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Resumo

A ligação entre f́ısica e computabilidade está ainda por esclarecer. Nesta dissertação apresen-

tamos a nossa investigação sobre este tema, incluindo algumas ideas básicas em história e

filosofia da computação e novos resultados matemáticos de teorias relacionadas.

A dissertação está dividida em três partes. A primeira parte diz respeito à história

da computabilidade e à ligação entre f́ısica e computabilidade; discutiremos a natureza do

conhecimento f́ısico e as suas posśıveis ligações com a computabilidade.

A segunda parte da dissertação é um estudo em computação experimental, uma área de

investigação esculpida por Edwin Beggs e John Tucker, com o objectivo de investigar a ligação

entre f́ısica e computabilidade; iremos considerar experiências com massas pontuais num mundo

Newtoniano abstracto.

A terceira parte desenvolve a teoria das funções reais recursivas, originalmente criada para

estudar fenómenos e sistemas dinâmicos em tempo cont́ınuo de um ponto de vista computa-

cional; iremos esclarecer quase completamente os aspectos mais gerais desta teoria.





Abstract

The relationship between physics and computability is not well-understood. In this dissertation

we will expound our investigation of this relationship, by exploring some basic ideas in history

and philosophy of computation and by developing mathematical models that have arisen from

related problems.

The dissertation is divided into three parts. The first part is concerned with the history of

computability and with the relationship between computability and physics; we will discuss

the nature of physics and explore its possible connections with computability.

The second part of this dissertation is a case study in experimental computation, the con-

ceptual framework that Edwin Beggs and John Tucker proposed in order to investigate the

relationship between physics and computability; our experiments are made on an idealised

Newtonian world for scattering and collecting point particles.

The third part studies the theory of real recursive functions, originally devised to study

continuous-time phenomena and dynamical systems from a computational perspective; we will

develop the more general aspects of the theory nearly to their full extent.
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sented all the work in this thesis. I thank in particular to Mário Edmundo, António Fernandes

and Fernando Ferreira for all the patience, help and useful comments they have offered.

For more useful comments, help and encouragement, I thank Edwin Beggs, Olivier Bournez,

Carlos Caleiro, Barry Cooper, Martin Davis, Miguel Diońısio, Luis Mendes Gomes, Andrew
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Preface

The majority of the work below is the result of a rich, exciting, a year and a half long col-

laboration between myself and José Félix Costa, along with Edwin Beggs, Jerzy Mycka, and

John Tucker. The work originated five papers [Loff et al., 2007, Loff, 2007a, Loff and Costa,

2007, Costa et al., 2007, Beggs et al., 2007], one technical report [Loff, 2007b], and several

presentations and seminar lessons. Nevertheless, most of the text was written exclusively for

the dissertation — I am solely to blame for every fault.

The common link to all this work is the attempt to look at physics with a computability

mindset. We will see, however, that we are progressively lead away from physics and into the

study of mathematical structure with little physical relevance. This is emphasized by the three-

part organisation of the dissertation. In Part I we will deal with those issues which are more

directly connected to the interplay between physics, philosophy of science, and computability.

Part II is an attempt in studying a physical model from a computability point of view — but

several idealising assumptions are made. And in Part III, we study a mathematical model of

definability which has some connections, at the basis, with the differential analyser; however,

the model will have an exact correspondence with the analytical hierarchy, a highly abstract

mathematical structure.

A fair knowledge in computability and complexity is assumed, but this knowledge varies for

the different parts. In Part I, we assume some familiarity with computability, most especially

Turing machines. Part II, specifically Chapter 7, requires several specialised concepts in struc-

tural complexity, but a basic knowledge of complexity, complemented with the small appendix

in non-uniform complexity, should provide the necessary concepts. Part III is completely self-

contained, except for a few well-known theorems in relativised computability.

Each part may be read without the other two, but it is advised to have read Part I prior to

Part II, lest the later loose much of its relevance.

To anyone trying I wish them a good read.

— Bruno Loff
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Part I

A tool-set for investigating physics and computability





Introduction to Part I

There is an obvious connection between computability and physics — computation is often

used to simulate and study physical systems, and our knowledge of physics, or lack of thereof,

imposes technological bounds on what we can feasibly compute. However, there is also a more

profound relationship between physics and computability. Physics, as a discipline, aims to

uncover the rules which govern the Universe. Computability studies the rules of calculation

which may effectively be carried out, say, by human beings. However, when we say “rule” in

either case, it is not obvious if we are talking about the same thing, i.e., we have no answer to

the question:

Are the rules governing the Universe anything like the rules used in computation?

In Part I we will develop a set of thinking tools to study the relationship between computabil-

ity and physics. These tools are called the physical Church–Turing thesis and the simulation

thesis. They are both variants of the Church–Turing thesis which are appropriately modified

to become relevant for physics and the models of the universe. Our approach to this matter

is new, despite the questions involved not being so. We will begin by studying the Church–

Turing thesis itself in the first chapter, and then dedicate one chapter to each variant. For each

variant of the Church–Turing thesis we will provide a carefully chosen phrasing, explain the

meaning of this phrasing, and outline a method of investigation. The fourth chapter of Part I

provides an assortment of thoughts on computability, non-computability, and physics, as well

as motivation for Part II of this dissertation.

Accreditment. Part I arises from the authors own work and ideas, inspired by a previous

collaboration with José Félix Costa [Loff and Costa, 2007]. Our main references are Aspray

et al. [1985], Gandy [1988], Hodges [2006] and Sieg [2006].





1

The Church–Turing thesis

We will begin our discussion of the Church–Turing thesis with a short historical account.

In Section 1.2, we will provide some criteria to answer the question of what should be called

Church–Turing thesis ; we also show how the views of Church and Turing on the idea of ef-

fectiveness indicate that an adequate formulation of the Church–Turing thesis is lacking. We

suggest such a formulation in Section 1.3.

1.1 A historical overview of the Church–Turing thesis

The years from 1931 to 1936 witnessed the proposal of several mathematical definitions of

computability, all independently discovered. Robin Gandy [1988] describes the different reasons

that motivated the creation of the λ-calculus, the recursive functions, and the Turing machine.

As Gandy puts it, there was ‘something in the air’ in those years, which different people caught.

However, the motivations of those involved where not entirely the same.

The λ-calculus was invented by Alonzo Church, in the 1930s at Princeton. Stephen Kleene

and John Rosser worked under Church at that time [cf. Aspray et al., 1985]. Kleene arrived

in the fall of 1930, Rosser just a year later, and they both attended Church’s logic course in

1931. Church assigned each of them a PhD topic: Kleene was to devise a theory of arithmetic

based on Church’s set of postulates for the foundation of logic,1 which included λ-calculus, and

Rosser was to figure out the connection between λ-calculus and combinatorial logic. There was

a rich research environment in Princeton at the time, and from 1931 to 1934 the logic group

was visited by John Von Neumann, Haskell Curry, Bertrand Russel, Alfred Whitehead and, in

1934, Kurt Gödel.

Among other subjects, such as his incompleteness results, Gödel lectured on the theory of

recursive functions which he had devised in correspondence with Jaques Herbrand, prior to

Herbrand’s death in 1931. Gödel knew that a precise definition of effective calculability would

subsequently allow for a rigorous notion of formal system. This was his motivation. Church

also realised the importance of such a definition for proof theory, and thought that this formal

notion may shed new light on the Entscheidungsproblem. The people at Princeton worked,

both independently and together, to show that the set of Gödel-Herbrand recursive functions

1 In the process of their PhD work, Kleene and Rosser have shown that Church’s set of postulates was inconsistent,
i.e., that every theorem was provable.
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was exactly the set of λ-definable functions. The results they obtained suggested that the set

of λ-definable functions was far greater than previously expected, which encouraged Church to

write a letter to Kleene, near February 1934, boldly identifying the class of effectively calculable

functions with the class of λ-definable functions. This is the first written account of:

Church’s thesis

Every effectively calculable function is λ-definable.

The study of Church’s thesis should thus concentrate on the interpretation of effectively

calculable. Antony Galton [1996, 2006] provides a good example of such an inquiry. In 1936

Church published his article An unsolvable problem of elementary number theory, providing

the first solution to the Entscheidungsproblem. In the same year, Turing [1936] introduces his

machines. Turing’s main motivation was to find a negative solution for the Entscheidungsprob-

lem[Gandy, 1988], and Turing understood that for this it was necessary to precisely map out

the limits of computability.

While Turing was probably disappointed for not being the first to negatively solve the

Entscheidungsproblem, his model of computability had, in the words of Church, the advantage

of making the identification with effectiveness in the ordinary sense evident immediately. On

the other hand, and for those who were not so easily convinced, Turing provided a rigorous

analysis of the process of calculation as done by a human computor. His arguments provide a

thorough and persuasive defense of:

The human computor thesis

Every function computed by an idealised human being following a systematic procedure can be

computed by a Turing machine.

Turing’s reasoning was so convincing and insightful that Gandy [1988] calls Turing’s theorem

to the human computor thesis. It stands today as a precious heritage to Computer Science,

Mathematics, and Philosophy.

If today the study of computation is more often done from an engineering point of view, it

is important to remember that at the heart of this phenomenon lie profound issues of logic,

mathematics, cognitive sciences and philosophy. Learning the history of computability puts us

in contact with these problems, and allows us to better appreciate the elegance and beauty of

the solutions which were put forward.

1.2 Church, Turing and Gödel on the idea of effectiveness

The human computor thesis, as formulated in the previous section, is frequently called Church–

Turing thesis [e.g., in Sicard and Vélez, 1999, Copeland, 2002, Shagrir and Pitowsky, 2003,

Ben-Amram, 2005]. In this section we will attempt to answer the following questions:

(1) Why should a Church–Turing thesis exist? Why not only Church’s thesis?

(2) What form should the Church–Turing thesis have?
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(3) Is the human computor thesis a good phrasing for the Church–Turing thesis?

The term Church–Turing thesis was coined by Kleene, to name the identification of ef-

fectively calculable function with Turing machine computability. Since Turing machine com-

putability and λ-definability are provably equivalent, Kleene’s formulation of the Church–

Turing thesis is essentially Church’s thesis, and it is hard to justify having such a formulation,

except for the (non discardable) fact that it is Stephen Kleene’s formulation. On the other

hand, the existence of a Church–Turing thesis serves as a recognition of the historical impor-

tance of both Church’s thesis, an example of brave ingenuity, and Turing’s work, which made

Church’s thesis extremely credible; so we do not wish to simply discard the Church–Turing

thesis. Church’s thesis also has the additional problem that the notion of effectively calculable

is extremely vague, and has many possible different meanings. We will thus propose a formu-

lation which will narrow down the breadth of possible meanings of effectively calculable into a

notion which depends less on personal interpretation and whim, and more on the understand-

ing that the relevant historical figures had of their own thesis. These are the reasons for having

a Church–Turing thesis, and for phrasing it as we will now propose.

In most formulations, the Church–Turing and related theses follow the pattern of identifying

a more-or-less vaguely defined class of functions with the functions given by some standard

model of computability:

Every function in the vaguely defined class X

is computable according to the model Y.

In Church’s thesis, for instance, class X is the class of effectively calculable functions, and

model Y is the λ-calculus. We will call this the standard form, and will refer to the vaguely

defined class X as the proposed class.

We believe that the Church–Turing thesis should be stated in the standard form using

Turing machines as the model (Y) of computability:

Every function in the vaguely defined class X

can be computed by a Turing machine.

The Turing machine is chosen for historical and pedagogical motives. It was the first model

of computability for which representation theorem could be made, i.e., a rigorous, convincing

argument to support the appropriateness of the notion. In fact, an exposition of Turing’s model

can make it intuitively evident that computability mimics the process of systematic calculation,

and Turing’s rigorous argument can confirm this intuition to near certainty. This will lead to

an easier and more meaningful introduction to computability and to the Church–Turing thesis.

In the author’s conviction, the proposed class (class X) should be our best historical ap-

proximation of:

• Church’s concept of effectively calculable function, and

• Turing’s concept of function which would naturally be regarded as computable.

These are the terms that Church and Turing used to name their intuitive notion of computable.

The challenge is to find out what Church and Turing actually thought when they used these



8 1 The Church–Turing thesis

terms, and use the result of this research in the formulation of the Church–Turing thesis. With

this discussion we have answered question (2). So we come to the third question, which can

now be reformulated as:

(3b) Is the concept of function computed by an idealised human being following a systematic

procedure a good historical approximation of Church and Turing’s intuitive notion of

computable function?

As may be expected, this is a difficult question: neither Church nor Turing seem to have given

an explicit answer. It is fortunate that Andrew Hodges, Turing’s biographer, has considered

this very question in his [2006] article. He arguments that there is historical evidence to believe

that neither Church nor Turing made a sharp distinction between a function which may be

systematically computed by a human, and a function which may be computed by an arbitrary

finite mechanism. Hodges begins by noting Church’s review of Turing’s [1936], where Church

writes:

[Turing] proposes as a criterion that an infinite sequence of digits 0 and 1 be “com-

putable” that it shall be possible to devise a computing machine, occupying a finite space

and with working parts of finite size, which will write down the sequence to any desired

number of terms if allowed to run for a sufficiently long time. As a matter of conve-

nience, certain further restrictions are imposed in the character of the machine, but these

are of such a nature as obviously to cause no loss of generality — in particular, a human

calculator, provided with pencil and paper and explicit instructions, can be regarded as

a kind of Turing machine.

At a first glance Church’s review seems bizarre: Turing makes no mention of occupied space,

or of the size of any parts. Turing’s argument in defense of his computing machine model clearly

refers to human computors, who write certain symbols on paper, and who have states of mind.

Church attributes to Turing an analysis of computability by finite machines, and the fact that

Turing refers only to human computors is described as a restriction imposed in the character

of the machine which causes, to Church, no loss of generality. Hodges also makes note of his

review of Emil Post’s article, where Church writes:

To define effectiveness as computability by an arbitrary machine, subject to restric-

tions of finiteness, would seem an adequate representation of the ordinary notion [...].

Again we see effectiveness as finite mechanism, rather than human calculation. This pro-

vides evidence that effective computability was something that Alonzo Church identified with

computability by a mechanism which is subject to restrictions of finiteness. Unfortunately, we

do not appear to have such strong confirmation in Turing’s case. However, Hodges [2006] gives

us the following clues:

If Turing had regarded it [Church’s perspective on the work of Turing] as seriously

misrepresenting his ideas, he would not have been deterred from saying so by Church’s

seniority. He was shy socially but very confident of his own judgment in all sorts of
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matters. [...] But he recorded no dissent. If Turing had wished politely and properly

to distance himself from Church’s version of his definition, and re-assert his own, he

had the opportunity in his 1938 doctoral thesis [...]. Yet in [the later published version

of his thesis], when giving his own statement of the Church–Turing thesis, he simply

characterized a computable function as one whose values can be found ‘by some purely

mechanical process’, saying that this may be interpreted as ‘one which could be carried

out by a machine.’

On this basis, and if we wish to formulate the Church–Turing thesis as we have proposed,

then we must conclude that the human computor thesis is not an appropriate phrasing. The

next section will be dedicated to finding such a phrasing, and to develop on its meaning.

As a concluding remark, it is interesting to note that Gödel also described Turing’s work as

an analysis of finite mechanisms [Sieg, 2006]. Here is a quotation from an unpublished essay

(Collected Works III, p. 168):

[Turing] has shown that the computable functions defined [via the equational calculus]

are exactly those for which you can construct a machine with a finite number of parts

which will do the following thing. If you write down any number n1, . . . , nr on a slip of

paper and put the slip of paper into the machine and turn the crank, then after a finite

number of turns the machine will stop and the value of the function for the argument

n1, . . . , nr will be printed on the paper.

1.3 Proposal for a final phrasing

In this section we will propose a specific formulation for the Church–Turing thesis, based on the

criteria which were developed in the previous section. The formulation will then be explained

at length, with several examples, so that the meaning becomes clearer. The proposed phrasing

is the following:

The Church–Turing thesis

Every function computed by a finite mechanism

can be computed by a Turing machine.

The thesis is in the standard form, and the chosen model of computability is the Turing

machine, for the reasons presented in the previous section. The presented class is the class of

functions which are computed by some finite mechanism. We must develop two ideas. First,

what is a finite mechanism, and second, what it means for a function to be computed by a

finite mechanism. Gandy [1980] studies this question in depth: he provides a sensibly intuitive

formalisation of the notion of computing mechanism, and shows that any device which obeys

certain formal axioms (which he calls principles for mechanisms) can be simulated by a Turing

machine. With this effort, Gandy separates the Church–Turing thesis into (1) a theorem as-

serting that any device obeying certain principles can compute no more than a Turing machine
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and (2) a thesis stating that every mechanism obeys the mentioned principles. This effort in

formalisation will not be repeated here, for reasons which will be made clear in Section 4.2.

Instead of offering a possibly controversial precise formalisation of finite mechanism, we will

attempt to give a consensual, broad idea of what a finite mechanism should and should not

be.2

The notion of mechanism should be understood in two senses: either a device composed of

parts, or a process by which something takes place. We demand that a finite mechanism follows

two principles: a principle of finiteness and a principle of self-containment.

A mechanism adheres to the principle of finiteness if (A) it produces the desired result

in a finite number of steps, and (B) its entire behaviour can be specified by a finite descrip-

tion. This is a very broad principle, but it does come across as both permissive enough to

include the necessary cases, like Turing machines, and strict enough to exclude uninteresting

counter-examples, such as infinite circuits, or infinite time Turing machines. The nature of

the “description” which specifies the behaviour of the mechanism is left intentionally vague,

as it is difficult to give a satisfactory notion of specification without making use of a good

definition of computability, which would, for the Church–Turing thesis, result in a vicious cir-

cle (cf. Section 5.3 and Galton [1996]). It is nevertheless important to observe that it is the

behaviour of the mechanism which must be described, and not its functioning. Specifying the

behaviour of a mechanism implies that we can always infer how the mechanism will react, in a

given specific situation, from observing the specification. The difference can be illustrated by

noticing that while we can describe the functioning of a Turing machine with any oracle (the

machine queries the oracle, and then goes to one of two special states), we can not necessarily

describe its behaviour (to which state the machine will actually go).

A mechanism follows the principle of self-containment if it acts with no insight and accesses

no external entity during its functioning. This principle spares the Church–Turing thesis of

more uninteresting counter-examples, such as the Turing machine with an oracle. Without

this principle, one could have devices which, in spite of having a finitely describable behaviour,

would make use of an external entity which might not have such a restriction.

We may also describe two principles which should be adhered by any process intended to

compute a function: the input-output principle and the principle of repeatability.

The input-output principle gives us the basic setting of what it means to compute a function

f . This principle demands that (A) there must be a way of introducing an input n and starting

the computation, (B) a way of extracting an output m after the computation is completed,

and (C) one can be certain, with an arbitrarily low probability of error, that m = f(n).3 We

may give a trivial process which respects the input-output principle: we write a number in a

2 Let it be noted that Gandy [1980] calls thesis M to the thesis identifying mechanism computability with Turing
computability, and would probably criticise our formulation of the Church–Turing thesis. His reasons for doing so are
outlined in [Hodges, 2006]. Our formulation is the most appropriate only if we accept the criteria established in the
previous section.

3 Note that when f is undefined for n, the computation may never be completed. Note also that this principle makes
no mention as to how we can be certain that m = f(n), i.e., how we verify the correctness of the computation.
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sheet of paper, and put it in the box; then we remove the sheet from the box, and read the

number. This amusing process may be seen as the computation of the identity function.

The principle of repeatability is our way of ensuring that not every accidental spewing of

numbers can be called computation. This principle imposes that (A) the mechanism which

carries out the computation can, in practice or in principle, carry it out an unlimited num-

ber of times with the same input-output behaviour, and (B) if two different instances of this

mechanism are given the same input, they will produce the same output. The principle of re-

peatability effectively rules out the idea, occasionally expressed, that a (e.g. quantum) random

number generator is computing a function when it outputs a requested amount of random

data. Recycling the previous example of the sheet of paper in the box, see that we can repeat

the process on the same box as often as we like, and still be computing the identity function;

we also expect the same results if we use a different box.

The four principles here presented should be consensual, including for Church and Turing,

since (1) the failing of any of the principles of finiteness, self-containment, or repeatability

would result in trivial counterexamples to the Church–Turing thesis, and (2) there seems to

be no real or abstract finite self-contained mechanism, devised with the purpose of computing

a function, which does not comply with the input-output principle. These four principles are

not meant to be final, or definitive. They are only tentative guidelines which serve to find

common ground for the discussion and teaching of the Church–Turing thesis. The author

believes that the instruction of these guidelines and of the Church–Turing thesis would add

notable significance to the study of computability.
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The physical Church–Turing thesis

The first tool which we will present to investigate the relationship between computability and

physics is a variation of the Church–Turing thesis called physical Church–Turing thesis. We

will begin by proposing a formulation for this thesis, and explain its meaning. We will then

describe a rigorous methodology for investigation. A complete and extensive application of this

methodology will be shown in Part II.

2.1 Phrasing and meaning

The physical Church–Turing thesis pertains to the class of functions which may be computed,

in some way, by a physical system. We propose the following accurate formulation, in the

standard form:

The physical Church–Turing thesis

Every function computed by a finite physical system

can be computed by a Turing machine

The proposed class of functions is the class of functions computed by finite physical sys-

tems. These computations must obey the input-output and repeatability principles which were

explained in page 10. Here, a physical system is an abstract process or device described by a

specified physical theory. We do not mean physical system as those which actually exist in the

world: instead, we consider it to be a process or device which could happen or exist according

to a specified physical theory (we may attribute various levels of realism to the systems we

wish to study, cf. Section 5.3). We demand that this system follows a principle of finiteness,

which is not exactly the same as the principle of finiteness that we presented for mechanisms.

While we previously required that the behaviour of the computer could be entirely specified

by a finite description, now we are only interested that its behaviour follows from postulated

laws of a physical theory. Succinctly, we are only interested in what the system does, and not

in how the system accomplishes what it does. Finiteness will be demanded in a very broad

sense, meaning that each computation of the system must be performed in finite time (for the

interested observer, and only for the values at which the function to be computed is defined),

using only finite energy, occupying finite volume, etc. Without these restrictions, it would be

easy to find systems computing more than a Turing machine.
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The physical Church–Turing thesis can not be studied without the assumption that there

is a real world, and the statement of the physical Church–Turing thesis is pertinent to the real

world. The physical Church–Turing thesis does not state that every physical system described

by every physical theory can not compute more than the Turing machine (we will see that this

is not true in Part II). Instead, the physical Church–Turing thesis asserts that if a physical

theory correctly explains what happens in reality, then — and only then — every function

calculated by the systems described in the theory is computable. In this sense the physical

Church–Turing thesis can be used as an argument in favour or against certain phenomena

in physical theories [see, e.g., Nielsen, 1997]. Such an argument will be attempted in Part II,

Section 8.3.

2.2 Methodology

We wish to investigate the physical Church–Turing thesis in order to better understand the

physical relevance of the concept of computability. This study may be done on several levels

of detail, and in several ways. We will below describe a methodology to research the physical

Church–Turing thesis in the negative sense, i.e., by investigating candidate counter-examples.

One may proceed differently, e.g., by showing that every system described by a physical theory

can be simulated by a Turing machine [e.g. Smith, 1999]. The more general methodology of

Edwin Beggs and John Tucker, intended for the study of experimental computation, will be

presented in Section 5.1.

The method is composed of three steps. The first step is used for specification. We begin

by defining a physical theory and maybe a sub-theory, to study. Examples of such theories

are Newtonian mechanics, or Maxwell’s electromagnetism. We could restrict such theories to

sub-theories, i.e., restricted classes of problems where the laws of the more general theory still

apply. Examples of such sub-theories are, respectively, a classical theory of particle collision,

or optics. The definition of the physical theory can be made in various levels of detail: from an

ad-hoc enumeration of physical laws or desired physical properties up to, when possible, full

and precise axiomatics of the physical model.

After establishing the physical theory, we specify the physical system. Examples of physical

systems are idealised billiards, or optical processors. Again, one can vary the detail of spec-

ification of such systems, but after the specification one must clearly explain how the input

should be inserted into the system, and how the output should be extracted from the system,

according to the input-output principle. This will be harder in some cases, such as in the case

of idealised billiards, where the input may be the initial position and momentum of a ball and

the output could be the number of times that the ball hit the rails. In other cases this will be

trivial, such as in optical processors, where the design of the system already specifies how the

input and output are done.

In the second step of the investigation we explain how the system specified up to this point

serves as a candidate counter-example to the physical Church–Turing thesis. We describe how

and to what extend does the system specified in the first step compute more than the Turing
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machine. Such an analysis may be with respect only to computability, or may also involve

notions of computational complexity.

We conclude with a third step, which is the most important part of the research. After

determining the computing system and how its computing power surpasses that of a Turing

machine, we must investigate the source of non-computability, to understand why the system

computes more than a Turing machine, and what does it mean. If it was possible to point

out specific physical laws which allow for non-computability, then one should inquire if these

postulates are still believed in, or if they are outdated, and consider if these laws are an essential

part of the theory, or if one can find equally appropriate alternatives which remove the super-

Turing effect. Such an investigation of the physical Church–Turing thesis may thus be used

as a guide for physics: we will explore this idea further in Section 4.3. It is also important to

reflect on what this discovery means for computability, if the super-Turing system is similar

to known formalisms, such as infinite automata or oracle Turing machines, or if, on the other

hand, suggests new interesting constructions (e.g., the work of Balcázar et al. [1997] on neural

networks, suggesting a new hierarchy between P and P/poly).

This methodology is not meant to guide the discovery process, but proposes instead a

uniform way to present results on the subject of the physical Church–Turing thesis. This is

similar to the axiomatic method. The work which is described using the axiomatic method is

usually not discovered in the same order as it is presented: to discover mathematical theorems

one does not begin by defining the axioms and then mindlessly proving the theorems; the

process is more complicated [Rota, 2006, Thurston, 2006]. Most studies regarding the physical

Church–Turing thesis follow these steps, although the manner of presentation is often unclear

and incomplete. Above all, this methodology offers a way to organize how we think about the

results related to the physical Church–Turing thesis.
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The simulation thesis

The second important variant of the Church–Turing thesis which we will study is the simulation

thesis. We will begin in the same way as the previous chapter, by proposing and explaining a

particular formulation of the simulation thesis, and by suggesting a methodology for research.

We add a third section with a brief application of this methodology.

3.1 Phrasing and meaning

The simulation thesis is very similar to the physical Church–Turing thesis, with a subtle

difference. The following formulation is proposed:

The simulation thesis

Every function which simulates a finite physical system

can be computed by a Turing machine.

An explicit effort has been made to keep the standard form, which will force us into explain-

ing what is meant by a function which simulates a physical system. We could have written

every finite physical system can be simulated by a Turing machine, but this would leave us

with the similar problem of explaining how such a simulation should proceed.

We say that a function f simulates a physical system if it answers a question regarding the

evolution of the system, when the initial conditions are given as input. We demand that (A)

the question pertains to a deterministic event which follows from the initial conditions of the

system, according to the considered physical theory, and that (B) this question can be answered

by an observer somewhere in the system after finite time (for that observer). An example is the

function which, given the dimensions, masses, positions and velocities describing an idealised

billiard with sixteen balls, is valued 1 if after ten seconds any of the balls entered into any of

the holes and is valued 0 otherwise.1 This idea of simulation as question answering is the basis

for maintaining the standard form in the presented formulation of the simulation thesis.

In a similar way to the physical Church–Turing thesis, the simulation thesis does not assert

that every function simulating an arbitrary physical system can be computed by a Turing

machine. Instead, the simulation thesis makes the proviso that the physical theory describing

the system to be simulated gives a correct description of reality.

1 Here, idealised billiard is an abstract version of an actual billiards table, with four sides and six holes. It is not the
more complex billiard ball model of Fredkin and Toffoli [1982].
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So how is the simulation thesis any different than the Church–Turing thesis? First of all,

the simulation thesis is stronger, since it implies the physical Church–Turing thesis. But it can

be the case that the physical Church–Turing thesis is true, while the simulation thesis remains

false. These two theses are different because it is not necessary that all computational power

of nature can be harnessed in a useful way: even considering that every function computed by

a finite physical process is computable, we may still believe that the working of the universe

can not be entirely mimicked by a Turing machine, and that although we can not exploit

this non-computability, it nevertheless can be observed in some way. Toby Ord [2002] gives an

extremely clear account of the difference between these two theses.2

3.2 Methodology

We now describe a methodology to investigate the simulation thesis. We will be brief, for this

methodology is similar to the one presented in Section 2.2. We should also begin by a first

step of specification. We determine the physical theory and sub-theory under consideration,

and establish the finite physical system to be studied. We choose a question pertaining to a

deterministic event which can be answered by an observer in the system after finite time.

We then move to the second step, where it is shown that the question can not be answered

by a Turing machine. It is helpful, in this phase, attempting to identify which particular

property of the phenomenon leads to this undecidability. Finally, in the third step, we must

scrutinise both the physical theory and the significance of the obtained result for computability

and physics.

3.3 A brief case-study

We will show an application of the above method, in a review of Warren Smith’s [2006a]

work.3 Smith studies the Newtonian theory of gravitation for point masses in an Euclidean

plane. The particles possess a certain position, velocity and mass. In a system with N bodies,

their positions x1, . . . ,xN obey the law of motion:

ẍi = G
N∑

j 6=i

mj
xj − xi

‖xj − xi‖3
.

He considers the particular system with a fixed number N of bodies, each with specific masses

given by certain rational numbers. The initial conditions of such a system can be specified by a

tuple of 4N real numbers — two real numbers for the position vector and two for the velocity

vector, times N particles.

2 Ord calls mathematically harnessable to a physical process computing a function. He was unaware of the historical
point of view of Hodges [2006].

3 [Loff and Costa, 2007, Loff, 2007b] survey further of work on the violation of the simulation thesis.
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Smith’s results tell us that there is no general algorithm which, given the initial conditions,4

is able to decide the question: Does any particle in the system intersect the unit ball centered

at the origin in the first second of the system’s evolution? Such a question clearly satisfies our

proviso, since the system is deterministic, and by observing the middle of the system one would

be able to answer this question after one second. Smith [2006a] writes:

The present paper demonstrates (I claim) that unsimulable physical systems exist in

Newton’s laws of gravity and motion for point masses. However, it does not appear to

demonstrate, that, if we lived in a universe governed by those laws, we could actually

build a device with super-Turing computational power.

We can assume that if the point mass does intersect the unit ball in the system then it will

also intersect B(0, 1− ε) for some predetermined 0 < ε < 1, i.e., Smith’s undecidability result

does not stem from the fact that the particles may intersect the unit ball arbitrarily near the

perimeter. The non-computability of this example arises from the existence of non-collision

singularities in Newtonian dynamics [see Xia, 1992], and of the inability to decide whether the

initial conditions result, or do not result, in a singularity. The Newtonian system is not strictly

finite, since the occupied area goes to infinity in finite time. Smith’s study is exceptionally

complete: after his exploration of Newtonian dynamics, Smith considers laws of gravitation

which include relativistic phenomena (such as limited velocity), showing that under these laws

one can efficiently simulate the N -body problem. This establishes Smith’s work as a great

contribution of evidence in favour of the simulation thesis and the physical Church–Turing

thesis, when concerning celestial dynamics [for a similar result on quantum mechanics, see

Smith, 1999].

The simulation thesis is the accurate statement that we live in a clockwork universe, a

wildly controversial idea which some take as an obvious falsity and others as a necessary truth.

Since it is the strongest thesis of its kind, the simulation thesis has tremendous implications,

such as the strong AI thesis. A definite positive settlement of the simulation thesis requires

an equally definitive physical theory, and we are thus led to believe that such a resolution will

not happen. It is a major, open question whether the paradigms of modern physics describe

simulable phenomena: a positive answer would give one reasonable argument for believing the

simulation thesis.

4 According to the conventions of computable analysis. Such initial conditions can be given, e.g., by writing the binary
expansion of the 4N real numbers in an infinite tape.
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Criticism and motivation

We have thus far answered how the study of the physical Church–Turing thesis and the simu-

lation thesis may proceed. We have yet not explained, and that is the purpose of this chapter,

why such a study should be conducted.

4.1 Hypercomputation and academic disdain

There are several written accounts criticising the relevance of the so-called hypercomputation

[e.g. Davis, 2006a,b, Hodges, 1999]. We feel these may have inadvertently discouraged the

study of a field with a wealth of philosophical and historical consequence. Some researchers of

hypercomputation occasionally display a publicitary attitude, brandishing a flag of enormous

impact for computer science. This has sometimes, and perhaps rightly, caused severe irritation

and dissent, but it is the author’s opinion that it should not be a matter of judgement for or

against the field of hypercomputation.

We propose a different perspective of this discipline, that one should regard the studies of

hypercomputation and non-computability as an investigation of the two mentioned variants

of the Church–Turing thesis. This is a different point of view which describes the field of

hypercomputation as the in-depth study of physical theories in order to provide evidence for

or against the physical Church–Turing thesis and the simulation thesis.

It was with this goal in mind that we have studied the Church–Turing thesis and its variants,

provided methods for research, and overviewed work on hypercomputation, in [Loff and Costa,

2007, Loff, 2007b]. We hope that this work will clear the way for the edification of a new

discipline, and that it may serve as a thinking tool for physics and computability. The questions

remain, of what is the interest of having such a tool, and why should the physical Church–

Turing and the simulation theses be given any credit as a thinking tool for physics.

One reason is that these two theses are technologically and physically relevant. Evidence in

favour of the theses provides a philosophical foundation, e.g., for automatic theorem provers,

or physics simulation software; the substantiation of the physical Church–Turing thesis and the

simulation thesis confirms that these fields use the best possible tool — the general purpose

computer — and that every effort to learn how to use it better is worthwhile. On the other

hand, evidence against these two theses suggests that it may be fruitful to dedicate some effort

in developing new tools.1
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We will study in Section 4.3 how we may use these variants of the Church–Turing thesis to

guide research in physics. The reason that these two theses should be given any credit at all is

that the mathematical definition of computability has acquired an impressive status. We will

discuss this in the next section.

4.2 The surprising status of the concept of computability

Gian-Carlo Rota, in his article entitled The pernicious influence of mathematics upon phi-

losophy [Rota, 2006], harshly criticises mathematised philosophy. He defends that the use

of mathematical methods to study philosophical problems is a misguided endeavour, which

impoverishes philosophy. Rota writes that human history supports the idea that there is no

definite solution to philosophical problems, and that philosophy is thus destined to failure in

a certain sense. This failure is pointed out by Rota as an essential part of philosophy, and that

imprecision of definition is an important characteristic of philosophical undertaking.

The author agrees with Rota’s view, and feels that it provides good reason against taking

the Church–Turing thesis in the stipulative sense, i.e., we should not consider the Church–

Turing thesis as a definition of function computed by a finite mechanism, and should maintain

a certain degree of imprecision in the notion of finite mechanism. On the other hand, the

Church–Turing thesis states exactly that itself would be a correct precise definition of the

concept of function computed by a finite mechanism, and this statement is very plausible, per

Turing’s [1936] reasoning and other arguments since Turing [e.g., Gandy, 1980, 1988, Sieg,

2007]. So computability appears to be an exception to Rota’s objections on the formalisation

of philosophy. Gödel expressed this idea beautifully, before Princeton’s 1946 conference on

mathematics (Collected Works II, p.150):

[...] with [the concept of computability] one has for the first time succeeded in giving

an absolute definition of an interesting epistemological notion, i.e., one not depending

on the formalism chosen.

This is surprising! It is not at all obvious that such a vague concept (effectively calcula-

ble, or mechanically computable) can be precisely captured. First, in an age of developing

technology and massive knowledge, it may be expected that new mechanisms can be made

to calculate new, different things, or that new logical principles of calculation are discovered.

Second, it is usually easy to find examples of insufficiency in any attempted formalisation of a

complex philosophical notion, e.g., the counter-examples studied by the philosophy of language

against formal linguistics, or the blatant difference between the emotions of software agents

and human emotional processes.2 Notice that Rota did not mean to say that informal rigour

— the pursuit of precise characterisation to common notions — is impossible: there are plenty

of intuitive notions, such as circle, or area, which have been precisely formulated [cf. Kreisel,

1 To this effect, Toby Ord’s [2002, 2006] defined the notion of physically harnessable process: a process which, although
it can not be said to compute a function, is used to simulate another, different, physical system.

2 There are, as we have seen, attempts at formalising the Church–Turing thesis [see Gandy, 1980, Sieg, 2007, Boker
and Dershowitz, 2006].
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1987]. Rota’s arguments are against the formalisation of philosophical concepts, because it is

natural and expected (and good) that these concepts are complex, constantly evolving, and

will always remain somewhat diffuse. It is thus unforeseen that the concept of mechanical com-

putability can be so precisely represented, and the Church–Turing thesis is the embodiment

of the hypothesis that it can.

Thus the Church–Turing thesis sets computability in a special, unique relationship with

the intricate and confusing world of philosophical ideas. How far can we extend this status?

Is the formal notion of computability just a singular aberration, or coincidence, pertaining to

epistemology, or does it actually describe a true and profound limitation of the real world?

These questions are the main motivating force behind parts I and II of this text. In the previous

chapters we have developed some tools which will give us a few, non definitive, answers.

4.3 The Church–Turing criterion for physics

The experimental method is the most important, and perhaps the only scientific tool which

can confirm the correctness of a physical theory, or tell us which of several modern theories is

the most correct. Unfortunately, it is often difficult to find the experimental setting which will

settle that some theory of physics is more appropriate over another.

Even when such experiments can be devised, they may not always be carried out, due to lack

of funding, facilities, etc. It thus becomes important to guide research in physics, and consider

only the most promising theory. The problem is that there is no equivalent to the experimental

method which allows us to choose the most promising theory. So the direction of scientific

research is usually guided by heuristics, beliefs and opinions which the scientist leaders, e.g.,

the lab head, or the Nobel laureate, have of which research topic is the most relevant. These

heuristics, despite being extremely valuable, are occasionally somewhat arbitrary.3

Thus it would be good to have at our disposal certain guiding criteria, for the research

in physics, which offer explicit and more precise motives to choose investigating one physical

theory over the other, or consider a certain type of experiments instead of another. We present

one such criterion.

The Church–Turing criterion for physics

If a physical theory violates the physical Church–Turing thesis

or the simulation thesis, then some part or the whole of this theory is incorrect.

This is not to be understood as a thesis or as a principle, i.e., there is to be no explicit

attempt to show that the Church–Turing criterion for physics is true. It is to be seen as a

standard, an additional tool which may be used to guide the research in physics.

To the question of how the criterion may be used, we have answered by giving two meth-

ods for such an investigation. As to why should such criteria be used, we have explained in

this section. Some motives for accepting the Church–Turing criterion as a valid criterion for

3 The reader may disagree. In any case, decision makers usually do not know or tell which part of their heuristics is
subjective and which part is not.
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guiding the research in physics have been given in the previous section: the importance of the

formal definition of computability, the sheer surprise that computability can be formalised,

and the strong belief that computability is, indeed, completely characterised by the current

formal definition, all these lead us to believe that the Church–Turing criterion for physics is

an appropriate tool.

There is, however, another subtle reason to accept the Church–Turing criterion, a reason

which is specifically adequate for physics. Physics, as a discipline, concerns the fundamental

laws of the Universe, it aims to uncover the rules which govern the constituents of reality.

The physicist may achieve, for this endeavour, two distinct levels of success: he may succeed

at describing the laws, and he may additionally understand the rules.4 The physicist will have

described the laws of the Universe if he has given a full account of, say, the equations which

govern the elementary components of reality. He will have understood the rules of the Universe

when he can, at least in principle, solve these equations and predict the behaviour of these

components. This second, higher level of success can only be accomplished, or we currently

so believe, if these rules are computable by a Turing machine. A teacher and mentor of the

author wrote [Costa, 2007]:

A non-computable science would be more like a painting in the National Gallery —

to look at with respect, admiration, and fascination, but although interpreted by many,

not really being interpreted by none besides digressions and elucubrations of the critics.

And so, the physicist who believes that such a second level of understanding can be achieved

should guide his research with the help of the Church–Turing criterion.

4 At this level of discussion we speak in principle, that is, we do not mean to say that physics only succeeds when it
has entirely explained reality, but that this is physics Utopian goal. Speaking in these simplistic terms ignores several
problems in the philosophy of science, but consciously so.
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The Scatter Machine:

A complete case-study of experimental computation





Introduction to Part II

Experimental computation is the study of how we can make computations through physical

systems and experiments. This issue has recently become a target for controversy, because

of the discovery that several physical systems seem to behave in a non-computable way [e.g.

Pour-El and Richards, 1981, Hogarth, 1994, Siegelmann, 1999, Kieu, 2002]. These discoveries

have been criticised for bearing little relevance to what one can compute in reality, or for being

riddled with faults and imprecision [e.g., respectively, Weihrauch and Zhong, 2002, Shagrir

and Pitowsky, 2003, Davis, 2006a, Smith, 2006b]. It can be said, at least, that some of these

studies are not clear about the incurred goals, methods and implications.

A notable exception, which stands out for the clarity of purpose, technique and consequence,

is the work of Edwin Beggs and John Tucker [2004, 2006, 2007a, 2007b]. They offer what may

be the first clear exposition of what is experimental computation, what is the purpose of

studying experimental computation, how it should be investigated and what is the expected

value of such an investigation. Their methodology provides a foundation for improving our

understanding of the link between physics and computation.

We have presented, in Section 2.2, a methodology to investigate counter-examples to the

physical Church–Turing thesis. This methodology was devised independently from Beggs and

Tucker, and can be seen as a more specific and simple version of their methods. We will give

a complete account of their methodology in Chapter 5, along with other considerations on the

nature of experimental procedures and experimental equipment.

The rest of Part II is dedicated to applying the methodology of Section 2.2. Chapters 6,

7 and 8 concern each of the three steps of our methodology. While we structure our work as

specified in Section 2.2, we will also be careful to satisfy the additional requirements of Beggs

and Tucker’s methodology. The majority of results in these chapters come from a collaboration

between the author, Edwin Beggs, José Félix Costa and John Tucker [Beggs et al., 2007].
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Accreditment. The structural idea of Part II is due to José Félix Costa. Chapter 5 is our

own presentation of the work of Edwin Beggs and John Tucker, and a pursuit of some ideas

deriving from their work. Chapter 6 is a formalisation of the scatter machine of Beggs and

Tucker, and the variations on the bisection method are derived from ideas and proofs by

John von Neumann [1956], Hava Siegelmann [1999] and Eduardo Sontag, brought to the

attention of the author by José Félix Costa. Chapter 7 also benefits from the same ideas

and proofs, but adds a few of our own (most notably the proofs of Propositions 7.6 and

7.11, concocted after a long a discussion with José Félix Costa); the style of presentation

attempts to follow that of Balcázar, Dı́az and Gabarró [1988]; Chapter 8 is solely due to

the author.
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Experimental computation

We call experimental computation to the idea of computation as a result of experimental

procedures carried out on a physical equipment. We could say that experimental compu-

tation begins with the advent of calculators, such as the Chinese abacus or Leibniz’s multi-

plying machine [see Williams, 1997], since their invention surely entails a certain amount of

experimentation. However, this should not be called experimental computation, because while

experimentation was required to invent the devices, the computations themselves involve no

actual experiment. We can instead consider that experimental computation started with the

differential analyser. In this machine, the input is represented by physical quantities, which are

then processed by a number of contraptions — the equipment —, and the output is obtained

by measurement of physical quantities [cf. Nyce, 1994].

Beggs and Tucker [2007a] present a number of very satisfying methods and considerations

for the study experimental computation. Their methods can be seen as a more general and

detailed version of those presented in Chapter 2, with the following differences:

1. Their methodology is more general since it may be used to study any instance of experi-

mental computation, and it is not exclusively concerned with finding counter-examples to

the physical Church–Turing thesis.

2. They propose that one should avoid studying a full-fledged physical theory, but should

instead attempt at finding the minimal sub-theory which allows for experimental compu-

tation.

3. When studying a theory T , Beggs and Tucker add that we should also consider the ex-

perimental domain of the theory, E(T ), comprising of postulates, laws, phenomena, and

situations where T has been experimentally confirmed. We should discern whether and

which experimental computations are still possible if we consider only E(T ).

Besides their methodology, Beggs and Tucker contributed to the well-founding of the study of

experimental computation by their clear discussion of related problems and issues [Beggs and

Tucker, 2004, 2006, 2007b]. We will begin by fully describing their methodology in Section 5.1.

In Section 5.2 we discuss their guidelines on developing a language to specify experimental

procedures, and give a mathematically precise version of these guidelines by showing how to

couple the experimental equipment to a Turing machine. Finally, in Section 5.3 we make some

considerations on the construction of equipment for experimental computation.
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5.1 The methodology of Beggs and Tucker

We now describe Beggs and Tucker’s methodology for the investigation of experimental compu-

tations. In this section we occasionally paraphrase the article [Beggs and Tucker, 2007a]. The

purpose of this methodology is to obtain a coherent unambiguous discussion of the computa-

tional power of physical systems described by a physical sub-theory.1 This purpose is fulfilled

by satisfying the following goals:

(1) Precisely define the physical sub-theory in question;

(2) Establish, by an explicit, exact construction, which physical systems that are models of

the sub-theory are to be regarded as equipment;

(3) Explain and prove, with utmost clarity and rigour, which are the properties of this equip-

ment;

(4) Specify experimental procedures to make use of these properties;

(5) Show that the procedures allow for some form computation;2

(6) Understand the source of the computational power;

(7) Clarify the relationship between computability and physics; and

(8) Make clear, precise and detailed statements about the whole process.

If a hypercomputer was found, then one also wishes to:

(a) Evaluate the physical credibility of the system, or, possibly,

(b) Reveal weaknesses in the theory.

These goals are achieved in four stages of investigation. The first two stages roughly corre-

spond, respectively, to the first two steps described in Section 2.2, and the last two stages are

analogous to step three.

The first stage of investigation is intended to satisfy goal (1), and it is called defining a

physical sub-theory. This stage is carried out by starting with a general physical theory —

which may be quite large, such as Newtonian mechanics — and pinpointing those properties of

the theory that can be used in experimental computation. We then form a sub-theory, which

will be denoted by T , containing only these properties. We may, for instance, study in detail a

few examples with computational properties, and then attempt to find the smallest fragment

of the physical theory which is needed to specify and study these examples.

By limiting our investigation to a physical sub-theory, it should, in the latter stages, be

easier to understand which postulates of the more general theory are responsible for the com-

putational power of the physical systems. Another benefit is that conclusions which we derive

for a restricted sub-theory are expected to generalise to the theory as a whole.

It should be emphasized that it does not matter whether we think of the theory as true,

roughly applicable, or know it to be false. A rigorous study of the computational properties of

the theory should give a better understanding of the relationship between (non-)computability

1 The [2005] article by Udi Boker and Nachum Dershowitz offer a valuable discussion of how we can compare compu-
tational power among different models of computation.

2 E.g., by showing that these procedures obey the input-output and repeatability principles in order to compute a
function.
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and physics, and of the scope of applicability of the theory itself. Such a study may also help

us investigating other theories, in which we deposit more belief.

Goals (2) to (5) are pursued in the second stage of the methodology, which is called classify-

ing computers in the physical sub-theory. In this stage we search for ways of embedding

functions, sets, logical formulae, algorithms, programs, computers and hypercomputers into

the physical systems described by T . Several candidates for equipment and experimental pro-

cedure may arise; we choose those which we find more relevant and appropriate. Above all, the

chosen systems must be explained, and their properties must be demonstrated, with the most

possible clarity, rigour and care. If certain points can not be made completely clear, perhaps by

the difficult nature of the theory or of the system, the faults of clarity must be fully exposed.

This should ensure that criticism to the constructed model of experimental computation will

be of a profound nature, rather than being the result of unfortunate misinterpretation, as

sometimes happens in the hypercomputation literature.

In the third stage we must analyse the computations of the equipments and procedures

studied in the second stage, in order to understand which properties or laws of the sub-theory

lead to different computational powers. We should also seek necessary and sufficient conditions

for the systems of T to implement exactly the Turing-computable functions. This stage is called

mapping the border between different computational powers in the sub-theory, and

it is concerned with accomplishing goal (6), and part of goal (7).

The fourth and final stage, concerning goals (7), (a) and (b), is called reviewing and

refining the physical theory. In this stage we determine the plausibility of our physical

systems. It is not possible to mathematically prove that the sub-theory T is correct, but we

can obtain experimental validation of a restricted part of T . This part of T is expected to be

more faithful to experimental results, and we call it the experimental domain of T , denoted

E(T ). If our physical systems are also models of E(T ), then we expect that their existence is

plausible. Notice that this means that the systems could exist in the real world, not that they

could actually be built. The difference will be emphasized in Section 5.3.

While studying the plausibility of our physical systems, one usually finds more credible or

interesting variants of the equipment and experimental procedures, and new ways of refining

the sub-theory into something more realistic. These discoveries should be exposed as openly

and clearly as possible. An important part of the whole methodology, and of this stage of

investigation in particular, is to form a portfolio of systems and sub-theories with different

computational properties. This portfolio will serve as a guide to future work, and should allow

for a better understanding of which physical properties result in computational power.

5.2 Attaching a controller

In their [2007a], Beggs and Tucker give some guidelines on how to develop a language for

specifying experimental procedures. The idea is that to each equipment which is a model of a

sub-theory T corresponds an enumerable set of experimental actions that can be performed on

the equipment, and an enumerable set of responses that can be measured from the equipment.
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One may then use a procedural language to specify the experimental procedures governing the

computation. The experimental procedures would be described by programs, as in Figure 5.1.

These programs can perform experimental actions, measure the equipment’s responses and

make any necessary calculations.

Perform action A1.
If measured response R1 then do something,
else if measured response R2 then do something else

Fig. 5.1. A program specifying an experimental procedure

We will now show how these guidelines can be made completely precise, by attaching a

Turing machine to control the equipment. We assume that the equipment can perform ex-

perimental actions from an enumerable set A, and react with measurable responses from an

enumerable set R. The action/response behaviour of the equipment may not be deterministic,

and may depend on the actions which where previously performed and on the responses which

where previously obtained.

Thus, the behaviour of the equipment is represented by a certain stochastic process M . M

assigns, to each sequence e1 . . . en of events that happened in the equipment, the probability

that a certain response r is measured when performing some action a. This probability we

denote by P(M(e1 . . . ena) = r). An event can be either a commanded action in A, or the

absence of an action, which we have represented with the symbol ©. Thus, M is a stochastic

process indexed in the set

H = {e1 . . . ena : (ei ∈ A ∨ ei =©) ∧ a ∈ A}

of sequences of events ending with an action. For each e1 . . . ena ∈ H, M(e1 . . . ena) is a discrete

random variable with values in R, such that∑
r∈R

P(M(e1 . . . ena) = r) = 1.

The equipment is called deterministic if for each e1 . . . ena ∈ H there is only one r with

P(M(e1 . . . ena) = r) > 0, and is called probabilistic otherwise.

The link between the Turing machine and the equipment is made in a way similar to

the oracle Turing machine, which is described in the appendix. We assume that the set of

actions and the set of responses are indexed with the strings of the working alphabet Σ∗, i.e.,

A = {aw : w ∈ Σ∗} and R = {rw : w ∈ Σ∗}. The coupled Turing machine M has two special

states, called the action state and the response state, and two special tapes, called the

action tape and the response tape.

The Turing machine M is said to command an action aw on the equipment, when it

enters the action state with the string w written on the action tape. In order to perform

action aw, M begins by commanding the action. The Turing machine computation is then

interrupted, and the equipment performs the action aw. If the response of the system is rv,



5.2 Attaching a controller 33

then the response tape is erased, v is written on it, and M resumes its computation in the

response state.M is then said to have measured response rv.

The sequence of events e1 . . . et mentioned above is obtained by the history of commanded

actions. IfM commands action a at time step t+ 1 of the computation, then each event ei in

e1 . . . et is given by:

1. ei = aw ifM commanded the action aw at time step i, and

2. ei =© ifM commanded no action at time step i.

The probability ofM measuring the response r at time t+ 2 is P(M(e1 . . . eta) = r).

Example 5.1. We take the equipment M to be a balanced coin. The set of actions will then

be A = {toss} and the set of responses is R = {heads , tails}. Then H = {e1 . . . ena : (ei =

toss ∨ ei =©) ∧ a = toss}, and we set

P(M(e1 . . . eia) = heads) = P(M(e1 . . . eia) = tails) =
1

2
.

A Turing machine coupled to such an equipment is computationally equivalent to a probabilistic

Turing machine, which is described in the Appendix. �

Three things should be noted on our way of formalising the link between the Turing machine

and the equipment.

First of all, the characterisation of the equipment is very general, but it is assumed that

the behaviour of the equipment depends only on the actions and the number of computational

steps between actions. This is a reasonable assumption to make of any equipment to be used

in experimentation.

Secondly, the behaviour of the equipment does, indeed, depend on the number of steps

between actions. This is intended to model the use of clocks in controlling experiments — a

chemical experiment, for instance, must be carried out with precise timings. The way that the

number of Turing machine steps relates to the number of time units for the equipment must

be clearly specified, and may vary for each considered equipment. We could say, for instance,

that each step of the Turing machine takes exactly 10−6 seconds. It may even be the case

that the Turing machine becomes an inadequate model to control certain types of equipment,

because in order to command the action aw, the Turing machine requires at least |w|+1 steps

of computation.

Thirdly, in the case where the number of actions (or responses) is finite, it is appropriate to

replace the action tape (resp. response tape) with a finite number of additional special states,

one for each action (resp. response).

A full computation of a Turing machine with equipment on a finite string x begins in the

same way as for a normal Turing machine, and the input x is said to be accepted or rejected,

as in the Turing machine, if the computation halts, respectively, in the accepting or rejecting

state.

We may then establish a decision criterion for the Turing machine coupled with deterministic

equipment. A set B of finite strings is decided by such a machineM if, for every input w ∈ Σ∗,
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w is accepted if w ∈ B and rejected when w 6∈ B. We say thatM decides B in polynomial time,

if M decides B, and for every w ∈ Σ∗ the number of steps in the computation is polynomial

in the size of w.

However, the decision criterion for a Turing machine coupled with probabilistic equipment

must be different, because the machine will not, in general, deterministically accept or reject

the input. Several criteria could be put forward, and we will here describe one of the most

common probabilistic decision criterion. For a set B ⊆ Σ∗, a Turing machineM attached to a

probabilistic equipment, and an input w ∈ Σ∗, the error probability ofM for input w is the

probability ofM rejecting w if w ∈ B, or the probability ofM accepting w if w 6∈ B. We say

that M decides B with bounded error probability if there is a number γ < 1
2
, such that

the error probability ofM for any input w is smaller than γ. B is decided in polynomial time

if, for every input x, the number of steps in the possible computations is always polynomial in

the length of x.

And so ends our treatment of this matter. We will make use of this type of computational

model in the next chapter, when we study a specific equipment called the scatter machine.

5.3 Existence vs. construction

Up to this point in our discussion, the physical systems that form the equipment are only

required to possibly exist, either according to an abstract sub-theory or according to its exper-

imental domain. Seen in this way, an equipment is a black box obeying the postulates of the

physical sub-theory, and exists only in an abstract, idealised world.

The fact that such a system may be conceived in this way could already be relevant for the

philosophy of science, theoretical physics, or computation, but when studying experimental

computation one may aim at technological relevance. It is important, in this case, to have a

method for building the equipment.

Beggs and Tucker [2007a] study this problem and offer some ideas on how a construction

language can be devised in order to specify the construction of equipment. Such a construction

language would make use of a number of primitive specifications, such as the placement of parts,

or the generation of certain physical fields. It is important that these primitive specifications

are known to be satisfiable by current technology, if one does not wish to conceal the problem of

building the device into the problem of satisfying the specification. The construction language

then allows for a finite combination of these primitive specifications in a way similar to a

programming language, and this combination of primitive specifications forms the specification

of the equipment.

It is expected that from a complete specification of the experimental equipment one can, for

every number n, obtain a finite number of primitive specifications which must be satisfied in

order to build an equipment that can perform experimental computation, say, on every input

of size n. This is the case with the computing machines of today (if we where to regard them

as equipment).
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When we consider construction languages, similar to programming languages, that specify

methods for constructing computing equipment, we must be careful in noticing the circularity

which we have introduced. Suppose we are studying a hypercomputer that we have shown to be

in the experimental domain of some physical sub-theory. Unless an error was committed, this

means that a hypercomputer can exist in the universe. But can it be built? It may even be the

case that a sequence of primitive specifications will allow us to build such a hypercomputer,

but that this sequence is not computable by a Turing machine. Thus, if our construction

language is similar to current programming languages, it would be inadequate to specify the

construction of our device.

The problem is, in essence, that it is not possible to give a satisfactory notion of specification

without having an adequate notion of computability, and this means trouble if we wish to

specify devices which may have a higher computational power than the Turing machine. Three

solutions for this problem come to mind:

1. The problem does not exist. If there is actually no sequence of primitive specifications which

will allow for the construction of the equipment using current technology, then the problem

becomes irrelevant.

2. The equipment already exists, and it can be used to control the construction of other similar

equipments.3

3. Such a hypercomputer is useless. It is natural that any new, more powerful machine has to

be constructed using the currently available computational power, and that if it can not be

so constructed, then the machine is really a ghost hypercomputer, which could exist, but

never will.

We will thus define four levels of realism which can be attributed to an equipment for

experimental computation. For the weakest level of realism, we say that an equipment exists

in imagination, if it is a model of a theory of physics. We further say that it can exist in

theory, if it is a model of a physical theory in which we believe. An equipment will be said

to exist in practice, if it belongs to the experimental domain of a physical theory. For the

stronger level of realism, we will say of an equipment that it can exist in actuality, if it may

be built using current technology.

This classification may be used to describe the plausibility or technological relevance of the

equipment under study. In the following chapters, we will study an equipment that only exists

in imagination, and provide a complete analysis of its computational power. It may intrigue

the reader why we should be bothered to study an equipment which is not physically plausible.

We will provide a few reasons in Section 8.1.

3 This is not as absurd as it seems, if we adopt the view, believed by some, that the human brain is hypercomputational
[Penrose, 1989, 1994, Bringsjord and Zenzen, 2003].
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The scatter machine

We now introduce the scatter machine, a physical device to shoot and collect particles in a

Newtonian world. We dedicate each of the three sections in this chapter to the presentation of

the physical sub-theory, the equipment and the experimental method.

6.1 The physical sub-theories

We will consider a very simple and idealised sub-theory T of Newtonian mechanics, con-

cerning the elastic collision of point particles against rigid barriers that are laid out in the

two-dimensional Euclidean plane. Each system of T is a finite collection of

1. barriers, where the particles bounce,

2. particle detectors, in the form of rectangular holes where the particles fall, and

3. cannons, which shoot particles, and can be moved along an axis.

Plenty of idealising assumptions are made, regarding the systems of T :

A. Barriers can be placed between any two points in the Euclidean plane.

B. The barriers do not move, i.e., their extremities remain fixed.

C. The barriers are rigid and perfectly straight.

D. Particles are dimensionless.

E. There is no friction affecting the movement of the particles.

F. Particles can be flawlessly detected.

G. Every particle has the same, infinitely precise mass.

H. Collisions are perfectly elastic, but particles are transparent to cannons and other particles.

I. Cannons can shoot a particle with an infinitely precise velocity, at any infinitely precise

point in time.

J. Cannons can be placed at any point along their axes.

We will see that the systems of T can be used as idealised equipment in order to perform

hypercomputation, but more importantly we will show in the next section that the assumptions

C to J can be removed or made more realistic, and that the only assumptions which must

remain unaltered to allow for the existence of a hypercomputer are A and B.
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The sub-theory T can be easily and conveniently formalised, in the following way. T is the

class of systems of the form 〈B,D,C〉, where B is the set of barriers, D is the set of particle

detectors and C is the set of cannons.

Each barrier b ∈ B is formalised as a pair b = 〈x,y〉 of points in the Euclidean plane.

The barrier b will occupy the points between x and y, excluding y. We denote the set of

points occupied by b as occ(b), given by occ(b) = {(1 − z)x + zy : z ∈ [0, 1)}. The particles

of the system reflect perpendicularly to the line from x to y. We formalise this by saying that

b reflects towards ref (b), which is a unit vector perpendicular to occ(b). If R represents the

linear operator of rotation in π
2

radians, then ref (b) is expressed by ref (b) = R( y−x
‖y−x‖).

Each particle detector d ∈ D is represented by a closed, bounded interval d = [x1, x2]×
[y1, y2] of the Euclidean plane. A particle is said to have been detected by d if its position lies

inside this interval.

A cannon c ∈ C is also formalised as a pair c = 〈x,y〉 of points in the euclidean plane.

The cannon c can be placed at any point between x and y, this time including y, and we call

axis to the set of these points. More precisely, we denote the axis of c by axis(c), given by

axis(c) = {(1 − z)x + zy : z ∈ [0, 1]}. The cannon c is said to be aiming along a direction

perpendicular to its axis. This direction is represented by a vector, aim(c), with the expression

aim(c) = R( y−x
‖y−x‖). We will sometimes refer to the points in the axis of c using numbers

between 0 and 1. For each such number z ∈ [0, 1], we refer to point (1− z)x + zy as point z

along the axis of c.

We demand that no barrier, particle detector or cannon axis intersect at any point, i.e., if A

is occ(b1), d1 or axis(c1) and B is occ(b2), d2 or axis(c2) for any barriers b1, b2, particle detectors

d1, d2 or cannons c1, c2, then A ∩B = ∅.

Fig. 6.1. A schematic drawing of a system for particle collisions.
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Example 6.1. Figure 6.1 is a drawing of the system S1 = 〈{b}, {d<, d>}, {c}〉, with the barrier

b = 〈(0, 1), (1
2
, 3

2
)〉, the detectors d< = [1, 2] × [1, 2] and d> = [0, 1] × [2, 3], and the cannon

c = 〈(0, 0), (1, 0)〉. The vector aim(c) is positioned at point 1
2

along the axis of c. �

One may interact with the systems of T by commanding the cannons to shoot particles, and

by observing when a particle is detected. Consider the system S = 〈B,D,C〉. At each point

in time there will be a number of particles moving in the system. The particles are introduced

by ordering a cannon c ∈ C to shoot a particle, from a point a ∈ axis(c), with a certain scalar

velocity V , and at a certain instant t0 ∈ R+
0 . The cannon then shoots a particle which will

remain in the system until it is detected by a particle detector d ∈ D. Take δ to be Dirac’s

delta function, and · to represent the scalar product. Then the position x and velocity v of

such a particle are governed, component-wise, by the equations of movement:

x(t0) = a ∂tx(t) = v(t),

v(t0) = V × aim(c) ∂tv(t) = −
∑
b∈B

∑
o∈occ(b)

2 (δ(‖x(t)− o‖)× v(t) · ref (b)) ref (b),

According to these equations, a particle hitting a barrier b will preserve the velocity component

parallel to occ(b), and invert the component parallel to ref (b).

Example 6.2. Suppose that at time t = 0 one commands the cannon c of the system S1 in

Example 6.1 to fire from point z along its axis, with speed 1. We can see that the particle will

fall on one of the detectors at time t = 2, and that it will fall on d> if z > 1
2
, and will fall on

d< if z < 1
2
. �

The sub-theory has a few imperfections, which we will not amend. These are:

1. Should a particle collide in parallel with a certain barrier, the particle will go through it.

2. Particles do not bounce on cannons, nor on other particles.

3. We impose a specific behaviour for a particle hitting the edge of a barrier, which is an

atypical situation in the study of collisions.

We will ignore these fallbacks because they are irrelevant for the systems that we will consider.

In these systems, particles will never be in parallel with barriers, nor will the collision with

other particles be of any interest, and the case when a particle hits the edge of a barrier will

also be made irrelevant.1 In order to understand why this is the case, and why we may drop

assumptions C to J above, we will need to introduce the specific systems of T to be used as

equipment.

6.2 The equipment

We will use as equipment a specific family of systems indexed in the interval [0, 1], {Sx}x∈[0,1].

The systems in this family are called scatter machines. A scatter machine is a system with

1 However, if we considered particle collisions, the sub-theory T would become adequate to describe the computing
billiards of Edward Fredkin and Tommaso Toffoli [1982].
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two barriers, one cannon and two particle detectors. The cannon is facing the barriers, and these

form a right angle, called the wedge. The vertex of the wedge is aligned with a certain position

x along the cannon’s axis. One of the particle detectors is to the right of the barriers and the

other is to the left. Formally, Sx = 〈{bl, br}, {dl, dr}, {c}〉, with bl = 〈(3 + x, 1), (1 + x, 3)〉,
br = 〈(5 + x, 3), (3 + x, 1)〉, dl = [0, 1]× [0, 3], dr = [6, 7]× [0, 3], and c = 〈(3, 0), (4, 0)〉. This is

schematised in Fig. 6.2.

Fig. 6.2. A schematic drawing of a scatter machine.

We can now formalise the equipment as a stochastic process, in the way we have explained

in Section 5.2. Each scatter machine Sx will allow for a number of actions from a countable set

A. Each action in A commands the cannon of Sx to fire from a specific dyadic rational point

along the cannon’s axis.2 We thus enumerate the actions in A using the word 1 and the binary

words beginning with 0: A = {a1} ∪ {a0s : s ∈ {0, 1}∗}. The action as1...sn in A commands the

cannon to fire from the point
n∑

k=1

2−k+1sk ∈ [0, 1]

along the cannon’s axis, with some predefined fixed speed.3

After the command, the cannon attempts to position itself at this point,4 and shoots a

particle with some predetermined scalar velocity. It is clear that the particle will always hit

the wedge, either in the left or the right barrier. Our formalisation is such that the point

(3+x, 1) is occupied by the barrier bl, and thus the particle will go left when it hits the vertex.

2 The set of dyadic rationals is the subset of rational numbers with a finite binary expansion. Notice that we can
correspond each dyadic rational with a finite binary sequence. The sequence “0” corresponds to the number 0, “1”
corresponds to the number 1, and a sequence “0s”, where “s” is a binary sequence, corresponds to the number 0.s,
to be interpreted in the binary expansion.

3 Note that we allow for s1 . . . sn to end with a 0, and so each action az, where z is a dyadic rational, is indexed by an
infinite number of sequences z, z0, z00, . . ..

4 Remember that shooting at point z ∈ [0, 1] along the cannon’s axis will, for a scatter machine, actually mean shooting
from the point (3 + z, 0) ∈ axis(c).
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We will see, however that the particle will never hit the vertex, or that it will do so with

probability 0, and we can safely disregard this case.

The equipment can thus respond in one of two ways. After some time, either a particle

was detected by the right detector, or it was detected by the left detector. So, the set R of

responses is given by R = {right , left}, with the obvious meaning. We can now understand why

the assumptions C to I in the previous section matter little for the behaviour of the system.

It is clear that the only distinguishing mechanism which must be respected is whether the

particle goes left, or right, after hitting the wedge. This property remains more or less the

same independently of assumptions C to I, as long as the collisions are sufficiently elastic,

the barriers are reasonably straight, and provided that there is not too much friction, etc.5

The final assumption (J), however, seems to make a crucial difference. The behaviour of the

stochastic process which we will use to model the scatter machine will depend on whether or

not the cannon can be placed exactly where the action commanded, but we will show, in the

next chapter, that each case will result in a hypercomputer.

Example 6.3. If we make the assumption J of the previous section, then the machine Sx can be

used to decide whether a dyadic rational y ∈ [0, 1] is smaller or equal to x. In order to decide

this, we perform action ay, where y is represented as a word in {1} ∪ {0s : s ∈ {0, 1}∗}. If we

measure the response left , we then see that y 6 x, and we know that y > x when we measure

the response right . �

We will consider three weaker versions of assumption J, which will give us three variations

of the sub-theory T . For the first variant of T , T1, we will suppose that the cannon can be

placed with infinite precision at any dyadic rational point along its axis. For the remaining

two variants, T2 and T3, we assume that we can command the cannon to be placed along any

dyadic rational point along its axis, but that there is a certain dyadic rational error in the

placement, denoted by ε. Specifically, we will consider that if we command the cannon to be

placed at the dyadic rational y ∈ [0, 1], then the cannon will in fact be placed somewhere in

the interval [y− ε, y+ ε], with a uniform probability distribution. For the theory T2, the error

of the placement is controllable: to the command ay corresponds the error ε = 2−|y|−1. Here, |y|
is taken to be the size of the sequence used to index ay. This implies that in the sub-theory T2

the action ay is different for different binary representations of the dyadic rational y. Finally,

in the theory T3, we will assume that the error of placement ε is a fixed value, taken to be

ε = 1
2

in this dissertation.

We are now ready to complete our formalisation. We call error-free to the scatter machines

modeled by T1. An error-free scatter machine Sx is a deterministic equipment, governed by the

probability distribution:

P(Sx(e1 . . . enay) = left) =

1 if y 6 x,

0 if y > x.

5 See Beggs and Tucker [2007b] for other considerations, such as particles with different shapes.
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The probability of measuring a right response can be inferred, since the sum of the probabilities

over the set of responses must be 1. We will call error-prone to the scatter machines modeled

by T2 and T3. The models of T2 will be called precise and the models of T3 will be called

imprecise. An error-prone scatter machine Sx is a probabilistic equipment, governed by:

P(Sx(e1 . . . enay) = left) =


1 if y < x− ε,
1
2

+ x−y
2ε

if x− ε 6 y 6 x+ ε,

0 if y > x+ ε

The error ε will be 2−|y|−1 for precise error-prone scatter machines and will be the fixed

value ε = 1
2

for imprecise error-prone scatter machines. The stochastic process governing

the behaviour of the scatter machines will always be a Markov chain, since the response of

new experiments will never depend on previous outcomes. But, further than that, the re-

sponse to a new action also does not depend on previous actions. So we always have, for any

r1, . . . , rn ∈ {left , right}:

P(Sx(. . . a1 . . . an−1 . . . an)=rn|Sx(. . . a1 . . . an−1)=rn−1, . . . , Sx(. . . a1)=r1) = P(Sx(an) = rn).

The dots in the above expression stand for the possible events of type ©.

In Section 5.2, we have shown how to connect a Turing machine to an arbitrary equipment.

By connecting it to a scatter machine, we obtain a theoretical computation device, which we

call the analog-digital scatter machine. We will use Sx to designate an analog-digital scatter

machine obtained by coupling Sx with a Turing machine. Depending on which assumptions are

made on the placement of the cannon, the analog-digital scatter machines will also be called

error-free or error-prone, precise or imprecise. The device works as described in Section 5.2.

Actions are preformed by writing a sequence y ∈ {1}∪{0s : s ∈ {0, 1}∗} on the action tape, and

entering the action state. We will refer to the action state of an analog-digital scatter machine

as shooting state. The coupled Turing machine is then interrupted, and the scatter machine

performs action ay. The response is signaled to the coupled Turing machine by resuming the

computation either in the left state or in the right state, with the appropriate meaning.

We repeat the decision criteria.

Definition 6.4. Let A ⊆ Σ∗ be a set of words over Σ. We say that an error-free analog-digital

scatter machine Sx decides A if, for every input w ∈ Σ∗, w is accepted if w ∈ A and rejected

when w 6∈ A. We say that Sx decides A in polynomial time, if Sx decides A, and there is

a polynomial p such that, for every w ∈ Σ∗, the number of steps of the computation is bounded

by p(|w|).

For a set A ⊆ Σ∗, an error-prone analog-digital scatter machine Sx, and an input w ∈ Σ∗,

let the error probability of Sx for input w be either the probability of Sx rejecting w, if

w ∈ A, or the probability of Sx accepting w, if w 6∈ A.
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Definition 6.5. Let A ⊆ Σ∗ be a set of words over Σ. We say that an error-prone analog-

digital scatter machine Sx decides A with bounded error probability if there is a number γ < 1
2
,

such that the error probability of Sx for any input w is smaller than γ. We call correct to

those computations which correctly accept or reject the input. We say that Sx decides A in

polynomial time, if Sx decides A, and there is a polynomial p such that, for every input

w ∈ Σ∗, the number of steps in every correct computation is bounded by p(|w|).

Standard proof techniques of structural complexity can be used to show that if there is an

error-prone analog-digital scatter machine Sx which decides A in polynomial time with an error

probability bounded by γ < 1
2
, then, for any polynomial p, there is another error-prone machine

which decides A in polynomial time with an error probability, for inputs of size n, bounded

by 1
2p(n) . We may also assume, without loss of generality, that if an error-prone analog-digital

scatter machine Sx decides a set A in polynomial time, then all of its computations halt after

the same number of steps [cf. Balcázar et al., 1988, Chapter 6].

6.3 The bisection method

We have laid out the relevant physical sub-theories and the equipment. We now present three

experimental procedures, one for each sub-theory, which allow us to extract information from

a scatter machine. The first of these experimental procedures was introduced by Beggs and

Tucker [2007b]. The procedure consists of a sequence of bisections, and it is thus called the

bisection method. It allows us to obtain, using an error-free analog-digital scatter machine

Sx, any number of digits of the binary expansion of x.

We can safely assume that x is not a dyadic rational, because if this is the case then we

can trivially construct an analog-digital scatter machine that outputs every digit in the binary

expansion of x, by embedding this (finite) expansion into the finite control of the machine.

The method can be carried out by an error-free analog-digital scatter machine using three

work tapes (plus the action tape). The first tape is used for general rough work and the

remaining two work tapes store two values, a and b, which we will simultaneously regard as

dyadic rationals and as words in {1} ∪ {0s : s ∈ {0, 1}∗}. The bisection method begins by

setting a = 0 and b = 1. Then, at each stage of the method, the cannon is fired at point

c = a+b
2

. If the left response was measured, then on the next stage we set a = c. If, on the other

hand, we measured the right response, then we set b = c on the next stage of the method.

Throughout the procedure, we always have a 6 x 6 b, and |b − a| is halved at each stage.

Thus, in order to obtain n digits of the binary expansion of x, we carry out n + 1 stages of

the bisection method. After n + 1 stages, we have that 0 6 |x − a| 6 |b − a| = 2−n−1. Since

x is assumed not to be a dyadic rational, its binary expansion is unique, and so we see that

a �n= x �n, i.e., the first n digits of the binary expansion of a are equal to the first n digits of

the binary expansion of x.

At each stage of the bisection method one must calculate c, write it in the action tape, and

copy it to one of the two work tapes keeping a and b. These three operations are done in linear
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time on the size of a and b. At stage n, the size of a and b is at most n, and so we conclude

that it takes O(n2) steps to obtain n digits of x.

The bisection method will not work on error-prone machines, but it turns out that for

precise error-prone analog-digital scatter machines we can use a simple variant of the bisection

method, which we will call the modified bisection method. This second method can also

be used by an error-free machine.

We use an analog-digital scatter machine Sx with three tapes, as before, two of which store

a and b. Again, we begin by setting a = 0 and b = 1, at stage 1. Then at each stage we calculate

c = a+b
2

, and command the cannon to shoot at point c. Now we must make sure that at the

k-th stage the dyadic rational c is represented with a word of size at least k + 1. If, after the

cannon being shot, we got a left hit, then a will be set to a+c
2

, and if the we got a right hit,

then b will be set to b+c
2

. This means that at each stage we still update a or b to become closer

to c, but now we do it more slowly.

Notice that by commanding the cannon to shoot at point c in its axis, and by specifying c

with at least k + 1 bits, we ensure that the error in placing the cannon is at most εk = 2−k−2.

This means that the particle will be shot from somewhere in the interval [c − εk, c + εk].

Thus, if the particle bounces to the left, we can be sure that x is not anywhere in the interval

[a, c − εk), and if it bounces to the right we are certain that x is not in (c + εk, b]. Now, at

the end of each stage we set a to a+c
2

= a + b−a
4

or b to b+c
2

= a + 3(b−a)
4

. This means that

after stage k we have |b − a| = (3
4
)k. More importantly, at the beginning of stage k we have

a+c
2

= c− b−a
4

= c− 2−k(2−log 3)−2 6 c− εk, and in a similar way we get b+c
2

> c + εk. We can

thus conclude that if the particle goes left, then x is nowhere in the interval [a, a+c
2

), and if

the particle goes right, then x will not be in the interval ( b+c
2
, b]. This is why at each stage we

change a or b accordingly, thus ensuring that a 6 x 6 b at every stage.

In order to obtain n digits of the binary expansion of x, we carry out 3(n+ 1) stages of the

modified bisection method. After 3(n+1) > n+1
| log2

3
4
| stages, we have that 0 6 |x−a| 6 |b−a| =

(3
4
)3(n+1) < 2−n−1, and so x �n= a �n. For each of these 3(n + 1) stages, O(n) digits must be

written in the query tape, and so the complete method can be carried out in O(n2) steps of

computation.

The modified bisection method may still not be used by an imprecise error-prone analog-

digital scatter machine. In fact, it is not at all obvious that such a machine can extract any

useful information from the vertex. We now present a third method, called the probabilistic

bisection method, to be used by an imprecise error prone machine. This method is inherently

probabilistic, and is concocted from the ideas of Siegelmann [1999] and von Neumann [1956].

We will show that we can use an imprecise error-prone analog-digital scatter machine Sx to

guess the digits of the binary expansion of x with bounded error probability.

The probabilistic bisection method consists in performing a certain number z of trials. At

each trial, we command the cannon to fire at the point 1
2

of its axis, and count the number

of times that we measured a left response. We thus perform z Bernoulli trials, where the

probability, at each trial, of measuring a left response is given by:
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P (Sx (a01) = left) =
1

2
+
x− 1

2

2ε
= x.

Now let #left denote the total number of times that a left response was measured. Then #left

can be regarded as a random variable with expected value µ = zx and variance ν = zx(1−x).
After running z Bernoulli trials, we make the guess that x equals x̃ = #left

z
. We can determine

what is the probability of x and x̃ having less than n digits in common, i.e., the probability

that |x̃− x| > 2−n−1. By Chebyshev’s inequality, we see that for every ∆,

P(|#left − µ| > ∆) = P(|zx̃− zx| > ∆) = P
(
|x̃− x| > ∆

z

)
6

ν

∆2
.

Choosing ∆ = z2−n−1, we get

P(|x̃− x| > 2−n−1) 6
x(1− x)22n+2

z

And so, the probability of making a mistake in guessing n digits of x can be bounded to δ

by running z > δ−1x(1 − x)22n+2 ∈ O(22n) trials. In other words, we can guess n digits of

x with bounded error probability by making a number of experiments exponential in n. We

conclude that even the imprecise error-prone analog-digital scatter machines can make use of

the position of the vertex, only it takes an exponential rather than polynomial number of steps

in doing so.

It becomes immediately evident that analog-digital scatter machines can decide any subset

of N. If we take the real-valued characteristic of a set A ⊆ N:

x =
∞∑

k=0

ak2
−k−1,

where ak = 1 if k ∈ A and ak = 0 if k 6∈ A, then we can use an analog-digital scatter machine

Sx to decide A: in order to decide whether some value w is in A, we obtain w digits of x

using the appropriate bisection method, and accept w if and only if the w-th digit of x is 1.

It would thus appear that the analog-digital scatter machine is a very uninteresting model of

computation, but we can overcome this by imposing feasibility or efficiency constraints, such

as bounded time, on the computations of the analog-digital scatter machine. This will result

in a rich complexity-theoretical characterisation, and will be the purpose of the next chapter.





7

The computational complexity of the analog-digital

scatter machine

This chapter is dedicated to studying the polynomial time computations of the analog-digital

scatter machine. It turns out that non-uniform complexity provides the most adequate char-

acterisations of this computational power, and it is thus vital to have some notions of this

subject in order to understand this chapter. The reader will find the required material on

oracle Turing machines, probabilistic Turing machines and non-uniform complexity in part A

of the appendix.

We will use the proof methods that Hava Siegelmann and Eduardo Sontag applied to the

study of Analog Recurrent Neural Networks [cf. Siegelmann, 1999]. We study the error-free

analog-digital scatter machine in Section 7.1, the precise error-prone machine in Section 7.2,

and the imprecise error-prone analog-digital scatter machine in Section 7.3. In Section 7.4, we

will make some considerations on the amount of resources spent by the scatter machine in each

action.

7.1 The error-free case

We begin by studying the error-free machine. We will show that the class of sets decidable by

error-free analog-digital scatter machines in polynomial time is exactly P/poly. We will begin

by sketching the proof for advice Turing machines, and then give a more detailed proof for

polynomial size circuits.

Linear precision suffices

We show that the configuration of an error-free analog-digital scatter machine after t steps

only depends on the first t digits of the binary expansion of the vertex position.

Lemma 7.1. Let Sx be an error-free analog-digital scatter machine, and let S̃y be an error-free

machine with the same finite control, but with the vertex placed at y = x �t. Then, for any

input w, the configurations of Sx and S̃y after t steps of computation are the same.

Proof. This comes trivially from the behaviour of the error-free analog-digital scatter machine.

Upon leaving a shooting state in the t-th step of computation, at most t − 1 symbols may

have been written on the action tape specifying the cannon position. Thus the position of the
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cannon is of the form z = n
2t−1 , for some n ∈ {0, 1, . . . , 2t−1}. Since for any z with this form we

have that z 6 x if and only if z 6 x � t, the answer state must be the left state in Sx if and

only if this is the case in S̃y. �

We may now sketch the proof that the error-free analog-digital scatter machine can decide

P/poly in polynomial time, by the way of polynomial advice. Let A be a set in P/poly, and,

by definition, let B ∈ P, f ∈ poly be such that

w ∈ A ⇐⇒ 〈w, f(|w|)〉 ∈ B.

Let f̃ : N→ Σ∗ be a function, also in poly, such that, if the symbols of f(n) are ξ1ξ2 . . . ξp(n),

then

f̃(n) = 0ξ10ξ2 . . . 0ξp(n)

We can create a error-free analog-digital scatter machine which also decides A, setting the

vertex at the position

x = 0.f̃(1)11f̃(2)11f̃(3)11 . . .

Given any input w of size n, the error-free analog-digital scatter machine Sx can use the bisec-

tion method to obtain f(n) in polynomial time. Then the machine uses the polynomial-time

algorithm which decides B, and accepts if and only if 〈w, f(n)〉 is in B. Thus we have shown

that an error-free analog-digital scatter machine can decide any set in P/poly in polynomial

time.

As for the converse, let C be any set decided in polynomial time by an error-free analog-

digital scatter machine with the vertex at the position x. Lemma 7.1 ensures that to decide

on any input w, the machine only makes use of p(|w|) digits of x, where p is a polynomial

bounding the decision time. Thus we can see that the set must be in P/poly, using the advice

function g ∈ poly, given by

g(n) = x�p(n) .

Circuits of polynomial size

We will show a more rigorous proof of the same fact, by way of polynomial size circuits. We

construct such a proof not only because circuits are representations of real-life technology, but

also because the implementation through a circuit improves our understanding of the analog-

digital scatter machine. It is known that P/poly is the class of sets decided by families of circuits

with a polynomial number of gates. We will explicitly construct the polynomial size circuits

which simulate an error-free analog-digital scatter machine, and then show that polynomial-

size circuit families can be encoded into the vertex position, in order to be simulated by an

error-free analog-digital scatter machine.

Proposition 7.2. Every set decided in polynomial time by an error-free analog-digital scatter

machine can be decided by a polynomial size family of circuits.
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The proof is similar to that of John E. Savage, as presented in [Balcázar et al., 1988],

adapted for the error-free analog-digital scatter machine.

Proof. Let A be a set decided by an error-free analog-digital scatter machine Sx in polynomial

time p. Let Q be the set of states, Σ be the working alphabet, N = dlog2 |Q|e + 1 and

M = dlog2 |Σ|e + 1. We assume, without loss of generality, that Sx has only two tapes (one

regular tape for input and rough work and one action tape), and that the heads of both tapes

are always aligned with each other during the computation. We also assume that there is only

one final state, and that after reaching this state the machine keeps looping forever in the same

state. We will construct a circuit which will simulate Sx for inputs of an arbitrary size n.

We begin by encoding the set Q of states into a binary representation with N bits which

excludes any sequence beginning with 0. The initial bit in the sequence may then be used

to signal if the state is valid or not. We assume that the shooting, left and right states are

encoded by three binary sequences, respectively qs, ql and qr, such that the bit-wise OR of qs

with ql or qr gives, respectively, ql and qr.
1 We encode each symbol in Σ as a binary sequence

of M bits, excluding the sequence 0M . At each time step of the computation we associate with

the k-th cells of the two tapes a representation of their local parameters: the contents of the

cells, whether the tape heads are over the cells, and, should the heads be scanning the cells,

the state of Sx at that moment. So this representation will be given by three binary sequences

sk(t), σk
1(t) and σk

2(t), such that

sk(t) =

0N if Sx is not reading the k-th cell at time t,

qi if Sx is reading the k-th cell at time t and in the state qi;

σk
1(t) and σk

2(t) represent the contents of the k-th cells at time t. It is by these three sequences

that we will represent a cell in the circuit simulation of an error-free analog-digital scatter

machine. The three sequences are modified every time-step of the simulated computation, by

use of two functions we will call state and symbol. The function state : {0, 1}N+2M → {0, 1}3N

is given by the following expression:

state(q, σ1, σ2) =



(0N , 0N , 0N) if q begins with a 0,

(q′, 0N , 0N) if Sx goes to q′, moving the heads left,

(0N , q′, 0N) if Sx goes to q′, not moving the heads,

(0N , 0N , q′) if Sx goes to q′, moving the heads right.

We will call l−state, m−state and r−state, to the left, middle and right parts of the state

function.

The function symbol : {0, 1}N+2M → {0, 1}2M gives the symbol to be printed on the cells,

prior to moving the tape heads. We set symbol(q, σ1, σ2) = (σ1, σ2) to any sequence q which

1 The encoding could set, e.g., qs to 001, ql to 011 and qr to 101: this way we have qs ⊕ ql = ql and qs ⊕ qr = qr, where
⊕ represents the bit-wise OR.
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begins with a 0, since the tape head must be on the cells for the written symbol to change. If

q represents a valid state, then symbol(q, σ1, σ2) is given by the transition function.

We are now ready to specify the circuit, which is represented in Fig. 7.1. Since Sx works

in polynomial time, we only need to consider a polynomial number of cells. For each of these

cells, and for each time step, we create a tape cell circuit which takes as input N+2M bits and

computes the state and symbol functions. The first N bits of input are given by the ORing of

the l−state, m−state and r−state of the neighbouring cells in the previous step. The OR gates

that go into inputs 2 to N will also receive the output of the scatter machine circuit, which

we will describe bellow. At each time step, there is only one tape cell circuit which receives a

1 on its first input: this 1 signals the position of the heads.

Fig. 7.1. A circuit to simulate the scatter machine.

We set x̃ = x�p(n) to be the truncation of the position of the vertex, and a = x̃× 2p(n). The

scatter machine circuit computes the function sm : {0, 1}N+Mp(n) → {0, 1}N , given by
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sm(q, c) =


0N if q 6= qs,

ql if c 6 a,

qr if c > a.

The first N bits of input of the circuit represent the state of the machine and are given by

an ORing of every m−state function in the previous level. The last Np(n) bits represent the

contents of the action tape and are obtained by ORing the second part of the symbol function

in the previous level. We connect the last N − 1 outputs of the scatter machine circuit to the

OR gates which feed into the inputs number 2 to N of every tape cell circuit in the following

level.

We add an output circuit which takes the ORing of every m−state function in the last

level and checks if the obtained bits represent the final state. The size of the tape cell and

the output circuits is O(1), while each scatter machine and connections between levels cost

O(p(n)). Thus the whole circuit has a cost of O(p(n)2), which is polynomial in the size of the

input. �

In order to have an error-free analog-digital scatter machine simulate families of circuits,

we will need to code the circuits in some fashion. We thus make use of the following:

Lemma 7.3 (circuit encoding). There is an injective, total encoding function of feed-forward

circuits into binary sequences, say c̃, such that

1. every circuit of size n is encoded into a binary sequence of size n2 + 2n, and

2. the sequence 11 never appears in the encoding of any circuit.

Proof. We encode a circuit of n gates as a graph. In our coding, the first n2− n bits represent

the edge matrix. Since the graph is feed-forward, we encode n2−n
2

edges, times two bits 01 to

signal that there is an edge, and two bits 00 to mean that there is no edge. The last 3n bits

represent the type of gate: 000 codes for an AND gate, 001 codes for an OR gate, and 010

codes for a NOT gate. Notice that 11 will never appear in the encoding. �

Proposition 7.4. Every set decided by a polynomial size family of circuits can be decided in

polynomial time by an error-free analog-digital scatter machine.

Proof. Let A be a set which is decided by a family C = C1, C2, . . . of circuits. Let p be a

polynomial bound on the size of the family of circuits, i.e., p is a polynomial such that Cn,

which decides the membership in A for inputs of size n, has no more than p(n) gates. We

construct an error-free analog-digital scatter machine, Sx, with the vertex positioned at x =

0.c̃(C1)11c̃(C2)11 . . . We can find the digits which encode the circuit Cn among the first

k =
n∑

i=1

(
p(i)2 + 2p(i) + 2

)
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digits of x. Thus, for Sx to decide if w of size n is in A, Sx extracts the first k digits of x

using the bisection method, obtains the digits which encode Cn, and uses any polynomial-time

algorithm for simulating the circuit. This is done in a polynomial number of steps, since k is

polynomial in n. �

As already mentioned, the class of sets decided by polynomial size circuits is exactly P/poly

[cf., e.g., Balcázar et al., 1988], and so we conclude the following.

Theorem 7.5. The class of sets decided by error-free analog-digital scatter machines in poly-

nomial time is exactly P/poly.

7.2 The precise error-prone case

In this chapter we investigate the class of sets decidable in polynomial time by a precise

error-prone analog-digital scatter machine. We will conclude that the computational power

of these machines is not altered by considering a controllable error, since they decide exactly

BPP//poly = P/poly in polynomial time.

Linear precision suffices

As in section 7.1, we show that only a linear number of digits of the vertex position influences

the outcome of the computation. Since the behaviour of the error-prone analog-digital scatter

machines is probabilistic, we can not ensure that the state of the machine is the same after t(n)

steps. Instead we show that if a machine halts in t(n) steps with small enough error-probability,

then this machine will decide the same set if the vertex position is truncated to O(t(n)) digits.

Proposition 7.6. Let Sx be a precise error-prone analog-digital scatter machine, deciding some

set in time t(n) with error probability bounded by γ < 1
4
. Let S̃y be a precise error-prone

analog-digital scatter machine, with the same finite control as Sx and with the vertex placed at

y = x �5t(n). Then Sx and S̃y make the same decision on every input of size smaller or equal

to n.

Proof. For each input w with |w| = n, the machines Sx and S̃y can perform a limited number

of distinct computations. Each computation corresponds to different outcomes in the possible

scatter machine experiments carried out by Sx. There are only two possible outcomes, left or

right, and so the number of distinct computations is at most 2t(n). Among these computations,

some will give a correct decision for w, and some will give an incorrect decision.

If the machines Sx and S̃y command the cannon to shoot from the same dyadic position z,

then we can express the probability that the outcome for Sx is different than the outcome for

S̃y, which we denote by δz. Then δz is bounded by a value δ, given by

δz 6 δ =
|x− y|

2ε
.
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After carrying out t(n) steps or less, the size of the word representing z, which was written in

the action tape, is bounded by t(n), and thus the error in aiming the cannon is no smaller than

ε̃ = 2−t(n)−1. We can then conclude that δ 6 2t(n)|x− y|. Since the chosen truncation gives us

|x− y| 6 2−5t(n), we then bound δ 6 2−4t(n).

We thus see that if the Sx and S̃y have the same configuration, at some point in their

computations, then the probability that their configuration becomes different in the following

step of computation is at most δ 6 2−4t(n). Now, let C denote the set of the computations that

make an incorrect decision. Each computation c ∈ C is represented by a sequence c0, c1, . . . , ct(n)

of configurations, and to each configuration we can assign a probability value ai+1 which

represents the probability that the machine Sx goes from configuration ci to ci+1. The value

ai+1 can be understood as the probability of Sx making a bad transition after configuration ci.

The probability of Sx making an incorrect decision, i.e., the error probability of Sx, is given by

∑
c∈C

t(n)∏
i=1

ai 6 γ <
1

4
. (7.1)

Now, in the worst-case scenario, the probability of S̃y making a bad transition will be

increased by δ for every possible bad transition. We can see that, in this case, the error

probability of S̃y is less or equal to

∑
c∈C

t(n)∏
i=1

(ai + δ) 6
∑
c∈C

t(n)∏
i=1

max(ai, 2
−3t(n))

t(n)∏
i=1

(
1 + 2−t(n)

) .

A simple calculation will show us that
∏t(n)

i=1

(
1 + 2−t(n)

)
< 2. From (7.1) and |C| 6 2t(n) we

deduce ∑
c∈C

t(n)∏
i=1

max(ai, 2
−3t(n)) 6

1

4
.

And so
∑

c∈C

∏t(n)
i=1 (ai + δ) < 1

4
×2 = 1

2
. Thus, S̃y decides in the same way as Sx, with bounded

error probability. �

This allows us to show the following.

Proposition 7.7. Every set decided by a precise error-prone analog-digital scatter machine in

polynomial time is in BPP//poly.

Proof. Let A be a set decided by a precise error-free analog-digital scatter machine Sx in

polynomial time p, and with an error probability bounded by 1
4
. We use the advice function

f ∈ poly, given by f(n) = x �5p(n), to construct a probabilistic Turing machine M which

decides A in polynomial time and with bounded error probability.

Given any dyadic rational x̃ ∈ [0, 1], the machineM can carry out a Bernoulli trial X with

an associated probability P(X = 1) = x̃. If x̃ has the binary expansion ξ1 . . . ξk, the machineM
tosses its balanced coin k times, and constructs a word τ1 . . . τk, where τi is 1 if the coin turns
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up heads and 0 otherwise. The Bernoulli trial will have the outcome 1 if ξ1 . . . ξk < τ1 . . . τk,

and 0 otherwise, and this will give the desired probability.

The probabilistic machineM will decide if w ∈ A by simulating Sx on the input w as if the

vertex was placed at the position x̃ = x �5p(n). In order to mimic the shooting of the cannon

from the position z, which should have an error ε = 2−|z|−1, the machine will carry out a

Bernoulli trial X with an associated dyadic probability

P(X = 1) =


1 if z < x̃− ε,
1
2

+ x̃−z
2ε

if x̃− ε 6 z 6 x̃+ ε,

0 if z > x̃+ ε.

ThenM will simulate a left hit when X = 1 and a right hit when X = 0. As we have seen in

the previous proposition, Sx will, when simulated in this way, decide the same set in polynomial

time and with bounded error probability. �

Using the modified bisection method

The following inclusion can be demonstrated by using the modified bisection method.

Proposition 7.8. Every set in BPP//poly can be decided in polynomial time by a precise

error-prone analog-digital scatter machine.

Proof. Let A be an arbitrary set in BPP//poly. Since BPP//poly = P/poly, let B ∈ P,

f ∈ poly be witnesses that A ∈ P/poly. Let f̃ : N→ Σ∗ be a function, also in poly, such that

f̃(n) = 0ξ10ξ2 . . . 0ξp(n), where f(n) = ξ1ξ2 . . . ξp(n)

We can now create a precise error-prone analog-digital scatter machine, Sx, which decides A,

setting the vertex at the position

x = 0.f̃(1)11f̃(2)11f̃(3)11 . . .

If we assume that |f(n)| 6 p(n) for some polynomial p, then |f̃(n)| 6 2p(n), and f̃(n) may be

obtained from the first 2np(n) + 2n − 2 digits of x. Given an input w of size n, the machine

uses the modified bisection method to obtain these digits, which should require O(n2p(n)2)

steps, and then uses the obtained advice to decide in polynomial time whether 〈x, f(n)〉 is in

B. Sx accepts if this is the case, and rejects otherwise. �

7.3 Increasing the error

We will now study the class of sets decidable in polynomial time by an imprecise error-prone

analog-digital scatter machine. We begin by showing that the computations of an imprecise
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error-prone analog-digital scatter machine only depend on a number of digits of the position

of the vertex logarithmic in the number of computation steps. We will then show that such

machines may, in polynomial time, make probabilistic guesses of up to a logarithmic number of

digits of the position of the vertex. We will then conclude that these machines decide exactly

BPP/log∗.

Logarithmic precision suffices

The first result is similar to that of the previous two sections. We will show that the decision

of an imprecise error-prone analog-digital scatter machine remains the same if we only keep

a logarithmic number of digits of the position of the vertex. However, this result is harder to

prove, because we may not make δ (as in the proof of Proposition 7.6) as small as before. We

have considered, in the proof of Proposition 7.6, the set of all computations making a wrong

decision on a certain input. In order to prove something similar to Proposition 7.6 for imprecise

error-prone machines, we will need to study the structure of this set of computations in more

detail.

Our first observation is that the set of possible computations can be arranged in a tree-

like structure, where each path of the tree from the root to a leaf corresponds to a possible

computation. In this tree of probabilistic computations, we may assign a probability value to

each edge. We will obtain the following structure.

Definition 7.9. A probabilistic tree A is a pair A = 〈TA, pA〉, where

1. TA = 〈N0,NA, EA〉 is a finite rooted tree with a set NA of nodes, a set EA of edges, and a

root N0 ∈ NA,

2. pA is a function from EA to [0, 1], which assigns a probability value to each edge of TA, and

3. For every N ∈ NA, the sum of the probability values for the outgoing edges of N is no more

than 1, i.e., ∑
N→M∈EA

pA(N →M) 6 1.

The outdegree of A is simply the outdegree of TA, i.e., the maximum number of outgoing

edges from any node in TA. The height of A is the length of the largest path from the root of

TA to any of its leaves. For each path N0 → N1 → . . . → Nt, where N0 is the root and Nt is

a leaf, we define the corresponding probability path in A by the sequence a1 . . . at given by

ai = pA(Ni−1 → Ni), 1 6 i 6 t. We denote the set of all probability paths in A by Paths(A).

The probability value of A is given by:

Prb(A) =
∑

a1...ak∈Paths(A)

k∏
i=1

ai.

We will be interested in considering the case when every probability value in every probability

path is increased by a positive value δ. We will then denote the added probability value of

A by δ > 0, by
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Prb(A+ δ) =
∑

a1...ak∈Paths(A)

k∏
i=1

(ai + δ).

Finally, A will be called partial whenever Prb(A) < 1, and it will be called grown when all

paths from the root to the leaves have the same length.

Proposition 7.10. Let t, u ∈ N. Let A be a probabilistic tree with height t and outdegree of at

most 2. Then there is a probabilistic tree C with height t and outdegree at most u+2 such that

(∀N →M ∈ EC) pC(N →M) 6
1

u
, (7.2)

Prb(A) = Prb(C) (7.3)

and for any δ > 0,

Prb(A+ δ) 6 Prb(C + δ) (7.4)

Furthermore, if A is grown, then so is C.

Proof. The proof is by induction in the height of A. If t = 0, then A must have a single node

(the root), and setting C = A will trivially verify (7.2), (7.3) and (7.4). Now suppose that

t = n+ 1. Then, because A has an out-degree of at most 2, then A must have a root node and

one or two rooted subtrees. We will ignore the case when there is only one subtree, because it

is proved in the exact same way as the case for two subtrees.

So let A1 and A2, of height n, be the two subtrees of A below N . Let N1 and N2 be the root

nodes of A1 and A2, p1 = pA(N → N1) and p2 = pA(N → N2). Then choose α1, α2 ∈ (0, 1
u
],

β1, β2 ∈ {0, 1, . . . , u} to be the unique numbers such that

p1 = β1
1

u
+ α1 p2 = β2

1

u
+ α2.

Then β1 + β2 6 u.

By induction hypothesis there must be two trees C1 and C2 which verify (7.2), (7.3) and

(7.4), with respect to A1 and A2. Furthermore, C1 and C2 will be grown whenever A1, resp.

A2, are grown.

Now construct the tree C in the following way. The root of C will be a node N with

β1 + β2 + 2 6 u + 2 outgoing edges; β1 + 1 of these edges will connect to the root of C1, the

first β1 of which will have a probability value 1
u
, and the last one will have a probability value

α1; the remaining β2 + 1 edges connect to the root of C2, and the first β2 of these will have a

probability value 1
u
, and the last edge will have a probability value of α2. This is illustrated in

Fig. 7.2.

Clearly, because C1 and C2 satisfy (7.2), then so will C. The probability value of C is given

by

Prb(C) =
∑

c1...ck∈Paths(C)

k∏
i=1

ci = (β1
1

u
+ α1)Prb(C1) + (β2

1

u
+ α2)Prb(C2).
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Fig. 7.2. Inductive step: changing from A (to the left) to C (to the right).

This value simplifies to p1Prb(A1) + p2Prb(A2) = Prb(A), which then gives (7.3). Finally, we

may calculate

Prb(C + δ) =

(
β1

(
1

u
+ δ

)
+ (α1 + δ)

)
Prb(C1 + δ)+

(
β2

(
1

u
+ δ

)
+ (α2 + δ)

)
Prb(C2 + δ).

And this last expression is greater or equal to (p1 + δ)Prb(A1 + δ) + (p2 + δ)Prb(A2 + δ) =

Prb(A+ δ), resulting in (7.4). The outdegree of C is no more than u+ 2, and C will be grown

whenever A is grown. �

Proposition 7.11. Let Sx be an imprecise error-prone analog-digital scatter machine. Suppose

Sx decides some set in constructible time t, with error probability bounded by γ < 1
4e

.2 Then

if we set y = x �2 log(t(n))+7, and S̃y is an imprecise error-prone machine with the same finite

control as Sx, then Sx and S̃y make the same probabilistic decision on every input of size less

or equal to n.

Proof. The proof goes along the same lines as the proof of Proposition 7.6. Let w be an input

of size m 6 n. We construct the probabilistic tree E of all possible computation of Sx on w.

Each node in this tree is a configuration. At the root of the tree is the initial configuration. If

a configuration M follows deterministically from a configuration N ∈ NE, then we add M to

NE and N → M to EE, setting pE(N → M) = 1. However, if a configuration N ∈ NE is in

the shooting state, then there may be a positive probability of obtaining a configuration N1

in the left state or a configuration N2 in the right state, after the scatter machine equipment

carries out the experiment. In this case, we add N1 and N2 to NE, as well as N → N1, N → N2

to EE, and set pE(N → N1) to the probability of obtaining a left hit after shooting the

cannon with the value z written on the query tape in configuration c. Obviously, we set

pE(N → N2) = 1 − pE(N → N1). We may assume without loss of generality that every

possible computation in Sx halts after the same number of steps, because if this is not the

case then we may, by the time-constructibility of t, choose another error-prone analog-digital

scatter machine in which a clock forces this condition. For this reason, the tree E will be a

2 Here, “e” stands for the Napier’s number.
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grown tree with height t(m) + 1, and every path in Paths(E) will have a length of exactly

t(m).

Preparing the tree E in this way, we may select from the paths of E those which lead to

a bad decision, and obtain a grown partial tree A, of height t(m) + 1 and outdegree at most

2. Then the error probability of Sx will be Prb(A). As in the proof of Proposition 7.6, we can

see that the probability of Sx and S̃y obtaining a different response after making the same

experiment with the cannon set at position z, δz, is bounded by a value δ:

δz 6 δ =
|x− y|

2ε
.

Where ε = 1
2

is the fixed error when aiming the cannon. So, because 25 > e3, we get

|x− y| 6 2−2 log t(m)−7 <
1

4e3t(m)2
.

This gives us δ < 1
4e3t(m)2

. Now, in the worst case scenario, the probability of choosing a bad

transition, i.e., the probability of staying in a configuration in the tree A of bad computation

paths, will be increased by δ at each transition. And so the error probability of S̃y will be

bounded above by ∑
a1...at(m)∈Paths(A)

t(m)∏
i=1

(ai + δ) = Prb(A+ δ).

By Proposition 7.10, there must be a grown probabilistic tree C with height t(m) + 1 and

outdegree at most t(m) + 2 such that

(∀N →M ∈ EC) pC(N →M) 6
1

t(m)
, (7.5)

Prb(A) = Prb(C), and (7.6)

Prb(A+ δ) 6 Prb(C + δ). (7.7)

We begin by showing that

∑
c1...ct(m)∈Paths(C)

t(m)∏
i=1

max

(
ci,

1

4t(m)e3

)
<

1

2e
. (7.8)

In fact, we may separate Paths(C) into two disjoint sets P1 and P2. In P1 we will find the

paths c1 . . . ct(m) such that every ci > 1
4t(m)e3

. In P2 we will find the remaining paths, i.e., those

for which some ck <
1

4t(m)e3
. Then,

∑
c1...ct(m)∈Paths(C)

t(m)∏
i=1

max

(
ci,

1

4t(m)e3

)
=

∑
c1...ct(m)∈P1

t(m)∏
i=1

ci+
∑

c1...ct(m)∈P2

t(m)∏
i=1

max

(
ci,

1

4t(m)e3

)
.
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Now, because ci <
1

t(m)
, by (7.5), because there are at most (t(m) + 2)t(m) paths in C, and

because in every c1 . . . ct(m) ∈ P2 there is some ck <
1

4t(m)e3
, we find

∑
c1...ct(m)∈P1

t(m)∏
i=1

ci +
∑

c1...ct(m)∈P2

t(m)∏
i=1

max

(
ci,

1

4t(m)e3

)
< Prb(C) +

1

4e3

(
t(m) + 2

t(m)

)t(m)

.

From (7.6) we see that Prb(C) = Prb(A) < 1
4e

, and so

∑
c1...ct(m)∈Paths(C)

t(m)∏
i=1

max

(
ci,

1

4t(m)e3

)
<

1

2e
+

e2

4e3

which is exactly (7.8). We are now ready to end the proof. Because of (7.7), we have

Prb(A+ δ) 6 Prb(C + δ) 6
∑

c1...ct(m)∈Paths(C)

t(m)∏
i=1

(
max

(
ci,

1

4e3t(m)

)
+ δ

)
.

We therefore find

Prb(A+ δ) 6
∑

c1...ct(m)∈Paths(C)

t(m)∏
i=1

max

(
ci,

1

4e3t(m)

) t(m)∏
i=1

(
1 + 4e3t(m)δ

)
. (7.9)

Now, because of our bound δ < 1
4e3t(m)2

, we see that

t(m)∏
i=1

(
1 + 4e3t(m)δ

)
<

t(m)∏
i=1

(
1 +

1

t(m)

)
< e.

Considering this bound along with (7.8), and substituting in (7.9), we get Prb(A+ δ) < 1
2
, as

intended. �

Proposition 7.12. Every set decided by an imprecise error-prone analog-digital scatter ma-

chine in polynomial time is in BPP//log∗.

Proof. The proof is in every way similar to the proof of Proposition 7.7, using the advice

function f(n) = x�2 log p(n)+7. �

Guessing the advice

We will now use the probabilistic bisection method to show that it is possible for an impre-

cise error-prone analog-digital scatter machine to guess any prefix advice function in log in

polynomial time.

Lemma 7.13. For any δ < 1
2
, and prefix function f ∈ log, there is an imprecise error-prone

analog-digital scatter machine which obtains f(n) in polynomial time with an error of at most

δ.
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Proof. Let f be a prefix function in log, and a, b ∈ N be such that |f(n)| = ba log n + bc. We

show that there is a real value 0 6 x 6 1 such that it is possible to obtain the value f(n) from

a logarithmic number of digits of x. Since f is a prefix function, we can consider the sequence

ϕ which is the limit of f(n) as n → ∞. Let ϕn be the n-th symbol (1 or 0) in this sequence,

and set x =
∑∞

n=1 ϕn2−n. Then, since f is not ultimately constant, the digits in the binary

expansion of x are exactly the symbols of ϕ. Thus, the value f(n) can be obtained from the

first ba log n+ bc digits of the binary expansion of x.

We may then use an imprecise error-prone analog-digital scatter machine Sx, together with

the probabilistic bisection method, to obtain the first ba log n + bc digits of x with bounded

error probability δ in O(22ba log n+2bc) ∈ O(n2a) steps of computation. �

Proposition 7.14. An imprecise error-prone analog-digital scatter machine can decide any set

in BPP//log∗ in polynomial time.

Proof. Let A be an arbitrary set in BPP//log∗. Let M be a probabilistic Turing machine

which decides A with prefix advice f ∈ log in a polynomial number of steps, and with an

error γ < 1
7
. Let a, b ∈ N be such that |f(n)| = ba log n + bc. We construct an imprecise

error-prone analog-digital scatter machine, Sx, which estimates f(n) with an error δ < 1
4
, as in

the Lemma 7.13. The vertex of Sx is in the position x = 1
2
− ε+2rε, and there is a probability

of at least 3
4

that after obtaining r̃ the error is |r̃ − r| 6 2−a log n−b. After estimating r̃, Sx

prepares the cannon to be placed in the position x̃ = 1
2
− ε + 2r̃ε, which must then obey

|x̃ − x| = 2ε|r̃ − r| 6 2ε2−a log n−b. This way, whenever the coupled Turing machine begins an

experiment, the cannon will be placed somewhere in the interval [x̃− ε, x̃+ ε], with a uniform

probability. So the probability of obtaining a left hit is p̃ = 1
2

+ x − x̃, while the probability

of a coin-toss of M getting a heads is p = 1
2
. The machine Sx will then use the cannon as a

coin, in order to simulate the probabilistic machineM: a left hit will represent a heads and a

right hit will represent a tails. During the computation ofM, as well as during the simulation

of M performed by Sx, a sequence of random bits will be generated. The probability of M
obtaining a bad sequence, i.e., which leadsM to a wrong decision, is bounded above by γ. For

a specific sequence r1 . . . rt with R heads, the probability of it being generated byM is

P(M← r1 . . . rt) = pR(1− p)t−R,

while the probability of the same sequence being generated by Sx is

P(Sx ← r1 . . . rt) = p̃R(1− p̃)t−R.

Take q = (1− p) = 1
2

and q̃ = (1− p̃). We will consider the two cases (I) p̃ 6 p and (II) p̃ > p.

For case (I) we get q̃ > q and arrive at

P(Sx ← r1 . . . rt)

P(M← r1 . . . rt)
6

(
q̃

q

)t

=

(
1 +

q̃ − q
q

)t

6

(
1 +
|q̃ − q|
q

)t

.
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In the case (II), where q̃ < q, we obtain

P(M← r1 . . . rt)

P(Sx ← r1 . . . rt)
6

(
1 +
|q − q̃|
q̃

)t

.

Since q and q̃ are bounded below by 1
4
, then both of the above fractions are, respectively in

the case (I) and (II), bounded above by

(1 + 4|q̃ − q|)t 6 exp(4|x̃− x|t) 6 exp
(
8ε2−a log n−bt

)
.

Since M decides in polynomial time, we may assume that the size of the needed random

sequence is bounded by t 6 nk for some k, and since we can always pad the advice f , we will

also assume that a > k, b > log( 8ε
ln γ̃

),3 for some 1 < γ̃ < min( 1
7γ
, 6

5
). For these values of a, b

and γ̃, the fractions
P(Sx ← r1 . . . rt)

P(M← r1 . . . rt)
and

P(M← r1 . . . rt)

P(Sx ← r1 . . . rt)
are, respectively for case (I) and

(II), less or equal to

exp
(
8ε2−a log n−bt

)
6 γ̃

We now make use of the obvious identity P(A) =
P(A)

P(B)
P(B). For case (I), when p̃ 6 p, we

conclude that the probability of Sx obtaining a bad sequence is bounded by

P(Sx ← bad seq.) 6 γ̃P(M← bad seq.) 6 γ̃γ <
1

7
<

1

3

For case (II), when p̃ > p, let us suppose that the probability of Sx obtaining a good sequence is

less or equal to 5
7
. Then the probability ofM obtaining such a good sequence is also bounded,

by

P(M← good seq.) 6 γ̃P(Sx ← good seq.) 6 γ̃
5

7
<

6

7
.

We know this is not true, since P(M← good seq.) > (1 − γ) = 6
7
. By contradiction we infer

that P (Sx ← good seq.) > 5
7
, and thus P (Sx ← bad seq.) 6 2

7
< 1

3
.

We can see that the probability of obtaining a bad approximation of r is less than 1
4
, and

the probability of using a good approximation to generate a bad sequence of simulated coin

tosses is less than 1
3
, so the probability of Sx making an error must be less than 1

4
+ 3

4
× 1

3
= 1

2
.

SoM correctly decides A with an error probability bounded by 1
2
. �

7.4 Introducing a constraint

Nowhere in our study of the scatter machine, or of experimental computation in general, did

we account for the amount of resources which would, presumably, be necessary to carry out

experiments in the equipment. In the case of the scatter machine, resources such as energy,

time, mass, volume, etc, are constant for each action, but if the scatter machine is to be

3 Here, ln stands for the natural logarithm.
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considered as a versatile metaphor, it is important to make a though experiment where this is

not true.

We will thus introduce an ad-hoc mechanism to study this case. In this section we will inves-

tigate a variation of the error-free analog-digital scatter machine, called resource-spending

error-free analog-digital scatter machine, obtained in the following way. We define that,

for this machine, each action uses a certain number of resource units. The interesting case will

only occur when the amount of used resources is high, and so we will say that action ay uses

2|y| resource units, where y is seen as a word in {1} ∪ {0s : s ∈ {0, 1}∗}.
This definition can be intuitively understood as saying that the extraction of more informa-

tion requires an exponential increase in the number of resources used. We now impose that each

computation is performed in a polynomial number of steps and with a polynomial number of

resource units. We show that in this case the power of the analog-digital scatter machine is

reduced.

Logarithmic precision suffices

In a similar way as before, we will show that when using a polynomial number of resource units,

the resource-spending error-free analog-digital scatter machine only makes use of a bounded

number of digits of the vertex position.

Lemma 7.15. Let Sx be a resource-spending error-free analog-digital scatter machine. Let S̃y

be a resource-spending error-free machine with the same finite control, but with the vertex

placed at the position y = x �dlog ee. Then, for any input w, the state of Sx and S̃y after using

e or less resource units is the same.

Proof. The proof is very similar to that of Lemma 7.1. Upon leaving the shooting state and

having spent at most e resource units, no more than log e symbols may have been written

on the action tape, and thus the position of the cannon is of the form z = n
2log e , for some

n ∈ {0, 1, . . . , 2log e}. Since z 6 x if and only if z 6 x �dlog ee, the answer state must be the left

state in Sx if and only if this is the case in S̃y. �

This lemma allows us to obtain the following result.

Proposition 7.16. Every set decided by a resource-spending error-free analog-digital scatter

machine in polynomial time and using polynomial resources is in P/log∗.

Proof. Take an arbitrary set A decided in polynomial time, and using a polynomial number

nk of resource units, by a resource-spending error-free analog-digital scatter machine Sx. The

advice function f , given by

f(n) = x�dk log ne,

is a prefix function in log. We construct a Turing machineM which simulates Sx. To simulate

Sx on inputs of size n, M simulates Sx using the vertex position x̃ = f(ñ), for any ñ > n.
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Every experiment performed by Sx is replaced by a simple less-or-equal predicate: if s1 . . . sm

is written on the action tape, then M simulates a left hit if
∑m

i=0 2−isi 6 x̃, and a right hit

otherwise. By the Lemma 7.15, and since Sx is assumed to use at most nk resource units, the

set decided in this way is exactly A. Because Sx can be simulated in polynomial time, and ñ

can be arbitrarily larger than n, we see that A ∈ P/log∗. �

Equivalence to P/log∗

As the reader may have intuited, resource-spending error-free analog-digital scatter machines

may use the vertex as logarithmic prefix advice. This will lead to the following theorem.

Theorem 7.17. The class of sets decided by resource-spending error-free analog-digital scatter

machines in polynomial time and using polynomial resources is exactly P/log∗.

We must still demonstrate the following inclusion:

Proposition 7.18. Any set in P/log∗ can be decided by a resource-spending error-free analog-

digital scatter machine in polynomial time and using polynomial resources.

Proof. Let A be an arbitrary set in P/log∗, with the witnesses B ∈ P and prefix function

f ∈ log such that |f(n)| = ba log n + bc for some a, b ∈ N. We show that there is a real value

0 6 x 6 1 such that it is possible to obtain the value f(n) from a logarithmic number of digits

of x. If f(n) is ultimately constant, then the result is trivial, and so we assume it is not so.

Since f is a prefix function, we can consider the infinite sequence ϕ which is the limit sequence

obtained from f(n) as n → ∞. Let ϕk be the k-th symbol (1 or 0) in this sequence, and set

x =
∑∞

k=1 ϕk2
−k. Since f is not ultimately constant the digits in the binary expansion of x

are exactly the symbols of ϕ.4 Then the value f(n) can be obtained from the first ba log n+ bc
digits of x. To decide A we construct an resource-spending error-free analog-digital scatter

machine Sx. Using the bisection method, Sx may obtain the required digits by making O(|f(n)|)
experiments, each writing O(|f(n)|) symbols in the action tape. This amounts to polynomial

time O((a log n + b)2) ⊂ O(n) and polynomial resources O((a log n + b)2a log n+b) ⊂ O(na+1).

Having obtained the value of f(n) in this way, Sx uses the polynomial time algorithm for B.

�

4 This is the reason why we demand that f is not ultimately constant. If this were the case, then the corresponding
real number r would have two binary expansions, one ending with an infinite trail of 0s, and the other with an infinite
sequence of 1s.
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Examining the results

In the previous chapter we have characterised the polynomial time computations of the analog-

digital scatter machine, under different assumptions regarding the placement of the cannon. In

every case, we arrive at a hypercomputational power. The class P/poly, for instance, contains

the undecidable tally halting set {0n : the Turing machine coded by n halts on input 0}.
We will devote this chapter to analysing the implications of these results. In Section 8.1,

we will describe why the scatter machine is not physically plausible, but why it is nevertheless

physically and philosophically relevant. Section 8.2 will concern a weaker variant of the physical

Church–Turing thesis, suggested by the scatter machine and other similar models. In Section

8.3, we show how the scatter machine can be used to form a possible argument on the structure

of the Universe.

8.1 The plausibility and relevance of the Scatter Machine

As we have studied in Section 5.3, an equipment for experimental computation can achieve

one of four different levels of plausibility. The scatter machine, as the reader already realised,

is a highly implausible physical system, which can only be said to exist in imagination. The

sub-theory T , as well as its variants T1, T2 and T3, are highly abstract, and most of their

idealised assumptions do not apply in reality. In order to use the scatter machine equipment as

an oracle, we need to assume that we can have an infinitely sharp wedge, or at least a wedge

which can be made arbitrarily sharp throughout the computation, and that the vertex is placed

on a precise point x. Without these assumptions, the scatter machine becomes useless, since its

computational properties arise exclusively from the value of x. The existence of an arbitrarily

sharp wedge contradicts atomic theory, and for this reason the scatter machine, as described

in Chapter 6, is not a valid counterexample to the physical Church–Turing thesis. We could

also find other reasons.

If this is the case, then what is the relevance of the analog-digital scatter machine as a

model of computation? We have two answers to this question.

Our first answer is that the scatter machine is relevant when it is seen as a metaphor, and as

a Gedankenexperiment. Notice that the essential properties of the scatter machine do not stem

from the use of barriers for deflection, or from the use of cannons for shooting the particles:

the fundamental mechanism arises from the possibility of measuring an answer to the predicate
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y 6 x, for a fixed real value x and a given dyadic rational y. In our discussion, we could

have replaced the barriers, particles, cannons and particle detectors with any other physical

system with this behaviour. So the scatter machine becomes a tool to answer the more general

question:

If we have a physical system to measure an answer to the predicate y 6 x, to what extent

can we use this system in feasible computations?

The error or difficulty that such a measurement entails can be represented, in the scatter

machine, by making assumptions on the placement of the cannon. We have given an answer

to this question for the case when there is no error and for two simplistic models of error. We

have also studied the case when more precise measurements require a high amount of some

resource.

Using the scatter machine in this metaphorical sense, it is very interesting to notice that a

system to measure the answer to the predicate y 6 x is very limited in its computational power,

unless the precision of measurement can be made arbitrarily high — such as in Sections 7.1 and

7.2. Without this proviso, the access to the information of x becomes difficult, or extremely

slow. Even with controllable error, it does not appear that such a system can be feasibly used,

e.g., to answer the halting problem or to solve NP-complete problems. In the first case, it would

take an unfeasible number of O(2n) experiments to obtain an answer for the halting problem

on inputs of size n, and for the second case, it is unlikely that NP is contained in P/poly,

because this would imply the collapse of the polynomial hierarchy [cf. Karp and Lipton, 1980].

The second answer was already hinted in Section 5.1. Our study of the scatter machine

shows that certain idealisations in Newtonian mechanics imply the existence of systems in

which we do not believe in.1 This allows us to revise the applicability of the relevant sub-

theories, and discover that non-computable phenomena can arise even when we bound the

time, mass, volume and energy of the considered systems. We are then led to find the necessary

conditions for the systems of T to implement only Turing computable functions. At this point,

it should be plain to the reader that if x ∈ [0, 1] is a computable real number, in the sense

of Turing [1936], then the analog-digital scatter machine Sx can be simulated by an ordinary

Turing machine, and the hypercomputational power is lost. This has led Beggs and Tucker

[2007a] to consider whether it makes sense to introduce concepts of classical computability

into physical theories. Such a bold idea is the result of studying experimental computation,

and it is supported by the same arguments presented in Section 4.3 for the Church–Turing

criterion.

The author believes that parts I and II of this dissertation provide a good guide for one

way to explore the relationship between physics and computability. Thus far, we have refrained

from stating the author’s personal opinion on the possibility of hypercomputation. This was

done consciously and purposefully, for three reasons. First, the presented work is the outcome

of collaborations and discussions with different people, who do not always share the author’s

1 The idea of a real scatter machine is patently absurd, even comical. Still, it does provide bad science fiction with a
promising number of dialogues (“Is the giant triangle aligned for hypercomputation?” — “Aye, Captain!” — “Then
command the cannon to shoot at the prearranged dyadic rational!”).
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opinion on the plausibility of hypercomputation. Second, the author’s personal opinion is

precisely and only that; being an opinion on an open problem, it is necessarily based on faith,

vague intuitions, partial results, and poetic inclination. The third, and most important reason,

is that the purpose of this text is not to persuade the reader that hypercomputers may or

may not exist, but to convince that the study of hypercomputational physical phenomena is

interesting and important, since the existence or non-existence of these phenomena carries

important implications for physics, computability and the philosophy of science.

Having said that, we will reveal our opinion, because it is pertinent for this section to

do so. The author personally believes that the simulation thesis, and by implication every

thesis presented so far, is true. A certain faith that the rules of the universe can be fully

understood, as mentioned in Section 4.3, forms the basis of our belief. The partial results

of Turing [1936], Gandy [1980] and Sieg [2007] for the human computor and the Church–

Turing theses offer some, preliminary evidence for the much stronger simulation thesis. Our

main reason, however, for believing in the simulation thesis, is a highly unscientific feeling

of awe towards the mathematical notion of computability, a recurring surprise that such a

characterisation was found, and a compulsive admiration for those who found it. These motives

lead the author to believe that the notion of computability conceals a profound truth about the

Universe, and the simulation thesis is the most polished expression of what this truth might

be.

We could be drastically wrong, however. The point to be emphasised is that the relationship

between computability and physics should be investigated further, and that the three methods

which we have presented can be used to guide such an investigation. The scatter machine, for

its simplicity and clarity, serves as an ideal introduction to such research, and thus becomes

relevant, irrespectively of its physical plausibility.

8.2 A weaker variant of the physical Church–Turing thesis

Consider the hypothesis, which we believe to be false, that the scatter machine, as an equip-

ment, could exist in practice. Should we then procure an adequate construction language, we

would likely find that it could only specify systems where the vertex of the wedge is placed

at computable points. This is because current technology is clearly not hypercomputational,

and it would thus presumably be unable to overview the placement of the wedge at a non-

computable position.

This hypothetical situation illustrates the case of a hypercomputer that can exist in prac-

tice, but not in actuality. There are other examples of abstract physical systems in the same

circumstances, such as Hava Siegelmann’s [1999] suggestion of a system of mirrors to simulate

Analog Recurrent Neural Networks, and Pour-el and Richard’s non-computable wave function

[cf. Beggs and Tucker, 2004, Section 6.1]. The type of systems that, in the words of Martin

Davis [2006a], have no more non-computability than the non-computability which is built into

them, suggests the following weaker variant of the physical Church–Turing thesis.
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The weak physical Church–Turing thesis

Every function computed by an effectively buildable finite physical system

can be computed by a Turing machine.

With this thesis, we recover the useful and vague notion of effectiveness, but now say that

it is the construction of the system which should be effective, rather than the behaviour itself.

The weak physical Church–Turing thesis concerns most especially the relativistic computer

of Mark Hogarth [Hogarth, 1994, Etesi and Németi, 2002, Welch, 2006], and the quantum

adiabatic computer of Kieu [Kieu, 2002, 2003]. These are the candidate possible violations of

the weak physical Church–Turing thesis. It seems that the described systems could exist in

theory, but this may be due to overly generous theoretical assumptions, such those of Section

6.1 above. It is a matter of great debate whether these systems can exist in practice [see

Tsirelson, 2001, Hodges, 2005, Smith, 2006b, Hagar and Korolev, 2006, Kieu, 2001, 2006a,b,

Németi and Dávid, 2006]. This debate would surely benefit from a thorough study in the style

of Beggs and Tucker.

If it does become settled that the systems are in the experimental domain of some theory, it

is still unclear, and this is the crux of the weak physical Church–Turing thesis, whether we can

actually build these systems. In the case of the relativistic and quantum adiabatic computers,

however, there is no part of the system embedding a non-computable set or number, in the way

that the vertex position x does for the scatter machine. We then expect that if construction

is revealed impossible, it should be for other, more interesting reasons [e.g., regarding the

relativistic computer, see Shagrir and Pitowsky, 2003, p. 88].

8.3 An unexpected argument on the structure of the Universe

Real numbers and real-valued quantities are used in physics to describe our Universe, in spite

of most modern physical theories imposing an upper bound (such as the Planck length) on

the precision of measurements. These bounds lead some physicists to believe that continuity

is only an idealised abstraction of the actual structure of the Universe, defending the idea that

the universe has a discrete structure, somewhat like a grid. Other physicists believe that the

assumption of continuity is essential to explain certain phenomena.

While the debate has lasted for several years, we are nowhere near a definite answer, and

the consequences of each assumption are not well understood. In particular, it is difficult to

comprehend the significance of this issue for computation, i.e., whether the assumption of

continuity rules out simulability, and if a grid-like universe must necessarily be “computable”.

In this section we show how the physical Church–Turing thesis, along with our results on

the scatter machine, may be used as an argument against the existence of fixed real-valued

quantities in the universe.

We have made clear, in Section 8.1, that the computational properties of the scatter machine

emerge from the possibility of measuring whether a fixed non-computable real value x is smaller

or equal to a given dyadic rational y. We may then conclude, if we assume that the physical
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Church–Turing thesis is true, that no system with this possibility will be a model of a correct

physical theory. In other words, if the physical Church–Turing thesis is true, then there exists

no real-valued physical quantity which is simultaneously fixed, non-computable and measurable.

This is, modulo the physical Church–Turing thesis, a statement on the structure of the

universe, but it may be slightly improved. It is not unreasonable to assume that if such a

fixed real-valued physical quantity exists, then it is not computable. Such an assumption, not

being necessarily true, is sensible by a simple argument of cardinality — it would, indeed, be

a tremendous coincidence if any fixed real-valued quantity belonged to the countable set of

computable real numbers. We could also argue that if a physical quantity is fixed, then we can

probably measure it in some way, and using the scatter machine as a metaphor, we see that

we do not need to be able to measure this quantity with absolute precision. A measurement

with increasing precision, or even a probabilistic measurement, should suffice to result in non-

computable behaviour.

These two assumptions carry some amount of uncertainty and speculation, but they are

tenable, and even natural. The interesting outcome is that they imply the following unusual

proposition.

If the physical Church–Turing thesis is true,

then there are no fixed real-valued quantities in the universe.

This proposition is supported by the idea, defended by many physicists, that space-time

has a discrete structure [see, e.g., Gibbs, 1995], but it can also be taken as evidence in favour

of this idea. The compelling, novelty aspect is that a thesis on the limits of computation seems

to have implications on the nature of reality.

This is another important perspective which arises in the study of experimental computa-

tion. If until now the relationship between physics and computation was mostly dominated by

the limits which the former imposes on the later, this interaction can now be reversed. There

are already some examples of this turnaround, e.g., Nielsen [1997] writes:

Acceptance of the Church-Turing thesis therefore forces us to conclude that [...] only

a limited class of observables correspond to measurements which may be performed, in

principle, on quantum mechanical systems.

We expect that physically relevant variants of the Church–Turing thesis and the solid frame-

work of experimental computation can now be used in order to make similar statements, and

to gauge the plausibility and applicability of physical theories. This offers, to our knowledge,

a novel way of looking at computability, physics, and the interplay between the two.
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Real recursive function theory





Introduction to Part III

In 1996 Cris Moore published a seminal paper, Recursive theory on the reals and continuous-

time computation [Moore, 1996], where he defines an inductive class of vector valued functions

over R, aiming to provide a framework to study continuous-time phenomena from a computa-

tional perspective. This class was defined as the closure of some basic functions for the operators

of composition, solving of first-order differential equations and a kind of minimalisation.

Some work was done since then, using Moore’s definition [Campagnolo et al., 2000, 2002,

Mycka, 2003a,b], but unfortunately some of Moore’s assumptions were not very consensual

among people interested in the field. Most of these controversial assumptions were consequences

of Moore’s attempt to bring the minimalisation operator — used in the classical recursive

functions — into a continuous context. So in their Mycka and Costa [2004], Jerzy Mycka

and José Félix Costa gave a similar definition of Moore’s inductive class of functions, replacing

minimalisation with the taking of infinite limits. We will cite both papers (Moore [1996], Mycka

and Costa [2004]) when appropriate.

Restrictions of this inductive scheme will give rise to several interesting characterisations

of computability [Graça and Costa, 2003, Bournez and Hainry, 2004, 2006, Campagnolo and

Ojakian, 2006] and complexity [Campagnolo et al., 2002, Campagnolo, 2002, Bournez and

Hainry, 2005, Mycka and Costa, 2006a,b] of real functions; this is an analogue of the studies in

sub-recursion of classical recursion theory. Connections with other areas have appeared, e.g.,

the study of periodic real recursive functions and the connections between infinite time Turing

machines and real recursive functions [Gomes, 2006, Gomes and Costa, 2007].

We will, however, be concerned with the more general aspects of the theory. In their papers,

Mycka and Costa [Mycka and Costa, 2004, 2006c, 2007] have laid out the basics for our study.

The most important or distinguishing feature of the more general theory, opposed to what we

have called sub-recursion, is the access to unrestricted infinite limits, which can be made to

work as a search operator over R.

The purpose of this text is to lay out a solid foundation for the theory of real recursive

functions, and survey the known results in the more general aspects of the theory. We will begin

in Chapter 9 by studying function algebras and differential equations; after this preparation, we

introduce the inductive definition for the class of real recursive functions, and finish the chapter

with some further considerations on differential equations and infinite limits. In Chapter 10,

we prove the most fundamental results in the theory, and show how we may stratify the class of
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real recursive functions into a hierarchy. Chapter 11 will solve the problem of universality, with

a proof that there is no universal real recursive function. In Chapter 12 we show that there is an

exact correspondence between the class of real recursive functions and the analytical hierarchy

of predicates. Finally, in Chapter 13, we attempt some advance in the problem of collapse; this

problem was believed to have been solved in [Loff et al., 2007], but an error turned up after a

solid foundation was put in place — we expound the current status of this open problem.

Accreditment. The structure and form of Part III are mostly due to the author alone, but

have benefited from a careful and thorough review by José Félix Costa and Jerzy Mycka.

Most of the results in chapters 9 and 10 are not new. Chapters 11 and 13 are due to the

author, José Félix Costa and Jerzy Mycka [Loff et al., 2007], and Chapter 12 is due to the

author [Loff, 2007a]. Throughout Part III we have used ideas from Olivier Bournez, Manuel

Campagnolo, José Félix Costa, Daniel Graça, Akitoshi Kawamura, Emmanuel Hainry, Cris

Moore and Jerzy Mycka, despite the proofs shown here often being very different from

theirs. We will always attribute each result to the authors who have originally proven it,

by citing the appropriate sources.
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Introduction to real recursive functions

This chapter will establish the theoretical basis for study of real recursive functions. We begin

by studying function algebras and their related problems in Section 9.1. Some preliminaries

on the Cauchy problem will be given in Section 9.2. The primordial function algebra which

characterises the class of real recursive functions will be given in Section 9.3. Finally, we will

make some general considerations on two specific operators in chapters 9.4 and 9.5.

9.1 Function algebras

A function algebra is a characterisation of a set of functions by the inductive closure, for some

operators, of another set of functions. This concept is frequently used in recursion theory, and

more recently to obtain characterisations of complexity classes [Clote, 1999].

Definition 9.1. Let F be a class of functions, F ⊆ F be a set of such functions, and O ⊆
∪k∈N{O : F k → F} be a set of operators. The Inductive Closure of F for O, written

A = [F ;O], is the smallest set containing F , such that if f1, . . . , fk ∈ A are in the domain of

the k-ary O ∈ O, then O(f1, . . . , fk) ∈ A. When taken together with O, the inductive closure

[F ;O] is called a function algebra.

A function algebra is said to be enumerable if both F and O are enumerable.

We will simplify the notation by writing A = [F ;O] to let A designate both the inductive

closure [F ;O] and the function algebra ([F ;O],O), when appropriate.

Remark 9.2. We show that the definition is well-founded, i.e., that for any such F and O
there is a unique smallest A that satisfies the conditions of closure. This follows easily from

Kleene’s fixed point theorem. Take the complete lattice of sets of functions in F , L = ℘(F ),

under the partial order of inclusion. It is easy to see that the function f : L → L, given by

f(F ) = F ∪ F ∪ {O(f1, . . . , fk) : f1, . . . , fk ∈ F are in the domain of O ∈ O}, is continuous.

We may conclude, by Knaster and Tarski, that there is a least fixed point of f . By Kleene’s

fixed point theorem,

A = ∪k∈N fk(∅)

is this least fixed point. Such an A satisfies the closure condition since it is a fixed point of f,

and the uniqueness condition since it is the least fixed point. �
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Notation 9.3. We make a liberal use of the square bracket notation, e.g., if f, g are functions,

F is a class of functions, and O1, . . . , Ok are operators, then we set

[f, g,F ;O1, . . . , On] = [{f, g} ∪ F ; {O1, . . . , On}]. �

Example 9.4. Consider the class F of partial, scalar, multiple-argument functions over N =

{0, 1, 2, . . .}. Examples of functions in F are the zero function z, such that z(x) = 0; the

successor function s, given by s(x) = x + 1; and the projection functions, where each un
i

obeys un
i (x1, . . . , xn) = xi. Take x to designate an arbitrary sequence x = x1, . . . , xn. We may

consider the composition operators cm, such that for every g : Nm → N, h1, . . . , hm : Nn → N,

the function cm(g, h1, . . . , hm) : Nn → N is given by

cm(g, h1, . . . , hm)(x) = g(h1(x), . . . , hm(x)).

We will also consider the primitive recursion operator p, which, for every given f : Nn → N
and g : Nn+2 → N, sets

p(g, h)(x, 0) = g(x) and p(g, h)(x, y + 1) = h(x, y, p(g, h)(x, y))

The class PRIM of primitive recursive functions may then be given by the function algebra

PRIM = [z, s, un
i ; cm, p]. �

It is important, in the study of a function algebra, to consider self-referential properties of

the inductive closure. Function algebras provide a natural way of doing so, in particular for

the case when the set of initial functions and the set of operators are countable.

Definition 9.5. Let A = [F ;O] be an enumerable function algebra, for a set F = {f1, f2, . . .}
of functions and a set O = {O1, O2, . . .} of operators. The set DA of descriptions of A, is

the smallest set of words in {fun, Op, 〈, 〉, ,, 0, 1, . . . , 9}∗, such that

1. 〈fun, n〉 ∈ DA for all n, and

2. if d1, . . . , dk ∈ DA, then 〈Op, n, d1, . . . , dk〉 ∈ DA.

We write DA to stand for the set of good descriptions in DA; by good description we mean

any description d such that

1. d is 〈fun, n〉 and fn ∈ F (i.e., F has at least n functions), and in this case d is said to

describe fn, or

2. d is 〈Op, n, d1, . . . , dk〉, for some good descriptions d1, . . . , dk which describe g1, . . . , gk in the

domain of On ∈ O; then d is said to describe O(g1, . . . , gk).

Notation 9.6. With A = [F ;O] given as above, let f denote a function in fn ∈ F and O

denote an operator in On ∈ O. Then we write funf to denote the pair fun, n, and OpO to

denote the pair Op, n. In this sense, 〈funf〉 is the description 〈fun, n〉 and 〈OpO, d1, . . . , dk〉 is

the description 〈Op, n, d1, . . . , dk〉. �
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When studying a function algebra one wishes to understand the extent of functions which

it contains. One then often considers a particular operator O : F k → F , and attempts to

determine whether the function algebra is closed for O or not (meaning that the respective

inductive closure is closed for O or not). Many important problems in computer science may be

equated to the proof or disproof that certain function algebras are closed for certain operators,

e.g., P = NP if and only if P is closed for a bounded minimization operator µ̄ [cf. Bellantoni,

1992, Clote, 1999], i.e., if P = [P; µ̄].1

The proof that a function algebraA is closed for an operator may or may not be constructive.

In the former case, one considers that the closure is effective.

Definition 9.7. An enumerable function algebra A is said to be effectively closed under

an operator O : F k → F if there is an effective procedure which, given good descriptions

of functions f1, . . . , fk ∈ A in the domain of O, obtains a good description of the function

O(f1, . . . , fk).

Function algebras usually offer natural measures of complexity, simply by looking at the

descriptions which describe a certain function. One such syntactic measure, which is frequently

considered, is the number of nested applications of a certain operator, or set of operators. This

is called the rank.

Definition 9.8. Let A = [F ;O] be an enumerable function algebra, with O = {O1, O2, . . .},
and let Õ be a subset of O. The rank of a good description d ∈ DA for the set of operators

Õ under the function algebra A, rk(d), is inductively defined as:

1. rk(〈fun, n〉) = 0,

2. if On 6∈ Õ, then rk(〈Op, n, d1, . . . , dk〉) = max(rk(d1), . . . , rk(dk)), and

3. if On ∈ Õ, then rk(〈Op, n, d1, . . . , dk〉) = max(rk(d1), . . . , rk(dk)) + 1.

The rank of a function f ∈ A for Õ under A, rk(f), is given by:

rk(f) = min{rk(d) : d is a good description which describes f}

Notation 9.9. The manner of denoting the rank of Õ under A, using the word rk, does not

make the dependency in Õ and A explicit. We chose to do this so as not to over-encumber

the notation. When it becomes necessary to disambiguate between different possible function

algebras or operator sets, we will the denote the rank by rkAÕ. �

Example 9.10. One may consider, in the function algebra PRIM = [z, s, un
i ; cm, p] for prim-

itive recursive functions, the rank of the primitive recursion operator. Intuitively, the rank

rkPRIM
p (f) ≡ rk(f) of a function f : N → N is the smallest number of nested for loops nec-

essary for any program to compute f without while loops (from the basic functions z, s, and

un
i ). �

1 Note that P and NP are often taken as a class of subsets of N, and not a class of functions. The problem P = NP for
sets is equivalent to the problem “P = NP” for functions.
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The rank of a set of operators, as a measure of complexity, is rich enough to stratify function

algebras into interesting hierarchies.

Definition 9.11. Let A = [F ;O] be an enumerable function algebra, with O = {O1, O2, . . .},
and let Õ be a subset of O. The rank hierarchy for Õ under A is the N-indexed family of

functions:

Hn = {f ∈ A : rk(f) 6 n}.

Notation 9.12. We take the same precautions of Notation 9.9 so as not to burden the notation

for the rank hierarchy. When we wish to disambiguate between hierarchies for different operator

sets or under different function algebras, we will either index our denotation as in HA,Õ
n , or

assign different letters to the different hierarchies. �

An important problem for such a hierarchy is whether it collapses, or degenerates, i.e.,

whether there is a number k such that A ⊆ Hk. Again, many problems in computer science

can be seen as a problem of rank-hierarchy degeneration. Recycling the previous example on

P vs. NP, it can be shown that the polynomial time hierarchy collapses if and only if the rank

hierarchy for a bounded minimization operator µ̄, under the function algebra [P; µ̄], collapses.

Example 9.13. The rank hierarchy for the primitive recursion operator under the function alge-

bra PRIM = [z, s, un
i ; cm, p], Hn ≡ H

PRIM,p
n , can be intuitively understood as the stratification

of the primitive recursive functions by the number of nested for loops needed to compute each

function.This hierarchy is known not to collapse [cf. Meyer and Ritchie, 1967]. �

Example 9.14. The function algebra PRIM+ = [z, s, un
i ,+; cm, p], where + represents the 2-

ary sum, is an alternative function algebra for the class of primitive recursive functions. This

algebra gives Kalmár’s class of elementary functions, E , at the second level of the rank hierarchy

for primitive recursion. I.e., E is equal to H2 ≡ H
PRIM+,p
2 . �

Proposition 9.15. Let A = [F ;O] be an enumerable function algebra, let Õ be a subset of O,

and set V = O − Õ. The rank-hierarchy for Õ can be inductively defined by:

1. H0 = [F ;V ],

2. In = Hn ∪ {Õ(f1, . . . , fk) : Õ ∈ Õ and f1, . . . , fk ∈ Hn ∩Dom(Õ)}, and

3. Hn+1 = [In;V ].

The previous proposition better illustrates the idea of the rank hierarchy: the next level of

the hierarchy is obtained by allowing one further application of the operators in the operator

set. We will skip the proof, which is obtained by a simple induction.

There are many typical problems of interest to a function algebra. We have already men-

tioned the problem of closure and the problem of collapse. Another important problem is the

problem of universality.
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Definition 9.16. A binary function f : D × D → R in an enumerable function algebra A
is said to be universal if there is an effective procedure which, given a good description d of

a function g : D → R in A, will construct an element d̃ ∈ D such that, for every x ∈ D,

f(d̃, x) ' g(x).2

It is thus important, in the study of a function algebra, to know if it has a universal function.

The last problem which we will refer that generally concerns function algebras, is the problem

of alternative characterisation. In order to understand the function algebra more clearly, it

is important to find alternative ways to obtain the same class of functions, or discover that

previously known classes of functions are exactly given by a function algebra.

Example 9.17. As we have seen, Meyer and Ritchie have solved the problem of collapse. It is

interesting to note that the class of primitive recursive functions does not have a universal

function: a simple argument based on the second recursion theorem would show that if this

were the case, then PRIM would be closed under the minimisation operator, which we know

is false. An alternative characterisation can be obtain by substituting the recursion operator

by an iteration operator, and adding a few basic functions [Gladstone, 1971]. �

Example 9.18. To realise that the collapse of a rank hierarchy may depend on the specific

function algebra, and not only on the relevant operator, consider the class of partial recursive

functions. If we take µ to stand for the unbounded minimization operator, the class of partial

recursive functions, PREC, can be given by PREC = [z, s, un
i ; c, p, µ]. Kleene’s normal form

theorem implies that any partial recursive function can be given using a fixed number of

primitive recursions, and so, despite the fact that the rank hierarchy for p does not collapse

under PRIM, the same rank hierarchy does collapse under the function algebra PREC. �

We will below study a specific class of real-valued vector functions, which we call real

recursive functions. This class is an analogue of Kleene’s partial recursive functions, and it

was first conceived, in a primitive form, by Cris Moore Moore [1996]. We will give a complete

definition of this class in Section 9.3, using a function algebra. In the following chapter, however,

we will review some basic properties of ordinary differential equations.

9.2 Weak conditions for existence and uniqueness

In the next section we will discuss a partial operator, called the differential recursion operator,

which will give us solutions to very simple differential equations. It is thus in our interest to

study conditions for existence and uniqueness of such solutions. Let f denote a total function

from Rn+1 → Rn, and J represent a (possibly unbounded) open interval (A,B) of the real line,

with t0 ∈ J . Consider the Cauchy problem of the form

g(t0) = g0 ∂tg(t) = f(t, g(t)). (9.1)

2 Notice that this definition is only suitable given certain assumptions on the nature of the functions in A.
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A solution of (9.1) on J is a continuous function g : R→ Rn which takes the value g0 at t = t0

and satisfies the differential equation for every t in J . We will show that a few straightforward

properties of f will ensure that the solution of (9.1) exists and is unique. The proofs will require

some basic knowledge of Banach spaces; the unfamiliarised reader will find a good reference in

[Kreyszig, 1989].

Definition 9.19 (see, e.g, Teschl [2007], Weinholtz [2000]). A total function f : Rm →
Rn is called locally Lipschitz if for every compact set C ⊂ Rm there is a constant K such

that all x,y ∈ C verify the Lipschitz condition

‖f(x)− f(y)‖ 6 K‖x− y‖. (9.2)

The smallest such K is called the Lipschitz constant of f for C.

Notice that the concept of Lipschitz constant is well-defined, by the compactness of C and

the continuity of f and of the Euclidean norm. The local Lipschitz property implies other

weaker properties, such as continuity. In fact, letting B(x, r) (or B(x, r)) denote the open

(resp., closed) ball of radius r around x, should we take an arbitrary ε > 0 and point x ∈ Rm,

and let K be the Lipschitz constant of f for C = B̄(x, 1); then ‖x − y‖ < ε
K

implies that

‖f(x)− f(y)‖ < K‖x− y‖ < ε.

The name locally Lipschitz is motivated because a total function f : Rm → Rn is locally

Lipschitz if and only if around every point z ∈ Rm there is a neighbourhood V of z and a

constant K such that all x,y ∈ V satisfy (9.2). Clearly, if F is locally Lipschitz, then we may

take V = B(z, 1) as this neighborhood. Now suppose that around every point z ∈ Rm there

is a neighbourhood Vz of z where (9.2) is satisfied — this implies that f is continuous, by a

similar argument to the above paragraph. Now suppose that f is not locally Lipschitz, and

take a compact set C ⊂ Rm, and two sequences xi, yi in C such that

‖f(xi)− f(yi)‖ > 2i‖xi − yi‖. (9.3)

By the compactness of C, further suppose that xi and yi converge as i → ∞, respectively to

x and y. Then the continuity of f implies that f(xi)→ f(x) and f(yi)→ f(y), and so

‖xi − yi‖ < 2−i‖f(xi)− f(yi)‖ → 0;

which means x = y. But then for every large enough i both xi and yi will be in the corre-

sponding neighbourhood Vx of x, and because xi and yi satisfy (9.3), then (9.2) can not be

satisfied in Vx, a contradiction.

The following simpler conditions imply the local Lipschitz property.

Theorem 9.20. Let f : Rm → Rn be a total function.

a. The function f is locally Lipschitz if and only if every closed ball verifies (9.2).

b. The function f is locally Lipschitz if and only if every closed m-cube verifies (9.2).
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c. If f is everywhere differentiable and df is bounded in every compact set, then f is locally

Lipschitz.

d. If f is continuously differentiable, then it is locally Lipschitz.

Proof. a. The sufficient condition is obvious, since a closed ball is compact. Now take any

compact set C. Since C is bounded, some closed ball will contain C, and the constant K which

ensures that (9.2) is satisfied in this closed ball will trivially suffice to ensure that (9.2) is also

satisfied for C. The equivalence b. is proved similarly.

c. Suppose that f is differentiable, and df is bounded in every compact set. Let C be an

arbitrary compact set. Recall that, for any x ∈ Rm, df(x) ∈ L(Rm → Rn) is a bounded linear

operator, and its norm is given by

‖df(x)‖ = sup
y∈Rm

‖df(x)(y)‖
‖y‖

.

Then let M1 be a bound for ‖df‖ in C, which exists by hypothesis.

Set s : Rm × Rm → [0,+∞) so that

s(x,y) =


‖f(y)−f(x)−df(x)(y−x)‖

‖y−x‖ if x 6= y

0 otherwise.

Then s is bounded in C × C, because f is continuous and df is bounded in C. So let M2 be

an upper bound for s in C × C. Thus,

‖f(y)− f(x)‖ 6 ‖f(y)− f(x)− df(x)(y − x)‖+ ‖df(x)(y − x)‖ 6 (M2 +M1)‖y − x‖,

and f obeys the Lipschitz condition in C. By the arbitrary nature of C, f must be locally

Lipschitz.

d. If f is continuously differentiable, then df is continuous and therefore bounded on any

compact set: c. gives us the result. �

Henceforth, in this chapter, f will always designate a total function.

Theorem 9.21 (Picard). If f is locally Lipschitz, then there exists a solution g of (9.1) in

a neighbourhood of t0.

Proof. Let I = [t0 − a, t0 + a] for some a > 0, and let R ⊂ Rn be the closed n-cube centered

on g0 with side of length b > 0. Since f is continuous and I × R is compact, let M be the

maximum of f over I × R, and let K be its Lipschitz constant for I × R. We choose some

0 < ε < min{a, b
M
, 1

K
} and show that we may obtain a solution g of (9.1) in the interval

J = [t − ε, t + ε]. Use the letter C to denote the space of continuous functions from J to R,

under the supremum norm:

‖f‖ = sup
t∈I
‖f(t)‖.
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C is a Banach space, and so by the theorem of Banach, any strict contraction operator has a

fixed point. We show that the operator T , given by

(Tg)(t) = g0 +

∫ t

t0

f(s, g(s))ds,

is a strict contraction on C, for the constant k = εK < 1. See that if g ∈ C, then Tg ∈ C, since

for any t ∈ J we have (Tg)(t) ∈ R:

‖(Tg)(t)− g0‖ 6 ‖g(t0)− g0‖+

∣∣∣∣∫ t

t0

‖f(s, g(s))‖ds
∣∣∣∣ 6 εM < b.

Additionally, T is a strict contraction, because

‖Tg − Th‖ 6 sup
t∈I

∫ t

t0

‖f(s, g(s))− f(s, h(s))‖ds 6 εK‖g − h‖ = k‖g − h‖.

We conclude that if we let g denote the fixed point of T , then g is a solution of (9.1) on the

interval J . �

We can see that the cube R does not need to be centered on g0 for the argument of the

proof above to work, all that is necessary is that g0 is an interior point of R.

Corollary 9.22. If f, g, b, J, and R are as in the proof above, then for any g̃0 with ‖g̃0−g0‖ <
b
2
, there will also be a solution g̃ to the problem

g̃(t0) = g̃0 ∂yg̃(t) = f(t, g̃(t)),

and g̃ will be defined at least on [t0 − ε
2
, t0 + ε

2
].

We will make use of the following uniqueness theorem in the remaining chapters.

Theorem 9.23. If f is locally Lipschitz, and g is a solution of (9.1) on the interval J , then g

is the unique solution of (9.1) on J .

Proof. Suppose that there where two solutions g and g̃ to (9.1) on the interval J . Set h(t) =

g̃(t) − g(t). Let t0 ∈ [a, b] ⊂ J and let C ⊂ Rn be an arbitrary compact set such that

g([a, b]) ⊂ C and g̃([a, b]) ⊂ C. Let K be the Lipschitz constant for f in [a, b]× C, according

to (9.2).

Clearly we have h(t0) = 0, because both g(t0) = g̃(t0) = g0. If we denote the scalar product

with ·, then, for every t ∈ [a, b],

∂t‖h(t)‖2 = 2h(t) · ∂th(t) = 2(g̃(t)− g(t)) · (f(t, g̃(t))− f(t, g(t))).

From (9.2) we obtain

(g̃(t)− g(t)) · (f(t, g̃(t))− f(t, g(t))) 6 K(g̃(t)− g(t)) · (g̃(t)− g(t)) = K‖g̃(t)− g(t))‖2.
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This gives us ∂t‖h(t)‖2 6 2K‖h(t)‖2, and so we must conclude that

∂t

(
‖h(t)‖2e−2Kt

)
= (∂t‖h(t)‖2)e−2Kt − 2K‖h(t)‖2e−2Kt 6 0.

So we see that ‖h(t)‖2e−2Kt does not increase on [a, b], and since ‖h(0)‖ = 0, then it follows

that ‖h(t)‖ = 0 for every t ∈ [a, b], i.e., g = g̃ on [a, b]. The proof is done for an arbitrary

compact set C such that g([a, b]) ⊂ C and g̃([a, b]) ⊂ C. Now, should we take

C = {y : ‖y‖ 6 max
t∈[a,b]

‖g(t)‖+ ‖g̃(t)‖},

then C is well defined by the continuity of g and g̃, and will be compact. Also, C contains

g([a, b]) and g̃([a, b]). We then conclude by the previous argument that g and g̃ are equal on

[a, b], and everywhere on J , since a and b are arbitrary. �

The uniqueness theorem ensures immediately the following.

Corollary 9.24. If f is locally Lipschitz, and g, g̃ are two solutions of (9.1) respectively in the

intervals J, J̃ , then g = g̃ on J ∩ J̃ .

For some locally Lipschitz function f , let S denote the set of solutions of (9.1). We set A to

be the infimum of Dom(g) for every g ∈ S, and B will denote the supremum of Dom(g) over

every g ∈ S. The previous corollary will provide that the following concept is well defined.

Definition 9.25. Let f be locally Lipschitz. Then the maximal solution of (9.1) is the

function g defined in (A,B) such that if g̃ is a solution of (9.1) over some interval (a, b), then

g(t) = g̃(t) for all t ∈ (a, b). The interval (A,B) is called the maximal interval of (9.1).

It will be in our interest to show that the solutions of (9.1) are well-behaved in A and B.

Theorem 9.26. Let f be locally Lipschitz, and let g denote the maximal solution of (9.1),

defined on J = (A,B). Then B < +∞ (or A > −∞) if and only if limt→B− ‖g(t)‖ = +∞
(resp. limt→A+ ‖g(t)‖ = +∞).

Proof. If limt→t̃− ‖g(t)‖ = +∞ for some finite t̃, then g can not respect the equality (9.1)

at point t̃, and thus t̃ = B < +∞. For the converse, suppose that B < +∞, but that

limt→B− g(t) = g1 ∈ Rn. Then the Cauchy problem

g̃(B) = g1 ∂yg̃(t) = f(t, g̃(t)) (9.4)

would have a solution g̃ on some neighbourhood [B − ε, B + ε] of B, by Theorem 9.21. But

then, the function ĝ given by ĝ(t) = g(t) for t < B, ĝ(t) = g̃(t) for B 6 t < B+ ε testifies that

g is not the maximal solution. By contradiction, we conclude that either B = +∞, or that

limt→B− g(t) is undefined.

But it can not be the case that limt→B− g(t) is undefined, while ‖g(t)‖ is bounded for t

sufficiently close to B, as we will now show, again by reductio ad absurdum. Suppose that this
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where the case, i.e., that for some sequence ti < B we would have ti → B as i → ∞, but

g(ti) would diverge, while being bounded in the norm. By the boundedness of ‖g(ti)‖ and the

convergence (thus boundedness) of ti, take some compact set C containing (ti, g(ti)), and let

M = max(t,z)∈C ‖f(t, z)‖. M is well defined by continuity of f and compactness of C. Choose

some sub-sesequence t̃i of ti such that

∞∑
i=1

|t̃i+1 − t̃i| <∞, (9.5)

which is ensured by convergence of ti, and also such that, for some fixed δ > 0,

‖g(t̃i)− g(t̃j)‖ > δ;

this is ensured by the divergence of g(ti). The mean value theorem brings us to

δ < ‖g(t̃i)− g(t̃j)‖ 6 M |t̃i − t̃j|.

But taking the sum with the proper indexes, this contradicts (9.5). So we conclude that diver-

gence of g(ti) implies unboundedness of ‖g(ti)‖, and so limt→B− ‖g(t)‖ = +∞. We proceed in

a similar way for A. �

9.3 The class of real recursive functions

We are now prepared to describe our function algebra. We take F to be the class of partial,

vector-valued, multiple argument functions over R, i.e., the class of partial functions f : Rm →
Rn for some m,n ∈ N. We accept functions of arity 0, and call them constants, or values.

There will be two kinds of basic functions: the constant functions, and the projections. The

constant functions are denoted −1n, 0n, and 1n, for every n = 0, 1, 2, . . ., and are given by

−1n(x1, . . . , xn) = −1, 0n(x1, . . . , xn) = 0 and 1n(x1, . . . , xn) = 1. The projections are denoted

with Un
i , for each n = 1, 2, . . . and 1 6 i 6 n; they are given by Un

i (x1, . . . , xn) = xi.

The class will be closed under a countable number of partial operators over F . The first

operator is the composition operator, denoted by C. Given two functions f : Rk → Rn and

g : Rm → Rk, the function C(f, g) goes from Rm to Rn, and is given by

C(f, g)(x) = f(g(x)), for every x ∈ Rm.

The domain of C(f, g) is Dom(C(f, g)) = {x ∈ Dom(g) : g(x) ∈ Dom(f)}
Our second operator is the differential recursion operator, denoted with R. Let f :

Rn+1 → Rn be a total locally Lipschitz function. Consider, for a fixed x ∈ Rm, the Cauchy

problem

g(x, 0) = x ∂tg(x, t) = f(t, g(x, t)). (9.6)
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Then R(f) is a function from Rn+1 to Rn. For every fixed x ∈ Rn, R(f)(x, t) = g(x, t), where

g(x, ·) is the maximal solution of (9.6). The domain of R(f) is Dom(R(f)) = {(x, t) : x ∈
Rm, A(x) < t < B(x)}, where A,B give the extrema of the maximal interval. In the next

chapter we will show that the concept of differential recursion is well founded, and provide a

few examples.

Following this we have the infinite supremum limit operator, denoted by Ls. This

operator takes any function f : Rm+1 → Rn, and maps it into the component-wise infinite

supremum limit, i.e., for every i = 1, . . . , n,

(Ls(f)(x))i = lim sup
y→∞

(f(x, y))i .

For the sake of abbreviation, we write simply

Ls(f)(x) = lim sup
y→∞

f(x, y).

Then Dom(Ls(f)) = {x ∈ Rm : lim supy→∞ f(x, y) exists}. We will further discuss the Ls

operator in Section 9.5.

The final operator is called the aggregation operator, denoted by the symbol V. The

aggregation operator takes two functions f : Rm → Rk and g : Rm → Rn and joins them into

a single vector function V(f, g) : Rm → Rk+n. As expected, this is given by

V(f, g)(x) = (f(x), g(x)),

and Dom(V(f, g)) = Dom(f) ∩Dom(g).

We end this section with the central definition of this text.

Definition 9.27. The class of real recursive functions, denoted by REC(R), is given by the

function algebra

REC(R) = [−1n, 0n, 1n,Un
i ;C,R,Ls,V].

We will use the letter H (capital eta — not to be confused with the Latin capital h: H 6= H)

to denote REC(R) given by this specific structure. We will, bellow, give alternative character-

isations of REC(R), using other algebraic structures; these will also be denoted by a capital

Greek letter.

9.4 More on differential recursion

The operator of differential recursion is an attempt to mimic the functioning of an idealised

disk-and-wheel integrator. Such integrators have been invented in the nineteenth century by

Lord Kelvin [cf. Williams, 1997], and have been used to implement the famous differential

analyser of Vannevar Bush Bush and Hazen [1931]. To those who have studied real recursive
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functions, this has always given a certain sensation of security: the well-foundedness and good-

behaviour of the differential recursion operator was freely assumed.

Recently, however, the well-foundedness of differential recursion was no longer a matter of

consensual agreement. Authors, such as Akitoshi Kawamura Kawamura [2007], and referees of

ours, have remarked that differential recursion needs a more thorough and precise treatment.

The paper [Kawamura, 2007] provides a successful attempt, with a much stronger differential

recursion operator than that shown above. In this dissertation, we have opted to limit the

scope of the differential recursion operator. As stated in the previous chapter, R(f) will only

be defined when f is a total locally Lipschitz function. This will ensure that whenever f ∈
Dom(R), the solution R(f) exists (Theorem 9.21), is unique (Theorem 9.23), and has a good

behaviour in the extremities of its domain of definition (Theorem 9.26). We then see that the

operator R is well-defined and well-behaved.

We could have imposed weaker conditions and obtain similar properties, but in our every

attempt these would become too technical and complex. Local Lipschitz conditions, on the

other hand, are considered in any standard text on ordinary differential equations [e.g. Driver,

1978, Walter, 1998, Weinholtz, 2000]. Furthermore, we have a few, simple ways to assess

whether f will be in the domain of R (Theorem 9.20).

The definition of solution ensures us that R(f) will always be continuously differentiable in

the last variable, i.e., R(f)(x, ·) is continuously differentiable for every fixed x. We show the

following stronger result.

Theorem 9.28. For any f : Rn+1 → Rn in the domain of R, g = R(f) is locally Lipschitz.

The proof will require the use of the following lemma.

Lemma 9.29 (Gronwall-Reid). Let C be a given constant and k : J → R a given non-

negative continuous function on an interval J ⊆ R with t0 ∈ J . Then, if v : J → [0,+∞) is

continuous and, for all t ∈ J ,

v(t) 6 C +

∣∣∣∣∫ t

t0

k(s)v(s)ds

∣∣∣∣ ; (9.7)

it follows that, again for all t ∈ J ,

v(t) 6 C exp

(∫ t

t0

k(s)ds

)
.

Proof. With t > t0, the inequality (9.7) may be rewritten as

k(t)v(t)− k(t)
(
C +

∣∣∣∣∫ t

t0

k(s)v(s)ds

∣∣∣∣) 6 0.

Taking Q(t) = C+
∣∣∣∫ t

t0
k(s)v(s)ds

∣∣∣, we again rewrite (9.7) as ∂tQ(t)−k(t)Q(t) 6 0. Multiplying

Q(t) by exp(−
∫ t

t0
k(s)ds), this implies
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∂t

(
Q(t) exp

(
−

∫ t

t0

k(s)ds

))
6 0.

Seeing that Q(t0) = C, and integrating this last inequality from t0 to t, we get

Q(t) exp

(
−

∫ t

t0

k(s)ds

)
− C 6 0 ⇐⇒ Q(t) 6 C exp

(∫ t

t0

k(s)ds

)
.

From (9.7) and the definition of Q(t), we obtain the intended result. For t < t0, the result is

proved similarly. �

Proof (of Theorem 9.28). Let J ⊂ R be a closed interval with diameter dJ . Choose an arbitrary

x ∈ Rn. Use Sx to denote the unit neighborhood of the graph (t, g(x, t)) when t ranges over J :

Sx = {(t, z) : t ∈ J, ‖z− g(x, t)‖ < 1}.

By the continuity of g in its last variable, then Sx is compact, and so f has a Lipschitz constant

in Sx, say Kx.

Suppose that for some x̃ ∈ Rn, 0 < δ < 1, we have ‖x̃− x‖ < δ. Then

‖g(x̃, t)− g(x, t)‖ 6 ‖x̃− x‖+

∣∣∣∣∫ t

0

‖f(s, g(x̃, s))− f(s, g(x, s))‖ds
∣∣∣∣ .

As long as g(x̃, t) remains on Sx, we have, by the previous Lemma,

‖g(x̃, t)− g(x, t)‖ 6 δ +

∣∣∣∣∫ t

0

Kx‖g(x̃, s)− g(x, s)‖ds
∣∣∣∣ 6 δ exp(Kx|t|).

But if we choose δ < exp(−KxdJ), then we conclude that g(x̃, t) remains in Sx for all t ∈ J .

Furthermore, if for any given ε > 0 we set δ < min(ε, 1) exp(−KxdJ), then by the previous

equation we get

‖g(x̃, t)− g(x, t)‖ < ε for all t ∈ J.

With this, we have proved that g is continuous in Rn × J , and thus continuous in Rn+1

because J is arbitrarily chosen. So let C ⊂ Rn be a compact set. Because g is continuous,

D = J × g(C × J) is also compact, and so let Kf be the Lipschitz constant of f in D, and Mf

be the maximum of ‖f‖ in D. Now, choosing arbitrary x, x̃ ∈ C we may repeat the previous

argument using the Lipschitz constant Kf which does not depend on x. For any t ∈ J , we find

‖g(x̃, t)− g(x, t)‖ 6 ‖x̃− x‖+

∣∣∣∣∫ t

0

Kf‖g(x̃, s)− g(x, s)‖ds
∣∣∣∣ 6 ‖x̃− x‖ exp(KfdJ).

Also, if instead we fix x and choose arbitrary t, t̃ ∈ J , we get

‖g(x, t̃)− g(x, t)‖ 6

∣∣∣∣∫ t

t̃

‖f(s, g(x, s))‖ds
∣∣∣∣ 6 |t̃− t|Mf
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And so Kg = 2(exp(KfdJ) + Mf ) bounds the Lipschitz constant of g for C × J , because for

any (x, t), (x̃, t̃) ∈ C × J ,

‖g(x̃, t̃)− g(x, t)‖ 6 ‖g(x̃, t̃)− g(x, t̃)‖+ ‖g(x, t̃)− g(x, t)‖ 6 ‖(x̃, t̃)− (x, t)‖Kg. �

We conclude that the values of the solutions have a continuous dependence on the initial

condition. We will show that the same happens for the domain of definition.

Theorem 9.30. Let f : Rn+1 → Rn be in the domain of R, and set g = R(f). Then the

functions A : Rn → R−∪{−∞}, B : Rn → R+∪{+∞} such that Dom(g(x, ·)) = (A(x), B(x))

are continuous.

Proof. Begin by noticing that as a result of Theorems 9.21 and 9.23, the functions A and B

are well-defined. So let xi → x, and set B = B(x). By Theorem 9.26, we have two cases: either

(I) B = +∞ or (II) limt→B− ‖g(x, t)‖ = +∞.

Consider case (I), and set ti = B(xi). Suppose, by contradiction, that |ti| 6→ +∞ — either

because ti is bounded, or because it oscillates. We may then assume, without loss of generality,

that ti → T , because if this is not the case, then we may choose some sub-sequence of xi which

makes ti converge. Again without loss of generality (by choice of a sub-sequence), assume that,

for some constant ε > 0, ti ∈ J = [T − ε, T + ε]. J can be seen as an interval where every xi

gives limt→ti ‖g(xi, t)‖ = +∞. Then we have, for every xi, that some t̃i ∈ J ensures that for

all t ∈ J
‖g(xi, t̃i)− g(x, t)‖ > 1. (9.8)

We may find such a t̃i because g(x, t) is continuous, defined, and thus bounded in J , while

every ‖g(xi, t)‖ diverges to infinity in J . Now choose, by compactness of J , some convergent

sub-sequence t̂i of t̃i with t̂i → T̂ ∈ J . Find the corresponding sequence x̂i = xj where t̂i = t̃j.

We conclude that x̂i → x, t̂i → T̂ , and yet by (9.8):

‖g(x̂i, t̂i)− g(x, T̂ )‖ > 1.

So g is discontinuous at point (x, t̂), which contradicts Theorem 9.28.

We may now deal with case (II). Suppose that the sequence ti = B(xi) goes to +∞. Take

some compact set C containing every xi, which exists by convergence of xi. Then choose some

arbitrary value B < +∞, and let δ > 0, by continuity of g, be a value such that ‖y − ỹ‖ < δ

implies ‖g(y, t) − g(ỹ, t)‖ < 1, for all (y, t), (ỹ, t) ∈ C × [0, B]. Choose a large enough i such

that ‖x−xi‖ < δ and ti > B. Then for any t ∈ [0, B] we have ‖g(x, t)− g(xi, t)‖ < 1. Because

ti > B, g(xi, ·) can not diverge on [0, B], and so neither can g(x, ·). Being B arbitrarily large,

we must conclude that g(x, ·) never diverges for positive values, and so B = +∞. �

At first sight, it might appear that we would prefer a more general differential recursion,

where f would be allowed to depend on x, or where the initial condition can be given at any

point t0. However, we will show in the next chapter that the Cauchy problem
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g(x, t0) = g0(x) ∂tg(x, t) = f(t, g(x, t),x) (9.9)

can be reduced to the form (9.6).

A trivial example is the exponential function.

Example 9.31. The exponential function, exp, is trivially given by the differential recursion

exp(0) = 1 ∂t exp(t) = exp(t).

In the notation of (9.9), we have g0 = 1 and f(t, x) = x. �

We provide another simple example to give sin and cos, which is nevertheless appropriate

to show the expressive power of differential recursion. In the next chapter, we will see that

every function needed for the example is real recursive, and conclude that sin and cos are real

recursive.

Example 9.32. Consider the differential recursion schema

g(0) = (0, 1) ∂tg(t) = (g2(t),−g1(t)).

With the notation of (9.9), we have g0 = (0, 1) and f(t, z) = ((z)2,−(z)1). Easily, f ∈ Dom(R).

The solution can be recognised as g = (sin, cos). �

9.5 More on the supremum limit operator

The class REC(R) is a subset of F , i.e., it is composed of partial, multiple-argument vector

functions over R. This may cause confusion, because it is not immediately obvious how the

concept of infinite supremum limit applies to such functions. We will give a rigorous, yet simple

characterisation of the concept.

Any partial function f : Rm → Rn can be uniquely identified with its graph. The graph of

f , Gf , is a predicate over Rm+n, given by:

Gf (x, z) ⇐⇒ x ∈ Dom(f) and z = f(x).

Given any function f : Rm+1 → Rn, and setting g(x, w) = supy>w f(x, y), the graph of g will

be given by:

Gg(x, w, z) ⇐⇒ (∀y > w) zi > (f(x, y))i∧(∀ui < zi)(∃y > w) ui < (f(x, y))i, for i = 1, . . . ,m.

In words, z is the supremum of f(x, ·) for y > w if it is, component-wise, the least upper bound

of f(x, y) for every y > w. We could further extend this symbolic expression to explicitly show

its dependence on Gf :
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Gg(x, w, z)

⇐⇒ (9.10)

(∀y > w)∃v
[
Gf (x, y,v) ∧ zi > vi

]
∧ (∀ui < zi)(∃y > w)∃v [Gf (x, y,v) ∧ ui < vi] , for i = 1, . . . ,m.

See that Gg is still the graph of a function, for if some (x, w, z), Gg(x, w,v), then z = v. Now,

we have that

(x, w) ∈ Dom(g) ⇐⇒ ∃z Gg(x, w, z). (9.11)

From (9.11) and (9.10), considering most especially the underlined part of (9.10), we may see

that if for some particular (x, w), we have (x, y) 6∈ Dom(f) for some y > w, then (x, w) 6∈
Dom(g). Thus, in order for g(x, w) to be defined, f(x, y) will have to be defined for every

y > w. If f(x, y) is defined for all y > w, for some (x, w), then the predicate (9.10) gives the

component-wise supremum.

The same will apply to the supremum limit. Given f : Rm+1 → Rn, setting h = Lsf (i.e.,

h(x) = lim supy→∞ f(x, y)), we get

Gh(x, z) ⇐⇒ z = lim
w→+∞

sup
y>w

f(x, y) = lim
w→+∞

g(x, w).

Explicitating the dependence on Gg, we find

Gh(x, z) ⇐⇒ (∀ε > 0)(∃w̃ > 0)(∀w > w̃)∃v Gg(x, w,v) ∧ ‖v − z‖ < ε.

As we have seen, the underlined sub-predicate will not be valid unless f(x, y) is total for all

y > w. Since w is universally quantified, we conclude the following.

Remark 9.33. Take any fixed x ∈ Rm. If f(x, y) is undefined for arbitrarily large y, then

Ls(f)(x) will be undefined, i.e., x 6∈ Dom(Ls(f)).

Furthermore, in order for the supremum limit to be defined, it is required that every one of

its components is defined. The following two remarks are in order:

Remark 9.34. Take any fixed x ∈ Rm. If at least one component of f(x, y) is undefined for

arbitrarily large y, then Ls(f)(x) will be undefined, i.e., x 6∈ Dom(Ls(f)).

Remark 9.35. Take any fixed x ∈ Rm. If at least one of lim supy→∞(f(x, y))i is undefined, then

Ls(f)(x) will also be undefined, i.e., x 6∈ Dom(Ls(f)).

The study we have made here also applies to the remaining operators. Regarding undefined-

ness and partiality, we use the same principle as classical recursion theory:

Strict Undefinedness. If a function is given an undefined parameter, or results in an unde-

fined component, then the function will be undefined.

E.g., 0×⊥ = ⊥.



10

Basic theory

This chapter is devoted to the basic results of real recursive function theory. We will study the

most elementary real recursive functions and operators in Section 10.1; in Section 10.2 we show

a naturally-arising hierarchy of real recursive functions. More complex real recursive operators

will be given in Section 10.3. Finally, in Section 10.4, we will consider the relationship between

real recursive functions and partial recursive functionals.

10.1 A variety of real recursive functions and operators

We begin with the most basic operations over R.

Proposition 10.1 (Moore [1996], Mycka and Costa [2004]). The binary addition, sub-

traction and multiplication are real recursive.

Proof. For addition, consider the following differential recursion scheme:

+(x, 0) = x ∂y + (x, y) = 12(y,+(x, y)) = 1.

Subtraction is obtained by replacing 1 with −1. For multiplication, set

g(x1, x2, 0) = (x1, x2) ∂yg(x1, x2, y) = V(U3
3 , 0

3)(t, g(x1, x2, t)) = ((g(x1, x2, y))2, 0).

Then g(x1, x2, y) = (x1 + x2y, x2) is the solution, and so

×(x, y) = C(U2
1 ,C(g,V(02,V(U2

1 , U
2
2 ))))(x, y) = (g(0, x, y))1. �

The expression for multiplication is not very simple, because we have not allowed ourselves

to specify initial conditions that depend on the parameter x. However, we said in the end of

Section 9.4 that REC(R) is closed for a more general form of differential recursion. We will

soon prove this rigorously, but just now we will continue with a few more very basic facts.

Proposition 10.2. Take k scalar functions f1, . . . , fk : Rm → R. Then the function F =

(f1, . . . , fk) is real recursive.
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Proof. Set F = V(f1,V(f2, . . . ,V(fk−1, fk) . . .)). �

This will allow us to simplify our notation. As a corollary we get:

Corollary 10.3. For any m,n ∈ N, the m-ary, n-component constants −1m
n , 0m

n , 1m
n are real

recursive.

We could invent more similar assertions, such as the following two.

Proposition 10.4. If f : R2 → R is real recursive, then so is f̃ : R2 → R, given by f̃(x, y) =

f(y, x)

Proof. Take f̃ = C(f,V(U2
2 , U

2
1 )). �

Proposition 10.5. If f : R → R2 is real recursive, then so is f̃ : R → R2, given by f̃(x) =

((f(x))2, (f(x))1).

Proof. Take f̃ = C(V(U2
2 , U

2
1 ), f). �

The main point, which we will not rigorously prove to avoid the tedious details, is that any

fixed switching of components, or of the order of the arguments, or any selection of components,

or a mixture of all of these things can be obtained in a straightforward way by using projections,

composition and aggregation. We will take this for granted from this point forward. We may

now prove the following, without excessive detail.

Proposition 10.6. Let t0 ∈ R be a real recursive constant, let g0 : Rm → Rn be an arbitrary

real recursive function, and let f : Rm+n+1 → Rn be a total locally Lipschitz real recursive

function. Then the maximal solution g : Rm+1 → Rn of the differential equation

g(x, t0) = g0(x) ∂tg(x, t) = f(t, g(x, t),x), (10.1)

is real recursive.

Proof. Begin by considering the following differential recursion, where z ranges over Rn, and

x over Rm:

g̃(z,x, 0) = (z,x) ∂tg̃(z,x, t) = (f(t+ t0, g̃(z,x, t)), 0, . . . , 0︸ ︷︷ ︸
m

).

The solution exists and is unique, because the function given by (f(t+t0,v), 0, . . . , 0) is locally

Lipschitz. Then the solution g̃ verifies g̃(g0(x),x, t−t0) = (g(x, t),x) (this is derived by a simple

calculation), and so g is real recursive using composition and projections. �

By using only the addition and subtraction functions, we have obtained the more general

form of differential recursion (10.1). We could now show that multiplication is real recursive,

simply by displaying the differential recursion scheme ×(x, 0) = 0, ∂y× (x, y) = x. By showing

that REC(R) is closed under a differential recursion operator of the form (10.1), we have

simplified the proofs ahead.
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Proposition 10.7 (Moore [1996], Mycka and Costa [2004]). The restrictions to the do-

main (0,+∞) of the inverse, division and square root functions are real recursive. The expo-

nential, logarithm, power, sine, cosine and arc-tangent functions are real recursive. The real

numbers π and e are real recursive constants.

Proof. The restricted division and logarithm functions are obtained simultaneously, through

the differential recursion scheme:{
1
1

= 1,

log(1) = 1,
and

{
∂x

1
x

= −1×
(

1
x

)
×

(
1
x

)
= − 1

x2 ,

∂x log(x) = 1
x
.

In the differential recursion scheme of Proposition 10.6, we have t0 = 1, g0 = (1, 1) and the

total, locally Lipschitz function f(t, z1, z2) = (−(z1)
2, z1). The solution is, therefore, unique,

and we obtain the restricted inverse function and the logarithm function, as intended. The

following expressions, using the differential recursion scheme (10.1), give us the remaining

functions

1. x
y

= x× 1
y

gives us the restricted division;

2. e0 = 1, ∂xe
x = ex solves to the exponential function;

3. xy = elog(x)y, where x > 0, is the power function;

4.
√
x = x

1
2 gives us the square root from the power function, restricted to positive x;

5. (sin, cos)(0) = (0, 1), ∂x(sin, cos)(x) = (cos,− sin)(x);

6. arctan(0) = 0, ∂x arctan(x) = 1
x2+1

;

7. e = e1;

8. π = 4× arctan(1). �

Proposition 10.8 (Moore [1996], Mycka and Costa [2004]). Kronecker’s δ and Heavi-

side’s Θ, given by

δ(x) =

1 if x = 0

0 otherwise
and Θ(x) =

1 if x > 0

0 otherwise;

are real recursive.

Proof. Set δ(x) = lim sup
y→∞

(
1

x2 + 1

)y

and Θ(x) =

(
lim sup

y→∞

1

1 + 2−xy

)
+

1

2
δ(x). �

Proposition 10.9 (Moore [1996], Mycka and Costa [2004]). The sawtooth wave function,

denoted by r, and the square wave function, denoted by s, are real recursive.

Proof. The square function is given by s(x) = Θ(sin(πx)). We can build the sawtooth using

the recursion scheme r̃(0) = 0 and ∂xr̃(x) = 2 sin(πx)2s(x)− 1
2
. We get r(x) = s(x)r̃(x+ 1) +

(1− s(x))r̃(x) (cf. Fig. 10.2). �
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Fig. 10.1. Convergence of the shown expressions to δ and Θ.
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(b) The sawtooth wave
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Fig. 10.2. Wave functions.

Proposition 10.10. The characteristics χ= of equality, χ6 of inequality and χ< of proper

inequality are real recursive.

Proof. Take χ=(x, y) = δ(y − x), χ6(x, y) = Θ(y − x), and χ<(x, y) = χ6(x, y)− χ=(x, y). �

Proposition 10.11. The unrestricted inverse,unrestricted division and unrestricted square

root functions are real recursive.

Proof. Just take the restriction of 1
x

to positive x, and set

1

x
= (χ<(0, x)− χ<(x, 0))

1

(χ<(0, x)− χ<(x, 0))x
=

 1
x

if x > 0,

− 1
−x

if x < 0.
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where in the left we mean the unrestricted inverse, and in the right we use the inverse restricted

to positive values, which was already defined in Proposition 10.7. Unrestricted division is

obtained in the same way as for the restricted case. In an analogous way, we take the restricted

square root (to the right), and define an unrestricted square root (to the left):

√
x = χ=(x, 0)×

√
x+ χ=(x, 0) =


√
x if x > 0,

0 otherwise.
�

We will often use the characteristics of equality and inequality to define a function by cases,

as in the previous proof. We will make the syntactical abbreviation χ 6=(x, y) = 1 − χ=(x, y),

χ>(x, y) ≡ χ<(y, x) and χ>(x, y) ≡ χ6(y, x).

Proposition 10.12. The floor function, the ceil function, the absolute value function, the Eu-

clidean and supremum norms over Rn are real recursive.

Proof. We use the following expressions:

1. bxc = x− r(−x);
2. dxe = x+ r(x);

3. |x| = (2Θ(x)− 1)x;

4. ‖x‖2 =
√
x2

1 + . . .+ x2
n;

5. ‖(x1, x2)‖∞ = χ>(|x1|, |x2|)x1 + χ6(|x1|, |x2|)x2;

6. ‖x‖∞ = ‖(x1, ‖(x2, ‖ . . . ‖(xn−1, xn)‖∞) . . . ‖∞)‖∞.

Definition 10.13. The sigmoidal function, σ, is given by

σ(x) =
ex

1 + ex
.
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Fig. 10.3. Plot of σ(x).
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Proposition 10.14. The sigmoidal function is real recursive. Furthermore, for any function

f : Rn+1 → R, we have

lim sup
y→∞

f(x, y) = z ∈ R ⇐⇒ lim sup
y→∞

σ(f(x, y)) = σ(z) ∈ (0, 1),

lim sup
y→∞

f(x, y) = +∞ ⇐⇒ lim sup
y→∞

σ(f(x, y)) = 1, and

lim sup
y→∞

f(x, y) = −∞ ⇐⇒ lim sup
y→∞

σ(f(x, y)) = 0.

Proof. The expression given for the sigmoidal function is a composition of functions that we

have already shown to be real recursive, and thus σ itself must be real recursive. The first

property with respect to the infinite supremum limit is a consequence of σ being a strictly

increasing surjection to (0, 1); we find that for any x ∈ Rn, y ∈ R,

σ(sup
z>y

f(x, z)) = sup
z>y

σ(f(x, z)).

We then make use of the definition of supremum limit; we know that lim supy→∞ f(x, y) ∈ R
if and only if there is a real value r such that ‖ supz>y f(x, z)‖ < r for all sufficiently large y.

This is equivalent, as we have seen, to σ(−r) < supz>y σ(f(x, z)) < σ(r), for some r, which is

a sufficient and necessary condition for lim supy→∞ σ(f(x, y)) ∈ (0, 1) to hold. So the existence

of both supremum limits of f and σ ◦ f is equivalent. The additional fact that, when these

limits are defined,

lim sup
y→∞

σ(f(x, y)) = σ

(
lim sup

y→∞
f(x, y)

)
can be derived from the continuity of σ and its inverse. The remaining equivalences are proven

in the same fashion. �

Definition 10.15. The infinite infimum limit operator, Li, and the infinite limit operator, L,

are given by

Li(f)(x) = lim inf
y→∞

f(x, y) L(f)(x) = lim
y→∞

f(x, y);

where f : Rm+1 → Rn is in F .

Proposition 10.16 (Mycka [2003a]). REC(R) is effectively closed under Li and L.

Proof. We set Li(f)(x) = − lim supy→∞−f(x, y). It is known that limy→∞ f(x, y) is defined if

and only if lim supy→∞ f(x, y) and lim infy→∞ f(x, y) are both defined and equal, and in this

case limy→∞ f(x) = lim supy→∞ f(x, y). So we set

L(f)(x) =
1

χ=(lim supy→∞ σ(f(x, y)), lim infy→∞ σ(f(x, y)))
lim sup

y→∞
f(x, y). �
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This ends the most elementary part of real recursive function theory. We have seen that a

number of functions are real recursive. In Section 10.3, we will see that this class extends even

further. Hopefully, the reader will nurture a growing astonishment at the expressive power of

such a simple inductive definition. A full and insightful characterisation will have to wait until

Chapter 12. In the next chapter, we will stratify REC(R) into a hierarchy.

10.2 The η-hierarchy

Remember from page 85 that we use the capital letter H (eta) to designate the function algebra

for REC(R), given in Definition 9.27.

Definition 10.17. The η-hierarchy is the rank hierarchy for the limit operator under the

algebra H for REC(R). We use Hn to denote the n-th level of this hierarchy. In Symbols

Hn = HH,Ls
n = {f ∈ REC(R) : rkH

Ls(f) 6 n}.

A clearer picture for this hierarchy may be obtained from the following corollary of Propo-

sition 9.15.

Corollary 10.18. The η-hierarchy is inductively given by:

1. H0 = [−1n, 0n, 1n, Un
i ;C,R,V],

2. H̃n = Hn ∪ {Ls(f) : f : Rm+1 → Rk is in Hn}, and

3. Hn+1 = [H̃n;C,R,V].

The following corollary comes from the proofs of the previous chapter.

Corollary 10.19. The following functions and constants are in H0:

1. The addition, subtraction and multiplication functions.

2. The inverse, division and square root functions, restricted to a positive argument.

3. The exponential, logarithm, power, sine, cosine and arc-tangent functions.

4. The numbers π and e.

5. The sigmoidal function.

The following functions are in H1:

1. Kronecker’s δ and Heaviside’s Θ.

2. The sawtooth wave function r and the square wave function s.

3. The characteristics χ=, χ6 and χ<.

4. The unrestricted inverse, unrestricted division and unrestricted square root functions.

5. The floor, ceil, absolute value, supremum norm and euclidean norm.

If t0 ∈ R, g0 : Rm → Rn, f : Rm+n+1 → Rn are in Hi, then the solution g of (10.1) is also in

Hi. If f : Rm+1 → Rm is in Hi, then Li(f),L(f) are in Hi+1.

Most proofs will now include the position of functions in the η-hierarchy.
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10.3 Non-trivial real recursive operators

The operator Ls serves as an analogue to the minimalisation operator of classical recursion

theory. However, this operator has a distinct feature: there is a real recursive way of telling

whether or not the infinite supremum limit exists.

Definition 10.20. For an (m + 1)-ary function f ∈ F , the ηs operator gives an m-ary

function, ηs(f), such that:

ηs(f)(x) =


1 if lim sup

y→∞
f(x, y) exists,

0 otherwise.

The ηi and η operators are defined in the same way, but with respect to lim inf and lim.

Here we will show that we may obtain η(f), ηs(f) and ηi(f) when f is a total function. In

fact, REC(R) is effectively closed for these operators, i.e., our restriction on f is not required,

but we will withhold the (more complicated) proof for now.

Theorem 10.21 (Mycka and Costa [2004],Loff et al. [2007]). If f is a total function in

Hi, then η(f), ηs(f) and ηi(f) are in Hi+1.

Proof. We make the proof for a scalar function f : Rm → R; the proof generalises to the

vector case, by Proposition 10.2. The function ηs(f) is given by the following real recursive

expression:

ηs(f)(x) = 1− χ=

(
lim sup

y→∞
σ(f(x, y)), 1

)
− χ=

(
lim sup

y→∞
σ(f(x, y)), 0

)
.

Then lim supy→∞ σ(f(x, y)) exists, because σ ◦f is a bounded total function, and ηs(f)(x) = 0

if and only if lim supy→∞ σ(f(x, y)) ∈ {0, 1}, which provides the intended behaviour according

to Lemma 10.14. A similar expression gives us ηi(f).

We have seen that limy→∞ f(x, y) exists if and only if the supremum and infimum limits of

f exist and are equal. If they exist, the supremum and infimum limits of f are equal if and

only if the supremum and infimum limits of σ ◦ f are equal. For this reason η(f) can be set as

η(f)(x) = ηs(f)(x)× ηi(f)(x)× χ=

(
lim inf

y→∞
σ(f(x, y)), lim sup

y→∞
σ(f(x, y))

)
. �

Definition 10.22. The restricted iteration operator, Ī, transforms an n-ary, total, locally

Lipschitz function g ∈ F with n components, into a total (n + 1)-ary function Ī(g) with n

components, given by

Ī(g)(x, t) = gb|t|c(x) = g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
b|t|c times

(x).
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The following theorem is one of the most fundamental results in the field.

Theorem 10.23 (Mycka and Costa [2004], Loff et al. [2007]). REC(R) is effectively

closed under Ī. Furthermore, if g ∈ Dom(Ī) ∩ Hi, then Ī(g) ∈ Hmax(i,1).

Proof. Let g ∈ Hi be an n-ary, total, locally Lipschitz function with n components. Let f be

the (1 + 2n)-ary function with 2n components given by:

f(t,y, z) =


(g(z)− z)

π

2
sin(πt)s(t)

(y − z)π sin(πt)

cos(πt)− 1 + δ(cos(πt)− 1)
(1− s(t))

 .

The components of f are shown using a column vector; the first line gives the first n compo-

nents, and we will call these the first part of f ; the remaining components will be called the

second part of f . Several observations can be made:

1. The first part of f will be zero whenever t is in an interval of the form [2k+ 1, 2k+ 2], and

2. The second part of f wil be zero for t in [2k, 2k + 1].

3. For a fixed z, and any y : [2k, 2k + 1]→ Rn, t ∈ (2k, 2k + 1),∫ t

2k

f(s,y(s), z)ds = (g(z)− z)
π

2

∫ t

2k

sin(πs)ds = (g(z)− z)
1− cos(πt)

2
.

4. If y is fixed, z(2k + 1) = z0, then z(t) = z0 + (y − z0)
1+cos(πt)

2
is the unique solution to

∂tz(t) =
(y − z(t))π sin(πt)

cos(πt)− 1 + δ(cos(πt)− 1)

in the interval (2k + 1, 2k + 2).

5. The function f is total locally Lipschitz, because it is the composition of a total locally

Lipschitz function with g.

To understand why (3) and (4) are important, we show the plot of the solutions 1−cos(πt)
2

and 1+cos(πt)
2

, and of its derivatives. Notice how these functions go from 0 to 1, and how the

derivatives are locally Lipschitz.

So, should we take the differential recursion scheme

(y, z)(x, 0) = x ∂t(y, z)(x, t) = f(t, (y, z)(x, t))

where (y, z) is regarded as a function from Rn+1 to R2n, we may set1

Ī(g)(x, t) = y(x, 2b|t|c).

These functions can be explained the following way: as t changes from 0 to 1, z is constant

and y goes through the distance from x to g(x). For t ∈ [1, 2], y is constant and z catches

1 The differential recursion scheme could be changed so that the scaling 2× b|t|c would become unnecessary.
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2 k 2 k + 1

0

1

2 k + 1 2 k + 2

0

1

Fig. 10.4. Plot of 1−cos(πt)
2

between 2k and 2k + 1, and of 1+cos(πt)
2

between 2k + 1 and 2k + 2, with their respective
derivatives drawn in a lighter line.

up, hence z(x, 2) = y(x, 2) = g(x). If t > 2, then the same cycle begins again, and, for every

n ∈ N, Ī(g)(x, n) = y(2n) = z(2n). �

Example 10.24. You may see a plot of (y, z) for various functions in Fig. 10.5, page 101. The

function y is shown in a thick line, and z is shown in a thin, dashing line. �

Definition 10.25. The restricted smooth iteration operator, Ĩ, takes an n-ary, total,

locally Lipschitz function g ∈ F with n components, and gives a total (n + 1)-ary locally

Lipschitz function Ĩ(g) with n components, such that

Ī(g)(x, t) = y(x, 2tχ>(t, 0)),

where y is given by the previous proposition.

The restricted iteration operator is not smooth; in fact, it gives a discontinuous function.The

smooth iteration operator Ĩ still verifies Ĩ(g)(x, n) = Ī(g)(x, n) for all natural n, but has the

following advantage, which may be concluded from Theorem 9.28.

Theorem 10.26. If g is total and locally Lipschitz, then so is Ĩ(g).

Remark 10.27. Ĩ(g) is also given by:

Ĩ(g)(x, t) =


x if t 6 0,

gn(x) if t ∈ (n+ 1
2
, n+ 1] for some n ∈ N,

gn(x)ξ + gn+1(x)(1− ξ) if t ∈ (n, n+ 1
2
] for some n ∈ N.

Above, ξ is an abbreviation for 1−cos(2π(t−n))
2

. �

Iteration is very useful, and very powerful.

Proposition 10.28 (Mycka and Costa [2007]). If g is an (m+1)-ary total locally Lipschitz

function with n components in Hi, then there are two functions S and P in Hmax(i,1), such that
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S(x, n) =

b|n|c∑
i=1

g(x, i) P (x, n) =

b|n|c∏
i=1

g(x, i).

Proof. We show the proof only for S, since the proof for P is very similar. Begin by setting

S̃(x,y, i) = (x,y + g(x, i), i+ 1).

Then S̃ is total and locally Lipschitz, and (x, S(x, n), n) = Ī(S̃)(x, 0, 1, n). Thus S may be

obtained by composition, projections and aggregation. �

Very pathological functions of analysis are real recursive too. Take, for instance, the every-

where continuous and nowhere differentiable Weierstraß function w, given by

w(x) =
∞∑

n=0

ancos(bnπx), 0 < a < 1, ab > 1 +
1

3
π.

As a corollary of the previous proposition, taking the sums of the continuously differentiable

ancos(bnπx) to the limit, we get:

Corollary 10.29 (Loff et al. [2007]). The Weierstraß function is real recursive for any real

recursive numbers a and b.

There are a number of operators which are real recursive, but we may generally say that

they come in two flavours. Some of these operators make some calculations with some function,

and other operators could be called search operators, because their expressive power arises

from searching for some value with certain properties. Differential recursion and iteration are

examples of the former. While not entirely obvious, infinite limits and the η operators are good

examples of search operators; solving an infinite limit consists in finding the value which is

approximated by a function as one argument grows.

Definition 10.30. Let f : Rm+1 → R be in F . The Sup and Inf operators are given,

component-wise, by

Sup(f)(x) = sup
y∈R

f(x, y) and Inf(f)(x) = inf
y∈R

f(x, y).

In a similar way to the infinite limits, Sup(f)(x) is undefined if f(x, y) is undefined for any

y ∈ R; Sup and Inf are typical examples of search operators. In order to show that REC(R)

is effectively closed for Sup and Inf , we create a periodic function, and take the supremum or

infimum limit of that function.

Theorem 10.31 (Loff [2007a]). REC(R) is effectively closed for Sup and Inf . Furthermore,

if f ∈ Hi, then Sup(f), Inf(f) ∈ Hi+2
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Proof. Consider the function f̃ , given by f̃(x, z, w) = f(x, z sin(w)). Because sin(y) surjectively

maps [w,+∞) into [−1, 1], for any w ∈ R, we find

lim sup
w→+∞

f̃(x, z, w) = sup
y∈[−z,z]

f(x, y).

Then we set Sup(f)(x) = limz→+∞ lim supw→∞ f̃(x, z, w). We proceed in the same way for

Inf . �

Another search operator is minimalisation over the reals, denoted with a (boldface) µ.

Definition 10.32. Let f : Rm+1 → R be in F . The µ operator is given by

µ(f)(x) = inf{y ∈ [0,+∞) : f(x, y) = 0}.

Theorem 10.33. REC(R) is effectively closed for minimalisation. Furthermore, if f ∈ Hi,

then µ(f) ∈ Hmax(3,i+2).

Proof. Recall that the sigmoidal function, σ, surjectively maps [0,+∞) to [1
2
, 1), preserving

the order (cf. Fig. 10.3). Its inverse σ−1(y) = log(y)− log(1− y) is undefined for y = 1. Take

f̃(x, y) = χ 6=(f(x, |y|), 0) + χ=(f(x, |y|), 0)σ(|y|) =

1 if f(x, |y|) 6= 0,

σ(|y|) if f(x, |y|) = 0.

and set µ(f)(x) = σ−1(Inf(f̃)(x)). �

10.4 Real versus classical recursive functions

We will study the relationship between real recursive functions and classical recursive func-

tionals. These are a class of partial, multiple argument functions from Rk×Nm to Nn. We will

denote such a functional by using a semicolon to separate the real-valued arguments, which

we will write on the left, from the natural-valued arguments, shown in the right. For instance

F (x;n).

Notation 10.34. We use w, x, y, z to denote variables ranging over R, and a, b, c, i, j to denote

variables ranging over N. The corresponding vector forms w,x, . . . and a,b, . . . will denote

vector-valued variables over tuples of R and N. �

Take the following basic functionals as examples.

1. The zero functionals, where each Zk is such that Zk(x1, . . . , xk; a) = 0;

2. The successor functionals, where each Sk, given by Sk(x1, . . . , xk; a) = a+ 1;
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3. The projection functionals, where each Uk,m
j obeys

Uk,m
j (x1, . . . , xk; a1, . . . , am) = aj;

4. The oracle functionals, Ok
i , such that2

Ok
i (x1, . . . , xk; b) = xi(b) (the b-th digit of the binary expansion of xi).

We write C, R and µ to stand for the composition, primitive recursion and minimalisation

operators. Given F : Rk×Nm′ → Nn, G : Rk×Nm → Nm′
, the functional C(F,G) : Rk×Nm →

Nn is given by

C(F,G)(x; a) = F (x;G(x; a)).

Given two functionals F : Rk × Nm → N and G : Rk × Nm+2 → N, R(F,G) : Rk × Nm+1 → N
is given by

R(F,G)(x; a, 0) = F (x; a),

R(F,G)(x; a, b+ 1) = G(x; b,R(F,G)(x; a, b), a).

The minimalisation operator µ takes a functional F : Rk × Nm+1 → N and gives µ(F ) :

Rk × Nm → N such that

µ(F )(x; a) = min{b ∈ N : F (x; a, b) = 0}.

Finally, V is the aggregation operator: If F : Rk × Nm → Nn, F : Rk × Nm → Nk are two

functionals, then V(F,G) : Rk × Nm → Nn+k comes from

V(F,G)(x; a) = (F (x; a), G(x; a)).

Now take care in the following definition. We begin by defining two classes of functions, and

only then the relevant class of functionals.

Definition 10.35. The class of primitive recursive functions, PRIM, is given by the

function algebra

PRIM = [Z0,S0,U0,m
j ; C,R,V ].

The class of partial recursive functions, PREC, is given by the function algebra

PREC = [Z0,S0,U0,m
j ; C,R,V , µ].

The class of partial recursive functionals, PRECF, is given by the function algebra (k is

not fixed):

PRECF = [Zk,Sk,Uk,m
j ,Ok,m

i ; C,R,V , µ].

2 The definition is ambiguous because a dyadic rational number x has two different binary expansions. In this case,
x(b) is the b-th digit in the binary expansion ending in an infinite string of 0s.
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Note 10.36. We have described functionals as functions from Rk×Nm to Nn, but in the litera-

ture functionals are usually defined as functions from (N→ N)k ×Nm to N. It is important to

understand that our approach is only superficially different. We may use any simple bijection

from N→ N to R, and from N to Nn, to obtain this result. �

The reason we call PRIM and PREC classes of functions, is because the following may be

trivially obtained by induction:

Proposition 10.37. Every functional in PRIM and PREC has zero real-valued arguments,

i.e., has a signature R0 × Nm → Nn.

We will then omit the R0 part from the signature of functions in PRIM and PREC. In fact,

we could easily take the algebras for PRIM and PREC given, resp., in pages 76 and 79, and

show that a function(al) F : R0×Nm → Nn is in the algebras for primitive recursive (or partial

recursive) functions of Definition 10.35 if and only if there are n functions f1, . . . , fn in the

algebras of Example 9.4 (resp. 9.18) such that F (; a) = (f1(a), . . . , fn(a)).

To get a clearer picture of what a partial recursive functional is, we give a computational

characterisation.

Theorem 10.38. A function f : Rk × Nm → Nn is in PRECF if and only if there is a

Turing machine with k + m + n tapes with the following behaviour. If we take the binary

expansion of x1, . . . , xk, and write it in the first k tapes (this expansion might be infinite),

write the numbers a1, . . . , am in each of the following m tapes, and begin the computation;

then, if f(x; a) is defined, the Turing machine will halt after a finite number of steps, and

print (f(x; a))1, . . . , (f(x; a))n in the last n tapes; if f(x; a) is undefined, then the machine

will not halt.

The rest of this section will be dedicated to:

(I) Showing that every primitive recursive function is real recursive, in some sense;

(II) Proving that every partial recursive function is real recursive;

(III) Concluding that every partial recursive functional is real recursive;

To prove (I), we see that every primitive recursive function has a real extension which is

real recursive.

Proposition 10.39. If F : Nm → Nn is in PRIM, then there is a real recursive total locally

Lipschitz function f : Rm → Rn in H1 such that

F (; a) = f(a) for all a ∈ Nm.

Proof. Our proof is by structural induction on the function algebra for primitive recursive func-

tions. This is clearly true for Z and S, by taking the real recursive zero and add-one functions,

and the inductive step for composition and aggregation is trivial, using the corresponding real
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recursive operators. Now suppose that H : Nm+1 → N in PRIM is given by H = R(F,G), for

some F : Nm → N, G : Nm+2 → N, i.e.,

H(; a, 0) = F (; a) H(; a, n+ 1) = G(;n,H(; a, n), a).

Then by the induction hypothesis, let f and g be two total locally Lipschitz real recursive

functions in H1 such that F (; a) = f(a) and G(;n, b, a) = g(n, b, a) for all a ∈ Nm and

n, b ∈ N. Form

h̃(n,b, a) = (n+ 1, g(n,b, a), a)

by aggregation. Then let h be given by (n, h(a, n), a) = Ĩ(h̃)(0, f(a), a, n), from which we find

h ∈ H1. This function h will be a real recursive extension of H, and will also be total and

locally Lipschitz by Theorem 10.26. �

Now recall the normal form theorem of Kleene.

Theorem 10.40 (Normal form theorem). For every natural m,n > 0 are two primitive

recursive functions U : N → Nn and T : ×Nm+2 → N with the following property. Take any

partial recursive function F : Nm → Nn, and there will be a number e, called a code of F , such

that

1. F (a) is defined if and only if (∃b ∈ N) T (e, a, b) = 0, and

2. F (a) = U(µ(T )(e, a)).

By Proposition 10.39, there will be a real recursive extension of T and U , but we may

furthermore ensure that:

Proposition 10.41. If F : Nm+1 → N and f : Rm+1 → R in H1 are such that

F (; a, b) = f(a, b) for all a ∈ Nm, b ∈ N.

then there is another real recursive function f̃ : Rm+1 → R in H1 such that

µ(F )(; a) = µ(f̃)(a) for all a ∈ Nm.

Proof. Just set f̃(a, y) = f(a, byc)r(y) + f(a, by + 1c)(1− r(y)). �

The function f̃ is just a linear interpolation of f on the last argument. If F (b) = 1 when b

is not a prime, and F (b) = 0 if b is a prime, then the f̃ we would obtain is shown in Fig. 10.6.

We now get the following corollary.

Theorem 10.42 (Mycka and Costa [2004] and see also Graça et al. [2005]). If F :

Nm → Nn is in PREC, then there is a real recursive function f : Rm → Rn in H3 such that

F (; a) ' f(a) for all a ∈ Nm.
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5 10 15

1

Fig. 10.6. A plot of f̃(y), where F (b) is given by the dots.

Proof. Let U, T be the primitive recursive functions given by the normal form theorem, u, t

be their real recursive extensions given by Proposition 10.39, and let t̃ be given from t by the

previous proposition. For any partial recursive function F , let e be one of its codes. Then set

f(x) = u(µ(t̃)(e,x)), and conclude that f is a real extension of F . The function f will be in

H3, because u, t̃ are in H1, and by Proposition 10.33. �

Thus concluding (II); in order to prove (III), we use the fact that any converging computa-

tion will always make use of only a finite part of the oracle.

Definition 10.43. If x ∈ Rk, then let x�N
n denote, for some n ∈ N, the vector in Nk given by

x�N
n = (x1�n × 2n, . . . , xk�n × 2n).

Proposition 10.44. The function given by f(x, n) = x�N
n is real recursive.

Proof. For x ∈ R, x�n ×2n = bx2nc. The rest comes from aggregation, etc. �

We can now use Theorem II.3.11 from Odifreddi [1989], which for our purposes can be

formulated as follows.

Proposition 10.45. A functional F : Rk × Nm → Nn is in PRECF if and only if there is a

partial recursive function F̃ : Nk+m → Nn with the property that F (x; a) ' b if and only if

there is an n ∈ N such that F̃ (;x�N
n , a) ' b.

The following corollary can be understood as saying that for any given input the behaviour

of a recursive functional only depends on a finite part of the oracle.

Corollary 10.46. If a functional F : Rk × Nm → Nn is in PRECF then there is a partial

recursive function F̃ : Nk+m → Nn with the property that F (x; a) ' b if and only if there is

an m ∈ N such that F̃ (;x�N
n , a) ' b for all natural n > m.

And so we conclude this chapter, with the following.
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Theorem 10.47. If F : Rk × Nm → Nn is in PRECF, then there is a real recursive function

f : Rk+m → Rn in H4 such that

F (x; a) ' f(x, a) for all x ∈ Rk, a ∈ Nm.

Proof. Let F̃ be given from the previous corollary, and let f̃ be a real recursive function in H3

extending F̃ . Then take

f(x, a) = lim
n→+∞

f̃(x�N
bnc, a)

and f ∈ H4 will extend F . �

We have shown that every partial recursive function or functional has a real recursive ex-

tension. However, the class of real recursive functions stretches much further. We will see in

Chapter 12 that any predicate in the analytical hierarchy is real recursive, and as a corol-

lary many non-computable functions, such as the Busy Beaver function, have real recursive

extensions.
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Universality

This chapter is devoted to solving the problem of universality. We will begin in Section 11.1

with a series of considerations on the Euler method to approximate solutions of our simple

differential recursion scheme (9.6). Our first conclusion will be that we may replace differential

recursion with the restricted iteration operator of Definition 10.22, by adding a few basic

functions to the algebra H. With this, we will form a new algebra I that also gives REC(R).

In Section 11.2 we show that we may totalise any real recursive function, and this will solve

the problem of universality, in the negative sense: we will conclude that there is no universal

real recursive function.

11.1 The Euler method and differential recursion

Let f : Rn+1 → Rn be a total locally Lipschitz function; consider again the Cauchy problem

g(x, 0) = x ∂tg(x, t) = f(t, g(x, t)), (11.1)

We study some interesting properties of the Euler method to approximate solutions to (11.1).

Definition 11.1. The Euler broken line for the Cauchy problem (11.1) is a total function

ĝ : Rn+2 → Rn. For any fixed z > 0, let δ = 1
z
, t0 = 0, ti+1 = ti + δ. Abbreviate ĝ(x, t, z) ≡

ĝz(x, t). Then ĝ is given by:

ĝz(x, t0) = x;

if ti 6 t < ti+1, then

ĝz(x, t) = ĝz(x, ti) + (t− ti)f(ti, ĝz(x, ti));

and if −ti+1 < t 6 −ti, then

ĝz(x, t) = ĝz(x,−ti)− (t+ ti)f(−ti, ĝz(x,−ti)).

The bounded Euler broken line for the Cauchy problem (11.1) is a total function g̃ :

Rn+3 → Rn. We set δ, ti as before, and abbreviate g̃(x, t,M, z) ≡ g̃M,z(x, t). Let j, k denote

the smallest natural numbers such that ‖ĝz(x,−tj)‖ > M and ‖ĝz(x, tk)‖ > M . If there is no

such k (or j), then tk−1 (resp. −tj−1) will denote +∞ (resp. −∞). Then g̃ is given by
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g̃M,z(x, t) =


ĝz(x,−tj−1) if t 6 −tj−1

ĝz(x, t) if − tj−1 < t < tk−1

ĝz(x, tk−1) if tk−1 6 t

The bounded Euler broken line is a piece-wise linear approximation of the solution g of

(11.1), using Euler’s method, which is bounded in the norm by a value M , and where the

number of approximation steps for a segment of length 1 is given by z. Fig. 11.1 illustrates

how the bounded Euler broken line looks for different values of M and z.
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Fig. 11.1. The bounded Euler broken line, for x = 1 and f(t, y) = y, with various values of M and z.

Theorem 11.2. Let g be a solution of (11.1), and let g̃ be its Euler broken line. Fix an arbitrary

x ∈ Rn, and compact interval J ⊂ Dom(g). Then, for every large enough M ∈ R, the function

g̃M,z(x, ·) converges to g(x, ·) uniformly in J as z → +∞. In symbols,

(∀ε > 0)∃M̃(∀M > M̃)∃z̃(∀z > z̃)(∀t ∈ J) ‖g̃M,z(x, t)− g(x, t)‖ < ε.

Proof. Take any ε > 0. By the compactness of J and continuity of g (Theorem 9.28), set

M > max
t∈J
‖g(x, t)‖+ |t|+ ε. (11.2)
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Let B denote the closed (compact) cylinder B = J × B(0,M) ⊂ Rn+1. Because f and g are

locally Lipschitz (Theorem 9.28), then choose two constants Kf and Kg such that

‖g(x, t̃)− g(x, t)‖ 6 Kg|t̃− t| for all t, t̃ ∈ J ; (11.3)

‖f(t̃, ỹ)− f(t,y)‖ 6 Kf |t̃− t|+Kf‖ỹ − y‖ for all (t,y), (t̃, ỹ) ∈ B. (11.4)

Choose K ∈ R to be greater than both Kf and Kg + 1, and choose z and δ, so that letting dJ

denote the diameter of J ,

z >
1

ε
K(eKdJ − 1), δ =

1

z
, t0 = 0, ti+1 = ti + δ

We will show, by induction on i, that setting ∆t = ‖g̃M,z(x, t)− g(x, t)‖, then

∆t <
1

2
Kδ(eKt − 1)

for any positive t ∈ J . Because of our choice of z, this ensures that ∆t < ε, which is what we

intend to prove. The hypothesis is true for ti = t0 = 0, because ∆0 = 0. Now suppose it is true

for some ti. Then, choosing any t ∈ [ti, ti+1] ∩ J ,

∆t = ‖g̃M,z(x, t)− g(x, t)‖ =

∥∥∥∥g̃M,z(x, 0)− g(x, 0) +

∫ t

0

f(ti, g̃M,z(x, ti))− f(s, g(x, s))ds

∥∥∥∥
6 ∆ti +

∫ t

ti

‖f(ti, g̃M,z(x, ti))− f(s, g(x, s))‖ds

6 ∆ti +

∫ t

ti

‖f(ti, g̃M,z(x, ti))− f(ti, g(x, ti))‖ds+

∫ t

ti

‖f(ti, g(x, ti))− f(s, g(x, s))‖ds

By induction hypothesis, ∆ti = ‖g̃M,z(x, ti) − g(x, ti)‖ < ε, and so (ti, g̃M,z(x, ti)) ∈ B. Then

we may apply the Lipschitz properties (11.3) and (11.4) to the integrals, and find

∆t 6 ∆ti +Kf (t− ti)∆ti +Kf (Kg + 1)

∣∣∣∣∫ t

ti

|s− ti|ds
∣∣∣∣

Which implies ∆t 6 (1 +K(t− ti))∆ti + 1
2
K2(t− ti)2. Using again the induction hypothesis,

and (t− ti) 6 δ,

∆t 6
1

2
KδeKti(1 +K(t− ti))−

1

2
Kδ(1 +K(t− ti)) +

1

2
K2δ(t− ti).

Now, because 1 + x 6 ex and K2 > K, we arrive at

∆t 6
1

2
Kδ(eKt − 1) < ε,

as intended. The proof is symmetrical for a negative t. �
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Corollary 11.3. If g is a solution of (11.1), and g̃ is its Euler broken line, then

lim sup
M→+∞

lim sup
z→+∞

g̃M,z(x, t) = g(x, t) for (x, t) ∈ Dom(g).

We may, in fact, obtain the following.

Proposition 11.4. If g is a solution of (11.1), and g̃ is its Euler broken line, then

lim sup
M→+∞

lim sup
z→+∞

g̃M,z(x, t) ' g(x, t).

Proof. We already know that g will equal Ls(Ls(g̃)) where it is defined, and so we only need

to show that Ls(Ls(g̃)) will be undefined where g is undefined. This is an easy conclusion

deriving from Theorem 9.26, and from the definition of the bounded Euler broken line. For

any fixed x, and any compact interval J , we have two cases. Either that g(x, ·) is bounded

in J , and so lim supz→+∞ g̃M,z(x, t) = g(x, t) for every t ∈ J and every large enough M ; or

otherwise lim supt→B+ ‖g(x, t)‖ = +∞ for some positive B in J (the case is symmetrical for a

negative A). In this case, g will be continuous and defined for every 0 6 t < B. So let tM ∈ J
be the smallest value for which ‖g(x, tM)‖ > M , i.e,

tM = min{t ∈ J : ‖g(x, tM)‖ > M}

(which is well defined because g is continuous). Then by definition of g̃

lim sup
z→+∞

g̃M,z(x, t) =

g(x, t) if t < tM ,

g(x, tM) if t > tM .

By the continuity of g, ‖g(x, t)‖ is always bounded for any compact interval [0, T ] ⊂ [0, B),

and so tM > T if M > maxt∈[0,T ] ‖g(x, t)‖. So tM → B as M → +∞. We may then conclude

that

lim sup
M→+∞

lim sup
z→+∞

‖g̃M,z(x, t)‖ = +∞

for any t ∈ [B,+∞), and so [B,+∞) is disjoint from Dom(Ls(Ls(g̃)). �

The Euler broken line can be obtained in a real recursive way.

Proposition 11.5 (Campagnolo et al. [2002], Loff et al. [2007]). For any real recursive

f in Dom(R), the Euler broken line g̃ of g = R(f) is real recursive.

Proof. Let b be given by

b(t,y, δ,M) = χ<(‖y + δ × f(t,y)‖,M) =

1 if ‖y + δ × f(t,y)‖ < M ;

0 otherwise.
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Now take the auxiliary function ĝ, given by

ĝ(t,y, δ,M) = (t+ δ × b(t,y, δ,M),y + δ × f(t,y)× b(t,y, δ,M), δ,M) .

It is straightforward to see that if f is real recursive, then so is ĝ. The function ĝ calculates

the point (ti+1, g̃M,z(x, ti+1), δ,M) in the bounded Euler broken line, when given the current

t = ti, y = g̃z(x, ti), δ = 1
z

and M . If δ = −1
z
, then ĝ will calculate (−ti+1, g̃z(x,−ti+1), δ,M)

instead. We may then use another function, ḡ, with its i-th component given by:

(ḡ(x, t,M, z))i =

(
ĝbtzc

(
0,x,

t

|t|z
,M

))
i+1

.

The function ḡ, given t, z,M , calculates g̃(x, ti) for the largest ti 6 t. Then g̃ may be given by

a linear interpolation:

g̃M,z(x, t) = r(zt)ḡ(x, t,M, z) + (1− r(zt))ḡ
(
x, t+

1

z
,M, z

)
. �

Supported by this proposition, we define the following new operator.

Definition 11.6. The Euler operator E : F → F , takes a total locally Lipschitz function

f : Rm+1 → Rn, and maps f 7→ g̃, where g̃ is the Euler broken line of Definition 11.1.

Then Proposition 11.5 is equivalent to saying that E is a real recursive operator. We may,

however, take the following stronger result.

Theorem 11.7. The class of real recursive functions is also given by the function algebra

[−1n, 0n, 1n,Un
i ;C,E,Ls,V].

Proof. Clearly this function algebra only gives real recursive functions, because REC(R) con-

tains every basic function and is closed for every operator by Proposition 11.5. However,

because R = Ls ◦ Ls ◦ E (Proposition 11.4), this algebra will also give us every real recursive

function. �

We will, however, use the following.

Theorem 11.8 (Loff et al. [2007]). The class of real recursive functions is given by the

function algebra

REC(R) = I = [−1n, 0n, 1n,Un
i ,+,×, xy;C, Ī,Ls,V].

Above, +,× and xy denote the binary addition, product and exponentiation (the later being

undefined for negative bases).
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Proof. We only need to show that we may obtain E using only restricted iteration, +,×, xy and

the remaining operators. But looking at the proof of Proposition 11.5, we see that this is the

case, but we additionally use restricted inverse 1/·, the characteristic of strict inequality χ<, the

absolute value function | · |, the euclidean norm ‖ · ‖, and the floor function b·c. However, all of

these may be obtained from the basic functions: 1
x

= x−1; the expressions given in Propositions

10.8 may still be used to give Kronecker’s δ and Heaviside’s Θ — and thus χ< and | · |; the

Euclidean norm comes from
√
· and ×, and

√
x = x

1
2 ; finally, iterating the successor function

s(x) = x + 1 we get bxc = Ī(s)(0, x). In this way, we may obtain E using the shown function

algebra. �

This specific function algebra was named, using the capital Greek letter I (iota), because it

will be fundamental in most of the following results.

11.2 Totalisation operators and universality

We will solve the problem of universality in two steps. First, we show that any real recursive

function can be extended to a total function. Then, we show that if there was a universal real

recursive function, this would be impossible.

Definition 11.9. Given a function f : Rm → Rn in F , its totalisation is a function (χf , τf ) :

Rm → Rn+1, such that

χf (x) =

1 if x ∈ Dom(f),

0 otherwise;
τf (x) =

f(x) if x ∈ Dom(f),

0 otherwise.

Theorem 11.10 (Loff et al. [2007]). If f real recursive function, then so is its totalisation.

Proof. The proof is by structural induction on the algebra I. Because the basic functions

are all total, the result is trivial for the basic case. If f is C(g, h), then the totalisation of

g and h is real recursive, by the induction hypothesis, and then χf (x) = χg(τh(x)) × χh(x),

τf (x) = τg(τh(x))×χh(x) gives the result for composition. The result is also trivial for restricted

iteration, because it maps total functions to total functions. Now, if f is Ls(g), then the

totalisation of g must be real recursive, by our induction hypothesis. Then, for any x,

f(x) = lim sup
y→∞

g(x, y),

and we must have one of two cases:

1. g(x, y) is defined for every large enough y; in symbols,

∃ỹ(∀y > ỹ) (x, y) ∈ Dom(g);
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2. g(x, y) is undefined for arbitrarily large y; in symbols,

∀ỹ(∃y > ỹ) (x, y) 6∈ Dom(g);

In the first case, then clearly f(x) = lim supy→∞ τg(x, y), but in the second case, this might

not be so. However, we have that

lim sup
y→∞

[τg(x, y) + (1− χg(x, y))y]

will be defined if and only if f(x) is defined,1 and will be equal to f(x) if it is indeed defined.

So we may set

χf (x) = ηs(τg + (1− χg)× Un+1
n+1 )(x)

τf (x) = χf (x)× lim sup
y→∞

(χf (x)× τg(x, y)) .

The induction step for aggregation is very simple: if f is V(g, h), we may use the induction

hypothesis and set χf (x) = χg(x)× χh(x) and τf = (τg, τh). �

Now we may solve the problem of universality. We will simplify our result by making the

following assumption.

Assumption on Gödelisation. There is an effective enumeration de of all the descriptions

in DI. �

This assumption can be made into a theorem by any standard method of encoding. When-

ever de is a good description (Definition 9.5), φe will denote the described function, and e is

said to be a code of φe. We may then specialise Definition 9.16 into the following.

Definition 11.11. A real recursive function Ψ : Rm+1 → Rn is called universal if for every

e ∈ N, x ∈ Rm, we have

Ψ(e,x) ' φe(x)

whenever de is a good description of an m-ary function with n components.

Theorem 11.12 (Loff et al. [2007], see also Mycka and Costa [2006c]). There is no

universal real recursive function.

Proof. A diagonal argument will be give us reductio ad absurdum. For clarity we present only

the case when m = n = 1, but the argument may easily be extended. Suppose that there was

a universal real recursive function Ψ : R2 → R. Then by the previous theorem we could find

its real recursive totalisation χΨ and τΨ , and the function given by

g(x) = log(1− χΨ (x, x)) = log(1− χφx(x)) =

1 if x 6∈ Dom(φx),

⊥ otherwise;

1 Recall that we treat +∞,−∞ and ⊥ in the same way. If this is somehow confusing, remember that we may use the
sigmoidal function, as we did in order to prove Propositions 10.16 and 10.21 .
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would be a real recursive function of arity 1. So let e be a code of g. We have that e ∈ Dom(g)

if and only if e 6∈ Dom(φe), which is the contradiction we sought. �
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Understanding REC(R)

We have shown in Section 10.3 that REC(R) is effectively closed for the Sup and Inf search

operators. We may strengthen this result in the following way.

Theorem 12.1 (Loff [2007a]). The class of real recursive functions is given by the function

algebra

REC(R) = [−1n, 0n, 1n,Un
i ,+,×, xy;C, Ī,Sup,V].

Proof. Let A denote the given algebra. All we have done was replace the infinite supremum

limit by the supremum in the algebra I. We know that I is closed for the supremum operator,

and so all we need to show is that we may obtain the infinite supremum limit in the algebra A.

This algebra is also closed for the infimum, because Inf(f) = −Sup(−f). But by definition,

lim sup
y→∞

f(x, y) = inf
y∈R

sup
z>y

f(x, z) = inf
y∈R

sup
z∈R

f(x, z2 + y),

and so A is also closed for Ls. �

We therefore reduce our original function algebra to a fairly trimmed down inductive defini-

tion. However, in this chapter we will show that the expressive power of this function algebra

is much greater than what was anticipated. In Section 12.1 we will introduce the analytical

hierarchy of predicates, and show that the graph of any real recursive function is in this hi-

erarchy. In 12.2 we will show the converse, that any function with a graph in the analytical

hierarchy must be real recursive. The expressive power of the analytical hierarchy is evidently

great, and so this result explains why it seems to be so hard to find a function which is not

real recursive.

12.1 The analytical hierarchy

The analytical hierarchy is a hierarchy of predicates of second-order arithmetic, and is studied

in a variety of contexts. It was originally devised by Lusin (1925) for the then-incipient field of

descriptive set theory and discovered independently by Kleene (1955) in the study of recursion

on higher types. The name ‘analytical’ is used because second-order arithmetic allows for the

formalisation of elementary analysis.

We present the analytical hierarchy of predicates, and relate it with the η-hierarchy.
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Definition 12.2. A predicate P over real and natural numbers is called recursive if there is

a partial recursive functional F such that

F (x; a) =

1 if P (x, a) holds,

0 otherwise.

A predicate Q over real and natural numbers is called arithmetical if it is given using natural

number quantifiers over a recursive predicate, i.e., if for some recursive predicate P ,

Q(x, a) ⇐⇒ (∀b1)(∃b2) . . . (∀bn−1)(∃bn)P (x, a,b).

Definition 12.3. The analytical hierarchy of predicates consists of three N-indexed fam-

ilies of predicates over real and natural numbers:

1. Σ1
0 is the class of arithmetical predicates, and Π1

0 = Σ1
0 .

2. Σ1
n+1 is the class of predicates given by ∃y P (x, y, a), with P in Π1

n.

3. Π1
n+1 is the class of predicates given by ∀y P (x, y, a), with P in Σ1

n.

4. ∆1
n = Σ1

n ∩Π1
n.

We will call analytical to the predicates in the analytical hierarchy. We write ∆1
ω to stand

for ∪n∈N∆
1
n, which is exactly the set of all analytical predicates. We will make abundant use

of the following result [cf. Odifreddi, 1989, p.377].

Proposition 12.4. (a) Σ1
n+1 is closed for existential quantification over R.

(b) Π1
n+1 is closed for universal quantification over R.

(c) Π1
n+1 and Σ1

n+1 are closed for existential and universal quantification over N.

(d) We may exchange quantifiers over N with quantifiers over R, i.e.,

(di) If P ∈ Σ1
n then some P̃ also in Σ1

n is such that ∀a P ⇐⇒ ∀x P̃ .

(dii) If P ∈ Π1
n then some P̃ also in Π1

n is such that ∃a P ⇐⇒ ∃x P̃ .

Recall the following definition from page 89.

Definition 12.5. The graph of a function f : Rm → Rn, denoted Gf , is the (n + m)-ary

predicate given by

Gf (z,x) ⇐⇒ x ∈ Dom(f) ∧ z = f(x).

Definition 12.6. We say that a function f : Rm → Rn is in Σ1
k if its graph is in Σ1

k. Similarly

for Π1
k and ∆1

k.

We know that quantifiers may be used to express a rich variety of mathematical ideas, and

so we expect that there are many functions in the analytical hierarchy.

Proposition 12.7. The functions 1n, 1̄n, 0n,Un
i ,+,×, xy, | · | and b·c, as well as the predicates

of equality and inequality over the reals, are in ∆1
0.
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Proof. We begin by showing that there is a recursive way to decide the predicate over the

reals given by the expression ‘x and y are not different up to the nth digit’, written x =n y.

An algorithm to decide this predicate needs to solve the ambiguity of the representation of a

real number by binary expansion, and we can make it work the following way: given two real

numbers x, y and a natural number n, we obtain the first n digits of the two reals and verify

if they are the same. If they are, then we decide that x =n y. If the digits are not equal we

consider the first different digit — one is 0 and the other 1 — and check if the digits after the 0

are all 1s and the digits after the 1 are all 0s.1 If so, then we decide that x =n y, and we decide

that x 6=ny otherwise. The predicate of real number equality is then given by: ∀n x =n y, which

is in ∆1
0. For the function +, we define a predicate, of expression z =n x + y, that decides if

z = x+y for the first n digits of z, x and y. This function computes the sum of the truncations

of x and y to the nth fractionary digit and checks if resulting rational number coincides with z

to the nth digit using the method shown above. If so, the function is valued 1, and 0 otherwise.

Now we have that z = x+ y if and only if ∀n z =n x+ y, which is ∆1
0. The proof is similar for

the remaining operations. �

A single real number can code any finite tuple of real numbers by alternating the digits of

the real numbers in the tuple (we will make use of this fact in the next chapter). In this sense,

we write yn,i to stand for the i-th real number in the n-ary tuple coded by y. For an m-ary

tuple y, we write yn,i to stand for the tuple ((y1)n,i, . . . , (ym)n,i). Then it is not hard to see

that if some n-ary predicate P is in ∆1
n (or Σ1

n, or Π1
n), then the (n+ 1)-ary predicate P̃ given

by

P̃ (y, n) ⇐⇒ (∀i 6 n)P (yn,i)

is also in ∆1
n (resp. Σ1

n, Π1
n).

Proposition 12.8 (Loff [2007a]). All real recursive functions belong to the analytical hier-

archy, in the sense of Definition 12.6.

Proof. The result is proved by induction on the structure of REC(R) presented in Proposition

12.1. Proposition 12.7 gives us the result for the atomic functions. Proposition 12.4 will suffice

to show closure under the operators. If f and g are in Σ1
n, then C(f, g) is in Σ1

n, since:

z = C(f, g)(x) ⇐⇒ ∃y z = f(y) ∧ y = g(x).

Let f be an m-ary total locally Lipschitz function with m components in Σ1
n. Then Ī(f) is in

Σ1
n, since z = Ī(f)(x, y) if and only if

∃w∃k [k = b|y|c ∧wk,1 = f(x) ∧ ((∀i 6 k))[wk,i+1 = f(wk,i)] ∧ z = wk,k]

If f is an (m+ 1)-ary function in Σ1
n, then Sup(f) ∈ Π1

n+1 ⊆ Σ1
n+2, since

1 e.g. x = 101.110000 and y = 101.101111, where the first different digit is underlined.
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z = Sup(f)(x) ⇐⇒ (∀i 6 m)∀y zi > (f(x, y))i ∧ (∀z̃ < zi)∃ỹ z̃ < (f(x, ỹ))i.

Furthermore, if f, g are in Σ1
n then V(f, g) is trivially also in Σ1

n. �

12.2 Real recursive functions and the analytical hierarchy

In this chapter, we show one of the most important results of this text:

Theorem 12.9 (Loff [2007a]). REC(R) is the class of functions with a graph in the analytical

hierarchy, i.e.,

REC(R) = {f : the predicate given by z = f(x) is in ∆1
ω}.

This will be carried out in a few steps. We have already shown in the previous section that

every real recursive function has a graph in the analytical hierarchy. We will now prove (I)

that every predicate in the analytical hierarchy has a real recursive characteristic, and (II)

that if the graph of a function has a real recursive characteristic then the function itself is real

recursive.

Proposition 12.10 (Mycka and Costa [2004]). The characteristic of every predicate P ∈
Π1

1 has a real recursive extension.

Proof. We use the normal form theorem [Odifreddi, 1989, p.380] forΠ1
1 predicates, which states

that P ∈ Π1
1 if and only if some recursive predicate R verifies

P (x, a) ⇐⇒ ∀y∃b R(x, y; a, b).

But then, setting Q(x, y; a) ⇐⇒ ∃b R(x, y; a, b), we get a predicate Q ∈ Σ0
1 ⊂ ∆0

2.
2 From

Shoenfield’s limit lemma [Odifreddi, 1989, p. 373], there must then be a recursive functional

G such that

lim
b→+∞

G(x, y; a, b) = χQ(x, y; a) =

1 if ∃b R(x, y; a, b) holds

0 otherwise.

Above, the variable b ranges over the natural numbers. Therefore, by Proposition 10.47, G

must have a real recursive extension g, and so the characteristic of Q:

lim
z→+∞

g(x, y, a, bzc) = χQ(x, y; a)

must also have a real recursive extension. We then set

2 These are levels in the arithmetical hierarchy, which is defined in a similar way to the analytical hierarchy; cf.
[Odifreddi, 1989, p.367].
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χP (x, a) = inf
y∈R

χQ(x, y, a) =

1 if P (x, a) holds

0 otherwise
�

Proposition 12.11 (Loff [2007a]). The characteristic of every predicate P in the analytical

hierarchy is real recursive.

Proof. All predicates in ∆1
0 ⊂ Π1

1 have real recursive characteristics, by the previous proposi-

tion. We now show that if P is an (n+1)-ary predicate with a real recursive characteristic χP ,

then there are real recursive characteristics of the predicates given by ∀yP (x, y) and ∃yP (x, y).

We have shown in Proposition 10.31 that if a function is real recursive, then so is its supre-

mum and infimum over R. So we have that ∀yP (x, y) if and only if Inf(χP )(x) = 1 and that

∃yP (x, y) if and only if Sup(χP )(x) = 1. This way we conclude that all analytical predicates

have real recursive characteristics. �

The proof of (II) is easy for scalar functions.

Proposition 12.12 (Loff [2007a]). Let χf denote the characteristic function of the graph of

f : Rm → R, i.e.,

χf (z,x) =

1 if z = f(x)

0 otherwise.

If χf is real recursive, then so is f .

Proof. We construct a search operator, somewhat like minimisation, but with the whole R as

search domain. Consider again the function σ(x) = ex

1+ex and its inverse σ−1(y) = log(y) −
log(1− y). The function σ surjectively maps R into (0, 1). So let

F (x, z) = (1− χf (z,x)) + χf (z,x)σ(z) =

σ(z) if z = f(x),

1 otherwise.

We may then set

f(x) = σ−1(Inf(F )(x)). �

Because every graph of every function in the analytical hierarchy must be real recursive

(Proposition 12.11), and if the graph of such a scalar function is real recursive, then so is the

function itself (Proposition 12.12), we get the following.

Corollary 12.13. Every scalar function in the analytical hierarchy is real recursive.

Notice that the class of functions with a graph in the analytical hierarchy is closed for

component selection, and this immediately gives us Theorem 12.9. But we may make a more

explicit proof.
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Definition 12.14. The function γ̃ is the injection from (0, 1)2 to (0, 1) given by

γ̃(x, y) =
∞∑
i=1

D(x, i)2−2i+1 +D(y, i)2−2i,

where D(x, i) denotes the i-th digit of the binary expansion of x; γ̃1 and γ̃2 denote each com-

ponent of the inverse of γ̃, given by

γ̃1(z) =
∞∑
i=1

D(z, 2i− 1)2−i, γ̃2(z) =
∞∑
i=1

D(z, 2i)2−i.

Then we set γ, γ1, γ2 to be given by

γ(x, y) = γ̃(σ(x), σ(y)), γ1(z) = σ−1(γ̃1(z)), γ2(z) = σ−1(γ̃2(z))

We may easily see that γ, γ1 and γ2 are scalar functions in the analytical hierarchy, form-

ing an injection from R2 to (0, 1). So by Corollary 12.13, with the use of composition and

aggregation, we conclude the following.

Proposition 12.15 ([Mycka, 2003a]). The functions γ, γ1 and γ2 are real recursive. Fur-

thermore, for every n there are two real recursive functions γn : Rn → (0, 1) and its inverse

γ−1
n : (0, 1)→ Rn forming an injection from Rn to (0, 1).

We could construct such functions H3 by using sums and infinite limits. The following final

corollary implies Theorem 12.9.

Corollary 12.16. Let χf denote the characteristic function of the graph of f : Rm → Rn. If

χf is real recursive, then so is f .

Proof. Consider the function f̃ , given by

f̃(x) = γn(f(x)).

Then f̃ is scalar, and its characteristic function is given by

χf̃ (z,x) =

1 if z ∈ (0, 1) and χf (γ
−1
n (z),x) = 1,

0 otherwise.

This expression gives a real recursive function, and so f̃ is real recursive by Proposition 12.12.

But then f(x) = γ−1
n (f̃(x)), and therefore f is also real recursive. �
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Towards solving the problem of collapse

Consider the rank hierarchy for the infinite limit operator under the algebra I:

Definition 13.1. The ι-hierarchy is the rank hierarchy for the limit operator under the al-

gebra I for REC(R). We use Ik to denote the n-th level of this hierarchy. In symbols,

Ik = H I,Ls
k = {f ∈ REC(R) : rkI

Ls(f) 6 k}.

A clearer picture for this hierarchy may be obtained from the following corollary of Propo-

sition 9.15.

Corollary 13.2. The ι-hierarchy is inductively given by:

1. I0 = [−1n, 0n, 1n, Un
i ;C, Ī,V],

2. Ĩk = Ik ∪ {Ls(f) : f : Rm+1 → Rn is in Ik}, and

3. Ik+1 = [̃Ik;C, Ī,V].

The purpose of this chapter is to show that the ι-hierarchy does not collapse. In Section

13.1 we show that REC(R) is closed for unrestricted iteration, and that there is a real recursive

way to manipulate stacks of functions. In Section 13.2 we construct restrictions of universal

real recursive functions for bounded levels in the ι-hierarchy. In Section 13.3 we will conclude

that the ι-hierarchy does not collapse, and explain why this result does not immediately imply

a similar result for the η-hierarchy.

13.1 Unrestricted iteration and stacks

From the previous chapter we immediately see that REC(R) is closed for unrestricted iteration.

Definition 13.3. The iteration operator I maps any n-ary function f with n components

into an (n+ 1)-ary function with n components I(f), given by

I(f)(x, t) = f b|t|c(x) = f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
b|t|c times

(x).
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Notation 13.4. When the given number of iterations is expected to be a natural number, we

omit the flooring and absolute value symbols in the number of iterations. Then fn(x) is an

abbreviation to f b|n|c(x).

Proposition 13.5. REC(R) is effectively closed under I.

Proof. The analytical hierarchy is easily closed under I, by using the same expression we have

used in the proof of Proposition 12.8 to obtain unrestricted iteration. �

Using this unrestricted iteration operator, we may find a way to manipulate stacks of real

values by using the pairing function γ of the previous chapter. We denote a stack of real

numbers by #xn . . . x1, where # marks the top of the stack. We represent an empty stack

by the number 0. The stack #xn . . . x1 is represented with the number γ(xn, . . . γ(x1, 0) . . .).

Recall that the range of γ is (0, 1), and so there is no risk of confusing an empty stack with a

non-empty stack.

We can then define four basic stack manipulation functions. The psh function, which pushes

a value on top of the stack, is given by psh(S, x) = γ(x, S). The pop function removes the top

of the stack: pop(S) = γ2(S). The top function gives the value on the top of the stack, and

0 if the stack is empty: top(S) = (1 − δ(S))γ1(S + 1
2
δ(S)). The emp function gives 1 if the

stack is empty and 0 otherwise: emp(S) = δ(S). We abbreviate top(popn−1(S)) ≡ tp(S, n).

More complex stack manipulation functions can be defined using the four basic functions. The

function swt, for instance, pushes the top of the stack into the (n+ 1)th position: swt(S, n) =

U4
1 (I(f)(S, 0, n, 0, 2n+ 2)), where

f(S1, S2, n, r) =



(pop(S1), 0, n, top(S1)) if r = 0 and n > 0,

(pop(S1), psh(S2, top(S1)), n− 1, r) if r 6= 0, and n > 0,

(psh(S1, r), S2, 0, 0) if r 6= 0 and n = 0,

(psh(S1, top(S2)), pop(S2), 0, 0) if r = 0 and n = 0.

Notice that the above definition by cases can be implemented using the characteristics of

equality and inequality, along with products and sums. The function dup duplicates the top n

elements of the stack: dup(S, n) = U4
1 (I(g)(S, 0, 0, n, 3n+ 1)), where

g(S1, S2, S3, n) =



(pop(S1), psh(S2, top(S1)), 0, n− 1) if n > 0,

(S1, S2, S2, 0) if n = 0, and emp(S3),

(psh(S1, top(S2)), pop(S2), S3, 0) if n = 0 and not emp(S2),

(psh(S1, top(S3)), S2, pop(S3), 0) if n = 0 and not emp(S3).

The effect of tp(S, n), swt(S, n) and dup(S, n) on the stack S are illustrated on Fig. 13.1.

In the next chapter, we will construct the universal real recursive functions Ψm,n
k for m-ary,

n-component functions in Ik, by manipulating an analogue of an execution stack.
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S
#
xn
...

tp(·,n)−→ x1

x1
...

S swt(S, n)
# #
y xn

xn
...

...
swt(·,n)−→ x1

x1 y
...

...

S dup(S, n)
# #
xn xn
...

dup(·,n)−→ ...
x1 x1
... xn

...
x1
...

Fig. 13.1. Applying tp, swt and dup to a stack S

13.2 Universal level-bounded functions

We show that the ι-hierarchy does not collapse by constructing functions Ψm,n
k which are

universal for Ik.

Definition 13.6. A function Ψm,n
k : Rm+1 → Rn is called a universal function for Ik if for

every good description dm,n
e with rk(dm,n

e ) 6 k, and every x ∈ Rm,

Ψm,n
k (e,x) ' φm,n

e (x).

Theorem 13.7 (Loff et al. [2007]). For any m,n, k, there is a universal function Ψm,n
k for

Ik.

Proof. We construct functions that simulate any real recursive function step-by-step, given its

code, by maintaining two stacks. On the first stack we keep real values and on the second

stack we maintain codes of descriptions of real recursive functions or of stack manipulation

instructions. A switch instruction swt(·, n) is represented by the number 3n+1, and a duplicate

instruction dup(·, n) is represented by 3n + 2. The description de is represented by 3e. If the

description in the top of the second stack describes an n-ary function, it is expected that n

real values are in the first stack, each corresponding to one argument, with the last argument

on top. To implement the aggregation operator, it will be necessary to duplicate and switch

the contents of the stack, and that is why we encode the swt and dup instructions. Let Ψ̃0 be

given by:
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Ψ̃0(S1, S2) =



(psh(popn(S1), 1), pop(S2)) if 1
3
top(S2) is 〈fun1n〉,

(psh(popn(S1),−1), pop(S2)) if 1
3
top(S2) is 〈fun−1n〉,

(psh(popn(S1), 0), pop(S2)) if 1
3
top(S2) is 〈fun0n〉,

(psh(popn(S1), tp(S1, n− i+ 1)), pop(S2)) if 1
3
top(S2) is 〈funUn

i
〉,

(psh(pop2(S1), tp(S1, 2) + top(S1)), pop(S2)) if 1
3
top(S2) is 〈fun+〉,

(psh(pop2(S1), tp(S1, 2)× top(S1)), pop(S2)) if 1
3
top(S2) is 〈fun×〉,

(psh(pop2(S1), tp(S1, 2)top(S1)), pop(S2)) if 1
3
top(S2) is 〈funxy〉,

(S1, psh(psh(pop(S2), 3e1), 3e2)) if 1
3
top(S2) is 〈OpC, de1 , de2〉,

(pop(S1), pshb|top(S1)|c(pop(S2), 3e)) if 1
3
top(S2) is 〈OpĪ, de〉,

(S1, aggr(pop(S2), 3e1, 3e2)) if 1
3
top(S2) is 〈OpV, de1 , de2〉,

(swt(S1, n), pop(S2)) if top(S2) is 3n+ 1,

(dup(S1, n), pop(S2)) if top(S2) is 3n+ 2,

(S1, S2) if emp(S2).

where for every m-ary descriptions de1 with n components and de2 with k components,

aggr(S, 3e1, 3e2) carries out the following pushes to the stack S (the corresponding instruc-

tions are shown in parenthesis):

1. push 3m+ 2 (duplicate the top m elements);

2. push 3e1 (apply the function described by e1);

3. push 3(m + n− 1) + 1 a total of n times (move the result of applying this function below

the previously duplicated values);

4. push 3e2 (apply the function described by e2).

By induction on the structure of I we conclude that if S1 encodes a stack with the real

numbers xn, . . . , x1, yj, . . . , y1, and S2 encodes a stack with the numbers 3e, e1, . . . ek, where de

describes an n-ary function with m components and rk(de) = 0, then, by iterating Ψ̃0, S2 will

eventually contain only e1, . . . , ek and then we will have m real numbers in the top of S1, given

by each component of φe(x1, . . . , xn), followed by yj, . . . , y1. This is illustrated by Figure 13.2.

S1 S2 S1 S2

# # # #
xn 3e (φe(x1, . . . , xn))m e1
... e1

...
...

x1
...

Ψ̃0−→ . . .
Ψ̃0−→ (φe(x1, . . . , xn))1 ek

yj ek yj
...

...
y1 y1

Fig. 13.2. Stack manipulation by Ψ̃0
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We may set

Ψ0(S, e) = U2
1 ( lim

z→+∞
I(Ψ̃0)(S, psh(0, e)),

and then Ψ0 is a universal function when the input and output is given using a stack. Now we

set

(Ψm,n
0 (e,x))i = tp(Ψ0(psh(0,x), 3e), i);

obtaining a universal function for I0; above, psh(0,x) abbreviates psh(. . . psh(0, x1), . . . xm).

Now, for every k > 1, we define Ψ̃k as

Ψ̃k(S1, S2) =


(lim sup

y→∞
Ψk−1(psh(S1, y), 3e), pop(S2)) if 1

3
top(S2) is 〈OpLs, de〉,

Ψ̃0(S1, S2) otherwise;

Ψk(S, e) = U2
1 ( lim

z→+∞
I(Ψ̃k)(S, psh(0, e));

and

(Ψm,n
k (e,x))i = tp(Ψk(psh(0,x), 3e), i);

In this way, Ψm,n
k is in some bounded level of the I hierarchy (not necessarily Ik), and simulates

any real recursive function in Ik when given one of its codes with rank bounded by k. �

13.3 Conclusions for the problem of collapse

Notice that the existence of our universal functions for Ik will not give us the result of non-

collapse. We will need the following concept.

Definition 13.8. A number e ∈ N is called a low-rank code of φe if rk(de) = rk(φe).

And now we show:

Proposition 13.9 (Loff et al. [2007]). There is no real recursive function which restricts a

universal function to low-rank codes, i.e., there is no real recursive function ψm,n such that if

e is a low-rank code then

ψm,n(e,x) ' φe(x) for all x ∈ Rm,

whenever de is a good description of an m-ary function φe with n components.

Proof. We take the same expression for g of the proof of Proposition 11.12, now using a

totalisation of ψm,n. We then choose a low-rank code e of g, rather than any code of g. �

Now we may conclude:

Theorem 13.10 (Loff et al. [2007]). The ι-hierarchy does not collapse.
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Proof. Suppose, by contradiction, that it would collapse. Then for some number k we would

have REC(R) ⊆ Ik. But then every low-rank code would have a rank of at most k, and we

could set ψm,n = Ψm,n
k and obtain a universal function restricted to low-rank codes. This

contradicts the previous proposition, and so we are forced to conclude that the ι-hierarchy

does not collapse. �

But how about the η-hierarchy? The non-collapsing character of the ι-hierarchy does not

imply the non-collapse of the η-hierarchy, because we have not shown that every bounded

level in the η-hierarchy is fully contained on some bounded level in the ι-hierarchy. In fact,

we use two infinite limits for each differential recursion in our proof that REC(R) ⊆ I, and so

by nesting differential recursions in a description d ∈ DH, our proof would give a description

d̃ ∈ DI with twice the rank as the number of nested differential recursions. We believe that this

does not have to be the case, i.e., that the η-hierarchy is collapse-equivalent on the ι-hierarchy,

in the following sense:

Definition 13.11. Two hierarchies Aω and Bω are called collapse-equivalent if for all n

there is a number m such that An ⊆ Bm and Bn ⊆ Am.

We could easily prove the following proposition.

Proposition 13.12. The ι-hierarchy and the analytical hierarchy are collapse equivalent.

We conclude this chapter with an open conjecture, once believed to have been proven true

[Loff et al., 2007]. We now know that the proof was flawed. The conjecture implies the non-

collapse of the η-hierarchy, and this is the justification for this chapter’s name.

Conjecture 13.13. The η-hierarchy and the ι-hierarchy are collapse equivalent.



Conclusions, final remarks and criticism

This dissertation has dealt with many issues, all directly or indirectly related with the link

between physics and computation. The main purpose of Part I was to emphasise the importance

of investigating this relationship; we have tried to provide historically and physically relevant

thinking tools for such an investigation. It is our hope that Part I establishes adequate naming

and formulation for the Church–Turing thesis, the physical Church–Turing thesis and the

simulation thesis.

Much more could have been said, and there where several issues left undiscussed — such

as biological computing, or the strong A.I. thesis. We did not present the counterparts to

the physical Church–Turing and simulation theses; these claim, respectively, that there are

physical systems computing more than the Turing machine, or physical systems which may

not be simulated by a Turing machine. These anti-theses appear in our [Loff and Costa, 2007].

Overall, this relationship is a hard subject to study. It is not the same thing to say that

Newtonian mechanics describes non-computational systems, than it is to say that there are

an infinite number of primes. While the former sentence seems to be true, by ours or Smith’s

[2006a] work, the results are still open to re-interpretation. It is difficult to take everything in

consideration, and to produce relevant statements. This is why we value Beggs and Tucker’s

methodology so highly, because it requires an open and explicit self-criticism and an analysis

of the relevance of the obtained results.

In Part II we offer a case study of an investigation of the physical Church–Turing thesis.

Throughout our discussion, we have always made clear that the systems under consideration

arise from a very idealised theory of Newtonian mechanics. It is therefore not always possible

to grasp how the study is relevant, and this is why we dedicated Section 8.1 to this problem.

One of the most interesting results in Part II is that the hypercomputational effect is not

removed when we consider a simplistic error model, i.e., that a physical oracle may still be read

by sampling, up to any desired precision, when making certain assumptions on the sampling

process. Future work should concentrate on more realistic error models, to discover whether

the computational power drops to a more reasonable level using these models. We conjecture

that very simple changes in the error model should suffice to remove the super-Turing power

of the scatter machine.

Part III was dedicated to the development of real recursive function theory. Our intention

was to write a foundational text on the more general aspects of real recursion theory. This
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was accomplished with some, partial success, and we intend to further develop part III into

a longer, more detailed text. The introduction of the Lipschitz condition requires a more in-

depth treatment: there is a nice relationship between the Lipschitz constant of a function

f ∈ Dom(R) and the size of the disk in a disk-and-wheel integrator, which must be further

explored.

We would like to solve the problem of the collapse of the η-hierarchy, and believe that

Conjecture 13.13 will play an important part in this endeavour. Further exploration of the more

general aspects of the theory may concern the relationship between real recursive functions and

generalised computability, or see how the concept of differential recursion could be adapted to

higher types.

The relationship between physics and computability still needs plenty of exploration, and

we predict that this will be an important field in the coming years. The study of physics and

dynamical systems often results in elegant and beautiful mathematical models and theories;

hopefully, these will provide surprising connections and make for a positive contribution to our

mathematical heritage.



A

Brief introduction to non-uniform complexity

The Turing machine is the result of Turing’s conceptual analysis of the process of systematic

calculation carried out by humans. This conceptual analysis did not, however, intend to model

the possibility that the human being who carries out the calculation may use an auxiliary

device which he does not entirely understand. To cover this situation, Turing introduced his o-

machines, now called oracle Turing machines. When we combine experiments and algorithms,

in the following sections, we will obtain a model of computation similar to the oracle Turing

machine. For this reason, we begin with a thorough discussion of deterministic oracle Turing

machines and of probabilistic Turing machines. We then briefly recall some notions of non-

uniform complexity, which will characterise our model of computation.

A.1 The oracle Turing machine

The deterministic oracle Turing machine is a device comprising a control unit, a finite number

of tapes and an oracle. The tapes are a memory medium, formed by a linear arrangement of

an infinite number of individual cells (say, of paper). In each cell may be printed one symbol

from a finite alphabet Σ. The oracle is a question-answering black box. Each word in Σ∗ is

interpreted as a question, and to each question the oracle deterministically gives an answer,

yes or no. An oracle Turing machine has at least two tapes, where calculations and general

rough work can be carried out. One of the tapes, called the query tape, is selected for the

purpose of asking questions to the oracle. Another, previously designated tape, called input

tape, is used for input.

The control unit is the mechanism which governs the computation, by reading and writing

symbols in the tapes and by consulting the oracle. The control unit is said to be finite, since

it can only be in one of a finite number of internal states. The control unit reads and writes

symbols in the tapes by means of certain tape heads, one for each tape. Each tape head is

placed in a specific cell of its tape, and can read or write a symbol in the cell it is placed on,

or move to one of the adjacent cells, to left or to the right. It is based on the symbols read

by the tape heads and on the current state that the control unit decides what to do next.

Among the states of the finite control unit are six special states. Three of these states are used

by the control unit to begin and halt the computation: these are called the initial state, the
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accepting state, and the rejecting state. The remaining three states serve to interact with

the oracle. These are called the query state, the “yes” state, and the “no” state.

The control unit divides the computation in distinct computational steps. At each step,

the control unit reads the symbols underneath the tape heads, and, based on the symbols

which where read and on the current state, decides (1) which symbols should be written in the

tapes, (2) whether each tape head moves to the left or to the right and (3) what should be the

internal state of the finite control in the next step of computation. In order to ask the oracle a

question, the control unit writes the question in the query tape and moves to the query state.

The finite control will then be interrupted, and the oracle will answer the question by resuming

the computation in either the “yes” state or the “no” state, with the obvious meaning.

We call configuration to the global condition of the Turing machine at a certain step,

i.e., the state of the finite control, plus the contents of the tapes, plus the position of the

tape heads. We can see that the configuration of an oracle Turing machine at the next step

deterministically depends on the configuration of the oracle Turing machine at the current

step.

A computation of the oracle Turing machine on a word w begins with w written in the input

tape of the machine, with the input tape head placed on the left-most symbol of w, and with

the control unit in the initial state. The computation will proceed as long as the control unit

does not enter either the accepting or rejecting states. The input w is said to be accepted if

the computation halts in the accepting state, and rejected if it halts in the rejecting state.

We may then establish a decision criterion for the deterministic oracle Turing machine. Let

A ⊆ Σ∗ be a set of words over Σ. We say that A is decided by an oracle Turing machine M
if, for every input w ∈ Σ∗, w is accepted byM when w ∈ A and rejected byM when w 6∈ A.

We say that M decides A in polynomial time, if M decides A, and, for every w ∈ Σ∗, the

number of steps of the computation is polynomial in the size of w.

Notice that to each oracle corresponds a unique set O containing exactly the words to which

the oracle answers yes. We may thus denote an oracle by its corresponding set O. In this sense,

we write P(O) to stand for the class of sets decidable in polynomial time by machines with

the oracle O, and abbreviate P = P(∅).

A.2 The probabilistic Turing machine

A probabilistic Turing machine is very similar to the oracle Turing machine, but instead of a

question answering black box, the finite control makes use of a coin. The probability of the

coin turning up heads is p ∈ [0, 1], and the probability of it giving tails is q = 1 − p. It is

common to assume that p = 1
2
, i.e., that the coin is balanced. This assumption is vital for the

usual understanding of probabilistic machines, since a probabilistic machine with a rational p

can be simulated by a deterministic machine, but this is not necessarily true for an arbitrary

real p.

The coin can be seen as a non-deterministic oracle which will always, when queried, answers

yes with probability p, and no with probability q. We can see that in this situation the query
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tape is useless, and may be removed, but that otherwise the behaviour of the probabilistic

machine is in every way like that of the oracle Turing machine. We thus choose to maintain

the previous description, but renaming the query, “yes” and “no” states to be called the toss

state, the heads state and the tails state.

The decision criterion, however, must be different, because unless the control unit makes

no use of the coin, the machine will not deterministically accept or reject the input, i.e., the

configuration of a probabilistic Turing machine at the next step does not follow deterministi-

cally from the configuration at the current step. Several criteria could be put forward, and we

will here describe one of the most common probabilistic decision criterion. For a set A ⊆ Σ∗,

a probabilistic Turing machine M, and an input w ∈ Σ∗, the error probability of M for

input w is the probability of M rejecting w if w ∈ A, or the probability of M accepting w

if w 6∈ A. We say that M decides A with bounded error probability if there is a number

γ < 1
2
, such that the error probability ofM for any input w is smaller than γ.1 A is decided in

polynomial time with bounded error probability if, for every input w, the number of steps in

the possible computations is always polynomial in the length of w. We write BPP to stand for

the class of sets decidable in polynomial time with bounded error probability using a balanced

coin.

Below we will study the analog-digital scatter machine, a device which is obtained by

allowing the finite control of a Turing machine to interact with a scatter machine, much in the

same way as the oracle Turing machine interacts with an oracle and the probabilistic Turing

machine interacts with a coin. We will see that, under varying restrictions, the scatter machine

will play the role of either an oracle or a coin.

A.3 Non-uniform complexity classes

We will see that non-uniform complexity gives the most adequate characterisations of the

computational power of the analog-digital scatter machine.2 Non-uniform complexity classifies

problems by studying families of finite machines (e.g., circuits) {Cn}n∈N, where each Cn decides

the restriction of some problem to inputs of size n. It is called non-uniform, because for every

n 6= m the finite machines Cn and Cm can be entirely unrelated, while in uniform complexity

the algorithm is the same for inputs of every size. A way to connect the two approaches is by

means of advice classes : one assumes that there is a unique algorithm for inputs of every size,

which is aided by certain information, called advice, which may vary for inputs of different sizes.

The advice is given, for each input w, by means of a pairing function 〈·, ·〉 : Σ∗ × Σ∗ → Σ∗.

This function and its inverses (·)1 and (·)2 are all computable in linear time and such that

(〈w, v〉)1 = w, (〈w, v〉)2 = v, and 〈(w)1, (w)2〉 = w.

1 Under the assumption that p = 1
2
, one can represent every possible computation of a probabilistic Turing machine on

an input w as a complete binary tree, where each node of the tree corresponds to the global state, or configuration, of
the machine after each possible sequence of coin tosses. Then the probability of error is simply the fraction of leaves
of this tree which incorrectly accept or reject w.

2 For an interesting definition of how we can compare computational power among different models of computability,
see the work of Udi Boker and Nachum Dershowitz [2005].
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Definition A.1. Let B be a class of sets and F a class of functions. The advice class B/F is

the class of sets A for which some B ∈ B and some f ∈ F are such that, for every w, w ∈ A
if and only if 〈w, f(|w|)〉 ∈ B.

F is called the advice class and f is called the advice function. Examples for B are P,

or BPP. We will be considering two instances for the class F : poly is the class of functions

with polynomial size values, i.e., poly is the class of functions f : N → Σ∗ such that, for

some polynomial p, |f(n)| ∈ O(p(n)); log is the class of functions g : N → Σ∗ such that

|g(n)| ∈ O(log(n)). We will also need to treat prefix non-uniform complexity classes. For these

classes we may only use prefix functions, i.e., functions f such that f(n) is always a prefix of

f(n + 1). The idea behind prefix non-uniform complexity classes is that the advice given for

inputs of size n must also be useful to decide smaller inputs.

Definition A.2. Let B be a class of sets and F a class of functions. The prefix advice class

B/F∗ is the class of sets A for which some B ∈ B and some prefix function f ∈ F are such

that, for every length n and input w with |w| 6 n, w ∈ A if and only if 〈w, f(n)〉 ∈ B.

As examples we have P/log∗, or BPP/log∗. It is a matter of some controversy whether this

is the appropriate definition of BPP/F . Notice that by demanding that there is a set B ∈ BPP,

and a function f ∈ F such that w ∈ A if and only if 〈w, f(|w|)〉 ∈ B, we are demanding that B

is decided with bounded error probability for any possible advice, instead of the more intuitive

idea that the error only has to be bounded for the correct advice. This leads to the following

definitions.

Definition A.3. BPP//poly is the class of sets A for which a probabilistic Turing machine

M, a function f ∈ poly, and a constant γ < 1
2

exist such that M rejects 〈w, f(|w|)〉 with

probability at most γ if w ∈ A and accepts 〈w, f(|w|)〉 with probability at most γ if w 6∈ A.

Definition A.4. BPP//log∗ is the class of sets A for which a probabilistic Turing machine

M, a prefix function f ∈ log, and a constant γ < 1
2

exist such that, for every length n and

input w with |w| 6 n, M rejects 〈w, f(n)〉 with probability at most γ if w ∈ A and accepts

〈w, f(n)〉 with probability at most γ if w 6∈ A.

It can be shown that BPP//poly = BPP/poly, but it is unknown whether BPP//log∗ ⊆
BPP/log∗. We can safely assume without loss of generality that, for P/log∗, BPP/log∗ and

BPP//log∗, the length of any advice f(n) is exactly ba log n + bc, for some a, b ∈ N which

depend on f .

It is important to notice that the usual non-uniform complexity classes contain undecidable

sets, e.g., P/poly contains the undecidable set

{0n : the Turing machine coded by n halts on input 0}.

Classes with larger advice usually become uninteresting: exponential advice, for instance, allows

a Turing machine to decide any set in linear time. The non-computability of the non-uniform
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complexity classes results exclusively from the non-computability of the advice functions. In

fact, for any class B of recursive sets, and any class F of advice functions, B/(F ∩ PREC) ⊆
REC, where PREC is the class of partial recursive functions and REC is the whole class of

recursive sets. This means that computable advice results in computable behaviour.





B

Notation and glossary

The following notation was used.

1. For any x ∈ real, its truncation to the n-th digits is denoted by x�n.

2. ‖ · ‖ or ‖ · ‖2 will denote the Euclidean norm; ‖ · ‖∞ denotes the supremum norm; in

Rn, these are given by

‖x‖ =
√
x2

1 + . . .+ x2
n ‖x‖∞ = max(|x1|, . . . , |xn|).

3. For some x ∈ Rn, B(x, r) denotes the open ball of radius r around x, i.e.,

B(x, r) = {y ∈ Rn : ‖x− y‖ < r}.

We add a bar, as in B̄(x, r), to denote the closed ball of radius r around x, given by

B̄(x, r) = {y ∈ Rn : ‖x− y‖ 6 r}.

4. Given a bounded set A ⊂ Rn, we use dA to denote its diameter, given by

dA = sup{‖x− y‖ : x, y ∈ A}.

5. The symbol ≡ is occasionally used to denote syntactical equivalence or abbreviation.

6. The symbol ' is used to express equality with undefinition, i.e., X ' Y if X and Y are

both defined and equal, or both undefined.

7. Vectors are denoted with boldface letters.

The following less-familiar terms and concepts where used.

1. A closed n-cube with center x and side r is the subset of Rn given by

{y ∈ Rn : ‖x− y‖∞ 6
r

2
}.

2. For a (possibly partial) function F : Nm → Nn, a real extension of F is any function

f : Rm → Rn such that

F (a) = f(a) for all a ∈ Nm.
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A similar convention is applied to mixed signatures (e.g., F : Rk × Nm → Nn).

3. The derivative of a function f : Rm → Rn at a point x0 ∈ Rm, if it exists, is the (bounded)

linear map from Rm to Rn, denoted df(x0), such that

lim
x→x0

f(x)− f(x0)− (df(x0))(x− x0)

‖x− x0‖
= 0.

Then, the derivative of f is the function df : Rm → L(Rm,Rn) (where L(Rm,Rn) denotes

the set of (necessarily bounded) linear maps from Rm to Rn) which gives df(x) at each

point x. Then f is called differentiable in A ⊆ Rm if df is defined in A; f is called

continuously differentiable in A if df is defined and continuous in A.
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Wilfried Sieg. Gödel on computability. Philosophia Mathematica, 14(2):189–207, 2006.
Wilfried Sieg. Church without dogma – axioms for computability. Submitted, 2007.
Hava Siegelmann. Neural Networks and Analog Computation: Beyond the Turing Limit.
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