and Venkayya, 1994),

∆p =
ρ∞U

2
∞√

M2
∞ − 1

(
∂w

∂x
+
M2
∞ − 2

M2
∞ − 1

1
U∞

∂w

∂t

)
. (2.23)

For the present model the terms corresponding to aerodynamic damping are neglected and equa-
tion 2.24 is reduced to (as presented by Odaka and Furuya (2005)),

∆p =
ρ∞U

2
∞√

M2
∞ − 1

(
∂w

∂x

)
, (2.24)

where a zero flow deflection is assumed for the panel’s leading and trailing edges. The work done
by the surface pressure resulting from the aerodynamic flow can be obtained from the principle
of virtual work as,

δWpf =
∫ ∫

ρ∞U
2
∞√

M2
∞ − 1

(
∂w

∂x

)
δwdxdy. (2.25)

By replacing the term corresponding to the virtual work developed by the non-conservative end-
load in equation 2.19 with the work given by equation 2.25 and following the same procedure as
before and the resulting numerical discretization will assume the form,

Lu =
[
K− λ2M−NG−QA

]
u = 0, (2.26)
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where K, M are the same as previously defined, G is the loading matrix due to the in-plane
force N , A is the aerodynamic loading matrix and Q is a dimensionless parameter related to the
dynamic pressure applied to the plate according to,

Q̄ =
ρ∞U

2
∞√

M2
∞ − 1

a3

D
. (2.27)

As can be verified from the presented formulation the problem originated by submitting a flat
panel to a supersonic flow presents an almost identical discretized form as the previously pre-
sented models of structural elements subjected to non-conservative end loads. This fact comes
to show, that the underlying mechanisms that originate flutter instability are described by the
same basic mathematical principles.
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Chapter 3

Numerical Methods for Dynamic
Stability Analysis

This chapter describes the numerical methods adopted in this work for the discretization
of the theoretical equations presented in Chapter 2. The Finite Element Method is selected
for the numerical formulation of these equations taking into account the requirements for the
optimization process. Two models are presented for the beam and plate formulations, including
the selection of shape functions, element matrix construction, connectivity relations and global
matrix construction. Numerical integration methods and reduced integration are also focused
for the formulation of the plate finite element model.

3.1 Beam Element Formulation

3.1.1 Discretization of the domain

In order to obtain a numerical discretization for the problem of a column with length L
subjected to an end-load p, as described by equation 2.11, the domain of the structure is divided
into a set of Ne line elements, each element having two end nodes, as shown in figure 3.1. The
variational form of these equations requires that the interpolation functions of any element are
continuous with nonzero derivatives up to the second order (Reddy, 1992). Taking into account
that there is a total of four boundary conditions, a third order polynomial must be used for the
representation of w as,

w(x) = c1 + c2x+ c3x
2 + c4x

3. (3.1)

This equation automatically meets the continuity conditions by ensuring the existence of a
nonzero second derivative of w in the element. The determination of the constants is obtained
from the boundary conditions at each node, which can be given in terms of the primary nodal
variables as,

ue1 = w(xe), ue2 =
(
∂w

∂x

)
x=xe

, ue3 = w(xe+1), ue4 =
(
∂w

∂x

)
x=xe+1

. (3.2)

From these two equations it is possible to express the constants c1, c2, c3 and c4 as functions of
ue1, ue2, ue3 and ue4 resulting in,

we(x) = ue1φ
e
1 + ue2φ

e
2 + ue3φ

e
3 + ue4φ

e
4 =

4∑
i=1

ueiφ
e
i , (3.3)

where φei are cubic interpolation functions derived by interpolating w and its derivative at both
element nodes. These functions are known as the Hermite cubic interpolation functions and can
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Figure 3.1: Numerical Discretization of the cantilevered column.

be expressed in terms of the element’s local coordinate ξ as,

φe1 = 1− 3 (ξ)2 + 2 (ξ)3 , φe2 = −ξ (1− ξ)2 le,

φe3 = 3 (ξ)2 − 2 (ξ)3 , φe4 = −ξ
[
(ξ)2 − ξ

]
le. (3.4)

The finite element matrices from equation 2.11 can now be obtained by replacing w by the
finite element interpolation 3.3. Considering that each element has a linear diameter evolution
according to (Langthjem and Sugiyama (2000a)),

he = (1− ξ)µe + ξµe+1 (3.5)

where µe is the equivalent diameter at node e. From these definitions it is possible to calculate
the dimensionless stiffness matrix for a generic element e from,

Ke
ij =

∫ ξe+1

ξe

h2
e

d2φei
dξ2

d2φej
dξ2

dξ, (3.6)

where ξe = xe/le and ξe+1 = xe+1/le. The dimensionless mass matrix is obtained following the
same procedure,

M e
ij =

∫ ξe+1

ξe

heφ
e
iφ
e
jdξ. (3.7)

The dimensionless conservative load matrix is obtained through,

Gecij =
∫ ξe+1

ξe

dφei
dξ

dφej
dξ

dξ. (3.8)

These matrices are all symmetric and positive definite. The dimensionless non-conservative load
matrix is non-symmetric and is given by,

Gefij
=
{
L, if e = Ne, i = 3 and j = 4
0, otherwise (3.9)

This definition is for a global matrix, defined for the complete discretized structure. The remain-
ing equations define the numerical discretization of the matrices for a generic element e. In the
next section the assembly of these matrices is presented in order to obtain the global matrices of
the complete structure.
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3.1.2 Assembly of Element Equations and Boundary Conditions

In the previous section the element equations are derived for a generic element which can be
located anywhere in the discretized domain. In order to solve the proposed finite element analysis
problem, the matrices for each element must be calculated for their corresponding position and
connected with the adjacent elements, while ensuring the interelement continuity of the primary
variables and (deflection and slope) and continuity of the secondary variables (shear force and
bending moment) at the nodes which are common between the elements.

Consider an element e1 calculated between global nodes n1 and n2 and an adjacent element
e2 calculated between global nodes n2 and n3. The connectivity matrix for these two elements
is,

B =
[
n1 n2

n2 n3

]
(3.10)

This matrix is used for the computational implementation process. Since there are two primary
degrees of freedom per node, each node n corresponds to two degrees of freedom in the finite
element matrices. The repeated nodes in matrix 3.11 indicate that the corresponding degrees of
freedom in each element will add up. For a beam discretized with ten elements the connectivity
matrix would take the form,

B =
[

1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 9 10 11

]
(3.11)

At this point, the geometric boundary conditions for the specific analysis problem must be
specified. For the present problem the column is clamped at x = 0 and the corresponding
boundary conditions defined by 2.8 are imposed by considering that the discretized degrees of
freedom at the first node (corresponding to element 1, which is located between x = 0 and x = l1)
are considered to be zero,

u1
1 = w(x = 0) = 0, u1

2 =
(
dw

dx

)
x=0

= 0. (3.12)

These boundary conditions are implemented numerically by removing from the analysis algo-
rithm the lines and columns associated with the presented degree’s of freedom from the element
matrices. This completes the definition of the finite element formulation for the beam model.
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Figure 3.2: Generation of the plate mesh from a global element.

3.2 Plate Element Formulation

3.2.1 Discretization of the domain

The numerical formulation for the analysis of plates subjected to non-conservative loads
presented theoretically by equations 2.22 and 2.26 will now be described. From the presented
energy analysis of the plate it is possible to note that the primary variables for the Mindlin
plate theory are the displacement,w and the rotations in the x and y directions, ϕx and ϕy. The
secondary variables are the normal and twisting moments and the transverse stress. By inspecting
the theoretical formulation it becomes clear that the primary variables are only differentiated
once with respect to x and y. Therefore, it is possible to assume the finite element interpolation
of w, ϕx and ϕy as,

w =
n∑
i=1

wiψi, ϕx =
n∑
i=1

sxi ψi, ϕy =
n∑
i=1

syi , ψi, (3.13)

where ψ are Lagrange interpolation functions. For the present analysis a four node linear element
is considered and, consequently, the Lagrange interpolation functions are linear and given by,

ψi =
1
4

(1 + ξξi)(1 + ζζi), i = 1, . . . , 4, (3.14)

where (ξi, ζi) are the coordinates for the node i of a rectangular master element as shown in
fig. 3.2. By choosing interpolation functions with the same degree for both the displacement
and rotations, the use of reduced integration will be required for the evaluation of the stiffness
coefficients associated with the transverse shear strains in order to avoid shear locking problems.

As for the beam model discretization, a linear thickness evolution is considered for each
element according to,

he =
4∑
i=1

1
4

(1 + ξξi)(1 + ζζi)µi, (3.15)

where µi is the equivalent thickness at node i. taking into account equations 3.13 and 3.15 into
equations 2.22 and 2.26 it is possible to calculate the stiffness matrix as, in global coordinates,

K =

 [K11] [K12] [K13]
[K22] [K23]

sym. [K33]

 , (3.16)
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where,

K11
ij =

∫ ∫
her

(
dψi
dx

dψj
dx

+
dψi
dy

dψj
dy

)
dxdy,

K12
ij =

∫ ∫
her

(
dψi
dx

ψj

)
dxdy,

K13
ij =

∫ ∫
her

(
dψi
dy

ψj

)
dxdy,

K22
ij =

∫ ∫
h3
e

(
dψi
dx

dψj
dx

+
1− ν

2
dψi
dy

dψj
dy

)
+ her (ψiψj) dxdy,

K23
ij =

∫ ∫
h3
e

(
ν
dψi
dx

dψj
dy

+
1− ν

2
dψi
dy

dψj
dx

)
dxdy, (3.17)

K22
ij =

∫ ∫
h3
e

(
1− ν

2
dψi
dx

dψj
dx

+
dψi
dy

dψj
dy

)
+ her (ψiψj) dxdy,

here, r = 6k(1− ν)h0 and k = 5/6 which denotes the shear correction coefficient, introduced to
take into account the discrepancy between the constant state of shear stress considered in the
Mindlin theory and the parabolic variation of the actual shear stress along the thickness of the
plate. Another approach to avoid the use of this coefficient would be the use of higher order
finite elements, as discussed by Moita et al. (2005). Following the same principles, the mass
matrix can be determined from,

M =

 [M11] [0] [0]
[M22] [0]

sym. [M33]

 , (3.18)

with,

M11
ij =

∫ ∫
heψiψjdxdy,

M22
ij = M33

ij =
1
12

(
1
h0

)2 ∫ ∫
h3
eψiψjdxdy, (3.19)

The conservative loading matrix, Gc, defined for equations 2.22 is the same as the loading
matrix due to in-plane stresses G for the panel flutter problem (equation 2.26) and is calculated
through,

G = Gc =

 [G11] [0] [0]
[0] [0]

sym. [0]

 , (3.20)

with,

G11
ij =

∫ ∫
dψi
dx

dψj
dx

dxdy, (3.21)

The calculus of the non-conservative loading matrix Gf is obtained by replacing equation 3.21
with,

G11
fij

=
{ ∫ ∫ dψi

dx ψjdxdy, if x = Lx
0, otherwise

(3.22)

The aerodynamic loading matrix A can also be obtained by replacing 3.21 with,

A11
ij =

∫ ∫
dψi
dx

ψjdxdy, for 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly. (3.23)
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From the above expressions it is possible to verify that matrices G, Gc, Gf and A are not
positive definite and therefore the stability analysis of these equations requires special solution
algorithms.

3.2.2 Numerical Integration

The numerical integration of the element matrices is performed using the Gauss quadrature
rule, which can only be applied when the integral is expressed over a square region defined
between −1 < (ξ, ζ) < 1. As a consequence of this, coordinate transformations are required
to obtain the finite element matrices for the structural discretization from the master element
represented in fig. 3.2. As such, in order to calculate the integrals defined for the finite element
equations, the following coordinate transformation must be applied (Reddy, 1992),

∂ψei
∂ξ

=
∂ψei
∂x

∂x

∂ξ
+
∂ψei
∂y

∂y

∂ξ
,

∂ψei
∂ζ

=
∂ψei
∂x

∂x

∂ζ
+
∂ψei
∂y

∂y

∂ζ
. (3.24)

Considering the presented linear interpolation functions and a four node element, the Jacobian
matrix for this transformation is given by,

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂ζ

∂y
∂ζ

]
=

[ ∑4
i=1 xi

∂ψi

∂ξ

∑4
i=1 yi

∂ψi

∂ξ∑4
i=1 xi

∂ψi

∂ζ

∑4
i=1 yi

∂ψi

∂ζ

]
. (3.25)

This matrix must be invertible in order to determine the solution of 3.24, which requires that
det(J) > 0. This condition is satisfied if the the transformation functions ξ = ξ(x, y) and
ζ = ζ(x, y) are continuous, differentiable and invertible. This condition must be evaluated for
every element transformation.

Having defined the equations in the master element domain it is now possible to apply the
Gauss quadrature rule to integrate the element matrices. According to this, the integral of any
given function F (ξζ) is obtained as,∫ 1

−1

∫ 1

−1
F (ξ, ζ)dξdζ =

M∑
I=1

N∑
J=1

F (ξI , ζJ)WIWJ , (3.26)

whereM and N denote the number of quadrature points in the ξ and ζ directions, (ξI , ζJ) denote
the Gauss points and WI and WJ denote the corresponding Gauss weights. For the used linear
Lagrange interpolation functions the two point rule is used, and the corresponding values are
present in the following table:

Points (ξI , ζJ) Weights (WI ,WJ)
One point formula: (0, 0) (2, 2)
Two point formula:

(
±
√

3
3 ,±

√
3

3

)
(1,1)

Table 3.1: Gauss points and corresponding weights.

The one point formula is used for the reduced integration required to avoid the previously
mentioned shear locking problems. When analyzing a thin plate, the shear strains are negligible
and consequently the element stiffness matrix becomes stiff which will originate erroneous results.
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3.2.3 Assembly of Element Equations and Boundary Conditions

Having determined the element matrices for the discretized domain, it is now necessary
to assemble these matrices in order to obtain the global matrices for the complete geometry.
Consider a plate with length Lx and height Ly, divided into Nex elements in the x direction and
Ney elements in the y direction. For any given element (ex, ey) the global nodal coordinates are
given by (following the numbering in fig 3.2),

Nex(ey − 1) + ex,
Nex(ey − 1) + ex + 1,
Nexey + ex + 2,
Nexey + ex + 1

 (3.27)

this relation is used to build the connectivity matrix for the construction of the global element
matrices. The presented numbering was defined for simplicity of the connectivity relations. A
shortcoming of the selected numbering method becomes evident for a rectangular plate with
Nex > Ney which is the case for the plate model with a non-conservative end load. In this
case, the resulting global matrices will have a larger bandwidth when compared to alternative
numbering sequences. This makes the solution of the finite element equations slower and for a
large number of elements the solution time can be considerably affected.

For the present work, two geometric boundary conditions must be considered. First, when
concerning the plate model with a non-conservative end-load, the plate side at x = 0 is considered
to be clamped. This can be accomplished by considering that the displacements w and rotations
ϕx and ϕy are zero at all the nodes located at x = 0. Secondly, when considering the panel
flutter model, the plate is considered to be simply supported at all the edges. These conditions
are obtained by considering the displacements zero at all the nodes located at the free ends and
ϕx = 0 for x = 0, x = a and ϕy = 0 for y = 0, y = b.

22



3.3 Stability Analysis Implementation

This section presents the methods used to obtain the solution of the boundary value problems
presented by equation 2.11 for the beam model, equation 2.22 for the plate subjected to a non-
conservative end load model and finally equation 2.26 for the panel flutter problem. The solution
algorithm for these problems is presented in the diagram of figure 3.3. As can be seen from the
presented diagram, the solution analysis scheme is performed by considering various load points
between 0 and pfinal and, for each of these load points, obtaining the corresponding eigenvalues
that result from the solution of the presented eigenvalue problem. The value of pfinal is chosen
as to include the stability domain in study and the number of load points to consider is chosen
as to produce accurate solutions.

The solution scheme adopted for the the eigenvalue problem uses the MATLABr routine
eigs which, in turn uses eigs ARPACK routines (presented by Lehoucq et al. (1998)) capable of
solving large scale Hermitian, non-Hermitian, standard or generalized eigenvalue problems. This
software is designed to compute any k eigenvalues selected by a previously defined characteristic
such as the largest real part or largest magnitude. These algorithms use a variation of the Arnoldi
method named the Implicitly Restarted Arnoldi Method, which is a technique for approximating
the eigenvalues and corresponding eigenvectors for a general square matrix. When the matrix is
symmetric, the algorithm uses a variation of the Lanczos method called the Implicitly Restarted
Lanczos Method. These variations may be viewed as a synthesis of the general methods with
the Implicitly Shifted QR technique which is suitable for large scale problems.
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Figure 3.3: Fluxogram of the stability analysis algorithm, implemented in MATLABr.
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Chapter 4

Optimization Formulation

This chapter presents the formulation for the problem of determining minimal weight de-
signs while maintaining stability boundaries in the structural load and frequency domains. The
optimization algorithm is also described as well as the gradient analysis implementation.

The optimal designs are obtained considering a linear variation of diameter or thickness along
the structure and reducing the optimization problem to the decision of the amount of material
to be applied at each discretized node, as presented by Langthjem and Sugiyama (2000a).

The optimization problems presented in this work consider the optimal design of a beam
subjected to a non-conservative end load, the optimal topology design of a plate subjected to
the same end load and, finally, a plate subjected to a distributed aerodynamic loading.

4.1 The Optimization Problem

The purpose of the optimization method for the proposed models is to determine an optimal
design which can allow the same stability boundaries as the original model. This problem can
be presented by,

Minimize V
µ

(4.1)

subject to,

1. Critical Load: pcr ≥ p0
cr

2. Frequency Curves: λn+1 − λn ≥ c, for all p ≤ pcr

3. Ensure Flutter Instability: λ1 ≥ 0, for all p ≤ pcr

4. Design Parameters: µminj ≤ µi ≤ µmaxj , for j = 1, 2, . . . , Ne,

where V is the dimensionless volume, pcr is the dimensionless critical load, λn is the nth di-
mensionless frequency and µi is the project variable at node i (which can be the equivalent
dimensionless diameter or thickness, depending on the considered model).

The first constraint of the presented optimization problem insures that the structural critical
load can increase during the optimization sequence, but can never be lower than the original
critical load, obtained for the uniform structure. Constraint 2 is present to ensure that the
coalescence of frequency curves will only occur for load values higher than the critical load and,
by introducing a frequency separation constant c, gives robustness to the optimization process.
By keeping frequencies apart for a specified distance, the possibility of a large variation of the
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critical load with small design changes is avoided (as discussed by Langthjem and Sugiyama
(1999); Odaka and Furuya (2005)). The third constraint is used when the structural instability
mode turns into flutter and ensures that the instability mode afterwards remains to be flutter.
This constraint is implemented to avoid convergence problems in the optimization process due
to the cyclic change of instability modes (as discussed by Langthjem and Sugiyama (2000a)).
For the formulation of the panel flutter model, the load p is replaced by the dynamic pressure
parameter Q, and constraint 3 is not considered. The design parameters are limited as described
by constraint 4. These limits can be imposed with different values for each node in order to
allow the introduction of areas in which large material changes are not desired. They can also be
changed during the optimization process in order to control the evolution of the optimal designs.
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4.2 The Method of Moving Asymptotes

The solution for the optimization problem is obtained with the Method of Moving Asymptotes
(developed by Svanberg (1987)). The Matlab version of the MMA algorithm used in the present
work, requires for the previous optimization problem to be written in the following form,

Minimize f0(µ) = V
µ

(4.2)

subject to,
f1(µ) = p0

cr − pcr ≤ 0
fi(µ) = λn − λn+1 + c ≤ 0, for i = 2, . . . , b
fi(µ) = −λ1 ≤ 0, for i = b, . . . ,m
µminj ≤ µj ≤ µmaxj , for j = 1, . . . , n

(4.3)

where b andm depend upon the number of natural frequencies taken into account for the analysis
and the number of discretized load points in the interval [0; pcr] that are considered. The value
of n corresponds to the number of project variables and thus corresponds to the total number of
nodes in the finite element model.

The solution scheme adopted in the Method of Moving Asymptotes is then given as follows
(as presented by Svanberg (1987)): At each iteration, the current iteration point (µ(k)) is given.
Then, an approximating explicit subproblem is generated. In this subproblem, the functions fi(µ)
are replaced by approximating convex functions f̃ (k)

i (µ). These approximations are essentially
based on the gradient information for the current point, but they also take implicitly into account
the information from previous iteration points. The solution for the subproblem is obtained and
the new unique optimal solution becomes the next iteration point (µ(k+1)). After this, a new
subproblem is originated until the solution converges. The subproblem for the optimization
formulation, stated by equations 4.2 and 4.3, takes the form,

Minimize f̃
(k)
0 (µ)

µ,
(4.4)

subject to,
f̃

(k)
i (µ) ≤ 0, for i = 1, . . . ,m
α

(k)
j ≤ µi ≤ β

(k)
j , for j = 1, . . . , n,

(4.5)

where the approximation functions f̃ (k)
i (µ) are calculated from,

f̃
(k)
i (µ) =

n∑
j=1

(
p

(k)
ij

u
(k)
j − µj

+
q

(k)
ij

µj − l(k)
j

)
+ r

(k)
i , i = 0, 1, . . . ,m, (4.6)

where,

p
(k)
ij =

(
u

(k)
j − µ

(k)
j

)2
[(

∂fi
∂xj

(µ(k))
)+

+ κ
(k)
ij

]
, (4.7)

q
(k)
ij =

(
µ

(k)
j − l

(k)
j

)2
[(

∂fi
∂xj

(µ(k))
)−

+ κ
(k)
ij

]
, (4.8)

r
(k)
i = fi(µ(k))−

n∑
j=1

(
p

(k)
ij

u
(k)
j − µ

(k)
j

+
q

(k)
ij

µ
(k)
j − l

(k)
j

)
, (4.9)

α
(k)
j = max

{
µminj , 0.9l(k)

j + 0.1µ(k)
j

}
(4.10)

β
(k)
j = min

{
µmaxj , 0.9u(k)

j + 0.1µ(k)
j

}
, (4.11)
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and where, (
∂fi
∂xj

(µ(k))
)+

= max
{

0,
∂fi
∂xj

(µ(k))
}

(4.12)(
∂fi
∂xj

(µ(k))
)−

= max
{

0,− ∂fi
∂xj

(µ(k))
}
. (4.13)

The lower asymptotes, l(k)
j and upper asymptotes u(k)

j are calculated for the first two iterations
from,

l
(k)
j = µ

(k)
j − 0.5

(
µmaxj − µminj

)
, (4.14)

u
(k)
j = µ

(k)
j + 0.5

(
µmaxj − µminj

)
. (4.15)

For k ≥ 3 the asymptotes take are calculated through,

l
(k)
j = µ

(k)
j − γ

(k)
j

(
µ

(k−1)
j − l(k−1)

j

)
, (4.16)

u
(k)
j = µ

(k)
j + γ

(k)
j

(
u

(k−1)
j − µ(k−1)

j

)
, (4.17)

in which γ
(k)
j are a set of parameters that can be adjusted to influence the evolution of the

optimization process. The default values are,

γ
(k)
j =


0.7, if

(
µ

(k)
j − µ

(k−1)
j

)(
µ

(k−1)
j − µ(k−2)

j

)
< 0

1.2, if
(
µ

(k)
j − µ

(k−1)
j

)(
µ

(k−1)
j − µ(k−2)

j

)
> 0

1, if
(
µ

(k)
j − µ

(k−1)
j

)(
µ

(k−1)
j − µ(k−2)

j

)
= 0

(4.18)

and the default values for κ(k)
ij are,

κ
(k)
ij = 10−3

∣∣∣∣ ∂fi∂xj
(µ(k))

∣∣∣∣+
10−6

u
(k)
j − l

(k)
j

, for i = 0, 1, . . . ,m and j = 1, . . . , n. (4.19)

This results that the approximation functions f̃ (k)
i are strictly convex, which in turn implies that

there is always a unique optimal solution of the MMA subproblem. It is possible to verify that
f̃

(k)
i are always first order approximations of the original functions fi at each iteration point.
From these equations it is then possible to obtain the project variables µj which define the new
optimized design.
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4.3 Sensitivity Analysis

As shown, the optimization procedure previously presented requires the knowledge of the
partial derivatives of the design constraints and objective function with respect to the project
variables. The determination of these equations requires the sensitivity analysis of the dynamic
models presented in chapters 2 and 3. The sensitivity analysis described in this section follows
the work presented by Pedersen (1994, 2003). Considering equations 2.11 for the beam model,
2.22 for the plate model and 2.26 for the panel flutter model, we have the following functional,

[L]{w} = 0, (4.20)

where the matrix [L] depends on the complex eigenvalue λ with α as a stability measure and
ω as the frequency values according to the definition presented. In addition, L depends also on
the applied load, p (Q in the panel flutter model), and on the design variables defined as µ. For
the present sensitivity analysis, the adjoint problem for equation 4.25 must also be considered.
This Hermitian Adjoint can be obtained parting from the functional Λ, defined in equation 2.8,
as follows, ∫ 1

0
υΛ(w)dx =

∫ 1

0
wΛ∗(υ)dx, (4.21)

this equation if satisfied when,

Λ∗(υ) = (Iυ′′)′′ − λ2mυ + pυ′′ = 0,
υ(0) = 0, υ′(0) = 0, (4.22)

Iυ′′(1) + pηυ(1) = 0, (Iυ′′)′(1) + pυ′(1) = 0.

From this equation and as previously presented in the analytical formulation the following func-
tional can be obtained,

L(υ) =
∫ 1

0

[
Iυ′′ − λ2υ + pυ′

]
dx+ ηpυ(1) (4.23)

which is also stationary with respect to variations δυ, thus satisfying the kinematic boundary
conditions, υ(0) = 0 and υ′(0) = 0. For any numerical discretization method, this functional
originates the following equation,

LTv =
[
K− λ2M + p (Gc + ηGf )

]T v = 0, (4.24)

and this expression, when written in the same form as 4.25, becomes

{υ}T [L] = 0, (4.25)

The use of the adjoint problem is needed because, as previously discussed, matrix [L] is
non-symmetric and therefore the presented problem is not self-adjoint and {w} 6= {v}. This
means that both the right eigenvector w and the left eigenvector υ need to be considered for the
sensitivity calculation of any eigenvalue (which can be the frequency values or the critical load,
as will be shown). For simplicity in the present formulation, the derivation of the sensitivity
analysis equations will be performed in terms of a specific mutual energy. The term specific
means that the energy may be presented per unit area or volume (depending on the considered
model) and the term mutual indicates that two different eigenvalues are used to determine the
energy. The resulting functional is given by,

Π = {v}T [L]{w} = 0 (4.26)
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and is called the specific mutual energy. This functional is obtained from 4.25 and 4.24. consid-
ering any variation of Π it results that,

δΠ = 0⇒ {δv}T [L]{w}+ {v}T [δL]{w}+ {v}T [L]{δw} = 0 (4.27)

It is possible to verify that the variations of the eigenvectors {v} and {v} disappear, which justifies
the introduction of the adjoint eigenvector and the variations of Π instead of 4.25. Considering
the sensitivity analysis for [δL] 6= 0, equation 4.27 can be written as variations of the independent
parameters δp, δλ and δµ as the following functionals

A = {v}T ∂[L]
∂p
{w},

B = {v}T ∂[L]
∂λ
{w}, (4.28)

C = {v}T ∂[L]
∂µ
{w}.

From this, equation 4.27 can be re-written as,

A(δα+ iδω) + Bδp+ Cδµ = 0. (4.29)

This equation allows for the direct deduction of the partial derivatives required for the optimiza-
tion problem.

The sensitivity of the flutter load, pcr with respect to design changes can be obtained from
equation 4.29 by considering that the instability is initiating and it is valid to assume that α = 0
and δα = 0. For A 6= 0 and iδω purely imaginary it is possible to write (as presented by Pedersen
(2003)),

∂pcr
∂µ

=
−Re

( C
A
)

Re
( B
A
) . (4.30)

One can note that when ω = δω = 0 we have a divergence load. Considering the previously
presented finite element formulation for a beam or plate subjected to a partial non-conservative
load, equation 4.30 can be written as (reference Langthjem and Sugiyama (2000a))

∂pcr
∂µj

=
vT (∂L/∂µj) w

vT (Gc − ηGf ) w
(4.31)

Analogously, the sensitivity of the critical dynamic pressure with respect to the design variables
is given by (following Odaka and Furuya (2005)),

∂Qcr
∂µj

=
vT (∂L/∂µj) w

vTAw
(4.32)

which is used for the panel flutter analysis. Following the same line of thought, the sensitivity
of the frequency with respect to design changes can be obtained from 4.29 by considering that
the instability criterion is α = 0 and Re(B/A) < 0. Considering once again that the instability
is initiating, we have that δp is real and δa = 0 resulting in (from Pedersen (2003)),

∂λ

∂µ
=
−Im

( C
B
)

Re
(A
B
) (4.33)

The necessary condition that B 6= 0 follows from the fact that Re(B/A) < 0. The finite element
form of this equation is (from Langthjem and Sugiyama (2000a)),

∂λ

∂µj
=

vT (∂L/∂µj) w
vT 2λMw

(4.34)
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and λ = ω for all p < pcr.
In the presented optimization problem, the objective function is the dimensionless structural

volume, V , which for the beam model is calculated through a linear combination of the element
lengths and nodal diameters as,

V = aTµ, a = [l1, l1 + l2, l2 + l3, . . . , lNe−1 + lNe , lNe ] (4.35)

where l are the element lengths and µ the project variables. For the plate model, the dimension-
less volume is a linear combination of element lengths and heights with the nodal thickness, and
is given by,

V =
Ney +1∑
j=1

Nex+1∑
j=1

µkbicj , k = i+ (j − 1)(Nex + 1) (4.36)

with,

b =
[
lx1 , lx1 + lx2 , lx2 + lx3 , . . . , lxNex−1 + lxNex

, lxNex

]
c =

[
ly1 , ly1 + ly2 , ly2 + ly3 , . . . , lyNey−1 + lyNey

, lyNey

]
where lx is the element lengths in the x direction and ly the lengths in the y direction. It is now
possible to write the derivatives of the volume with respect to changes in the design variables as,

∂V

∂µj
= aj (4.37)

for the beam model and,

∂V

∂µk
= bicj , k = i+ (j − 1)(Nex + 1) (4.38)

for the plate models. It should be noted that these derivatives are constant and do not depend
on the design variables.
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4.4 Computational Implementation

The implementation of the described optimization procedure is represented in figure 4.1. In
the formulation of the optimization problem, the frequency constraints are applied in the load
range 0↔ pcr. In order to apply this constraint, this range is divided into a set of equally spaced
points, and the constraints are calculated at each of these points. The number of frequencies
that are considered in the optimization process must also be defined before the iterative process
begins. The selection of the number of frequencies must take into account the structural stability
and the number of instability modes to be considered. After these parameters are defined, a first
stability analysis is performed in order to obtain the relevant data for the initial structure, which
will be the reference data for the optimization process. The structural volume for the uniform
structure is set to 1. (according to the dimensionless formulation for equations 4.35 and 4.36).

As the optimization cycle starts, sensitivities are calculated for the critical load and the
selected frequencies at each point, and the data is sent to the MMA optimization algorithm which
generates a new set of design variables. A new stability analysis is performed for the new design
and the volume is calculated. The new volume value is compared with the previous iteration and
the relative volume variation is calculated. If this variation is under a predetermined value (the
default is set to 0.01 %), the algorithm considers that the optimization process has converged,
presents the final values and ends the function. The cycle will also end if the optimization
process does not converge before the function reaches the maximum allowed iterations, maxiter
(the default value of maxiter is set to 150).

At each iteration the limits imposed to the project variables by µminj and µmaxj are re-
calculated according to a predetermined slack parameter as well as the structural volume from,

µminj = max
[
(1− ε)µ(k+1)

j , µmin

]
µmaxj = min

[
(1 + ε)µ(k+1)

j , µmax

]
, (4.39)

where µmin is the lowest allowable value for any project variable at any iteration, µmax is the
highest allowed value and ε is the slack parameter, which is reduced when the structural volume
goes under predetermined values. These values are user controlled and must be defined according
to the expected evolution of the optimization process and experience with the optimization
algorithm. The purpose of these limits is to ensure that the optimal designs have a smooth
evolution along the optimization process, especially when the volume is greatly reduced, since
the structure becomes much more sensitive to the structural changes. A more detailed discussion
on the importance and effects of the use of moving limits can be followed in the work from Neves
et al. (2000).
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Figure 4.1: Fluxogram representing the optimization process, implemented in MATLAB
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Chapter 5

Results

The results obtained for the described flutter analysis of the presented models and the op-
timized designs that result from the implementation of the presented optimization procedure
are discussed in this chapter. For each model, results are compared and verified with available
bibliographical results and commercial finite element software. The convergence of the finite
element methods is also considered as well as the influence of the number of elements considered
for the discretization on the optimized results.

5.1 Column Subjected to a Partial Non-Conservative End Load

5.1.1 Code Verification

In order to proceed with the stability analysis of the presented problem of a column sub-
jected to an end load with a non-conservative component, it is first necessary to verify if the
developed analysis algorithm is producing valid results. In order to do this, the obtained re-
sults are compared with the ones obtained from the commercial finite element analysis software
ANSY Sr.

As mentioned previously, when solving the problem posed by equation 2.11 if the frequency λ
is purposely set to zero, the resulting critical load, pcr will correspond to the analogous Euler load
of the column. Likewise, if the load p is set to zero, the resulting frequencies will correspond to
the structural natural frequencies. These results are compared with the results obtained solving
the analogous problem with ANSY Sr, and are summarized on table 5.1. These results where

First Frequency Critical Load
MATLABr code 40.958 Hz 92527.62 N
ANSY Sr 40.938 Hz 92528.00 N
Relative Deviation 0.05 % 0.00 %

Table 5.1: Results verification for the beam model.

obtained for a uniform aluminium alloy column with a Young’s modulus of 72GPa, density of
2800Kg/m3, Poisson ratio of ν = 0.2857, a cross sectional area of 0.0025m2, second moment
of area of 5.2e − 7m4 and a length of 1m. The model was discretized with 10 finite elements
in both cases. It is possible to verify that the results are almost identical for the considered
numerical precision with the advantage that the analysis run in the MATLABr developed code
was performed slightly faster than the ANSY Sr run.

For the Euler-Bernoulli column problems, the number of elements used in the finite element
formulation has a significant influence only on the number and precision of eigenvalues (and
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Figure 5.1: Relative error vs. ∆µ for the sensitivity analysis of the critical load for the 11th

design variable and a load parameter of η = 1.

eigenvectors) that can be extracted both for the frequency values and the critical loads. The
general empiric rule applied to define the number of finite elements is that in order to analyze
n frequency modes, the number of elements for the finite element discretization should be 2n
or higher. For the analysis considered in this section, the first 5 eigenvalues and eigenvectors
were considered the most relevant for both the stability analysis and the optimization process.
Therefore, 10 finite elements were selected both for convergence purposes and in order to obtain
an identical discretization as the one used by Langthjem and Sugiyama (2000a).

The sensitivity analysis for the frequency and critical load constraints, calculated from equa-
tions 4.31, 4.32 and 4.33 were validated by comparison with central finite differences. According
to this numerical method, the previous derivatives are calculated through,

∂pcr
∂µj

=
pcr(µj + ∆µ)− pcr(µj −∆µ)

2∆µ
∂Qcr
∂µj

=
Qcr(µj + ∆µ)−Qcr(µj −∆µ)

2∆µ
(5.1)

∂λ

∂µj
=

λ(µj + ∆µ)− λ(µj −∆µ)
2∆µ

The results obtained from the analytical equations were compared with the numerical results
calculated from 5.1 for various distances ∆µ and the relative error was determined for each
design variable. For the current analysis, the minimum errors obtained were always under a
magnitude of 10−5 %. As an example, figure 5.1 shows the typical results of this comparative
study. The presented diagram shows the evolution of the relative error with the variation of ∆µ
for the sensitivity calculus of the critical load for the 11th design variable and a load parameter
of η = 1.0.
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Figure 5.2: Stability diagram of the uniform column.

5.1.2 Stability Results

Having verified the implemented finite element code, the solution of the full problem presented
by 2.11 can now be studied. As previously described, the numerical analysis of the problem is
performed by extracting the frequencies corresponding to a discretized set of load values between
0 and pfinal. Evaluating these frequency values, it is possible to identify the loads for which the
structure loses rigidity and the corresponding instability mode. For a given load parameter µ,
when a frequency reaches zero, the instability mode is divergence. Flutter occurs when two
frequency values coalesce and become complex, resulting also in the loss of structural rigidity.

Figure 5.2 represents the dimensionless stability regions for a uniform column for various
load combinations, from a pure conservative load (η = 0, an Euler buckling problem) to a pure
non-conservative load (η = 1, Beck’s column). As it can be seen from the diagram, the main
instability mode changes from divergence to flutter at η = 0.5. Although flutter instability can
be obtained for lower values of η (flutter instability modes for the uniform column appear for
a load component of approximately η = 0.35), it is at η = 0.5 that the lowest instability load
becomes flutter instead of divergence and consequently becoming the main instability mode.
From this diagram it is also possible to notice that as divergence turns into flutter, the stability
margin also increases significantly. This is mainly because damping effects are not considered in
the present analysis.

As mentioned earlier, flutter occurs when frequency coupling is verified at any given load
condition. Thus, one of the most important analysis aspects to consider when studying this
type of instability problems is the structural load-frequency response. Figure 5.4 shows the
dimensionless load-frequency curves for the dimensionless uniform column for several load types.
These results where obtained for a pfinal value of 150 and 3000 load steps and the represented
frequency values correspond only to the real part of the frequency values.

The Euler column (subjected to a conservative load, η = 0.0) is shown in figure 5.4a). The
instability mode for this column is divergence and the first critical load occurs at pcr = 2.467.
Figure 5.4b) represents the structural response for a load with a 25% non conservative component.
For this column, the instability mode is also divergence, and occurs at pcr = 3.651. When the
non-conservative load is 50% of the total load, as represented in figure 5.4c), the first instability
mode is still divergence (at pcr = 9.870), but flutter instability can now occur at pcr = 16.1. As
shown in figure 5.4d) flutter is the main instability mode for a 75% non-conservative load, and
instability occurs at a load of pcr = 17.2. Finally, when the load is completely non-conservative
we have the problem described by Beck’s column, and flutter occurs at pcr = 20.05 as shown in
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Figure 5.3: Load frequency curves for a load parameter of η = 0.5, representing the real and
imaginary parts of the frequency values.

figure 5.4e). These results show good agreement with the work developed by other authors (see
Langthjem and Sugiyama (2000a), for instance).

In order to best understand and identify the origin of flutter instability the frequency analysis
must also take into account the complex domain. Considering that the displacements as given
by 2.5, it is possible to verify that small amplitude vibrations will be stable at any given load
pi if ωj > 0 for all j and for all loads in the interval [0; pi]. The critical load can be defined as
divergence when, for a load pd, we have ωj = 0 at p = Pd and ωj > 0 and αj = 0 for all loads in
the interval [0; pd[. The critical load becomes flutter if, for any load pf , ωj > 0 and α 6= 0. The
structural critical load can then be defined as the minimum of these two loads. Figure 5.3 shows
the frequency load curves of a uniform column with a load parameter of η = 0.5, representing
both the real part of the frequency and the imaginary part. This load condition was chosen
because at this load condition the main instability mode changes from divergence (η < 0.5)
to flutter (η > 0.5). As the image shows, the critical load for the structure is divergence and
pd = 9.870. Notwithstanding, at this load condition flutter modes are also present. From the
represented imaginary part of the frequency it is possible to identify two flutter modes. At the
flutter load, while the real part of the two adjacent frequencies coalesce, their imaginary parts
become non-zero and originate the two symmetric branches presented in the diagram. The first
load occurs at a load of pf = 16.05.

The obtained results show a good agreement with the reported results by Langthjem and
Sugiyama (2000a, 1999) as well as the results presented by Zuo and Schreyer (1996). The
presented analysis of the load-frequency response and the determination of the critical loads for
the uniform structure presents the initial steps of the optimization analysis whose results are
presented in the following section.
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Figure 5.4: Load-Frequency curves for various load conditions, from a conservative force (η = 0)
to a pure non-conservative load (Beck’s column at η = 1.0). The presented results were obtained
for a uniform beam with a dimensionless diameter of µ = 1.0.
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5.1.3 Optimization Results

This section presents the optimized structures obtained from the dimensionless uniform
columns with stability characteristics as presented in the previous section. A summary of the
optimization results obtained for the five load conditions considered in the previous section is
presented in the following table: These results were obtained using 3000 load steps for the stabil-

Load Condition (η) 0.00 0.25 0.50 0.75 1.00
Optimized Volume 0.866 0.476 0.473 0.490 0.374
Volume Reduction (%) 13.4 52.4 52.7 50.9 62.6
Reference Results (Langthjem and Sugiyama, 2000a) 0.866 − 0.486 − 0.379
Number of iterations 8 56 23 82 105

Table 5.2: Optimization results for the beam model.

ity analysis and 20 load points between 0 and pcr for the calculus of the frequency sensitivities.
The maximum and minimum values allowed for the design variables were selected as µmax = 10
and µmin = 10−8, respectively. The slack parameter presented in equation 4.39, ε, used to define
the design limits at each iteration was selected according to,

ε =
{

0.3, for 0.5 < V ≤ 1
0.1, for 0 < V ≤ 0.5

these conditions where always used to define the new limits of the design variables at each
iteration unless the new values exceeded the absolute limits imposed by µmin and µmax, in which
case, the new design limits for the new iteration would be the respective absolute limit. The
frequency separation constant was set to c = 10 for all load conditions except for η = 0, where
c = 0. These frequency separation values where selected in accordance to the values used by
Langthjem and Sugiyama (2000a).

The MMA tuning parameters, defined in equation 4.18 where also adjusted for the various
optimization runs, in order to improve the optimized solutions. The adjustments made to these
parameters were based on the experience gained along several optimization runs.

As the results from the table show, the optimization process allowed for considerably large
volume reductions while respecting all the imposed constraints. Comparing these results with
the work presented by Langthjem and Sugiyama (2000a) once more, it is possible to verify that,
for identical load conditions, the optimized results are lower, or equal at the worst, to the ones
presented by these authors.

Figure 5.5 shows the shape of the dimensionless optimized columns for the presented results.
The stability diagrams for these columns are presented in figure 5.6. From these results it is
possible to confirm that the stability boundaries are maintained for the optimized columns, and
the critical loads are all equal or above the values obtained for the uniform columns. These
diagrams were obtained from the following project variables, As expected, divergence is only
present on the column subjected to a pure conservative load (η = 0.0, figure 5.6 a)), with
flutter as the first instability mode for all the other columns (subjected to a non-conservative
load component). As can also be noted from figure 5.6, the flutter loads are almost of the
same magnitude. As the optimization process evolved for these columns it was possible to
note that the convergence of the solutions was somewhat delayed because the main instability
mode kept changing from the first mode (corresponding to coalescence of the first and second
frequencies) to the second (corresponding to the third and fourth frequencies). In spite of the
slow convergence the frequency separation constraints avoided some more serious convergence
problems. For the load cases described on figures 5.6 c), d) and e), the critical flutter load
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Figure 5.5: Optimized columns for various non-conservative load parameters. The dashed lines
represent the uniform column.

occurs from the coalescence of the two first frequencies. Exception is made for the load condition
presented in figure 5.6 b) where flutter occurs when the third and fourth frequencies coalesce.

Another important fact that remains to be considered is the stability of the optimized columns
for load conditions other than the one used in the optimization sequence. Figure 5.7, shows the
stability diagrams for each optimized column for the various load conditions. An interesting fact
to notice is the jumps that occur in the critical flutter load near the corresponding optimized
load conditions. These jumps result from the optimization process and are positioned to ensure
that the coalescence of frequency curves occurs at a load above or equal to the critical load of
the uniform column. The transition from divergence to flutter also changes significantly for the
optimized columns. The optimized design for a pure conservative load, shows this transition at a
load parameter of η = 0.27. In the case concerning the column optimized for a load with a 25%
non-conservative component, the transition occurs at η = 0.24. The column optimized for a 50%
non-conservative load changes from divergence to flutter at η = 0.47. The column optimized for
a 75% non-conservative load shows the instability transition at η = 0.42. Finally, the column
optimized for a pure tangential (non-conservative) load has the transition from divergence to
flutter at η = 0.26.

Comparing the stability diagrams for the optimized designs from figure 5.7 with the stability
diagram for the uniform column, it is possible to assert that the behavior of the optimized columns
gets worse when the load parameter differs from the project value, as was to be expected. In
order to obtain an improved stability for all load conditions, a new optimization formulation is
required in order to control the different load parameters during the optimization process.
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Figure 5.6: Load-Frequency curves for the optimized columns.
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Figure 5.7: Stability diagrams of the optimized columns.
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5.2 Plate Subjected to a Partial Non-Conservative End Load

5.2.1 Code Verification

As for the previous presented results, the algorithm developed for the Mindlin plate model
must be verified in order to ensure that the presented stability analysis is accurate. As for the
beam model, this verification was performed by comparing the natural frequency and critical
load values obtained from the implemented MATLABr code with the results from ANSY Sr.
For verification purposes, a plate with 1m×0.25m and a thickness of 0.01m was considered, built
in an aluminium alloy with a Young’s modulus of 72GPa, density of 2800Kg/m3 and Poisson
ratio of ν = 0.2857. The obtained results are presented in table 5.4:

MATLABr ANSY Sr Deviation
1st Frequency (10x5) mesh 8.3217 Hz 8.3219 Hz 0.00 %

(20x10) mesh 8.3066 Hz 8.3117 Hz 0.06 %
(100x50) mesh 8.3013 Hz 8.3070 Hz 0.07 %
(200x100) mesh 8.3011 Hz 8.3068 Hz 0.07 %

5th Frequency (10x5) mesh 207.40 Hz 196.92 Hz 5.32 %
(20x10) mesh 206.50 Hz 196.34 Hz 5.17 %
(100x50) mesh 205.59 Hz 196.06 Hz 4.86 %
(200x100) mesh 205.86 Hz 196.04 Hz 4.86 %

Critical Load (10x5) mesh 15138.7 N 15110.0 N 0.19 %
(20x10) mesh 15073.0 N 15078.0 N 0.03 %
(100x50) mesh 15051.5 N 15065.0 N 0.09 %
(200x100) mesh 15050.8 N 15064.0 N 0.09 %

Table 5.3: Results verification for the plate and panel flutter models.

The presented results show a good agreement between the developed and implemented numer-
ical model and ANSY Sr for all the presented meshes. The fifth natural frequency is presented
because it is the highest frequency mode considered for the flutter analysis and optimization
algorithm. As can be seen, the relative error for this frequency mode is somewhat high for all
the meshes, which can be justified by the nature of the Mindlin theoretical formulation and
implementation. Nonetheless, the obtained value can be considered well within reason for the
present study.

As for the convergence study it is possible to verify that, as the number of elements increase,
the frequency and critical load values do not change considerably and when compared to the
ANSY Sr results one can note that the relative error can slightly increase. This occurs because
as the number of elements increase, the numerical error also increases because the size of the
elements becomes too small which originates badly scaled matrices. On the other hand, the
computational time required for the analysis is greatly affected by the number of used elements,
going from about 10 seconds for a 10× 5 mesh to around 30 minutes for a 200× 100 mesh, on a
standard single processor computer. Therefore, the presented results where all obtained with a
10×5 element mesh. In spite of generating good results, the relatively coarse mesh has a problem
when dealing with the optimization process, because the coarse mesh may not be able to detect
local vibration modes that can originate in areas of the plate where a large volume reduction
occurs. This problem will be further discussed when presenting the optimization results.

As previously shown for the beam model, the sensitivities of the constraints and objective
function with respect to the project variables had to be verified and, once again, the verification
was performed by comparison with the finite difference method. The obtained results have shown
a good agreement with minimum relative errors ranging from 10−4 to 10−6 %. Figure 5.8 presents
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Figure 5.8: Relative error vs. ∆µ of the sensitivity calculus of the critical load for the 1st design
variable and a load parameter of η = 1.

a plot with the sensitivities of the critical load of the first project variable for a η of 1 and stands
as a representative plot of the general sensitivities of both the critical load and the frequencies
obtained for all the project variables at different load conditions.

In addition to the presented verification methods, the stability results obtained with the
plate model can also be validated by comparison with the results obtained for the beam model,
presented in the previous section. This verification is possible because both models were put
in similar dimensionless forms (as can be confirmed by the theoretical formulation leading to
equations 2.11 for the beam model and 2.22 for the plate model) and, whenever possible, identical
properties where defined for both models. A discussion and comparison of the obtained results
is presented in the following section.
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5.2.2 Stability Results

This section presents the results obtained for a plate subjected to a non-conservative end
load as described theoretically in section 2.2 and formulated numerically in section 5.2.2. As
mentioned in these sections, the presented models follow the shear deformable Mindlin theory
and where obtained by a finite element discretization with 10 × 5 elements. These results were
obtained for a plate with ratio between the thickness and the plate characteristic length of 0.01.

The stability diagram presented in figure 5.9 shows the evolution of the critical divergence and
flutter loads with different possible load conditions ranging from (η = 0 to η = 1), as was done
before. The results obtained for the plate are presented along with the stability results obtained
for the beam model (presented in 5.2). Upon comparison, it is possible to verify that the results
obtained for the plate model are very similar to the ones obtained for the beam model, showing
basically the same stability characteristics for the different load conditions. Both critical load
conditions have lower values throughout the different loadings for the plate model. This could
be expected mainly because of the chosen Mindlin finite element formulation, but also because
this model takes into account the shear stresses, which are neglected in the Euler-Bernoulli beam
formulation.

Figure 5.10 shows the load frequency curves for the plate model. The considered non-
conservative load components where the same as the ones previously considered for the beam
model and the obtained results are quite similar to the ones presented for this model. The main
difference that can be seen between the two plots is the presence of torsional frequency modes.
As could be expected, for a thin plate under a uniform compressive load, the torsional instability
loads are significantly higher than the longitudinal instability loads and, as a consequence of this,
they are not present for the scale of the presented load-frequency curves. From these diagrams it
is possible to confirm once again that the obtained instability loads for each value of η are lower
than the ones previously obtained for the beam model, in agreement with the stability diagram
from figure 5.9. The following table presents the instability loads obtained from the plate model
as well as the same loads obtained for the beam model:

Load Condition Plate Model Beam Model Variation
η = 0.00 (fig. 5.10 a) 2.275 N 2.467 N 7.78 % (divergence)
η = 0.25 (fig. 5.10 b) 3.363 N 3.651 N 7.89 % (divergence)
η = 0.50 (fig. 5.10 c) 8.052 N 9.870 N 18.42 % (divergence)
η = 0.75 (fig. 5.10 d) 16.26 N 17.2 N 5.47 % (flutter)
η = 1.00 (fig. 5.10 e) 19.2 N 20.05 N 4.24 % (flutter)

Table 5.4: Instability loads for the plate and beam models.

As the table shows, all the instability loads obtained from the plate model are lower than
the previously obtained from the beam model as verified from simple graphical inspection. The
largest difference in critical loads occurs for η = 0.5. This can be justified by the fact that this
is the critical turning point between main instability modes (divergence and flutter), and thus is
the most susceptible to abrupt variations in the instability load.

Although presenting similar results, there are still some main differences that need to be
taken into account between the beam and plate model. The first fact that must be considered,
is that the beam model has circular cross-sections and, because of this, the instability mode
can occur in any direction. Since the plate model has rectangular cross sections with different
area moments of inertia, the main instability mode for a uniform plate will always occur in
the same direction, (the direction with the lowest area moment of inertia). This fact can be
considerably useful in situations when it is desired that the instability mode should occur in a
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Figure 5.9: Stability diagram of the uniform plate, presenting also the results from the beam
model.

specific direction. One of these situations can be the experimental verification of the presented
models (details on experimental sets for columns subjected to non-conservative end loads are
presented and discussed by Sugiyama et al. (2000)).

Another important fact to take into account is the presence of torsional modes, which for the
uniform plate model present relatively high instability modes for the uniform plate as discussed,
but may have influence in the optimization process.

Also to be taken into account is the fact that the implemented Mindlin plate model considers
shear stresses along the plate while the beam model does not take into account the stresses in the
columns. This fact may explain the differences in the critical loads obtained for the two models.
Another fact that may influence these results is the occurrence of shear locking problems due
to the nature of the implemented numerical methods as discussed in chapter . As for the beam
model, the presented stability results set the basis for the optimization process that follows.
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Figure 5.10: Load-Frequency curves for various load conditions, from a conservative force (η = 0)
to a pure non-conservative load (Beck’s column at η = 1.0). The presented results were obtained
for a uniform plate with a dimensionless thickness of µ = 1.0.
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5.2.3 Optimization Results

The optimization results presented in this section where obtained starting from the uniform
dimensionless plate with the stability characteristics presented in the previous section. As for the
beam model, a summary of the results is presented in the next table. Since the plate model was
developed so as to have similar properties as the beam model, the optimized volumes obtained
from the beam analysis are also presented,

Load Condition (η) 0.00 0.25 0.50 0.75 1.00
Optimized Volume 0.759 0.547 0.776 0.509 0.577
Volume Reduction (%) 24.1 45.3 22.4 49.1 42.3
Beam Model Results 0.866 0.476 0.473 0.490 0.374
Number of iterations 42 32 44 46 33

Table 5.5: Optimization results for the cantilevered plate model.

In order to obtain the present results, several parameters had to be considered, as was the case
for the beam model. For each load condition, the design variable limits where set as µmax = 1.5
and µmin = 10−8. The slack parameter function (the same as defined for the beam model
optimization) was set to,

ε =
{

0.3, for 0.75 < V ≤ 1
0.1, for 0 < V ≤ 0.75

The choice of the slack parameter is different from the beam model, because it was verified
that the optimization process for the plate elements had more difficulties in converging to lower
volume values. The implied stability analysis algorithm used in the optimization process used
500 load steps and, once again, 20 load points between 0 and pcr. The MMA tuning parameters
where again upon experience, as for the previous analysis.

These results also allowed for considerable volume reductions, although the obtained vol-
ume values where higher than the presented values for the beam model. This was somewhat
unexpected, but can possibly be justified by a series of reasons. First, the plate model takes
into account the shear stresses on the structure and, as discussed by Langthjem and Sugiyama
(2000a), this forces the thickness evolution along the plate to be smoother and, consequently
inducing another limitation on the volume reduction. Another possible reason is the relatively
small precision of the performed numerical calculus, both by the reduced number of elements
used as well as the reduced number of load steps.

Figure 5.11 shows the evolution of the dimensionless thickness parameter. The darker tone
indicated areas where material reinforcements are required, while lighter areas indicate that
there is a reduced need of material in these areas. Although these material reinforcements and
reductions where determined in terms of a general dimensionless thickness, they can give a
qualitative idea of how the results would be in case the use of materials with different densities
was considered, assuming as a simplification, a linear variation of the Young’s Modulus with
the density. The choice of a dimensionless thickness parameter was defined for computational
simplicity reasons and to have a higher coherence with the dimensionless form used in the beam
model. This fact is relevant when considering that the construction of the presented optimized
plates with variable thickness is difficult and expensive, while topology optimization methods,
using different materials for the design of optimal plates may prove to be more efficient. As
an example, a recent study on the application of an advanced topology optimization method is
presented by Gomes and Suleman (2006).
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Figure 5.11: Optimized plate designs, showing the dimensionless thickness distribution for various
non-conservative load parameters.

The load frequency curves obtained for the optimized columns is presented in figure 5.12. As
was the case for the beam model, it is possible to confirm that the optimized columns maintain
the imposed stability constraints, and the critical load is not lower than the value obtained for a
uniform plate. Once again, the only case where instability occurs through divergence is for the
pure conservative load (η = 0.0).

The convergence plots for each load condition are presented in figure 5.13, where the evolu-
tion of the dimensionless volume (objective function) is presented according to the number of
iterations. These results show that there was a smooth convergence for all the load conditions
except for η = 0..75. This fact can be justified by the different settings of the MMA tuning
parameters used, which allowed for the optimization algorithm to do more abrupt changes on
the design and consequently harm the convergence process. Nonetheless, even for this case there
were significant volume reductions.
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Figure 5.12: Load frequency curves for the different optimized plates.
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Figure 5.13: Volume variation along the optimization process.
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5.3 Simply Supported Panel Under a Supersonic Flow

5.3.1 Code Verification

The finite element model used for the panel analysis now presented is based upon the same
algorithm used for the previous model in which the only modifications where the geometrical
dimensions and the boundary and loading conditions. As the previous analysis algorithm showed
a good agreement with the finite element software, it is considered that the code is also approved
for the present model.

The comparison study used to confirm the correct analytical calculations of the sensitivities
of the constraint and objective functions by using finite difference methods was also implemented
for the present model. The main difference between this model and the previous plate model
lies in the loading conditions, which correspond to one of the optimization constraints. Given
this fact some attention was given to the verification of the sensitivities of this constraint. The
results have shown that, while the sensitivities for the frequencies showed relative errors with
the same magnitude of the previous models (10−4to10−5%) as expected, the sensitivities of the
critical dynamic pressure have shown an higher precision when compared to any of the results
obtained for the present or previous models, with relative errors around 10−7%. Once again the
presented results show that the analytical expressions used to determine the sensitivities of the
objective and constraint functions are correct.

5.3.2 Stability Analysis

The stability analysis was implemented for a simply supported square panel, with 0.3 ×
0.3 meters and a thickness of 0.01m. These values are only relevant for the relative thickness
with respect to the characteristic length of the plate, since all the results are presented in a
dimensionless form.

The stability analysis was developed with three different meshes to verify the convergence of
the solutions. Meshes with 10 × 10, 20 × 20 and 50 × 50 elements were considered, from where
it was possible to conclude that for a 10 × 10 element mesh, the critical dynamic pressure was
379, for the 20 × 20 element mesh, the critical dynamic pressure was 378 and for a 50 × 50
element mesh, the critical dynamic pressure obtained was 378. It is the possible to assume that
the 10× 10 element mesh has converged.

The instability mode originated by a low supersonic flow on the considered square panel is

Figure 5.14: Instability mode for the panel under a low supersonic flow. The results on the left
were obtained for a 10× 10 mesh and on the right with a 20× 20 mesh.
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Figure 5.15: Dimensionless dynamic pressure as function of the frequency. Real (left plot) and
Imaginary (right plot) representation.

presented in figure 5.14, for two different meshes. From a qualitative inspection of the deformed
shapes it is also possible to confirm that the smaller mesh can produce accurate results.

The dimensionless dynamic pressure as a function of the frequency is presented in the two
plots from figure 5.15, representing both the real and imaginary evolution of the critical dynamical
pressure for the panel. These results where obtained with a 10× 10 mesh, using 1000 load steps.
Comparing these results with the results presented in figure 5.3, it is possible to recognize some
similarities in the load frequency curves, especially in the complex domain, which reflect directly
on the flutter mechanisms that originate such a structural response. When, for a certain dynamic
pressure, flutter instability is reached, the load values enter the complex domain in the same way
that when flutter occurred in the beam model, the frequency values presented two complex
branches different from zero. These similarities help to reinforce the mentioned fact that the
simple case of a beam subjected to a non-conservative end load has equivalent characteristics of
more complex structural and loading models, while maintaining the simplicity required for a more
straightforward comprehension of the underlying mechanisms of flutter instability problems. The
comprehension of these mechanisms is essential for the development of optimization procedures
as the ones described in the present work.
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5.3.3 Optimization Results

The optimization process developed for the minimization of the structural weight of a panel
subjected to a low supersonic flow, follows the same basic considerations of the two previously
presented models and some aspects relating the optimization of structures subjected to non-
conservative loads were once again confirmed.

One of these aspects is the importance of the frequency separation constraints defined in the
optimization problem formulation 4.3. In order to illustrate the importance of this constraint,
a first optimization procedure was considered where the only considered constraint was the
dimensionless dynamic pressure, as defined by the original optimization problem. Figure 5.16
shows the evolution of the volume with the optimization iterations. These results were obtained
for a 10 × 10 element mesh, with the protect variables limited between µmax = 10 and µmin =
10−8. As it is possible to see in the plot, the optimization process does not converge and is
constantly in a repetitive cycle. The reason why this occurs can be understood by analyzing the
load frequency curves of one of these cycles.

Figure 5.17 shows the six first iterations of this optimization sequence. With the evolution of
the iterations it is possible to see that the higher flutter loads become lower, until they become
the dominant flutter load. When this occurs there is a large drop on the instability load and the
optimization algorithm jumps back to a previous stable design and starts over again, but always
with the same solution in mind which is never reached. This change in lower and higher flutter
modes is the responsible for the presented lack of convergence of the optimization sequence.

By introducing some geometric constraints and project variable limitations, the problem still
remains. Figure 5.18 shows the volume evolution of an optimization sequence where the project
variables were limited between µmax = 1.5 and µmin = 0.5 and the slack parameter, ε, was set to
0.1 in all cases. Although limited on the design variables, the optimization process still presented
convergence problems, having not converged to any viable solution.

The need for frequency constraints in order to obtain a convergent optimization sequence is
discussed with some level of detail by Odaka and Furuya (2005). They refer to the fact that
when considering frequency separation in the optimization process we have a robust optimization
scheme, because by ensuring this frequency separation, the structure is optimized taking into
account not only the main flutter instability mode, but also to higher modes. This robustness
comes as a consequence of avoiding the mentioned convergence problems.

Considering now the frequency constraints in the optimization process it is possible to obtain

Figure 5.16: Volume evolution with the number of iterations with no constraints on the frequen-
cies or the project variables.
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Figure 5.17: First five iterations of the optimization process with no frequency constraints.
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Figure 5.18: Volume evolution with the number of iterations with no constraints on the frequen-
cies and limited design variables.

Figure 5.19: Volume evolution with the number of iterations obtained with a frequency separation
constant of c = 10 and constraints on the project variables.
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Figure 5.20: Dimensionless thickness distribution on the panel. Results obtained with a frequency
separation constant of c = 10 and constraints on the project variables.

a good convergence of the results in a relatively reduced number of iterations. Setting the
frequency separation constant as c = 10, it is possible to obtain a volume reduction of 13.7%,
with the thickness distribution represented in figure 5.20. These results were obtained with the
project variables limited between µmax = 1.5 and µmin = 0.5 and a slack parameter set as
ε = 0.1. Figure 5.19 shows the volume evolution of the solution. As it is possible to note there
is a relatively smooth evolution until the convergence of the solution.
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Chapter 6

Conclusions and Further Remarks

The present thesis addressed the problem of obtaining optimal designs for structures sub-
jected to non-conservative loads. As a first stage of the work, the objective was to review the
state of the art in these specific problems, implement and reproduce the results obtained in
reference works on the area. On a second stage the project evolved into the extension of the
problem to a plate model with thickness optimization, which was not found in the literature as
far as the author’s knowledge. As a final stage the main objective was the generalization of the
developed plate algorithm for the panel flutter problem. The three models were implemented,
tested and results were obtained.

From the first model, using beam formulation, it is possible to verify one of the basic char-
acteristics of structural optimization problems: When a structure is optimized for a certain load
condition, it’s behavior when subjected to loading conditions different from the project load will
be affected. A possible solution for this fact is to consider a multi purpose optimization, where
constraints different constraints are simultaneously defined for different load conditions.

The implemented beam model was tested for several different load conditions, reproducing
results available in the bibliography for both the stability analysis and optimization methods.

Another fact that was noted was the influence of the shape of the cross-sectional areas on
the beam and plate models subjected to non-conservative end loads. As shown, for equivalent
dimensionless formulations leading to equivalent dimensionless cross-sections, the critical insta-
bility loads are similar for both models. In spite of this, the structural stability of both models
presents some important differences. In the beam model, with circular cross-sections, the in-
stability mode can occur in any radial direction. For the plate model, with rectangular cross
sections and one dimension much lower than the other, the main instability modes will occur
mainly in the direction with the lowest area moment of inertia. This plate model also presents
torsional modes that although significantly higher than the other instability modes, have shown
to influence the optimization process and, consequently the obtained results.

It is also important to keep in mind that the obtained optimization results for the plate and
panel flutter models are preliminary and where obtained while writing this thesis. Since the
optimization process depends upon a large number of factors that must be adjusted according
to the developers experience and sensitivity to the problem at hand, it is likely that further
work will produce better results. Initially, the plate model with a non-conservative end load was
implemented with the objective of improving the results obtained from the beam model. The
author believes that this objective can still be achieved.
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The main advantage of the present developed work was surely the comprehension of the
mechanisms relating flutter instability, as well as the experience and knowledge acquired in
optimization methods and algorithms, numerical analysis and the finite element method. An-
other important fact that results from this thesis is the original approach that was performed
to the problem, considering the plate model for the problem of a column subjected to an non-
conservative end-load, which lead to different optimization results.

One of the main advantages of starting with a simple model such as a rocket with an end
tip non-conservative load, and posteriorly moving to more complex models, is that it allows for
a gradual familiarization with the concepts that involve flutter and aeroelasticity. In addition,
the implemented software is considered of interest for academic and industrial applications.

As further work to be developed, it is possible to point out the verification of the devel-
oped models with any available reference examples and data. The development of the analysis
algorithms using different theoretical principles, such as considering the beam formulation by
the Timoshenko beam and a Kirchhoff plate formulation. These verifications would ensure the
robustness and accuracy of the developed models.

The development of an experimental validation model would also be of extreme value for the
presented work. From this could result the development of a new finite element model or the
application of different load and boundary conditions to the present models.

Another important development for the current thesis would be to study to a higher degree
the influence of the user defined parameters for the optimization process in the general optimized
results. These parameters could include a study on the influence of the frequency separation con-
stant c, the global limits for the project variables µmin and µmax, the slack parameter definition,
ε, the influence of the initial design on the optimization process and the MMA optimization
parameters (defined in equation 4.18).

The development and implementation of different optimization methods and procedures
would also be a valuable addition to the presented work. For the presented optimization pro-
cedures were set on size optimization, they can present a basic first approach to topology opti-
mization problems or the structural optimization taking into account different load conditions,
as previously mentioned.

Finally, the present work was intended from the very beginning to be a starting point for
the development of a range of optimization methods for different flutter problems. For this the
theoretical formulations existing in the bibliography are here presented in higher detail, as well
as the numerical implementation of these equations, and the complete analysis process. From
this, the starting point is set for the development and analysis of more complex structural models
with different approaches to the optimization problem and better optimized results.
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Appendix A

Code Listings for the Plate
Optimization Sequence

In the following pages, the listings for the algorithms used in a optimization sequence for the
plate model subjected to a non-conservative end-load are presented. The codes developed for
the remaining models follow the same basic structure.

A.1 Cantilevered Plate Subjected to an End Load

A.1.1 Function flutter_calc.m
%------------------------------------------------------------------------------------
% STABILITY ANALYSIS OF A BIDIMENSIONAL PLATE (MINDLIN THEORY)
%
% Based on the adapted version by M.M. Neves of the 99 line topology
% optimization code by Ole Sigmund
%
% March 2007 - Pedro Pastilha
%------------------------------------------------------------------------------------
function [P_cr, p, w, res, set_freq] = flutter_calc(nelx, nely, ue, eta, steps, res)

tic

fprintf(1,’\n--> FLUTTER STABILITY ANALYSIS\n’);

eta = 0.00;
steps = 1000;
res = 20;
nelx = 10;
nely = 5;
% ue(1:66) = 1; % Project Variables

%--------------------------------------------------------------------------
% Physical Properties:

Lx = 1; % Rod Lenght (m)
Ly = 0.1; % Rod Height (m)
h = 0.01; % Initial thickness

poi = 0.3;

%--------------------------------------------------------------------------
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% Finite Element data:

nodes = (nelx+1)*(nely+1); % Number of mesh nodes
lex = Lx/nelx;
ley = Ly/nely;
x(1:1:(nelx+1)) = 0:lex:Lx;
y(1:1:(nely+1)) = 0:ley:Ly;

xn(1:1:(nelx+1)) = 0;
xn(nelx+1) = 1;

%--------------------------------------------------------------------------
% Buckling Load Direction:

N_x = 1;
N_y = 0;
N_xy = 0;

%--------------------------------------------------------------------------
% Dimensionless Problem Formulation:

L = Lx;

x = x/L; % Dimensionless Length
y = y/L; % Dimensionless Heigth
ar = L/h; % Length/Thickness Aspect Ratio

%-------------------------------------------------------------------------
% FINITE ELEMENT MATRIX CONSTRUCTION
%-------------------------------------------------------------------------

% Definition of global matrices:

K = sparse(3*nodes, 3*nodes);
M = sparse(3*nodes, 3*nodes);
G_C = sparse(3*nodes, 3*nodes);
G_N = sparse(3*nodes, 3*nodes);

for ely =1:nely
for elx =1:nelx

ee = [ ue((nelx+1)*(ely-1)+elx),...
ue((nelx+1)*(ely-1)+elx+1),...
ue((nelx+1)*(ely-1)+nelx+elx+2),...
ue((nelx+1)*(ely-1)+nelx+elx+1)];

% Determination of Element Matrices:

[Ke Me Ge Qe] = element_matrices_adim(elx, ely, x, y, ee, ar, poi, ...
..., N_x, N_y, N_xy);

% Connectivity Relations:

n = [1; 5; 9];
n1 = [n; n+1; n+2; n+3];
n2 = 3*((nelx+1)*(ely-1)+elx)-2;

edof = [n2; n2+1; n2+2; % node 1
n2+3; n2+4; n2+5; % node 2
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n2+3*nelx+6; n2+3*nelx+7; n2+3*nelx+8; % node 3
n2+3*(nelx-2)+9; n2+3*(nelx-2)+10; n2+3*(nelx-2)+11]; % node 4

% Global Stiffness Matrix:

K(edof,edof) = K(edof,edof) + Ke(n1,n1);

% Global Mass Matrix:

M(edof,edof) = M(edof,edof) + Me(n1,n1);

% Global Conservative Stability Matrix:

G_C(edof,edof) = G_C(edof,edof) + Ge(n1,n1);

% Global Non Conservative Stability Matrix:

G_N(edof,edof) = G_N(edof,edof) + Qe(n1,n1)*xn(elx+1)*(2*nely);

end
end

% -------------------------------------------------------------------------
% GLOBAL SOLUTION
% -------------------------------------------------------------------------

fprintf(1,’\n Solving’);

% Displacement constraints:

fixeddofs =[(1:3*(nelx+1):3*nodes),(2:3*(nelx+1):3*nodes),...
..., (3:3*(nelx+1):3*nodes)]; % Clamped for y=0
alldofs = 1:3*nodes;
freedofs = setdiff(alldofs,fixeddofs);

%-------------------------------------------------------------------------
% Solution: (S-w^2*M-p*(Q_C-eta*Q_N) = 0)

% For given values of p, we have the following:

p_final = 100;
n_modes = 30;
solution = zeros(steps,n_modes);
p(1:steps) = 0;

% Set a progress meter:

progress = round(steps/10);

%-------------------------------------------------------------------------
% Calculus of the critical divergence load:

[mode_p,P_d] = eig(full(K(freedofs,freedofs)),full(G_C(freedofs,freedofs)-...
...eta*G_N(freedofs,freedofs)));

P_d = diag(P_d);
k = 1;
for i=1:size(P_d,1)

if real(P_d(i)) > 0
temp(k) = P_d(i);
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k = k+1;
end

end
temp = sort(temp);
P_d = round(temp(1:n_modes)*10)/10;
P_f = round(P_d(1)*10)/10;

%-------------------------------------------------------------------------
% Calculus of the critical flutter load and corresponding frequencies:

match = 0;
for i=0:1:steps

p(i+1) = i*(p_final/steps);

opts.disp = 0;
[mode,lambda] = eigs(K(freedofs,freedofs)-p(i+1)*(G_C(freedofs,freedofs)-...

...eta*G_N(freedofs,freedofs)),M(freedofs,freedofs),n_modes,’sm’,opts);

% Sorting of the frequencies (by the real part):

lambda = diag(lambda);
temp = real(lambda);
[temp, order] = sort(temp);
temp(1:n_modes) = lambda(order(1:n_modes));
lambda(1:n_modes) = temp(1:n_modes);

solution(i+1,1:n_modes) = sqrt(lambda(1:n_modes));

% Determine when flutter occurs:

for k = 1:1:(n_modes-1)
eval = abs(imag(lambda(k) + lambda(k+1)));
if imag(lambda(k)) ~= 0 && eval == 0 && match == 0

P_f = p(i);
match = 1;
set_freq = k;

end
end

if i == progress
fprintf(1,’.’);
progress = progress + round(steps/10);

end
end

% The critical load is given by:

if abs(imag(P_d(1))) == 0 && real(P_d(1)) > 0
P_cr = min(real(P_d(1)),real(P_f));
set_freq = 1;

else
P_cr = real(P_f);

end

fprintf(1,’\n\n The first critical load for the given column is %2.4f\n’,P_cr);

% Definition of the optimization constraint points (w and p vectors):

dim = ceil((P_cr/p_final)*steps);
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p = p(1:1:dim);
w = solution(1:1:dim,:);
p_new(1:res) = 0;
w_new = zeros(res,n_modes);

if res > dim
res = dim;
p_new = p;
w_new = w;

else
for i=2:1:(res-1)

p_new(i) = p(ceil(dim*((i-1)/(res-1))));
w_new(i,:) = w(ceil(dim*((i-1)/(res-1))),:);

end
p_new(1) = p(1);
p_new(res) = p(dim);
w_new(1,:) = w(1,:);
w_new(res,:) = w(dim,:);

end
p = p_new;
w = w_new;

% -------------------------------------------------------------------------
% POST PROCESSING:
% -------------------------------------------------------------------------

figure(1)
semilogx(solution,0:(p_final/steps):p_final,’b’);
axis tight
title([’\eta = ’, num2str(eta)]);
xlabel(’Frequency \omega’);
ylabel(’Load p’);

% Finish the time counter:

time = toc;

fprintf(1,’\n(%2.4f seconds)\n\n’,time);

end

A.1.2 Function element_matrices_adim.m
%------------------------------------------------------------------------------------------
% FINITE ELEMENT MATRIX CALCULATION FOR THE
% FIRST ORDER PLATE THEORY
%
% March 2007 - Pedro Pastilha
%------------------------------------------------------------------------------------------
function [Ke Me Ge Qe] = element_matrices_adim(elx, ely, x, y, ee, ar, poi, N_x, N_y, N_xy)

%------------------------------------------------------------------------------------------
% INPUT VARIABLES (for testing purposes only):

% % FUNCTION INPUTS
%
% elx = 1;
% ely = 1;
%
% rho = 7800; % Material density (Kg/m^3)
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% E = 12*rho^2; % Young’s modulus (Pa)
% poi = 0.3;
% h = 0.005; % Thickness (m)
%
% N_x = 1;
% N_y = 1;
% N_xy = 1;
%
% % NON FUNCTION INPUTS:
%
% nelx = 4;
% nely = 4;
% Lx = 2;
% Ly = 2;
%
% lex = Lx/nelx;
% ley = Ly/nely;
% x(1:1:(nelx+1)) = (0:lex:Lx);
% y(1:1:(nely+1)) = (0:ley:Ly);
% l = Lx;

%------------------------------------------------------------------------------------------
% LOCAL VARIABLES:

mat_output = 0; % 0/1 - Hide/Show Element Matrices

xe = [x(elx), x(elx+1), x(elx+1), x(elx)];
ye = [y(ely), y(ely), y(ely+1), y(ely+1)];

%------------------------------------------------------------------------------------------
% MATERIAL PROPERTIES:

% Dimensionless Plate rigidities (Isotropic):

k = 5/6; % Shear correction coefficient

r = (6*k*(1-poi)); % ISOTROPIC MATERIAL!!!!

D_11 = 1;
D_22 = 1;
D_12 = poi;
D_66 = (1-poi)/2;
A_44 = r*ar;
A_55 = r*ar;

% Dimensionless Moments of Inertia:

I_0 = 1;
I_2 = (1/12)*(1/ar)^2;

%------------------------------------------------------------------------------------------
% CONSTRUCTION OF THE ELEMENT MATRICES (NUMERICAL):

GP = [0, -sqrt(1/3), sqrt(1/3)]; % Gauss integration points
GW = [2, 1, 1]; % Gauss integraion weights

K_11 = zeros(4);
K_12 = zeros(4);
K_13 = zeros(4);
K_22 = zeros(4);
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K_23 = zeros(4);
K_33 = zeros(4);
M_11 = zeros(4);
M_22 = zeros(4);
G = zeros(4);
Q = zeros(4);

for i=1:1:4
for j=1:1:4

K_11s = 0;
K_12s = 0;
K_13s = 0;
K_22s = 0;
K_33s = 0;

K_22n = 0;
K_23n = 0;
K_33n = 0;
M_11n = 0;
M_22n = 0;
Gn = 0;
Qn = 0;

% Numerical integration for Gauss Quadrature Rule (1x1 Points)
% -> Shear Contribution for the Stiffness Matrix

eta = GP(1);
ksi = GP(1);

% Calculate the shape functions at the selected nodes:

[me psi psi_ksi psi_eta J J_inv Jacobian] = shape_functions(eta,ksi,xe,ye,ee);

K_11s = K_11s + (me*A_55*(J_inv(1,1)*psi_ksi(i) + ...
J_inv(1,2)*psi_eta(i))*(J_inv(1,1)*psi_ksi(j) + J_inv(1,2)*psi_eta(j)) + ...

me*A_44*(J_inv(2,1)*psi_ksi(i) + ...
J_inv(2,2)*psi_eta(i))*(J_inv(2,1)*psi_ksi(j) + ...
J_inv(2,2)*psi_eta(j)))*Jacobian*GW(1)*GW(1);

K_12s = K_12s + (me*A_55*(J_inv(1,1)*psi_ksi(i) + ...
J_inv(1,2)*psi_eta(i))*psi(j))*Jacobian*GW(1)*GW(1);

K_13s = K_13s + (me*A_44*(J_inv(2,1)*psi_ksi(i) + ...
J_inv(2,2)*psi_eta(i))*psi(j))*Jacobian*GW(1)*GW(1);

K_22s = K_22s + (me*A_55*psi(i)*psi(j))*Jacobian*GW(1)*GW(1);

K_33s = K_33s + (me*A_44*psi(i)*psi(j))*Jacobian*GW(1)*GW(1);

% Numerical integration for Gauss Quadrature Rule (2x2 Points)
% -> Bending and Membrane Contribution for the Stiffness Matrix
% -> Mass Matrix
% -> Stability Matrix

for n=2:1:3

eta = GP(n);

% % Calculate the shape functions at the selected nodes:
%
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% [me psi psi_ksi psi_eta J J_inv Jacobian] = shape_functions(eta,1,xe,ye,ee);
%
% % Element Non Conservative Matrix Coefficients
%
% Qn = Qn + ((J_inv(1,1)*psi_ksi(i) + J_inv(1,2)*psi_eta(i))*psi(j))*Jacobian*GW(n);

for m=2:1:3

ksi = GP(m);

% Calculate the shape functions at the selected nodes:

[me psi psi_ksi psi_eta J J_inv Jacobian] = shape_functions(eta,ksi,xe,ye,ee);

% Element Stiffness Matrix Coefficients:

K_22n = K_22n + (me^3*D_11*(J_inv(1,1)*psi_ksi(i) + ...
J_inv(1,2)*psi_eta(i))*(J_inv(1,1)*psi_ksi(j) + ...
J_inv(1,2)*psi_eta(j)) + ...

me^3*D_66*(J_inv(2,1)*psi_ksi(i) + ...
J_inv(2,2)*psi_eta(i))*(J_inv(2,1)*psi_ksi(j) + ...
J_inv(2,2)*psi_eta(j)))*Jacobian*GW(n)*GW(m);

K_23n = K_23n + (me^3*D_12*(J_inv(1,1)*psi_ksi(i) + ...
J_inv(1,2)*psi_eta(i))*(J_inv(2,1)*psi_ksi(j) + ...
J_inv(2,2)*psi_eta(j)) + ...

me^3*D_66*(J_inv(2,1)*psi_ksi(i) + ...
J_inv(2,2)*psi_eta(i))*(J_inv(1,1)*psi_ksi(j) + ...
J_inv(1,2)*psi_eta(j)))*Jacobian*GW(n)*GW(m);

K_33n = K_33n + (me^3*D_66*(J_inv(1,1)*psi_ksi(i) + ...
J_inv(1,2)*psi_eta(i))*(J_inv(1,1)*psi_ksi(j) + J_inv(1,2)*psi_eta(j)) + ...

me^3*D_22*(J_inv(2,1)*psi_ksi(i) + ...
J_inv(2,2)*psi_eta(i))*(J_inv(2,1)*psi_ksi(j) + ...
J_inv(2,2)*psi_eta(j)))*Jacobian*GW(n)*GW(m);

% Element Mass Matrix Coefficients:

M_11n = M_11n + me*I_0*psi(i)*psi(j)*Jacobian*GW(n)*GW(m);

M_22n = M_22n + me^3*I_2*psi(i)*psi(j)*Jacobian*GW(n)*GW(m);

% Element Stability Matrix Coefficients:

Gn = Gn + (N_x*(J_inv(1,1)*psi_ksi(i) + J_inv(1,2)*psi_eta(i))*(J_inv(1,1)*psi_ksi(j) + ...
J_inv(1,2)*psi_eta(j)) + N_y*(J_inv(2,1)*psi_ksi(i) + ...
J_inv(2,2)*psi_eta(i))*(J_inv(2,1)*psi_ksi(j) + J_inv(2,2)*psi_eta(j)) +...
N_xy*((J_inv(1,1)*psi_ksi(i) + J_inv(1,2)*psi_eta(i))*(J_inv(2,1)*psi_ksi(j) + ...
J_inv(2,2)*psi_eta(j)) + (J_inv(2,1)*psi_ksi(i) + ...
J_inv(2,2)*psi_eta(i))*(J_inv(1,1)*psi_ksi(j) + ...
J_inv(1,2)*psi_eta(j))))*Jacobian*GW(n)*GW(m);

% Element Non Conservative Matrix Coefficients

Qn = Qn + psi(i)*(J_inv(1,1)*psi_ksi(j) + J_inv(1,2)*psi_eta(j))*Jacobian*GW(n)*GW(m);

end
end

% Matrix Entries:

K_11(i,j) = K_11s;
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K_12(i,j) = K_12s;
K_13(i,j) = K_13s;
K_22(i,j) = K_22n + K_22s;
K_23(i,j) = K_23n;
K_33(i,j) = K_33n + K_33s;
M_11(i,j) = M_11n;
M_22(i,j) = M_22n;
G(i,j) = Gn;
Q(i,j) = Qn;

end
end

null_mat = zeros(4);

% Element Stiffness Matrix:

Ke_upper = [ K_11, K_12, K_13;
null_mat, K_22, K_23;
null_mat, null_mat, K_33 ];

Ke_upper = triu(Ke_upper);
Ke_lower = transpose(Ke_upper) - diag(diag(Ke_upper));
Ke = Ke_upper + Ke_lower;

% Element Mass Matrix:

Me_upper = [M_11, null_mat, null_mat;
null_mat, M_22, null_mat;
null_mat, null_mat, M_22 ];

Me_upper = triu(Me_upper);
Me_lower = transpose(Me_upper) - diag(diag(Me_upper));
Me = Me_upper + Me_lower;

% Element Stability Matrix:

Ge = [G, null_mat, null_mat;
null_mat, null_mat, null_mat;
null_mat, null_mat, null_mat];

% Element Non-Conservative Matrix:

Qe = [Q, null_mat, null_mat;
null_mat, null_mat, null_mat;
null_mat, null_mat, null_mat];

%------------------------------------------------------------------------------------------
% Matrix Printout:

if mat_output == 1

fprintf(1,’\nElement Stiffness Matrix (symmetric):\n’);

pretty(Ke);

fprintf(1,’\nElement Mass Matrix (symmetric):\n’);

pretty(Me);

fprintf(1,’\nElement Stability Matrix (symmetric):\n’);

pretty(Ge);
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end

end

% Lagrange Interpolation Functions:
%
% (Rectangular Element With 4 Nodes)
%
% ^ eta
% 4 | 3
% ^ +------|------+
% | | | | ksi
% 2b | | +------+--->
% | | |
% v +-------------+
% 1 2
% <------------->
%
% psi_i = (1/4)*(1 + ksi*ksi_i)*(1 + eta*eta_i)
% (i = node 1,2,...)

function [me psi psi_ksi psi_eta J J_inv Jacobian] = shape_functions(eta, ksi, xe, ye, ee)

% Thickness distribution along the element:

me = (1/4)*(1-ksi)*(1-eta)*ee(1) + (1/4)*(1 + ksi)*(1 - eta)*ee(2) + ...
(1/4)*(1 + ksi)*(1 + eta)*ee(3) + (1/4)*(1 - ksi)*(1 + eta)*ee(4);

% Vector definition with the interpolation function at each node:

psi = [(1/4)*(1 - ksi)*(1 - eta) ;
(1/4)*(1 + ksi)*(1 - eta) ;
(1/4)*(1 + ksi)*(1 + eta) ;
(1/4)*(1 - ksi)*(1 + eta)];

% Derivatives of the interpolation function at each node:

psi_ksi = [-(1/4)*(1 - eta) ;
(1/4)*(1 - eta) ;
(1/4)*(1 + eta) ;

-(1/4)*(1 + eta)];
psi_eta = [-(1/4)*(1 - ksi) ;

-(1/4)*(1 + ksi) ;
(1/4)*(1 + ksi) ;
(1/4)*(1 - ksi)];

% Compute the Jacobian Matrix:

J = transpose([xe; ye]*[psi_ksi, psi_eta]); % Jacobian Matrix

Jacobian = det(J); % Jacobian

if Jacobian <= 0
errordlg(’Oh boy, oh boy! The determinant has become zero...RUN FOR YOUR LIVES!!!!’)
error(’My existance has lost all meaning...The determinant has become zero’);

end

J_inv = inv(J); % Inverse of the Jacobian Matrix

end
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A.1.3 Function sensitivity.m
%------------------------------------------------------------------------------------------
% SENSITIVITY ANALISYS FOR FLUTTER OPTIMIZATION
%
% optimization of flutter instability using flutter_calc.m to determine the
% constraints and volume.m as the objective function
%
% September 2006 - Pedro Pastilha
%------------------------------------------------------------------------------------------

function [d_p d_w] = sensitivity(nelx, nely, ue, eta, p, P_cr, res, set_freq)

fprintf(1,’\n--> SENSITIVITY ANALYSIS\n’);

tic

% eta = 0.0;
% res = 5;
% nelx = 10;
% nely = 4;
% p = [ 0 0.4000 1.0000 1.6000 2.2000];
% set_freq = 1;
% P_cr = 2.2547;
% ue(1:(nelx+1)*(nely+1)) = 1; % Project Variables

%------------------------------------------------------------------------------------------
% Physical Properties:

Lx = 1; % Rod Lenght (m)
Ly = 0.1; % Rod Height (m)
h = 0.01; % Initial Thickness (m)

poi = 0.3;

nfreqs = 10; % Number of frequencies to consider

%------------------------------------------------------------------------------------------
% Finite Element data:

nodes = (nelx+1)*(nely+1); % Number of mesh nodes
lex = Lx/nelx;
ley = Ly/nely;
x(1:1:(nelx+1)) = 0:lex:Lx;
y(1:1:(nely+1)) = 0:ley:Ly;

xn(1:1:(nelx+1)) = 0;
xn(nelx+1) = 1;

%------------------------------------------------------------------------------------------
% Buckling Load Direction:

N_x = 1;
N_y = 0;
N_xy = 0;

%------------------------------------------------------------------------------------------
% Dimensionless Problem Formulation:

73



L = Lx;

x = x/L; % Dimensionless Length
y = y/L; % Dimensionless Heigth
ar = L/h; % Length/Thickness Aspect Ratio

%------------------------------------------------------------------------------------------
% SENSITIVITY ANALYSIS:
%------------------------------------------------------------------------------------------

% Array preallocation (for speed):

d_w = zeros(res,nodes,nfreqs);
d_p(1:nodes) = 0;

fprintf(1,’\n Calculating’);

progress = round(nodes/10);

for e=1:1:nodes

%------------------------------------------------------------------------------------------
% FINITE ELEMENT MATRIX CONSTRUCTION

% Definition of global matrices:

K = sparse(3*nodes, 3*nodes);
M = sparse(3*nodes, 3*nodes);
G_C = sparse(3*nodes, 3*nodes);
G_N = sparse(3*nodes, 3*nodes);

for ely =1:nely
for elx =1:nelx

ee = [ ue((nelx+1)*(ely-1)+elx),...
ue((nelx+1)*(ely-1)+elx+1),...
ue((nelx+1)*(ely-1)+nelx+elx+2),...
ue((nelx+1)*(ely-1)+nelx+elx+1)];

% Determination of Element Matrices:

[Ke Me Ge Qe] = element_matrices_adim(elx, ely, x, y, ee, ar, poi, N_x, N_y, N_xy);

% Connectivity Relations:

n = [1; 5; 9];
n1 = [n; n+1; n+2; n+3];
n2 = 3*((nelx+1)*(ely-1)+elx)-2;

edof = [n2; n2+1; n2+2; % node 1
n2+3; n2+4; n2+5; % node 2
n2+3*nelx+6; n2+3*nelx+7; n2+3*nelx+8; % node 3
n2+3*(nelx-2)+9; n2+3*(nelx-2)+10; n2+3*(nelx-2)+11]; % node 4

% Global Stiffness Matrix:

K(edof,edof) = K(edof,edof) + Ke(n1,n1);

% Global Mass Matrix:

M(edof,edof) = M(edof,edof) + Me(n1,n1);
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% Global Conservative Stability Matrix:

G_C(edof,edof) = G_C(edof,edof) + Ge(n1,n1);

% Global Non Conservative Stability Matrix:

G_N(edof,edof) = G_N(edof,edof) + Qe(n1,n1)*xn(elx+1)*(2*nely);

end
end

%------------------------------------------------------------------------------------------
% DERIVATIVE FINITE ELEMENT MATRIX CONSTRUCTION

% Definition of global matrices:

d_K = sparse(3*nodes, 3*nodes);
d_M = sparse(3*nodes, 3*nodes);
d_G_C = sparse(3*nodes, 3*nodes);
d_G_N = sparse(3*nodes, 3*nodes);

for ely =1:nely
for elx =1:nelx

ee = [ ue((nelx+1)*(ely-1)+elx),...
ue((nelx+1)*(ely-1)+elx+1),...
ue((nelx+1)*(ely-1)+nelx+elx+2),...
ue((nelx+1)*(ely-1)+nelx+elx+1)];

% Determination of the Derivative Element Matrices:

if ((nelx+1)*(ely-1)+elx) == e
lnode = 1;
[d_Ke d_Me d_Ge d_Qe] = element_matrices_diff(elx, ely, lnode, x, y,...

ee, ar, poi, N_x, N_y, N_xy);

elseif ((nelx+1)*(ely-1)+elx+1) == e
lnode = 2;
[d_Ke d_Me d_Ge d_Qe] = element_matrices_diff(elx, ely, lnode, x, y,...

ee, ar, poi, N_x, N_y, N_xy);

elseif ((nelx+1)*(ely-1)+nelx+elx+2) == e
lnode = 3;
[d_Ke d_Me d_Ge d_Qe] = element_matrices_diff(elx, ely, lnode, x, y,...

ee, ar, poi, N_x, N_y, N_xy);

elseif ((nelx+1)*(ely-1)+nelx+elx+1) == e
lnode = 4;
[d_Ke d_Me d_Ge d_Qe] = element_matrices_diff(elx, ely, lnode, x, y,

ee, ar, poi, N_x, N_y, N_xy);

else
d_Ke = zeros(12);
d_Me = zeros(12);
d_Ge = zeros(12);
d_Qe = zeros(12);

end

% Connectivity Relations:

75



n = [1; 5; 9];
n1 = [n; n+1; n+2; n+3];
n2 = 3*((nelx+1)*(ely-1)+elx)-2;

edof = [n2; n2+1; n2+2; % node 1
n2+3; n2+4; n2+5; % node 2
n2+3*nelx+6; n2+3*nelx+7; n2+3*nelx+8; % node 3
n2+3*(nelx-2)+9; n2+3*(nelx-2)+10; n2+3*(nelx-2)+11]; % node 4

% Global Stiffness Matrix:

d_K(edof,edof) = d_K(edof,edof) + d_Ke(n1,n1);

% Global Mass Matrix:

d_M(edof,edof) = d_M(edof,edof) + d_Me(n1,n1);

% Global Conservative Stability Matrix:

d_G_C(edof,edof) = d_G_C(edof,edof) + d_Ge(n1,n1);

% Global Non Conservative Stability Matrix:

d_G_N(edof,edof) = d_G_N(edof,edof) + d_Qe(n1,n1)*xn(elx+1)*(2*nely);

end
end

%------------------------------------------------------------------------------------------
% CURRENT VARIABLE SENSITIVITY CALCULATION:

% Displacement constraints:

fixeddofs = [(1:3*(nelx+1):3*nodes),(2:3*(nelx+1):3*nodes),...
(3:3*(nelx+1):3*nodes)]; % Clamped for y=0

alldofs = 1:3*nodes;
freedofs = setdiff(alldofs,fixeddofs);
n_modes = 30;

%------------------------------------------------------------------------------------------
% Sensitivities of the frequencies

for i=1:1:res

% Stability solution to determine the critical load and right eigenvector:

opts.disp = 0;
[mode,lambda] = eigs((K(freedofs,freedofs)-p(i)*(G_C(freedofs,freedofs)-...

eta*G_N(freedofs,freedofs))),(M(freedofs,freedofs)),n_modes,’sm’,opts);

lambda = diag(lambda);
temp = real(lambda);
[temp, order] = sort(temp);
temp(1:n_modes) = lambda(order(1:n_modes));
w = sqrt(temp(1:n_modes));

d = mode(:,order(1:n_modes));

% Solution of the adjoint problem to determine the left eigenvector:
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opts.disp = 0;
[mode_adj,lambda_adj] = eigs((K(freedofs,freedofs)’-p(i)*(G_C(freedofs,freedofs)’-...

eta*G_N(freedofs,freedofs)’)),(M(freedofs,freedofs)’),n_modes,’sm’,opts);

lambda_adj = diag(lambda_adj);
temp = real(lambda_adj);
[temp, order_adj] = sort(temp);

b = mode_adj(:,order_adj(1:n_modes));

% Calculate the sensitivity for each natural frequency:

for f=1:1:nfreqs

wf = w(f);
df = d(:,f);
bf = b(:,f);

if wf < 10^-5
d_w(i,e,f) = d_w(i-1,e,f);

else
d_w(i,e,f) = double((transpose(bf)*(d_K(freedofs,freedofs)-...

wf^2*d_M(freedofs,freedofs))*df)/(transpose(bf)*2*wf*M(freedofs,freedofs)*df));
end

end

end

%------------------------------------------------------------------------------------------
% Sensitivities of the Critical Load:

% Stability solution to determine the critical frequency and right eigenvector:

opts.disp = 0;
[mode,lambda] = eigs((K(freedofs,freedofs)-P_cr*(G_C(freedofs,freedofs)-...

eta*G_N(freedofs,freedofs))),(M(freedofs,freedofs)),n_modes,’sm’,opts);

lambda = diag(lambda);
temp = real(lambda);
[temp, order] = sort(temp);
temp(1:n_modes) = lambda(order(1:n_modes));
w = sqrt(temp(set_freq));

d = mode(:,order(set_freq));

% Solution of the adjoint problem to determine the left eigenvector:

[mode_adj,lambda_adj] = eigs((K(freedofs,freedofs)’-P_cr*(G_C(freedofs,freedofs)’-...
eta*G_N(freedofs,freedofs)’)),(M(freedofs,freedofs)’),n_modes,’sm’,opts);

lambda_adj = diag(lambda_adj);
temp = real(lambda_adj);
[temp, order_adj] = sort(temp);

b = mode_adj(:,order_adj(set_freq));

d_p(e) = double((transpose(b)*(d_K(freedofs,freedofs)-w^2*d_M(freedofs,freedofs))*d)...
/(transpose(b)*full((G_C(freedofs,freedofs)-eta*G_N(freedofs,freedofs)))*d));

% Check progress meter:
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if e == progress
fprintf(1,’.’);
progress = progress + round(nodes/10);

end
end

time = toc;

fprintf(1,’\n(%2.4f seconds)\n\n’,time);

end

A.1.4 Function element_matrices_diff.m
%------------------------------------------------------------------------------------------
% FINITE ELEMENT MATRIX CALCULATION FOR THE
% FIRST ORDER PLATE THEORY
%
% March 2007 - Pedro Pastilha
%------------------------------------------------------------------------------------------
function [d_Ke d_Me d_Ge d_Qe] = element_matrices_diff(elx, ely, lnode, x, y, ee, ar,...
poi, N_x, N_y, N_xy)

%------------------------------------------------------------------------------------------
% LOCAL VARIABLES:

mat_output = 0; % 0/1 - Hide/Show Element Matrices

xe = [x(elx), x(elx+1), x(elx+1), x(elx)];
ye = [y(ely), y(ely), y(ely+1), y(ely+1)];

%------------------------------------------------------------------------------------------
% MATERIAL PROPERTIES:

% Dimensionless Plate rigidities (Isotropic):

k = 5/6; % Shear correction coefficient

r = (6*k*(1-poi)); % ISOTROPIC MATERIAL!!!!

D_11 = 1;
D_22 = 1;
D_12 = poi;
D_66 = (1-poi)/2;
A_44 = r*ar;
A_55 = r*ar;

% Dimensionless Moments of Inertia:

I_0 = 1;
I_2 = (1/12)*(1/ar)^2;

%------------------------------------------------------------------------------------------
% CONSTRUCTION OF THE ELEMENT MATRICES (NUMERICAL):

GP = [0, -sqrt(1/3), sqrt(1/3)]; % Gauss integration points
GW = [2, 1, 1]; % Gauss integraion weights

K_11 = zeros(4);
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K_12 = zeros(4);
K_13 = zeros(4);
K_22 = zeros(4);
K_23 = zeros(4);
K_33 = zeros(4);
M_11 = zeros(4);
M_22 = zeros(4);
G = zeros(4);
Q = zeros(4);

for i=1:1:4
for j=1:1:4

K_11s = 0;
K_12s = 0;
K_13s = 0;
K_22s = 0;
K_33s = 0;

K_22n = 0;
K_23n = 0;
K_33n = 0;
M_11n = 0;
M_22n = 0;
Gn = 0;
Qn = 0;

% Numerical integration for Gauss Quadrature Rule (1x1 Points)
% -> Shear Contribution for the Stiffness Matrix

eta = GP(1);
ksi = GP(1);

% Calculate the shape functions at the selected nodes:

[me d_me d_me3 psi psi_ksi psi_eta J J_inv Jacobian] = shape_functions(eta,ksi, xe, ye, ee);

K_11s = K_11s + (d_me(lnode)*A_55*(J_inv(1,1)*psi_ksi(i) + ...
J_inv(1,2)*psi_eta(i))*(J_inv(1,1)*psi_ksi(j) + J_inv(1,2)*psi_eta(j)) +...

d_me(lnode)*A_44*(J_inv(2,1)*psi_ksi(i) + ...
J_inv(2,2)*psi_eta(i))*(J_inv(2,1)*psi_ksi(j) + ...
J_inv(2,2)*psi_eta(j)))*Jacobian*GW(1)*GW(1);

K_12s = K_12s + (d_me(lnode)*A_55*(J_inv(1,1)*psi_ksi(i) + ...
J_inv(1,2)*psi_eta(i))*psi(j))*Jacobian*GW(1)*GW(1);

K_13s = K_13s + (d_me(lnode)*A_44*(J_inv(2,1)*psi_ksi(i) + ...
J_inv(2,2)*psi_eta(i))*psi(j))*Jacobian*GW(1)*GW(1);

K_22s = K_22s + (d_me(lnode)*A_55*psi(i)*psi(j))*Jacobian*GW(1)*GW(1);

K_33s = K_33s + (d_me(lnode)*A_44*psi(i)*psi(j))*Jacobian*GW(1)*GW(1);

% Numerical integration for Gauss Quadrature Rule (2x2 Points)
% -> Bending and Membrane Contribution for the Stiffness Matrix
% -> Mass Matrix
% -> Stability Matrix

for n=2:1:3

eta = GP(n);
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% % Calculate the shape functions at the selected nodes:
%
% [me d_me d_me3 psi psi_ksi psi_eta J J_inv Jacobian] = shape_functions(eta, 1, xe, ye, ee);
%
% % Element Non Conservative Matrix Coefficients
%
% Qn = Qn + ((J_inv(1,1)*psi_ksi(i) + J_inv(1,2)*psi_eta(i))*psi(j))*Jacobian*GW(n);

for m=2:1:3

ksi = GP(m);

% Calculate the shape functions at the selected nodes:

[me d_me d_me3 psi psi_ksi psi_eta J J_inv Jacobian] = shape_functions(eta,ksi, xe, ye, ee);

% Element Stiffness Matrix Coefficients:

K_22n = K_22n + (d_me3(lnode)*D_11*(J_inv(1,1)*psi_ksi(i) + ...
J_inv(1,2)*psi_eta(i))*(J_inv(1,1)*psi_ksi(j) + ...
J_inv(1,2)*psi_eta(j)) +...

d_me3(lnode)*D_66*(J_inv(2,1)*psi_ksi(i) + ...
J_inv(2,2)*psi_eta(i))*(J_inv(2,1)*psi_ksi(j) + ...
J_inv(2,2)*psi_eta(j)))*Jacobian*GW(n)*GW(m);

K_23n = K_23n + (d_me3(lnode)*D_12*(J_inv(1,1)*psi_ksi(i) + ...
J_inv(1,2)*psi_eta(i))*(J_inv(2,1)*psi_ksi(j) + ...
J_inv(2,2)*psi_eta(j)) +...

d_me3(lnode)*D_66*(J_inv(2,1)*psi_ksi(i) + ...
J_inv(2,2)*psi_eta(i))*(J_inv(1,1)*psi_ksi(j) + ...
J_inv(1,2)*psi_eta(j)))*Jacobian*GW(n)*GW(m);

K_33n = K_33n + (d_me3(lnode)*D_66*(J_inv(1,1)*psi_ksi(i) + ...
J_inv(1,2)*psi_eta(i))*(J_inv(1,1)*psi_ksi(j) + ...
J_inv(1,2)*psi_eta(j)) +...

d_me3(lnode)*D_22*(J_inv(2,1)*psi_ksi(i) + ...
J_inv(2,2)*psi_eta(i))*(J_inv(2,1)*psi_ksi(j) + ...
J_inv(2,2)*psi_eta(j)))*Jacobian*GW(n)*GW(m);

% Element Mass Matrix Coefficients:

M_11n = M_11n + d_me(lnode)*I_0*psi(i)*psi(j)*Jacobian*GW(n)*GW(m);

M_22n = M_22n + d_me3(lnode)*I_2*psi(i)*psi(j)*Jacobian*GW(n)*GW(m);

% Element Stability Matrix Coefficients:

Gn = Gn + (N_x*(J_inv(1,1)*psi_ksi(i) +
J_inv(1,2)*psi_eta(i))*(J_inv(1,1)*psi_ksi(j) + J_inv(1,2)*psi_eta(j)) + ...

N_y*(J_inv(2,1)*psi_ksi(i) +
J_inv(2,2)*psi_eta(i))*(J_inv(2,1)*psi_ksi(j) + J_inv(2,2)*psi_eta(j)) + ...

N_xy*((J_inv(1,1)*psi_ksi(i) +
J_inv(1,2)*psi_eta(i))*(J_inv(2,1)*psi_ksi(j) + J_inv(2,2)*psi_eta(j)) + ...

(J_inv(2,1)*psi_ksi(i) + J_inv(2,2)*psi_eta(i))*(J_inv(1,1)*psi_ksi(j) + ...
J_inv(1,2)*psi_eta(j))))*Jacobian*GW(n)*GW(m);

% Element Non Conservative Matrix Coefficients

Qn = Qn + psi(i)*(J_inv(1,1)*psi_ksi(j) + J_inv(1,2)*psi_eta(j))*Jacobian*GW(n)*GW(m);

end
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end

% Matrix Entries:

K_11(i,j) = K_11s;
K_12(i,j) = K_12s;
K_13(i,j) = K_13s;
K_22(i,j) = K_22n + K_22s;
K_23(i,j) = K_23n;
K_33(i,j) = K_33n + K_33s;
M_11(i,j) = M_11n;
M_22(i,j) = M_22n;
G(i,j) = Gn;
Q(i,j) = Qn;

end
end

null_mat = zeros(4);

% Element Stiffness Matrix:

Ke_upper = [ K_11, K_12, K_13;
null_mat, K_22, K_23;
null_mat, null_mat, K_33 ];

Ke_upper = triu(Ke_upper);
Ke_lower = transpose(Ke_upper) - diag(diag(Ke_upper));
d_Ke = Ke_upper + Ke_lower;

% Element Mass Matrix:

Me_upper = [M_11, null_mat, null_mat;
null_mat, M_22, null_mat;
null_mat, null_mat, M_22 ];

Me_upper = triu(Me_upper);
Me_lower = transpose(Me_upper) - diag(diag(Me_upper));
d_Me = Me_upper + Me_lower;

% Element Stability Matrix:

d_Ge = [G, null_mat, null_mat;
null_mat, null_mat, null_mat;
null_mat, null_mat, null_mat];

% Element Non-Conservative Matrix:

d_Qe = [Q, null_mat, null_mat;
null_mat, null_mat, null_mat;
null_mat, null_mat, null_mat];

%------------------------------------------------------------------------------------------
% Matrix Printout:

if mat_output == 1

fprintf(1,’\nElement Stiffness Matrix (symmetric):\n’);

pretty(Ke);

fprintf(1,’\nElement Mass Matrix (symmetric):\n’);
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pretty(Me);

fprintf(1,’\nElement Stability Matrix (symmetric):\n’);

pretty(Ge);

end

end

%------------------------------------------------------------------------------------------
% Lagrange Interpolation Functions:
%
% (Rectangular Element With 4 Nodes)
%
% ^ eta
% 4 | 3
% ^ +------|------+
% | | | | ksi
% 2b | | +------+--->
% | | |
% v +-------------+
% 1 2
% <------------->
%
% psi_i = (1/4)*(1 + ksi*ksi_i)*(1 + eta*eta_i)
% (i = node 1,2,...)
%------------------------------------------------------------------------------------------

function [me d_me d_me3 psi psi_ksi psi_eta J J_inv Jacobian] = shape_functions(eta, ksi, xe, ye, ee)

% Thickness distribution along the element (and respective derivatives):

me = (1/4)*(1-ksi)*(1-eta)*ee(1) + (1/4)*(1 + ksi)*(1 - eta)*ee(2) +...
(1/4)*(1 + ksi)*(1 + eta)*ee(3) + (1/4)*(1 - ksi)*(1 + eta)*ee(4);

% First derivative of (me):

d_me = [ (1/4-1/4*ksi)*(1-eta),...
(1/4+1/4*ksi)*(1-eta),...
(1/4+1/4*ksi)*(1+eta),...
(1/4-1/4*ksi)*(1+eta) ];

% First derivative of (me)^3:

d_me3 = [ 3*((1/4-1/4*ksi)*(1-eta)*ee(1)+(1/4+1/4*ksi)*(1-eta)*ee(2)+...
(1/4+1/4*ksi)*(1+eta)*ee(3)+(1/4-1/4*ksi)*(1+eta)*ee(4))^2*(1/4-1/4*ksi)*(1-eta),...

3*((1/4-1/4*ksi)*(1-eta)*ee(1)+(1/4+1/4*ksi)*(1-eta)*ee(2)+...
(1/4+1/4*ksi)*(1+eta)*ee(3)+(1/4-1/4*ksi)*(1+eta)*ee(4))^2*(1/4+1/4*ksi)*(1-eta),...

3*((1/4-1/4*ksi)*(1-eta)*ee(1)+(1/4+1/4*ksi)*(1-eta)*ee(2)+...
(1/4+1/4*ksi)*(1+eta)*ee(3)+(1/4-1/4*ksi)*(1+eta)*ee(4))^2*(1/4+1/4*ksi)*(1+eta),...

3*((1/4-1/4*ksi)*(1-eta)*ee(1)+(1/4+1/4*ksi)*(1-eta)*ee(2)+...
(1/4+1/4*ksi)*(1+eta)*ee(3)+(1/4-1/4*ksi)*(1+eta)*ee(4))^2*(1/4-1/4*ksi)*(1+eta) ];

% Vector definition with the interpolation function at each node:

psi = [(1/4)*(1 - ksi)*(1 - eta) ;
(1/4)*(1 + ksi)*(1 - eta) ;
(1/4)*(1 + ksi)*(1 + eta) ;
(1/4)*(1 - ksi)*(1 + eta)];

% Derivatives of the interpolation function at each node:
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psi_ksi = [-(1/4)*(1 - eta) ;
(1/4)*(1 - eta) ;
(1/4)*(1 + eta) ;

-(1/4)*(1 + eta)];

psi_eta = [-(1/4)*(1 - ksi) ;
-(1/4)*(1 + ksi) ;
(1/4)*(1 + ksi) ;
(1/4)*(1 - ksi)];

% Compute the Jacobian Matrix:

J = transpose([xe; ye]*[psi_ksi, psi_eta]); % Jacobian Matrix

Jacobian = det(J); % Jacobian

if Jacobian <= 0
errordlg(’Oh boy, oh boy! The determinant has become zero...RUN FOR YOUR LIVES!!!!’)
error(’My existance has lost all meaning...The determinant has become zero’);

end

J_inv = inv(J); % Inverse of the Jacobian Matrix

end

A.1.5 Function volume.m
%------------------------------------------------------------------------------------------
% VOLUME CALCULATION FOR THE PLATE MODEL
%
% May 2007 - Pedro Pastilha
%------------------------------------------------------------------------------------------
function [V d_V] = volume(nelx,nely,ue)

%------------------------------------------------------------------------------------------
% Physical Properties:

Lx = 1; % Rod Lenght (m)
Ly = 1; % Rod Height (m)

% % %!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
% fprintf(1,’Local values are set!!!!’);
% nelx = 10;
% nely = 5;
% ue(1:(nelx+1)*(nely+1)) = 1;

%------------------------------------------------------------------------------------------
% Finite Element data:

nodes = (nelx+1)*(nely+1); % Number of mesh nodes
lex(1:1:(nelx+1)) = Lx/nelx;
ley(1:1:(nelx+1)) = Ly/nely;

%------------------------------------------------------------------------------------------
% Linear combination of displacements in the x direction:

a(1:nelx+1) = 0;
a(1) = (1/2)*lex(1);
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for i=2:1:nelx
a(i) = (1/2)*(lex(i-1)+lex(i));

end
a(nelx+1) = a(1);

%------------------------------------------------------------------------------------------
% Linear combination of displacements in the y direction:

b(1:nely+1) = 0;
b(1) = (1/2)*ley(1);
for i=2:1:nely

b(i) = (1/2)*(ley(i-1)+ley(i));
end
b(nely+1) = b(1);

%------------------------------------------------------------------------------------------
% VOLUME CALCULATION:

V = 0;
d_V(1:nodes) = 0;
for j=1:1:(nely+1)

for i=1:1:(nelx+1)
k = i + (j-1)*(nelx+1);
V = V + ue(k)*a(i)*b(j);
d_V(k) = a(i)*b(j);

end
end

end

A.1.6 Function optimize.m
%------------------------------------------------------------------------------------------
% OPTIMIZATION ANALYSIS USING MMA (Method of Moving Asymptodes)
%
% Optimization of flutter instab50.550.5ility using flutter_calc.m to determine the
% constraints and volume.m as the objective function
%
% May 2006 - Pedro Pastilha
%------------------------------------------------------------------------------------------
function optimize(nelx,nely,eta)

clear all
clc

fprintf(1,’\n\n-----------------------------------------------------\n’);
fprintf(1,’\n FLUTTER OPTIMIZATION ANALYSIS (PLATE MODEL)\n’);
fprintf(1,’\n-----------------------------------------------------\n\n’);

% Start time counter:

tic

% Problem data:

res = 5; % Number of constraint points to consider
steps = 500; % Number of load steps to calculate
slack = 0.5; % Maximum slack for the project variables in each iteration

eta = 1.0; % Nonconservativeness parameter !!!!!
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nelx = 10; % Number of elements in the x direction
nely = 5; % Number of elements in the y direction

nodes = (nelx+1)*(nely+1); % Number of mesh nodes
Lx = 1; % Rod Lenght (m)
Ly = 0.1; % Rod Height (m)
lex = Lx/nelx;
ley = Ly/nely;
x(1:1:(nelx+1)) = 0:lex:Lx;
y(1:1:(nely+1)) = 0:ley:Ly;

%------------------------------------------------------------------------------------------
% OPTIMIZATION PROCESS:
%------------------------------------------------------------------------------------------

ue_min = 10^-8; % Lower Limit for the project variable
ue_max = 10; % Upper Limit for the project variable

% Uniform Column:

ue(1:nodes) = 1;
[V, d_V] = volume(nelx,nely,ue);
[P_cr_0, p, w, res] = flutter_calc(nelx, nely, ue, eta, steps, res);

%------------------------------------------------------------------------------------------
% Open Results File:

filename = [’Optimization_Results_eta_’, num2str(eta),’_(’,num2str(nelx),’x’,num2str(nely),’)’,’.txt’];
file = fopen(filename,’w’);
fprintf(file,’\n\n-----------------------------------------------------\n’);
fprintf(file,’OPTIMIZATION RESULTS FOR AN ETA OF %1.2f’, eta);
fprintf(file,’\n-----------------------------------------------------\n\n’);

%------------------------------------------------------------------------------------------
% MMA Process:

% First Iteration Data:

n = nodes;
xval = ue’;
xmin = (1-slack)*xval;
xmax = (1+slack)*xval;
% xmin = ue_min’;
% xmax = ue_max’;
xold1 = xval; % First iteration! Error if this doesn’t exist
xold2 = xval; %
low = xmin;
upp = xmax;
a0 = 1;

iter = 1;
maxiter = 150;

% MMA Cycle:

while iter < maxiter

% Fixed Region (fixed limits for the project variables):
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xmin((nelx+1):(nelx+1):nodes) = 0.5;
xmax((nelx+1):(nelx+1):nodes) = 1.5;
xmin(1:(nelx+1):nodes) = 0.5;
xmax(1:(nelx+1):nodes) = 1.5;

fprintf(file,’\n-----------------------------------------------------\n Iteration %d\n’,iter);
fprintf(1,’\n-----------------------------------------------------\n Iteration %d\n’,iter);

[P_cr, p, w, res, set_freq] = flutter_calc(nelx, nely, xval, eta, steps, res);
[d_p d_w] = sensitivity(nelx, nely, xval, eta, p, P_cr, res, set_freq);

figname = [’Load_vs_Freq’,num2str(iter-1),’.png’];

fprintf(1,’\n--> MMA OPTIMIZATION SEQUENCE\n’);

% Start time counter:

tic

m = 1 + 10*res;

f0val = V;
df0dx = d_V’;
df0dx2 = 0*df0dx;

%------------------------------------------------------------------------------------------

c = 0; % Even frequnecy distance
w = real(w);

constr(1) = P_cr_0 - P_cr; % P_cr >= P_cr_0
constr(2:res+1) = -w(:,1); % W1 >= 0
constr(res+2:2*res+1) = (w(:,1) - w(:,2)); % W2 - W1 >= 0
constr(2*res+2:3*res+1) = (w(:,2) - w(:,3)) + c;
constr(3*res+2:4*res+1) = (w(:,3) - w(:,4));
constr(4*res+2:5*res+1) = (w(:,4) - w(:,5)) + c;
constr(5*res+2:6*res+1) = (w(:,5) - w(:,6));
constr(6*res+2:7*res+1) = (w(:,6) - w(:,7)) + c;
constr(7*res+2:8*res+1) = (w(:,7) - w(:,8));
constr(8*res+2:9*res+1) = (w(:,8) - w(:,9)) + c;
constr(9*res+2:10*res+1) = (w(:,9) - w(:,10));
fval = constr’;

dfdx(1,:) = - d_p(:);
dfdx(2:res+1,:) = -d_w(1:res,:,1);
dfdx(res+2:2*res+1,:) = d_w(1:res,:,1) - d_w(1:res,:,2);
dfdx(2*res+2:3*res+1,:) = d_w(1:res,:,2) - d_w(1:res,:,3);
dfdx(3*res+2:4*res+1,:) = d_w(1:res,:,3) - d_w(1:res,:,4);
dfdx(4*res+2:5*res+1,:) = d_w(1:res,:,4) - d_w(1:res,:,5);
dfdx(5*res+2:6*res+1,:) = d_w(1:res,:,5) - d_w(1:res,:,6);
dfdx(6*res+2:7*res+1,:) = d_w(1:res,:,6) - d_w(1:res,:,7);
dfdx(7*res+2:8*res+1,:) = d_w(1:res,:,7) - d_w(1:res,:,8);
dfdx(8*res+2:9*res+1,:) = d_w(1:res,:,8) - d_w(1:res,:,9);
dfdx(9*res+2:10*res+1,:) = d_w(1:res,:,9) - d_w(1:res,:,10);
dfdx2 = 0*dfdx;

%------------------------------------------------------------------------------------------
% % eta = 0.0 ONLY!!!
%
% c = 0; % Even frequnecy distance
% w = real(w);
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% m = 1;
%
% constr(1) = P_cr_0 - P_cr; % P_cr >= P_cr_0
% fval = constr’;
%
% dfdx(1,:) = - d_p(:);
% dfdx2 = 0*dfdx;

a = zeros(m,1);
c = 1000*ones(m,1);
d = zeros(m,1);

[xmma,ymma,zmma,lam,xsi,eta_mma,mu,zet,s,low,upp] = ...
mmasub(m,n,iter,xval,xmin,xmax,xold1,xold2,f0val,df0dx,df0dx2,fval,dfdx,dfdx2,low,upp,a0,a,c,d);

xold2 = xold1;
xold1 = xval;
xval = xmma;

ue = xval’;

xmin(1:nodes) = (1-slack)*xval(1:nodes);
xmax(1:nodes) = (1+slack)*xval(1:nodes);

for e=1:1:nodes
if xmin(e) < ue_min

xmin(e) = ue_min;
end
if xmax(e) > ue_max

xmax(e) = ue_max;
end

end

V_old = V;
[V d_V] = volume(nelx,nely,ue);

if V < 0.50
slack = 0.1;

end

error = (abs(V_old-V)/V_old)*100;

if error < 10^-3
maxiter = iter;

else
iter = iter+1;

end

fprintf(1,’Iteration results:\n Project Variables:\n’);
fprintf(file,’Project Variables:\n’);
for i=1:1:(nodes)

fprintf(1,’ %1.5f’,ue(i));
fprintf(file,’ %1.5f’,ue(i));

end
fprintf(1,’\n Volume: %1.5f\n’,V);
fprintf(1,’ Variation: %1.5f %% \n’,error);
fprintf(file,’\n Volume: %1.5f\n’,V);
fprintf(file,’ Variation: %1.5f %% \n’,error);
fprintf(file,’ Critical Load: %1.5f \n’,P_cr);

ue_iter(iter,:) = ue(:);
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V_iter(iter) = V;

% Finish time counter:

toc

end

fclose(file);

%------------------------------------------------------------------------------------------
% POST PROCESSING:
%------------------------------------------------------------------------------------------

% Final results:

fprintf(1,’\n\n---------------------------------------\nFINAL RESULTS:\n ...
Project Variables:\n’);

for i=1:1:(nodes)
fprintf(1,’ %1.5f’,ue(i))

end
fprintf(1,’\nVolume: %1.5f (%2.3f %% reduction)\n’,V, (1-V)*100);
fprintf(1,’Iterations: %d \n’, maxiter);
fprintf(1,’\n---------------------------------------\n\n’);

% Generate a Mat File with the results at each iteration:

file_mat = [’Iteration_results_eta_’,num2str(eta),’_(’,num2str(nelx),’x’,num2str(nely),’)’,’.mat’];
save(file_mat, ’ue_iter’, ’V_iter’);

% Plot the stability results:

flutter_plot(nelx, nely, ue, eta, steps)

% Convert the thickness vector into a mesh matrix:

ue_grid = zeros((nely+1),(nelx+1));
for j=1:1:(nely+1)

for i=1:1:(nelx+1)
ue_grid(j,i) = ue(i + (j-1)*(nelx+1));

end
end

% Generate a grayscale colormap going from light to dark:

color(:,:) = [0:0.01:1; 0:0.01:1; 0:0.01:1]’;
color = 1-color;

figure(3)
contourf(x,y,ue_grid,100,’LineStyle’,’none’)
title(’Thickness Distribution’);
view([0 90]);
xlabel(’x (m)’);
ylabel(’y (m)’);
zlabel(’Thickness’);
colormap(color)
colorbar(’SouthOutside’)
set(gca,’DataAspectRatio’,[2 1 40]);

figure(4)
surf(x,y,ue_grid)
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view([45 45]);
xlabel(’x (m)’);
ylabel(’y (m)’);
zlabel(’Thickness’);
colormap(color)
set(gca,’DataAspectRatio’,[2 1 40]);

end

%------------------------------------------------------------------------------------------
% "This is the End
% Beautiful Friend
% This is the End
% My only Friend, the End"
% Jim Morrison, The Doors
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