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Abstract

INS/GPS integrated systems, based on MEMS technology, are likely to become

widely available as a result of the recent advent of low-cost sensors. The

current performance achieved by low-cost IMUs is still relatively poor due to the

large inertial sensor errors. This can significantly affect the performance of the

integrated system in situations of low satellite visibility. Usually, GPS and INS

are integrated with a loosely coupled scheme, which is suitable for those

applications where satellite availability is always good. However, significant

performance improvements can be made by using a tightly coupled integration

in applications where GPS outages are frequent and when a reliable, accurate

solution is needed during the entire mission. Therefore, the challenge is to

develop a robust navigation system that can deal with the large sensor errors

experienced with low-grade IMUs.

This thesis investigates the performance of a low-cost INS/GPS system in

which the data fusion process is done with an extended Kalman filter. In order

to perform numerical simulations, a MATLAB software has been developed.

Both the loosely coupled and tightly coupled configurations are analyzed for

several types of situations and operational conditions. The results obtained in

this work demonstrate that a low-cost INS/GPS navigation system is partially

capable of meeting the performance requirements for airborne navigation.



IV

Table of contents

Acknowledgements ......................................................................................... II

Abstract ........................................................................................................... III

Table of contents ............................................................................................ IV

List of tables.................................................................................................. VIII

List of figures .................................................................................................. IX

List of symbols............................................................................................... XII

List of abbreviations ......................................................................................XV

Chapter 1: Introduction.................................................................................... 1

1.1 Background .............................................................................................. 1

1.1.1 Low-cost MEMS-based IMUs............................................................. 2
1.1.2 Global Positioning System ................................................................. 3
1.1.3 INS/GPS integration........................................................................... 4

1.2 Research objectives ................................................................................. 6

1.3 Research methodologies.......................................................................... 7

1.4 Thesis outline ........................................................................................... 8

Chapter 2: Overview of the Global Positioning System ............................. 10

2.1 Basic concepts ....................................................................................... 10

2.2 GPS observables.................................................................................... 12

2.3 GPS errors.............................................................................................. 13

2.3.1 Satellite clock errors......................................................................... 14
2.3.2 Receiver clock errors ....................................................................... 14
2.3.3 Ionospheric delay............................................................................. 14
2.3.4 Tropospheric delay........................................................................... 16
2.3.5 Multipath errors ................................................................................ 16
2.3.6 Satellite orbital errors ....................................................................... 17
2.3.7 Measurement noise.......................................................................... 17
2.3.8 User Equivalent Range Error ........................................................... 18

2.4 Solution of the pseudorange equations .................................................. 19

2.5 Dilution of precision ................................................................................ 22

2.6 Impact of the constellation geometry on the DOP parameters ............... 24

Chapter 3: Overview of the Inertial Navigation System .............................. 28

3.1 Coordinate frames .................................................................................. 28



V

3.1.1 Inertial frame (i-frame)...................................................................... 29
3.1.2 Earth frame (e-frame)....................................................................... 30
3.1.3 Local geodetic frame (n-frame) ........................................................ 30
3.1.4 Body frame (b-frame)....................................................................... 31
3.1.5 Coordinate transformations.............................................................. 32

3.2 INS kinematic equations......................................................................... 36

3.3 INS mechanization equations ................................................................. 38

3.3.1 Correction of raw data...................................................................... 38
3.3.2 Attitude update................................................................................. 39
3.3.3 Transformation of specific force to the n-frame................................ 40
3.3.4 Calculation of velocity and position .................................................. 41

3.4 INS error dynamics equations ................................................................ 42

3.4.1 Position errors.................................................................................. 43
3.4.2 Velocity errors .................................................................................. 44
3.4.3 Attitude errors .................................................................................. 45

3.5 Inertial sensor errors............................................................................... 46

3.6 INS alignment ......................................................................................... 47

3.7 Description of IMUs ................................................................................ 48

3.7.1 Inertial sensors................................................................................. 48
3.7.2 Implementations............................................................................... 50
3.7.3 Sensor technologies......................................................................... 52
3.7.4 Classification of IMUs....................................................................... 54

Chapter 4: Linear and Extended Kalman Filter............................................ 56

4.1 Discrete-time linear systems................................................................... 56

4.2 Kalman filter............................................................................................ 58

4.3 Extended Kalman filter............................................................................ 60

4.4 Stochastic processes.............................................................................. 61

4.4.1 White noise ...................................................................................... 61
4.4.2 Random Walk .................................................................................. 62
4.4.3 Random constant ............................................................................. 62
4.4.4 First-order Gauss-Markov process................................................... 63
4.4.5 Summary of stochastic processes.................................................... 64

Chapter 5: INS/GPS Integration .................................................................... 65

5.1 Integration strategies .............................................................................. 65

5.2 Loosely coupled integration .................................................................... 65

5.2.1 GPS filter.......................................................................................... 66

5.2.1.1 Receiver clock model ................................................................ 67
5.2.1.2 System model............................................................................ 68
5.2.1.3 Measurement model.................................................................. 70

5.2.2 INS filter ........................................................................................... 72



VI

5.2.2.1 Inertial sensor error models....................................................... 72
5.2.2.2 System model............................................................................ 75
5.2.2.3 Measurement model.................................................................. 77

5.3 Tightly coupled integration...................................................................... 79

5.3.1 INS/GPS filter................................................................................... 80

5.3.1.1 System model............................................................................ 80
5.3.1.2 Measurement model.................................................................. 80

5.4 Comparison of the two integration schemes........................................... 81

5.4.1 General aspects............................................................................... 81
5.4.2 Comparison of computational loads................................................. 83

Chapter 6: Software and Implementation Considerations.......................... 86

6.1 Main.m.................................................................................................... 86

6.2 Trajectory.m............................................................................................ 87

6.3 GPS.m.................................................................................................... 87

6.4 Galileo.m ................................................................................................ 89

6.5 GDOP.m................................................................................................. 90

6.6 PV.m, PVA.m.......................................................................................... 90

6.7 EKF.m..................................................................................................... 90

Chapter 7: Tests and Results........................................................................ 91

7.1 Datasets ................................................................................................. 91

7.2 INS-only solution .................................................................................... 92

7.3 GPS-only solution................................................................................... 97

7.4 INS/GPS solution.................................................................................. 101

7.4.1 Results with full GPS data availability ............................................ 102
7.4.2 Results with simulated GPS outages ............................................. 107

7.4.2.1 Simulation of a canyon flight.................................................... 107
7.4.2.2 Performance during partial and complete GPS outages.......... 112

7.4.3 Analysis of observability................................................................. 117

7.5 Augmentation of the INS/GPS system with Galileo .............................. 123

Chapter 8: Conclusions and Recommendations....................................... 128

8.1 Summary .............................................................................................. 128

8.2 Conclusions .......................................................................................... 129

8.3 Recommendations................................................................................ 130

References.................................................................................................... 132

Appendix A ................................................................................................... 137

Appendix B ................................................................................................... 141



VII

Appendix C ................................................................................................... 145

Appendix D ................................................................................................... 146



VIII

List of tables

Tab. 1.1 INS-GPS comparison........................................................................... 5

Tab. 2.1 GPS UERE budget for the C/A code (adopted from [19]) .................. 19

Tab. 3.1 Transformation from ECEF to geodetic coordinates .......................... 35

Tab. 3.2 Coefficients for the gravity model (adopted from [32]) ....................... 41

Tab. 3.3 Some basic inertial sensor technologies (adopted from [17])............. 52

Tab. 3.4 The categories of IMUs...................................................................... 54

Tab. 3.5 Some examples of commercial IMUs................................................. 55

Tab. 4.1 Summary of stochastic processes ..................................................... 64

Tab. 5.1 Typical Allan variance parameters for various GPS receiver clocks .. 68

Tab. 5.2 Crista IMU characteristics assumed for numerical simulations .......... 75

Tab. 5.3 Number of operations of the Kalman filter algorithm .......................... 83

Tab. 5.4 Total number of operations for different filters.................................... 84

Tab. 6.1 0 and 0 for the GPS constellation at reference time 0t ................. 88

Tab. 7.1 Characteristics of the MEMS-IMU and FOG-IMU .............................. 93

Tab. 7.2 Mean and RMS values of position errors of various simulations...... 101

Tab. 7.3 RMS position errors for different IMUs............................................. 106

Tab. 7.4 Positioning accuracy requirements for all flight categories............... 107

Tab. 7.5 Maximum 3D position errors with GPS outages for different IMUs .. 116

Tab. 7.6 Residual errors of turn-on-bias estimates ........................................ 120

Tab. 7.7 Assumed DOPs for Galileo and GPS............................................... 124

Tab. 7.8 Galileo and GPS UERE budgets for typical and worst cases........... 124

Tab. 7.9 3D RMS accuracy for INS/GPS and INS/GPS+GALILEO systems.. 124

Tab. A.1 Ephemeris data definition (adopted from [27])................................. 139

Tab. A.2 Elements of ephemeris model equations [27].................................. 140

Tab. D.1 Performance for the Galileo services............................................... 147



IX

List of figures

Fig. 1.1 Differences between IMU and INS (adopted from [31])......................... 2

Fig. 2.1 GPS satellite constellation................................................................... 11

Fig. 2.2 Basic idea of GPS positioning ............................................................. 12

Fig. 2.3 Ionosphere map for TEC evaluation.................................................... 16

Fig. 2.4 The multipath problem......................................................................... 17

Fig. 2.5 DOPs as function of the elevation angle (using a constant UERE) ..... 25

Fig. 2.6 Effective DOPs obtained with the approximated model of Eq. (2-8).... 27

Fig. 3.1 The inertial frame ................................................................................ 29

Fig. 3.2 The ECEF and NED coordinate systems ............................................ 31

Fig. 3.3 The body frame ................................................................................... 31

Fig. 3.4 Convention for the vehicle’s Euler angles ........................................... 33

Fig. 3.5 INS mechanization in the n-frame (adopted from [31])........................ 42

Fig. 3.6 Simple representation of the conventional mechanical gyroscope...... 49

Fig. 3.7 Simple representation of the conventional mechanical accelerometer 49

Fig. 3.8 Possible implementations of an IMU ................................................... 51

Fig. 3.9 Working principle of an ADXL MEMS-capacitive accelerometer ......... 53

Fig. 3.10 Scheme of one of the two structures of an ADXRS MEMS-gyro....... 54

Fig. 4.1 Block diagram of the Kalman filter algorithm....................................... 59

Fig. 5.1 Loosely coupled integration scheme (adopted from [14]).................... 66

Fig. 5.2 Model for the receiver clock bias......................................................... 67

Fig. 5.3 PV model for GPS-only filter ............................................................... 68

Fig. 5.4 PVA model for GPS-only filter ............................................................. 69

Fig. 5.5 Crista IMU from Cloud Cap Technology.............................................. 74

Fig. 5.6 Tightly coupled integration scheme (adopted from [14])...................... 79

Fig. 5.7 Number of operations of PV and PVA filters ....................................... 84

Fig. 5.8 Number of operations for LC and TC integrations............................... 85

Fig. 6.1 GPS satellite constellation planar projection ....................................... 89

Fig. 7.1 Reference trajectories of simulated datasets ...................................... 92

Fig. 7.2 Ideal results for INS position errors ..................................................... 93



X

Fig. 7.3 Ideal results for INS velocity errors ..................................................... 94

Fig. 7.4 Ideal results for INS attitude errors...................................................... 94

Fig. 7.5 Positional error for different IMUs (without initial calibration)............... 95

Fig. 7.6 Positional error for different IMUs (with initial calibration).................... 96

Fig. 7.7 Dilution of precision and availability during the simulation test............ 97

Fig. 7.8 Various DOPs during the simulation test............................................. 98

Fig. 7.9 Position error versus time (first dataset).............................................. 99

Fig. 7.10 Velocity error versus time (first dataset) .......................................... 100

Fig. 7.11 Position errors for low-cost INS/GPS (no GPS outages)................. 102

Fig. 7.12 Velocity errors for low-cost INS/GPS (no GPS outages) ................. 103

Fig. 7.13 Attitude errors for low-cost INS/GPS (no GPS outages) ................. 104

Fig. 7.14 Attitude errors obtained with a straight uniform trajectory ............... 105

Fig. 7.15 Bar plot of RMS position errors for different IMUs........................... 106

Fig. 7.16 Representation of the simulation’s scenario.................................... 108

Fig. 7.17 Number of visible satellites as a function of the vehicle’s height ..... 109

Fig. 7.18 Real shape of visible sky portion..................................................... 110

Fig. 7.19 Approximation of the visible sky portion for different altitudes......... 110

Fig. 7.20 DOP values versus height inside the canyon .................................. 111

Fig. 7.21 Number of satellite for simulations with GPS data gaps.................. 112

Fig. 7.22 Absolute position and velocity errors (LC integration) ..................... 113

Fig. 7.23 Absolute position and velocity errors (TC integration) ..................... 114

Fig. 7.24 3D navigation solutions and reference trajectory ............................ 115

Fig. 7.25 Attitude errors for LC and TC integrations....................................... 115

Fig. 7.26 Maximum 3D position errors with GPS outages for different IMUs . 116

Fig. 7.27 System observability (no GPS outages).......................................... 118

Fig. 7.28 Tri-axial turn-on-bias estimates ....................................................... 119

Fig. 7.29 Tri-axial bias drift estimates............................................................. 119

Fig. 7.30 Tri-axial scale factor error estimates ............................................... 119

Fig. 7.31 GPS receiver clock errors estimates ............................................... 121

Fig. 7.32 System observability for a vehicle in straight uniform motion .......... 122

Fig. 7.33 System observability (with GPS outages) ....................................... 122

Fig. 7.34 Observability of INS/GPS and INS/GPS+GALILEO systems .......... 125

Fig. 7.35 Number of visible satellites as a function of the vehicle’s height ..... 126

Fig. 7.36 Approximated visible sky portion and GPS/GALILEO satellites ...... 126



XI

Fig. A.1 Structure of a GPS frame.................................................................. 137

Fig. A.2 Characterization of an ideal (Keplerian) orbit.................................... 138

Fig. B.1 The rotation vector  ........................................................................ 141



XII

List of symbols

 time derivative

̂ estimated or computed value

 measured value

 error of

 increment (difference) of

 E  expectation of

 Euclidean/Frobenius norm

 cross product

  skew-symmetric form of a vector

1 matrix inverse

T matrix transpose

 normal gravity

r
pq vector of angular increments of q-frame relative to p-frame, expressed in

r-frame

t time increment (tk+1-tk)

r
fv specific force measurement expressed in the r-frame

 attitude error vector

 measurement noise and multipath on pseudorange

 roll

 state transition matrix

 geodetic latitude

 stochastic process

 geodetic longitude

 true anomaly

 pitch; orbit latitude

 pseudorange



XIII

2 mean squared value

 argument of perigee

 angular rate vector

 skew symmetric matrix form of  ; right ascension of ascending node

 yaw

a semi-major axis

a acceleration vector

Az azimuth angle

b bias; semi-minor axis

c speed of light

dP orbital error of the GPS satellite

iond delay due to the ionosphere

dt GPS satellite clock error

dT GPS receiver clock error

tropd delay due to the troposphere

e eccentricity

i orbit inclination

E skew symmetric matrix for the attitude errors

El elevation angle

f flattening

f specific force vector

F dynamics matrix

g gravity vector

G noise-input mapping matrix

h geodetic height

H design matrix for measurements

I identity matrix

K Kalman gain matrix

m observation vector dimension

n state vector dimension; number of visible satellites

P true range between GPS satellite and receiver; error covariance matrix

q noise spectral density



XIV

q quaternion vector

Q covariance matrix of system noise vector

r position vector

R direction cosine matrix; covariance matrix of measurement vector noise

MR radius of curvature in meridian

NR radius of curvature in prime vertical

q
pR rotation matrix from the p-frame to the q-frame

S scale factor

T correlation time

v velocity vector; measurement vector noise

V variance matrix

w system noise vector

x system state vector

z observation vector



XV

List of abbreviations

AHRS Attitude Heading Reference System

C/A Coarse-Acquisition

CDMA Code Division Multiple Access

DCM Direction Cosine Matrix

DOP Dilution Of Precision

ECEF Earth-Centered Earth-Fixed

ECI Earth-Centered Inertial

EKF Extended Kalman Filter

FOG Fiber Optic Gyro

GDOP Geometrical Dilution Of Precision

GPS Global Positioning System

HD High Dynamics

HDOP Horizontal Dilution Of Precision

IMU Inertial Measurement Unit

INS Inertial Navigation System

LC Loosely Coupled

LD Low Dynamics

LTP Local Tangent Plane

MEMS Micro-Electro-Mechanical System

NED North-East-Down

P-code Precise code

PDOP Position Dilution Of Precision

PPS Pulse Per Second

PV Position-Velocity

PVA Position-Velocity-Acceleration

RMS Root Mean Square

TBC To Be Confirmed

TC Tightly Coupled

TDOP Time Dilution Of Precision



XVI

TEC Total Electron Content

UAV Unmanned Air Vehicle

UERE User Equivalent Range Error

VDOP Vertical Dilution Of Precision



1

Chapter 1

Introduction

The last decade has shown an increasing demand for small-sized and low-cost

inertial navigation systems (INSs) for use in many airborne applications, such

as unmanned air vehicles (UAVs) and general aviation. Advances in

microelectronics, computers, and sensor technologies permitted the

development of commercial low-cost inertial measurement units (IMUs) and

GPS receivers. The integration of these two navigation technologies is a

practical positioning option for airborne applications.

The purpose of this chapter is to present some background information on the

characteristics of low-cost sensors, specifically, of those adopted in the inertial

navigation field, which are usually based on MEMS (Micro-Electro-Mechanical

System) technologies. The main advantages, as well as the basic limitations

that significantly degrade their performance, are presented. A similar analysis is

also done for the Global Positioning System (GPS); the comparison of the

benefits and drawbacks of each of these two navigation systems naturally leads

to their combination in a process called, in general, data fusion. Finally,

research objectives, methodologies, and the thesis outline are given.

1.1 Background

Before the deployment of GPS, dead-reckoning computations were the heart of

every automatic navigation system [20]. Dead-reckoning consists of calculating

the position from measurements of velocity relative to three orthogonal axes. In

practice, the changes of direction and velocity can be measured with a set of

three gyroscopes and three accelerometers, which form an IMU. Since the

quantities measured by the inertial sensors have to be integrated in order to

obtain the vehicle position, the errors tend to aggravate with time elapsing. In
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addition, it is required that the initial position is known with good accuracy. As

an advantage, the IMU measurements do not require any man-made external

source, such as a radio transmitter, and are not affected by intentional

(jamming) or non-intentional electromagnetic interference.

Therefore, it is advantageous to merge the INS with GPS since the two systems

complement each other. In fact, the shortcomings of each system can be

alleviated by the inclusion of the other one.

Fig. 1.1 illustrates the differences between the concepts of IMU and INS.

Fig. 1.1 Differences between IMU and INS (adopted from [31])

1.1.1 Low-cost MEMS-based IMUs

Micromachined inertial sensors are a very versatile type of sensors with

applications in many areas. Until recently, medium to high performance inertial
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sensors were restricted to applications in which the cost of these sensors was

not a key factor, such as military systems. The arise of micromachining has

generated the possibility of producing precision inertial sensors at a price that

allows their usage in cost-sensitive consumer applications [4]. The fabrication

processes of MEMS sensors make them very sensitive to the changes in the

surrounding environment, such as temperature, pressure, magnetic field, etc.

These changes cause the output of MEMS sensors to vary quickly, extensively,

and sometimes randomly. This high sensitivity to environmental conditions adds

more error types, and often of higher intensity, than those of traditional inertial

sensors. All these error sources must be necessarily identified, modeled and

determined in order to avoid an excessive degradation in the performance of

MEMS sensors. The categorization and the impact of these errors in specific

navigation applications will be presented throughout the chapters of this thesis,

after having given some information on the well-known basic principles of the

inertial navigation systems. In this introductive section, the attention is given to

the description of the main advantages of inertial systems in general, as well as

their problems and shortcomings.

An inertial navigation system provides position, velocity and attitude information

on the basis of specific force and angular rate measurements. Theoretically, it is

a self-contained system, meaning that it is autonomous regardless of the

operational environment. However, as mentioned before, the accuracy can be

seriously diminished because of several types of errors, especially for low-cost

sensors. These errors are low frequency in nature, grow over time, and are

affected by local gravity. The measurement output rate for these sensors is

generally high (100-200 Hz). It will be shown that these characteristics are

complementary to those of the GPS, which demonstrates the prospective

benefits of their integration.

1.1.2 Global Positioning System

The GPS is able to provide accurate and continuous three-dimensional position

and velocity information via its satellite constellation. Initially designed for

military purposes, it is today available for civilian users as well. With GPS,
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accurate positioning has become available for a variety of applications. Besides,

the falling cost of GPS receivers over the past few years has rendered this

system increasingly more attractive in all the applications where cost is a major

factor. GPS accuracy is affected by several types of deterministic and random

errors. Some of these errors are independent from the surroundings of the GPS

receiver (i.e. the local environmental conditions) such as atmospheric errors,

orbit errors, and clock drifts. Additionally, there are also several errors which

strongly depend on the local environment, like multipath, jamming, and signal

masking. Much research is being done in order to mitigate the effects of these

errors which can degrade considerably the accuracy of the navigation solution.

Nowadays, modern GPS receivers are only partially capable of tracking and

acquiring signals in challenging environments, such as (urban) canyons or

heavily dense foliage areas. Recent new technologies have made GPS

receivers a very powerful tool in terms of range and quality of the solution;

however, its stand-alone operation still remains very limited because of the

effects caused by all the errors previously mentioned. For many applications,

GPS receivers in stand-alone mode cannot provide a reliable and robust

navigation solution. Thus, in canyons or in dense vegetation areas, it is

desirable and practical to use an alternative aiding tool for position and velocity

information, such as an INS, to improve GPS reliability and integrity (GPS

integrity is defined as the ability to protect the user from inaccurate information

during GPS outages). Furthermore, a GPS receiver can usually provide

measurements at a rate which is much slower than the one of the INS; typical

values range between 1 and 10 Hz [19], [27].

1.1.3 INS/GPS integration

The complementary nature of GPS and INS, in the sense that each system can

compensate for the other’s limitations, leads to their integration with the intent to

obtain a navigation system characterized by higher levels of accuracy,

reliability, and integrity. Tab. 1.1 illustrates the main differences between the

two navigation systems, which have been outlined in the previous sections.
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Tab. 1.1 INS-GPS comparison

INS GPS

accurate over the short term* accurate over the long termPosition and velocity
accuracy

degrades with time does not degrade with time

Initial position
calibration

required not required

Attitude information available not available**

Local gravity sensitive non-sensitive

Measurement output
rate

high low

Autonomous yes* no

Jamming resistant yes no

*depending on IMU's quality, **available with multiple GPS antennas

It follows that these two units combined in a common system will provide a

superior performance than each single system in stand-alone mode. The main

objective of INS/GPS integration is to obtain a navigation system capable to

provide:

 high position and velocity accuracy;

 precise attitude determination;

 high output data rate;

 navigational output available during GPS signal outages.

The differences in nature of the errors associated with the two systems benefit

their integration through the use of a Kalman filter, which is a linear estimator

that uses knowledge of the system dynamics and external measurements to

obtain an optimal estimate of the state variables at the current time instant.

The problem of achieving a better performance can be divided into two parts:

modeling and estimation. Modeling refers to the development of error models

that describe more accurately the INS/GPS system. Estimation is concerned

with the intent of achieving more accurate error estimates to be used for error

compensation. A compromise must be found between these two issues

because an excessive complication of the system model degrades the

estimation accuracy of the state vector components. In this thesis, the main
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focus is given on the estimation problem. Concerning the modeling part, the

results obtained in [13], [14], and [26] will be mostly utilized.

Although in recent time a wide variety of different estimation algorithms have

been investigated for INS/GPS integration, Kalman filter techniques are still

commonly used for many applications because of the implementation simplicity

and the optimal results that can be obtained.

Several different integration strategies have been developed in recent years.

They can be divided into two categories: loosely-coupled (or decentralized) and

tightly coupled (centralized) schemes. The benefits and drawbacks of each

solution will be extensively discussed throughout this work.

1.2 Research objectives

Given the recent great interest towards the integration of low-cost MEMS-IMUs

with GPS, this thesis investigates the performance of an integrated low-cost

INS/GPS system for airborne applications. Specifically, the main objectives are:

 To investigate the performance of MEMS-based inertial sensors: the

performance of the sensors will be evaluated for different situations, and

will be compared to that obtained with a higher-grade sensor based on

the same technology, and with a tactical grade IMU.

 To investigate the performance of a low-cost INS/GPS system using

closed-loop loosely and tightly coupled integration strategies: the

comparison between the two strategies will be done in terms of several

aspects (level of accuracy, computational load, observability, error

estimation, etc.).

 To investigate the performance of a low-cost INS/GPS system during

GPS outages: both cases of partial and complete GPS outages will be

considered; a simulation of an helicopter canyon flight will show how

GPS outages can easily occur in practical situations.
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 To evaluate the performance of the system under different vehicle’s

dynamics: this analysis will be done comparing the results obtained with

situations of low and high vehicle’s dynamics.

 To investigate the performance of a low-cost INS/GPS system

augmented with Galileo: the purpose of this analysis is to evaluate the

advantages offered by an additional satellite constellation in terms of

increased accuracy and availability of the navigation solution, as well as

improved system observability.

1.3 Research methodologies

In order to meet the objectives outlined in the previous section, the following

methodologies have been carried out:

 Implementation of a mechanization algorithm for strapdown INS: this is

an essential step for INS processing, which is necessary to convert the

raw measurements of specific force and angular rates into position,

velocity, and attitude information.

 GPS processing: this step involves the implementation of a GPS filter to

compute the navigation solution from pseudorange and Doppler

measurements. Two different filters have been implemented, specifically,

for low and high dynamics.

 Implementation of the integration strategies using the EKF: this is the

step where the navigation solutions from INS and GPS are fused

together to obtain a combined solution. Both loosely coupled and tightly

coupled approaches have been implemented in a closed-loop

configuration (i.e. with error feedback). An augmented Kalman filter has

been developed to integrate a MEMS-based IMU with GPS for effective

sensor error compensation. The main advantage of such filter is a more

efficient correction of the inertial sensor errors, as compared to a

traditional filter with a lower number of states.



8

 Software development: the INS mechanization algorithm, the integration

strategies, and their corresponding filters are implemented in a software

developed with MATLAB. The software works in a post-processing mode

but can be easily adapted to real-time applications.

 Tests and data analysis: the final step of this research is the presentation

of several types of tests and data processing that have been performed.

The analysis involves the interpretation of the results in terms of

comparison of integration algorithms, types of filters, quality of IMUs, etc.

1.4 Thesis outline

This thesis contains eight chapters and four appendices which are organized as

follows.

Chapter 1 presents the background, objectives and motivation for this

dissertation.

Chapter 2 gives an overview of the Global Positioning System. GPS

measurements and error sources are discussed. A solution of the pseudorange

equation is also presented. The final part deals with the concept of dilution of

precision.

In Chapter 3, INS fundamentals are reviewed. The basic principles of inertial

navigation systems are discussed, including the equations of motion, the

mechanization equations, and the error equations. Descriptions of the typical

error sources of low-cost inertial sensors and of some common alignment

techniques used for airborne applications are given. This chapter ends with an

illustration of the principal technologies and implementations adopted for inertial

systems.

Chapter 4 covers the Kalman filter theory and its practical implementation. After

a brief review of the characteristics of discrete-time systems, the traditional
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linear Kalman filter will be discussed in detail. Special attention will be also

given to its modified, nonlinear version, known as extended Kalman filter.

Finally, the stochastic processes most commonly used for modeling the non-

deterministic error sources of INS and GPS are described.

The problem of the integrated INS/GPS system is discussed in Chapter 5. The

basic schemes commonly used for performing the integration are given together

with the details of the INS/GPS data fusion using the EKF. Advantages and

limitations of each solution are discussed.

Chapter 6 provides a description of the software developed to run the

simulations of the INS/GPS integrated system. The main modules that

constitute the software, their characteristics and functions are briefly described.

In Chapter 7, the tests and performance analysis results are presented. Various

tests have been carried out, and the data analysis is done in terms of accuracy

of the navigation solution, system behavior during partial and complete GPS

outages, system observability and filter capability in estimating the sensor

errors. The final part of this chapter presents the simulation results of an

innovative INS/GPS system augmented with Galileo, the European Global

Navigation Satellite System currently under development.

Finally, Chapter 8 draws the major conclusions from this research work, and

provides some topics that need further investigation and development.
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Chapter 2

Overview of the Global Positioning System

This chapter reviews the basic concepts of the GPS, firstly focusing on its

components and signal characteristics. A description of the GPS observables

and the different error sources will be given, followed by an analytical solution

for the pseudorange equation. Finally, the selection of satellites to obtain better

user position accuracy and the concept of dilution of precision will be discussed.

2.1 Basic concepts

The Global Positioning System is a satellite-based navigation system that was

developed by the U.S. Department of Defense in the early 1970s. Initially

developed as a military system, it was later made available to civilians, and is

now a dual-use system that can be accessed by both military and civilian users

[9]. It is well described in standard textbooks such as [2], [9], [19], and [27], and

will be not discussed with much detail here.

The GPS consists basically of three segments: the space segment, the control

segment, and the user segment. The space segment consists of 24 satellites

arranged in 6 orbital planes with an inclination angle of 55º relative to the Earth

equator, as shown in Fig. 2.1. The satellites have approximately an average

orbit radius of 20200 km and complete one orbit in 11 hours and 58 minutes.

The control segment monitors the health of the orbiting satellites and uploads

navigation data. It consists of a system of tracking stations located around the

world, including six monitor stations, four ground antennas, and a master

control station [11]. The user segment consists of receivers specifically

designed to receive, decode, and process the GPS satellite signals.
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Fig. 2.1 GPS satellite constellation

GPS satellites transmit two carrier frequencies: the primary L1 (1575.42 MHz)

and the secondary L2 (1227.60 MHz). These frequencies are modulated by the

navigation message and by spread spectrum codes with a unique pseudo-

random noise sequence for each satellite [2]. Therefore, a signal coming from

each satellite of the GPS constellation can be distinguished and separated from

others by the Code Division Multiple Access (CDMA) technique. Currently, GPS

signals are modulated by two codes, namely, the Coarse-Acquisition (C/A) code

on L1 and the Precise (P) code on L1 and L2. The P-code is restricted to

military use via its encryption by the Y-code, a practice known as anti-spoofing.

This thesis deals only with L1 C/A-code measurements, of which a more

detailed description follows.

The C/A-code is generated by two 10-bit shift registers, where the outputs of the

two registers are again added to produce the new code. The C/A-code is a

relatively short code with a period of 1 ms (1023 bits) for fast acquisition at a

rate of 1023 Mbps. To provide good multiple access properties, the C/A-codes

are designed from a family of codes referred as Gold codes, which are obtained

from the product of two equal period 1023 bit codes to form a code with the

same period [27].

In general, the GPS signal contains pseudorange, carrier phase and Doppler

measurements. The L1 C/A-code pseudorange and Doppler measurements can

be used for position and velocity calculation.

A more detailed description of the GPS navigation message is given in

Appendix A, together with the illustration of the classical orbital parameters.
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2.2 GPS observables

Pseudorange observations are obtained by measuring how long it takes for the

signal to propagate from the satellite to the receiver and multiplying the

propagation time by the speed of light. Due to non-synchronized receiver and

satellite clocks, the measured range (pseudorange) is always biased. If

pseudorange measurements can be made from at least four satellites, enough

information exists to solve for the unknown position of the GPS user (3D

coordinates) and for the receiver clock error (Fig. 2.2).

Fig. 2.2 Basic idea of GPS positioning

The pseudorange measurement for a single satellite can be expressed as [19],

[27]:

  ion tropP dP c dt dT d d         (2-1)

where

 is the pseudorange observation (m);

P is the true range between GPS satellite and receiver (m);

dP is the orbital error of the satellite (m);

c is the speed of light (m/s);

dt is the satellite clock error (s);

dT is the receiver clock error (s);

iond is the delay due to the ionosphere (m);

tropd is the delay due to the troposphere (m);

 is the measurement noise and multipath effect (m).
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A brief overview of these errors is given in section 2.3.

Doppler measurements (also known as delta-ranges) are obtained by

determining the change in phase (i.e. range) over a given time interval divided

by the interval length [11]. A change in phase corresponds to a frequency shift

that is proportional to the relative velocity between the emitter (the satellite) and

the receiver; this is commonly known as Doppler effect. Therefore, by

measuring the frequency shift and knowing the emitter’s velocity, the receiver’s

velocity can be determined. Doppler measurements are also corrupted by

several types of error [11]:

  ion tropP dP c dt dT d d         
     (2-2)

where

 is the Doppler observation (m/s);

P is the true range rate between GPS satellite and receiver (m/s);

dP is the orbital error drift of the satellite (m/s);

dt is the satellite clock drift;

dT is the receiver clock drift;

iond is the delay drift due to the ionosphere (m/s);

tropd is the delay drift due to the troposphere (m/s);

  is the measurement noise and the rate of change of multipath (m/s).

2.3 GPS errors

Eqs. (2-1) and (2-2) indicate that the GPS receiver’s measurements are

corrupted by several forms of error. Each one is briefly discussed in the

following subsections.
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2.3.1 Satellite clock errors

Timing of the signal transmission from each satellite is directly controlled by its

own atomic clocks. Although such clocks are highly accurate, errors can be

large enough to require correction (partly because it would be difficult to

synchronize the clocks closely in all satellites). Instead, the clocks are allowed

some degree of relative drift that is estimated by the ground stations and is

used to generate clock correction data in the GPS navigation message. The

result of such process is called GPS time. The time of transmission used in

calculating pseudoranges must be in GPS time because is common to all

satellites. Typically the onboard satellite clock error is less than 1 ms and varies

slowly; after the correction has been applied, the residual error in GPS time is

less than a few nanoseconds [9].

2.3.2 Receiver clock errors

Usually, receiver clocks are inexpensive quartz crystal oscillators, which are

much less accurate than the satellite clocks [9]. Thus, the receiver clock errors

have to be continuously estimated. The navigation equation includes a solution

for the receiver clock error. Receivers that incorporate the clock error in the

Kalman filter state vector need a suitable mathematical model. A typical two-

state model will be described in section 5.2.1.1.

2.3.3 Ionospheric delay

The ionospheric delay (or advance) is due to the presence of free electrons in

the upper atmosphere, typically between 50 and 1000 km above the Earth’s

surface [9]. These free electrons influence the electromagnetic wave

propagation, and their presence is closely related to the amount of solar

radiation; for such reason, ionospheric effects show diurnal and seasonal

variations. The ionosphere affects the phase and group velocity. Approximated

values are, respectively [19]:
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where f is the signal frequency and en is the electron density. Note that the

phase velocity exceeds the group velocity (ionospheric divergence). Since the

group velocity depends on the signal frequency, the group delay can be

estimated by observing the time of arrival of two signals with different

frequencies (multi-frequency receivers). In receivers with a single frequency the

ionospheric delay has to be estimated using the Klobuchar model and

parameters that are transmitted in the navigation data [27]. This last approach

yields less accurate corrections.

The speed of propagation of a radio signal in the ionosphere depends on the

number of free electrons in its path, called the Total Electron Content (TEC): it

is defined as the number of electrons in a tube of 1 m2 cross section extending

from the receiver to the satellite. The TEC can be measured in TCE Units

(TECU), with 1 TECU 16 210 /electrons m . The group delay in seconds is given

by

2

40.3
g

TEC

cf
  (2-5)

whereas the phase delay is

p g    (2-6)

Fig. 2.3 shows a world map with the TEC along the GPS signal path coming

from a satellite located at the zenith. Improving methods of mapping the

ionosphere is a current topic of interest, since the error caused by this effect

can be significant. Typically it varies between 1 and 15 m [17].
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Fig. 2.3 Ionosphere map for TEC evaluation

2.3.4 Tropospheric delay

The troposphere is the layer of the atmosphere closest to the Earth which

reaches a height of about 50 km. Because it is filled with water vapor, it refracts

the GPS signal causing a reduction of its speed (phase delay). Several models

exist for the tropospheric errors ([11], [19]) and they are usually based on

differential techniques. In fact, weather parameters, which are continuously

measured by the base stations, have considerable spatial and temporal

variations. The ability of differential techniques to compensate for tropospheric

effects will depend on the relative position between the user and the base

station. The magnitude of the resulting signal delay typically varies from 2.5 to

15 m [17], and increases when the satellite elevation angle diminishes.

2.3.5 Multipath errors

Multipath is a major error source which occurs when the GPS signal arrives at

the receiver antenna through different paths. These paths can be the direct line
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of sight signal and reflected signals from objects surrounding the receiver

antenna or from the ground (Fig. 2.4). Multipath distorts the original signal

through interference with the reflected signals at the GPS antenna. Without

multipath protection, C/A code errors of up to 10 m or more can be experienced

[17]. However, with new advances in receiver technology, actual pseudorange

multipath is dramatically reduced. A detailed description of multipath mitigation

methods can be found in [17], [19], and [27].

Fig. 2.4 The multipath problem

2.3.6 Satellite orbital errors

The satellite positions are predicted, on the basis of the previous motion of the

satellites and through the knowledge of the Earth’s gravity field, in order to be

broadcast in real-time to the user through what is called the ephemeris data.

Since the ephemeris model is a curve fit to the measured orbit, it will contain a

time-varying residual error relative to the actual orbit [11]. An ephemeris error is

usually in the order of 2 to 5 m [9].

2.3.7 Measurement noise

Different types of noise contribute to what is commonly called measurement

noise:
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 code and carrier random measurement noise (also known as receiver

noise), which is a broad term covering the radio frequency radiation

sensed by the antenna in the band of interest that is unrelated to the

signal;

 noise introduced by the antenna, amplifiers, cables, and the receiver

interferences;

 signal quantization noise.

Usually the measurement noise is modeled as white noise as it is uncorrelated

over time, channels and receivers.

2.3.8 User Equivalent Range Error

In order to evaluate the combined effect of the errors described above, it is

convenient to convert each one of them into an equivalent range error

experienced by a user, which is called the User Equivalent Range Error

(UERE). In general, errors from different sources have different statistical

properties. However, if sufficiently long time periods are considered, all errors

can be assumed as independent zero-mean random processes that can be

combined to form a single UERE. This is accomplished by determining the root-

mean-square (RMS) of the UERE errors from all sources:

 
2

1

n

i
i

UERE UERE


  (2-7)

Tab. 2.1 depicts typical values for GPS UERE errors and their combined effect

for the C/A code at the 1-σ level assuming that the ionospheric delay and

multipath are compensated in the receiver [19].
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Tab. 2.1 GPS UERE budget for the C/A code (adopted from [19])

Segment Error source 1-σ UERE (m)

Stability of satellite clock 3.0

Satellite perturbations 1.0Space

Others 0.5

Ephemeris errors 4.2
Control

Others 0.9

Ionospheric delay 5.0

Tropospheric delay 1.5

Multipath 2.5

Measurement noise 1.5

User

Others 0.5

UERE Total 8.0

The UERE model corresponding to Tab. 2.1 does not take into account the

elevation angle of each satellite, and thus is not very accurate. A better

approximation, proposed in [27], consists of assuming that the measurement

noise for satellite i is of the form

   0, 1i i i i iw El w w f El  (2-8)

where 0,iw are independent noise terms of variance 27 / 8 , 1w has variance

2 / 8 , and the obliquity factor if is approximated as

 
 

1.1
, 0º

sin 0.1
i i i

i

f El El
EL

 


(2-9)

where iEl is the elevation angle of satellite i.

2.4 Solution of the pseudorange equations

With the introduction of the UERE, Eq. (2-1) can be rewritten as follows:

     
2 2 2

i i u i u i u ix x y y z z cdT UERE         (2-10)



20

where all the error sources have been gathered into the UERE parameter and

the geometric distance between the i-satellite and the user has been written in

terms of Cartesian coordinates.

Measurements from at least four different satellites permit the determination of

the unknown user coordinates ( ux , uy , uz ) and the receiver clock error ( dT ).

Although closed-form solutions are available [11], in this work the classical

method based on linearization has been considered since it leads directly to the

Kalman filter technique, as described later on.

Using an estimate of the user position ( ˆux , ˆuy , ˆuz ) and of the receiver clock error

( ˆdT ), an approximate pseudorange can be determined:

     
2 2 2 ˆˆ ˆ ˆ ˆ

i i u i u i ux x y y z z cdT        (2-11)

The user position and the receiver clock error are unknown but can be

expressed through the sum of the estimate and an incremental component:

ˆ
u u ux x x   (2-12)

ˆ
u u uy y y   (2-13)

ˆ
u u uz z z   (2-14)

ˆ
udT dT t   (2-15)

Applying a first-order Taylor series expansion to Eq. (2-10) gives

 
ˆ ˆ ˆ ˆ

ˆ
ˆˆ ˆ ˆ

i i i i
i i u u u u

u u u

x y z t
x y z dT

   
 

   
         

   
 (2-16)

where the partial derivatives are

     
2 2 2

ˆ ˆ

ˆ ˆ ˆ ˆ

i i u

u
i u i u i u

x x

x x x y y z z

 
 

     
(2-17)
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     
2 2 2

ˆ ˆ

ˆ ˆ ˆ ˆ

i i u

u
i u i u i u

y y

y x x y y z z

 
 

     
(2-18)

     
2 2 2

ˆ ˆ

ˆ ˆ ˆ ˆ

i i u

u
i u i u i u

z z

z x x y y z z

 
 

     
(2-19)

 
ˆ

ˆ
i c

dT


 


(2-20)

By substituting Eqs. (2-17) through (2-20) into Eq. (2-16), and considering a

system of equations for a number of satellites n≥4, we obtain

H x   (2-21)

where

1 1 1

1 1

2 2 2
2 2
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 


 
  

   
   

     
                     
    

           
    


   

(2-22)

The least-squares solution of Eq. (2-21) is

 
1T Tx H H H 


   (2-23)

For n=4 the solution is simply

1x H    (2-24)

Although the least-squares method herein described permits to solve the

pseudorange system of equations and determine the spatial coordinates
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( ux , uy , uz ), it will be seen later on that the use of the extended Kalman filter

yields solutions with better characteristics.

2.5 Dilution of precision

The positioning errors in the GPS receiver depend essentially on the errors that

affect the estimated pseudoranges (through the UERE parameter) and on the

geometry of the satellites in the sky. The dilution of precision (DOP) is often

used to measure the part of the user position accuracy that depends on the

satellite constellation geometry. There are several different definitions of DOP,

and they are all function of the satellite geometry only. The pseudorange errors

are considered zero-mean random Gaussian variables. Therefore, assuming a

fixed geometry, x is a Gaussian vector with zero-mean and covariance matrix

given by [19]

   

      
      

1 1

1 1

cov T

T T T T

T T T T

x E x x

E H H H H H H

H H H E H H H

 

 

 

 

    

   

  

(2-25)

where matrix H is

,1 ,1 ,1

,2 ,2 ,2

, , ,

1

1

1

x y z

x y z

x n y n z n

a a a

a a a
H

a a a

 
 
  
 
 
  

   
(2-26)
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,
i u

y i
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y y
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 (2-28)
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z z
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
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and

     
2 2 2

i i u i u i ur x x y y z z      (2-30)

is the distance between satellite i and the receiver. Note that (HTH)-1 is a

symmetric matrix. Assuming also that the terms in  are equally distributed

and independent with a variance equal to the square of the UERE parameter

(considered the same for all satellites to simplify the problem) we can write:

   2T
nxn UEREE I     (2-31)

which substituted into Eq. (2-25) gives

     

 

1 1 2

1 2

2

cov T T T
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T
UERE

UERE

x H H H H H H

H H

V







 



  

 



(2-32)

The DOP parameters are defined as the ratio of a combination of the elements

of the GDOP matrix  
1TV H H


 with the parameter 2

UERE . The geometrical

dilution of precision (GDOP) is the most general parameter, defined as

 
1

11 22 33 44
TGDOP V V V V trace H H


     (2-33)

Other DOP parameters are used to characterize the precision of the different

components of the spatial/temporal solution: the position dilution of precision

(PDOP), the horizontal dilution of precision (HDOP), the vertical dilution of
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precision (VDOP), and the time dilution of precision (TDOP) are the most

typical. Their corresponding definitions are given below:

11 22 33PDOP V V V   (2-34)

11 22HDOP V V  (2-35)

33VDOP V (2-36)

44TDOP V (2-37)

The smallest DOP value means the best satellite geometry for calculating user

position. Efficient algorithms for computing DOP factors are necessary in

applications that will select the satellites to be used based on the minimization

of a desired DOP parameter.

2.6 Impact of the constellation geometry on the DOP parameters

In order to better understand the impact of the satellite constellation geometry

on the DOP parameters a simple example can be considered.

The position of a satellite with respect to the user can be expressed in terms of

the azimuth angle ( Az , measured clockwise starting from the North) and the

elevation angle ( El , measured in the local horizontal plane, with 0º 90ºEl  ).

Matrix H , defined in Eq. (2-26), can be rewritten as [27]

         
         
         
         

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

cos sin cos cos sin 1

cos sin cos cos sin 1

cos sin cos cos sin 1

cos sin cos cos sin 1

El Az El Az El

El Az El Az El
H

El Az El Az El

El Az El Az El

 
 
  
 
 
  

(2-38)

It can be demonstrated [27] that the minimization of the GDOP parameter for

n=4 corresponds to a situation of three satellites equally spaced above the

horizon with the lowest possible elevation angle, and one satellite located

vertically above the user.
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The impact of the satellite constellation geometry on the DOP parameters is

shown in Fig. 2.5. These results have been obtained with a satellite fixed in the

zenith, while the other three, maintained all the time equally spaced, have an

elevation angle varying between -10º and 60º. Note that negative elevation

angles can be achieved with a receiver mounted on an aircraft and with low

orbit satellites. High values of elevation angles are typical of situations like

canyon flights in which only a reduced area of the sky is visible; the GPS

signals that reach the user will be only those coming from the satellites with the

highest elevation angles. This situation will be analyzed with more details in

section 7.4.2.1.
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Fig. 2.5 DOPs as function of the elevation angle (using a constant UERE)

The nearly stable value of the HDOP along the entire interval proves that the

assumed satellite configuration is good. Satellites concentrated in a smaller sky

portion would cause a greater variability of the results. It is also interesting to

observe that the lowest values of elevation angles lead to smallest errors in the

vertical direction.

By observing Fig. 2.5, one might draw the conclusion that the optimal geometry

is achieved with the three satellites having elevation angles almost equal to

zero. However, in practical situations, the effects of multipath, of ionospheric
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and tropospheric delays, and of GPS signal power loss must be taken into

account, especially for low elevation angles.

Eq. (2-31) is valid under the assumption that the UERE parameter is the same

for all satellites. We already saw that for practical situations this is not true, and

a more realistic model is given by Eq. (2-8). By considering this model, Eq. (2-

31) can be rewritten as follows:

    T TE E ww R     (2-39)

where

  2

2

7 8, for

8, for

i j

ij

i j

f f i j
R

f f i j





  
 



(2-40)

Note that it has been assumed that the error term 1 iw f of Eq. (2-8) is random

and correlated for all satellites. This new result leads to a different expression of

the covariance matrix defined in Eq. (2-25) [27]:

   
11cov Tx H R H

  (2-41)

The effective DOP parameters can be obtained normalizing this covariance

matrix to 2 ; their values are shown in Fig. 2.6. Except for the HDOP which still

remains stable along the entire interval, the other parameters begin to increase

significantly for elevation angles below 10º.

Although an approximated model has been adopted for this example, the

results obtained are still indicative of the typical impacts of low elevation angle

operations.
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Fig. 2.6 Effective DOPs obtained with the approximated model of Eq. (2-8)
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Chapter 3

Overview of the Inertial Navigation System

An inertial navigation system calculates the position, velocity, and attitude of a

vehicle by measuring the accelerations and rotations applied to the system’s

inertial frame. An inertial measurement unit is constituted by orthogonally

mounted accelerometers and angular rate sensors (gyros). The combination of

the IMU with the mechanization equations (and possibly the system errors

estimation) forms the INS.

This chapter begins with a description of the coordinate frames usually utilized

in inertial data processing, and then briefly presents the INS kinematic and

mechanization equations. These equations are then perturbed to define the INS

error dynamics equations. A description of the typical INS error sources is

given, followed by a list of the most common alignment methods used for

airborne applications. The final part of this chapter deals with the main

technologies and implementations used for IMUs.

3.1 Coordinate frames

Four coordinate frames are used in this dissertation. The discussion of each

follows from [11] and [17]. The majority of notation used throughout the text can

be summarized as follows:

 a vector denoted px represents a quantity x expressed in the p-frame;

 a rotation (transformation) matrix of the form q
pR transforms a vector from

the p-frame to the q-frame;

 the angular velocity between two frames expressed in a specific frame

can be represented either by a vector  or by the corresponding skew-

symmetric matrix  (with T   ).
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For example

Tr
pq x y z       (3-1)

or

0

0

0

z y

r
pq z x

y x

 

 

 

 
 

   
  

(3-2)

describe the angular velocity between the p-frame and the q-frame

expressed in the r-frame.

3.1.1 Inertial frame (i-frame)

Earth-Centered Inertial (ECI) coordinates are the favored inertial coordinates in

the near-Earth environment. The origin of ECI coordinates is at the center of

gravity of the Earth, and the three axes are defined as follows (Fig. 3.1):

Xi in the direction of the vernal equinox;

Zi parallel to the rotation axis (North polar axis) of the Earth;

Yi to make a right-handed orthogonal coordinate system.

Fig. 3.1 The inertial frame
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3.1.2 Earth frame (e-frame)

The Earth-Centered Earth-Fixed (ECEF) coordinates have the same origin and

third (polar) axis as the ECI coordinates but rotate with the Earth. The three

axes are defined as follows (Fig. 3.2):

Xe toward the mean meridian of Greenwich;

Ze parallel to the Earth’s rotation axis (as for the i-frame);

Ye to make a right-handed orthogonal coordinate system.

3.1.3 Local geodetic frame (n-frame)

Local Tangent Plane (LTP) coordinates serve as local reference directions for

representing vehicle attitude and velocity for operation on or near the surface of

the Earth; for this reason, it is often referred to as navigation frame (n-frame). A

common orientation for LTP coordinates is the North-East-Down (NED) system

defined as follows:

Xn horizontal axis in the direction of increasing latitude;

Yn horizontal axis in the direction of increasing longitude;

Zn to make a right-handed orthogonal coordinate system.

Horizontal location components in this local frame are called “relative northing”

and “relative easting”.

The NED system, together with the ECEF system, is shown in Fig. 3.2, where φ

denotes the geodetic latitude and λ the geodetic longitude.



31

Fig. 3.2 The ECEF and NED coordinate systems

3.1.4 Body frame (b-frame)

The body frame represents the orientation of the strapdown IMU which is rigidly

mounted to the vehicle. The origin of the system is the center of the IMU, and

the orientation of the axes is defined as follows (Fig. 3.3):

Xb in the nominal direction of motion of the vehicle;

Yb out the right-hand side;

Zb to make a right-handed orthogonal coordinate system.

Fig. 3.3 The body frame
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3.1.5 Coordinate transformations

Coordinate transformations permit to represent a vector into different coordinate

systems. There are several techniques to perform the transformations; probably

the simplest one is through the application of an appropriate Direction Cosine

Matrix (DCM). The process for the determination of these matrices can be found

in several textbooks, such as [15] and [23]; here, only the final expressions will

be given.

The DCM from the e-frame to the n-frame is [24]:

sin cos sin sin cos

sin cos 0

cos cos cos sin sin

n
eR

    

 

    

  
   
    

(3-3)

The definition of the DCM from the b-frame to the n-frame requires the

introduction of the Euler angles roll, pitch, and yaw. When using Euler angles it

is always necessary to specify the order of rotations. A common convention for

vehicle attitude Euler angles is shown in Fig. 3.4 where, starting with the vehicle

level and having the roll axis pointed North [17]:

1. Yaw: rotation through the yaw angle  about the vehicle yaw axis to the

intended azimuth (heading) of the vehicle roll axis. Azimuth is measured

clockwise from North.

2. Pitch: rotation through the pitch angle θ about the vehicle pitch axis to

bring the vehicle roll axis to its intended elevation. Elevation is measured

positive upward from the local horizontal plane.

3. Roll: rotation through the roll angle  about the vehicle roll axis to bring

the vehicle attitude to the specified orientation.
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Fig. 3.4 Convention for the vehicle’s Euler angles

With the above definition, the DCM from the b-frame to the n-frame is [5], [17]:

n
b

c c c s s s c s s c s c

R c s c c s s s s c c s s

s s c c c

           

           

    

   
     
  

(3-4)

where “sin” and “cos” are shortly denoted as “s” and “c”, respectively.

The Euler angles can be determined from the DCM n
bR with the following

equations [24]:

    arctan 2 3,2 , 3,3n n
b bR R  (3-5)

  arcsin 3,1n
bR   (3-6)

    arctan 2 2,1 , 1,1n n
b bR R  (3-7)

where arctan2(y, x) is a four quadrant inverse tangent function.

It is now convenient to use the previously defined DCM n
eR to transform the

rotation vector of the e-frame with respect to the i-frame projected on the e-

frame:

 0 0
Te

ie e  (3-8)
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where ωe is the magnitude of the Earth rotation rate (≈ 7.2921155 x 10-5 rad/s).

By projecting this vector to the n-frame we obtain

 cos 0 sin
Tn n e

ie e ie e eR        (3-9)

The turn rate of the n-frame with respect to the e-frame is called transport rate,

and is expressed in terms of the rate of change of latitude and longitude [32]:

cos sin
T

n
en         

  (3-10)

In order to have Eq. (3-10) as a function of position and velocity, it is necessary

to introduce two more parameters, namely, the radii of curvature in the meridian

and prime vertical at a given latitude:

 
 

2

3/ 22 2

1

1 sin
M

a e
R

e 





(3-11)

 
1/ 22 21 sin

N

a
R

e 



(3-12)

In the expressions above, a = 6378137.0 m and e = 0.0818 are the semi-major

axis length and the eccentricity of the WGS-84 ellipsoid [36], respectively.

We can now express the geodetic latitude and longitude rates as follows [11]:

1
N

M

v
R h

 


 (3-13)

 
1

cos
E

N

v
R h







 (3-14)

where h is the geodetic height, and Nv , Ev are velocities in the North and East

direction, respectively. By substituting Eqs. (3-13) and (3-14) into Eq. (3-10) we

obtain an expression that is function of the position and velocity:
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 
 

 

/

/

tan /

E N

n
en N M

E N

v R h

v R h

v R h





 
 

   
   

(3-15)

Finally, the two rotation vectors n
ie and n

en can be summed to obtain the

rotation vector of the n-frame with respect to the i-frame (which will be

extensively utilized in the following sections):

 
 

 

cos /

/

sin tan /

e E N

n n n
in ie en N M

e E N

v R h

v R h

v R h

 

  

  

  
 

     
    

(3-16)

Another coordinate transformation, which also gives results to be used later on

(see section 6.6), is the one that converts the ECEF coordinates into geodetic

longitude, latitude, and height. The Earth ellipsoidal model defined in the WGS-

84 gives different parameters that are required to perform the transformation,

namely, the semi-major axis ( a ), the semi-minor axis (b ), the eccentricity ( e ),

and the flattening ( f ). For a user located in ECEF coordinates ( ux , uy , uz ), the

geodetic latitude, longitude, and height can be determined through the algorithm

shown in Tab. 3.1 [25].

Tab. 3.1 Transformation from ECEF to geodetic coordinates
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In the table, the parameter 'e is defined as

2

' 1
a ae

e
b b

 
   

 
(3-17)

It is possible to observe that while the calculation of the geodetic longitude from

ECEF coordinates is immediate, the determination of latitude and height

requires more operations. Approximated formulas for the calculation of these

two parameters are given by [2] and [17]:

 
2 2 3

2 3sin
arctan 2 cosu

e a
z e a

b


  

  
    

  
(3-18)

 2cos sin sinuh z e N N       (3-19)

where

1tan uaz

b



  

  
 

(3-20)

2 2
u ux y   (3-21)

2 21 sin

a
N

e 



(3-22)

3.2 INS kinematic equations

The position in the n-frame is expressed in geodetic (curvilinear) coordinates:

 
Tnr h  (3-23)

while the velocities in the n-frame are
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 
Tn

N E Dv v v v (3-24)

The INS kinematic equations (or inertial navigation equations) mathematically

describe the motion of the vehicle. Their derivation can be broken up into three

parts: position, velocity, and attitude equations. The full demonstration can be

found in [11] and [32]. The results are reported here:

 
 

1

2

nn

n n b n n n n
b ie en

n
n b bb
b ib in

D vr

v R f v g

R R

 

 
   
          
       






(3-25)

where the IMU’s measurement inputs are
b

f and b
ib . The notation used in Eq.

(3-25) is described below.

Matrix D-1 is a diagonal matrix defined as follows:

 
1

1
0 0

1
0 0

cos

0 0 1

M

N

R h

D
R h 



 
 
 
 

  
 
 
 
 

(3-26)

The specific force vector f is defined as the difference between the true

acceleration in space and the acceleration due to gravity, and it represents the

outputs of the accelerometers; the gravity vector is denoted g .

Finally, matrix Ω represents the skew symmetric matrix form of the vector  ;

specifically, b
ib represents the outputs of the gyroscopes.
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3.3 INS mechanization equations

The mechanization equations convert the output of the IMU, which includes

rotation rates and specific force measurements, into position, velocity, and

attitude information. The mechanization equations consist of four basic steps

[28]:

1. correction of raw data through known or estimated errors;

2. attitude update;

3. transformation of specific force to the navigation frame;

4. calculation of velocity and position.

Note that instead of the measured rates, most IMUs will actually output velocity

and angular increments in the body frame ( b
fv  and b

ib
 , respectively) over the

interval tk+1-tk. Since this does not affect the validity of Eq. (3-25), it will be

assumed in the following part, which is mostly taken from [11] and [20].

3.3.1 Correction of raw data

The raw measurements are typically corrupted by errors such as turn-on bias,

in-run bias, scale factor errors and other misalignment errors [26]. The values of

these errors can be obtained from laboratory or field calibration, or can be

estimated during the mission, as will be shown in Chapter 5.

Once the sensor errors are obtained, the measurements can be corrected using

Eqs. (3-27) and (3-28) for gyros and accelerometers, respectively:

 
 

 
 

1/ 1 0 0

0 1/ 1 0

0 0 1/ 1

gx

b b
ib gy ib g

gz

S

S b t

S

 

 
 
      
 
  

 (3-27)

 

 
 

 
1/ 1 0 0

0 1/ 1 0

0 0 1/ 1

ax

b b
f ay f a

az

S

v S v b t

S

 
 

      
 

  

 (3-28)
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where

ab , gb are the bias instabilities and turn-on-bias for each sensor;

aS , gS are the scale factor errors for each sensor;

∆t is the time increment (tk+1-tk);

b
ib is the measured (raw) angular increment;

b
fv is the measured (raw) velocity increment.

3.3.2 Attitude update

The body angular increments with respect to the navigation frame are obtained

by

 

Tb
nb x y z

b b n n
ib n ie enR t

   

  

       

    
(3-29)

where, using the orthogonality of the DCM

 
Tb n

n bR R (3-30)

The computation of the rotation matrix n
bR from the angular increments is

usually done using a quaternion approach, whereby the rotation matrix is

expressed by a single rotation angle,  , about a fixed spatial axis (see

Appendix B for a brief description of the quaternion algebra). The angular

increments obtained in Eq. (3-29) are used to update the quaternion vector [14]:

1 0.5

z y x

z x y

k k k
y x z

x y z

c s s s

s c s s
q q q

s s c s

s s s c

  

  

  

  



    
      
    
 
       

(3-31)
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where

2 42
sin 1

2 24 1920
s

  



  
    


 (3-32)

2 4

2 cos 1
2 4 192

c
     

      
 

 (3-33)

and

2 2 2
x y z          (3-34)

The DCM n
bR is then updated as [14]

     

     

     

2 2 2 2
1 2 3 4 1 2 3 4 1 3 2 4

2 2 2 2
1 2 3 4 2 1 3 4 2 3 1 4

2 2 2 2
1 3 2 4 2 3 1 4 3 1 2 4

2 2

2 2

2 2

n
b

q q q q q q q q q q q q

R q q q q q q q q q q q q

q q q q q q q q q q q q

     
 
      
 
      

(3-35)

Finally, the vehicle’s attitude Euler angles can be determined with Eqs. (3-5)

through (3-7).

3.3.3 Transformation of specific force to the n-frame

Before correcting and integrating, the specific force measurements must be

rotated from the body frame to the navigation frame:

1 0.5 0.5

0.5 1 0.5

0.5 0.5 1

z y

n n b
f b z x f

y x

v R v

 

 

 

   
 

      
    

(3-36)

where the first-order sculling correction is also applied [20].
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3.3.4 Calculation of velocity and position

The final velocity increment in the n-frame is obtained by applying the Coriolis

and gravity corrections:

 2n n n n n n
f ie env v v t t           (3-37)

where

 0 0
Tn  (3-38)

and  is the normal gravity at the geodetic latitude  and height h , which can

be approximated by the following expression:

   2 4 2 2
1 2 3 4 5 61 sin sin sina a a a a h a h         (3-39)

The values of the coefficients for the gravity model of Eq. (3-39) are listed in

Tab. 3.2.

Tab. 3.2 Coefficients for the gravity model (adopted from [32])

Coefficient Value

a1 9.7803267715 (m/s
2
)

a2 0.0052790414 (m/s
2
)

a3 0.0000232718 (m/s
2
)

a4 -0.0000030876910891 (s
-2

)

a5 0.0000000043977311 (s
-2

)

a6 0.0000000000007211 (m
-1

s
-2

)

Once the velocity increment is computed, the updated velocity is given by

1 1
n n n

k k kv v v    (3-40)

Finally, using trapezoidal integration, the position can be incremented as
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 1
1 1

1

2
n n n n

k k k kr r D v v t
     (3-41)

where the expression of D-1 is given by Eq. (3-26).

Fig. 3.5 summarizes the overall n-frame INS mechanization described in this

section.

Fig. 3.5 INS mechanization in the n-frame (adopted from [31])

3.4 INS error dynamics equations

The error dynamics equations are obtained by perturbing the kinematic

equations. These error equations will be necessary to build the INS and

INS/GPS Kalman filters (see Chapter 5).

The perturbation of position, velocity, attitude DCM, and gravity can be

expressed as

ˆ n n nr r r  (3-42)

ˆ n n nv v v  (3-43)

 ˆ n n n
b bR I E R  (3-44)

n n ng g   (3-45)
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where  
Tnr h    are the position errors described in curvilinear

coordinates,  
Tn

N E Dv v v v    are Earth referenced velocity errors given

in the navigation frame, g is the gravity error, and
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(3-46)

is a skew symmetric matrix for the attitude errors.

3.4.1 Position errors

The linearized position error dynamics equation can be obtained by perturbing

the first line of Eq. (3-25):

n n n
rr rvr F r F v    (3-47)

where
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3.4.2 Velocity errors

In order to perturb the velocity equation it is convenient to introduce a simplified

model for the gravity vector in which the Earth is assumed spherical and 

varies only with altitude [32]:

2

0

R

R h
 

 
  

 
(3-50)

where 0 is the normal gravity at 0h  , and M NR R R .

By perturbing the second line of Eq. (3-25) we obtain the linearized velocity

error dynamics equation [11], [32]:

 n n n n n n b
vr vv bv F r F v f R f         (3-51)
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In Eq. (3-51) bf is the perturbation of the specific force vector in the body

frame.

3.4.3 Attitude errors

Finally, the linearized attitude error dynamics equation can be written as [11],

[32]:

 n n n n n n b
er ev in b ibF r F v R          (3-54)
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In Eq. (3-54) b
ib is the perturbation of the angular rate vector of the b-frame

relative to the i-frame expressed in the b-frame.
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3.5 Inertial sensor errors

Despite remarkable advances of MEMS technology in cost and size constraints,

MEMS-based inertial sensors have inherited the error behavior of conventional

inertial sensors [26]. Gyroscope errors will result in errors in the transformation

matrix between body and navigation frames, whereas accelerometer errors will

lead to errors in the integrated velocity and position. The integration yields

errors proportional to the integration time, t , and to its square, 2t , respectively

for velocity and position.

Since calibration significantly increases the manufacturing cost, low-cost inertial

sensors are rarely calibrated by the manufacturer [33]. Therefore sensor errors

need to be modeled in the state vector of the navigation filter in addition to

position, velocity, and attitude errors.

The primary sources of error for both gyros and accelerometers include:

1. Bias, which is a non-zero sensor output when the input is zero; bias drift

after turn-on needs to be conveniently modeled (usually as a random

walk or first-order Gauss-Markov process).

2. Scale factor error, which represents a non-constant sensor gain (or

sensitivity) often resulting from aging or manufacturing tolerances; it can

vary during the sensor operation, especially for low-cost IMUs, therefore

it also has to be modeled with an appropriate stochastic process.

3. Non-orthogonality errors, which are the results of a misalignment of the

sensor axes caused by imperfections in the construction of the sensor

assembly. Most stand-alone INS implementations include an initial period

for alignment of the attitude direction cosines [17]; however, a GPS-aided

alignment is also possible, where the axes misalignments are modeled

as part of the INS error dynamics equations (it is the vector n previously

introduced).

4. Random noise, which is an additional signal resulting from the sensor

itself or other electronic equipment that interfere with the output signal

being measured. It is usually modeled as a zero-mean white Gaussian

noise.
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The measurement equations for accelerometers and gyros, with the addition of

the error sources described above, are given by

 b bb
a a af f b diag f S w    (3-57)

 b bb
ib g ib g gib b diag S w      (3-58)

where w is the sensor random noise. The description of the stochastic

processes commonly used to model these errors is given in section 4.4.

3.6 INS alignment

INS alignment is the process of aligning the stable platform axes parallel to

navigation coordinates (for gimbaled systems) or that of determining the initial

values of the coordinate transformations from sensor coordinates to navigation

coordinates (for strapdown systems) [17]. Several methods of alignment are

used for aircraft:

 Gyrocompass alignment: it is performed on stationary vehicles; it uses

the sensed direction of acceleration to determine the local vertical and

the sensed direction of rotation to determine the North. In such way,

latitude can be determined by the angle between the Earth rotation

vector and the horizontal; longitude must be determined by other means

and entered manually. This method is inexpensive, but the most time

consuming (requires several minutes, typically).

 Transfer alignment: some vehicles contain a high quality inertial

navigation system and one or more lower-cost units [20]; transfer

alignment is the process of matching the slave platforms to the master

using natural or deliberately-induced maneuvers of the vehicle. This

method is typically several times faster than gyrocompass alignment, but

it requires another INS on the vehicle and it might also need special
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maneuvering to achieve complete observability of the alignment

variables.

 Optical alignment: an inertial system can be aligned relative to an

external optical line of sight, for example using a ground-based theodolite

and a mirror on the platform. It is usually impractical on aircraft because

of the necessity for optical access and the inconvenience of establishing

theodolite sites. However, optical alignment can be used in conjunction

with platforms that have star-trackers mounted on the stable element

(typical for space applications).

 GPS-aided alignment: it uses position matching with GPS to estimate

alignment variables. It does not require the vehicle to remain stationary

during alignment, but there will be some period of time after turn-on (a

few minutes, typically) before the system navigation errors can settle to

acceptable values [17].

3.7 Description of IMUs

After having illustrated and discussed the equations, algorithms, and operations

involved in the determination of position, velocity, and attitude through an INS,

the final section of this chapter briefly describes the implementations and

technologies that are currently adopted for IMUs, with particular focus on

MEMS-based inertial sensors.

3.7.1 Inertial sensors

As previously mentioned, an IMU is a self-contained unit constituted by a set of

inertial sensors, namely, gyroscopes and accelerometers, which give the

outputs required for the computation of the navigation solution. In this

subsection, the main features of these types of sensors are described.

A gyroscope is a device for measuring or maintaining orientation, traditionally

based on the principle of conservation of angular momentum. Although a great
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variety of technologies and implementations exist (see sections 3.7.2 and

3.7.3), a conventional mechanical gyroscope is a rigid body similar to a wheel

with one principal moment of inertia larger than the other two (Fig. 3.6). The

wheel spins about the axis of maximum inertia, and it responds to a force

applied about the input axis by a reaction force about the output axis. The three

axes are orthogonal, and this cross-axis response is the essence of the well-

known gyroscopic effect. More recent gyroscopes are based on physical

principles that are not of mechanical nature, as will be seen later on.

Fig. 3.6 Simple representation of the conventional mechanical gyroscope

The other type of inertial sensors that form an IMU are the accelerometers,

which are devices based on Newton’s second law and capable to determine the

three-dimensional acceleration vector. The great majority of accelerometers has

in common that their mechanical sensing element consists of a proof mass

attached by a suspension system to a reference frame, as shown in Fig. 3.7.

Fig. 3.7 Simple representation of the conventional mechanical accelerometer

An inertial force will deflect the proof mass; by measuring the magnitude of the

force (directly or indirectly, such as through the mass displacement) it is



50

possible to calculate the acceleration. This common principle, although being

very simple, allows a wide range of sensor designs, as described in section

3.7.3.

3.7.2 Implementations

Two different implementation approaches are possible: gimbaled systems and

strapdown systems.

In a gimbaled system, a stable platform is mechanically isolated from the

rotations of the host vehicle by a set of three or (preferably) four gimbals, as

shown in Fig. 3.8-a. Each gimbal is a ring with orthogonal inside and outside

pivot axes. These are connected inside one another, with the innermost gimbal

attached to the stable platform, and the outermost gimbal attached to the

vehicle. A sensor cluster of three accelerometers and three gyroscopes is rigidly

mounted to the stable platform. The input axes of the inertial sensors are

parallel to the pivot axes. The gyroscopes are used to sense any rotation of the

platform, and their outputs are used in servo feedback loops to command

gimbal pivot torque actuators in order to maintain the platform stable (i.e.

aligned with a specific navigation coordinate system). If this is achieved, then

the platform does not experience any rotation relative to the navigation frame, in

spite of vehicle motion. The accelerometers, aligned with the platform, measure

the specific force in the navigation frame; scaling and integrating this

measurement yields the desired navigation frame position and velocity vectors.

Vehicle attitude is determined by measuring the relative angles between the

vehicle and the platform axes. A fourth gimbal is desirable for vehicles such as

missiles or high-performance aircraft with full freedom of rotation about all three

axes. The reason is to avoid the alignment of two gimbal axes, in a condition

called “gimbal lock”. In fact, in such situation, the third gimbal alone is not able

to isolate the platform from rotations; thus, an additional gimbal is required.

Strapdown systems attach the inertial sensors directly to the vehicle frame,

possibly with shock isolators in order to limit rotational vibrations [17]. In this

approach, the sensors experience the full dynamic motion of the vehicle.

Therefore, higher bandwidth (possibly noisier) rate gyros with a higher dynamic
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range are required [11]. Because of the increased dynamic range, gyro scale

factor errors and nonlinearity become increasingly important. In addition, the

relationship among the vehicle frame, the navigation frame, and the inertial

frame must be maintained computationally, thus increasing the on-board

computational load (relative to that of a gimbaled system).

(a) Gimbaled (b) Strapdown

Fig. 3.8 Possible implementations of an IMU

Upon their first introduction, the feasibility of strapdown systems was debated

because of the restrictive gyro dynamic response specifications and the

computational requirements, especially in applications in which inertial-only (i.e.

unaided) position accuracy was required for long durations [11]. Gimbaled

systems have smaller computational loads and expose the inertial sensors to a

more benign environment, but are typically larger, heavier, and more expensive

than strapdown systems because of the actuation mechanism. Advances in

sensor and computer technologies over the past decades have resulted in a

general shift toward strapdown systems even for stand-alone INSs requiring

high accuracy for long periods of time, since this implementation is inexpensive,

small in size, and is also characterized by low power requirements.
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3.7.3 Sensor technologies

Some of the sensor technologies used for inertial navigation are presented in

Tab. 3.3. Many more exist, but these can serve at least to illustrate the great

diversity of technologies applied in this field.

Tab. 3.3 Some basic inertial sensor technologies (adopted from [17])

Sensor Gyroscope Accelerometer

Physical
principle used

Conservation
of angular
momentum

Coriolis
effect

Sagnac
effect

Gyroscopic
precession

Electro-
magnetic
force

Strain
under
load

Angular
displacement

Vibration Ring laser
Angular
displacement

Drag cup
Piezo-
electric

Sensor
implementation
methods

Torque
rebalance

Rotation Fiber optic
Torque
rebalance

Electro-
magnetic

Piezo-
resistive

Whereas a description of all these type of sensors cannot be presented here,

some details about MEMS-based inertial sensors will be given.

Micromachined inertial sensors have been the subject of intensive research for

over two decades. Many authors have published works about MEMS-based

sensors and a huge amount of developed solutions are reported in literature.

Concerning the micromachined accelerometers, a common factor is that the

displacement of the proof mass has to be sensed by a position-measuring

interface circuit, and it is then converted into an electrical signal [4]. Many types

of sensing mechanism have been reported, such as capacitive, piezoresistive,

piezoelectric, optical, resonant, and tunneling current, each one having distinct

advantages and drawbacks; the first three are the most commonly used [4]. The

characteristics and performance of any MEMS-accelerometer are greatly

influenced by the position measurement interface, and, in general, the main

requirements are low noise, high linearity, good dynamic response, and low

power consumption. Ideally, the interface circuit should be represented by a

simple gain block, relating the displacement of the proof mass to an electrical

signal.

The IMU analyzed in this work (which will be described in detail in section

5.2.2.1) contains three micromachined accelerometers (called ADXL) based on

a capacitive principle; therefore, a more specific description of this type of
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sensors is given here. Fig. 3.9 illustrates the working principle of these

accelerometers. The sensor’s fixed electrodes are differentially excited by

square waves equal in amplitude but 180º out of phase. If the proof mass is not

deflected, the two capacitors are matched and the resulting output voltage of

the buffer is zero. If the proof mass is displaced from the center, the amplitude

of the buffer voltage is proportional to the mismatch in capacitance. The buffer

voltage is demodulated and amplified by an instrumentation amplifier

referenced to a constant voltage (with a typical value of 1.8 V); this signal is fed

back to the proof mass through an isolation resistor (of typically 3 MΩ). This

results in an electrostatic force that maintains the proof mass virtually

motionless over the dynamic range.

Fig. 3.9 Working principle of an ADXL MEMS-capacitive accelerometer

Micromachined gyroscopes typically rely on a mechanical structure that is

driven into resonance exciting a secondary oscillation in either the same

structure or in a second one, due to the Coriolis force [4]. The amplitude of this

secondary oscillation is directly proportional to the angular rate signal to be

measured. A great variety of implementations exist for MEMS-gyroscopes as

well.

The gyroscopes inside the IMU studied in this thesis belong to a particular

family called ADXRS. In these gyroscopes, a sensing structure contains a so

called “dither frame” that is driven electrostatically to resonance. In reality, each
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gyroscope contains two identical structures in order to reject environmental

shock and vibration [4]. Fig. 3.10 shows one structure schematically. A rotation

about the axis orthogonal to the plane of the structure produces a Coriolis force

that displaces an inner frame perpendicular to the vibratory motion. This Coriolis

motion is detected by a series of capacitive “fingers” positioned on the edges of

the inner and outer frames. The resulting signal is amplified and demodulated to

produce the rate signal output.

Fig. 3.10 Scheme of one of the two structures of an ADXRS MEMS-gyro

3.7.4 Classification of IMUs

It is common to categorize the IMUs based on their accuracy (or grade). Tab.

3.4 illustrates the characteristics of different grade IMUs, giving the order of

magnitude of the sensor biases and some typical applications in which they are

involved.

Tab. 3.4 The categories of IMUs

Grade Strategic Navigation Tactical Automotive

Positional error < 30 m/hr 1-4 km/hr 20-40 km/hr 2 km/min

Accelerometer
bias (μg)

1 50-500 500-1000 >1200

Gyro bias
(deg/hr)

0.0001 0.005-0.01 0.1-10 >100

Price >200k US $ 50k~200k US $ 10k~50k US $ <10k US $

Applications Military
platforms,

submarines,
Intercontinental
Ballistic Missiles

(ICBM)

General
navigation

applications, high
accuracy

georeferencing

Short time
applications

Short time
applications
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Low-cost MEMS-IMUs can be included in the automotive grade category, since

their specifications hardly meet the requirements of a tactical grade unit.

However, their considerably lower price, together with the physical

characteristics of size and weight, justify the great interest and the huge amount

of study and research that is being done on these sensors in the last few years.

In terms of cost, MEMS-IMUs are surely a favorable option for the use in future

commercial applications.

Some examples of commercial IMUs available on the international market are

shown in Tab. 3.5. Since the quality of an IMU is often evaluated by the quality

of the gyros contained in the sensor system, the following table gives an

overview of some commercial IMUs categorized as function of the gyro bias and

the corresponding price. For each IMU is given the company name, the model,

the typical gyro bias and the price. The background colors correspond to the

different IMU’s categories shown in Tab. 3.4. Most of the information below has

been collected through an internet research.

Tab. 3.5 Some examples of commercial IMUs
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Chapter 4

Linear and Extended Kalman Filter

Since its introduction in 1960, the Kalman filter has become an integral

component in thousands of military and civilian navigation systems [16], [21]. It

is an extremely effective and versatile procedure for combining noisy sensor

outputs to estimate the state of a system with uncertain dynamics. The filter

uses statistical models to properly weight each new measurement relative to the

past information.

This chapter describes the Kalman filter algorithm and its nonlinear version,

known as extended Kalman filter. An overview of the characteristics of discrete-

time systems is given, followed by the description of the filter equations. The

last part provides some information on the stochastic processes that are

commonly used to model the non-deterministic behavior of inertial sensors.

4.1 Discrete-time linear systems

According to the linear system theory, the dynamics of a linear system can be

represented by a vector differential equation:

         x t F t x t G t w t  (4-1)

where

 x t is an n x 1 state vector;

 F t is an n x n system dynamic matrix;

 G t is an n x p noise-input mapping matrix;

 w t is a p x 1 system noise vector.
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The observation of the linear system is performed according to the linear

measurement equation:

       z t H t x t v t  (4-2)

where

 z t is an m x 1 observation vector;

 H t is an m x n design matrix;

 v t is an m x 1 measurement noise vector.

The covariances of the noise vectors are given by

       
T

E w t w Q t t     
 

(4-3)

       
T

E v t v R t t     
 

(4-4)

where  Q t and  R t are respectively the system noise and the measurement

noise covariance matrices, and the operator    denotes the Dirac delta

function.

Since the IMU’s measurements consist of sampled data, the continuous-time

system is to be transformed to its corresponding discrete-time form:

1k kk kx x w    (4-5)

k k kkz H x v  (4-6)

where k denotes an epoch tk, and k is the state transition matrix. The

relationship between the state transition matrix and the dynamic matrix is [16]:

   
  

2

2
k kF t t

k k

F t t
e I F t t

 
       (4-7)

where I is the identity matrix and ∆t is the length of the sampling interval.
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The covariance matrix kQ associated to the discrete-time noise vector kw can

be determined by the following approximated expression [33]:

           
1

2
T T T

k k k k k k k k kQ G t Q t G t G t Q t G t t       (4-8)

4.2 Kalman filter

The Kalman filter is a recursive algorithm that uses a series of predictions and

measurement update steps to obtain an optimal estimate of the state vector in

the sense of minimizing the mean square errors. This algorithm assumes that

the process  x t to be estimated, defined by Eq. (4-1), can be modeled in

discrete time by Eq. (4-5), and the measurement of the process occurs at

discrete points in time in accordance with the relationship given in Eq. (4-6). It

further assumes that the dynamics noise kw , and the measurement noise kv

have white noise characteristics (i.e. zero-mean and zero-correlation).

The equations in the Kalman filter algorithm fall under two groups. The first

group of equations predict the state (and the associated covariance) of the

system, based on the current state and the assumed system model, in order to

obtain an a priori estimate for the next time step, as indicated by

   ˆ ˆ1| |kx k k x k k   (4-9)

   1| | T
k k kP k k P k k Q     (4-10)

where  1|P k k and  |P k k are the error covariance matrices associated

with the estimated state vector at the prediction and time update steps,

respectively.

The second group of equations updates the predicted states and covariance

estimates with the currently available measurements in accordance to the

measurement model:

     ˆ ˆ ˆ| | 1 | 1kk kx k k x k k K z H x k k       (4-11)
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     | | 1k kP k k I K H P k k   (4-12)

The term  ˆ | 1k kz H x k k    in Eq. (4-11) is called the innovation sequence; it

is the difference between the actual observation and the predicted observation,

thus it represents the amount of new information introduced into the system by

the actual measurement.

The Kalman gain matrix, kK , is a weighting factor indicating how much of the

new information contained in the innovation sequence should be accepted by

the system. As such, the gain matrix is optimized to produce a minimum error

variance, and its expression is given by

   
1

| 1 | 1T T
k k k k kK P k k H H P k k H R


      (4-13)

To start the Kalman filter suitable values are assigned to the state vector

estimate  ˆ 1| 0x and to the error covariance matrix  1| 0P .

A complete demonstration of the above equations can be found in several

textbooks, such as [6], [16], and [17].

Fig. 4.1 illustrates the block diagram of the Kalman filter, including the system

model and the measurement model.

Fig. 4.1 Block diagram of the Kalman filter algorithm
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4.3 Extended Kalman filter

Although the Kalman filter is defined for linear dynamic systems with linear

measurements, it has been often used in applications without truly linear

dynamics or measurements, and usually with remarkable success [17].

The nonlinear (continuous) system equations and the nonlinear (discrete)

measurement equations can be written as

       x t f x t G t w t    (4-14)

 k kkz h x t v    (4-15)

The Kalman filter corresponding to Eqs. (4-14) and (4-15) is constituted by the

following set of equations:

 Prediction step

     
1

ˆ ˆ ˆ1| | |
k

k

t

k
t

x k k x k k f x t t dt


      (4-16)

ˆ

k

x x

f
F

x






(4-17)

     1| | T
k k k k kP k k P k k Q I F t         (4-18)

 Update step

      ˆ ˆ ˆ| | 1 | 1kkx k k x k k K z h x k k       (4-19)

ˆ

k

x x

h
H

x






(4-20)

     | | 1k kP k k I K H P k k   (4-21)

   
1

| 1 | 1T T
k k k k kK P k k H H P k k H R


      (4-22)
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The major differences from the conventional Kalman filter equations are:

1. integration of the nonlinear integrand  ˆ | ,k kf x t t t t   , to predict

 ˆ 1|x k k ;

2. use of the nonlinear function  ˆ | 1h x k k    in the measurement updates;

3. use of the Jacobian matrix of the dynamic model function f as the

dynamic coefficient matrix kF in the propagation of the covariance matrix;

4. use of the Jacobian matrix of the measurement function h as the

measurement sensitivity matrix kH in the covariance correction and

Kalman gain equations;

5. contrarily to the linear Kalman filter, the covariance matrices  |P k k and

 | 1P k k  of the EKF do not give the error covariances of the estimated

state vectors  ˆ |x k k and  ˆ | 1x k k  . In fact, the EKF is not optimal and it

may even diverge.

4.4 Stochastic processes

The fundamental noise processes in the basic Kalman filter model are zero-

mean white Gaussian noise processes. However, the physical noise processes

of the real world applications (either the dynamic disturbance or the sensor

noise) do not need to be necessarily uncorrelated in order to apply Kalman

filtering [17].

The most typical stochastic processes used to model the dynamics of the

inertial sensor errors are briefly described in the following subsections.

4.4.1 White noise

White noise is defined as a stationary random process having a constant

spectral density function, which implies the power is uniformly distributed over

all frequency components in the full infinite range; thus, this process is not
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physically realizable. However, white noise is a very useful approximation to

situations in which a disturbing noise is wideband compared with the bandwidth

of the system. A number of random processes can be generated by passing

white noise through a suitable filter.

4.4.2 Random Walk

Random walk, also called Wiener process, is defined as the integral of the white

noise, with initial zero conditions:

     , 0 0t w t   (4-23)

where  w t is white noise with power spectral density q . The uncertainty of the

random walk increases with time [32]:

 
2

E t qt  
 

(4-24)

therefore it is a non-stationary process. The corresponding discrete-time form is

a cumulative sum of white noise:

 1 ,
k

k

t t

k k k k
t

w w w t dt 


     (4-25)

where the covariance of k is

kq q t  (4-26)

4.4.3 Random constant

The random constant is a non-dynamic quantity with a fixed random amplitude;

its continuous and discrete expressions are given respectively by
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    00, 0t    (4-27)

1k k   (4-28)

Non-orthogonalities of sensor triads can be considered as random constants

during calibration, and also biases if the operation time is short [32].

4.4.4 First-order Gauss-Markov process

Gauss-Markov process is a general designation for all those random processes

obtained through any linear operation performed on a Gaussian random

variable. In this work the main interest is focused on a specific class of

stationary processes, known as first-order Gauss-Markov processes, which

have an exponentially decaying correlation. For a process with correlation time

T , mean squared value 2 , and zero-mean, the model is described by

     
1

t t w t
T

    (4-29)

The autocorrelation function is

  2 TR t e


 


 (4-30)

with 2 2qT  , where q is the power spectral density of  w t .

The power spectral density of this process is

 
2 2

2 2 2 2 2 2

2

1 4 1 4

qT T
G t

f T f T




 
 

 
(4-31)

The corresponding discrete-time form of this process and of its spectral density

are given respectively by
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/
1

t T
k k ke w 
   (4-32)

 2 2 /1 t T
kq e    (4-33)

The first-order Gauss-Markov process is important because it fits a large

number of physical processes with reasonable accuracy, and it has a relatively

simple mathematical description [32].

4.4.5 Summary of stochastic processes

In summary, all of the random processes described in the previous sections can

be generally written as:

1k k ka w    (4-34)

where a is an appropriate model parameter. The following table summarizes

the main characteristics of each process that has been presented.

Tab. 4.1 Summary of stochastic processes

a qk

Random walk 1 q∆t

Random constant 1 0

First-order
Gauss-Markov

e
-∆t/T

σ
2
(1-e

-2∆t/T
)
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Chapter 5

INS/GPS Integration

While the main features of GPS and INS have been reviewed in Chapters 2 and

3, respectively, this chapter deals with the theoretical and practical aspects of

integrating the two systems. First, the most common INS/GPS strategies are

presented, with detailed descriptions of specific Kalman filter designs. In the last

section, the integration methods previously described are compared in terms of

several aspects, with particular focus on the computational loads.

5.1 Integration strategies

Numerous approaches are possible for the integration of GPS and INS

information to provide a combined navigation solution. Differences between the

various approaches are based on the type of information that is shared between

the individual systems. In practice, two main integration approaches are

implemented in the navigation field: the loosely coupled (LC) and tightly coupled

(TC) schemes. Both the strategies can be open-loop, where the estimation of

the INS errors does not interfere with the operation of the INS, or closed loop,

where the sensor errors are compensated within the calculation procedure of

the INS mechanization algorithm (see section 3.3.1).

The main characteristics of each of these approaches are discussed in the

following sections.

5.2 Loosely coupled integration

The loosely coupled integration scheme is illustrated in Fig. 5.1.
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Fig. 5.1 Loosely coupled integration scheme (adopted from [14])

In a loosely coupled integrated system, the GPS receiver has its own Kalman

filter (GPS filter) to process pseudorange and Doppler measurements which are

used to calculate the user position and velocity. The differences between the

INS and GPS calculated positions and velocities are utilized as measurements

for a second Kalman filter (INS filter) in which the INS error dynamics equations

are used as system model. In this way, the INS filter provides estimates of all

the observable INS errors, which are consequently used to correct the INS raw

measurements and to compensate the system output.

Next we describe the GPS filter and the INS filter of the scheme of Fig. 5.1.

Note that the GPS filter is an extended Kalman filter and the INS filter is a

(linear) Kalman filter.

5.2.1 GPS filter

A PV (Position-Velocity) model is typically used for low dynamics applications;

in case of high dynamics, it can be replaced by a PVA (Position-Velocity-

Acceleration) model. Previous investigations have shown that, in general, there
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is no significant difference in the performance of these two models when

considering land or maritime applications; in such situations, either one can be

used for GPS-based positioning [28]. However, for airborne applications, where

considerable accelerations may be experienced, this could not be necessarily

true. Therefore, in this work both the two models have been implemented and

their performance has been compared (see section 7.3).

5.2.1.1 Receiver clock model

Regardless of the chosen filter (PV or PVA), it is always necessary to model the

GPS receiver clock bias. Physically, the clock bias develops as the integral of

the frequency error of the receiver clock oscillator [11]. This physical process

suggests a two-state clock model, as shown in Fig. 5.2.

Fig. 5.2 Model for the receiver clock bias

The corresponding state-space form can be written as

0 1

0 0 f

wtt

wtt





      
        
      




(5-1)

where

t is the clock offset error (s);

t is the clock drift error;

w is the clock error driving noise with spectral density q ;

fw is the clock drift error driving noise with spectral density fq .
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To complete the clock error model, the spectral densities of the driving noise

processes must be specified. This can be accomplished by using the Allan

variance parameters which define the physical characteristics of the clock [6].

Two simplified expressions are given by

0

2

h
q  (5-2)

2
22fq h  (5-3)

Tab. 5.1 shows some typical values of the Allan variance parameters for

different types of clock used in GPS receivers. These values are given in units

of seconds; when used for range errors they must be multiplied by the square of

the speed of light [6].

Tab. 5.1 Typical Allan variance parameters for various GPS receiver clocks

Clock h0 h-2

Compensated* crystal 2 x 10
-19

2 x 10
-20

Ovenized crystal 8 x 10
-20

4 x 10
-23

Rubidium 2 x 10
-20

4 x 10
-29

*Compensation is for temperature variations

5.2.1.2 System model

It is now possible to define the two models for the GPS filter. The block diagram

of the PV model for each spatial coordinate ( xr , yr or zr ) is shown in Fig. 5.3.

The state vector includes position, velocity, and the clock errors. Velocity is

modeled as a random walk process, while positions are simply the integral of

velocity.

Fig. 5.3 PV model for GPS-only filter
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The state vector is

Tn nx r v t t    (5-4)

and has 8 components (state variables). The corresponding state-space form is

given by

 

3 3 3 3 3 1 3 1 3 3 3 1 3 1

3 3 3 3 3 1 3 1 3 3 3 1 3 1

1 3 1 3 1 3

1 3 1 3 1 3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 1 0

0 0 0 0 0 0 1

n n
x x x x x x x

vn n
x x x x x x x

x x x

f

x x x

x xF G

Ir r
w

Iv v
w

t t
w

t t



 

      
      
              
                   










 


w







(5-5)

where vw is the process driving noise with spectral density
v

q . The noise

covariance matrix associated to this model is

  3 1 3 1

1 3

1 3

0 0

0 0

0 0

x xv

x

x f

diag q

Q q

q


 
 
 
 
 
 

(5-6)

In the PVA model, displayed in Fig. 5.4 for a single spatial coordinate, instead of

a pure random walk process, the acceleration is usually modeled as a first-order

Gauss-Markov process, since accelerations are usually correlated over short

time intervals [11].

Fig. 5.4 PVA model for GPS-only filter

The state vector is

Tn n nx r v a t t    (5-7)
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and has 11 components. The corresponding state-space form is



 



3 3 3 3 3 3 3 1 3 1 3 3 3 1 3 1

3 3 3 3 3 3 3 1 3 1 3 3

3 3 3 3 3 1 3 1
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0 0 0 0 0

0 0 0 0

0 0 0 0 1

0 0 0 0 0
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    
    
        
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






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3 1 3 1
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w
x
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w

I w

w


 
   
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   
   
  

(5-8)

and the noise covariance matrix associated to this model is expressed as

  3 1 3 1

1 3

1 3

0 0

0 0

0 0

x xa

x

x f

diag q

Q q

q


 
 
 
 
 
 

(5-9)

The discrete-time form for both models, necessary for software implementation,

can be easily obtained by using Eqs. (4-7) and (4-8).

5.2.1.3 Measurement model

The pseudorange and Doppler measurements for the i-satellite can be related

to the receiver position and velocity through the following expressions [22]:

,

n ni i
sat ir r ct w     (5-10)

  , ,

,

n n n n

sat i sat ii i

n n

sat i

r r v v
c t w

r r
 

 
  


  (5-11)

These equations are nonlinear, thus need to be linearized in order to be used in

the Kalman filter algorithm. Assuming that n satellites are visible, the following

linearized matrices can be defined:
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1 1 1

x y z

rr

n n n

x y z

r r r

H

r r r
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  

   
    
 
 
   
     

   (5-12)

1 1 1

x y z
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x y z

r r r

H
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(5-13)

1 1 1

x y z
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n n n

x y z

v v v
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v v v
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(5-14)

where the linearization point is the predicted state estimate at a particular

epoch.

For the PV model, the measurement equation can be written as






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(5-15)

Similarly, for the PVA model, we can write
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(5-16)
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The measurement noise covariance matrix is the same for both models:

 
 

2

2

0

0

nxn

nxn

diag
R

diag









 
 
 
 

(5-17)

where 2
 and 2

  are weights assigned to pseudorange and Doppler

measurements. The simplest choice is to assign equal weights to all

measurements (for example, using the UERE parameter). However, as it was

shown in section 2.6, this is not a realistic option because for a user near or on

the Earth’s surface, operation at low elevation angles can lead to increased

random errors caused by multipath and ionospheric/tropospheric delay effects.

Therefore, it is desirable to adopt a model that takes into consideration these

effects, such as the one given by Eq. (2-8).

5.2.2 INS filter

The model for the INS filter is based on the INS error dynamics equations

presented in section 3.4. Before giving the details of the filter design, it is

necessary to outline the characteristics of the specific stochastic processes

used to model the INS errors.

5.2.2.1 Inertial sensor error models

The basic inertial sensor errors have been presented in section 3.5, where the

measurement equations for accelerometers and gyros were also shown. These

are rewritten here for convenience:

 b bb
a a af f b diag f S w    (5-18)

 b bb
ib g ib g gib b diag S w      (5-19)
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The bias error for low-cost sensors is typically the sum of a constant offset

(turn-on bias) and a non-constant variation (bias drift or in-run bias), as

indicated by the following expression:

   ,x tob x xb t b b t  (5-20)

where

,tob xb is the turn-on bias for sensor x;

 xb t is the bias drift for sensor x.

The turn-on bias, although being constant during a single operation, varies from

turn-on to turn-on; in order to avoid a field calibration process for determining its

value before each utilization, an adequate model for this error can be included

into the INS filter as well, so that the Kalman filter algorithm will provide an

estimate of its value. According to the nature of this type of error, the most

suitable stochastic process to represent it mathematically is a random constant:

 , 0tob xb t  (5-21)

The in-run bias variation can be modeled with several types of processes; in

this work, a first-order Gauss-Markov process has been used:

     ,

,

1
x x b x

b x

b t b t w t
T

    (5-22)

The scale factor error is generally constant during the operation. However, for

low-cost MEMS-based IMUs it can present some slow variations with time.

Thus, it can be modeled as a first-order Gauss-Markov process as well, with a

large correlation time [13]:
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     ,

,

1
x x s x

s x

S t S t w t
T

   (5-23)

Finally, the random noise is simply modeled as a zero-mean white Gaussian

noise.

The characteristics of the error models described above are listed in Tab. 5.2

and are taken from [14]. They have been obtained through an auto-correlation

analysis conducted with static data of a Crista IMU from Cloud Cap Technology,

shown in Fig. 5.5. Since this low-cost MEMS-based IMU is the one considered

for the simulations presented in Chapter 7, a brief description of the main

features of this specific sensor are given below.

The Crista IMU consists of a three axes inertial sensor which uses MEMS

ADXRS gyroscopes and ADXL accelerometers (see section 3.7.3) mounted on

orthogonal axes to provide 300º/s rate and 10g acceleration data. All

measurements are temperature-compensated and are provided at a rate

greater than 200 Hz. An in-built GPS PPS (Pulse Per Second) signal interface

allows synchronization of IMU and GPS data. The IMU is small in size

(2.05’’x1.55’’x1.00’’) and weighs only 36.8 grams. According to the source, this

sensor is available in single quantities for under $2000 US. Factory

specifications for this IMU are included in Appendix C.

Fig. 5.5 Crista IMU from Cloud Cap Technology
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Tab. 5.2 Crista IMU characteristics assumed for numerical simulations

Crista IMU

x y z

Accelerometers

Turn-on bias 0.480 m/s
2

0.260 m/s
2

0.480 m/s
2

Bias drift* 0.007 m/s
2

0.007 m/s
2

0.009 m/s
2

227 s 211 s 365 s

Scale factor error* 10000 ppm 10000 ppm 10000 ppm

18000 s 18000 s 18000 s

Random noise 0.28 mg/√Hz 0.40 mg/√Hz 0.28 mg/√Hz

Gyros

Turn-on bias 4230 º/h 1800 º/h 1800 º/h

Bias drift* 211 º/h 205 º/h 161 º/h

382 s 375 s 297 s

Scale factor error* 10000 ppm 10000 ppm 10000 ppm

18000 s 18000 s 18000 s

Random noise 226 º/h/√Hz 177 º/h/√Hz 165 º/h/√Hz

* Parameters of first-order Gauss-Markov processes

5.2.2.2 System model

The INS error dynamics equations together with the INS error models form the

system model for a 27-state Kalman filter. The state vector is

, ,

Tn n n

a g tob a tob g a gx r v b b b b S S        (5-24)

and has 27 components which are:

n
r position error vector;

n
v velocity error vector;

n
 attitude error vector;

ab accelerometers bias drift vector;

gb gyros bias drift vector;

,tob ab accelerometers turn-on bias vector;



76

,tob gb gyros turn-on bias vector;

aS accelerometers scale factor error vector;

gS gyros scale factor error vector.

The system model for the INS filter is characterized by the following vectors and

matrices.

   
   

 

 

3 3 3 3 3 3 3 3 3 3 3 3 3 3
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n bn n n
in iber ev x b x b x b
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x x x x b g x x x x

F F

F F f R R R diag f

F F R R R diag

diag T

F diag T

 



    



 

 
 

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 , 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 ,

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0
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, , , ,

T

a g b a b g s a s gw w w w w w w   
(5-26)
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diag q
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diag q
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diag q
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The covariance matrix kQ associated to the discrete-time model is calculated

with the approximated formula of Eq. (4-8). However, this approximation does

not account for any of the correlations between the components of the driving

noise kw that develop over the course of a sampling period because of the

integration of the continuous-time driving noise w through the state dynamics

[11]. Let kQ be the (Frobenius) norm of matrix kQ , with

1 2

2

,

n

k ij
i j

Q q
 

  
 
 (5-29)

where ijq are the entries of kQ and n is its order. If kQ is larger than the real

norm, the Kalman filter trusts the measurement more than the system, with the

result of noisy estimates due to the free passage of the measurement noise; if

the norm of kQ is smaller than the real one, the solution will show a time lag,

and might even diverge causing numerical instabilities [32]. Therefore, for low-

cost systems, kQ must be selected pessimistically so that the trajectory can

follow that of GPS. In this work, the elements of kQ have been manually

increased until the filter stabilized and the trajectory could follow that of the

GPS.

5.2.2.3 Measurement model

In the loosely coupled integration the measurement for the INS filter is the

difference between the INS and the GPS navigation solutions (position and

velocity) calculated separately and independently by the two systems. The

measurement vector and the design matrix are given respectively by

INS GPS

n nn
INS GPSINS GPS

n nn
INS GPS

INS GPS
n n

INS GPS

r rR
z

h hv vV

v v

 

 



 
          
         

  

(5-30)
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3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
x x x x x x x x x

x x x x x x x x x

I
H

I

 
  
 

(5-31)

However, this approach causes numerical instabilities in calculating the term

  
1

| 1 T
k k kH P k k H R


  in the Kalman gain Eq. (4-13), because  and  are in

radians and therefore they are very small values [32]. A simple solution is to

multiply the first two rows by  MR h and  cosNR h  , respectively:

  
   cos

M INS GPS

N INS GPS

INS GPS

n n

INS GPS

R h

R h
z

h h

v v
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   
 

  
 
 

  

(5-32)
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(5-33)

Finally, the measurement noise covariance matrix is given by
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





 
 
 
 
 
 
 
 
 
 

(5-34)

where the values of the individual weights depend on the accuracy of the GPS

solution.
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5.3 Tightly coupled integration

A second strategy to perform the INS/GPS integration is the tightly coupled

approach, whose implementation is illustrated in Fig. 5.6.

Fig. 5.6 Tightly coupled integration scheme (adopted from [14])

The tightly coupled integration uses raw measurements of GPS and INS-

derived estimates of pseudorange and Doppler (determined using satellite

ephemeris data), which are compared and used as inputs of an integrated

single Kalman filter; in this scheme, the GPS filter is no longer necessary. The

integrated Kalman filter (or INS/GPS filter) includes the equations for

determining the navigation errors (position, velocity, and attitude), as well as

those for the sensor errors, for both the INS and GPS systems.

The design of the INS/GPS Kalman filter is presented in the following

subsections.
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5.3.1 INS/GPS filter

The INS/GPS filter used in the tightly coupled integration is an extended

Kalman filter which operates as a combination of the GPS and INS filter used in

the loosely coupled approach.

5.3.1.1 System model

The system model must account for all of the GPS and INS states to be

modeled. The two filters presented in the previous sections contain both

positions and velocities in the state vector (more exactly, in the INS filter they

are position and velocity errors). This permits to have an INS/GPS filter which

corresponds to the 27-state INS filter augmented with the two state variables of

the GPS receiver clock model. Thus, the state vector is

, ,

Tn n n

a g tob a tob g a gx r v b b b b S S t t         (5-35)

and has 29 components.

5.3.1.2 Measurement model

The tightly coupled approach is similar to the loosely coupled in terms of system

model; they differ mostly in terms of measurement models. Instead of positions

and velocities, pseudoranges and Doppler measurements (calculated by the

INS and physically measured by the GPS receiver) are fed to the filter as

observables. Therefore, the measurement model is similar to the one used in

the GPS filter, with the main difference that now the measurements are

differences of pseudoranges and Doppler:

INS GPS

INS GPS

z
 

 

 
  

  
 

(5-36)
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0 0 0 0 0 0 0 0
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H

H H c

 
  
 

(5-37)

where the matrices rrH , vrH , and vvH have the same structure previously

shown in section 5.2.1.3, with the only difference being the linearization point. In

fact, the nominal trajectory for linearization is now obtained from the INS

mechanization computed position and velocity solutions, rather than the

predicted estimates.

5.4 Comparison of the two integration schemes

In this final section the main benefits and limitations of the two integration

approaches previously described are discussed.

5.4.1 General aspects

The main advantages of the loosely coupled integration are:

 the dimensions of the state vectors (in both filters) are smaller than in

the tightly coupled case, which translates into faster processing time

(see section 5.4.2);

 the implementation of this scheme is very simple, that is, it doesn’t

require to change the existing hardware of the systems (INS and GPS)

in order to be implemented.

On the other hand, there are also some significant limitations and shortcomings:

 the GPS receiver needs at least four satellite signals to compute the

navigation solution. Under severe conditions, such as in (urban)

canyons, GPS receivers can experience regular satellite outages; as a

result, the integrated system might show poor accuracy, depending
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mostly on the quality of the IMU (which assumes a major role in such

specific situations).

 Process noise is added to two Kalman filters; this reduces the overall

filtering capabilities of the system.

The tightly coupled integration is an alternative method that overcomes the

main limitations of the loosely coupled approach. This second strategy offers

several advantages:

 it gives an integrated navigation solution even if the number of GPS

satellite signals drops below four;

 a single filter provides a statistically rigorous sharing of information

among states (to the extent that the input statistics are correct);

 GPS data from individual satellites are used for the measurement

update, so poor measurements can be detected and rejected, making

the filter more robust;

 process noise is added to a single filter, thus improving the overall

filtering capabilities of the system;

 having to program a single Kalman filter can simplify software

development and debugging.

The tightly coupled integration is clearly more reliable in case of GPS data

gaps, since it permits the use of as few as one GPS measurement in the

estimation algorithm. Nevertheless, this strategy has some problems as well:

 it requires the access to the hardware, making this approach not

available to the general user community [11];

 the larger size of the state vector requires more computational time, as

illustrated in the following subsection.
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5.4.2 Comparison of computational loads

In order to compare the computational loads of the various filters previously

described, the matrix operations used in the Kalman filter algorithm (see section

4.2) have been evaluated. Tab. 5.3 gives a summary of this analysis for each

iteration.

Tab. 5.3 Number of operations of the Kalman filter algorithm

Operation # Multiplications Additions
nn x n1 1 n

2
(n-1)n

nn x nn 3 n
3

(n-1)n
2

nn + nn 2 0 n
2

n1 + n1 1 0 n

m1 + m1 1 0 m

mm + mm 1 0 m
2

nm x m1 1 nm (m-1)n

nm x mm 1 nm
2

(m-1)mn

nm x mn 1 mn
2

(m-1)n
2

nn x nm 1 mn
2

(n-1)nm

mn x nm 1 nm
2

(n-1)m
2

mn x nn 1 mn
2

(n-1)nm

inv(mm)* 1 5/6m
3
+m

2
-5/6m 4/3m

3
-3/2m

2
+1/6m

*using Gaussian elimination [34]

In the table, nn means a nx n matrix, and n1 means a n-dimensional vector; n is

the size of the state vector x , while m is the size of the measurement vector z .

The second column represents the multiples of operations used in the Kalman

filter algorithm. Note that these results can also be applied to the EKF algorithm

as well, but, in this case, the computational load does not include the evaluation

of the Jacobian matrices kF and kH (see section 4.3).

The results for the different filters are illustrated in Tab. 5.4, where the total

number of operations is the sum of all multiplications and additions performed

by a particular filter during a single step of the (extended) Kalman filter

algorithm. The results are given for an increasing number of satellite signals

processed by the GPS receiver.
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Tab. 5.4 Total number of operations for different filters

Total number of operations

# sat. Loosely coupled Tightly coupled

GPS
PV PVA

INS INS/GPS

1 - - - 151440

2 - - - 156819

3 - - - 162455

4 5212 11671 148493 168361

5 6004 12910 148493 174550

6 6924 14301 148493 181035

7 7985 15857 148493 187829

8 9200 17591 148493 194945

9 10582 19516 148493 202396

For a better visualization, the same results have also been plotted in Fig. 5.7

and 5.8.

Fig. 5.7 Number of operations of PV and PVA filters



85

Fig. 5.8 Number of operations for LC and TC integrations

As normal, an increased number of GPS signals being processed corresponds

to a higher computational load. With less than 4 satellites available, the LC

approach cannot compute a solution; therefore the Kalman filter algorithm is not

performed in those situations.

The computational load required for the PVA filter is approximately twice as the

one required for the PV filter. However, when we consider the GPS filter as part

of the LC scheme, such difference becomes less significant since the number of

operations performed by the INS filter has a superior influence. The increment

using the LC integration with a PVA filter instead of a PV ranges between 4.2-

5.6%, depending on the number of satellites.

Concerning the comparison between the LC and TC integrations, in this case

the differences in computational loads are more significant: the increment varies

between 5.1-20.5% when considering the LC-PVA scheme, while for the LC-PV

it is 9.5-27.5%.

The main conclusion that can be drawn from this analysis is that the difference

in computational loads is mainly a function of the system dimensions, thus

explaining why the TC approach requires a higher computational time. In

addition, the more satellites are available, the greater will be the difference

between the two approaches.
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Chapter 6

Software and Implementation Considerations

This chapter gives some information about the software developed in order to

run various tests and simulations of the integrated INS/GPS system. The

program was created in MATLAB and consists of a number of modules (m-files)

which will be briefly described in the following sections.

6.1 Main.m

The main file is simply a routine that calls, in the proper order, all those

functions that have been created to perform the desired simulations. The basic

steps are:

1. upload of constant variables (IMU and GPS characteristics, Earth’s

geometric parameters, time settings, etc.);

2. upload of trajectory data, i.e. the vehicle’s reference position, velocity,

and attitude during the entire simulation (the INS/GPS algorithm is

executed in a post-mission mode);

3. upload of initial conditions (for the INS mechanization and for the various

Kalman filters);

4. memory pre-allocation for vectors and matrices (this part is essential

since it reduces considerably the computational time);

5. definition of GPS satellite visibility: here it is possible to manually set the

number of visible satellites in any period of time according to the type of

situation that the user wishes to reproduce;

6. for cycle consisting of several operations: INS measurements (corrupted

by all the error sources described in section 3.5), INS mechanization,
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GPS measurements (also affected by errors), GDOP evaluation, PV or

PVA filter (only for the loosely coupled mode), EKF algorithm;

7. graphs plotting.

The time length of one step of the for cycle depends on the IMU’s working

frequency; however, GDOP evaluation is done only periodically (for example,

every 30 s) while GPS measurements, as well as the EKF algorithm, depend on

the measurement update frequency of the GPS receiver, which has been set

equal to 10 Hz for all simulations, since this is a typical value encountered for

low-cost GPS receivers.

6.2 Trajectory.m

In order to assess the performance of the integrated navigation system, a

reference trajectory is needed. The goal of this function is to generate a

reference trajectory to obtain the data about the vehicle’s position. It performs

the integration of the general motion equations using an explicit Runge-Kutta

(4,5) formula. The vehicle’s velocity and attitude must be assigned in advance.

Besides position information, this function also returns the accelerations and the

rates of turn in the b-frame, which are used to represent the uncorrupted IMU’s

output.

6.3 GPS.m

This module was created to make available the GPS satellite orbit coordinates

during a desired period of time. An approximated satellite position in ECEF

coordinates is given as [17]

 cos cos sin sin cose
xr R i    (6-1)

 cos cos sin sin cose
yr R i    (6-2)

sin sine
zr R i (6-3)
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where

 0 0

360
deg

43.082
t t    (6-4)

 0 0

360
deg

86.164
t t    (6-5)

26559.800 kmR  (6-6)

55ºi  (6-7)

The above equations result from simplifying the expressions for the satellite

position given in Tab. A.2 (see Appendix A).

The parameter  is the right ascension of ascending node, that is, the ECI

longitude where the orbital plane intersects the equatorial plane as the satellite

crosses from the southern hemisphere to the northern hemisphere. The orbital

plane is specified by  and i , the inclination of the orbit plane with respect to

the equatorial plane. The  parameter represents the location of the satellite

within the orbit plane, and it is often referred to as mean anomaly; it is the

angular phase in the circular orbit with respect to ascending node.

Tab. 6.1 gives the parameters 0 and 0 for the GPS satellite constellation at

the reference time 0t (midnight July 1, 1993) [27].

Tab. 6.1 0 and 0 for the GPS constellation at reference time 0t

Satellite ID Ω0 (º)* θ0 (º)* Satellite ID Ω0 (º)* θ0 (º)*

1 272.847 268.126 13 92.847 135.226

2 272.847 161.786 14 92.847 265.446

3 272.847 11.676 15 92.847 35.156

4 272.847 41.806 16 92.847 167.356

5 332.847 80.956 17 152.847 197.046

6 332.847 173.336 18 152.847 302.596

7 332.847 309.976 19 152.847 333.686

8 332.847 204.376 20 152.847 66.066

9 32.847 111.876 21 212.847 238.886

10 32.847 11.796 22 212.847 345.226

11 32.847 339.666 23 212.847 105.206

12 32.847 241.556 24 212.847 135.346

*Ω0 and θ0 are values at reference time t0 (midnight July 1, 1993)
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The baseline of the 24-satellite GPS constellation at the reference time 0t is

shown in Fig. 6.1, where the position of each satellite is expressed in terms of

the orbital parameters  and  ; in such way, the six orbital planes, each

containing four satellites, are clearly visible.
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Fig. 6.1 GPS satellite constellation planar projection

6.4 Galileo.m

The function Galileo.m is similar to GPS.m in a way that it gives the satellite

orbit coordinates for Galileo’s constellation. The equations for the satellite

position are the same presented in the previous section, with the only difference

being the values of the orbit parameters. A brief description of the Galileo

system and its satellite constellation is given in Appendix D.

The reason why this satellite constellation has been represented is to assess

the performance of the integrated system when the number of available

satellites is greatly increased. This analysis is presented in section 7.5.
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6.5 GDOP.m

The GDOP evaluation is the criteria that has been used for the choice of

satellites. In this routine all the possible combinations up to 9 satellites are

considered in order to choose the best satellite geometry which will give the

highest accuracy for the GPS solution. This function is executed periodically,

based on a pre-defined time interval.

6.6 PV.m, PVA.m

These functions implement the PV and PVA filters for the loosely coupled

integration. They perform all the calculations described in section 5.2.1, giving

as output the estimates of the vehicle’s position in the n-frame. Since the

satellite position is known in ECEF coordinates, it is necessary to operate the

coordinate transformation described in section 3.1.5 in order to obtain a solution

in the navigation frame. These routines are executed based on the

measurement update frequency of the GPS receiver (10 Hz).

6.7 EKF.m

This function implements the EKF algorithm. There are two different versions of

this file, due to the reason that one applies to the LC integration and the other

one to the TC integration. In both cases, a closed-loop scheme is utilized (see

Fig. 5.1 and 5.6).
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Chapter 7

Tests and Results

This chapter describes the tests and analysis results for the methods described

in the previous chapters. The performance evaluation is carried out in a post-

mission processing mode. Several types of performance analysis are

considered: first, individual navigation systems are tested (INS and GPS); then

the various integration strategies are studied and compared. For each case, two

datasets representing different scenarios are available. The results are mainly

discussed in terms of position, velocity, and attitude errors which are computed

using the reference trajectories.

7.1 Datasets

Two datasets have been used to assess the performance of the navigation

systems. The simulation time is 10 minutes for both cases, which differ only in

terms of trajectory path and vehicle’s maneuvering.

The first dataset represents a low dynamics trajectory (Fig. 7.1-a): the vehicle’s

motion determines a closed-loop path with slow and small variations of altitude.

The maximum vertical speed is 4 m/s, while the maximum horizontal speed is

approximately 55 m/s. Although the motion is not uniform, it is not characterized

by significant accelerations and turn rates.

In the second dataset, the vehicle performs aggressive maneuvers: frequent

turns at high velocity determine a more complex path, as illustrated in Fig. 7.1-

b. The trajectory can be divided into three parts: an initial ascending spiral, with

the vehicle accelerating upward and increasing the radius of curvature at the

same time; the second part consists of a sequence of horizontal loops with a

variable descending velocity; finally, a second ascending spiral is performed,

but this time with the vehicle decelerating upward and decreasing the radius of

curvature. In such scenario, the vehicle experiences considerable and
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continuous accelerations and turn rates throughout the entire simulation. The

maximum vertical speed is 6 m/s, and the maximum horizontal speed is

approximately 100 m/s.

(a) Low dynamics (b) High dynamics

Fig. 7.1 Reference trajectories of simulated datasets

7.2 INS-only solution

The performance of the low-cost MEMS-IMU described in section 5.2.2.1 has

been compared with other IMUs of different quality (i.e. accuracy level); the

various existing categories have been outlined in section 3.7.4. Specifically, the

following analysis includes the performance of a medium grade MEMS-IMU and

a tactical grade FOG-IMU (Fiber-Optic-Gyro IMU). The characteristics of these

sensors are taken from [35] and are here summarized in Tab. 7.1. Although the

author does not mention the model and brand of the individual IMUs, the

following characteristics are useful for a general comparison between the low-

cost MEMS-IMU analyzed in this thesis with others of higher quality.

As previously mentioned, the quality of an IMU is often evaluated by the quality

of the gyros contained in the sensor system. As can be noted from Tab. 7.1, the

MEMS-IMU has an in-run bias significantly smaller than the one of the low-cost

Crista IMU (see Tab. 5.2); such biases are completely negligible for higher

grade IMUs. Given this great amount and intensity of errors in low-cost MEMS

inertial sensors, traditional approaches for integrating INS and GPS are likely to

fail, and some non-traditional algorithms and approaches are required.
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Tab. 7.1 Characteristics of the MEMS-IMU and FOG-IMU

MEMS-IMU FOG-IMU

Accelerometers

Turn-on bias 0.049 m/s
2

0.049 m/s
2

Bias drift* 0.0098 m/s
2

-

3600 s -

Scale factor error 5000 ppm 200 ppm

Random noise 0.4 mg/√Hz 0.05 mg/√Hz

Gyros

Turn-on bias 75 º/h 5 º/h

Bias drift* 3 º/h -

3600 s -

Scale factor error 5000 ppm 100 ppm

Random noise 18 º/h/√Hz 6 º/h/√Hz

Update rate 100 Hz 200 Hz

* Parameters of first-order Gauss Markov processes

Before testing the performance of the various IMUs, it is important to verify the

correct operation of the INS mechanization algorithm described in section 3.3.

Under ideal conditions, that is, with all sensors unaffected by error sources, the

INS algorithm, run in post-processing mode, should reproduce precisely the

reference trajectory. The results obtained with this ideal test, in terms of

position, velocity, and attitude errors, are shown in the following figures.
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Fig. 7.2 Ideal results for INS position errors
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Fig. 7.3 Ideal results for INS velocity errors
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Fig. 7.4 Ideal results for INS attitude errors

For all cases, the errors are significantly small, proving that the INS

mechanization algorithm works properly. With 10 minute simulations, the

maximum position error is 0.5 mm, the maximum velocity error is 0.002 mm/s,

and the maximum attitude error is 5 x 10-7 degrees. The fact that these errors

grow slowly with time, even if we considered ideal sensors, depends on some
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problems which are typical of strapdown inertial systems. The most important is

known as sculling error. If the specific force vector were measured, transformed

to navigation coordinates continuously, and integrated to obtain velocity, no

error would occur. However, the accelerometers integrate acceleration in the

body frame at discrete time intervals. The presence of combined rotation and

acceleration, a phenomenon known as “sculling”, can lead to errors referred to

as sculling errors. If these errors are not compensated, an average acceleration

is erroneously computed [20]. In the algorithm implemented in this work, a first-

order sculling correction has been applied: it consists in the computation of the

cross-product between the gyro data and the accelerometer data to reduce the

effect of these errors. Its implementation is visible in Eq. (3-36). Other typical

strapdown problems, known as coning errors and size-effect errors, are not

relevant in these simulations since they depend on the real motion of the gyros

input axis and on the accelerometers locations, respectively [20].

After having verified the proper operation of the INS mechanization algorithm, it

is now possible to assess the performance of the various IMUs. The first test is

done using the INS in stand-alone mode, that is, without any sort of external aid

and without using any calibration information; Fig. 7.5 shows the processing

results.
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Without any external aid, the positional error grows exponentially due to the

integration step in the INS mechanization algorithm, which amplifies the effects

of the IMU’s errors along time. In Fig. 7.5, the maximum error reached by each

IMU after a 10 minutes simulation is marked. The results clearly show the

consequences of the different quality of these sensors: the FOG-IMU reaches a

maximum error of 10 km, in conformity with the accuracy level indicated in Tab.

3.4; the MEMS-IMU reaches a value which is approximately 20 times greater,

while for the low-cost MEMS-IMU it is 200 times greater.

Upon the evidence of these results, we shall expect a quick error growth for the

lower grade IMUs even when an initial calibration procedure is performed; in

fact the in-run variations of bias (and scale factor) are significant even on a

short time scale, as visible from Fig. 7.6. An initial calibration simply delays the

effects of the error propagation; however, the absolute position error still

becomes unacceptable after a very short period of time for all of the sensors

tested. Note that, in a simulation context, the initial calibration consists of

assuming as known the values of the turn-on biases for both accelerometers

and gyroscopes.
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Finally, it is important to note that in the previous simulations the vehicle’s initial

position and orientation are supposed known with no error; in a real situation

this information cannot be so accurate causing the INS performance to degrade

with even higher rapidity.

7.3 GPS-only solution

In this section the performance of the GPS solution is investigated in order to

assess the GPS data quality. This is an important part since the GPS is the

aiding source of the integrated navigation system. A further objective is to

compare the accuracy obtained using a PV or a PVA filter (both described in

section 5.2.1). To accomplish these goals, two simulations have been run: one

with the low dynamics trajectory, and the other with the high dynamics one; the

GPS receiver sampling frequency is 10 Hz. The maximum number of satellites

is 9, and the minimum is 5, with an average of 8; this implies a 100% satellite

availability during the entire simulation. Fig. 7.7 shows the satellite dilution of

precision and the number of available satellites during the test run.
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It is possible to verify that the DOPs are correlated with satellite availability, as

expected. For example, after 4.4 minutes, a decreased satellites number from 8

to 6 caused DOP values to increase almost 50%. This consequently will affect

the position and velocity accuracies. However, HDOP and VDOP values lower

than two are still good enough to guarantee a good satellite geometry.

Another important observation is that the VDOP, related to the accuracy along

the vertical direction, is larger (i.e. worse) than the HDOP, which corresponds to

the accuracy in the local horizontal plane (East-North). It is possible to define

two more DOP parameters associated with the accuracy in the East and North

direction independently; in accordance with the notation used in section 2.5 we

have:

11EDOP V (7-1)

22NDOP V (7-2)

where the GDOP matrix V was introduced in Eq. (2-32). The values assumed

by these parameters during the simulation test are shown in Fig. 7.8.
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The EDOP and NDOP range around 0.5 for the majority of time; the VDOP

assumes values which are approximately twice as large as the other two

parameters. It is clearly visible that the major contribution to the value of the

GDOP parameter, which is the one utilized to choose the best satellite

geometry, is given by the VDOP (since the TDOP is characterized by small

values as well). The main consequence of these results will be a less accurate

information about the vehicle’s altitude, compared to the information about

relative northing and easting, determined by the GPS receiver.

The effects of higher DOP values in the vertical direction are immediately visible

from the plots of the position and velocity error variations versus time (Fig. 7.9

and 7.10, respectively), obtained using the PV filter and the first dataset.
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Fig. 7.10 Velocity error versus time (first dataset)

By examining these graphs, it is evident that both position and velocity in the

vertical direction are less accurate than the corresponding quantities in the

horizontal plane. The maximum horizontal position error is 4.67 m and the

maximum horizontal velocity error is 0.238 m/s, while for the vertical direction

the maximum position error is 10.53 m and the maximum velocity error is 0.332

m/s.

The influence of a variable number of available satellites is not so clear from the

visualization of these error plots, since the satellite geometry is good during the

entire simulation. However, in the interval between 7 and 8 minutes, where the

number of satellites drops to the lowest values, a higher spreading of the error

is somehow visible, mainly for the vertical position error.

In order to assess the different performance of the PV and PVA filters, several

simulations have been run considering both datasets; the results are

summarized in Tab. 7.2. In the table, LD and HD refer to low dynamics and high

dynamics, respectively. With the first dataset, the results obtained with the two

filters do not show significant differences; in this case, the PVA filter offers a

better accuracy in the order of only a few centimeters. The importance of using

a PVA filter becomes evident when considering high dynamics: with the second

dataset, in fact, the performance of the PV filter deteriorated considerably,

showing RMS errors which are 3 to 4 times larger than in the previous situation.
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As for the PVA filter, its performance is also poorer, but the decrease in

accuracy is smaller.

Tab. 7.2 Mean and RMS values of position errors of various simulations

PV PVA

LD HD LD HD

Mean (m)

North -0.00 0.05 -0.00 0.02

East -0.01 0.03 0.01 0.02

Up -0.08 -0.14 -0.05 -0.08

RMS (m)

North 1.06 3.99 1.05 1.55
East 1.16 3.29 1.14 1.31
Up 2.49 5.61 2.43 2.71
2D 1.57 5.17 1.55 2.03
3D 2.94 7.63 2.88 3.39

A further consideration about these last results addresses to the accuracy

obtained in the vertical direction and in the local horizontal plane (2D solution).

Regardless of the type of filter or dataset used, the vertical error is always

higher than the 2D error. Once again, we can see the correspondence between

the positional errors and the values obtained for the DOP parameters for these

simulations, in which the VDOP is all the time greater than the HDOP.

The comparison of computational loads of the PV and PVA filters, given in

section 5.4.2, showed that the former requires a number of operations that is

approximately a half of those required by the latter. However, when these filters

are considered as part of an integrated INS/GPS system, we saw that this

difference becomes less relevant. For such reason, and for the results obtained

in this section, the PVA filter will be employed in all the following simulations.

Because of its consistent accuracy, it can be used for position and velocity

updates in the INS/GPS system.

7.4 INS/GPS solution

This section presents the results obtained with the integrated system, which are

of most interest according to the objectives of this thesis. Many types of

simulations and comparisons will be illustrated, with principal focus on the
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performance of the low-cost MEMS-IMU in both the loosely and tightly coupled

configurations.

7.4.1 Results with full GPS data availability

The first analysis deals with a situation of full GPS data availability during the

entire simulation. The satellite dilution of precision is the one previously

illustrated in Fig. 7.7. Firstly, the results obtained with the integration of GPS

with the low-cost MEMS-IMU are presented. The two strategies adopted are

those described in Chapter 5, namely, the loosely coupled and the tightly

coupled integrations. Same considerations apply to the types of filters: it will be

seen, in fact, that for better quality IMUs the filters dimensions are smaller (i.e.

the state vector to be estimated contains a smaller number of states).

Since the accuracy of the integrated system depends on the accuracy of the

GPS solution (at least in the situation of complete data availability), a similar

level of accuracy can be expected from the integrated solution as well. This is

proved by Fig. 7.11 and 7.12, which present the position and velocity errors

obtained with both integration strategies. Since the GPS satellite availability is

good throughout the simulation, the INS navigation parameters are corrected

continuously, preventing the errors from accumulating.
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Fig. 7.12 Velocity errors for low-cost INS/GPS (no GPS outages)

The level of accuracy is the same obtained with the GPS-only solution. The TC

and LC integrations do not show significantly different performances in a

situation of full satellite availability. It is possible to observe that both position

and velocity errors present a time lag. This is due to the problem in the choice

of the INS filter covariance matrix kQ , which was discussed in section 5.2.2.2.

The values of the elements of kQ have been manually increased in order to

stabilize the filter; however, while the filter becomes more stable, the resulting

estimates turn out to be noisier due to the free passage of the measurement

noise. On the other hand, small values of kQ can reduce the noise passage,

but, at the same time, they cause the appearance of a time lag in the estimates.

Thus, the final values that have been chosen for the elements of kQ are based

on a compromise to reduce as much as possible the effects of these two issues.

The time lag problem is more evident for the estimates of the attitude errors, as

shown in Fig. 7.13.
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Fig. 7.13 Attitude errors for low-cost INS/GPS (no GPS outages)

The attitude errors seem to vary less rapidly than those obtained for position

and velocity. The level of accuracy is approximately the same for all the three

angles. However, it can be proved that this result is not general: the fact of

having considered a trajectory with both vertical and horizontal accelerations

permits to have all these errors observable. For example, without a horizontal

acceleration, the yaw angle error becomes not observable and starts to

increase. In order to demonstrate this problem, a simple trajectory of a vehicle

traveling in a straight line at a constant velocity has been generated. While this

new dataset did not cause any problem in the determination of position and

velocity, it was useful for verifying the non-observability of the yaw angle, as

shown in Fig. 7.14. The roll and pitch errors maintain the same level of accuracy

already seen before, except for a very short initial period where the filter is still

stabilizing. The yaw error, instead, grows rapidly and becomes very large after

only 30 seconds. A possible solution to this problem is to utilize an external

aiding source which is able to determine the yaw angle separately from the

INS/GPS navigation system (for instance, a magnetic compass); such

information can be subsequently used as an additional measurement available

for the INS filter, turning the yaw angle error into an observable variable.
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Fig. 7.14 Attitude errors obtained with a straight uniform trajectory

The last part of this section deals with the comparison of the performance

obtained using different types of IMUs in the integration with GPS.

First, it is important to note that when considering sensors of better quality the

size of the INS filter is reduced. In fact, a higher IMU’s grade is directly

associated with a fewer number of sensor errors, or with errors that are

maintained constant during the operation. If in-run variations are absent or non-

significant, it is possible to eliminate the dynamics of such errors from the INS

system equations, thus decreasing the dimension of the system state vector.

For example, the FOG-IMU, whose characteristics are illustrated in Tab. 7.1, is

affected only by a turn-on bias and scale factor error, which have no time

variations; in such case, the six equations related with the bias drift dynamics

(for both accelerometers and gyros) can be eliminated from the INS filter,

decreasing consequently the number of variables to estimate. This not only

reduces the computational load required for the filter, but it also makes it more

efficient since it facilitates the estimation of the various errors which now are

fewer in number.

Therefore, modified reduced versions of the INS filter have been created to run

simulations with other types of IMUs. The results proved that in a situation of

good satellite availability the overall performance of the integrated system
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depends almost exclusively on the accuracy of the GPS solution. Since we

already saw that no significant differences are shown by the two integration

strategies (for this specific situation), only one was used to run these tests,

namely, the tightly coupled. The RMS position accuracy obtained in the various

tests is illustrated in Fig. 7.15; these values are also listed in Tab. 7.3.
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Tab. 7.3 RMS position errors for different IMUs

RMS (m)
Low-Cost

MEMS-IMU
MEMS-IMU FOG-IMU

North 1.07 1.05 1.03

East 1.19 1.16 1.07

Up 2.51 2.47 2.44

2D 1.60 1.56 1.49

3D 2.98 2.92 2.86

The performance of the integrated system hardly improves using higher quality

IMUs. When GPS measurements are continuously available, it is the GPS

accuracy that determines the overall navigation solution accuracy, since it is the

GPS-only solution that is used as a reference to correct the results given by the

inertial system. The importance of having better quality IMUs will be evident in

the case of partial or total GPS outages, because it is in such situations that the

system relies more (or exclusively) on the INS measurements.
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Tab. 7.4 specifies the positioning accuracy requirements for all flight categories

up to precision approach [8]. It is possible to see that the accuracy requirements

for category I should be achieved most of the time by the integrated system

being studied here; concerning the other two categories, the vertical accuracy is

much more restrictive and this system, even under benign operational

conditions, does not permit the fulfillment of such requirements.

Tab. 7.4 Positioning accuracy requirements for all flight categories

Horizontal Vertical

Category I 17.1 m 4.1 m

Category II 5.2 m 1.7 m

Category III 4.1 m 0.6 m

7.4.2 Results with simulated GPS outages

As previously mentioned, a major advantage of the tightly coupled INS/GPS

system compared to a loosely coupled approach is the aiding capability in the

case of fewer than four visible satellites.

In order to prove how GPS outages can easily occur in practical situations, a

simulation of an helicopter flying through a canyon has been run, and the

results are illustrated in the following subsection.

7.4.2.1 Simulation of a canyon flight

The scenario reproduced for this simulation is illustrated in Fig. 7.16. The

objective is to evaluate the number of visible satellites as the helicopter varies

its altitude h inside the canyon. The helicopter is located between two cliffs

having the same height H and being separated by a distance L . The semi-

aperture of the cone representing the visible sky area from the helicopter’s point

of view has been called  , while 90º   is the angle between the local

horizontal plane and the cone.
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Fig. 7.16 Representation of the simulation’s scenario

It is simple to verify that the satellite’s angle of elevation, El , has to satisfy the

following restrictions in order to be visible by the helicopter:

90ºEl   (7-3)

Since we are interested in determining the satellite visibility based on the

helicopter’s altitude, the angle  must be defined as a function of h . First, the

angle  is determined:

1 2
tan

L

H h
   
  

 
(7-4)

Then, by observing that  and  are complementary angles, we obtain the

desired expression:

1 2
90º tan

L

H h
   
   

 
(7-5)
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As the helicopter’s altitude increases, the angle  becomes smaller. The limit

case is when h = H : the helicopter is located at the top edge of the canyon, no

obstacles block the GPS signals, therefore it corresponds to a situation of full

satellite visibility.

The results of Fig. 7.17 show the variation of the number of visible satellites with

the helicopter’s altitude, where it was assumed 1000H L m  . The various

lines refer to different initial positions: the latitude is fixed (vehicle located at the

equator), while some different longitude values have been considered.
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Fig. 7.17 Number of visible satellites as a function of the vehicle’s height

In the worst case, the number of visible satellites is maintained below four until

an altitude of 700 m. With 90º longitude, only one satellite is visible up to 530 m

approximately. These results demonstrate how a GPS-only navigation system

can be unreliable under such conditions.

The same results can be represented in a more elucidative way, by showing the

sky portion that is visible from the helicopter’s point of view. The real shape of

this area is complex, as shown in Fig. 7.18; however it can be approximated as

rectangular without great loss of accuracy.
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Fig. 7.18 Real shape of visible sky portion

Fig. 7.19 shows the results obtained with the vehicle located at the geodetic

coordinates  0º ,0º . The GPS satellite constellation represented in Fig. 6.1 has

been considered; however, this time, the satellite position is given in terms of

geodetic longitude and latitude, and a planar projection is plotted. Until a

altitude of 200 m only satellite 17 is visible; a 200 m increment only causes the

addition of satellite 11. The situation of four visible satellites, which permits the

determination of a GPS navigation solution, is obtained only at 600 m height. At

950 m the number of satellites is 9, and a final increment of other 50 m permits

to reach the maximum value of 10 satellites, corresponding to the situation of

full visibility.
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Fig. 7.19 Approximation of the visible sky portion for different altitudes
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It can be proved that, even when four satellites are visible, the GPS cannot give

a reliable navigation solution because of the bad satellite geometry. In fact,

since the visible sky portion is limited to a narrow region, all the satellites,

whose transmitted signals are used to determine the receiver’s position, are not

widely spread in the sky and, for this reason, they cause a lower accuracy of the

solution. An easy way to demonstrate this problem is through the visualization

of the DOP parameters. Considering again the case with the vehicle located at

geodetic coordinates  0º ,0º , Fig. 7.20 shows the values of the main DOPs as

a function of the height inside the canyon.
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Fig. 7.20 DOP values versus height inside the canyon

Note that the dilution of precision can be evaluated only when the number of

satellites is at least equal to four; in Fig. 7.17 it is possible to see that, for the

situation considered here, a fourth satellite becomes visible at a height of 600

m. The situation of four visible satellites is maintained until approximately 800

m; however, during this interval the DOPs exceed reasonable values (for

example, the GDOP is equal to 22). Theoretically, a navigation solution can be

computed, but such high DOP values would lead to a positioning solution

characterized by unacceptable accuracy. As a fifth satellite becomes available,

the DOPs drop to more reasonable values; yet, the GDOP is approximately
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equal to 4, which is still a high enough value to cause low positioning accuracy.

Only with the addition of another satellite (which occurs around 840 m) the

DOPs can be assumed low enough for obtaining a good solution. The GDOP is

approximately equal to 3 until 900 m; then, the number of satellites quickly

increases up to 10, and optimal DOP values are achieved.

7.4.2.2 Performance during partial and complete GPS outages

In order to assess the performance of the integrated system in situations similar

to the one presented above, numerical simulations with partial GPS availability

have been run. Specifically, several GPS outages (or gaps) were simulated:

each gap has a duration of 40 seconds, and their individual location is illustrated

in Fig. 7.21.
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Fig. 7.21 Number of satellite for simulations with GPS data gaps

During all other periods, the number of satellites is set to six. Although this

simulation might not seem realistic, the reason why it was run is to evaluate the

level of deterioration in accuracy of the integrated system when three, two, one

or no GPS measurements are available.
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Similarly to what was done in section 7.4.1, we begin with the analysis of the

results obtained for the low-cost MEMS-IMU using the two integration

approaches. In this case, it is more interesting to observe the performance in

terms of absolute position and velocity errors, which are shown in Fig. 7.22 and

7.23 for the loosely coupled and tightly coupled integrations, respectively.

For the loosely coupled integration, a number of satellites lower than four

implies the absence of the GPS solution. Therefore in all situations of GPS

outages, regardless the number of available satellites, the overall solution of the

integrated system is the INS-only solution without any external aid. From Fig.

7.22 it is possible to see that the error growth, for both position and velocity, is

similar during all the simulated gaps except for the first one. This result is

associated to the current performance given by the filter for the estimation of the

INS errors. This part related to the sensor error estimation will be

comprehensively analyzed in the following section.
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Fig. 7.22 Absolute position and velocity errors (LC integration)
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Fig. 7.23 Absolute position and velocity errors (TC integration)

For the tightly coupled integration the performance is significantly improved.

With a number of satellites lower than four the integrated system can still give a

solution with a level of accuracy that may be satisfactory depending on the

specific application. With three satellites available the loss of accuracy is

scarcely visible. With two satellites the errors start to grow reaching a maximum

value of approximately 20 m for position, and 4 m/s for velocity. In the last two

intervals, with one or no visible satellites, the errors become very large. It is

interesting to notice that, for both the integration approaches, at the end of each

GPS data gap, the errors become small again after a very short period of time

(1 or 2 seconds).

The 3D navigation solutions, obtained with the two integration approaches, and

the reference trajectory are shown in Fig. 7.24. Even though the axes scales

are not set equal, it is possible to verify that the position error is larger along the

vertical direction, as expected.



115

0 1000 2000 3000 4000 5000 6000 7000 8000

-4000

-2000

0

2000

4000

500

1000

1500

Northing [m]

Easting [m]

H
e
ig

h
t

[m
]

Reference

LC solution

TC solution
n = 3

n = 2

n = 0

n = 1
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For the attitude errors, the tightly coupled scheme also gives better results than

the loosely coupled, as visible from Fig. 7.25.
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Fig. 7.25 Attitude errors for LC and TC integrations

During the gaps the errors become very large with the LC integration, reaching

a maximum absolute value of approximately 20 degrees. For the TC integration,
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the only interval where the error is clearly larger is the last one where no

satellites at all are available. Note that the attitude errors during the periods

where the satellite visibility is good are slightly higher than the ones obtained in

the previous section. There are two possible reasons that caused this partial

deterioration: firstly, the number of satellites during these periods is equal to six,

while for the previous simulations it was averagely eight; secondly, the

continuous losses of GPS signals make it more difficult for the INS filter to

estimate precisely the sensor errors.

Finally, in the same way as it was done for the situation of full satellite

availability, the solutions obtained with IMUs of different quality have been

compared. This time it is more interesting to plot the maximum absolute error

reached during each GPS data gap rather than the RMS values. These results

are shown in Fig. 7.26 and are also summarized in Tab.7.5.

Fig. 7.26 Maximum 3D position errors with GPS outages for different IMUs

Tab. 7.5 Maximum 3D position errors with GPS outages for different IMUs

Maximum 3D error (m) LC TC

Number of satellites 3 2 1 0 3 2 1 0

Low-Cost MEMS-IMU 2033 791 885 738 4.8 23.4 226 585

MEMS-IMU 1125 663 649 612 4.2 18.7 180 449

FOG-IMU 210 137 121 111 3.9 7.8 62 103
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Once again, these results confirm the better performance of the tightly coupled

integration. In the situations with one or no satellites available, the INS system

assumes the major role in the determination of the navigation solution, since the

GPS aid is very limited. Therefore, with better quality IMUs, the accuracy of the

integrated system is significantly affected. The performance of the two MEMS-

based IMUs are slightly different; instead, a great improvement is given by the

FOG-IMU, which reaches a maximum position error of 103 m during the period

of complete GPS outage (with the tightly coupled scheme).

7.4.3 Analysis of observability

Using pseudorange and Doppler measurements, the position and velocity errors

are directly observable. However, an observability analysis of the system is of

most interest since a large number of variables has to be estimated: besides

position and velocity errors, there are the attitude errors, as well as all the

sensor errors (turn-on bias, bias drift, and scale factor error). Only when the

system is completely observable can the rest of the states be estimated from

the pseudorange and Doppler measurements.

In general, a discrete-time system with dynamics matrix F and design matrix

H (as described in section 4.1) is observable if the observability matrix below is

non-singular [16]:

2 1nT T T T T T T
OK H F H F H F H


 
 

 (7-6)

where n is the number of states. The system is completely observable if the

rank of the observability matrix is equal to the system dimension:

 Orank K n (7-7)

If Eq. (7-7) is satisfied it means that the attitude errors as well as the sensor

errors are all observable within the Kalman filter. However, if the rank of the

observability matrix is less than n, it means that some of the state components
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are unobservable within the Kalman filter. As a result, the accuracy of all state

estimates that are not directly measured cannot decrease below a certain

bound. For INS/GPS integration, the states may also be non-orthogonal to each

other causing the system to be only partially observable.

Considering our problem, theoretically deriving the analytical expression of Eq.

(7-6) is very difficult; however, a numerical approach can be used. The

observability matrix is determined at each filtering step, and its rank is

evaluated.

Fig. 7.27 illustrates the results obtained in the situation of full GPS data

availability with good satellite geometry.

0 1 2 3 4 5 6 7 8 9 10

16

17

18

19

Time [min]

R
a
n
k

o
f

o
b
s
e
rv

a
b
ili

ty
m

a
tr

ix

TC (29 states)

LC (27 states)

Fig. 7.27 System observability (no GPS outages)

For both the TC and LC integrations the system is not completely observable,

with the number of non-observable states varying between 10 and 11. Although

these results may appear quite negative, it was proved experimentally that the

filter estimates do not diverge substantially. To give an idea of how this partial

system observability affects the filter estimates, Fig. 7.28, 7.29, and 7.30 show

the results obtained during one simulation using the TC integration. These plots

represent the comparisons between the real sensor error values and their

corresponding estimates, including all the accelerometers and gyros errors

along the three body axes.
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(a) Accelerometers (b) Gyros

Fig. 7.28 Tri-axial turn-on-bias estimates

(a) Accelerometers (b) Gyros

Fig. 7.29 Tri-axial bias drift estimates

(a) Accelerometers (b) Gyros

Fig. 7.30 Tri-axial scale factor error estimates
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In general, these results confirm the difficulty of the filter to estimate precisely all

the errors. As expected, the results vary depending on the direction considered.

The turn-on bias estimates show a residual error that the filter is not capable to

eliminate; some of these residuals are very large, depending on the particular

axis. It is possible to evaluate the relative error, expressed as a percentage, by

using the following equation:

100
estimate real value

relative error
real value


  (7-8)

Tab. 7.6 contains the relative errors calculated for both accelerometers and

gyros. Of all the three directions, only one value is significantly higher than the

others: for the accelerometers it is 25.2%, obtained along the X axis; for the

gyro it is 53.8% along the Y axis. This proves that the actual vehicle’s

maneuvering has a great influence on the capability of the filter to provide good

estimates. Theoretically, the more variable with time the sensor measurements

are, the better will be the filter performance.

Tab. 7.6 Residual errors of turn-on-bias estimates

Residual Error X Y Z

Accelerometers 25.2% 5.0% 8.8%

Gyros 9.1% 53.8% 7.1%

The bias drift estimates are in general good for the gyros, while for the

accelerometers they show some difficulties in tracking precisely the

corresponding real quantities. We can associate these less precise results to

the fact that these variables are among the non-observable ones during the

entire simulation.

Finally, the scale factor error estimates seem to have less problems to follow

the real values, and for both accelerometers and gyros the results present a

similar good level of accuracy.

A completely different result is obtained when considering the estimates of the

GPS receiver clock errors. The loosely coupled integration has a specific GPS

filter to estimate these quantities; the tightly coupled INS/GPS filter must contain
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the states corresponding to these errors since the GPS filter is eliminated with

this configuration (see Chapter 5). However, the GPS measurements

(pseudorange and Doppler) are directly related to these errors; thus, their

estimations will be extremely accurate along the entire simulation, regardless

the type of approach being used. This is clearly visible from Fig. 7.31, where the

errors are presented in terms of equivalent position and velocity. Note that it is

essential to obtain good estimates of the clock errors because they assume

large values after a short period of time.
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Fig. 7.31 GPS receiver clock errors estimates

We saw that the vehicle’s type of maneuvering affects the filter performance. As

an example, in section 7.4.1 a simulation with the vehicle moving in a straight

line with a constant velocity was run to show that the yaw angle error becomes

non-observable in such situation. A further proof of this result is given by Fig.

7.32, which shows the rank of the observability matrix evaluated during this

specific simulation. When comparing these results with the ones obtained in

Fig. 7.27, it is easy to verify that, in average, the number of observable states

decreased of approximately one unit.
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Fig. 7.32 System observability for a vehicle in straight uniform motion

The results presented so far in this section correspond to a situation of full GPS

data availability with good satellite geometry. However, as the number of visible

satellites drops down, the system observability is consequently affected. Using

the satellite geometry illustrated in Fig. 7.21, the rank of the observability matrix

has been evaluated for both the TC and LC integrations; the corresponding

results are shown in Fig. 7.33.
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Fig. 7.33 System observability (with GPS outages)
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With less than four satellites the GPS-only solution is not available and the LC

integrated system can only provide the INS solution; in this case the Kalman

filter algorithm for the errors estimation cannot be executed, thus explaining why

the rank of the observability matrix falls to zero during the GPS outages. The

tightly coupled integration, instead, can always execute the EKF, as long as at

least one satellite signal is available. The system observability is gradually

affected, depending on the specific number of satellites; for the worst case (one

satellite), the number of observable states is equal to 10-11.

The final conclusions that can be drawn from the above observability analysis is

that the filter has a limited ability in estimating accurately all the errors. The level

of observability depends not only on the number of measurements available,

but also on the vehicle’s actual motion. However, a reduced system

observability does not necessarily affect significantly the accuracy of the overall

INS/GPS navigation solution when the GPS measurements are available

continuously and in sufficient quantity. Some problems can occur when the

number of measurements decreases and the INS solution assumes a greater

importance. Poor sensor error estimates, in fact, will cause the navigation

solution to diverge quickly from the correct values.

7.5 Augmentation of the INS/GPS system with Galileo

The goal of this final analysis is to assess the impact of the augmentation of the

INS/GPS navigation system, using a TC integration, with Galileo (see Appendix

D for a brief description of the Galileo system). Specifically, the main objective

is to quantify the benefits provided by this innovative integrated system in terms

of availability and accuracy of the navigation solution, as well as the system

observability.

If we consider that Galileo and GPS are operated together to constitute a super-

constellation, the geometry of both systems improves dramatically, as shown in

Tab. 7.7 [30].
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Tab. 7.7 Assumed DOPs for Galileo and GPS

Accuracy of the
position (95%)

PDOP HDOP VDOP

GPS-only 2.70 1.20 2.40

Galileo-only 2.70 1.20 2.40

GPS+Galileo 1.12 0.50 1.00

To compute the total positioning error resulting from processing signals coming

from Galileo and GPS, the following expression is employed [30]:

2 2

2

1 1GPS GAL GPS GAL

GPS GAL

err DOP

 

  


(7-9)

where  refers to the UERE budget of Galileo and GPS, respectively. The

worst and typical cases of UERE budgets for Galileo and GPS services,

obtained with a narrow correlator receiver with two different signal bandwidths

(namely, 8 MHz and 24 MHz), are displayed in the following table [30].

Tab. 7.8 Galileo and GPS UERE budgets for typical and worst cases

UERE budget (m) L1B,C (8 MHz) L1B,C (24 MHz) C/A (8 MHz) C/A (24 MHz)

Typical case 4.18 3.64 5.50 5.14

Worst case 9.82 7.57 10.36 8.31

Tab. 7.9 gives the 3D RMS values for position, velocity, and attitude errors

obtained through simulations of a simple INS/GPS system, and of a

INS/GPS+Galileo system using the UERE budgets for a typical case. The

augmented system has, in average, a number of available measurements equal

to 16 (the double as for the other case).

Tab. 7.9 3D RMS accuracy for INS/GPS and INS/GPS+GALILEO systems

3D RMS accuracy Position Velocity Attitude

INS/GPS 2.98 m 0.165 m/s 1.80º

INS/GPS+GALILEO 1.36 m 0.116 m/s 1.39º

All quantities show some degree of improvement; the most significant is

obtained for the position error, where a 54% increase of accuracy is achieved.

Although a more accurate overall navigation solution can be obtained, the
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increased number of available measurements (pseudorange and Doppler) does

not improve significantly the system’s estimation capabilities. This is proved by

the analysis of the system observability, shown in Fig. 7.34 (for the TC

integration).
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Fig. 7.34 Observability of INS/GPS and INS/GPS+GALILEO systems

Once again, the maximum number of observable states is limited to 19. An

interesting comment is that the variation with time of the rank of the

observability matrix for the two systems is very similar, and for some periods it

is exactly coincident. This proves that the actual vehicle’s motion has a greater

influence than the actual number of available measurements.

Whereas no significant improvement is visible from the figure above, another

important advantage (besides the increased accuracy of the solution) can be

outlined by considering once again the example of a helicopter’s canyon flight

(see section 7.4.2.1). Fig. 7.35 shows the total number of GPS/Galileo satellites

as a function of the vehicle’s height inside the canyon. When comparing these

results with those of Fig. 7.17, it is possible to see that a great improvement is

obtained. With the GPS constellation only, a situation of 4 visible satellites is

reached at 600 m altitude (in the best case); with the addition of Galileo, this

condition is achieved much earlier (around 200 m for the vehicle located at -90º

longitude).
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Another way to visualize the improvement obtained with the addition of Galileo

is through Fig. 7.36, which gives a 2D representation of the two satellite

constellations and of the approximated visible sky portion from the point of view

of the vehicle, displayed for different altitudes.
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Note that, although the Galileo satellite constellation has been already defined,

the relative position with respect to the GPS constellation is not known at the

moment. Thus, various simulations with different initial Galileo satellite positions

have been run, and it has been verified that the results are not significantly

affected by these variations. A maximum difference of 1-2 visible satellites has

been obtained for intervals shorter than 100 m.

The main conclusion that can be drawn from this last analysis is that the major

advantages of the augmentation of an INS/GPS system with Galileo are mostly

related with increased accuracy and availability of the navigation solution. In

other words, this new integrated system is characterized by higher reliability and

robustness, in a sense that it is able to provide an accurate navigation solution

with more availability. However, the addition of another satellite navigation

system, based on the same working principle as the GPS and offering the same

type of measurements, does not improve the estimation capabilities of the

integrated system.
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Chapter 8

Conclusions and Recommendations

This chapter contains a summary of the research presented in this thesis, the

conclusions drawn from the tests results, and some recommendations for future

work in INS/GPS integration.

8.1 Summary

The work presented in this thesis dealt with the assessment of a low-cost

INS/GPS integrated system for airborne applications. The motivation for using

an integrated system is that the GPS signal does not always reach the user,

and thus continuous positioning is not possible through a navigation system

based exclusively on GPS (canyon effect).

The GPS and INS sensors have been integrated using two approaches,

namely, the loosely coupled and the tightly coupled. Both these strategies have

been implemented using a closed-loop configuration. Two types of GPS filters

have been implemented, a PV and a PVA. The INS filter contains the navigation

error states (position, velocity, and attitude), and the inertial sensor error states

based on the typical characteristics of low-cost inertial sensors; additionally, for

the case of tightly coupled integration, the filter (which has been referred to as

INS/GPS filter) is also augmented with the two error states of the GPS receiver

clock.

Both the integration strategies have been used to evaluate the performance of

the INS/GPS system; the main differences, specific advantages, and limitations

of each approach have been outlined. An innovative INS/GPS+Galileo system

has also been analyzed.
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8.2 Conclusions

The main objective of this thesis was to develop and test different INS/GPS

strategies for low-cost airborne navigation. This goal has been met with the

development of a software through which it has been possible to perform

several types of simulations and tests.

The following conclusions can be drawn from the results obtained:

 The low-cost MEMS-based IMU, characterized by several types of error

sources, shows a very poor performance when compared to other IMUs

of higher quality. The errors of its navigation solution become

unacceptable after short periods of time, even when an initial calibration

is performed.

 The PV and PVA models for the GPS filter show no significant difference

in their performance for vehicle’s low dynamics. However, the importance

of using a model which takes into account the quick variations of

acceleration is evident in situations of vehicle’s high dynamics.

 The INS/GPS integrated system provided a level of position accuracy

which is directly associated to the GPS-only solution in a situation of

good satellite geometry and no GPS outages.

 Velocity error trends are analogous to position error trends under

consistent GPS availability.

 The attitude errors show a behavior that is less GPS-dependent, in a way

that they appear to be less noisy and with slower time variations. The

maximum error values that have been obtained might not be acceptable

for some specific applications. This validates the requirement for

additional external aiding (for instance, a magnetic compass).

 Under full satellite visibility, the performance of the low-cost INS/GPS

system is comparable to the one of an integrated system which uses a

better quality MEMS-IMU, or even a tactical grade IMU.

 The loosely coupled and tightly coupled integrations provide similar

accuracy under full satellite visibility. Under such conditions, a loosely

coupled integration strategy is preferred due to its easier implementation

and lower computational load.
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 In contrast, the tightly coupled scheme has shown a superior

performance relative to the loosely coupled case in situations of partial or

complete GPS outages. With this strategy, the integrated system is able

to maintain the errors under a reasonable bound even when only 3 or 2

satellites are available. With 1 or no satellites at all, the errors become

too large after a 40 s outage due to the low quality of the inertial sensors,

which assume much importance during these periods.

 The quick growth of navigational errors during GPS outages is partially

due to the difficulty of the INS filter to estimate correctly and precisely the

numerous error sources of the inertial sensors. In terms of observability,

the integrated system has shown some limitations even in situations of

full satellite visibility.

 The augmentation of the INS/GPS system with Galileo has shown some

improvements in terms of accuracy and availability of the solution; with a

greater number of available measurements, the integrated system

becomes more reliable and robust. However, in terms of system

observability and sensor error estimation, no improvements have been

obtained.

 The ultimate conclusion of this work is that the low-cost INS/GPS

integrated system performs reasonably well in different operating

environments and partially outperforms the GPS-only system in terms of

navigation solution accuracy, availability, and reliability. At times, the

performance of the low-cost INS/GPS system has shown to be

comparable to the one of an integrated system using a tactical grade

IMU. Therefore the results presented in this work strongly indicate the

potential of low-cost INS/GPS for use in airborne applications.

8.3 Recommendations

The following recommendations can be made for future investigation on low-

cost INS/GPS systems:
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 The investigation of the system performance through the addition of

measurements from other navigation instruments is necessitated.

Typically, in airborne applications, such instruments can be a barometric

altimeter, a magnetic compass, a VOR, etc. More measurements from

systems which are based on different physical principles can aid the

errors estimation and improve the system observability.

 The use of vehicle’s position and velocity constraints during some non-

crucial flight phases (for example, en-route) can provide some

improvements in situation of partial GPS outages.

 The INS/GPS performance can be further improved by using recently

developed map-matching techniques. Such methods provide additional

map-derived motion constraints, that can potentially help to maintain the

INS errors smaller in the complete absence of GPS signals [3].

 The usage of multiple GPS antennas can provide more accurate attitude

information in situations of full satellite availability. This technique, called

Attitude Heading Reference System (AHRS), permits to use lower quality

IMUs and, thus, is more economical to implement than other

conventional techniques [12].

 The estimation technique used in this work is the (extended) Kalman

filter. Further investigation may be oriented to the use of other adaptive

and nonlinear filtering methods, including particle filters [18].

 In the thesis, GPS-inertial systems have been mechanized by combining

the information from GPS and INS using either a loose integration or tight

integration. A third scheme of integration could be implemented instead,

in which the inertial sensors would be used to aid the GPS

phase/frequency and code tracking loops directly. This level of coupling

is usually referred to as ultra-tight or deep integration [1], and it seems to

offer potential improvements to GPS performance such as more

resistance to radio frequency interference or multipath effect.
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Appendix A

GPS Navigation Message and Orbital Parameters

Each GPS satellite broadcasts continuously a navigation data message at 50

bits per second. The message is formatted into frames of 1500 bits, which

corresponds to a frame duration of 30 seconds. Each frame is organized into 5

subframes. Subframes 1-3 typically repeat the same information from frame to

frame. However, subframes 4-5 of consecutive frames contain different “parts”

of the navigation message. It takes 25 frames (12.5 minutes) to transfer the

complete navigation message. The structure of a frame is shown in Fig. A.1.

[27].

Fig. A.1 Structure of a GPS frame

The first two words of each subframe are the telemetry word (TLM) and the

hand-over word (HOW). The TLM contains a synchronization pattern, while the

HOW provides time information (seconds into the week) to allow the receiver to

acquire the P (Y) code.

Each satellite broadcasts its own ephemeris in its navigation message. A

coarse version of the ephemeris of all satellites in the constellation is also

transmitted in the form of an almanac. The goal of the almanac is to permit the

receiver to know the subset of satellites that are visible when a coarse position

of the receiver is known.
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The purely elliptical Keplerian orbit (Fig. A.2) is not sufficiently precise to define

the actual GPS satellite orbit due to many perturbations to the ideal orbit,

including nonspherical Earth gravitational harmonics, Lunar/Solar gravitational

attraction, and solar flux [27].

Thus, the GPS orbit is modeled as a modified elliptical orbit with correction

terms:

 sin, cos perturbations to the argument of latitude, orbit radius, and angle

of inclination;

 rate of change of right ascension and inclination angle.

Fig. A.2 Characterization of an ideal (Keplerian) orbit

The notation used in the figure above is summarized as follows:

e eccentricity;

i inclination;

 true anomaly (at a given epoch t)

 argument of perigee;

 right ascension of ascending node;
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The last parameter that is required to completely specify the ideal elliptical orbit

is the semi-major axis (a).

Tab. A.1 shows ephemeris model parameters which includes the sinusoidal

perturbations to the orbit radius, the angle of inclination and argument of

latitude, the rate of change of inclination angle, the angular rate of change of the

right ascension, and the basic Keplerian parameters. The parameters for the

orbit model are changed periodically and are transmitted in the ephemeris

subframes. This navigation data is also transmitted in the almanac, although

with a reduced precision.

Tab. A.1 Ephemeris data definition (adopted from [27])

Finally, the equations in Tab. A.2 give the center position of the satellite

antenna in the WGS-84 Earth-Centered Earth-Fixed (ECEF) coordinate system

for any time epoch t.
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Tab. A.2 Elements of ephemeris model equations [27]
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Appendix B

Quaternion algebra

The classical analysis of the rotation problem shows that transformations

between three-dimensional vectors are accomplished by a tensor, known as the

rotation tensor, which is usually expressed as a function of its associated vector

quantity, the rotation vector (Fig. B.1).

Fig. B.1 The rotation vector 

However, rotations can be expressed in terms of parameters other than the

rotation vector. The choice of a parameterization is usually made by considering

the characteristics of a specific application, for example for avoiding

singularities or for reducing the computational cost of certain operations [5].

Among the numerous techniques used for representing three-dimensional

rotations, the quaternion algebra is frequently adopted. A quaternion is a four-

dimensional vector defined as [32]
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where x , y , and z are the components of the rotation vector  , and

2 2 2
x y z      (B-2)

The four components of the quaternion vector are related by a constraint

(normality condition):

2 2 2 2
1 2 3 4 1q q q q    (B-3)

A quaternion that satisfies this constraint is called a unit quaternion and can be

used for the parameterization of rotations. Note that the application of this

normalization condition does not correct for errors that occur during a

computational cycle for the attitude update. In fact, an error arising in a single

element of the quaternion can be spread amongst all of the other elements [32].

The complication of working with four parameters and a constraint equation,

instead of three parameters only as for the case of the Euler angles, can be

compensated in certain applications by the fact that this parameterization is

singularity free, in the sense that is well defined for     [5]. Besides,

quaternion algebra is preferred in updating the attitude information since the

linearity of the quaternion differential equations and the lack of trigonometric

functions allow an efficient implementation [11].

The differential equation for the quaternion parameters is given by [32]
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 (B-4)

where
T

x y z       is the angular velocity of the rotation. Eq. (B-4) has to

be transformed in a corresponding discrete form in order to be used in a

computational algorithm. A possible expression is the following [14]:
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and

2 2 2
x y z          (B-8)

In the previous formulas, the operator  denotes an increment of a certain

quantity during the time interval 1k kt t  .

The DCM b
aR , which can be used for transforming a vector from the a-frame to

the b-frame (Fig. B.1), can be obtained from the corresponding quaternion

vector [14]:
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(B-9)

In order to start an algorithm involving quaternion algebra, it is necessary to

initialize the quaternion vector. If the initial Euler angles 0 , 0 , and 0 are

known (or at least their corresponding estimates with sufficiently good

accuracy), the following expression can be used [33]:
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(B-10)

Alternatively, if the initial DCM is known, this other expression can be applied

[32]:

   
   
   

32 23 11 22 33

13 31 11 22 33

0

21 12 11 22 33

11 22 33

0.25 0.5 1

0.25 0.5 1

0.25 0.5 1

0.5 1

c c c c c

c c c c c
q

c c c c c

c c c

    
 
    
 
 

    
 

    

(B-11)

where ijc , 1 , 3i j  is the ( ,i j ) element of the DCM.
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Appendix C

Specifications of the Crista IMU from Cloud Cap

Technology
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Appendix D

The Galileo System

Galileo is a proposed global navigation positioning system of the European

Union and European Space Agency. Galileo is tasked with multiple objectives,

including the following [10]:

 to provide a higher precision to all users than is currently available

through GPS;

 to improve availability of positioning services at higher latitudes;

 to provide an independent positioning system upon which European

nations can always rely.

The initial project plan has the system as operational by 2011; however, some

delay is currently expected. The European Union and the United States have

signed an agreement (June 2004) to ensure compatibility between their two

satellite positioning systems [10], [19]. The deal means that the two sides will

agree common operating standards for the American GPS and the European

Galileo project currently under development. The agreement will create a world

standard for signals, which means that users will be able to obtain similar

signals from both systems. Dual GPS-Galileo receivers will provide additional

availability, precision, and robustness.

The Galileo constellation will consist of 27 operational satellites equally

distributed over 3 orbit planes, in a 27/3/1 Walker constellation. This means that

the right ascension of ascending nodes of the three planes are separated by

40º in-plane. Each plane will include an additional (inactive) spare satellite [37].

The main orbit parameters will be:

 semi-major axis: 29601 km;

 eccentricity: 0.002;

 inclination: 56º;
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 argument of perigee: 0º (TBC);

 right ascension of ascending node: 0º, 120º, 240º (TBC).

Four services will be available: open service (OS), safety of life (SOL),

commercial service (CS), and public regulated service (PRS).

Galileo will provide six navigation signals in the frequency ranges 1164-1215

MHz (E5 band), 1260-1300 MHz (E6 band), and 1559-1592 MHz (E2-L1-E1

band). All satellites will make use of the same carrier frequency with different

ranging (spreading) codes through CDMA transmission. Tab. D.1 displays the

performance for the Galileo services [19].

Tab. D.1 Performance for the Galileo services

Service OS CS SOL PRS

Positioning accuracy
(Horizontal, 2 dRMS,
95%) (Vertical, 95%)

15m or 24 m H - 35m
V

(single frequency)
4m H - 8m V

(dual frequency)

4m H - 8m V
(dual frequency)

15m or 24m H -
35m V (single

frequency)
6.5m H - 12m V
(dual frequency)

Timing accuracy (95%) 30 ns 30 ns 30 ns 30 ns

Integrity: None None

Alert limit 12m H - 20m V 20m H - 35m V

Time to alert 6 sec 10 sec

Integrity risk 3.5 x 10
-7

/150 sec 3.5 x 10
-7

/150 sec

Continuity risk - - 1 x 10
-5

/15 sec 1 x 10
-5

/15 sec

Service availability 99.5% 99.5% 99.5% 99.5%

Notes:

• Single frequency accuracy depends on the frequency used: 15m horizontal accuracy when using the L1
signal or 24m when using the other frequencies (E5, E6).

• Integrity is defined by the following parameters:

► alert limit: the maximum allowable error in the user position solution before an alarm is to be raised
within the specific time to alert;

► time to alert: the time from which an alarm condition occurs until when the alarm is received at he user
level (including the time to detect the alarm condition);

► Integrity risk: the probability, during any continuous period of peration, tht the computed vertical or
horizontal positioning error exceeds the corresponding alert limit and the user is not informed within the
specified time to alert (note that the value reported in the table includes the user contribution of 1.5 x
10-7/150 seconds).


