Lifting methods are used to transport fluid from a point of highest pressure to the point of lowest pressure.

Are divided into:

Natural lift

The natural elevation usually occurs at the beginning of productive life of the reservoir.

Artificial lift

Does not occur by natural processes.
FACTORS THAT AFFECTS PRODUCTION BY NATURAL LIFT:

- Fluid properties
 - Viscosity
 - Density
- Productivity index of the well
- Skin factor
- Stimulation techniques
- Control of the pressure drop into the reservoir
- Are used wells low pressure
- Increase production

Main Techniques

- Gas-lift
 - continuous (GLC)
 - intermittent (GLI)
- Electric Submersible pump (ESP)
- Sucker rod pump
- Progressing Cavity Pumps
ARTIFICIAL LIFT METHODS

Selecting an Artificial Lift Method – Reservoir and well characteristics

Gas/ liquid ratio: A high GLR generally lowers the efficiency of pump-assisted lift

Viscosity: High-viscosity fluids can cause difficulty

Formation volume: Reservoir volume determines how much total fluid must be lifted – Production Rate

Well depth: The well depth dictates how much surface energy is needed

Well deviation: Highly deviated wells may limit applications on some lift methods
ARTIFICIAL LIFT METHODS

1. Gas-lift

Principle
Injecting high pressure gas into the production column

Gasify oil

Reduces pressure gradient

Decrease the pressure in the production column

Increase flow
ARTIFICIAL LIFT METHODS

1. Gas-lift

Continuous gas-lift
- Continuous gas injection

Intermittent Gas lift
- Displacing liquid slugs with high-pressure injection gases by well-defined timings
 - Controlled by controlling the valve at the surface

Selection:
- **Yes**
- **No**

Diagram:
- Production vs. Injection of gas-lift
 - Tangente econômica
 - Produção económica vs. Caudal de Óleo
 - Produção Máxima
ARTIFICIAL LIFT METHODS

1. Gas-lift

Fonte: Adaptações de SILVA, 2002.
ARTIFICIAL LIFT METHODS

1. Gas-lift

Advantages:

• Can be used offshore and onshore
• High sand content
• High ratio gas/oil
• Lowcost for deep wells
• Deviated wellbores;
• Most commonly method used in the oil industry

Disadvantages:

• The gas can not be corrosive
• Low distance between the well and compressors
ARTIFICIAL LIFT METHODS

2. Electric submersible pump

Source: Adapted from SILVA, 2002
ARTIFICIAL LIFT METHODS

2. Electric submersible pump

Advantages:

- Low investment
- High flow
- High-temperature wells (above 180°C)
- High-angle and horizontal wellbores

Disadvantages:

- Does not applied for wells that produce sand;
- Low rate gas/oil
- It is not appropriate for wells that produce H₂S;
- Changing production rates requires either a pump change
ARTIFICIAL LIFT METHODS

3. Sucker rod pump

![Image of Sucker Rod Pump]

FIG. 1 (PRIOR ART)

FIG. 2 (PRIOR ART)
ARTIFICIAL LIFT METHODS

3. Sucker rod pump

Advantages:

- Low operating cost
- Used in well average production or low production to High depth

Disadvantages

- Can not be used:
 - Highly deviated wells;
 - Offshore
- Well low sand content
- Wells low gas content
- Low viscousity fluids
ARTIFICIAL LIFT METHODS

4. Progressive Cavity Pump

- BCP – Bombeio por Cavidade Progressiva
- Electric motor
- Rods
- Tubing
- Casing
- Rotor
- Camisa
- Estator
- Motor

Transformador
Caixa de redução
Quadro de comando
4. Progressive Cavity Pump

Advantages:

- High efficiency for
 - viscosity fluids
 - Abrasive fluids

Disadvantages:

- Well – low depth;
- Not recommended for
 - Deviated wells;
 - Wells produce Sand;
- Low temperatures
Top artificial lift methods in Brazil

<table>
<thead>
<tr>
<th>ARTIFICIAL LIFT METHODS</th>
<th>NUMBER OF APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural</td>
<td>238</td>
</tr>
<tr>
<td>Continuous Gas Lift</td>
<td>538</td>
</tr>
<tr>
<td>Intermittent Gas Lift</td>
<td>543</td>
</tr>
<tr>
<td>Sucker rod pump</td>
<td>5,849</td>
</tr>
<tr>
<td>Electric submersible pump - ESP</td>
<td>278</td>
</tr>
<tr>
<td>Progressive Cavity Pump</td>
<td>898</td>
</tr>
<tr>
<td>Others</td>
<td>130</td>
</tr>
<tr>
<td>Total</td>
<td>8,474</td>
</tr>
</tbody>
</table>

Source: Adapted from PETROBRAS (2010)
Thank you for your attention

João Ribeiro