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ABSTRACT
Social tagging systems are becoming increasingly popular,
mainly because of their ease of use and low entry barriers.
The subject is fairly new, and although there is not much
literature on the topic, there are quite a few systems avail-
able. Despite its popularity, tagging is usually a manual
process. When publishing on a social tagging system, the
user is asked for the tags he wishes to assign to the resource
being made available. In this paper we present a text-based
tag suggester. Such a system makes the task of tagging re-
sources easier by recommending tags for the user to choose
from. The system was evaluated by a group of users and
some statistical measures were applied to infer its perfor-
mance. The preliminary results looked promising. Nonethe-
less, there is still room for improvement. Hence, some ideas
on how to further develop the system are suggested.
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1. INTRODUCTION
The shape of the World Wide Web has been changing, as
websites tend to be more interactive and user-centric than in
the past. Some of the most successful systems on this “Web
2.0” generation are the social tagging ones [15]. These sys-
tems have their content managed by the users, who publish
resources along with sets of tags. Tags are simply keywords
to help organize and describe each resource. Since there is
no predefined vocabulary or semantics, the user can choose
whichever string he prefers to use as a tag. Typically there
is no way for the user to establish relations between tags or
resources, which means they will not form hierarchies. Re-
sources vary from system to system. For instance, flickr 1

is a website for photos sharing, YouTube.com 2 for videos,
del.icio.us 3 for bookmarks and WordPress.com 4 for blog
entries.

Social tagging systems share a common set of features: re-
source publishing, browsing and searching. To take full ad-
vantage of the system, a user must create an account, pro-
viding a username and a password. The registered user can

1http://www.flickr.com/
2http://www.youtube.com/
3http://del.icio.us/
4http://wordpress.com/

publish any resource he wishes, as long as the system re-
quirements are fulfilled. Typically, the user uploads the re-
source and associates a set of tags to be attached to it, as
well as any additional information the system may require.
Some systems suggest a set of tags for the user to choose
from, making his task easier. BibSonomy 5 and del.icio.us,
for example, present the most popular tags associated to a
resource when it was already tagged by other users and is
being resubmitted.

Typically there are two ways of browsing: through tags or
through users. Browsing through tags enables the user to
find the resources that were assigned a certain tag. Since
every resource has its owner, there is also the ability to
browse through users, that is, to find all resources and tags
published by a certain user. Generally users combine both
browsing modes. Moreover, users can find resources using
the social tagging system’s search engine.

Along with the features presented so far, some websites dis-
play other interesting features as well. Tag cloud is one of
such popular features. It consists of a visual representation
of the most frequently used tags on a website. Usually the
tags are presented in alphabetic order and are given differ-
ent emphasis according to their popularity. Another inter-
esting feature found in some social tagging systems is the
creation of groups. Generally, groups are organized in cate-
gories and the resources shared among the group are all on
the same thematics. A somewhat less common character-
istic is the distinction between users. Some websites allow
users to choose among different account types, each one with
their own set of features.

One may ask what made tagging so popular and interest-
ing. First of all, it is very easy. The concept is simple and
requires no special skills. Also, it gives users a sense of free-
dom and power, as there are no restrictions to the resources
organization and description. Another appealing feature is
the ability to share resources. Furthermore, these systems
are constantly evolving and reflect the trends going on in
society. When dealing with non-textual resources, such as
photographs or videos, tagging is a rather straightforward
technique to help improve search and information retrieval.

Tagging has its drawbacks as well, mostly due to the lack of
structure and unrestricted vocabulary. Fig. 1, a real exam-
ple taken from del.icio.us, will be be used to illustrate some
of these drawbacks. One problem is polysemy, which con-
sists on one word having multiple meanings. For example,
the word ‘ruby’, might refer to a computer programming

5http://www.bibsonomy.org/



language or to a red gemstone. Another is synonymy, which
occurs when different words have the same meaning. For
instance the words ‘fun’ and ‘humor’, may have the same
meaning. A third problem arises when users employ some
tags to help organize their agendas, instead of describing
the resource. The tag ‘toread’ is probably assigned when
the user does not have the opportunity to read the resource,
acting more as a reminder. The fourth problem is due to the
fact that these systems are likely to be used by people from
all over the world, so, probably, more than one idiom will

Figure 1: del.icio.us tag cloud with the most popular
tags on July 20, 2007

be used simultaneously. All these issues make it difficult to
infer the tags semantics in a precise way. Since there aren’t
relations between tags, it is also difficult to find out which
ones have broader or narrower meanings or which ones are
related [9].

The use of tags as metadata – data about data – whose se-
mantics emerges from its community is called “folksonomy”.
Thomas Vander Wal was the first to use this word in a dis-
cussion on an information architecture mailing list [10]. It
is a combination of the words “folk” and “taxonomy”. Folk-
sonomy enthusiasts claim that the semantics emerging from
a community is more accurate than when it is defined by
a committee or a single person. They also say that, since
content creation is decentralized, its description be decen-
tralized as well. Furthermore, they argue that hierarchical
classification schemes are too rigid to classify web data [2].

Digg 6 is one of the most popular social networking systems.
It was launched in November 2004 as a news sharing website,
democratically managed by its user community. Initially, it
was mainly focused on technology news [16]. Today, Digg
has a wider scope, with several distinct categories, such as
science and sports and two new sections dedicated to videos
and podcasts.

The content of the website is chosen by its community, who
acts as the editor board of a newspaper. A registered user
can submit a story by providing a title, its link, a brief de-
scription of the story and the most appropriate topic, of all
the ones available on the website. Digg does not include a
tagging mechanism. When a new story is submitted, it is
placed in the “Upcoming Stories” queue, awaiting for votes.
If a story receives enough positive votes – or, using the web-
site terminology, ‘diggs’ – it gets promoted to the front page.
There is also the possibility to vote down – or, ‘bury’. Thus,

6http://www.digg.com/

if a story does not get enough ‘diggs’ or is ‘buried’ by the
users, it disappears from the website. The process of pro-
motion and decay of user submitted stories is run by a pro-
prietary algorithm, kept undisclosed in order to avoid abuse
and exploit. It is an automatic technique based on several
factors, such as the number of ‘diggs’, time of day and cat-
egory [4].

Despite its growing popularity, tagging is still a manual pro-
cess. Hence, the user is the only responsible for assigning
keywords to resources. Some users may may not be willing
to engage in such a chore. In order to overcome this short-
fall, some websites have a built-in tag suggesting mechanism,
which suggests a set of words for the user to choose from and
assign to the resources. del.icio.us is one of those websites.
If the resource being published has already been submitted
and tagged by other users, the system gathers and sorts the
most popular tags and suggests them to the user. Despite
useful in several situations, it is unable to perform when the
resource is being published for the first time. Moreover, it
does not work in websites where each resource is unique.

In this paper we present a text-based tag suggesting system,
based on information retrieval and clustering techniques.
The tags suggested by the system are extracted from docu-
ments only. Since there is no dependency on tags that were
previously employed by users, the system is likely to keep
up with the changes and evolution of the communities, their
interests and resources. Furthermore, it is able to deal with
resources that have never been tagged before, as long as
they are text based, which makes it suitable to a wide range
of systems. Although Digg was used as subject and data
source on this research, the tag suggesting system should
be adaptable to other websites. Digg was used as the data
source due to its popularity, variety of subjects and large
amount of resources.

The tag suggesting system we present was built from scratch.
Several techniques were experimented and combined as an
attempt to improve results. To infer the system’s perfor-
mance, a user-based evaluation was carried out. The pre-
liminary results were promising. On average, over 60% of
the suggested tags can be considered relevant.

2. RELATED WORK
Most social tagging systems are rather simple and, thus, do
not exploit folksonomies to its full potential. In the follow-
ing subsections we present some of the proposed techniques
and group them into categories according to their most rel-
evant features. In general, we find that these techniques can
fit into three main categories: resource organization, search
engine improvement and tag suggesting.

2.1 Resource Organization
Folksonomies lack of structure and organization makes some
user tasks very difficult. Although its uncontrolled nature
induces serendipitous discoveries, it becomes hard to find
specific resources [10]. To overcome this issue, some authors
tried to cluster related resources and place them in broader
categories. Additionally, some tried to automatically infer
a topical hierarchy, as a means of helping users navigate
through its content.



2.1.1 Grouping Similar Resources
Wu et al. present a probabilistic method, based on co-
occurrences, to derive emergent semantics on folksonomies [18].
They claim that tags are usually semantically related when
used on the same or related resources. The same idea ap-
plies to users and resources, that is, users may share com-
mon interests if they use many semantically related tags and
resources tagged by users with similar interests. This can
be represented using frequencies of co-occurrences between
users, resources and tags. In the algorithm they propose,
each entity (user, tag or resource) is represented in a concep-
tual space where each dimension represents a knowledge cat-
egory. The number of knowledge dimensions is defined using
a Separable Mixture Model, which is a statistical framework
for modeling and predicting co-occurrences of events [6]. Ac-
cording to the authors, the algorithm successfully grouped
tags according to their semantics. Moreover, it identified
tags ambiguity and synonymy, the users interests and the
resources semantics. Despite these favorable results, there
are some drawbacks. A lot of experimentation is needed in
order to find the appropriate parameters – number of dimen-
sions D and number of iteration steps on the EM method.
Also, the whole conceptual space has to be re-calculated
whenever the annotation set changes.

A different approach, to serve a somewhat different purpose,
is presented by Wu, Zubair and Maly [17]. In their opinion,
folksonomies lack some fundamental features to be used as
the supporting infrastructure of knowledge management ac-
tivities, such as the identification of topical communities of
users and/or resources and ways to find high quality sources.
In order to solve these issues, two algorithms are proposed.
The first one aims at identifying communities in social tag-
ging systems, by representing the folksonomy as a graph
using an adjacency matrix. The main topics of interest and
the most important users on a topic are identified by apply-
ing singular value decomposition to the matrix. The second
algorithm’s goal is to identify high quality documents and
experts. For that purpose, they adapted the HITS (Hyper-
text Induced Topic Selection) [1] algorithm. At the time of
writing, the authors claimed they were still tuning the algo-
rithm. Nonetheless, the preliminary results looked promis-
ing.

Brooks and Montanez present a study on the effectiveness
of tagging as a means to categorize documents [3]. The idea
is to determine how useful are tags in clustering similar ar-
ticles. Intuitively, a group of documents sharing the same
tag is more similar than a group of randomly selected arti-
cles. In order to find out whether this hypothesis is correct
or not, they clustered a set of documents from a social tag-
ging system and then compared them with two bounds. The
lower bound was obtained by randomly clustering articles,
whereas the upper one was determined by clustering articles
reported as being similar by Google News 7. They concluded
that the process of tagging, groups articles into broad cate-
gories, making it difficult for a user to find documents when
the topics are more specific.

2.1.2 Inducing Hierarchies
Wu, Zubair and Maly state that hierarchies are very use-
ful for navigation and as means to assist in keyword-based
search [17]. They further claim that it is possible to use
tags to induce such structures, using a hierarchical cluster-

7http://news.google.com/

ing algorithm. In their article they describe an agglomer-
ative clustering approach that uses a document-tag matrix
and a tag-tag matrix. The former matrix represents the as-
sociations between documents and tags, whereas the latter
one is built using a thesaurus and is intended to capture the
semantic similarities between tags. The method described
can produce different results, depending on the clustering
and labeling methods used.

Likewise, Brooks and Montanez present an agglomerative
clustering technique as a means to generate hierarchies [3].
Their algorithm starts by collecting tags from a website and
then, for each tag, it gathers 20 articles and forms a cluster.
Next, the most similar clusters are successively merged and
assigned a new tag. According to the authors, the gener-
ated hierarchy resembles hand-built taxonomies. Although
the cluster merging was based on document similarity, that
is, the tags were only used to build the original clusters,
tags fit into a topical hierarchy. This remark supports the
idea of being possible to automatically generate a category
hierarchy.

2.2 Search Engine Improvement
Searching is one of the main features in social tagging sys-
tems. It is the only mechanism, other than browsing, that
enables users to find specific resources. The information
about users, tags, resources and the relations among them,
can be used to improve the searching mechanism.

The work proposed by Wu et al., besides presenting a method
to group similar resources can also be used to improve search
in folksonomies [18]. In this case, the conceptual space
is used to develop an intelligent semantic search engine.
They followed an incremental approach, starting with a ba-
sic search model and improving it gradually, by extending
its features. The search models are independent and can be
combined in different ways. Thus, distinct search engines
can be obtained. The authors claim that the ability to dis-
cover semantically related resources is the most important
feature of their models.

A ranking mechanism to improve search is also described by
Hotho et al. [7]. The authors claim that social tagging sys-
tems have limited search support, since searching can only
be done over the tags and the resource descriptions. Besides,
no ranking is done over the retrieved resources. To over-
come this issue, they propose two algorithms, both based
on a graph-like representation of the folksonomies. The first
one is adapted from PageRank [1], whereas the second al-
gorithm consists of an improvement of the first one. The
experiments described in the article confirm that the second
algorithm obtains the best results. Moreover, when a topi-
cal community is small, a single user can have a very strong
influence on the results and create bridges to other topics.
Furthermore, the algorithm can be used to recommend tags
or resources of interest to a given user.

2.3 Tag Suggesting
To the best of our knowledge, only one tag recommending
system has been proposed in the literature so far: the Au-
toTag system [11]. Using the most common recommender
systems as an analogy, which suggest products to their users,
in the AutoTag system, blog posts take the role of users and
tags are seen as the products the user might be interested
in. Similar tags are assumed to be suitable to similar blog
posts. For that reason, the system suggests tags for a blog



entry by examining the tags assigned to similar entries. The
proposed method consists of five steps. First, the user pub-
lishes a new article. Second, the system finds and collects
the most similar entries by generating a query from the new
article and submitting it to a search engine. Third, the sys-
tem aggregates all tags assigned to the retrieved entries and
ranks them according to their frequency in the top posts.
Fourth, the system filters and re-ranks the set of tags by
boosting the ones that were previously used by the blogger.
Fifth, the system presents the top tags to the user. The
experiments described in the article show good results, in
spite of the relatively small corpus used. However, there is
still room for improvement. Other query generation meth-
ods might be used, tag aggregation could be enhanced and
different filtering and re-ranking techniques might provide
better results.

Although the authors of [3] expressed their willingness to de-
velop a tag suggester as well, they have not released any ar-
ticle about it yet. There was also a webservice called Tagyu
which, when given an article, suggested a set of tags, but
was shut down in August 2006 8. Since no publications re-
garding the Tagyu system were found, it was impossible to
analyze it.

If one looks at tags as being categories, the automated tag-
ging problem may fit a well-known research area in computer
science: text categorization (TC). Therefore, although not
focused specifically on folksonomies, we find this area rel-
evant to our problems and worth to be mentioned in this
section. A comprehensive survey about TC has been pub-
lished by Fabrizio Sebastiani [14]. TC consists in determin-
ing the categories of natural language texts using a set of
predefined categories. A classifier is a program responsible
for this labeling activity. Several methodologies can be used
to build a classifier. Nowadays, machine learning (ML) tech-
niques are the most popular ones. Basically, they are used
to automatically induce a text classifier by learning through
a set of preclassified documents. Regarding the classifier
algorithms, several methods can be used. Although it is
hard to predict which ones would work well in the tagging
process, support vector machines, example-based methods,
regression methods and boosting-based classifier committees
seem to be the most accurate in TC. However, there seem to
be some limitations when using this kind of systems as tag
suggesters. First of all, they depend on a finite, predefined
set of categories (or tags, in this case), which means they
will not be able to automatically keep up with the evolution
of the users vocabulary. Furthermore, these systems cannot
be used with non-textual resources, as they need to analyze
their content, which must be text.

3. TAG SELECTION ALGORITHM
In this section we present our tag suggesting system, entitled
Tess. It is based on information retrieval and clustering
techniques. The data needed by the system was gathered
from Digg’s website, given its popularity and large amount
of resources. Hence, Tess can use the same set of topics and
their hierarchical relations.

3.1 System’s Architecture
There are three major components in Tess architecture. In
the first stage, Digg’s top stories are collected, as well as

8See the author’s blog entry at
http://kalsey.com/2006/08/and thanks for all the fish/

their additional information, such as the number of votes,
title, publisher’s name, and so on. Next, the gathered doc-
uments and information are processed and indexed in order
to be used efficiently by the third component. Lastly, the
main component does the most noticeable job on this sys-
tem. Using the data collected and prepared in the previous
stages and also the user query – document and its additional
information – it recommends several sets of tags, according
to Tess configuration. Optionally, the system’s categorizer
may be used to assign a topic to the document.

3.2 Data Gathering
Before starting to collect data, Digg was analyzed to find out
which stories should be retrieved. Besides the Videos and
Podcasts sections, which were excluded from the start due to
the non-textual nature of its resources, the ‘Offbeat News’
topic was ignored as well, since there is not a definite sub-
ject among such stories. Another important requirement,
defined in advance, was to retrieve top stories only. To get
to the front page, a story needs to be voted by many users.
For that reason, the stories are more likely to be of inter-
est and were probably filed under the appropriate topics.
That is, selecting top stories only, ensures a higher degree
of quality.

Besides the article itself, each Digg entry has additional
information, provided by the user when publishing the re-
source. The following data was found to be relevant to our
system: title, description, URL, topic, subtopic, user name
and number of votes. Thus, it was stored along with the
story document.

Digg has a hierarchy of topics, where each topic has its own
front page, that is, a place where popular stories are placed.
These sections of the website work as stacks, that is, each
time a story is promoted, it is placed on top of its topic’s
front page. As newer entries are added to the top of the
page, older ones go down and, when they reach the bottom,
they move to the next page.

When our crawler was written, there was no API available
to retrieve data from Digg. For this reason, the program
was designed to fit Digg’s structure and getting the informa-
tion needed by using regular expressions to parse the down-
loaded pages. However, any change in the website’s HTML
templates or URL hierarchy may jeopardize the program’s
functioning. The crawler is server-friendly, as it keeps the
number of requests to a minimum and waits 60 seconds be-
tween requests. To deal with network issues, GNU Wget is
used by the crawler as an auxiliary tool.

The crawler was scheduled to work around 11 o’clock every-
day, using cron, a scheduling service included in most Linux
distributions. The data was gathered between November
1, 2006 and March 29, 2007. After those five months, the
corpus was frozen in order to get stable results and start
analyzing the tag extraction methods that were being de-
veloped.

The crawling information was also used to better understand
the community’s habits. Regarding story submission, each
day about 100 stories are promoted to their section’s front
page. The main topics of interest are, undoubtedly, technol-
ogy and gaming, whereas the most unpoular one is sports.
In short, Digg’s audience may be characterized mainly as
tech-savvy, though it seems to be broadening its subjects of



interest, as topics like Politics or World News are becoming
popular. As a consequence of this asymmetry on the user’s
interest, the amount of stories on each topic varies greatly,
making story distribution in the corpus rather irregular.

3.3 Processing and Indexing Data
The information gathered using the previously described
component should be processed to a meaningful represen-
tation. Otherwise it would not be very useful. Furthermore,
the large amount of data calls for efficient structures, in
order to speed up and reduce the memory print of the com-
puter processes using such information. A standard way to
represent these helpful structures is through indexes, which
are appropriate when using large and semi-static collections,
as in this case [1]. The one used in this system’s data is the
inverted index mechanism. Inverted indexes are data struc-
tures composed of words and occurrences. In short, each
word points to every file that contains it.

In what comes to document representation, it is common
procedure, in Information Retrieval, to apply the vector
model [1]. Using this classic model, documents are repre-
sented as vectors in a t-dimensional space, that is, a space
with as many dimensions as the number of distinct terms in
the document collection. Each position of a document vec-
tor contains the weight of its corresponding term. A term’s
weight can be computed using different term-weighting schemes.
The tf-idf is the best known scheme and uses the following
formula:

wij = tfij × idfij (1)

Where, tfij is the frequency of the term i in document j,
that is, the number of times the term i is found in document
j; idfi is the inverse document frequency and is given by:

idfij = log
N

ni
(2)

Where N is the total number of documents in the collection
and ni is the number of documents containing the term i.

Considering the need for efficient structures, just as de-
scribed, as well as an appropriate data representation, Apache’s
Lucene was chosen to be used in this project. Lucene is a
well-known framework for information retrieval. It was cho-
sen for being efficient, frequently upgraded, having a good
documentation and support for most of the required fea-
tures.

Lucene’s frameworks generates its own index files. Hence,
this module, imports the data collected in the previous stage,
processes the story documents, that is, strips the HTML
tags, discards stopwords, removes dates, number and long
words, and indexes the documents. Additional data, re-
quired by the suggesting module, that can be precomputed
to speed up the algorithm, was also computed and stored at
this stage.

3.4 Tag Suggesting
The module described in this section does the most notice-
able job in the system. It is responsible for taking a docu-
ment and its additional information as input and presenting
tags as recommendations. The algorithm for term selection
consists of two distinct phases, which will be described next.
In sum, the query document is first processed by the vector
displacement module. Then, its words are ranked and pre-
sented to the user. Optionally, if no topic was assigned to

the document, the built-in categorizer can be used for such
matter.

3.4.1 Vector Displacement
The first stage on the process of selecting words is based
on vector displacement. The process starts with the query
document being converted to a vector, just like the other
documents in the collection, to be placed in the vector space.
The next step is to find the N most similar documents, that
is, the closest ones, where N is a user-defined parameter. To
quantify the degree of similarity between two documents, the
following formula was used [1]:

sim(s, p) =
~s · ~p

|~s| × |~p|

=

Pt
i=1 wi,s × wi,pqPt

i=1 w2
i,s ×

qPt
i=1 w2

i,p

(3)

Where ~s and ~p are the two vectors to be compared, |~s| and
|~p| are their norms, wi,s and wi,p are the weights of term i in
documents s and p, respectively. This formula computes the
cosine of the angle formed by the two vectors and, thus, is
usually called cosine similarity. The closer the cosine value
is to 1, the more similar are the two documents. When the
cosine value is 0, the vectors are orthogonal, that is, there
are no common terms.

The vectors of the most similar documents are then used
to alter the query vector’s position, that is, to change its
terms weights. Six different formulas were developed for
that purpose, and are described next.

Method 1
Use terms from similar documents only, that is, discard the
query’s terms:

~f =
X
s∈S

1

|S| (w1,s, w2,s, ..., wn,s) (4)

Where ~f is the final vector, S is the set of similar documents
and wi,s is the weight of term i in document s.

Method 2
Use all terms:

~f =
X
s∈S

1

|S|+ 1

`
(w1,s, ..., wn,s) + (w1,q, ..., wn,q)

´
(5)

Where q is the query document.

Method 3
Use query terms only

∀i∈Q : fi = wi,q +
X
s∈S

1

|S|wi,s (6)

Where Q is the set of query terms and fi is the weight of
the term i in the final vector.



Method 4
Use all terms but take vector distance into account

~f =
X
s∈S

sim(q, s)× (w1,s, ..., wn,s) +

sim(q, q)× (w1,q, ..., wn,q)

=
X
s∈S

sim(q, s)× (w1,s, ..., wn,s) + (w1,q, ..., wn,q)(7)

Where sim is the cosine similarity, defined in 3

Method 5
Similar to Method 2, but changes the vectors importance.

~f = 0.05×
„ X

s∈S

1

|S|+ 1
(w1,s, ..., wn,s)

«
+

0.95×
„

1

|S|+ 1
(w1,q, ..., wn,q)

«
(8)

Method 6
Based on Method 4, but changes the vectors and the dis-
tance importance.

~f = 0.05×
„ X

s∈S

sim(q, s)

2
× (w1,s, ..., wn,s)

«
+

0.95×
„

1

2
× (w1,q, ..., wn,q)

«
(9)

Two different approaches to this vector displacement proce-
dure were implemented. The first one was inspired by the
k-means algorithm [5]. It starts by placing the query vector
in space. Then, the vector is successively displaced by ap-
plying one of the methods described above until it stabilizes,
that is, its values do not change between iterations, or until
a user-defined limit of iterations is reached. Several experi-
ments indicated that the vectors never stabilize. Because of
that, a different approach had to be elaborated.

The second approach makes use of the document subtopics.
Like in the previous approach, it starts by placing the query
document in space. Then, when searching for the most sim-
ilar documents, only the ones from the same subtopic are
considered. In other words, a narrower version of such space
is considered, one that contains only the documents which
were assigned the same subtopic as the query document’s.
The vector is then displaced a single time, using one of the
displacement methods described above.

3.4.2 Tag Extraction
The words to be suggested as tags are extracted from the
displaced vector, using several formulas to rank them. The
first measures to be experimented were weight (1) and the
inverse document frequency (2). Ranking words by weight
produced some satisfactory results. The inverse document
frequency, on the other hand, turned out to be less use-
ful, as most of the words were too rare to be considered as
tags. Since many documents in the collection are blog en-
tries or have comments written by their readers, this mea-
sure was bringing out misspelled words, neologisms, several
words concatenated and even onomatopoeias. Words like
‘simluator’, ‘mousejiggler’ or ‘duhhhhhhhhhh’, for instance,
were prone to appear as top terms.

Based on these two measures, two new ones were imple-
mented. One of such measures consisted on computing the
average of the inverse document frequency of all the terms
in the vector and then sort the words by their closeness to
that value:

idfavg =
X
t∈T

idf(t)

|T | (10)

∀t1, t2 : rank(t1) > rank(t2) ⇒
|idf(t1)− idfavg| < |idf(t2)− idfavg| (11)

Where T is the set of terms. Put in words, the closest the
term’s inverse document frequency is to the average inverse
document frequency, the higher its rank should be. The
other measure consists of ranking the words in two phases.
First, the words are ranked according to their weight. From
that sorted set, only the top 50 words are kept. This new
set is then sorted by inverse document frequency and the
top terms are extracted. The idea is that, sometimes, rarer
words are useful. However, because of the problems de-
scribed above, they cannot be too rare. So, this measure,
w50idf , selects the rare words from a set of not-so-rare ones.

The measures presented this far did not take the document
topic into account. When considering the categories, other
measures can be used. Inverse document frequency, for one,
can be adapted to be used in a space partitioned by its
documents categories using the following formula:

idfcatt,c = log
Nc

ni,c
(12)

Where i is a term, c is a category, Nc is the number of docu-
ments in category c and ni,c is the number of documents that
contain the term i and are categorized as c. In practice it is
like using only the vector space formed by the documents of
the given category, instead of considering the whole vector
space.

Yang and Pedersen suggest information gain, mutual infor-
mation and χ2 statistic as useful term selection methods to
be used in text categorization [19]. Since the documents in
the collection are categorized with Digg’s topics, these mea-
sures can be employed. Information gain is commonly used
in Machine Learning as a means to measure how good a
term is. It is computed using the following formula:

ig(t) = −
P

c∈C P (c) log P (c) +

P (t)
P

c∈C P (c|t) log P (c|t) +

P (t̄)
P

c∈C P (c|t̄) log P (c|t̄) (13)

Where C is the set of categories and t is a term. Mutual
information is another well-known method for term selection
and is computed as follows:

mi(t, c) = log
P (t, c)

P (t)P (c)
(14)

This measure depends on both the term to be evaluated
and on its document’s category. As a measure to be used
in TC problems, the category of the submitted document is
unknown. Thus, two alternative formulas are proposed:

miavg(t) =
X
c∈C

P (c)mi(t, c) (15)

mimax(t) = maxc∈C{mi(t, c)} (16)



Finally, the third method, χ2 statistic measures the degree
of dependency between a term and a category:

χ2(t, c) =
N [P (t, c)P (t̄|c̄)− P (t|c̄P (t̄|c)]2

P (t)P (t̄)P (c)P (c̄)
(17)

Where N is the number of documents in the collection. As
in mutual information, this formula depends both on the
term and the category. So, two formulas are presented:

χ2
avg(t) =

X
c∈C

P (c)χ2(t, c) (18)

χ2
max(t) = maxc∈C{χ2(t, c)} (19)

In order to improve the efficiency on the computation of the
feature selection methods just described, contingency tables
described by Prabowo and Thelwal [13] were adapted and
integrated in the system. They were precomputed at the
data processing stage.

Since information gain was performing well, a new version
of this measure was tried: ig2. Digg has a 2-level hierar-
chy of topics, that is, each subtopic has a parent topic and
several subtopics as siblings. In the information gain mea-
sure presented before, only subtopics were considered. Our
new version, instead of considering each subtopic as a cat-
egory in the global space, considers only the documents of
the parent topic. For example, when submitting a document
labeled with ‘Apple’ as its subtopic, this measure considers
only documents in subtopics descending from ‘Technology’,
the parent topic. The formula used is the same as (13),
but with C being the set of sibling subtopics of the query
document’s subtopic.

Some new methods, consisting of combinations of the mea-
sures described so far, were tried as well. Basically, they
consist of multiplying the term frequency or the term weight
by one of the other measures.

Finally, since Digg was used as data source, some additional
information on the documents can be used as well. In this
manner, the title and description were used as a means to
boost the score of the selected words. After applying the
term extraction measures, the system searches for words in
the final vector that are also in the title or description, and
raises their scores. The new score is computed by multiply-
ing the old one by a factor of 3, if the word is found in the
title, or by 2, if found in the description, or by 6, if found
in both fields. This feature was named ‘boost’. This feature
can easily be turned off. This ensures Tess adaptability to
websites that follow a structure different than Digg’s.

Additionally, a filtering process was experimented, which
consisted on defining thresholds on information gain or in-
verse document frequency and automatically remove words
with scores above or below such limits, depending on the
rule. However, these filters turned out to be useless, as
words that are apparently good appear mixed up with un-
interesting ones, making it very difficult, if not impossible,
to find good thresholds.

If every combination of measure was tried, we would have a
total of 70 measures. However, some were abandoned along
the research for their bad performance. Hence, a total of 30
measures are were tried, which are indicated in Tab 1.

The last step of this process is the removal of similar words.

w w50idf w × ig tf × ig2 boost(tf × ig2)
idf idfavg tf × idfcat w × ig2 boost(w × ig2)

ig mimax boost(w) tf × χ2 boost(tf ×mi)

mi miavg boost(tf × ig) w × χ2 boost(w ×mi)

χ2 χ2
max boost(w × ig) tf ×mi boost(tf × chi2)

ig2 χ2
avg tf × ig w ×mi boost(w × χ2)

Table 1: Term extraction measures available in Tess

To avoid having words like ‘game’, ‘gaming’ and ‘gamer’ on
the same set of tags, a filtering procedure is applied. It
consists of removing words with the same stem, using an
implementation of the Porter stemming algorithm included
in Lucene’s framework. When two or more equal stems are
found, only the word with higher score remains. This pro-
cedure improves the diversity of tags.

3.4.3 Categorizer
As stated before, the use of categorized documents improves
the system’s performance. However, not every website uses
a predefined hierarchy of topics. Hence, in order to keep Tess
as generic as possible, a categorizer was included. Since all
the documents in the collection were retrieved from Digg
and, thus, were already categorized – using the topic as-
signed by their publishers – the k-nearest neighbor (k-NN)
method could be employed [12]. When given a document to
classify, the categorizer finds the k most similar documents,
using cosine similarity. The categorizer returns the topic
associated with the majority of documents in the set.

To find a good value for k, we used a set of 50 already
classified documents, and submitted them several times to
the categorizer using different values of k. Our experiment
suggested values between 10 and 13 as the most appropriate
ones.

4. EVALUATION
In order to accurately assess the system’s performance, a
rigorous user-based evaluation had to be carried out. Such
procedure helped perceiving which methods perform bet-
ter, whether the system needs further improvement and, if
so,what sort of changes may help enhancing it.

4.1 Experimental Setup
Given the large number of methods and, thus, of suggested
sets of tags, the first step was to choose which methods to
use. Since none of the vector displacement methods was
clearly underachieving, they were all included in the eval-
uation procedure. Regarding term extraction, 16 of the
30 measures were discarded. Only the 14 most auspicious
methods were kept: w, boost(w), idfavg, w50idf , tf × ig,
w × ig, tf × mi, w × mi, boost(tf × ig), boost(w × ig),
boost(tf ×mi), boost(w ×mi), w × ig2, boost(w × ig2).

Another goal of this evaluation was to compare the sys-
tem’s performance when using its categorizer, with that ob-
tained when using the topic selected by the story’s submit-
ter. Hence, the combinations of methods described above
were used to generate sets of tags with and without the use
of the system’s categorizer. The k parameter was set to 12.

Two different tasks were requested to the users. Besides
reading the document, the users were asked to write down
2 to 5 tags, like they would do on a regular social tagging



system. Next, they were prompted to validate each of the
suggested tags as either good or bad. Each user was asked
to evaluate 10 documents and each document was evaluated
by 3 users. Therefore, the set of user-tags would have up
to 15 distinct words. Tagging is a rather subjective process.
In fact, tags may be validated differently depending on the
users, as some are more demanding about the quality of tags
than others. Also, the expertise on the document’s subject
may influence the user’s choices. If a tag is meaningful on
the document’s context but the user is unaware of their re-
latedness, the tag will probably be rejected. Contrarily, a
user with deeper knowledge on the subject would find the
tag most useful. So, by forcing a document to be evalu-
ated by 3 different users, the set of user-tags becomes larger
and the diversity on the validation of the suggested tags
increases.

According to the conditions just described, a total of 168
sets of tags were subject to evaluation. The size of each set
of tags was fixed at 15. The experiment was taken by 4
groups of 3 users, which resulted in 12 users and 40 different
documents, 10 for each group.

4.2 User-based Evaluation
To proceed with the evaluation of the tag suggesting system,
a program to interact with users and manage the whole pro-
cess had to be built. Three different stages are involved in
this procedure. First the data has to be gathered and pre-
pared. Next, the users perform the tasks they were assigned.
Lastly, the results are treated using appropriate statistical
measures.

The first stage of this procedure consisted of setting up the
data to be used by the evaluation system. In this stage we
used a tool we developed to collect 40 documents, 2 for each
topic, submit them to Tess and gather the suggested tags.
The cluster size, one of Tess input parameters, was set to 10.
Then, the sets of tags on each document were joined, so that,
when displaying the suggested tags to the user, no repeated
words appear. Furthermore, the setup tool is responsible for
creating the user groups and randomly assigning documents
to each group, and consequently, to each user as well as the
passwords for user authentication.

The second and most important stage consists on the user
evaluation of the suggester’s performance. To interact with
the users, an online application was crafted. The web ap-
plication is responsible for selecting the appropriate infor-
mation, that is, the documents and tags under evaluation,
and display them to the user. Moreover, it stores the results
in their proper place, along with the user and document
identification. The user interaction goes as follows:

1. Log in by entering the username and password

2. Pick a document to evaluate
(a) Read the document
(b) Write down 3 to 5 tags
(c) Classify each and every suggested tag as either

good or bad

The process terminates when all ten documents are evalu-
ated. There is no time limit for this procedure and the user
needs not evaluate every document in one session. Another
factor worth noticing is that the user is asked to write down
his own tags before seeing the system’s suggestions, so that
they will not influence his reasoning.

The evaluation process terminates when all the users have
finished evaluating the documents they were assigned to.
Having all the required data, we developed a tool to join
the results and apply the appropriate statistical measures.

4.3 Evaluation Results
System performance can be assessed over different dimen-
sions. Therefore, one must carefully choose the proper mea-
sures. Space and time consumption are usually worth mea-
suring. The smaller the space and the shorter the response
time, the better. However, in this case, we are more inter-
ested in assessing the system’s output. Nevertheless, cur-
rently Tess uses a corpus of 844MB, which, through the
indexing process, reduces its size to 197MB, approximately.
When running, the suggester needs around 150MB of RAM
and takes about 95 seconds to generate 180 sets of tags,
with the cluster size of 10. Hence, on average, each set
takes roughly 0.5 seconds to be produced.

Baeza-Yates and Ribeiro-Neto present some measures found
to be very relevant, as they focus on the quality of the sys-
tem’s output and the users expectations [1]. In our case,
we are going to discuss results for precision, coverage/recall
and novelty. Such measures were adapted to better suit the
tag suggesting problem.

Precision is among the most commonly used measures. In
Tess’ case, it indicates the amount of good tags in all of the
suggested ones. Let T be the set of tags suggested by one
of Tess methods and RT a subset of T , containing only the
tags found to be relevant by the users:

precision =
|RT |
|T | (20)

Since there were three users evaluating the tags suggested
for each document, three precision measures were derived
from eq. (20):

• precision1+ – a tag is considered relevant if at least 1
user finds it so

• precision2+ – a tag is considered relevant if at least 2
users find it so

• precision3 – for a tag to be considered relevant, all 3
users must find it so

The average of each precision formula was computed for ev-
ery combination of vector displacement methods with tag
extraction measures. For instance, to find out the preci-
sion1+ of the combination of the first vector displacement
method with tf × ig term extraction measure, the following
formula was employed:

1

40
×

40X
d=1

|R1+
Td|

|T |

Where Td is the set of tags produced by ‘Method 1’, de-
scribed in Section 3 combined with ‘tf × ig’ for document d
and R1+

Td is the set of tags considered relevant by at least
1 of the users. An analogous procedure applies when using
other precision formulas or method combinations.

The evaluation results show that the precision value de-
creases as the relevancy condition gets stricter, which re-
inforces the lack of consensus when deciding whether a tag
is relevant or not. In terms of vector displacement meth-
ods, ‘Method 3’ closely followed by ‘Method 5’. As to term
extraction measures, ‘boost(tf × ig)’, ‘boost(w × ig)’, and



‘boost(w)’ are usually the strongest ones. Also, the term
extraction measures always perform better when using the
boost feature. The first version of the information gain mea-
sure, ig, outperforms the second one, ig2. As for the worst
term extraction measures, idf -related ones have the lowest
precision values, which is, probably, because they bring out
words that are too unusual to be considered good tags. The
results when using the topic suggested by the system’s cat-
egorizer are very similar to those obtained using the topic
from Digg. In some cases, the categorizer can help improve
the performance of some methods combinations, although
the difference is not very significant. These results may
be explained by the existence of some degree of similarity
among different topics, or through the use of inappropriate
topics, by some of Digg users.

Coverage is a user-oriented evaluation measure, similar to
Recall. It indicates the amount of tags the users wrote down
that were also suggested by the system. The original formula
was adapted to better suit Tess:

coverage =
|T ∩ U |
|U | (21)

Where T is the set of tags recommended by Tess and U is
the set of tags written by the users. Analogously to what
was done with the precision measures, the average coverage
was computed for each combination of methods.

The results for coverage are consistent with the precision
ones. The best vector displacement method is ‘Method
3’, closely followed by ‘Method 6’. Regarding term ex-
traction, ‘boost(w)’ and ‘boost(w × ig)’ turn out to be the
best measures for ‘Method 3’, though ‘boost(tf × mi)’ and
‘boost(tf × ig)’ are not too far behind. In ‘Method 6’, on
the other hand, ‘boost(tf ×mi) does not stands out as a top
measure. On average, over 40% of the user-tags are covered
by the system.

Another meaningful measure is the novelty ratio, which can
be used to find out whether the system is revealing new rele-
vant tags the user was previously unaware of. It is computed
as follows:

novelty =
|RT − U |
|RT ∪ U | (22)

Where RT is the set of suggested tags considered relevant by
the users and U is the set of tags wrote down by the users.

The results indicate ‘Method 1’ as the vector displacement
method with highest novelty ratio. However, this method’s
precision and coverage are low so, it should not be con-
sidered a strong method. As for ‘Method 3’ and ‘Method
6’, the methods with highest precision and coverage rates,
their novelty ratio is quite similar. The best term extraction
measures, ‘boost(tf × ig)’, ‘boost(w × ig)’, ‘boost(w)’, have
an average novelty ratio of over 50%. That is, in average,
more than half of the suggested tags found to be relevant,
were new to the users. Altogether, despite useful, the nov-
elty ratio cannot be a decisive measure by itself, as it is less
important than precision and coverage.

To understand how the precision varies with the number of
suggested tags a precision vs. number of tags graph was
plotted. The resulting curve should be descent, indicating
that the appearance of lower ranked tags decreases the pre-
cision, as they are less relevant. This was not the case, which
suggests a faulty ranking mechanism. Ideally, less relevant

words should not appear before more important ones.

To understand how users choose their tags, we applied the
following formula:

tagsInDoci =
|Ui ∩Di|

|U | (23)

Where Ui is the set of tags wrote down by the users and Di

is a set with all the words in the document being tagged,
that is, document On average, approximately 80.6% of the
user-suggested tags can be found in the document. This re-
sult complies with the conclusions drawn from the precision
and coverage charts, as the strongest vector displacement
methods are those who give more importance to the terms
in the query document.

5. CONCLUSIONS AND FUTURE WORK
In this paper we presented a tag suggesting system, aimed
at textual resources only. Despite using Digg’s hierarchy of
topics and resources, Tess is supposed to be adaptable to
other types of websites, provided their resources are text-
based.

The proposed solution is inspired in information retrieval
and data mining techniques. Several methods were imple-
mented. Some were discarded for their disappointing per-
formance, whereas others were combined as an attempt to
improve results. Indeed, the combinations proved to be ad-
vantageous, as their outcome was indicated as being the best
by the evaluation procedure.

The preliminary results were promising. The system can
obtain an average precision of 60%, which means over half
of the tags it suggests are considered relevant. Apart from
some performance tweaks Tess integration with websites and
exposure to real-life situations could be experimented. Ac-
cording to the evaluation carried, there are still some draw-
backs to solve and further improvements to work on. In
fact, precision should be enhanced as well as the ranking
mechanism. Also, some other combinations could be ex-
perimented. Also, more general term extraction measures
should be developed to ensure the system’s adaptability to
other kinds of websites.

As to future work, we present some guidelines on how to fur-
ther improve the system. Some authors, mentioned in Re-
lated Work, explore the graph-like structure of folksonomies.
Their algorithms can be used to guess users interests, re-
sources relatedness and to detect some relations between
tags. Tess could take advantage of such information.

Currently, Tess deals only with single-word tags. However,
there are occasions where tags with multiple words are more
appropriate. For instance, ‘Star Wars’, a popular science
fiction movie, if used as single-word tags, would lose their
meanings. To add support for this feature, an inference
technique based on n-gram frequency could be employed [8].
Such method estimates the probability of two or more words
appearing together.

Intuitively, there is a strong relation between topics and
dates, as people’s interests are moved by trends and change
as time goes by. Thus, the system could use dates to inves-
tigate trends and better decide on the resources subjects.
Moreover, when dealing with documents with few words,
this additional information can help selecting the similar



ones, since that cosine similarity is a method based only on
words.

Usually, not all the information on a webpage is relevant.
In fact, many webpages display, other than the main story,
navigation structures with hyperlinks to other sections, ad-
vertisement and, sometimes, user comments. Hence, the
irrelevant data should be stripped off from each file. One
alternative would be using a machine learning technique to
find patterns on a set of annotated documents and build a
classifier. Another possible alternative would be to use natu-
ral language processing techniques. Usually, both advertise-
ment and navigation structures are either small sentences
or words. A simple part of speech tagger could be used as
well, to classify words. Short strings where almost every
word is either a noun, a verb or an adjective will probably
be part of the navigation structure. This sort of reasoning
may also work with advertisements. Alternatively, tools like
Adblock 9 can help removing ads from the documents. Re-
garding user comments, they follow the same pattern. So,
their structure may be deducted. At this point it is hard to
predict which approach would perform better.

Additionally, some other data sources could be integrated
in the tag suggesting system. A thesaurus could be used to
detect synonymy and related words; del.icio.us, BibSonomy,
for instance, could provide the tags assigned to the stories
submitted on both Digg and the social bookmarking website;
Wikipedia could be used to determine whether a word is
strong by checking if there is an article about it and by the
number of times it is referred on other articles. However, this
would reduce the system’s independence and could introduce
an extra load on the algorithms. These factors must be
considered, since, no matter how precise the system is, it
cannot take longer to respond than what the users are willing
to wait for.

In conclusion, Tess is a tag suggesting system, completely
functional and ready to integrate in a social content website.
It was started from scratch, so, it took a lot of experimenta-
tion to define which direction would be best. Now that it is
more stable and mature, there are some enhancements that
may improve its performance. The scope is, for now, limited
to text-based resources only, which still accounts for the ma-
jority of the resources on Digg’s front pages and, probably,
of other popular websites.
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