
1

Development of Techniques to Control Reasoning using
SNePS

Pedro Neves
Instituto Superior Técnico, Portugal

pldn@mega.ist.utl.pt

Abstract: The Semantic Network Processing System (SNePS) is a knowledge

representation formalism that implements a node-based inference mechanism on a

semantic network. Processes are associated to nodes, communicate through

channels and execute non-standard inference rules, allowing the assertion of new

inferred nodes.

Other automatic deduction systems like Resolution, were born with the primary

intention of finding proofs for theorems. PROLOG, a widely known logic

programming system, searches for SLD-refutations for sets of clauses.

On this work we intend to develop mechanisms to control the inference made by

SNePS. For that we describe and compare the SNePS Inference Package (called

SNIP) with PROLOG. This comparison suggests improvements to SNIP that are

latter implemented and tested.

A method to idle some processes, without affecting the number of solution found,

is proposed and its theoretical foundation explained. Additionally a way to

parameterize the search strategy is suggested, making the inference process more

versatile.

Keywords: semantic network, SNePS, resolution, PROLOG, backward inference,

automatic deduction.

1. Introduction

SNePS, (Shapiro, 1979), is a semantic network directed to represent natural language

expressions, (Shapiro, 1999), and to reason about them. On this work, we focus on the

automatic deduction capabilities of this system, more specifically on the backwards

node-based inference mechanism implemented by the SNePS Inference Package,

called SNIP, (Hull, 1986).

Our main objective is to understand the potential of SNIP and to propose methods to

control and improve the reasoning performed by this system.

To achieve this aim, we start by describing SNIP and comparing it with PROLOG, a

logic-programming system that will help us to find the advantages and drawbacks of

the automatic deduction capabilities of SNePS. After this comparative study, we

propose and implement some improvements to this system.

2. Understanding SNePS

On the first section of this chapter, we give some introductory concepts about SNePS.

Afterwards, we explain how backwards node-based inference is performed by the

system, through the association of processes to nodes.

2

2.1. Basics of SNePS

The definition of semantic network is not consensual. The fact that, according to

Brachman ,“virtually every networklike formalism that appeared in the literature since

1966 has at one time been branded by someone a semantic net” lead us to, first of all,

position SNePS on the taxonomies described on the works of (Brachman, 1979) and

(Sowa, 1992):

• According to Sowa’s characterization, SNePS is an assertional network;

• SNePS is a propositional semantic network since logical propositions are

represented by a node. Therefore it is settled at the Brachman’s logical level;

• It is possible to perform inference on SNePS through SNIP. Thus according

to the Sowa’s taxonomy, SNePS is also an executable network.

The syntax and semantics of the formalism can be found on (Shapiro, 1979) and

(Martins, 2005). However, we stress four features that distinguish SNePS from other

networks: concepts represent intensional entities, i.e. “objects of thought” - each

intensional entity may correspond to more than one object of the real work or to no

object at all (Shapiro, et al., 1987); the Uniqueness Principle guarantees that

whenever two nodes represent the same intensional concept, then they should be the

same; arcs represent non-conceptual relations between nodes and consequently arcs

are structural rather than assertional; finally SNePS can represent higher order

propositions and reason about them.

SNIP is capable of performing three types of inference: reduction, path-based

(Shapiro, 1978) and node-based inference. On this paper we are interested in the last,

more specifically on backward node-based inference.

This inference mechanism has a set of predefined case-frames (predefined arc names

and node structures) that represent non-standard connectives (Shapiro, 1979). There

are five types of rule nodes available: and-entailment, or-entailment, numerical-

entailment, and-or and thresh (check (Shapiro, et al., 2004) for details). Inference

rules are associated to each rule node. Figure 1 presents an and-or rule node, which

asserts that between i and j of the �� , 1 � � � �, are true.

Figure 1 – And-or rule node, its linear representation and inference rules.

2.2. Backward node-based inference on SNIP

The match algorithm. In order to locate nodes and rules on the network in order to

apply inference rules similar to those of Figure 1, SNePS implements an unification

arg

 i j

�� �	 �

arg
arg

…

�� , … , �
 � �� , … ,� ��

� �� , … ,� �
 �� , … , ��

where �� , … , �
 are any � and ~�� , … , ~�� are the

remaining � � �
where ~�� , … , ~�
 are any � � � and �� , … , �� are the

remaining � � : if more than � are true or more than � � � are

false, contradiction is derived

�������, … , �
�
min max

3

algorithm (Shapiro, 1977). The match algorithm is applied to a node � and an initial

binding �, producing a set of tuples that we will denote as ��� !"�, �#. Each tuple

has the form $%, &, '(, where % is a node, & is a target binding and ' is a source

binding. By binding1 we mean a set of the form

) * +,� ��- ,… , ,
 �
- .,
where ,� are variable nodes and �� are any nodes. We use /0 to denote the result of

the application of the binding 0 to a node N. Given the above definitions, if $%, &, '(1 ��� !"�, �#, then %& and �' are matched in the common sense of the

word. The need for a source and target binding will became clear latter. Figure 2

shows the results of invoking ��� !"�2, � �# on the network.

Figure 2 – Result of applying the operation of match on this network.

Associating processes to nodes. When a deduction is initiated by the user through

the command deduce, SNIP creates and associates a process to each node involved

on the deduction. There are two major types of processes: rule processes, which

implement inference rules and non-rule processes.

Processes communicate using channels, sending and receiving requests and reports.

When a node requests another, it is interested in finding solutions for that node. When

a node finds new instances, it reports to the interested requestors.

Figure 3 will help to explain the kind of interaction that may exist in a network, when

a backward node-based inference is started.

1 We will use the terms binding and substitution interchangeably.

3�!

�5

 67

 �8

 69 :

cq

arg1 arg2

arg2

forall

forall

arg1

' *
;<=
<>611 :- ,610 66A

B<C
<D

Switch:

(a)

(b)

&ant

�E

&ant �	

F

arg1 arg2

arg2 arg1

 �2

 �G

 6�� 6�H

Filter:

 & * I65 F- K

4

Figure 3 – Interactions between nodes on the network.

The behavior of non-rule nodes can be summarized as follows (see Figure 3):

• Sending Requests: a non-asserted non-rule node tries to find instances of itself

matching and requesting other nodes (node �� on interactions (a)(i)). Additionally, a

node that is a consequent of a rule node may also request that rule node, as

interaction (a)(ii) shows for node �LM. The rule node will afterwards try to apply the

inference rule associated and derive conclusions.

• Replying Reports: an asserted non-rule node (like 3�!) corresponds to a solution

and can reply a report (see interaction (a)(v)). Non-asserted non-rule nodes may also

report if they receive reports from other nodes: �LM can report to �� if it receives

reports from the rule node 3N! (interaction (a)(iii)), and antecedent nodes like ��
O
may also report if they receive reports from matched nodes (interaction (a)(iv)).

The behavior of rule nodes can also be sketched in a similar manner:

• Sending Requests: when an asserted rule node receives a request from a

consequent, it tries to apply the inference rule sending requests to all the antecedents

of the rule in parallel (as interaction (b)(i) shows). Additionally, if the rule node is

not asserted, then the rule node acts as an ordinary non-rule node and tries to find

instances of the rule sending requests through consequent arcs that may exist (not

shown on the picture).

• Replying Reports: when an asserted rule node like 3N! receives reports from the

antecedents, it tries to apply the inference rule and derive conclusions. If that is

possible, reports are sent to the consequents (interaction (b)(ii)). If a non-asserted

rule node receives instances of the rule, then it tries to apply those instances and

produce reports to the consequents.

Processes interact under a consumers-producers model, i.e. the same node (a

producer) can report to more than one “boss” (which is a consumer). Producers keep

all the inferred instances on a register, never reporting the same solution twice to the

same consumer and, when a new “boss” is accepted, sending all the instances already

derived to that “boss”. These features mean that nodes are data-collectors.

With this model, given that the same producer can report to more than one consumer,

two problems may emerge: some solutions may be desired by one “boss” but not by

the other and the namespace of variables may differ from consumer to consumer. That

is why a fractioned version of the unifier is needed and those are the roles of both

filter and switch, respectively (check Figure 2 again).

3N!

cq ��
 3�! �LM Match

(a)(ii)

��
O
ant

Match

(a)(i) (a)(i)

(a)(v) (a)(iii)

(a)(iv) (b)(ii)

(b)(i)

5

The production of solution on rule-nodes is uniformly handled for all the connectives

using the rule-use-information (RUI) data structure: "$PQRP���Q��S�(, $�S� � �TU���,T ���TUTV(, $�S� � �TU���,T ���TUTV(, $WX�UUTY � �SYT PT�(#.
When the antecedents of a rule node report solutions, they return substitutions for

universally quantified variables. The consistency of the substitutions returned by

antecedents (i.e. the correct instantiation of shared variables) is assured on the rule

node, as RUI tuples are created for each consistent solution. These substitutions are

stored as the first element of the tuple. The second and third elements are integers

containing the number of true and false antecedents for that solution. $WX�UUTY ��SYT PT�(indicates, for each solved antecedent, whether a true of false instance was

found.

As an example, let’s admit that on Figure 2, �	also dominates variable 67 and �E

dominates variable 69. If �	 reports a true solution with substitution �67 :⁄ � and �E a

false solution with substitution �69 F⁄ �, then the following RUI would be created for

the and-entailment node 3�!: "�67 :⁄ , 69 F⁄ �, 1,1, ��	: �VQT, �E: W�XPT�#.
The decision to trigger inference is based uniquely on the integers of the RUIs.

Deciding which process gets into action – the MULTI system. MULTI is a LISP

based multiprocessing system which allows “various control structures such as

recursion, backtracking, coroutines and generators” (McKay, et al., 1980).

SNePS uses MULTI processes, which are scheduled on one of two queues with

different priorities: processes having reports to threat are scheduled on the HIGH

priority queue and processes with pending requests are inserted in the LOW priority

queue.

The HIGH priority queue allows a fast propagation of solutions and the low priority

processes are only executed when no processes remain on the HIGH priority queue.

Both queues are maintained using a FIFO policy.

If process p1 sends a request or report to process p2, then p1 is in charge of

scheduling p2 on the LOW or HIGH priority queue, respectively.

3. The SLD-resolution mechanism

Resolution is an automatic theorem proving system created by Robinson (Robinson,

1965). The system was continually improved across time and is still the basis for state

of the art systems like OTTER (McCune, et al., 1997).

Understanding resolution will give us a greater insight of SNIP and may suggest

interesting concepts and ideas that can be used on that system.

We will focus on SLD-resolution and PROLOG. An introduction to the basics of

resolution can be found on (Duffy, 1991) and we will assume that the reader knows

the basics of that method.

6

3.1. SLD-Resolution

The SLD-Resolution system works exclusively with Horn Clauses, which are sets of

literals with at most one positive literal. If the positive literal is present, i.e. : *�~\]�, ~\]	, … , ~\]
, \�, we have a program clause which can be more suggestively

written as : * \ ^ \]�, \]	, … , \]
. Otherwise, assuming \ does not exist, we have a

goal or query, _ *^ \�, … , \� , … , \`.

We will assume the existence of an unification algorithm such that given two literals, \� and \	, returns a substitution a * Q��Wb"\�, \	# such that \�a * \	a.

Given the previous goal _, the previous program clause : and assuming that a= Q��Wb"\� , \# the application of the resolution rule to _ and : is defined as: c"_, :, \� , \# * "^ \�, … , \d�, … , \d
, … , \`#a.

The application of the resolution rule to a goal _ can be restricted through the use of a

selection function, (Kowalski, et al., 1983). This function receives _ and returns a

literal such that e"_# * \� and \� 1 _. We restrict the application of the rule only to

the literal chosen by e.

Having a set of program clauses � * f:�, … , :gh and an initial query _, a linear

refutation of _, (Loveland, 1978), is a n-tuple i * j:�, … , :g, _, _�, … , _� , kl, where

all _� , 1 � � � X are obtained applying the resolution rule to _�m� and one of the

program clauses. The symbol k denotes the empty clause � � ^ � �.
The SLD-Resolution method defines a Selection Function, restricts the general

resolution to Definite clauses (i.e. Horn Clauses), and only allows Linear Refutations.

3.2. PROLOG, a logic programming system

PROLOG implements an efficient depth-first search strategy with backtracking on the

space of SLD-refutations assuming:

• that the selection function always chooses the left-most literal of the

subgoal, i.e. if _ *^ \�, … , \� , … , \`, then e"_# * \�;

• that the set of program clauses is ordered: � * j:�, … , :gl. It will be called

as a program.

• that whenever a given literal unifies with more than one clause of the

program, the interpreter chooses first the one that comes first in the list:

standard ordering rule.

Figure 4 shows a search tree for the execution of the program � * ":�, :	, :E, :5, :7#
for the query ^ n"o#.

7

Figure 4 – Search tree generated by the execution of the program �, for the query ^ n"o#

On the SLD-refutation search tree above we emphasize the following facts:

• Each node of the tree contains the goal clause that still remains to be solved;

• Each arrow contains the clause of the program that unified with the parent and

each respective unification;

• The subgoal chosen on the node ^ V"o, p#, q"p# was V"o, p#, since we are

assuming the selection function described before;

• The symbol identifies the absence of a valid unification between the literal

chosen by the selection function and the head of any clause of the program.

Whenever that happens, the search backtracks to the parent goal, and searches

for alternative unifications for the literal, only generating one successor of a

node at a time.

• The dotted arrows show the sequence of exploration of the tree and make the

standard ordering rule clear: ^ n"o# unifies first with :� and after backtracking

it unifies with :	.

4. A brief comparison

After the analysis of both systems, the following points of comparison can be stated:

• Aim of the formalism: while SNePS is first of all a knowledge representation

formalism concerned with expressiveness and easiness of representation of natural

language sentences (Shapiro, 1999), PROLOG is generally regarded as a logic

programming environment that automatically proves theorems.

• Complexity of the inference rules: PROLOG applies one simple inference rule: the

resolution rule. On the other hand, SNIP implements five complex inference rules,

which are associated to 5 predefined case-frames. The SNIP’s inference process is

also dependent on the structure of the semantic network, as messages are propagated

using channels established between nodes.

:� * n"o# ^ P"o# :	 * n"o# ^ V"o, p#, q"p# :E * q" # ^ :5 * V"o, �# ^ :7 * V"o, # ^

^ n"o#

^ P"o# ^ V"o, p#, q"p#

^ q"�# ^ q" #

k

:� a * r :	 a * r

:5 a * fp �- h :7 a * fp - h

:E a * r

1st

2st

3rd

4th

8

• Type of Reasoning: also as a consequence of the complexity of the rules, the type

of reasoning performed by SNIP is more “human-like” than the one made by

resolution. SNePS inference rules are closer to the natural deduction system and

resolution rule, although appropriate for automation, makes very small logical steps.

• Search strategy used:

- while the MULTI queues are managed using a FIFO policy giving rise to a

breath-first search, PROLOG adopts a depth-first strategy with backtracking.

- SNIP inserts the antecedents of the rules in the queue by an order that is not

specified and on PROLOG those antecedents are inserted by the order they appear in

the rule.

- the unification operation on SNIP is extended to the entire network, on the

contrary of what happens on PROLOG. In this last case the unification stops as soon

as a literal matches the head of a rule. Additional matching rules are tried if

backtracking occurs;

• Redundant deductions: on SNIP, the producer-consumer model and the fact that

all nodes are data collectors avoids redundant deductions. Known instances are stored

on the producers and whenever a new consumer is accepted it immediately receives

the already derived solutions. The same solution is never reported twice to the same

consumer. PROLOG is not protected against redundant deductions: if the same literal

appears twice on the goal, either due to backtracking or because the application of the

resolution rule makes it appear twice, then it is solved redundantly.

• Instantiation of common variables: on PROLOG, when the resolution operation is

applied, if any of the instantiated variables due to unification is shared by any other

subgoal, then this subgoal will see that variable instantiated too. This makes

parallelization impossible to happen, unless complicated communication of solutions

among subgoals is performed. The same doesn’t happen on SNIP, as all antecedents

are requested by the rule node at the same time and consistency of variable

instantiation is assured on rule nodes. Consequently there is potential for

parallelization.

• Treatment of recursive rules: recursive rules on PROLOG may generate infinite

branches on the search tree. Only a careful ordering of the program clauses and of the

antecedents of the clauses may avoid going into a loop. On SNIP, the fact that nodes

are data-collectors and that the same solution is never reported twice also impedes the

system to enter an infinite loop - (Shapiro, et al., 1980) and (McKay, et al., 1981).

5. Improving SNIP

5.1. Creating an IDLE queue to avoid the execution of some processes

Whenever an asserted rule node requests antecedent nodes, these requests are sent in

parallel and all the requested nodes are scheduled on the low priority queue and

executed later. This property is sometimes undesirable, since it can result in clear

inefficiencies.

9

Let’s admit that an asserted and-entailment node is requested by a consequent node

and as a result requests all its antecedents. Let’s also consider that the first antecedent

doesn’t report any solutions. Assuming this scenario, it is obvious that the and-

entailment node won’t produce any inferences, as a consistent report is needed from

all the antecedents. However, on the current version of SNePS, all the antecedent

processes that were already scheduled on the low priority queue are unnecessarily

executed.

When we discussed the instantiation of common variables on section 4, we noticed

that a different approach was adopted by PROLOG: antecedents were solved

sequentially and if one of them fails to solve, backtracking immediately occurs.

In order to avoid this situation, we propose the creation of a third queue on the

MULTI system: the IDLE queue. The reasoning behind scheduling a process on this

queue is simple: if none of the working processes report any solutions, then there is

no need to run the idle processes because no additional inferences would be made by

the rule nodes. Scheduling processes on this queue and taking processes from the

IDLE state would involve the following interactions:

• Scheduling on the IDLE queue: whenever a rule node sends requests to the

antecedents and tries to schedule them on a queue, the MULTI system checks the

inference state of the rule node and decides, for each process, whether it is

appropriate to idle or set it to the working state.

• Taking the process from the IDLE queue: whenever the antecedents of a rule node

report solutions, then we check the updated inference state of that rule node, i.e. the

RUI set, and conclude whether we need to take another brother antecedent from the

idle state and reschedule it on the low priority queue.

This modification can be implemented without affecting the internal behavior of the

nodes and only with minor changes to the MULTI package.

At each moment, the number of working and idle antecedents for a certain rule node

is calculated based on the type of rule node at stake and on its inference state, i.e.

number of true and false antecedents proved. Table 1 shows how to calculate that

number.

Node
Type

Chosen RUIs to calculate stu and vwxu
Number of working antecedents

&y
nSP&y * nSP"c{|#, where c{|: }~1�����O nSP"�# � nSP"c{|# �����, nSP&y � 1�

� y Not applicable � � y Same as for &y �����, � � � � nSP�y � 1�
��`�
`�~

nSP�� * nSP"c{|�#,
 �TUP�� * �TUP"c{|	# where c{|�: }~1�����O nSP"�# � nSP"c{|�# c{|	: }~1�����O�TUP"�# � �TUP"c{|	#

���f�����Q�_���P, �Q�_���P ���� � nSP�� � 1�,�����Q�_���P,��� � �TUP���h

Θ�����������

nSP� * nSP"c{|#,
 �TUP� * �TUP"c{|# where c{|: }~1�����O nSP"�# � �TUP"�# � nSP"c{|# � �TUP"c{|#

�����Q�_���P, �!��� � �!VTP! � 1 � nSP� � �TUP��
Table 1 – Number of working antecedents for each rule node. The functions stu and vwxu

return the second and third elements of the RUI tuple respectively.

10

As Table 1 suggests, we need to iterate the entire RUI set of a rule node to reach the

RUI satisfying the properties of the second column of the table. (Choi, et al., 1992)

created different data structures to handle RUIs in a more efficient way than linear

sets and these differences must be taken into account while iterating RUI sets.

This mechanism can be shown to reduce the number of processes executed by SNePS

in several situations.

5.2. Making the search strategy versatile

Controlling the search strategy used by a theorem prover is a desirable functionality,

since it may allow to find proofs using less time and space resources.

Although the breath-first search used by SNIP is useful to exhaustively explore the

search tree, if we are interested in finding only one solution in the quickest time

possible, then other strategies may do better.

The independence of the MULTI processes, supported by the previously discussed

non-instantiation of common variables on the antecedents and by the potential to

parallelization of processes, implies the correctness of the deduction process even

when other sorting policies are adopted for the MULTI queues.

On section 4, we alerted to the different depth-first search strategy used by PROLOG.

However, the arguments presented during the discussion about the treatment of

recursive rules hint that the parameterization of the strategy cannot be easily

accomplished on PROLOG as it is on SNIP.

Thus, we propose two additional search strategies for the LOW priority queue:

• depth-first search: can be accomplished assuming a LIFO scheduling policy.

Instead of inserting in the end, we schedule new processes in the beginning of the

queue;

• heuristic search: if we create an additional register on the processes, *QUEUE-

PRIORITY*, containing an integer estimating the distance to a possible solution,

then a greedy search can be induced if we sort the queue by increasing number of

priority. This priority can be calculated through the invocation of an heuristic

function stored on another register, *PRIORITY-CALCULATOR*.

The criteria used to create appropriate heuristics can range from global network

properties computed before inference takes place - (Smith, 1989) may be an

interesting reference - to local features calculated while the inference process runs.

Local features may take into account the analysis of:

• the neighborhood of the node, checking the nature of the non-rule nodes that can

potentially match ours: whether potentially matched nodes are asserted or have

consequent arcs pointing to them;

• the potential cost of applying a rule node, checking the number of antecedents

needed by the inference rule and the estimated cost of solving each of them;

11

6. Conclusion

On this work, we described the SNePS node-based inference mechanism implemented

by SNIP and the PROLOG logic-programming system.

We presented a comparison of both systems, with the purpose of familiarizing the

reader with the advantages and drawbacks of SNIP. Besides this objective, we desired

to find ideas that could be implemented on this system, so as to make it more efficient

and controllable.

In the end, some of these emerging ideas were implemented. We proposed a method

to avoid the execution of some deduction processes without sacrificing the number of

solutions found. Additionally, we argued the importance of having multiple search

strategies on SNIP and proposed a method to do it.

References

Brachman, J. Ronald. 1979. On the Epistemological Status of Semantic Networks.

[ed.] Nicholas V. Findler. Associative Networks, Representation and Use of

Knowledge by Computers. s.l. : Academic Press, 1979, 1, pp. 3-50.

Choi, Joongmin and Shapiro, Stuart C. 1992. Efficient Implementation of Non-

Standard Connectives and Quantifiers in Deduction Reasoning Systems. 1992.

Cruz-Filipe, Luís. 2006. Programação em Lógica. IST : Unpublished lecture notes,

2006.

Duffy, David. 1991. Principles of Automated Theorem Proving. s.l. : Wiley, 1991.

Hull, Richard G. 1986. A New Design for SNIP, the SNePS Inference Package.

Department of Computer Science, State University of New York at Buffalo. 1986. 14.

Kowalski, R. and Kuehner, D. 1983. Linear Resolution with Selection Function.

[book auth.] Jorg Siekmann and Graham Wrightson. Automation of Reasoning:

Classical Papers on Computational Logic. s.l. : Springer, 1983, Vol. 2.

Loveland, Donald W. 1978. Automated Theorem Proving: a logical basis. 1st

Edition. s.l. : North-Holland Publishing Company, 1978.

Martins, João Pavão. 2005. Semantic Networks. Knowledge Representation.

Unpublished Lecture Notes. 2005, 6, pp. 213-267.

McCune, Willian and Wos, L. 1997. The CADE-13 competition incarnations.

Journal of Automated Reasoning. 1997, Vol. 18(2), pp. 211-220.

McKay, Donald P. and Shapiro, Stuart C. 1980. MULTI - A LISP Based

Multiprocessing System. Department of Computer Science, State University of New

York at Buffalo. 1980.

—. 1981. Using Active Connection Graphs for Reasoning with Recursive Rules.

1981, pp. 368-374.

Robinson, J. A. 1965. A Machine Oriented Logic Based on the Resolution Principle.

[ed.] Jorg Siekmann and Graham Wrightson. Automation of Reasoning: Classical

Papers on Computational Logic 1957 - 1966. 1965, Vol. 1, pp. 397-415.

Schubert, Lenhart K., Goebel, Randolph G. and Cercone, Nicholas J. 1979. The

Structure and Organization of a Semantic Net for Comprehension and Inference. [ed.]

Nicholas V. Findler. Associative Networks: Representation and Use of Knowledge by

Computers. s.l. : Academic Press, Inc., 1979, pp. 121-175.

12

Shapiro, Stuart C. and Group, The SNePS Implementation. 2004. SNePS 2.6.1

User's Manual. 2004.

Shapiro, Stuart C. and McKay, Donald P. 1980. Inference with Recursive Rules.

Proc. NCAI. 1980, pp. 151-153.

Shapiro, Stuart C. and Rapaport, William J. 1987. SNePS Considered as a Fully

Intensional Propositional Semantic Network. [ed.] Nick Cercone and Gordon

McCalla. The Knowledge Frontier: Essays in the Representation of Knowledge. s.l. :

Springer-Verlag, 1987, pp. 262-315.

Shapiro, Stuart C. 1978. Path-Based and Node-Based Inference in Semantic

Networks. 1978.

—. 1977. Representing and Locating Deduction Rules in a Semantic Network.

SIGART Newsletter. 1977, Vol. 63, pp. 14-18.

—. 1999. SNePS: A Logic for Natural Language Understanding and Commonsense

Reasoning. Natural Language Processing and Knowledge Representation: Language

for Knowledge and Knowledge for Language. 1999.

—. 1999. SNePS: A Logic for Natural Language Understanding and Commonsense

Reasoning. Natural Language Processing and Knowledge Representation: Language

for Knowledge and Knowledge for Language. 1999.

—. 1979. The SNePS semantic network procesing system. Associative Networks.

1979, pp. 179-203.

—. 1979. Using Non-Standard Connectives and Quantifiers for Representing

Deduction Rules in a Semantic Network. 1979.

Smith, David E. 1989. Controlling Backward Inference. Artificial Intelligence. 1989,

Vol. 39, pp. 145-208.

Socher-Ambrosius, Rolf and Johann, Patricia. 1997. Deduction Systems. 1st

Edition. s.l. : Springer, 1997.

Sowa, John F. 1992. Encyclopedia of Artificial Intelligence. [ed.] Stuart Shapiro. 2nd

edition. s.l. : Wiley, 1992.

