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1 Introduction

In most western countries, atherosclerosis is the most prevalent and main cause
of death, representing more than twice the number of deaths due to cancer
and 10-fold the deaths caused by accidents. It is a disease of the large and
medium size arteries and its most important feature is plaque formation due
to sub-endothelial accumulation of lipid, protein, and cholesterol esters [1].

The risk of stroke increases with the severity of carotid stenosis and decreases
after endarterectomy, i.e. surgical removal of plaque [2]. Up to now the degree
of stenosis has been targeted as one of the most important landmarks to assess
the risk of stroke [3]. Indeed, it is the only criterion currently used to decide
about a surgical intervention. Other factors, however, also start to be used,
such as, cross-sectional area of stenosis, surface morphology, composition [4]
and texture [5].

Large clinical trials (NASCET, ECST, ACST, ACAS)[6] performed in both
symptomatic and asymptomatic patients, were able to identify groups that
clearly benefit with the surgery. Moreover, it is known that is necessary to op-
erate 83 asymptomatic patients, with more than 60% stenosis, to prevent one
stroke, which means that there is still a large number of individuals to whom
the clinical decision remains uncertain and may not benefit from surgery. The
decision on whether or not to operate is clinically relevant and has financial
consequences and therefore accurate diagnostic tools are needed.

In order to increase the accuracy of the diagnosis, parameters aiming to iden-
tify vulnerable lesions have been studied using 2D B-mode ultrasound (US)
imaging with computer-assisted analysis [7]. US images are used, for instance,
to extract the carotid contours to measure the stenosis severity [8,9], to au-
tomatically or semi-automatically segment the intima-media layer thickness
(IMT) [10] and to segment and characterize the plaques with respect to their
instability , based on intensity and texture [11,12]. However, 2D assessment of
plaque echoic features may not be very accurate because it depends on the se-
lection of a representative ultrasound image of the plaque. For this reason, an
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increasing amount of work has been published proposing new methods based
on 3D ultrasound, where 3D reconstructions are used to better assess plaque
vulnerability.

3D ultrasound uses a sequence of ultrasound images corresponding to different
positions and orientations of the ultrasound probe. Based on this information,
it is possible to compute the spatial position of every pixel from every image to
estimate a given 3D region of interest (ROI) [13], which describes the carotid
and plaque anatomies. The probe can be manipulated by using mechanical
devices or directly by the medical doctor in a freehand basis. Usually, in both
cases, a spatial locator is attached to the ultrasound probe to measure its
position. However, these devices are expensive and are not usually provided
with the traditional ultrasound equipment. Hence, 3D ultrasound algorithms
require specialized experimental setup which is only available in academic
laboratories or highly technological equipped medical centers.

In this work, it is proposed a rigid acquisition protocol and a reconstruction
algorithm that does not need any device for spatial location to obtain the
volume reconstruction. The anatomy and location of the carotid makes it pos-
sible to keep a uniform sweep velocity of the ultrasound probe while a set of
nearly orthogonal cross sections are acquired. The program that implements
the reconstruction algorithm uses either the feature-based reconstruction, to
obtain realistic carotid and plaque 3D models, and the voxel-based approach,
for the plaque characterization. The program also includes a semi-automatic
method for plaque characterization, based on global morphology and textural
properties in three-dimensions, presenting a user-friendly interface for the vi-
sualization of the results. A novel local analysis approach is also introduced,
regarding the identification of vulnerable and potentially dangerous locations
within the plaque.

2 Problem Formulation

The common carotid is the major artery which supplies the brain, and face
and neck tissues with blood. It is located in the lateral side of the neck, along
its longitudinal axis. This artery branches off in the external and internal
carotids, behind the mandibular angle, along the upward direction (see fig.1).

The most frequent location of the atherosclerotic lesion in the cerebro-vascular
sector is in the common carotid bifurcation (see fig.1) and in the origin of
the internal carotid artery (carotid bulb) where plaque formation tends to
produce obstruction or stenosis, reducing the blood flow, or to cause liberation
of thrombi or plaque fragments that embolize further ahead.
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Figure 1. Carotid artery anatomy and location. Atherosclerotic plaque-prone re-
gions.

The first step of this project is to acquire parallel cross sections of the carotid to
build a 3D mesh representing its anatomy. Since no spatial locators are being
used, the acquisition protocol is a critical process to guarantee the quality
of the results. The ultrasound probe must be manipulated as uniformly as
possible from the base of the neck up to the base of the skull, keeping its
orientation as static as possible.

All ultrasound exams were performed on a Philips HDI 5000 duplex scanner
(Philips Medical Ultrasound, NL) with a 5 to 12 MHz dynamic range linear
transducer, operating on Brightness Mode. In a typical acquisition session
60 images are acquired during a period of 2 seconds. The ultrasound image
sequences in AVI format are then stored on optical disc.

Small variations on the orientation of the ultrasound probe are not critical
because the algorithm performs the alignment of the images. The acquisition
protocol is illustrated in fig. 2, where the metallic strips, separated by a known
distance, are used as landmarks for signaling the limits of the ultrasound probe
course.

L
metallic strip 

Figure 2. Acquisition protocol. The US probe is placed transversally to the neck
and the image sequence is recorded by sweeping the probe over a known course.

Small variations on the sweep velocity, V = V0 + ∆V with ∆V < 0.1V0 and
V0 = 8cm/2sec = 4cm/sec, leads to position errors ≤ 0.02cm, which are small
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when compared with the total length of the probe course, d = 8cm.
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z

Figure 3. Sequence of cross-sections used for 3D ultrasound (Dimensions of the
region of interest are also indicated).

The reconstruction of carotid and plaque borders is obtained from a set of N
images, approximately parallels and separated by

δz = ∆z/(N − 1) (1)

where ∆z is the total length of the probe course (see fig. 3), delimited by the
strips. The position of each pixel is computed as

xp
i,j = (iδx, jδy, pδz) (2)

where p is the index of the image, δx and δy are the inter-pixel distances which
are constant for all images and given by the ultrasound equipment and δz is
obtained from (1).

3 Reconstruction

The reconstruction of the carotid and plaque is performed using a feature-
based approach where the contours of both structures are extracted from each
image of the data sequence. To produce the final meshes these contours are
linked, regularized, aligned and longitudinally smoothed.

Since the spatial information inside the lesion is clinically relevant, voxel-
based reconstruction is also performed, only inside the plaques, to allow the
assessment of its global and local instability.

The reconstruction is performed offline with a program written in-house, im-
plemented in Matlab (Mathworks, Inc.). This program is available, for free
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use, in [14], as well as the plaque characterization program and its interface.

3.1 Pre-processing

The ultrasound images usually present a small signal to noise ratio and are
corrupted by a type of multiplicative noise called speckle, that appears in
processes involving coherent radiation like Laser [15], SAR [16] and ultrasound
[17]. In this case, the noise is particularly severe.

Bayesian methods have been also successfully used in several medical imaging
modalities [18,19]. However, these algorithms are time consuming and com-
putationally demanding. Here, it is used a fast and computational efficient
denoising algorithm, based on the Bayesian algorithm described in [20].

The denoising process uses the maximum a posteriori (MAP) criterion, with
a total variation (TV) edge preserving Gibbs prior. The method is formulated
as an optimization task which is solved by using the Lyapunov equation [21].
This equation is very important in the Control theory, namely in the stability
analysis, optimal control and stochastic control fields. By this, efficient and
fast algorithms have been proposed to solve this equation [22–24], which can
be used to implement fast and efficient denoising algorithms.

The MAP solution is obtained as follows,

F = arg min
F






EY (Y, F ) + EF (F )
︸ ︷︷ ︸

E(Y,F )







(3)

where E(Y, F ) is an energy function, EY (Y, F ) is the so called data fidelity
term, EF (F ) is the prior term, F is a N ×M dimensional matrix representing
the denoised image to be estimated and Y is the N ×M noisy observed image.

By using the MAP criterion the data fidelity term is EY = − log p(Y |F ) and
the prior term is, in this project, obtained from a Gibbs distribution, which is
equivalent to model F as a Markov random field (MRF) [25],

EF (F ) = αTV (F ) (4)

where α is a parameter to tune the regularization strength and TV (F ) is the
Total Variation (TV) [26] of the field F , defined as follows,

TV (F ) =
∑

i,j

gi,j (5)
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where gi,j is the gradient magnitude at pixel fi,j, which can be approximated
by using the first order differences,

gi,j =
√

(fi,j − fi−1,j)2 + (fi,j − fi,j−1)2. (6)

Assuming statistical independence of the observations and a Rayleigh distri-
bution,

p(yi,j|fi,j) = (yi,j/fi,j)e
−y2

i,j
/2fi,j (7)

to model the multiplicative noise that corrupts the ultrasound images the
energy function is the following

EY = −
∑

i,j

[

log

(

yi,j

fi,j

)

−
y2

i,j

2fi,j

]

. (8)

The minimization of E(Y, F ) w.r.t. F is obtained by solving the following set
of equations,

∂E(Y, F )

∂fi,j

=
∂EY (Y, F )

∂fi,j

+
∂EF (F )

∂fi,j

= 0 (9)

for 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ M − 1. The non quadratic energy function (3)
can be iteratively minimized by solving a set of quadratic energy functions us-
ing a majorize/minimize (MM) algorithm [27] as described in [28]. Equations
(9) can be rewritten, as shown in [21], in the following matrix format

W (F ).(F − F ML) + 2α(AF + FB) = 0 (10)

where ”.” denotes the Hadamard product, [F ML]i,j = y2
ij/2 is the maximum

likelihood (ML) estimate and [W ]i,j = gi,j/f
2
i,j. A = θT

v θv and B = θT
h θh, where

θv and θh are N × N and M × Mdifference operators respectively, with the
following structure
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θ =

















1 −1 0 ... 0 0 0

−1 1 0 ... ... ... 0

0 −1 1 ... ... ... 0

... ... ... ... ... 1 0

0 0 0 ... ... −1 1

















. (11)

By using the fixed point method, equation (10) can be solved as follows:

AF + FB + Qt−1 = 0

Qt−1 = Wt−1.(Ft−1 − F ML) − Ft−1 (12)

where A = IN/2+2αA and B = IM/2+2αB. IN and IM are N and M dimen-
sional square identity matrices respectively, [Wt−1]ij = gij(t − 1)/f 2

ij(t − 1),
where t − 1 denotes the previous iteration. Equation (12) is the well known
Sylvester equation which can be solved with fast and efficient algorithms de-
scribed in the literature [29]. These are implemented at several scientific soft-
ware packages, such as Matlab (Mathworks, Inc.) or Mathematica (Wolfram
Research, Inc.).

The iterative algorithm defined in (12) can be unstable and the convergence
conditions are strongly dependent on the prior parameter α. To overcome this
difficulty, a continuation method [30] is used where the αt = αt−1−β(αt−1−αd)
is the parameter at iteration t, β (≈ 0.5) is the decreasing rate and αd is the
final desired value for the parameter, tuned in a trial and error basis.

The processing time is an important constraint in this algorithm because the
data sequence contains a large number of images that must be processed in a
acceptable time, during the medical exam. Therefore, to reduce the processing
time of the overall sequence, the iterative algorithm used to filter each noisy
image, described in (12), is initialized with the previously filtered image of the
sequence. This procedure is based on the assumption that consecutive images
are similar and therefore, the previous filtered image is a good (closed) starting
point for the iterative algorithm that is used to filter the current image. Fig. 4
displays an example of pre-processing results of a 346 × 440 pixel ultrasound
noisy image (fig. 4a) using two methods: i) a common despeckling filter [31,32]
formed by a combination of a 10 × 10 window median filter with a σ = 3
gaussian gilter (fig. 4b) and ii) the MAP despeckling method proposed here
(fig. 4c). In this example, it is clear a better performance of the MAP method
at the transitions which allows to preserve the anatomic details with clinical
relevance.
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Figure 4. Comparative outcome of different pre-processing methods. a) Original
(noisy) ultrasound image, b) denoised image, with median and gaussian filters and
c) denoised image, using a MAP criterion and a TV edge preserving prior.

a) b)

Figure 5. Automatic segmentation. a) Initialization and evolution of the active con-
tours. The resulting contours are used as initial estimations for the second segmen-
tation (b).

3.2 Contour extraction and re-sampling

Next, the process for extracting and re-sampling the contours of the carotid
and atheromatous plaque, based on the pre-processed images, is described.

3.2.1 Segmentation

The segmentation is obtained by using an active contours algorithm (usually
called snake) described in [33], which is based on the Gradient Vector Flow
(GVF). The active contour is defined by a set of linked control points, which
converges from an initial conformation to a final one, as the result of the
application of external forces, depending on the image, and internal forces
used to allow consistency in the final result.

In this work, the GVF active contour algorithm is used to automatically seg-
ment the anatomic objects present in the image under medical supervision.
An exception is made in the first image of the sequence, where the medical
doctor must manually define the centers of the carotids and one point from
each carotid wall (see fig. 5a). Under regular conditions, the initial contour
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used by the GVF algorithm is obtained from the result of the previous seg-
mentation process, as displayed in fig. 5b. However, the medical doctor may
interfere with the process, by changing the initial contour or by changing the
default parameters used by the GVF algorithm associated with the internal
and external energies of the contour.

This functionality is useful when the GVF algorithm wrongly converges due
to bad initialization or, more important, when topological modifications arise.
Two important situations need a special initialization:

(1) The segmentation of the first image in the bifurcation region, where two
contours must be merged into a single one (see fig. 6). Both contours,
obtained from the image previous to the bifurcation (fig. 6a) are used
to initialize two different contours which intersect, after convergence, in
the bifurcation plane (fig. 6b). The new single contour (fig. 6c) results
from these two contours by removing the intersection region; finally, the
composed contour is used as initialization to segment the carotid in the
bifurcation region (fig. 6d). Fig. 6e shows the segmentation result on the
bifurcation and on its previous plane.

(2) The segmentation in the first image where a plaque is detected. In this
case, the medical doctor must initialize manually the plaque contour.
In the next images, the plaque segmentation is made automatically as
described above. However, in order to force consistency of both contours,
carotid and plaque, a post processing is needed. This procedure consists
in the extraction of the plaque region from the intersection between the
new contour defined for the plaque and the already existing one for the
carotid, as well as, the correction of the carotid artery wall, by removing
the region of the plaque.

e

Figure 6. Segmentation of the carotid artery bifurcation.

The final procedure in the segmentation step is the re-sampling and regular-
ization of the contours provided by the GVF algorithm, which are described
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by a set of non evenly spaced control points. This non uniform distribution of
the control points along the contour makes the correspondence and contours
linking an extremely difficult task, however needed to build the 3D mesh from
the 2D contours extracted from each image. Therefore, before the linking step,
a re-sampling procedure is implemented to change the position of the control
points, by distributing them uniformly along the contour. This operation also
smoothes the contours according to a regularized parameter controlled by the
medical doctor.

3.2.2 Re-sampling

Let c(s) = [x(s), y(s)] be the closed contour to be re-sampled, where 0 ≤ s ≤ 1.
The control points describing this contour are pi = [xi(si), yi(si)] where si are
the normalized positions of each point, along the contour, that is, s0 = 0 and
sM−1 = 1. Here, the M control points are considered noisy observations of the
unknown curve c(s) that must be estimated. The contour is described by the
following linear combination of N basis functions,

x(s) =
N−1∑

k=0

akφk(s) (13)

y(s) =
N−1∑

k=0

bkφk(s) (14)

where φk(s) = sinc(s/∆ − k) are the N basis function used to represent c(s).
The goal is to estimate the vectors A = [a0, ..., aN−1]

T and B = [b0, ..., bN−1]
N

from the observations, i.e., the new control points. Using matrix notation,

x̂(s) = Φ(s)T A (15)

ŷ(s) = Φ(s)T B (16)

where Φ(s) = [φ0, φ1, ..., φN−1]
T is a column vector of the N basis functions

computed at position s. The estimation of A (B is estimated in the same way)
is performed by minimizing the following energy function,

E = (X − ΘA)T (X − ΘA) + α(θA)T (θA) (17)

where
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θ =

















1 0 0 ... 0 0 −1

−1 1 0 ... ... ... 0

0 −1 1 ... ... ... 0

... ... ... ... ... 1 0

0 0 0 ... ... −1 1

















(18)

is a difference operator and

Θ =













φ0(s0) φ1(s0) ... φN−1(s0)

φ0(s1) φ1(s1) ... φN−1(s1)

... ... ... ...

φ0(sM−1) φ1(sM−1) ... φN−1(sM−1)













(19)

is M × N matrix depending on the location of the control points. The vector
Â that minimizes (17) is

Â = (ΘT Θ + αθT θ)−1ΘT X. (20)

The vector B̂ is obtained as Â by replacing X by Y in equation (20). From Â
and B̂ the new evenly spaced control points are computed from

qi = [Φ(si)
T Â, Φ(si)

T B̂], (21)

where si = i/(L − 1), 0 ≤ i ≤ L − 1 and L is the number of the new control
points, which can be different from the original number of control points.
These are used in the sequel of the segmentation process.

3.3 Contours linking

In this step all carotid and plaque contours must be linked to their corre-
sponding neighbors. Therefore, a correspondence problem arises at this mo-
ment. The contours are described by a list of control points, whose dimension
is user-specified. To make the correspondence between two sets of points they
first must be matched.

Here, the matching is performed by using an Iterative Closest Point (ICP) [34]
algorithm. The alignment procedure is based on the reasonable assumption
that rapid position variations in the centroids of contiguous contours are not
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expectable to occur. Each contour (carotid or plaque) is coupled with the
corresponding contour in the previous image using the ICP algorithm. The
pairing is based on the distance criterion, i.e., the closest points, after rotation
and translation performed by the ICP on two consecutive contours (images)
and belonging to the same object (carotid or plaque) are considered paired.
This process is repeated for the whole sequence of contours (images).

The pairing process is difficult in the bifurcation because two contours of
the internal and external carotids are merged into one single contour of the
common carotid. For this singular case, a special procedure was developed. The
first contour of the bifurcation is splited in two contours, creating an artificial
line in its middle region (see fig. 7), where the splitting points correspond to
the intersection points of the two contours from the previous image. Each one
of the virtual contours in the bifurcation is then paired with the corresponding
contour in the previous image, not inside the bifurcation. The linking proceeds
then from this image until the end of the sequence.

Figure 7. Bifurcation linking. The virtual contours (sets of points) created in the
bifurcation level are linked to the correspondent control points in the previous plane.

3.4 Vertical alignment and smoothing

In order to compensate the small lateral displacements of the ultrasound
probe during the acquisition process an alignment procedure of the contours is
needed. The alignment is performed again in a pairwise basis, i.e., the global
alignment is obtained by aligning all pairs of consecutive images.

The adjustment of two consecutive images is performed by minimizing an
energy function involving translation vectors associated with each image. In
order to obtain smooth surfaces, smooth variations of consecutive alignment
vectors are required, which are achieved by introducing a regularization pa-
rameter. The energy function to be minimized, used to estimate the translation
vectors is,
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a) b) c)

Figure 8. Vertical smoothing procedure. a) Absolut alignment (blue line) of the
original contours (black line). b) Estimated translation vectors components in x
and y (black line) directions and corresponding smoothed version (blue dots). c)
Corrected alignment, using dynamic mean.

Ei =
L−1∑

k=0

[pi(k) − pi−1(k) − ti]
2 + αe2

i , (22)

where pi(k) is the k-th control point of the i-th contour, ti is the misalignment
compensation translation vector associated with the i-th image, ei = ti − ti−1

are the differences between consecutive vectors, and α is the regularization
parameter. Using matrix notation leads to

Ei = (Pi − Pi−1 − θti)
T (Pi − Pi−1 − θti) + α(ti − ti−1)

T (ti − ti−1), (23)

where

Pi = [pix(0), piy(0), pix(1), piy(1), ..., pix(L − 1), piy(L − 1)]T , (24)

ti = [tix, tiy]
T (25)

and

θ =






1 0 1 ... 0 1

0 1 0 ... 1 0






T

. (26)

The vector that minimizes (23) is
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ti = (θT θ + αI)−1[θT (Pi − Pi−1) + αti−1]. (27)

The alignment result is shown in fig. 8a, where the estimated translation vec-
tors are added to the positions of the control points, for each plane. In fig. 8b,
it is shown the smoothed curve, fitted to the estimated translation vector com-
ponents. These smoothed curves are subtracted to the estimated translation
vector components to avoid alignment compensation of slowly real anatomi-
cal deviations between planes, not originated during the acquisition process.
Therefore a moving average filter is used to remove the low spatial frequencies
of the translation vectors components, i.e.,

τi = ti − t̄i (28)

where t̄i = 1
2L+1

∑L
k=−L ti+k and L is the half width of the moving average

window. Fig. 8c displays the correct alignment of the contours with this mean
compensation.

a) b)

Figure 9. a) Linked control points, after application of the vertical alignment algo-
rithm. b) 3D finite-element mesh representing the carotid artery and plaque.

After the alignment, a smoothing operation is applied to the vertical lines
to attenuate discontinuities in the final mesh (see fig. 9a, where the primary
deviations/ corrections are marked in red). This procedure is similar to the
regularization performed in step 3.2.2.
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3.5 VRML mesh generation

The final step of the reconstruction algorithm consists in the creation of a
finite-element mesh (see fig. 9b), by applying different luminescence and trans-
parency codes to the defined elements in order to facilitate the anatomy in-
spection. This information and criteria are used to create 3D virtual reality
models of both carotid and atherosclerotic plaque, which are shown further
ahead.

4 Plaque Characterization

In this section, methods for plaque characterization with respect to its vul-
nerability and instability are considered, based on textural features and mor-
phology.

4.1 Background

A consensus on the morphology of atherosclerotic plaques indicates that char-
acteristics of plaque echo-structure may play an important role in the early
detection of unstable plaques, allowing a preventive treatment of atherosclero-
sis. Some early studies of carotid plaque morphology relied upon visual char-
acterization based on subjective and qualitative analysis of ultrasonic B-mode
images [35]. Currently, the study of carotid plaque morphology is made using
computerized measurements, which provide an user-independent assessment
of plaque echo-structure [36]. Plaque characterization is usually based on sta-
tistical analysis of the 2D ultrasound image [36,7], by using, for instance, a
stratified grayscale median analysis and color mapping of the plaque [37], ac-
cording to this parameter. The Gray-Scale Median (GSM) is one of the most
important factors used on plaque diagnosis and it is generally used to clas-
sify plaques as echolucent (GSM < 32) or echogenic (GSM > 32). The total
percentage of echolucent pixels (PEP), defined as the percentage of pixels
with gray levels below 40, is also an important measure for characterization
of plaque echogenicity. In fact, multiple regression analysis [36] have revealed
that the GSM and the PEP are the variables more significantly related to the
presence or absence of symptoms.

Recently, an activity index related to the plaque clinical risk [38,39] has been
proposed. This index is the result of plaque classification according to several
indicators, such as, plaque overall heterogeneity/homogeneity, surface disrup-
tion, degree of stenosis, global echogenicity and localization of the echolucent
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region within the plaque.

It has been suggested that echogenicity, smooth surface and homogeneous
texture indicate a stable plaque, while an irregular surface, echolucency, het-
erogeneous texture and the juxta-luminal location of the echolucent region are
characteristics of potentially vulnerable plaques. A vulnerable plaque is also
associated with thinning of the fibrous cap and infiltration of inflammatory
cells that lead to surface ulceration and plaque rupture. Studies aiming at
establishing a correlation between quantitative analysis based on ultrasound
images and histological examination [40,41], have suggested that echolucent
plaques have more lipid and hemorrhage, indicating inflammatory activity and
therefore instability, while echogenic plaques are associated to the presence of
more calcium and fibrous tissue, which are typically stable components within
the plaque.

However, an accurate and reproducible assessment of morphological charac-
teristics is limited when only cut planes of the plaque are considered, instead
of its whole structure. There have been some recent published work, where
3D reconstructions of the entire plaque structure are considered. These stud-
ies aim to observe plaque ulceration [42] and to characterize plaque surface
motion [43].

4.2 Ultrasonic Image Standardization

Image standardization is a crucial operation to allow the comparison of mea-
sures taken from different plaques, obtained with different ultrasound equip-
ments, and different acquisition parameters (brightness/contrast).

Hence, the characterization is subject to significant interobserver variability
and it is necessary to introduce image standardization methods, in order to
garantee reproducibility and comparability of plaque characterization results.
Most 2D studies of carotid plaque echo-structure consider an image standard-
ization procedure consisting in an algebraic scaling of the whole image [36,38].

The normalization procedure takes a representative noisy cross section of the
carotid artery with two distinct echo-anatomic regions. These correspond to
blood and to the adventitia layer, and are used to manually measure the
respective GSM. The histogram of the pixels inside the atheromatous plaque
is then manipulated to put the blood pixels in the range of 0-5 and the ones
of the adventitia in the range of 185-195 (see fig. 10). The gray values of all
the other pixels are linearly rescaled according to these constraints.
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Blood
Before: 2 

After: 0 

Adventitia
Before: 101 

After: 193 

US probe 

Figure 10. Standardization of a cross section of the carotid plaque. Blood and adven-
titia are outlined and its GSM values determined. The scale is adjusted (GSM = 0
for the blood and GSM = 193 for the adventitia).

4.3 Analysis of plaque ultrasonic features

In this sub-section it is described the application specifically developed to
implement the 3D characterization of the plaque. The results obtained with
this new approach are compared with the 2D based characterization methods,
described in the literature. To perform the characterization using the classical
methods, a longitudinal image of the atheromatous plaque is selected by an
experimented medical doctor, which then analyze the plaque as follows (see fig.
11). The plaque contour is outlined manually and consensus measures, such
as, GSM and PEP (percentage of pixels below 40) were determined using
Adobe Photoshop (Adobe systems, Inc.). Furthermore, the degree of stenosis
is calculated using a representative cross section and computing the ratio of
carotid and lumen areas, combined with the hemodynamic assessment of the
stenosis and calculation of the peak systolic and dyastolic velocities.

Figure 11. 2D analysis of carotid stenosis and plaque echoic features.

The alternative method, proposed in this work, is based on the automatic 3D
characterization of the plaque, by using 3D ultrasound tools [42,43]. Plaque is
globally and locally characterized considering the entire plaque structural in-
formation, as shown in fig. 12. Global measures, like plaque volume and exten-
sion, degree of stenosis and grayscale median (GSM) are computed. However,
GSM analysis may not necessarily reflect the presence of particular unsta-
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ble regions since it represents a median value of the whole plaque. Therefore,
a local analysis is also performed by using space varying statistical parame-
ters, such as mean, median, variance, standard deviation, skewness and cur-
tosis. This method makes it possible to globally characterize heterogeneity
and echogenicity of plaques, as well as identify possible active and unstable
foci inside the plaque. Plaque echogenicity can be estimated using first-order

a) b)

Figure 12. a) Automatic plaque segmentation. b) 3D ultrasound voxel-based recon-
struction of the carotid plaque from the extracted contours.

statistics such as mean and median. By selecting regions inside the plaque
where these statistics are below a given threshold (e.g. < 32 in [0, 255] scale),
it is possible to detect darker pixels, associated with unstable locations.

Other statistics, such as standard deviation, variance and curtosis are used to
characterize heterogeneity, because they measure the dispersion of the pixel
values distribution. By choosing high values, it is possible to identify regions
with high pixel intensity variation and thus with high degree of heterogeneity.

In the scope of this work it was developed an application that allows the
medical doctor to observe the carotid and atheromatous plaque, in a 3D envi-
ronment and, simultaneously, select the threshold to be used in the detection
of the regions of interest, in terms of echogenicity (intensity) and heterogeneity
(texture), as shown in fig. 16. Inspection and automatic analysis of textural pa-
rameters, integrated in the 3D representation of the carotid anatomy is a new
approach that improves the accuracy in the diagnosis of the atherosclerotic
lesions.

5 Experimental Results

In this section, three examples of application of the new method for 3D di-
agnosis of atherosclerosis are shown, using one healthy and two diseased real
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carotid arteries.

5.1 3D Reconstruction of Carotid Artery and Atherosclerotic Plaque

The overall 3D clinical analysis of the carotid atherosclerosis disease is per-
formed in three steps: first, the carotid and plaque are segmented, by extract-
ing its borders; secondly, the three-dimensional reconstruction is visualized on
a virtual reality environment, and finally, the plaque is characterized. Three
sequences of distinct carotid arteries are used, being one acquired from an
healthy person (J.S.) and two from asymptomatic patients (F.C. and C.N.),
obtained during their routine medical exams (ICVL, Lisbon).

a)

External carotid 

Internal carotid 

Common carotid 

b)

Atheromatous plaque

Figure 13. Three-dimensional representations of normal (a) and diseased (b) carotid
arteries. Atherosclerotic plaque is shown in yellow.

The reconstruction results are displayed in a VRML environment where it is
possible to manipulate and zooming the 3D models of the carotid and plaques
to better inspect its anatomy. In this framework, it is easy and fast to evaluate
the geometry and extension of the plaques and its precise localization inside
the carotid. Fig. 13a shows the results from the reconstruction process for
the normal carotid, where it is not detected an atheromatous plaque. On
the contrary, fig. 13b shows the 3D reconstruction of the carotid and plaque,
obtained from a patient (F.C.).

Taking a closer look on this diseased carotid (see fig. 14a) the luminal stenosis
in the bifurcation region is clearly observed, which is due to the the presence
of the atheromatous plaque. This 3D mesh was created by segmenting the
carotid lumen and not the carotid wall which includes the plaque contribution
(see fig. 14b). This first step in the plaque analysis is important in clinical
terms, because it allows the evaluation of plaque extension and morphology.
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a)

luminal stenosis 

b)

Figure 14. Diaseased carotid (FC) without (a) and after (b) considering plaque
contribution. Luminal stenosis caused by the atheromatous plaque is indicated.

5.2 3D Plaque Characterization

The local assessment of plaque severity is also available at the diagnosis appli-
cation, created in Matlab, for plaque characterization (see fig. 15). The results
for plaque characterization are based on one clinical study of a diseased carotid
(C.N.). Besides the carotid anatomy, the program also gives important global
information, such as, plaque volume, maximum and mean stenosis, gray-scale
median and PEP. In the clinical cases presented, the results are in overall
concordance with the ones obtained by the conventional 2D approach: GSM
of 37 (40, obtained by the conventional 2D examination), maximum stenosis
of 61% (65%) and PEP, or percentage of echolucent pixels, of 53% (51%). The
estimated plaque volume of 1, 352mm3 is also important, but its relevance de-
pends on the plaque extension. Even more important than the volume itself is
the respective evolution along the time. This application is particularly suit-
able for this type of prospective clinical approach, allowing the comparison
of the atherosclerotic plaque volume and extension at different stages of the
disease.

The plaque echogenic analysis, in particular the GSM, determines whether
(or not) the plaque is stable, considering the consensual threshold given in
the literature (GSM = 32). This binary classification is however, most of the
times, very simplist because it does not take into account if the GSM is closer
to the threshold and, even worst, it does not give any information about the
extension of the unstable regions inside the plaque.

Therefore, the local assessment of unstable regions within the plaque is needed
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Figure 15. User-interface for plaque characterization written in-house (Matlab).

 a                b 

     Echogenicity          Heterogeneity 

Figure 16. Local analysis, using median (a) and standard deviation (b). See text for
explanation in detail.

to obtain information not provided by the global measurements. Fig. 16 shows
the local analysis of the plaque using two different criteria to characterize the
unstable regions: first, fig. 16a shows the most echolucent regions located at
the central core of the plaque, where the median values are below 20, and fig.
16b shows the most heterogeneous regions, where the standard deviation is
above 20 (GSM ≥ 20), mainly in the peripheral locations of the plaque.

6 Conclusions

The importance of surgery for high degree stenosis, causing transient or minor
ischemic strokes, has been well studied and documented. However, it remains
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unclear which asymptomatic patients will benefit from carotid endarterectomy
or other approaches, such as percutaneous transluminal angioplasty with stent
placement. In this context, an increasing importance was given to plaque sur-
face and ultrasonic morphological features, which are considered useful criteria
for stratification of patients according to different stroke risk categories [44].

The goal of this project is to describe a computer-based tool for plaque char-
acterization, involving the reconstruction of a three-dimensional mesh of the
carotid artery and the plaque, and a volume-based tool for the assessment
of the carotid plaque state. Hence, segmentation and extraction of the voxels
from the 3D data set representing the carotid plaque makes it possible, not
only to quantify the plaque volume, but also to globally compute its GSM
and other textural parameters. This strategy may provide an important stage
in the assessment of patients with asymptomatic carotid stenosis, making the
clinical decision for surgical intervention easier.

The software that implements the reconstruction and plaque characterization
algorithms allows a complete medical exam in a period of about one hour,
including image acquisition. This good performance is achieved because the
program is completely semi-automatic, which means the carotid and plaque
are automatically segmented. Nevertheless, the medical doctor can interfere in
the reconstruction process at anytime. Other important feature of this method
is the spatial locator absence in the acquisition setup, meaning that only a
common ultrasound equipment and a personal computer are required.

The first results obtained with this new method, in some clinical cases, agree
with those obtained with the traditional 2D characterization method. How-
ever, a large set of clinical data is being acquired in order to allow a more
accurate validation of the new method. The local assessment of the echogenic-
ity and heterogeneity of the plaque is proposed in this work, allowing a clear
improvement in the accuracy of the diagnosis, namely, when compared with
the global measures. For instance, the most important parameter, GSM rep-
resents a median value of the whole atherosclerotic volume and therefore may
not necessary reflect the presence of regional unstable (echolucent) regions.

Finally, this new approach, which is used to characterize the atherosclerotic
lesions in the carotid, is implemented in an user-friendly application, allowing a
fast and clear evaluation of the carotid and plaque anatomies and morphologies
by the medical doctor.
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