
Relational Behaviors For Soccer Robots
Quantitative Analysis

Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Extended Abstract

João Gonçalo Delgado Torres Torres
Instituto Superior Técnico

Supervisor: Prof. Pedro Lima
Co-Supervisor: Engo Rodrigo Ventura

Abstract—The goals of this Thesis are the development,
demonstration and analysis of relational behaviors, devel-
oped in the scope of SocRob project, for static situations of
game, for instance the goal kick. The behaviors were de-
signed using Petri Nets and its implementation followed an
algorithm modified from previous work. As an essential req-
uisite to a relational behavior, mechanisms of commitment
establishment and management as well as of synchronization
were implemented. Using the same code, the behaviors were
tested in the simulator and in the real robots. Finally, a
quantitative analysis of the developed Petri nets was carried
through.

Keywords—Relational Behaviors, Commitment, Synchro-
nization, Petri nets, Robotic Soccer, Quantitative Analysis

I. INTRODUCTION

This document summarizes the work developed for
this project and is organized in the following way: this
section presents the motivation, work environment and
related work. The work background is introduced in
Section II. In Section III the work and some aspects
of implementation are explained and in Section IV the
set of implemented behaviors is summarized. Finally, in
Section V the results are presented and in Section VI the
conclusions.

A. Motivation

Any society tends to organize itself to complete
tasks that would be impossible to be completed by
just one individual. Robotics creates populations of
robots that when functioning as one distributed robot
reach objectives that would be difficult to achieve if the
task was assigned to only one robot. We can observe
this concept in space exploration, automobile industry,
search-and-rescue robots and robotic soccer.

Robotic soccer, like human soccer, consists on the
confrontation of two teams whose players cooperate to
defeat the opponent team. Again, like in human soccer,
the team with better results is the team in which the
players cooperate the most. This project is centered on
the development of relational behaviors for one team
of soccer robots. In order to reach the objectives and in
any task that involves several robots, they need to work
well together. This request raises the main problems

related with the implementation of relational behaviors.
Human beings are endowed with sensorial functions
that allow them to communicate in an implicit (where
the player takes decisions from what he observes) and
explicit way (where the player takes decisions based on
messages). Since the implicit way is still far from being
implementable in robotics, explicit communication was
used here.

Vecht[5] defines a relational behavior as a set of indi-
vidual behaviors that are to be executed in a coordinated
manner by a set of agents from a cooperative team. The
participants pursue a joint goal and communicate with
each other to achieve the required coordination. This
implies an agreement between the participants, referred
to as a commitment.

B. Work Environment

This work was developed in the scope of SocRob1[7]
project at the Institute of Systems and Robotic. The
acronym of the project stands both for ”Society of
Robots” and ”Soccer Robots”, the case study where its
population of five robots is being tested. The project
participates regularly in competitions, like RoboCup,
playing in Middle-Size League (MSL).

Currently, the field has a dimension of 18x12 meters,
green color, white lines and the goals are distinguished
by the yellow and blue colors. In the corners there are
yellow and blue poles. The ball must be orange.

A simulator that recreates the MSL environment
was developed in the scope of SocRob project, using
Webots[9]. This application is very important in the
development of behaviors, since it allows to reduce the
development time. This simulator runs the exact same
code that runs in the robots.

C. Related Work

The relational behaviors implementation is supported
by Joint Commitment Theory[2] presented in section
II-C. This theory demands that a commitment should be
establish between the agents involved in the behavior.

1http://socrob.isr.ist.utl.pt/

http://socrob.isr.ist.utl.pt/


To break such a commitment the acknowledgment of the
robot that is going to finish is needed.

The development of applications based on the Joint
Commitment Theory, including communications, has
been extensively reported by Tambe[11]. One example
is Yokota[10] et al. whom use explicit communications
to achieve cooperation and synchronization between real
robots. Research in the Simulation League of RoboCup
have achieved cooperative behaviors among virtual
agents, either executing a pass through implicit commu-
nications (observation of the team mates behavior)[12],
or through the learning by a neural network [13]. How-
ever, no commitment between players is previously es-
tablished in the works mentioned above.

Vecht[5] implemented relational behaviors integrating
commitment. All the behaviors were designed with three
phases: setup, loop and end. Each phase is divided in
some states and the synchronization between robots is
reached guaranteeing that all robots find themselves in
the same state. However, despite the good results this
implementation had, it forces the developer to define all
the states in order to achieve synchronization, which,
in turn, increases the development time. The formalism
used to model behaviors was state machines which are
less powerful than Petri nets. Using state machines, for
instance, it is impossible to use parallelism.

II. BACKGROUND

A. Petri Nets
Petri nets[3] are a useful tool in the description of

discrete event systems.
A Petri net is a graphical and mathematical model-

ing tool, consisting of places, transitions, and arcs that
connect them. Input arcs connect places with transitions,
while output arcs start at a transition and end at a place.
Figure 1 is an example of a Petri net.

Figure 1. Petri net Example.

Places can contain tokens, represented by points or
numbers. The current state of the modeled system, called
the marking, is given by the number of tokens in each
place at a precise moment. To fire a transition the input
place must have as much tokens as the weight of the arc
that connects the place and the transition. A transition
can be associated with an event. In this case, it only fires
if it is enabled and the event has occurred. The number
of tokens removed / added depend on the weight of
each arc.

(a) Before firing (b) After firing

Figure 2. Example of Petri net transition firing

B. Stochastic Petri Nets
N. Viswanadham and Y. Narahari.[1] introduced the

stochastic Petri nets that were used for analysis in this
work. A Generalized Stochastic Petri net(GSPN) adds
time and probability to a Petri net allowing these nets
to perform quantitative analysis. GSPN uses two transi-
tion types: immediate and exponential. Firing times for
an exponential transition are exponentially distributed.
If two or more exponential transitions are enabled in
the marking Mi and Ti denotes that particular set of
transitions, the probability for transition tj fire is:

F (Mi, tj)∑
tkεTi

F (Mi, tk)
(1)

where F (Mi, tj) is the rate of transition tj in the
marking Mi. Naturally, a transition with a higher rate
has a bigger probability of being chosen to fire. An
immediate transition is represented by a line and an
exponential transition by a rectangle.

C. Joint-Commitment Theory
For Cohen and Levesque[2] coordination in multi

agent systems and teamwork are different concepts.
They gives an example: ”while common traffic is clearly
a coordinated system, it is not teamwork. Driving in
a convoy however, is seen as teamwork, because the
involved agents share a common goal and need to
cooperate in order to achieve their goal”. The Joint-
Commitment Theory is supported by the idea that agents
with a common goal should join in a commitment. They
inform each other about their progress to achieve the
goal. Applying this concept to soccer robot leads to the
following conclusion: once a robot is committed to a
relational behavior, he will pursue the execution success
until some conditions become false or until the goal has
been achieved. The behavior success or failure has to
be reported to all participants in the commitment before
the agent quits the commitment. This way, all the robots
will be informed all time and will not continue to pursue
impossible objectives.

D. Behaviors
A behavior is a set of actions that carried through

in parallel or in series has the objective of executing

2



one determined task. The sequence of actions depends
on conditions that are related to the robot and to its
surroundings. One behavior example is the task to take
the ball until the goal. It contains actions such as catching
the ball, dribbling and kicking. The execution moment
of each action is defined by the surrounding conditions:
the robot will not be able to kick the ball if it is not in
its possession.

Behaviors can be classified using three classes:
• Organizational Behaviors: this type of behaviors is

responsible for the team organization in the field
and attributes a role to each player(defender, at-
tacker, supporter).

• Relational Behaviors: behaviors where two or more
robots are involved to complete a task (to pass the
ball).

• Individual Behaviors: behaviors that involve only
one agent (to cover the goal, to support the attack,
to attack).

The choice of which type of behavior must be carried
through at each moment depends on the team’s software
architecture.

E. MeRMaID
Previously to the work presentation it is important

to describe in summary the software architecture
developed in the project and that supports the
behaviors and features implemented. This architecture
is described[6] as: ”MeRMaID (Multiple- Robot
Middleware for Intelligent Decision-making) is a
robot programming framework whose goal is to
provide a simplified and systematic high-level behavior
programming environment for multi-robot teams,
which simultaneously constrains some of the developer
options, so as to guide him/her towards building better
and maintainable code.”

The MeRMaID framework defines the entities:
• Roles: are subsets of behaviors, defined over the

set of available behaviors (e.g., Attacker, Defender,
Supporter);

• Behaviors: are defined as ”macros” of primitive
actions grouped together using some appropriate
representation, in this case Petri nets.

• Primitive Action: is the atomic element of a be-
havior, which can not be further decomposed. It is
designed as a STA (Sense-Think-Act) loop.

• Macro: with this feature the user can reuse
some sets of behaviors. Two places tagged with
GOAL REACHED and GOAL NOT REACHED
should be defined to identify the execution success
or insuccess;

• Predicates: are Boolean relations over the domain of
world objects, e.g., seeBall;

• Event: is an instantaneous occurrence which denotes
a state change.

Behaviors are implemented using three levels:
• Team organizer: attributes one role to each robot;
• Behavior Coordinator: chooses the behavior the

robot should execute;
• Behavior Executor: chooses the action that the robot

should execute;
MeRMaID also provides a framework that executes

Petri nets. In order to run Petri nets using this frame-
work, the nets should follow some rules:

• Places
– Tag <action>: at TeamOrganizer level indicates

a role, at BehaviorCoordinator level indicates
a behavior and at BehaviorExecutor level indi-
cates a primitive action;

– Tag <predicate>: indicates a predicate;
– Tag <macro>: indicates a macro;
– Place with no tag: indicates a memory place;

• Transitions:
– Tag <event>: indicates a transition associated

with an event.
– Transition with no tag: indicates a immediate

transition with no association;

III. REPRESENTATION OF RELATIONAL BEHAVIORS
BASED ON PETRI NETS

A. Commitment Establishment

As mentioned before, the commitment grants each
robot the knowledge that it is part of a relational be-
havior that involves more teammates. The commitment
establishment crosses some stages until robots are com-
mitted. Below, the solution developed and used in this
work is presented, considering that robot R1 sends the
request to establish a commitment with its teammates,
here represented by robot R2:

• R1 - Asked for establishment of the commitment:
robot R1 sends an invitation to the teammates to
establish a commitment for any relational behavior;

• R2 - Analysis and reply to the request from R1:
robot R2 receives the request and verifies if it is
in conditions to enter in the commitment. In the
affirmative case, it sends a message in return. Then
it waits for the answer to its candidacy;

• R1 - Analysis and answers to the candidacies:
robot R1 receives the answers to his request during a
certain period. After this period of time, it analyzes
them and answers with an accept or reject. It then
waits a commitment message from R2. If there
were no answers to its request it is considered not
engaged;

• R2 - Reception of the reply to the candidacy:
robot R2 waits its answer. In the case of a positive
response, this means that it will enter in the commit-
ment with R1. In the negative case it means that it
did not succeed. In the first case, R2 sends a message

3



indicating that it is committed. Finally, it waits for
the same type of message from R1;

• R1 - Reception of the commitment message: robot
R1 receives the commitment message from R2 and
sends an identical one in return. At this point, robot
R1 is committed.

• R2 - Reception of the commitment message: robot
R2 receives the commitment message that it was
waiting for and considers itself committed with R1.

To prevent a deadlock during the commitment es-
tablishment, the robots use timers. This way they will
not wait a message forever. The Figure 5 is the Petri
net developed to establish the commitment between the
robots and uses the method explain above.

B. Commitment Management

A relational behavior execution ends with its success
or failure. In both cases, the robot(s) intervening in the
behavior must be in agreement about the state of the
commitment, meaning that if one of the robots wants
to break the commitment it must inform the other(s).
This way none of robots will be blocked in a finished
behavior. For this reason, it is necessary to manage the
commitment.

Figure 4 depicts an Petri net example for a relational
behavior while Figure 3 represents the respective
commitment management[4]. The blue and green states
of Figure correspond to the states of the same color in
Figure 4 which means that each primitive action has its
own commitment management Petri net.

Three places in a commitment management net are
necessary:

• Commitment: token in this place indicates that the
partner is engaged;

• End Commitment: this place receives one token
when the behavior did not succeeded and therefore
the conditions for the robot to continue in commit-
ment do not exist;

• NotCommitted: this place indicates that the robot is
not compromised, leading to the interruption of the
primitive action. Token is placed here if the partner
has failed in the behavior and has consequently
broken the commitment.

These nets describe a possible implementation to man-
age the commitment. However, to adapt this method to
MeRMaID, some changes had to be made. Instead of a
constant management, as the one presented previously,
the implemented behaviors only verify the commitment
in some strategic points . These points are those from
which the robot action would be significantly changed
in case that it was not compromised. The point where
the robot that makes the pass waits for the robot that
will receive the ball is assumed as a point of this type. At

Figure 3. Petri net to manage commitment[4].

Figure 4. Relational behavior example[4].

these points as evaluation concerning the commitment is
performed, using the predicate PartnerCommited whose
value depends on the information transmitted by the
commitment partner. If during an evaluation moment it
verifies that the value of the predicate is false, the robot
also breaks the commitment, given that the commitment
was already broken by the other robot. The case cited
above occurs when the commitment partner fails to
execute the behavior. Still, in case of success or own
failure the commitment must also be broken.

The option of implement a management that performs
a not constant evaluation is supported by the fact that
it increases the behavior performance. This type of ap-
proach requires higher attention in the development of
the behaviors so that one higher performance in one
robot does not have as consequence the behavior failure
in its partner.

C. Synchronization
Another essential requirement to a relational behavior

is synchronization. The sequence of actions that forms a
task can be executed correctly by its intervening subjects
but, if there is no synchronism between the robots, the
insuccess is the more probable end. In a pass, if the robot
passes the ball before the receiver is prepared, the team
will lose it.

The synchronization was obtained through the trans-
mission of messages meaning that explicit communica-
tion was used, as described in Section I-A. This fact
must be taken in account because synchronism points are
an easy target to communications problems. A behavior
must not have many points of synchronism and none of
them, in case of failure, can block the behavior execution.

The synchronization in the developed behaviors is
necessary in two moments only: when the player that

4



Figure 5. Petri net to establish the commitment.

goes to receive the ball wants to inform the taker that
it is ready to receive and when the player that takes
the foul wants to indicate that the ball was passed. To
complete this implementation, events were used. Figures
6 and 7 present an example for a pass. The option of
using events is justified for its implementation simplicity.
A synchronism point represents a prompt situation that
has no other objective than to inform the other robot
about the fulfilment of the task at hand. No processing
or information storage is performed. A memory place is
in the Petri Nets used so, if the Petri net execution still
does not have reached the synchronism point, it saves
the token and the event will not be lost (ReceiverReady
and PassDone in Figures 6 and 7).

D. Implementation Algorithm

An algorithm was used to achieve a faster and me-
thodical way of implementing behaviors . The said
methodology is composed by the following steps:

1) Identification of the behavior objective;
2) Petri net drawing;

Figure 6. Example of synchronization. Robot that passes the ball.

3) Identification of the synchronism points, survey of
the events and necessary timeout mechanisms;

4) Identification of the points where is necessary to
manage the commitment

5) Identification of the primitive actions, predicates
and events needed in the new behavior and coding

5



Figure 7. Example of synchronization. Robot that receives the ball.

of the new ones;
6) Behavior tests, running it first using Webots and

then real robots.
With this algorithm the drawing of new behaviors was

automatized promoting an easy work organization in the
creation of new primitive actions, predicates and events,
for instance.

IV. IMPLEMENTED BEHAVIORS IN SOCCER ROBOTS

This section presents the behaviors that were im-
plemented during this work. Individual, relational and
organizational behaviors were developed. The behaviors
are organized in three groups, each one corresponding
to one MeRMaID level: TeamOrganizer, BehaviorCoor-
dinator and BehaviorExecutor.

A summary about the tactic developed and executed
at the TeamOrganizer level is presented here. The follow
roles were implemented:

• RoleAttacker: This role implements the team at-
tacker and is executed by the robot closest to the
ball;

• RoleDefender: This role implements the team de-
fender and is executed by the robot closest to its
own goal that is not the one closest to the ball;

• RoleSupporter: The organizational behavior that is
executed by the robot that supports the attacker
is implemented by this role. The TeamOrganizer
chooses the robots that were not elected to attacker
or defender;

• RoleFoulTaker: In case of ball throw-in, goal kick,
free kick, corner kick, penalty or kick-off for own
team the robot closest to the ball is chosen to take
it;

• RoleFoulReceiver: The ball is passed to the robot
that executes this role during a ball throw-in, goal
kick, free kick, corner kick, penalty or kick-off. The
robot chosen is the second closest to the ball.

Each role executed by the BehaviorCoordinator can be
described in a concise way:

• RoleAttacker: This role implements the attacker. In
case of ball throw-in, goal kick, free kick, corner

kick, penalty or kick-off, the attacker maintains a
certain distance to the ball; either way, its objective
is to score a goal;

• RoleDefender: The main objective of the defender
is to protect the goal. If the ball is near its goal, it
covers the angle between them; either way, the robot
stays near its goal, waiting opponent’s next attack;

• RoleSupporter: The supporter follows the attacker.
This way, if it looses the ball, the supporter, nearer
to the ball, can gain its possession again;

• RoleFoulTaker: This role is executed by the robot
that repositions the ball. It chooses between a set of
foul taker behaviors, depending on the game situa-
tion and, for each situation, on a random variable;

• RoleFoulReceiver: This role is executed by the robot
that receives the ball in a reposition. It chooses
between a set of foul taker behaviors, depending
on the behavior chosen by the taker.

The behaviors executed by the BehaviorExecutor are
explained below. The individual behaviors implemented
were:

• BehaviorBaseAttack: This is the attacker’s main
behavior. Its objective is to score goal. It uses two
different opponent’s goal approaches and chooses
between them using a random variable;

• BehaviorBaseDefend: This is the defender’s main
behavior. Its objective is to cover the angle between
the goal and the ball;

• BehaviorBaseSupport: The supporter executes this
behavior to search for the ball and then to maintain
a certain distance;

• BehaviorFoulAttacker, BehaviorFoulSupporter, Be-
haviorFoulDefender: These behaviors are executed
by the attacker, the supporter and the defender,
respectively, during a ball throw-in, goal kick, free
kick, corner kick, penalty or kick-off. Their objective
is to maintain a certain distance to the ball. The
attacker stays closest to it, then the supporter, then
the defender.

Finally, the relational behaviors developed are pre-
sented:

• BehaviorFoulTakerDirect: This behavior is exe-
cuted by the taker. It envolves commitment between
the taker and the receiver. Varying the robot final
posture, four more relational behaviors to reposition
the ball were implemented. As an example of this
different postures we have to touch the ball or to
pass through the line. The Petri net designed for
this behavior is showed on Figure 8.

• BehaviorFoulReceiveDirect: It executes the corre-
sponding behavior to BehaviorFoulTakerDirect exe-
cute by the receiver. Four more relational behaviors
to receive the ball were implemented, varying the
robot posture, just like mentioned before. Figure 9
shows the Petri net designed for this behavior.

6



Figure 8. Petri net example of one behavior executed by the taker.

Figure 9. Petri net example of one behavior executed by the receiver.

7



V. RESULTS AND ANALYSIS

A. Results
The results were satisfactory: the robots executed

all the behaviors, both in the simulator and in the
real world, both with success. Many of the developed
behaviors were used by the project in the competitions
that ISocRob team integrated during the development
period of this work: Robotica 2007 and RoboCup 2007.
Some videos of the robots executing the behaviors can
be viewed in the site:

http://socrob.isr.ist.utl.pt/videos/behaviors/
behaviors.html

As previously mentioned, the code that runs in the
simulator and in the real robots is the same.

B. Analysis
The quantitative analysis done had as main objective

find answers to the questions below:
• How does the primitive action failure affects the

behavior failure?
• How should the primitive actions perform to

achieve a determined behavior performance?
• Can a primitive action have greater impact on the

behavior success than the others?
• What is the impact of an unsuccessful primitive

action on the failure of the behavior?
• What behavior does the number of primitive actions

have in the behavior success?
The analysis used the tool TimeNet[8]. For each

primitive action in the analyzed behavior it considered
two hypotheses of outcome, success and failure, which
were simulated using two exponential transitions.
Varying its rate different success and insuccess
probabilities were used in this analysis. The consecutive
success of each action indicates the behavior success
and the unsuccess on any action has as consequence
the behavior unsuccess. The results substantiated
that to achieve successful behaviors the primitives
should be almost perfect, specially when the behavior
involves many actions. They also confirmed that the
communication quality limits the behavior quality,
given that, if some robot fails when sending a message
the behavior will not be well succeeded.

Figures 10 and 11 and illustrate two examples for
the said analysis. Figure 10 shows the results from the
analysis made to answer the question: ”How does the
primitive action failure affects the behavior failure?”. The
behavior used to obtain it was the BehaviorBaseAttack,
described in Section IV. The graphic evidences that
to achieve a reasonable behavior performance (in the
order of 80%) very good primitive actions are needed
(with a rate performance near 95%), and to achieve an

high behavior performance (in the order of 90%) almost
perfect primitive actions (achieving 98% of success) are
needed.

Figure 10. Impact of the primitives actions performance in the
behavior performance.

The graphic in Figure 11 shows the impact of the
primitive actions number on the behavior performance.
The behaviors used in this simulation are composed
by primitive actions series. As expected, the behavior
success will increasedly depend on the primitive actions
performance as more of those are present. The behavior
developer should first invest on improving primitive
actions before increase the behavior complexity.

Figure 11. Impact of the number of primitives actions in the behavior
success.

VI. CONCLUSIONS AND FUTURE WORK

This extended abstract summarizes the work
developed in the scope of this Thesis. The goals
of this work were the development, demonstration
and analysis of relational behaviors, developed in
the scope of SocRob project, for static situations of
game. The goal kick is one of this situations. The
behaviors were designed using Petri nets and its
implementation followed an algorithm. As an essential
requisite to a relational behavior, mechanisms of
commitment establishment and management, as well

8



as of synchronization, were implemented. Finally, a
quantitative analysis of the developed Petri nets was
carried through.

This work substantiates that robotic soccer should
invest new efforts to develop better relational behaviors.
This fact is not only justified by competitive reasons
but by scientific reasons, as well, given that this work
can be used in different areas. As future work in this
interesting area, the SocRob project may implement
dynamic passes. In order to achieve more reliable
relational behaviors, the communications should be
improved.

Also in this area, we could study decision systems
that choose who should be involved in a commitment. It
would be interesting to make a study using the diverse
political systems to make this decision. This analysis
would have as extremes an absolutist approach, where
one robot would take all these decisions, and a demo-
cratic system, where each robot takes equal part in the
decision.

REFERENCES

[1] N. Viswanadham and Y. Narahari., Performance Modeling of Auto-
mated Manufacturing Systems, Prentice Hall, New Jersey, 1992

[2] P. R. Cohen and H. J. Levesque. Teamwork. Nous, 35:487-512, 1991
[3] T. Murata, ”Petri Nets: Properties, Analysis and Applications”, an

invited survey paper, Proceedings of the IEEE, Vol.77, No.4
pp.541-580, April, 1989

[4] Pedro U. Lima, Models of robotic tasks based on discrete event and
hybrid systems, Slides of Presentation, 2006

[5] B. Vecht and P. Lima, Formulation and Implementation of Rela-
tional Behaviours for Multi-Robot Cooperative Systems, 2004

[6] Marco Barbosa, Nelson Ramos, Pedro Lima, ”MeRMaID -
Multiple-Robot Middleware for Intelligent Decision-Making”, Proc,
of IAV2007 - 6th IFAC Symposium on Intelligent Autonomous
Vehicles, Toulouse, France, 2007

[7] Projecto SocRob, SocRob Project - Description,
http://socrob.isr.ist.utl.pt/

[8] Zimmermann, A.; Freiheit, J.; German, R. Hommel, G.: Petri Net
Modelling and Performability Evaluation with TimeNET 3.0., 11th
Int. Conf. on Modelling Techniques and Tools for Computer
Performance Evaluation (TOOLS’2000), LNCS 1786, pp. 188-202,
http://pdv.cs.tu-berlin.de/ timenet/, Springer-Verlag, Schaum-
burg, Illinois, USA, 2000

[9] WEBOTS, http://www.cyberbotics.com
[10] K. Yokota, K. Ozaki, N. Watanabe, Akihiro Matsumoto, D.

Koyama, T. Ishikawa, Kuniaki Kawabata, Hayato Kaetsu, Ha-
jime Asama, ”Cooperative Team Play Based on Communication”,
RoboCup 1998 Book, Springer-Verlag, Berlin 1999

[11] M. Tambe, ”Towards Flexible Teamwork”, Journal of Artificial
Intelligence Research, 7:83- 124, 1997

[12] E. Pagello A. D’Angelo, F. Montsello, F. Garelli, C. Ferrari, ”Co-
operative Behaviors in Multi-Robot Systems Through Implicit
Communication”, Robotics and Autonomous Systems, 29:65-77,
1999

[13] H.Matsubara, I. Noda and K. Hiraki, ”Learning of Cooperative
Actions in Multi-Agent Systems: a Case Study of Pass in Soccer”,
Adaptation, Coevolution and Learning in Multiagent Systems:
Papers from the AAAI-96 Spring Symposium, SS-96-01, pp63-67,
1996

9


	Introduction
	Motivation
	Work Environment
	Related Work

	Background
	Petri Nets
	Stochastic Petri Nets
	Joint-Commitment Theory
	Behaviors
	MeRMaID 

	Representation of Relational Behaviors Based on Petri nets
	Commitment Establishment
	Commitment Management
	Synchronization
	Implementation Algorithm

	Implemented Behaviors in Soccer Robots
	Results and Analysis
	Results
	Analysis

	Conclusions and Future Work
	References

