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Abstract – Control systems based on visual 
data input, termed visual servoing systems, 
are one of the most promising fields of 
research to develop a system as much 
autonomous as is possible.   
In the last years, several methods have been 
proposed in this area, with their strengths 
and weaknesses. To clarify it, it is necessary 
to evaluate and compare them. In this thesis 
some visual servoing techniques are 
evaluated with the goal to clarify in which 
situations each one of them is a good option 
to solve a specific task. The methods 
evaluated are: position based visual 
servoing, image based visual servoing, 2.5D 
visual servoing, decoupled visual servoing 
and shortest path visual servoing. 
 

Introduction – I 
 
In the last decades have been increased the 
research in robotics. The challenge is 
developing an autonomous system that can 
act in one unknown environment. To build a 
system like that, the first concern should be 
trying to get as much information as 
possible from the world. The sensor that best 
adapts to this requirement is the vision. The 
video camera has the advantages of 
providing a high accuracy to robotic system 
and allowing a bigger flexibility to the 
applicability of the data input. The video 
camera also gives the possibility to extract 
different kinds of information from the same 
sensor. 
Visual servoing is the name given to the 
control techniques that use image data as 
input. It is a very large field of research and 
to build a system like that it is necessary to 
join knowledge from many areas of 
research: robot modeling, control theory, 
computer vision and others, [1].  

The two most common branches of 
application for visual servoing are: 
positioning of a robot in a desired position 
(typically with the goal of grasping some 
object) and following targets in movement. 
Our work considers the first one. 
Recently, several new visual servoing 
methods have been proposed trying to build 
control systems based on vision as good as 
possible. These methods are normally 
presented together with some 
experimentation to evaluate its performance. 
However, in many cases, these tests are not 
very exhaustive.  
It is useful to have a global evaluation of the 
performance of several visual servoing 
techniques. This kind of work was done by 
Gans, [2], however, more tests can be done, 
other features can be measured and other 
visual servoing methods can be evaluated.   
In this paper, different visual servoing 
approaches are explored and their 
performances evaluated. The goal is 
measuring the influence of the image noise 
in the performance of those visual servoing 
techniques.   
The visual servoing techniques analyzed are: 
position based visual servoing, [1], image 
based visual servoing, [1], 2.5D visual 
servoing, [3], Corke & Hutchinson visual 
servoing, [4], and shortest path visual 
servoing, [5].  
In this paper first is given, in Section II, a 
background about the work developed. In 
Section III are described the visual servoing 
techniques analyzed. In Section IV are 
exposed the results obtained. Finally in 
Sections V and Section VI are discussed the 
main conclusions of the work done and 
suggestions to develop in the future. 
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Background – II 

 
The typical structure of a visual servoing 
control scheme is exposed in Figure 1. 

 

Figure 1 – Control scheme of a visual servoing 
system; eye – in hand approach. 

The goal of a visual servoing system is to 
move a robot from one initial to one desired 
position, and keep it there using always a 
close-loop control scheme. In the beginning 
of the process, is provided to the system one 
image of the target with the camera in the 
desired position. Then, in the starting 
position, the camera obtains an image of the 
target. From that image, the necessary 
features, f, are extracted and compared with 
the desired ones extracted from the desired 
image, fd; the error obtained from the 
difference between the desired and the 
current image features is used to compute 
the control law. The control signal is sent to 
the joints and a new image, with the camera 
in the new position, is taken. This is done 
until could be possible reducing to zero the 
error between the image features in the 
current and in the desired position. The 
features extracted can be for example: 
points, lines, ellipses, differences in the 
texture.  
The visual servoing control law structure is 
almost the same for all the methods, 
changing basically the features used for 
tracking and the quantity of object a priori 
knowledge used. The definitions presented 
now are generic for all the methods. 
The feature vector, s , is defined by the list 
of features, extracted directly or indirectly 
from the image, used in the control law and 
the features error, or task vector, e , is the 
difference between the current features 
vector and the desired features vector. 

*
desiredcurrent sse −=    (1) 

For an static target it is obtained the equality 
currentse && = . 

To ensure the zeroing of the features errors 
in the task space, it is imposed a restriction 
in the control law defined by the following 
first order equation 

ee ⋅−= λ&     (2) 
In visual servoing is necessary to make a 
transformation between the Cartesian space 
and the feature space. This is done by the 
image Jacobian, J , which relates both 
dimensions  

q
eJ q ∂
∂

=     (3) 

The vector [ ]61xq  represents the position of 
the joints and q∂  their velocities.  
Inverting the relation 

vJse ⋅== &&        (4) 
it is possible to obtain the control law 

( )*ssJv current −⋅⋅−=
+λ   (5) 

The difference between (3) and (4) is that 
the first is expressed in the joint space, 
( )qJq, , and the second in the Cartesian 
space, ( )Jv, . The velocity of the camera is 
defined as: 
  [ ]zyxzyx vvvv ωωω=   (6) 
Typically J is a not square matrix, so in (5), 
it is necessary to use the pseudo-inverse 
of J .  
 
An important tool in visual servoing is the 
homography matrix. This matrix makes the 
transformation between two image plane 
(two images). It can be estimated if is 
known the relation of four points in both 
images (for a planar target). From this 
matrix it is possible estimating the 
displacement of the camera between two 
images [6], which very useful in several 
visual servoing techniques.  

 
Evaluated Methods – III 

 

Position Based Visual Servoing 

In position based visual servoing (PBVS), 
the features are extracted indirectly from the 
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image; it is also called 3D visual servoing. 
From the data in the 2D image plane it is 
built a 3D model of the target. The image is 
used to localize the object in the world.  
In PBVS, the feature vector is defined as 
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    (7)  

*c
ct   and 13* xc

cu θ  represent the translation 
and the rotation from the initial to the 
desired position; in this last feature, *c

cu  are 
the rotation axis and 13xθ  are the rotation 
angles.  These features can be obtained from 
the transformation coordinates from the 
current camera’s position to the desired, *c

cT . 
That is obtained from the composition of the 
transformation coordinates from the current 
position to the target with the desired 
position to it 
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As the velocity vector and the features 
vector are both defined in the Cartesian 
space, the position based Jacobian can be 
denied as a simple identity matrix: 

⎥
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⎤
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J D    (9) 

And the correspondent control law is  
sJv D &⋅⋅−= −1

3λ    (10) 
PBVS has some disadvantages: it is 
necessary to have a thorough knowledge 
about the target to build a specific model of 
it. This is only possible to apply to objects 
with a specific shape which also reduces the 
applicability of the algorithm; other 
disadvantage is that, due to the control 
calculus are done in the Cartesian space, the 
system requires an accuracy calibration; 
another problem is that this computation, in 
the Cartesian space, also requires a high 
computational effort, which reduces the 
applicability of the algorithm in a real time 
system.  
On the other hand the main advantages of 
PBVS are the accuracy and robustness of its 
performance. 
 

Image Based Visual Servoing 

In image based visual servoing (IBVS), the 
target features are extracted directly from 
the image, without any image interpretation. 
This control architecture does not need to 
make a 3D reconstruction of the target.  
The feature vector, s , is defined as  

[ ]Tyxs =     (11)  
And its error as  
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The relation between the features error and 
the velocity to send to the robot is 

sJv D &⋅⋅−= +
2λ    (13)  

And the image base Jacobian, for a unite 
camera’s focal length is defined as  
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The variables x  and y  are the metric 
coordinates of one point in the image and Z 
the depth of that point. 
The Jacobian presented in (14) has the 
dimension of [2 x 6]. This is the Jacobian 
size to track one single point. For n  points, 
the Jacobian dimension would be [ n 2 x 6]. 
One problem of IBVS is that only the local 
convergence can be ensured. Another 
problem is the difficulty of this method in 
managing rotations around the optical axis.  
To compute the control law for image based 
visual servoing, it is necessary to track at 
least three non-collinear points.  
 

2 ½ D Visual Servoing 

The 2.5D visual servoing (2.5D) was 
presented by Malis, [3], in 1999 and was 
developed with the goal of joining the best 
skills of the two main visual servoing 
approaches (IBVS and PBVS).  
This hybrid method does not need any 3D 
model of the object and ensures the 
convergence of the control law in the whole 
task space.  
In the 2.5D, the task vector is defined  
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as [ ] ⎟
⎠
⎞

⎜
⎝
⎛= 13**16 ),log(,, xc

c
x u

Z
Zyxe θ . 

In which, x  and y are the metric 
coordinates of a point, Z is the current 
distance of the camera to that point and 13xu  
and 13xθ  are the axis of the rotation and the 
angles that the camera needs to rotate. 
The 2.5D visual servoing Jacobian is 
defined as 
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In which *d  is the distance of the camera to 
the target in the desired position and ρ  is 
defined by the ration */ dZ . 
Then, the control law is: 

eJv D ⋅⋅−= −1
5.2λ    (18) 

 

Corke & Hutchinson Visual Servoing 

The Corke and Hutchinson visual servoing 
(CH), [4], was developed to address some of 
the IBVS problems, mainly the camera 
retreat problem, which occurs for pure 
rotations around the camera’s optical axis. 
The CH method has the drawback that its 
performance depends of the relative position 
of the features in the image. 
The error vector is defined as in IBVS  
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In this method, only one point is tracked, 
and ( x , y ) are their image plane 
coordinates.  
In CH method the translation, zv , and the 
rotation, zω , velocities along/around z-axis 
are computed decoupled from the other 

velocities and are extracted from the next 
features: 
Theta Feature, θ  - drive the camera 
inclination around the optical axis.. The 
theta feature is the angle between the 
horizontal pixel axis and a straight line built 
from two points in the image.. 
Sigma Feature,σ  – control the movement 
thought the z-axis. It consists in the square 
root of the area of a polygon made from the 
image points.  
The translational and rotational velocities 
along/around the optical axis are given by: 
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Tzλ  and zωλ  are gain factors to adapt the 
speed of conversion along the associated 
directions. Then, the others velocities 
( [ ]yxyxxy vvv ωω= ,) can be obtained 
using the expression: 
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Shortest Path Visual Servoing 

The shortest path visual servoing (SP) was 
presented by Kyrki and Kragic, [5], with the 
goal of addressing two typical problems in 
the visual servoing:  the possibility of the 
target leaving the camera’s field of view and 
the risk of the joints working too close to 
their limits. This method was developed in 
order to the camera trajectory presenting one 
straight line which goes from the initial to 
the desired position. In the shortest path 
visual servoing the position based control is 
used directly to control the translation of the 
camera. To control the rotation around x  
and y axis is used one virtual point which 
lies in the zero of the object frame; this point 
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helps the control scheme to keep the target 
in the image. The rotation over the optical 
axis is controlled using the θ*cz

cu , as in 
2.5D visual servoing, which should be 
driven to zero. 
The task vector is 
 [ ] ( )Tcz

c
c

c
c

c
c

c
x uyxZYXe θ****16 ,,,,,=  . 

The transformation from the initial position 
to the desired can be obtain, as in PBVS,  
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Due to the simple mathematical definition 
that SPJ  has, it is possible to define directly 
its inverse, 1−

SPJ , which facilitate its 
implementation.  
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Attending in SPJ  matrix, its determinant is 

2

222

Z
ZYXZ ++

= , which it is never zero, 

except when the camera is on the zero of the 
object frame, which it is not possible. This 
ensures global convergence of the method. 
 

Simulation Results - IV 
 

Simulation Methodology 

The simulations were performed in VISP 
(VIsual Servoing Platform). The VISP, [7], is a 
C++ library that has been developed in the last 
years, with the goal of integrating as much visual 
servoing tools as is possible and allowing a fast 
implementation of it in any specific robot, with 
little work. 
It was simulated a robotic arm with six 
degrees of freedom using the eye-in-hand 
approach.The desired camera position was 
set as being located one meter far from the 
target, oriented to it, and without any 
inclination: P* = [0, 0, 1, 0, 0, 0]. The first 

three values of P* correspond to the pose of 
the camera and the last three to its 
orientation. 
To make the performance comparison 
between the visual servoing techniques 
under analysis, it was defined one target 
consisting in five points; four building a 
square centered in the target frame and one 
fifth in its center. 
The simulations measuring the influence of 
the image noise, η , in the performance of 
the visual servoing techniques for different 
initial camera configurations. For that, it was 
added random noise, with variance ranging 
between 0 and 1 pixel. The desired image, it 
was assumed as got it in perfect conditions 
and any noise was introduced on it.   
In the simulations, the system reaches the 
goal when the average pixels error is less 
than 1 pixel; The system is halted as not 
succeeded whether the camera had displaced 
more than 11 meters from the target along 
the z  direction, or more than 2 along the x  
or y  direction, whether had spent more than 
200 iterations, or whether the average pixels 
error change less the 0.05 pixels after 5 
consecutive iterations. To ensure that the 
camera does not collide with the target, it is 
also required that the camera does not get 
closer than 0,2 meters from it. To obtain 
smoother results, less influenced by outliers, 
each test was executed 50 times and it was 
made the average of these values.  
 
Tasks Tested 

The tasks tested were: 
Rotation Around the Optical Axis 
Translation Along the Optical Axis 
Rotation Around an Axis Coplanar with the 
Target Plane 
Translation Along an Axis Parallel to the 
Target Plane 
Generic Motions 
 
Metrics Evaluated 

The metrics used to evaluate the 
performance of the visual servoing methods 
studied were: 
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Final Pixel Error, which indicates whether 
the algorithm had success in reaching its 
goal. Any value under 1 pixel is equally 
considered successful. 
Number of Iterations until the algorithm 
being halted, as have had success or not. 
Maximum Camera Distance from the 
desired position during the execution of the 
algorithm. 
Maximum Feature Point Excursion, which 
consists in the maximum distance of all the 
point tracked to the center of the image 
during the algorithm execution. The value of 
this feature in the desired position is 56 
pixels.  
Simulation Time of the algorithm. 
 
Results 

Rotation Around the Optical Axis 

 
Figure 2 – Trajectory of the points in the image 
plane. P0=[0,0,1,0,0,90], η =0. 
 
Final Pixels Error 

 
Figure 3 – Rotation around the optical axis – 
final pixels error. 

Number of Iterations 

 
Figure 4 – Rotation around the optical axis –  
number of iterations. 
Maximum Camera Distance from the 

Desired Position 

 
Figure 5 – Rotation around the optical axis –  
maximum camera distance from the desired 
position. 
 
Maximum Feature Point Excursion 

 
Figure 6 – Rotation around the optical axis –  
maximum feature point excursion. 
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Discussion 

In this test was evaluated the performance of 
the visual servoing techniques in a pure 
rotation of the camera around its optical 
axis. It is possible to observe that IBVS 
could not reach always its goal. In IBVS the 
system tries that, the points tracked move in 
the screen along one straight line, from the 
initial position to the desired one, see Figure 
2. For that, the camera needs to retreat. For a 
rotation of 180º, the camera theoretically 
needs to retreat until infinite becoming the 
system unstable. For the other four methods 
the motion in the Cartesian space is almost 
null and for PBVS it is exactly zero. Beyond 
IBVS, the methods performed correctly. In 
these cases, there is some dependence of the 
final pixel error with the increase of the 
noise. 
In the maximum feature point excursion, the 
2.5D, CH and SP have not presented 
dependency with the level of the rotation. 
This happens because it was tracked a point 
which lies in the center of the image. PBVS 
had the same behavior but in this case, the 
results are independent of where the points 
tracked lie. The number of iterations was 
almost the same for all methods. It had an 
important dependence with the initial 
camera inclination, and just a little with the 
increase of the noise. 

Translation Along the Optical Axis 

 
Figure 7 – Trajectory of the points in the image 
plane.  P0=[0,0,0.5,0,0,0] , η =0. 
 

Final Pixels Error 

 
Figure 8 – Translation along the optical axis –  
final pixels error. 
 
Number of iterations 

 
Figure 9 – Translation along the optical axis –  
number of iterations 
 
Discussion 

In this test was evaluated the performance of 
the visual servoing techniques for different 
initial camera positioning along its optical 
axis. All methods could put the final error 
under one pixel when without noise, 
although these values grow linearly with the 
increase of the image noise. With exception 
of the CH, all methods had a symmetric 
performance along the translations axis, in 
the final pixels error. In CH, the final error 
values are higher when, in the presence of 
the noise, the camera starts the movement 
farther away from the target; when the 
camera starts its displacement at 0.5 meters 
from the target (the closest position), the 
final error, with the maximum noise, is 
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around 1.5 pixels, performing in this case, 
even better than the other four methods. 
About the number of iterations all graphics 
present just a little increase of the number of 
iterations with the increase of the image 
noise.   

Rotation Around an Axis Coplanar with the 

Target Plane 

 
Figure 10 – Trajectory of the points in the image 
plane.  P0=[0,0,1,70,0,0]. , η =0. 
 
Final Pixels Error 

 
Figure 11 – Rotation around an axis coplanar 
with the target plane –  final pixels error. 
 

Maximum Feature Point Excursion 

 
Figure 12 – Rotation around an axis coplanar 
with the target plane – maximum feature point 
excursion.  
 
Discussion 

As can be seen in Figure 10, for high initial 
camera angles, the features can become 
much skewed, so this is a hard test for the 
visual servoing techniques.   
IBVS, 2.5D and SP despite of growing the 
final pixels error with the increase of the 
image noise, could perform correctly in this 
test. The 2.5D was the best of these, once it 
was the fastest in number of iterations and 
had the smallest final error. 
In PBVS the final pixels error increased also 
with the increase of noise. However, in this 
test, it was necessary using a higher value of 
the gain, 5xλ , to avoid that the system 
stayed blocked in local minimums. The 
value of λ  for this test was too small in 
comparison of the stop criterion. 
The maximum feature point excursion in 
2.5D, IBVS and SP grows with the increase 
of the noise from 56, until around 59 pixels. 
In PBVS the values grow as a parable, with 
the levels of the initial camera inclination 
and nothing with the noise. The CH had a 
performance similar with PBVS but, much 
more non-linear. CH only had good results 
for small levels of initial camera inclination, 
until around 20º, performing in this case 
well, even in the presence of image noise. 
After that level of initial inclination, it gets 
easily stopped in local minimums and has a 
high final error and maximum feature point 
excursion.  
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Translation Along an Axis Parallel to the Target 

Plane 

 
Figure 13 – Trajectory of the points in the image 
plane.  P0=[0.2,0,1,0,0,0] , η =0.. 
 
Final Pixels Error 

 
Figure 14 – Translation along an axis parallel to 
the target plane - final pixels error. 
 
Discussion 

For this test, all methods performed 
correctly. Figure 14 show that the final 
pixels error, in presence of noise, is a little 
higher in PBVS.  

Generic Motions 

For a final evaluation, it was performed tests 
in which the camera position moves along 
several dimensions at the same time. These 
were the most challenging tests made. In 
these tests, the initial position of camera was 
set in the following positions: 
1 - P0 = [0.2, 0.2, 1.5, 0, 0, 0], η = 1  
In this test the camera needs to make a 
translation along the xx, yy and zz axis from 

the initial to the desired position. No rotation 
is required.  
2 - P0 = [0.2, 0, 1.5, 0, 0, 180], η = 1 
This test, beyond the translation (the same as 
in Test 1) requires a rotation of 180º around 
the camera’s optical axis.  
3 - P0 = [0, 0, 1.5, 30, 0, 90], η = 1 
This test involves a translation and rotation 
along the optical axis of the camera, and a 
rotation around an axis coplanar with the 
target plane.  
4 - P0 = [0, 0, 1.5, 60, 0, 90], η = 1  
In this test, it is evaluated the same as in the 
previous one, but with a higher level of 
inclination around the axis coplanar with the 
target plane.  

 
Figure 15 – Trajectory of the points in the image 
plane. P0=[0,0,1.5,60,0,90] , η = 1. 
 
Discussion 

The CH method had a very good 
performance when the camera is almost 
perpendicular with the target plane. When 
the camera starts the motion, with its 
orientation far to be perpendicular with 
target plane, the method performs badly. 
This happens because the CH method uses 
the area of the target as a feature and this 
becomes much skewed with the inclination 
of the camera in relation of the target plane.  
In PBVS was possible to see that, it is the 
one that has the highest maximum feature 
excursion. In the last test, one of the points 
left the camera’s field of view. This occurs 
because in this method, there is not any 
control over the image plane features. In 
general PBVS took more iterations than the 
other methods to reach the goal.  
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In IBVS it was possible to observe that the 
problem of Chaumette Conundrum happens 
for rotation around the optical axis of the 
camera, independently of the translation that 
it needs to do.  
The 2.5D and the SP were the only methods 
that had always acceptable results in all tests 
effectuated. The SP was always the fastest 
method in execution time and after it, the 
second was the CH.  
 

Conclusions - V 
 
After the conclusion of this work, it is 
possible better understanding the behavior 
of the visual servoing methods studied. 
The ViSP proved to be a very useful, 
flexible and user-friendly tool.  
The image based visual servoing had 
problems with rotations around the optical 
axis; the system becomes completely 
unstable for levels of rotation above 160º, 
and under 200º, and this behavior is 
independent of the translation that the 
camera needs to do.  In the presence of 
noise, the IBVS was which performed best, 
minor final error, which was expected due to 
this method does not use the homography 
matrix to compute the control law. 
The Corke & Hutchinson method performed 
correctly for the specific task for which it 
was designed, rotation around the optical 
axis. It performed also perfectly for 
translation through the optical axis. 
However, for generic motions, which 
involve rotation around axis coplanar with 
the target plane, it performs poorly. When 
the camera is almost perpendicular with the 
target plane it works very well, even in the 
presence of the noise. However when the 
camera starts its displacement in an initial 
position closer to be coplanar with the target 
plane, it can not reaches its goal. In this 
sense, this seems to be a weak method to be 
used in a generic application. 
The position based visual servoing had also 
a good behavior, although for generic 
motions, with large rotations, it could be 
seen that the points tracked can leave the 
camera’s field of view. This happens 

because in this technique, there is not any 
control over the image plane features 
The 2.5D visual servoing performed 
correctly in all tests and it was the most 
versatile method. The shortest path visual 
servoing worked also correctly in all tests, 
and had behavior similar to 2.5D. 
 In matter of execution time, the shortest 
path visual servoing was always the fastest 
method followed by the Corke & 
Hutchinson visual servoing.  
 

Future Work - VI 
 
To go further in the evaluation of visual 
servoing techniques, other kind of 
conditions that can affect the performance of 
the system can be evaluated. These include 
for example, errors in the camera 
calibration, errors in the robot kinematics 
and different kinds of depth estimation. 
In order to get a better knowledge about the 
methods evaluated, a next step could be for 
example implementing, and testing them in 
a real system.  
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