
Coupling Natural Language Interfaces to
Database and Named Entity Recognition

Ana Guimarães

L2F - Spoken Language Laboratory, INESC-ID Lisboa

Abstract. A Natural Language Interface to a database has to be able
to precisely identify the entities that it is asked about. In the particular
situation of a database such as IMDB, more than 2.500.000 movies, ac-
tors and staff names may appear in a question. In this context, Named
Entities Recognition can be a heavy task. In this paper, we show how to
use the database itself to find out the Named Entities and we analyse
the pros and cons of our approach.

1 Introduction

Question/Answering (QA) systems are a long-standing goal for Artificial Intelli-
gence (AI) research and the appearance of the first Natural Language Interfaces
to Databases (NLIDB) in the 70’s represent their first steps. Nowadays, with the
growth of the available digital information, as well as the increasing amount of
people accessing information through their web browsers, PDAs, and cell phones,
the need for QA systems has become even more acute.

Following this needs, if in the early stages of AI, QA systems were using
the structured knowledge from the databases to find the answer to a question,
currently, the concept of QA gained a broader sense as they no longer find the
answers (only) in databases, but (also) within large collections of open-domain
documents.

Supporting this trend, within the last years, evaluation forums with QA tasks,
such as NTCIR1, TREC2 and CLEF3, that pretend to improve the research in
this field, by evaluating the competing systems in the same conditions, have been
growing in participation.

Nevertheless, despite the importance of non restricted QA systems, specific
domains QA applications have also gained popularity. In fact, as said in [1],
dealing with the incorporation of domain-specific information into QA techology,
and with the possibility of reaching deep reasoning capabilities, Restricted QA
systems can make the bridge between structured knowladge-based and free text-
based QA. In this paper, we will present a NLIDB, that is part of a general QA
system.

1 NII Test Collection for IR Systems (http://research.nii.ac.jp/ntcir/)
2 Text REtrieval Conference (http://trec.nist.gov/)
3 Cross-Language Evaluation Forum (http://www.clef-campaign.org/)

In the late 90s, the authors developed a NLIDB that was answering questions
about tourist resources [2]. It was a traditional NLIDB, like the ones presented
in [3] and it had a fast implementation – in 6 months it was answering simple
questions. However, it soon became difficult to extend mainly due to the strong
dependency between syntactic and semantic rules, the recursive organization of
rules, and the need of complete analyses.

Having the above problems in mind, a new approach was followed [4] and
a general QA system was built[5]. As in [6], we focused on a high-quality deep
linguistic analysis of the question, made by a robust Natural Language Process-
ing (NLP) chain. When applied to a restricted domain, a conceptual-semantic
interpretation based on the domain terms is made, as suggested in [7].

In order to test our system in a restricted domain, we built a cinema database,
based on information from both IMDB4 and OSCAR.com5. It had the additional
advantage of being a sympathetic application, simplifying the problem of finding
users to test it. Moreover, although the restricted domain, questions could be
complex enough to make question understanding a challenging task.

Having ready the whole NLP chain of the QA system, the first problem arise
with the huge amount of names that can be asked about (more than 2. 500.000
movies, actors and staff names). As in order to correctly understand the question,
those entities have to be precisely identified, our problem was to be able to make
a good Named Entity Recognition (NER).

In a first attempt to solve the problem, we added actors and films names to
the linguistic knowledge sources of our NLIDB. Unfortunately, that solution was
unsustainable as the system became much slower. So we came out with another
solution: to make a direct access to the database during the NLP chain, and
to use the database itself to NER. In this paper, we present this approach and
analyse its pros and cons.

We begin with a brief description of the whole NLIDB in section 2; then, we
detail our NER technique (section 3) and we also evaluate it (section 4); finally,
section 5 presents conclusions and future work.

2 General Architecture

Figure 1 shows the general architecture of the system.
We briefly describe the database in subsection 2.1; then in section 2.2 we

present a short overview of the question deep linguistic analysis. Section 3 is
dedicated to NER.

2.1 The database

Data is previously stored in a single database with 11 tables containing in-
formation about cinema acquired through IMDB and OSCAR.com. Data from

4 Internet Movie Database (http://www.imdb.com/)
5 The Oscars (http://www.oscars.org/awardsdatabase/)

Fig. 1. General Architecture.

IMDB is available in several plain text files which are processed and stored in
the database. As the information about the oscar awards was not available in
the plain text files, it had to be acquired through a different source, and we
took it directly from OSCAR.com. Notice that not all data from IMDB and
OSCAR.com was considered, only the most important such as film cast, bio-
graphical information and the main oscar awards. As we will see in section 4,
tests proved that most of the questions were related to this information.

To conclude, we highlight here the fact that full-text indexes in tables persons
and films are an important feature as it allows full-text queries against those
tables, which are the key for NER.

2.2 Question deep linguistic analysis

As said before, the NLIDB makes high-quality deep linguistic analysis of the
question, through a robust NLP chain, that takes a question in natural language
as input (as well as the possible named entities) and maps it into a SQL form
(Figure 2).

Fig. 2. NLP chain

These modules are briefly described in the following.

Disambiguation When we ask who is the director of “King Kong”, we probably
have in mind the latest film by Peter Jackson. Nevertheless, there’s more than

one “King Kong” to be considered. In fact, to be accurate, four have the original
title “King Kong”, and other two, from Japan, are also known as (A.K.A) “King
Kong”. Assuming that the user requires the most popular film, we can believe
that the latest film is the most popular one. However, there are also two films
called “Psycho”: the original by Alfred Hitchcock from 1960 and a remake by
Gus van Sant from 1998. Is the latest the most popular?

Given this, to allow the user to choose the film he actually means, after the
named entities are recognized, the user can choose between two or more films
with the same title (or between two or more people with the same name). To
help the user’s decision, we provide information about the film’s opening year
as well as the main cast. When it comes to people’s name, the films where they
stared are shown.

After this, even if there was nothing to disambiguate, the unique identifier
(ID) of each film and/or person chosen is kept by the system. This information
will allow a better performance in querying the database.

Morpho-syntactic and semantic analysis A dependency parser is respon-
sible for the syntactic/semantic analysis and it outputs a XML file with the
relevant information about the sentence. For instance, if we ask “Who is the
director of Forrest Gump?” we want to retrieve a person’s name based on the
argument “Forrest Gump”. This argument is extracted from the sentence and a
frame is generated:

<DEPENDENCY name="TARGET_WHO_DIRECTED">
<PARAMETER ind="0" num="18" word="forrest gump"/>

</DEPENDENCY>

If we have a more complex question such as “Who acts with Clint Eastwood
in Unforgiven?”, we would need two arguments to find the answer, therefore, the
frame would be the following:

<DEPENDENCY name="TARGET_WHO_ACTS_WITH_IN">
<PARAMETER ind="0" num="18" word="clint eastwood"/>
<PARAMETER ind="1" num="19" word="unforgiven"/>

</DEPENDENCY>

These frames are then processed and a script that handles the database access
is called. Considering the previous example, the script would get as arguments
“clint eastwood” and “unforgiven”.

3 Named Entities Recognition

3.1 Overall process

The query NER is based on full-text queries, a feature provided in the later
versions of MySQL that allows a natural language search through a column

in a database table. To perform these type of questions, the tables have to be
previously built according to the code presented at the end of this section, where
technical details can be found.

The syntax of a full-text search query is quite simple, for example, if we
wanted to query the films table with the question “Who directed the film Forrest
Gump?” we would perform this query:

SELECT * FROM films WHERE MATCH(title) AGAINST
("Who directed the film Forrest Gump?");

We would get 1437 rows, ordered by greater relevance (10 first rows on table
1).

id title

117754 forrest gump
185257 through the eyes of forrest gump
214266 black forrest gump
703433 die welt des forrest gump
336527 gump fiction
308842 foreskin gump
136207 andy gump for president
767193 directed by almodovar
449638 miss directed
667012 directed by andrei tarkovsky

Table 1. “Who directed the film Forrest Gump?” against table “films”.

The longest match As we can see, the first match was the title “Forrest
Gump”, so we can set that part of the phrase as “film title”. After this, we
would perform the same search against the “persons” table and get a total of
380 rows. In table 2 we can see the 10 first results plus the 24th:

The 10 most relevant rows are not exact matches against the sentence. That
must be a requirement, otherwise we would be recognizing a named entity that
isn’t in the question. Therefore, the only matched name would be the 24th row,
namely “Forrest”. As we had matched “Forrest Gump” before, it doesn’t make
sense to keep “Forrest” as it is not the longest match. As a result, the only named
entity recognized for the sentence “Who directed the film Forrest Gump?” would
be “Forrest Gump”.

Let’s now look at an example that will show that we can’t just choose the
longest name: “Which character is played by John Malkovich in Being John
Malkovich?”. We would match “Being John Malkovich” as film and then John
Malkovich as a person, but “Being John Malkovich” is the longest phrase. We
can’t throw away “John Malkovich” in this case so, if a certain name or title
appears more than once in the sentence, it is kept as a named entity.

id title

1396185 h.s. gump
1396186 irving gump
1216100 diane gump
221580 richard b. gump
1216099 brandy gump
452670 andy gump
461279 eugene gump
1396184 david gump
174886 film
382417 dinar film

.
1341496 forrest

Table 2. “Who directed the film Forrest Gump?” against table “persons”.

Narrowing the search Because we are dealing with a huge amount of data
(about 800,000 rows in table “films” and 2 million rows in table “persons”) this
type of queries returns many rows. The sentence “Who directed the film Forrest
Gump”, for example, returned 1437 films. To avoid doing so many comparisons,
and also because within the most relevant results lies the entities we want to
recognize, we limit the query to return 100 rows and we try to match each one
with the question. We must do so because we can have more than one person
name and more than one film title in the sentence. For example: “In which film
did John Malkovich and Glenn Close act together?” should have two named
entities recognized: “Glenn Close” and “John Malkovich”. When we perform
this query we get 27567 results, but let us look at the first 10 in table 3.

id title

251779 glenn close
531180 john malkovich
1204734 john close
30760 act four
382482 suhetu films
260391 films combo
382476 kolath films
390506 tripp films
382484 zojo films
224855 films catoosa

Table 3. “In which film did John Malkovich and Glenn Close act together?” against
table “persons”

The first two are exact matches within the sentence. This means that we
have to process every single row returned by the query because there could be

most than one match. In this case, both names “John Malkovich” and “Glenn
Close” would be recognized.

Technical details The following is the SQL code required to use the full-text
search feature in tables “persons” and “films”:

create table if not exists imdb.films (
id integer unsigned auto_increment primary key,
title varchar(255) not null,
FULLTEXT (title),
);

create table if not exists imdb.persons (
id integer unsigned auto_increment primary key,
name varchar(255) not null,
FULLTEXT(name),
);

To perform full-text queries — natural language queries — the indexes must
be previously built. This is done by adding “FULLTEXT(<column name>)”
when the table is first created or it can be done afterwards through the ALTER
TABLE command.

3.2 Major problems

order title

1 directed by almodovar
2 miss directed
3 directed by john ford
4 the mis-directed kiss
5 directed by andrei tarkovsky
6 directed by alan smithee
7 directed by william wyler
8 directed by jacques tourneur
9 directed by norman foster
10 lisa’s lunchbox directed
.
187 dangerous liaisions

Table 4. Ten first results for sentence
“Who directed Dangerous Liaisions”

order title

1 even more dangerous
2 dangerous
3 the dangerous
4 dangerous to know
5 down, out & dangerous
6 that dangerous age
7 a dangerous flirtation
8 dangerous women
9 she was a dangerous girl
10 the dangerous dude
.
157 dangerous liaisons

Table 5. Ten first results for phrase
“Dangerous Liaisions”

The bigger problem of this technique is the need for total correctness. This
means that the people names and films titles mentioned in the sentence must
be written exactly as they are in the database. This demands total accuracy

from the user, which is sometimes difficult, specially if one is asking about a
person/film in a language different from his native one. In table 4 we can see
what would happen if one asks “Who directed Dangerous Liaisions” when the
title is “Dangerous Liaisons”.

It would be expected that “Dangerous Liaisons” was the first, or at least, at
the top ten. Instead, as we can see in table 4 there isn’t any title even close to
it. In fact, “Dangerous Liaisions” is the 187th found by the query. We can see
that the word “directed” has a great influence in the query so that all 10 first
results have it within the title.

We could remove some keywords from the sentence to improve its accuracy
on the title itself. In table 5 are the results just for “dangerous liaisions”. Be-
cause there is a great resemblance between “dangerous liaisions” and “dangerous
liaisons”, in fact, the difference is just the extra “i”, again we would expect that
something very close would show up at the top, but it does not. In fact, it is the
157th row.

Even if the keyword removal improved the full-text search significantly, it
would be risky to do so. We can’t guess which words are part of a name or title
and which aren’t and we could be removing words from titles jeopardizing NER.
Therefore, the best option is performing exact matches.

4 Evaluation

4.1 Experiments and results

The human-machine interface for this system is a plain web page. All it takes is
writing the question in a text box and pressing the “submit” button.

During two weeks, 20 users performed a total of 300 questions and every
single question and its answer was kept in a database. When analysing those
questions, we could see that most of the questions were about film casts, oscar
awards and biographical information and that our decision of only using part of
the available information from IMDB did not affect its performance.

Let’s now focus on the system’s accuracy. The questions whose answer was
“Couldn’t understand the question. Please, try again” could not be answered
due to:

– Unability to understand the question;
– Misrecognition of named entities.

Some questions are about information that just isn’t available in the database,
like “Where was Titanic shot?”, and others, because of their complexity, can not
be processed. For example: “Which actor stared in Magnolia and Top Gun?” is
a complex SQL query that takes more than five seconds (an answer should not
take more than that, otherwise the user quits asking questions).

This system’s performance can be continuously improved, it is just a matter
of adding new types of questions to it. For example, if we ask “Who is George
Clooney” we will get all sorts of information: real name, nick name, date and

place of birth and latest films. If we ask “Where was George Clooney born?”, the
system can’t understand the question because it was not yet added its processing.

From a total of 300 questions, 147 were answered and 153 couldn’t be un-
derstood. We will analyse the ones that couldn’t be understood or incorrectly
answered because of a misrecognition of the named entities.

Notice, however, that as long as people names and films titles are typed
correctly, NER through a database is 100% accurate.

4.2 Examples of misunderstood questions

The demand for total accuracy in name spelling can give the user the wrong
idea about the system. We will show examples in the following.

– Quantos filmes realizou joão cesar monteiro? (How many films did joão cesar
monteiro direct?)

This system answered “Cesar Monteiro: None” because it couldn’t recognize
the whole name. Cesar Monteiro, a person’s name in the database, was not who
the user wanted to know about, João César Monteiro, a Portuguese director, was
the target of the question. As the user wrote “Cesar” instead of “César”, the
system could just match “Cesar Monteiro” giving answer about someone else.
This innacuracy may take away the user’s trust in the system.

– Quem é Woody Alen? (Who is Woody Alen?)

In the previous question, “Alen” is mispelled. Because of that, it is not
possible to identify the famous actor/director Woody Allen. There are several
“Woody’s” in the database so the system can match just Woody. This can be
quite frustrating for the user because none of the “Woody’s” presented is the
one he actually meant.

– Em que filmes participou Dan Ackroyd? (What movies was Dan Ackroyd
in?)

Again, the person’s name is mispelled so the system wasn’t able to answer
the question. The answer is “couldn’t understand the question, try again.”, and
the user thinks that system can’t answer that type of question while the problem
is, in fact, the mispelling of “Dan Aykroyd”.

Another problem, is the amount of films with similar titles that can lead to
some confusion. Let’s look at the following question to show it:

– Quem contracena com Hugo Weaving in The Lord of the Rings (Who acts
with Hugo Weaving in The Lord of the Rings?)

The answer to this question was “Hugo Weaving isn’t part of The Lord of the
Rings cast” which sounds incorrect to the user. Actually, it is not. In fact, Hugo
Weaving isn’t part of the original “The Lord of the Rings” from 1978, though he

is part of the trilogy “The Lord of the Rings” from Peter Jackson: “The Lord of
the Rings: The Fellowship of the Ring”, “The Lord of the Rings: The Return of
the King” and “The Lord of the Rings: The Two Towers”. The problem is that
people know the film just by the shortest version and assume the system will
answer for the latest (and more popular) titles. That doesn’t happen because
the system performs an exact match, and “The Lord of the Rings” from 1978
will be the one it searches for. This is a one-time situation, but is still worth
mentioning because such situation has a great influence on the user’s opinion on
the system.

5 Conclusion and Future Work

We have presented a technique to NER, based on full-text queries, a feature
provided in the later versions of MySQL, that allows a natural language search
through a column in a database table. We have shown that this method provides
recognition of person names and film titles with little effort. In fact, as long as
the names of the person and the films are typed correctly, the NER through a
database is 100% accurate. Although it is a simple idea, it can be very usefull
to NLIDB developers.

As future work, we will continue to increase the type of questions supported
by the system, as well as the quality of the answers provided if there is any
misunderstanding. Nevertheless, the first step will be toward the integration of
an ortographic corrector. By doing this, we will be able to detect any NE, even
if mispelled.

References

1. Mollá, D., González, J.L.V.: Question answering in restricted domains: An overview.
Computational Linguistics 33(1) (2007) 41–61

2. Authors: Authors title. (1997)
3. Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to

Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall PTR, Upper Saddle River, NJ, USA (2000)

4. Authors: Authors title. (2004)
5. Authors: Authors title. (2007)
6. Amaral, C., Figueira, H., Martins, A., Mendes, A., Mendes, P., Pinto, C.: Priberam’s

question answering system for portuguese. In Peters, C., Gey, F.C., Gonzalo, J.,
Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., eds.: CLEF. Volume
4022 of Lecture Notes in Computer Science., Springer (2005) 410–419

7. Frank, A., Krieger, H.U., Xu, F., Uszkoreit, H., Crysmann, B., Jörg, B., Schäfer,
U.: Querying structured knowledge sources. In: Proceedings of AAAI-05. Workshop
on Question Answering in Restricted Domains, Pittsburgh, Pennsylvania (7 2005)
10–19

