
 1

Evaluation of Visual Servoing Techniques
for Robotic Applications

Santos, Ricardo

Departamento de Engenharia Electrotécnica e de Computadores
Universidade Técnica de Lisboa

Instituto Superior Técnico
Av. Rovisco Pais 1049-001 Lisboa Portugal

rmcdss@ist.utl.pt

Abstract – Control systems based on visual
data input, termed visual servoing systems,
are one of the most promising fields of
research to develop a system as much
autonomous as is possible.
In the last years, several methods have been
proposed in this area, with their strengths
and weaknesses. To clarify it, it is necessary
to evaluate and compare them. In this thesis
some visual servoing techniques are
evaluated with the goal to clarify in which
situations each one of them is a good option
to solve a specific task. The methods
evaluated are: position based visual
servoing, image based visual servoing, 2.5D
visual servoing, decoupled visual servoing
and shortest path visual servoing.

Introduction – I

In the last decades have been increased the
research in robotics. The challenge is
developing an autonomous system that can
act in one unknown environment. To build a
system like that, the first concern should be
trying to get as much information as
possible from the world. The sensor that best
adapts to this requirement is the vision. The
video camera has the advantages of
providing a high accuracy to robotic system
and allowing a bigger flexibility to the
applicability of the data input. The video
camera also gives the possibility to extract
different kinds of information from the same
sensor.
Visual servoing is the name given to the
control techniques that use image data as
input. It is a very large field of research and
to build a system like that it is necessary to
join knowledge from many areas of
research: robot modeling, control theory,
computer vision and others, [1].

The two most common branches of
application for visual servoing are:
positioning of a robot in a desired position
(typically with the goal of grasping some
object) and following targets in movement.
Our work considers the first one.
Recently, several new visual servoing
methods have been proposed trying to build
control systems based on vision as good as
possible. These methods are normally
presented together with some
experimentation to evaluate its performance.
However, in many cases, these tests are not
very exhaustive.
It is useful to have a global evaluation of the
performance of several visual servoing
techniques. This kind of work was done by
Gans, [2], however, more tests can be done,
other features can be measured and other
visual servoing methods can be evaluated.
In this paper, different visual servoing
approaches are explored and their
performances evaluated. The goal is
measuring the influence of the image noise
in the performance of those visual servoing
techniques.
The visual servoing techniques analyzed are:
position based visual servoing, [1], image
based visual servoing, [1], 2.5D visual
servoing, [3], Corke & Hutchinson visual
servoing, [4], and shortest path visual
servoing, [5].
In this paper first is given, in Section II, a
background about the work developed. In
Section III are described the visual servoing
techniques analyzed. In Section IV are
exposed the results obtained. Finally in
Sections V and Section VI are discussed the
main conclusions of the work done and
suggestions to develop in the future.

 2

Background – II

The typical structure of a visual servoing
control scheme is exposed in Figure 1.

Figure 1 – Control scheme of a visual servoing
system; eye – in hand approach.

The goal of a visual servoing system is to
move a robot from one initial to one desired
position, and keep it there using always a
close-loop control scheme. In the beginning
of the process, is provided to the system one
image of the target with the camera in the
desired position. Then, in the starting
position, the camera obtains an image of the
target. From that image, the necessary
features, f, are extracted and compared with
the desired ones extracted from the desired
image, fd; the error obtained from the
difference between the desired and the
current image features is used to compute
the control law. The control signal is sent to
the joints and a new image, with the camera
in the new position, is taken. This is done
until could be possible reducing to zero the
error between the image features in the
current and in the desired position. The
features extracted can be for example:
points, lines, ellipses, differences in the
texture.
The visual servoing control law structure is
almost the same for all the methods,
changing basically the features used for
tracking and the quantity of object a priori
knowledge used. The definitions presented
now are generic for all the methods.
The feature vector, s , is defined by the list
of features, extracted directly or indirectly
from the image, used in the control law and
the features error, or task vector, e , is the
difference between the current features
vector and the desired features vector.

*
desiredcurrent sse −= (1)

For an static target it is obtained the equality
currentse && = .

To ensure the zeroing of the features errors
in the task space, it is imposed a restriction
in the control law defined by the following
first order equation

ee ⋅−= λ& (2)
In visual servoing is necessary to make a
transformation between the Cartesian space
and the feature space. This is done by the
image Jacobian, J , which relates both
dimensions

q
eJ q ∂
∂

= (3)

The vector []61xq represents the position of
the joints and q∂ their velocities.
Inverting the relation

vJse ⋅== && (4)
it is possible to obtain the control law

()*ssJv current −⋅⋅−=
+λ (5)

The difference between (3) and (4) is that
the first is expressed in the joint space,
()qJq, , and the second in the Cartesian
space, ()Jv, . The velocity of the camera is
defined as:
 []zyxzyx vvvv ωωω= (6)
Typically J is a not square matrix, so in (5),
it is necessary to use the pseudo-inverse
of J .

An important tool in visual servoing is the
homography matrix. This matrix makes the
transformation between two image plane
(two images). It can be estimated if is
known the relation of four points in both
images (for a planar target). From this
matrix it is possible estimating the
displacement of the camera between two
images [6], which very useful in several
visual servoing techniques.

Evaluated Methods – III

Position Based Visual Servoing

In position based visual servoing (PBVS),
the features are extracted indirectly from the

 3

image; it is also called 3D visual servoing.
From the data in the 2D image plane it is
built a 3D model of the target. The image is
used to localize the object in the world.
In PBVS, the feature vector is defined as

⎥
⎦

⎤
⎢
⎣

⎡
=

13*

*

xc
c

c
c

u
t

s
θ

 (7)

*c
ct and 13* xc

cu θ represent the translation
and the rotation from the initial to the
desired position; in this last feature, *c

cu are
the rotation axis and 13xθ are the rotation
angles. These features can be obtained from
the transformation coordinates from the
current camera’s position to the desired, *c

cT .
That is obtained from the composition of the
transformation coordinates from the current
position to the target with the desired
position to it

⎥
⎦

⎤
⎢
⎣

⎡
==

10
**

**
c

c
c

c

c
o

o
c

c
c tR

TTT (8)

As the velocity vector and the features
vector are both defined in the Cartesian
space, the position based Jacobian can be
denied as a simple identity matrix:

⎥
⎦

⎤
⎢
⎣

⎡
=

33

33
3 0

0
I

I
J D (9)

And the correspondent control law is
sJv D &⋅⋅−= −1

3λ (10)
PBVS has some disadvantages: it is
necessary to have a thorough knowledge
about the target to build a specific model of
it. This is only possible to apply to objects
with a specific shape which also reduces the
applicability of the algorithm; other
disadvantage is that, due to the control
calculus are done in the Cartesian space, the
system requires an accuracy calibration;
another problem is that this computation, in
the Cartesian space, also requires a high
computational effort, which reduces the
applicability of the algorithm in a real time
system.
On the other hand the main advantages of
PBVS are the accuracy and robustness of its
performance.

Image Based Visual Servoing

In image based visual servoing (IBVS), the
target features are extracted directly from
the image, without any image interpretation.
This control architecture does not need to
make a 3D reconstruction of the target.
The feature vector, s , is defined as

[]Tyxs = (11)
And its error as

⎥
⎦

⎤
⎢
⎣

⎡

−
−

= *

*

yy
xx

s& (12)

The relation between the features error and
the velocity to send to the robot is

sJv D &⋅⋅−= +
2λ (13)

And the image base Jacobian, for a unite
camera’s focal length is defined as

()
()

⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅+−−

−+⋅−−
=

xyxy
Z
y

Z

yxyx
Z
x

ZJ
2

2

110

101
 (14)

The variables x and y are the metric
coordinates of one point in the image and Z
the depth of that point.
The Jacobian presented in (14) has the
dimension of [2 x 6]. This is the Jacobian
size to track one single point. For n points,
the Jacobian dimension would be [n 2 x 6].
One problem of IBVS is that only the local
convergence can be ensured. Another
problem is the difficulty of this method in
managing rotations around the optical axis.
To compute the control law for image based
visual servoing, it is necessary to track at
least three non-collinear points.

2 ½ D Visual Servoing

The 2.5D visual servoing (2.5D) was
presented by Malis, [3], in 1999 and was
developed with the goal of joining the best
skills of the two main visual servoing
approaches (IBVS and PBVS).
This hybrid method does not need any 3D
model of the object and ensures the
convergence of the control law in the whole
task space.
In the 2.5D, the task vector is defined

 4

as [] ⎟
⎠
⎞

⎜
⎝
⎛= 13**16),log(,, xc

c
x u

Z
Zyxe θ .

In which, x and y are the metric
coordinates of a point, Z is the current
distance of the camera to that point and 13xu
and 13xθ are the axis of the rotation and the
angles that the camera needs to rotate.
The 2.5D visual servoing Jacobian is
defined as

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡ ⋅=
3

),(*
5,2

0

1

I

LL
dJ wvv

D (15)

with

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
⋅=

100
10

01
1 y

x
Lv ρ

 (16)

()
()

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−+

+−
=

0
1

1
2

2

,

xy
xxyy

yyxy
L wv (17)

In which *d is the distance of the camera to
the target in the desired position and ρ is
defined by the ration */ dZ .
Then, the control law is:

eJv D ⋅⋅−= −1
5.2λ (18)

Corke & Hutchinson Visual Servoing

The Corke and Hutchinson visual servoing
(CH), [4], was developed to address some of
the IBVS problems, mainly the camera
retreat problem, which occurs for pure
rotations around the camera’s optical axis.
The CH method has the drawback that its
performance depends of the relative position
of the features in the image.
The error vector is defined as in IBVS

⎥
⎦

⎤
⎢
⎣

⎡

−
−

=⎥
⎦

⎤
⎢
⎣

⎡
= *

*

yy
xx

y
x

e
&

&
 (19)

In this method, only one point is tracked,
and (x , y) are their image plane
coordinates.
In CH method the translation, zv , and the
rotation, zω , velocities along/around z-axis
are computed decoupled from the other

velocities and are extracted from the next
features:
Theta Feature, θ - drive the camera
inclination around the optical axis.. The
theta feature is the angle between the
horizontal pixel axis and a straight line built
from two points in the image..
Sigma Feature,σ – control the movement
thought the z-axis. It consists in the square
root of the area of a polygon made from the
image points.
The translational and rotational velocities
along/around the optical axis are given by:

()
()ijijz

Tz

z

zv
θθλ
σσλ

ω ω −
−

=⎥
⎦

⎤
⎢
⎣

⎡
*

*

 (20)

Tzλ and zωλ are gain factors to adapt the
speed of conversion along the associated
directions. Then, the others velocities
([]yxyxxy vvv ωω= ,) can be obtained
using the expression:

[]
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
+⎥

⎦

⎤
⎢
⎣

⎡
−= +

θ
σ
&
&

&

&

x
Z
y

y
Z
x

y
x

Jv
xxyxy 24

(21)

with

()
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⋅−+−

+−⋅−
=

yxy
Z

xyx
ZJ xy

2

2

110

101

(22)

Shortest Path Visual Servoing

The shortest path visual servoing (SP) was
presented by Kyrki and Kragic, [5], with the
goal of addressing two typical problems in
the visual servoing: the possibility of the
target leaving the camera’s field of view and
the risk of the joints working too close to
their limits. This method was developed in
order to the camera trajectory presenting one
straight line which goes from the initial to
the desired position. In the shortest path
visual servoing the position based control is
used directly to control the translation of the
camera. To control the rotation around x
and y axis is used one virtual point which
lies in the zero of the object frame; this point

 5

helps the control scheme to keep the target
in the image. The rotation over the optical
axis is controlled using the θ*cz

cu , as in
2.5D visual servoing, which should be
driven to zero.
The task vector is
 [] ()Tcz

c
c

c
c

c
c

c
x uyxZYXe θ****16 ,,,,,= .

The transformation from the initial position
to the desired can be obtain, as in PBVS,

⎥
⎦

⎤
⎢
⎣

⎡
==

10
**

**
c

c
c

c

c
o

o
c

c
c tR

TTT (23)

Due to the simple mathematical definition
that SPJ has, it is possible to define directly
its inverse, 1−

SPJ , which facilitate its
implementation.

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⋅+
−

⋅
⋅

⋅
+

−

+⋅
−−

⋅
⋅

⋅
⋅

−=−

100000

000100
000010
000001

2222

22221

Z
Y

P
YX

P
ZY

P
X

PZ
YX

PZ
ZY

Z
X

P
ZX

P
YX

P
Y

PZ
ZX

PZ
YXJ SP

(24)

With () ()To
c

o
c

o
cT ZYXZYX ,,,, = and

2

222

Z
ZYXP ++

= .

Attending in SPJ matrix, its determinant is

2

222

Z
ZYXZ ++

= , which it is never zero,

except when the camera is on the zero of the
object frame, which it is not possible. This
ensures global convergence of the method.

Simulation Results - IV

Simulation Methodology

The simulations were performed in VISP
(VIsual Servoing Platform). The VISP, [7], is a
C++ library that has been developed in the last
years, with the goal of integrating as much visual
servoing tools as is possible and allowing a fast
implementation of it in any specific robot, with
little work.
It was simulated a robotic arm with six
degrees of freedom using the eye-in-hand
approach.The desired camera position was
set as being located one meter far from the
target, oriented to it, and without any
inclination: P* = [0, 0, 1, 0, 0, 0]. The first

three values of P* correspond to the pose of
the camera and the last three to its
orientation.
To make the performance comparison
between the visual servoing techniques
under analysis, it was defined one target
consisting in five points; four building a
square centered in the target frame and one
fifth in its center.
The simulations measuring the influence of
the image noise, η , in the performance of
the visual servoing techniques for different
initial camera configurations. For that, it was
added random noise, with variance ranging
between 0 and 1 pixel. The desired image, it
was assumed as got it in perfect conditions
and any noise was introduced on it.
In the simulations, the system reaches the
goal when the average pixels error is less
than 1 pixel; The system is halted as not
succeeded whether the camera had displaced
more than 11 meters from the target along
the z direction, or more than 2 along the x
or y direction, whether had spent more than
200 iterations, or whether the average pixels
error change less the 0.05 pixels after 5
consecutive iterations. To ensure that the
camera does not collide with the target, it is
also required that the camera does not get
closer than 0,2 meters from it. To obtain
smoother results, less influenced by outliers,
each test was executed 50 times and it was
made the average of these values.

Tasks Tested

The tasks tested were:
Rotation Around the Optical Axis
Translation Along the Optical Axis
Rotation Around an Axis Coplanar with the
Target Plane
Translation Along an Axis Parallel to the
Target Plane
Generic Motions

Metrics Evaluated

The metrics used to evaluate the
performance of the visual servoing methods
studied were:

 6

Final Pixel Error, which indicates whether
the algorithm had success in reaching its
goal. Any value under 1 pixel is equally
considered successful.
Number of Iterations until the algorithm
being halted, as have had success or not.
Maximum Camera Distance from the
desired position during the execution of the
algorithm.
Maximum Feature Point Excursion, which
consists in the maximum distance of all the
point tracked to the center of the image
during the algorithm execution. The value of
this feature in the desired position is 56
pixels.
Simulation Time of the algorithm.

Results

Rotation Around the Optical Axis

Figure 2 – Trajectory of the points in the image
plane. P0=[0,0,1,0,0,90], η =0.

Final Pixels Error

Figure 3 – Rotation around the optical axis –
final pixels error.

Number of Iterations

Figure 4 – Rotation around the optical axis –
number of iterations.
Maximum Camera Distance from the

Desired Position

Figure 5 – Rotation around the optical axis –
maximum camera distance from the desired
position.

Maximum Feature Point Excursion

Figure 6 – Rotation around the optical axis –
maximum feature point excursion.

 7

Discussion

In this test was evaluated the performance of
the visual servoing techniques in a pure
rotation of the camera around its optical
axis. It is possible to observe that IBVS
could not reach always its goal. In IBVS the
system tries that, the points tracked move in
the screen along one straight line, from the
initial position to the desired one, see Figure
2. For that, the camera needs to retreat. For a
rotation of 180º, the camera theoretically
needs to retreat until infinite becoming the
system unstable. For the other four methods
the motion in the Cartesian space is almost
null and for PBVS it is exactly zero. Beyond
IBVS, the methods performed correctly. In
these cases, there is some dependence of the
final pixel error with the increase of the
noise.
In the maximum feature point excursion, the
2.5D, CH and SP have not presented
dependency with the level of the rotation.
This happens because it was tracked a point
which lies in the center of the image. PBVS
had the same behavior but in this case, the
results are independent of where the points
tracked lie. The number of iterations was
almost the same for all methods. It had an
important dependence with the initial
camera inclination, and just a little with the
increase of the noise.

Translation Along the Optical Axis

Figure 7 – Trajectory of the points in the image
plane. P0=[0,0,0.5,0,0,0] , η =0.

Final Pixels Error

Figure 8 – Translation along the optical axis –
final pixels error.

Number of iterations

Figure 9 – Translation along the optical axis –
number of iterations

Discussion

In this test was evaluated the performance of
the visual servoing techniques for different
initial camera positioning along its optical
axis. All methods could put the final error
under one pixel when without noise,
although these values grow linearly with the
increase of the image noise. With exception
of the CH, all methods had a symmetric
performance along the translations axis, in
the final pixels error. In CH, the final error
values are higher when, in the presence of
the noise, the camera starts the movement
farther away from the target; when the
camera starts its displacement at 0.5 meters
from the target (the closest position), the
final error, with the maximum noise, is

 8

around 1.5 pixels, performing in this case,
even better than the other four methods.
About the number of iterations all graphics
present just a little increase of the number of
iterations with the increase of the image
noise.

Rotation Around an Axis Coplanar with the

Target Plane

Figure 10 – Trajectory of the points in the image
plane. P0=[0,0,1,70,0,0]. , η =0.

Final Pixels Error

Figure 11 – Rotation around an axis coplanar
with the target plane – final pixels error.

Maximum Feature Point Excursion

Figure 12 – Rotation around an axis coplanar
with the target plane – maximum feature point
excursion.

Discussion

As can be seen in Figure 10, for high initial
camera angles, the features can become
much skewed, so this is a hard test for the
visual servoing techniques.
IBVS, 2.5D and SP despite of growing the
final pixels error with the increase of the
image noise, could perform correctly in this
test. The 2.5D was the best of these, once it
was the fastest in number of iterations and
had the smallest final error.
In PBVS the final pixels error increased also
with the increase of noise. However, in this
test, it was necessary using a higher value of
the gain, 5xλ , to avoid that the system
stayed blocked in local minimums. The
value of λ for this test was too small in
comparison of the stop criterion.
The maximum feature point excursion in
2.5D, IBVS and SP grows with the increase
of the noise from 56, until around 59 pixels.
In PBVS the values grow as a parable, with
the levels of the initial camera inclination
and nothing with the noise. The CH had a
performance similar with PBVS but, much
more non-linear. CH only had good results
for small levels of initial camera inclination,
until around 20º, performing in this case
well, even in the presence of image noise.
After that level of initial inclination, it gets
easily stopped in local minimums and has a
high final error and maximum feature point
excursion.

 9

Translation Along an Axis Parallel to the Target

Plane

Figure 13 – Trajectory of the points in the image
plane. P0=[0.2,0,1,0,0,0] , η =0..

Final Pixels Error

Figure 14 – Translation along an axis parallel to
the target plane - final pixels error.

Discussion

For this test, all methods performed
correctly. Figure 14 show that the final
pixels error, in presence of noise, is a little
higher in PBVS.

Generic Motions

For a final evaluation, it was performed tests
in which the camera position moves along
several dimensions at the same time. These
were the most challenging tests made. In
these tests, the initial position of camera was
set in the following positions:
1 - P0 = [0.2, 0.2, 1.5, 0, 0, 0], η = 1
In this test the camera needs to make a
translation along the xx, yy and zz axis from

the initial to the desired position. No rotation
is required.
2 - P0 = [0.2, 0, 1.5, 0, 0, 180], η = 1
This test, beyond the translation (the same as
in Test 1) requires a rotation of 180º around
the camera’s optical axis.
3 - P0 = [0, 0, 1.5, 30, 0, 90], η = 1
This test involves a translation and rotation
along the optical axis of the camera, and a
rotation around an axis coplanar with the
target plane.
4 - P0 = [0, 0, 1.5, 60, 0, 90], η = 1
In this test, it is evaluated the same as in the
previous one, but with a higher level of
inclination around the axis coplanar with the
target plane.

Figure 15 – Trajectory of the points in the image
plane. P0=[0,0,1.5,60,0,90] , η = 1.

Discussion

The CH method had a very good
performance when the camera is almost
perpendicular with the target plane. When
the camera starts the motion, with its
orientation far to be perpendicular with
target plane, the method performs badly.
This happens because the CH method uses
the area of the target as a feature and this
becomes much skewed with the inclination
of the camera in relation of the target plane.
In PBVS was possible to see that, it is the
one that has the highest maximum feature
excursion. In the last test, one of the points
left the camera’s field of view. This occurs
because in this method, there is not any
control over the image plane features. In
general PBVS took more iterations than the
other methods to reach the goal.

 10

In IBVS it was possible to observe that the
problem of Chaumette Conundrum happens
for rotation around the optical axis of the
camera, independently of the translation that
it needs to do.
The 2.5D and the SP were the only methods
that had always acceptable results in all tests
effectuated. The SP was always the fastest
method in execution time and after it, the
second was the CH.

Conclusions - V

After the conclusion of this work, it is
possible better understanding the behavior
of the visual servoing methods studied.
The ViSP proved to be a very useful,
flexible and user-friendly tool.
The image based visual servoing had
problems with rotations around the optical
axis; the system becomes completely
unstable for levels of rotation above 160º,
and under 200º, and this behavior is
independent of the translation that the
camera needs to do. In the presence of
noise, the IBVS was which performed best,
minor final error, which was expected due to
this method does not use the homography
matrix to compute the control law.
The Corke & Hutchinson method performed
correctly for the specific task for which it
was designed, rotation around the optical
axis. It performed also perfectly for
translation through the optical axis.
However, for generic motions, which
involve rotation around axis coplanar with
the target plane, it performs poorly. When
the camera is almost perpendicular with the
target plane it works very well, even in the
presence of the noise. However when the
camera starts its displacement in an initial
position closer to be coplanar with the target
plane, it can not reaches its goal. In this
sense, this seems to be a weak method to be
used in a generic application.
The position based visual servoing had also
a good behavior, although for generic
motions, with large rotations, it could be
seen that the points tracked can leave the
camera’s field of view. This happens

because in this technique, there is not any
control over the image plane features
The 2.5D visual servoing performed
correctly in all tests and it was the most
versatile method. The shortest path visual
servoing worked also correctly in all tests,
and had behavior similar to 2.5D.
 In matter of execution time, the shortest
path visual servoing was always the fastest
method followed by the Corke &
Hutchinson visual servoing.

Future Work - VI

To go further in the evaluation of visual
servoing techniques, other kind of
conditions that can affect the performance of
the system can be evaluated. These include
for example, errors in the camera
calibration, errors in the robot kinematics
and different kinds of depth estimation.
In order to get a better knowledge about the
methods evaluated, a next step could be for
example implementing, and testing them in
a real system.

References

[1] – Hutchinson, S., Hager, G. & Corke, P., 1996, “A tutorial
on visual servo control”, IEEE Transactions on Robotics and
Automation 12(5), 651-670.
[2] – Gans, N. R., Hutchinson, S. A., & Corke, P. I., 2003,
“Performance tests for visual servo control systems, with
application to partitioned approaches to visual servo control”
Int. J. Robot. Res., vol. 22, no. 10, pp. 955–981.
[3] – Malis, E., Chaumette, F., & Boudet, S., Apr. 1999, “2-
1/2-D visual servoing”, IEEE Transactions on Robotics and
Automation, vol. 15, no. 2, pp. 238–250.
[4] – Corke, P. I. & Hutchinson S. A., Aug. 2001, “A new
partitioned approach to image-based visual servo control”
IEEE Transactions on Robotics and Automation, vol. 17, no.
4, pp. 507–515.
 [5] – Kyrki, V., Kragic, D., and Christensen, H., Oct. 2004,
“New shortest-path approaches to visual servoing” in IEEE
Int. Conf. on Intelligent Robots and Systems, Sendai, Japan,
pp. 349–355.
 [6] – Malis, E., Nov. 1998, “Contributions à la modélisation
et à la commande en asservissement visuel”, PhD thesis,
Université of Rennes I, IRISA.
[7] – Marchand, E., Spindler, F. & Chaumette, F., Dec. 2005,
“ViSP for visual servoing: a generic software platform with a
wide class of robot control skills”. IEEE Robotics and
Automation Magazine, Special Issue on "Software Packages
for Vision-Based Control of Motion", P. Oh, D. Burschka
(Eds.), 12(4):40-52.

