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Abstract: The Semantic Network Processing System (SNePS) is a knowledge 

representation formalism that implements a node-based inference mechanism on a 

semantic network. Processes are associated to nodes, communicate through 

channels and execute non-standard inference rules, allowing the assertion of new 

inferred nodes. 

Other automatic deduction systems like Resolution, were born with the primary 

intention of finding proofs for theorems. PROLOG, a widely known logic 

programming system, searches for SLD-refutations for sets of clauses. 

On this work we intend to develop mechanisms to control the inference made by 

SNePS. For that we describe and compare the SNePS Inference Package (called 

SNIP) with PROLOG. This comparison suggests improvements to SNIP that are 

latter implemented and tested. 

A method to idle some processes, without affecting the number of solution found, 

is proposed and its theoretical foundation explained. Additionally a way to 

parameterize the search strategy is suggested, making the inference process more 

versatile. 

Keywords: semantic network, SNePS, resolution, PROLOG, backward inference, 

automatic deduction. 

1. Introduction 

SNePS, (Shapiro, 1979), is a semantic network directed to represent natural language 

expressions, (Shapiro, 1999), and to reason about them. On this work, we focus on the 

automatic deduction capabilities of this system, more specifically on the backwards 

node-based inference mechanism implemented by the SNePS Inference Package, 

called SNIP, (Hull, 1986). 

Our main objective is to understand the potential of SNIP and to propose methods to 

control and improve the reasoning performed by this system.  

To achieve this aim, we start by describing SNIP and comparing it with PROLOG, a 

logic-programming system that will help us to find the advantages and drawbacks of 

the automatic deduction capabilities of SNePS. After this comparative study, we 

propose and implement some improvements to this system. 

2. Understanding SNePS 

On the first section of this chapter, we give some introductory concepts about SNePS. 

Afterwards, we explain how backwards node-based inference is performed by the 

system, through the association of processes to nodes. 
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2.1. Basics of SNePS  

The definition of semantic network is not consensual. The fact that, according to 

Brachman ,“virtually every networklike formalism that appeared in the literature since 

1966 has at one time been branded by someone a semantic net” lead us to, first of all, 

position SNePS on the taxonomies described on the works of (Brachman, 1979) and 

(Sowa, 1992): 

• According to Sowa’s characterization, SNePS is an assertional network; 

• SNePS is a propositional semantic network since logical propositions are 

represented by a node. Therefore it is settled at the Brachman’s logical level; 

• It is possible to perform inference on SNePS through SNIP. Thus according 

to the Sowa’s taxonomy, SNePS is also an executable network. 

The syntax and semantics of the formalism can be found on (Shapiro, 1979) and 

(Martins, 2005). However, we stress four features that distinguish SNePS from other 

networks: concepts represent intensional entities, i.e. “objects of thought” - each 

intensional entity may correspond to more than one object of the real work or to no 

object at all (Shapiro, et al., 1987); the Uniqueness Principle guarantees that 

whenever two nodes represent the same intensional concept, then they should be the 

same; arcs represent non-conceptual relations between nodes and consequently arcs 

are structural rather than assertional; finally SNePS can represent higher order 

propositions and reason about them. 

SNIP is capable of performing three types of inference: reduction, path-based 

(Shapiro, 1978) and node-based inference. On this paper we are interested in the last, 

more specifically on backward node-based inference. 

This inference mechanism has a set of predefined case-frames (predefined arc names 

and node structures) that represent non-standard connectives (Shapiro, 1979). There 

are five types of rule nodes available: and-entailment, or-entailment, numerical-

entailment, and-or and thresh (check (Shapiro, et al., 2004) for details). Inference 

rules are associated to each rule node. Figure 1 presents an and-or rule node, which 

asserts that between i and j of the �� , 1 � � � �, are true. 

 
Figure 1 – And-or rule node, its linear representation and inference rules. 

2.2. Backward node-based inference on SNIP 

The match algorithm. In order to locate nodes and rules on the network in order to 

apply inference rules similar to those of Figure 1, SNePS implements an unification 
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algorithm (Shapiro, 1977). The match algorithm is applied to a node � and an initial 

binding �, producing a set of tuples that we will denote as ��� !"�, �#. Each tuple 

has the form $%, &, '(, where % is a node, & is a target binding and ' is a source 

binding. By binding1 we mean a set of the form 

) * +,� ��- ,… , ,
 �
- ., 
where ,�  are variable nodes  and  �� are any nodes. We use /0 to denote the result of 

the application of the binding 0 to a node N. Given the above definitions, if $%, &, '(  1 ��� !"�, �#, then %& and �' are matched in the common sense of the 

word. The need for a source and target binding will became clear latter. Figure 2 

shows the results of invoking ��� !"�2, � �# on the network. 

 
Figure 2 – Result of applying the operation of match on this network. 

Associating processes to nodes. When a deduction is initiated by the user through 

the command deduce, SNIP creates and associates a process to each node involved 

on the deduction. There are two major types of processes: rule processes, which 

implement inference rules and non-rule processes. 

Processes communicate using channels, sending and receiving requests and reports. 

When a node requests another, it is interested in finding solutions for that node. When 

a node finds new instances, it reports to the interested requestors.  

Figure 3 will help to explain the kind of interaction that may exist in a network, when 

a backward node-based inference is started. 

                                                           
1 We will use the terms binding and substitution interchangeably. 
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Figure 3 – Interactions between nodes on the network. 

The behavior of non-rule nodes can be summarized as follows (see Figure 3): 

• Sending Requests: a non-asserted non-rule node tries to find instances of itself 

matching and requesting other nodes (node ��  on interactions (a)(i)). Additionally, a 

node that is a consequent of a rule node may also request that rule node, as 

interaction (a)(ii) shows for node �LM. The rule node will afterwards try to apply the 

inference rule associated and derive conclusions. 

• Replying Reports: an asserted non-rule node (like 3�!) corresponds to a solution 

and can reply a report (see interaction (a)(v)). Non-asserted non-rule nodes may also 

report if they receive reports from other nodes: �LM can report to ��  if it receives 

reports from the rule node 3N! (interaction (a)(iii)), and antecedent nodes like ��
O  
may also report if they receive reports from matched nodes (interaction (a)(iv)). 

The behavior of rule nodes can also be sketched in a similar manner: 

• Sending Requests: when an asserted rule node receives a request from a 

consequent, it tries to apply the inference rule sending requests to all the antecedents 

of the rule in parallel (as interaction (b)(i) shows). Additionally, if the rule node is 

not asserted, then the rule node acts as an ordinary non-rule node and tries to find 

instances of the rule sending requests through consequent arcs that may exist (not 

shown on the picture). 

• Replying Reports: when an asserted rule node like 3N! receives reports from the 

antecedents, it tries to apply the inference rule and derive conclusions. If that is 

possible, reports are sent to the consequents (interaction (b)(ii)). If a non-asserted 

rule node receives instances of the rule, then it tries to apply those instances and 

produce reports to the consequents. 

Processes interact under a consumers-producers model, i.e. the same node (a 

producer) can report to more than one “boss” (which is a consumer). Producers keep 

all the inferred instances on a register, never reporting the same solution twice to the 

same consumer and, when a new “boss” is accepted, sending all the instances already 

derived to that “boss”. These features mean that nodes are data-collectors. 

With this model, given that the same producer can report to more than one consumer, 

two problems may emerge: some solutions may be desired by one “boss” but not by 

the other and the namespace of variables may differ from consumer to consumer. That 

is why a fractioned version of the unifier is needed and those are the roles of both 

filter and switch, respectively (check Figure 2 again). 
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The production of solution on rule-nodes is uniformly handled for all the connectives 

using the rule-use-information (RUI) data structure: "$PQRP���Q��S�(, $�S� � �TU���,T ���TUTV(, $�S� � �TU���,T ���TUTV(, $WX�UUTY � �SYT PT�(#. 
When the antecedents of a rule node report solutions, they return substitutions for 

universally quantified variables. The consistency of the substitutions returned by 

antecedents (i.e. the correct instantiation of shared variables) is assured on the rule 

node, as RUI tuples are created for each consistent solution. These substitutions are 

stored as the first element of the tuple. The second and third elements are integers 

containing the number of true and false antecedents for that solution. $WX�UUTY ��SYT PT�( indicates, for each solved antecedent, whether a true of false instance was 

found.  

As an example, let’s admit that on Figure 2, �	also dominates variable 67 and �E 

dominates variable 69. If �	 reports a true solution with substitution �67 :⁄ � and �E a 

false solution with substitution �69 F⁄ �, then the following RUI would be created for 

the and-entailment node 3�!: "�67 :⁄ , 69 F⁄ �, 1,1, ��	: �VQT, �E: W�XPT�#. 
The decision to trigger inference is based uniquely on the integers of the RUIs. 

Deciding which process gets into action – the MULTI system. MULTI is a LISP 

based multiprocessing system which allows “various control structures such as 

recursion, backtracking, coroutines and generators” (McKay, et al., 1980). 

SNePS uses MULTI processes, which are scheduled on one of two queues with 

different priorities: processes having reports to threat are scheduled on the HIGH 

priority queue and processes with pending requests are inserted in the LOW priority 

queue. 

The HIGH priority queue allows a fast propagation of solutions and the low priority 

processes are only executed when no processes remain on the HIGH priority queue. 

Both queues are maintained using a FIFO policy.  

If process p1 sends a request or report to process p2, then p1 is in charge of 

scheduling p2 on the LOW or HIGH priority queue, respectively. 

3. The SLD-resolution mechanism 

Resolution is an automatic theorem proving system created by Robinson (Robinson, 

1965). The system was continually improved across time and is still the basis for state 

of the art systems like OTTER (McCune, et al., 1997).  

Understanding resolution will give us a greater insight of SNIP and may suggest 

interesting concepts and ideas that can be used on that system. 

We will focus on SLD-resolution and PROLOG. An introduction to the basics of 

resolution can be found on (Duffy, 1991) and we will assume that the reader knows 

the basics of that method. 
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3.1. SLD-Resolution 

The SLD-Resolution system works exclusively with Horn Clauses, which are sets of 

literals with at most one positive literal. If the positive literal is present, i.e. : *�~\]�, ~\]	, … , ~\]
, \�, we have a program clause which can be more suggestively 

written as : * \ ^ \]�, \]	, … , \]
. Otherwise, assuming \ does not exist, we have a 

goal or query, _ *^ \�, … , \� , … , \`. 

We will assume the existence of an unification algorithm such that given two literals, \� and \	, returns a substitution a *  Q��Wb"\�, \	# such that \�a * \	a. 

Given the previous goal _, the previous program clause : and assuming that a= Q��Wb"\� , \# the application of the resolution rule to _ and : is defined as: c"_, :, \� , \# * "^ \�, … , \d�, … , \d
, … , \`#a. 

The application of the resolution rule to a goal _ can be restricted through the use of a 

selection function, (Kowalski, et al., 1983). This function receives _ and returns a 

literal such that e"_# * \�  and \� 1 _. We restrict the application of the rule only to 

the literal chosen by e. 

Having a set of program clauses � * f:�, … , :gh and an initial query _, a linear 

refutation of _, (Loveland, 1978), is a n-tuple i * j:�, … , :g, _, _�, … , _� , kl, where 

all _� , 1 � � � X are obtained applying the resolution rule to _�m� and one of the 

program clauses. The symbol k denotes the empty clause  � � ^ � �. 
The SLD-Resolution method defines a Selection Function, restricts the general 

resolution to Definite clauses (i.e. Horn Clauses), and only allows Linear Refutations. 

3.2. PROLOG, a logic programming system 

PROLOG implements an efficient depth-first search strategy with backtracking on the 

space of SLD-refutations assuming: 

• that the selection function always chooses the left-most literal of the 

subgoal, i.e. if  _ *^ \�, … , \� , … , \`, then e"_# * \�; 

• that the set of program clauses is ordered: � * j:�, … , :gl. It will be called 

as a program. 

• that whenever a given literal unifies with more than one clause of the 

program, the interpreter chooses first the one that comes first in the list: 

standard ordering rule. 

Figure 4 shows a search tree for the execution of the program � * ":�, :	, :E, :5, :7# 
for the query ^ n"o#. 
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Figure 4 – Search tree generated by the execution of the program �, for the query ^ n"o# 

 

On the SLD-refutation search tree above we emphasize the following facts: 

• Each node of the tree contains the goal clause that still remains to be solved; 

• Each arrow contains the clause of the program that unified with the parent and 

each respective unification; 

• The subgoal chosen on the node ^ V"o, p#, q"p# was V"o, p#, since we are 

assuming the selection function described before; 

• The symbol   identifies the absence of a valid unification between the literal 

chosen by the selection function and the head of any clause of the program. 

Whenever that happens, the search backtracks to the parent goal, and searches 

for alternative unifications for the literal, only generating one successor of a 

node at a time. 

• The dotted arrows show the sequence of exploration of the tree and make the 

standard ordering rule clear: ^ n"o# unifies first with :� and after backtracking 

it unifies with :	. 

4. A brief comparison 

After the analysis of both systems, the following points of comparison can be stated: 

• Aim of the formalism: while SNePS is first of all a knowledge representation 

formalism concerned with expressiveness and easiness of representation of natural 

language sentences (Shapiro, 1999), PROLOG is generally regarded as a logic 

programming environment that automatically proves theorems. 

• Complexity of the inference rules: PROLOG applies one simple inference rule: the 

resolution rule. On the other hand, SNIP implements five complex inference rules, 

which are associated to 5 predefined case-frames. The SNIP’s inference process is 

also dependent on the structure of the semantic network, as messages are propagated 

using channels established between nodes. 
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• Type of Reasoning: also as a consequence of the complexity of the rules, the type 

of reasoning performed by SNIP is more “human-like” than the one made by 

resolution. SNePS inference rules are closer to the natural deduction system and 

resolution rule, although appropriate for automation, makes very small logical steps. 

• Search strategy used:  

- while the MULTI queues are managed using a FIFO policy giving rise to a 

breath-first search, PROLOG adopts a depth-first strategy with backtracking. 

- SNIP inserts the antecedents of the rules in the queue by an order that is not 

specified and on PROLOG those antecedents are inserted by the order they appear in 

the rule.  

- the unification operation on SNIP is extended to the entire network, on the 

contrary of what happens on PROLOG. In this last case the unification stops as soon 

as a literal matches the head of a rule. Additional matching rules are tried if 

backtracking occurs; 

• Redundant deductions: on SNIP, the producer-consumer model and the fact that 

all nodes are data collectors avoids redundant deductions. Known instances are stored 

on the producers and whenever a new consumer is accepted it immediately receives 

the already derived solutions. The same solution is never reported twice to the same 

consumer. PROLOG is not protected against redundant deductions: if the same literal 

appears twice on the goal, either due to backtracking or because the application of the 

resolution rule makes it appear twice, then it is solved redundantly. 

• Instantiation of common variables: on PROLOG, when the resolution operation is 

applied, if any of the instantiated variables due to unification is shared by any other 

subgoal, then this subgoal will see that variable instantiated too. This makes 

parallelization impossible to happen, unless complicated communication of solutions 

among subgoals is performed. The same doesn’t happen on SNIP, as all antecedents 

are requested by the rule node at the same time and consistency of variable 

instantiation is assured on rule nodes. Consequently there is potential for 

parallelization. 

• Treatment of recursive rules: recursive rules on PROLOG may generate infinite 

branches on the search tree. Only a careful ordering of the program clauses and of the 

antecedents of the clauses may avoid going into a loop. On SNIP, the fact that nodes 

are data-collectors and that the same solution is never reported twice also impedes the 

system to enter an infinite loop -  (Shapiro, et al., 1980) and (McKay, et al., 1981). 

5. Improving SNIP 

5.1. Creating an IDLE queue to avoid the execution of some processes 

Whenever an asserted rule node requests antecedent nodes, these requests are sent in 

parallel and all the requested nodes are scheduled on the low priority queue and 

executed later. This property is sometimes undesirable, since it can result in clear 

inefficiencies. 
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Let’s admit that an asserted and-entailment node is requested by a consequent node 

and as a result requests all its antecedents. Let’s also consider that the first antecedent 

doesn’t report any solutions. Assuming this scenario, it is obvious that the and-

entailment node won’t produce any inferences, as a consistent report is needed from 

all the antecedents. However, on the current version of SNePS, all the antecedent 

processes that were already scheduled on the low priority queue are unnecessarily 

executed. 

When we discussed the instantiation of common variables on section 4, we noticed 

that a different approach was adopted by PROLOG: antecedents were solved 

sequentially and if one of them fails to solve, backtracking immediately occurs. 

In order to avoid this situation, we propose the creation of a third queue on the 

MULTI system: the IDLE queue. The reasoning behind scheduling a process on this 

queue is simple: if none of the working processes report any solutions, then there is 

no need to run the idle processes because no additional inferences would be made by 

the rule nodes. Scheduling processes on this queue and taking processes from the 

IDLE state would involve the following interactions: 

• Scheduling on the IDLE queue: whenever a rule node sends requests to the 

antecedents and tries to schedule them on a queue, the MULTI system checks the 

inference state of the rule node and decides, for each process, whether it is 

appropriate to idle or set it to the working state. 

• Taking the process from the IDLE queue: whenever the antecedents of a rule node 

report solutions, then we check the updated inference state of that rule node, i.e. the 

RUI set, and conclude whether we need to take another brother antecedent from the 

idle state and reschedule it on the low priority queue. 

This modification can be implemented without affecting the internal behavior of the 

nodes and only with minor changes to the MULTI package. 

At each moment, the number of working and idle antecedents for a certain rule node 

is calculated based on the type of rule node at stake and on its inference state, i.e. 

number of true and false antecedents proved. Table 1 shows how to calculate that 

number. 

Node  
Type 

Chosen RUIs to calculate stu and vwxu 
Number of working antecedents 

&y 
nSP&y * nSP"c{|#, where c{|: }~1�����O nSP"�# � nSP"c{|# �����, nSP&y � 1� 

� y Not applicable � � y Same as for &y �����, � � � � nSP�y � 1� 
��`�
`�~ 

nSP�� * nSP"c{|�#, 
 �TUP�� * �TUP"c{|	# where c{|�: }~1�����O nSP"�# � nSP"c{|�# c{|	: }~1�����O�TUP"�# � �TUP"c{|	# 

���f�����Q�_���P, �Q�_���P ���� � nSP�� � 1�,�����Q�_���P,��� � �TUP���h  

Θ�����������  

nSP� * nSP"c{|#, 
 �TUP� * �TUP"c{|# where c{|: }~1�����O nSP"�# � �TUP"�# � nSP"c{|# � �TUP"c{|# 

�����Q�_���P, �!��� � �!VTP! � 1 � nSP� � �TUP�� 
Table 1 – Number of working antecedents for each rule node. The functions stu and vwxu 

return the second and third elements of the RUI tuple respectively. 



10 

 

As Table 1 suggests, we need to iterate the entire RUI set of a rule node to reach the 

RUI satisfying the properties of the second column of the table. (Choi, et al., 1992) 

created different data structures to handle RUIs in a more efficient way than linear 

sets and these differences must be taken into account while iterating RUI sets. 

This mechanism can be shown to reduce the number of processes executed by SNePS 

in several situations. 

5.2. Making the search strategy versatile 

Controlling the search strategy used by a theorem prover is a desirable functionality, 

since it may allow to find proofs using less time and space resources.  

Although the breath-first search used by SNIP is useful to exhaustively explore the 

search tree, if we are interested in finding only one solution in the quickest time 

possible, then other strategies may do better. 

The independence of the MULTI processes, supported by the previously discussed 

non-instantiation of common variables on the antecedents and by the potential to 

parallelization of processes, implies the correctness of the deduction process even 

when other sorting policies are adopted for the MULTI queues. 

On section 4, we alerted to the different depth-first search strategy used by PROLOG. 

However, the arguments presented during the discussion about the treatment of 

recursive rules hint that the parameterization of the strategy cannot be easily 

accomplished on PROLOG as it is on SNIP. 

Thus, we propose two additional search strategies for the LOW priority queue: 

• depth-first search: can be accomplished assuming a LIFO scheduling policy. 

Instead of inserting in the end, we schedule new processes in the beginning of the 

queue; 

• heuristic search: if we create an additional register on the processes, *QUEUE-

PRIORITY*, containing an integer estimating the distance to a possible solution, 

then a greedy search can be induced if we sort the queue by increasing number of 

priority. This priority can be calculated through the invocation of an heuristic 

function stored on another register, *PRIORITY-CALCULATOR*. 

The criteria used to create appropriate heuristics can range from global network 

properties computed before inference takes place - (Smith, 1989) may be an 

interesting reference - to local features calculated while the inference process runs. 

Local features may take into account the analysis of: 

• the neighborhood of the node, checking the nature of the non-rule nodes that can 

potentially match ours: whether potentially matched nodes are asserted or have 

consequent arcs pointing to them; 

• the potential cost of applying a rule node, checking the number of antecedents 

needed by the inference rule and the estimated cost of solving each of them; 
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6. Conclusion 

On this work, we described the SNePS node-based inference mechanism implemented 

by SNIP and the PROLOG logic-programming system. 

We presented a comparison of both systems, with the purpose of familiarizing the 

reader with the advantages and drawbacks of SNIP. Besides this objective, we desired 

to find ideas that could be implemented on this system, so as to make it more efficient 

and controllable. 

In the end, some of these emerging ideas were implemented. We proposed a method 

to avoid the execution of some deduction processes without sacrificing the number of 

solutions found. Additionally, we argued the importance of having multiple search 

strategies on SNIP and proposed a method to do it. 
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