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a b s t r a c t

The method of incomplete separation of variables is applied for solving the wave
propagation problems in which the source distribution and the emanated wave are
constrained by an elliptic cylinder. Solutions are obtained in the form of expansions in
terms of the Mathieu modes, whose completeness makes possible to solve the problem for
arbitrary source distribution and initial values of the wavefunction and its time derivative
defined within the cylinder. Transient modal amplitudes are found using the Riemann
(Riemann–Volterra) method. An important feature of this approach is the straightforward
definition of the essentially bounded effective integration areas on the plane spanned by
the longitudinal and time coordinates, taking into account the spatiotemporal constraints
imposed on the source. For source turned on in a fixed instant, the method is capable
to model wave propagation inside the semi-infinite and finite elliptic cylinders provided
that the Dirichlet or Neumann boundary conditions are specified on the limiting cross-
section(s). Recent techniques of transverse–longitudinal wave decomposition open the
prospect of adapting the method to more general cylindrical configurations and to other
cases, in which the incomplete separation of variables results in partial differential
equations of a known Riemann function (such as the Euler–Poisson–Darboux equation).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Theoretical studies of wave phenomena usually imply separation of variables in the descriptive equations by a suitable
integral transform or series expansion in terms of eigenfunctions (modes). In the time-domain methods, the temporal and
one of the spatial variables remain unseparated, resulting in a hyperbolic-type partial differential equation (PDE). In the
(general type) cylindrical coordinates, composing spacetime u, v, z, τ (where z is a Cartesian coordinate and τ = ct is the
time variable in units of length, c being the wavefront velocity) the above PDE is the Klein–Gordon equation (KGE). The
solving schemes for the electromagnetic problems include three stages: scalarization of Maxwell’s equations, separation of
the transverse coordinates u, v, and solving the resulting Klein–Gordon problem.

Some prospective modern time-domain methods — e.g., the modal decomposition via a wave splitting technique —
described in [1–5] and references therein, provide solutions for a wide range of problems, including the general case of
a cylindrical waveguide or cavity of any reasonable cross-section (see [6] for strict mathematical discussion). At solving
the derived problems, the overwhelming majority of studies rely upon representation of the desired solution as a time
convolution of a corresponding Green function with the source term. Another approach encompasses Miller’s variable
substitution [7] and using the symmetry of the KGE under the action of the Poincare group for solution factorization [5]. One
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more technique less discussed in the literature is based on the Riemann–Volterra method. It permits constructing solutions
to the wave problems in the case of both the inhomogeneous initial conditions and source term within the framework of
unique formula. The method was successfully applied to a number of scalar and electromagnetic wave problems, including
the spherical harmonic expansion of the fields produced by transient sources in free space [8] and dispersive media [9],
electromagnetic fields generated by line current pulses [10], as well as wave propagation in planar, rectangular and circular
waveguides and conical horns [11].

The present research significantly extends the application the Riemann–Volterra method for the description of wave
propagation in the general-type cylindrical waveguides, enabling one to construct solutions to a wide range of the
inhomogeneous problems not only for the infinite-waveguide models (−∞ < z < ∞), but for the semi-infinite (0 <
z < ∞) and finite (0 < z < L = const) cylindrical structures as well, provided that either the Dirichlet or Neumann
boundary condition is imposed at each limiting cross-section.

Despite the general nature of the developed Riemann–Volterra procedure, the derivation of the KGE is carried out and
some illustrative numerical results are shown for a particular case of the elliptic cylinder, for which the natural choice of
the transverse variables u, v is x = h cosh u cos v, y = h sinh u sin v, where x and y represent the Cartesian coordinates
and h is the semifocal length of the fundamental ellipse. Such a case study is interesting for the following reasons: (i) The
market of elliptical waveguides demonstrated a tremendous growth. During the last two decades, a considerable amount of
knowledge has been accumulated, demonstrating several advantages of the elliptical-cross-section waveguides and fibers
over those of the circular cross-section [12,13]. Modern computer-controlled fabrication tools resolved the problems of
manufacturing elliptical shapes and stimulated further extensive research in the field in question, a state-of-the-art example
is discussed in [13,14]. (ii) Constructing solution in the elliptic cylinder coordinates stays apart from similar schemes for
the Cartesian, circular cylinder, and spherical coordinates, demonstrating a case of mutual inseparability of the transverse
variables: the wavefunction can only be taken in the form Ψ (u, v, z, τ ) = ψ⊥ (u, v) ψ∥ (z, τ ), with no way to reduce it
to Ψ (u, v, z, τ ) = ψ1 (u) ψ2 (v) ψ∥ (z, τ ) or introduce a convenient integral transform. (iii) The result provides a fresh
illustration of reduction of the inhomogeneous wave problem to the inhomogeneous KG problem. As will be shown, the
completeness of the involved Mathieu modes, scarcely discussed in the literature, makes it possible to obtain the modal
expansion for arbitrary source term and initial conditions imposed on the wavefunction and its time derivative.

The potentials of the general modal solution derived in Section 2 are examined in Section 3 for the source turned on
at a fixed moment of time. In particular, the symmetry of the modal solution and the adaption of the general formulas to
the cases of semi-infinite and finite configurations (waveguides and cavities) are discussed. The versatility of the developed
technique is further illustrated in Sections 4 and 5 for practically important cases of finite-length, finite-duration sources,
quiescent and traveling, by deriving ad hoc integral formulas and presenting numerical results.

2. General modal solution

2.1. Initial-boundary value problem

A variety of problems describing the wave propagation within an elliptic cylinder can be reduced to one or several scalar
initial-boundary value problems of the type

�Ψ (u, v, z, τ ) =


∂2τ −

1
h2

cosh2 u − cos2 v

 ∂2u + ∂2v

− ∂2z


Ψ (u, v, z, τ ) = S (u, v, z, τ ) , (1)

Ψ |τ=0 = ψ (u, v, z) , ∂τΨ |τ=0 = ψ̂ (u, v, z) , (2)

where the wavefunction Ψ stands for some potential or its derivative and S for the source term. Additionally, we will
suppose that the potential function is chosen in such a way that it nulls at the elliptic boundary of the cylinder cross-
section u = u0 = const; in particular, it corresponds to the model of perfectly conducting walls (see, for example, [13] and
[15, Chapter 18]). As a consequence, there is no field outside the cylinder, and one can write

Ψ (u, v, z, τ ) = 0, ψ (u, v, z) = 0, ψ̂ (u, v, z) = 0, S (u, v, z, τ ) = 0 for u > u0. (3)

We will find the unique solution of this general initial-boundary value problem for the arbitrary functions S, ψ , and ψ̂ ,
integrable within the elliptic domain Euv = {0 ≤ u ≤ u0, 0 ≤ v < 2π}.

2.2. Statement of the modal amplitude problem

For arbitrary S, ψ , and ψ̂ , the possibility of deriving the KGE from the wave equation (1) is provided by completeness
of the Mathieu sine and cosine modes, proved by Goldstein [16], which enables us to write (for the domain of interest Euv)
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the expansions similar to that describing the steady-state vibrational modes of a stretched membrane having an elliptical
boundary [15, Section 16.14]ψ (u, v, z)ψ̂ (u, v, z)

S (u, v, z, τ )

 =

∞
m=0

∞
n=1

ψ (e)
mn (z)
ψ̂ (e)

mn (z)
S(e)mn (z, τ )

 Cem

u, q(e)mn


cem


v, q(e)mn



+

∞
m=1

∞
n=1

ψ (o)
mn (z)
ψ̂ (o)

mn (z)
S(o)mn (z, τ )

 Sem

u, q(o)mn


sem


v, q(o)mn


, (4)

where cem (v, q) and sem (v, q) stand for theMathieu cosines and sines; Cem (u, q) = cem (iu, q), Sem (u, q) = −i sem (iu, q)
are the radial Mathieu functions of the first kind of order m; the constants q(e)mn, q

(o)
mn are the n-th roots of these functions,

Cem

u0, q

(e)
mn


= 0, Sem


u0, q

(o)
mn


= 0; and ψ (e,o)

mn , ψ̂ (e,o)
mn , S(e,o)mn are known functions derived from ψ , ψ̂ , S using the

orthogonality properties of the Mathieu modes as demonstrated in Appendix A.
Seeking the desired wavefunction Ψ (u, v, z, τ ) in the form of the same modal expansion

Ψ (u, v, z, τ ) =

∞
m=0

∞
n=1

Ψ (e)
mn (z, τ ) Cem


u, q(e)mn


cem


v, q(e)mn


+

∞
m=1

∞
n=1

Ψ (o)
mn (z, τ ) Sem


u, q(o)mn


sem


v, q(o)mn


, (5)

and substituting (4), (5) into (1) and (2) yield the problem for the modal amplitudes Ψ (e,o)
mn (z, τ )


∂2τ − ∂2z +


k(e,o)mn

2
Ψ (e,o)

mn (z, τ ) = S(e,o)mn (z, τ ) , k(e,o)mn =
2

q(e,o)mn

h
,

Ψ (e,o)
mn


τ=0 = ψ (e,o)

mn (z) , ∂τΨ
(e,o)
mn


τ=0 = ψ̂ (e,o)

mn (z) .

(6)

2.3. Exact solution for the modal amplitude

Applying the linear coordinate transformation τ = X + Y , z = X − Y one converts problem (6) into
∂2XY + k2


Φ (X, Y ) = σ (X, Y ) ,

Φ (X, Y )|X+Y=0 = ψ (X − Y ) ,

1
2
(∂X + ∂Y )Φ (X, Y )


X+Y=0

= ψ̂ (X − Y ) ,
(7)

where Φ (X, Y )
def
= Ψ (X + Y , X − Y ) and σ (X, Y )

def
= S (X + Y , X − Y ) (throughout this subsection, the indices o, e, m and

n are dropped for simplicity of notation). Solving problem (7) reduces to definition of the function Φ at an arbitrary point
X0, Y0 of the X, Y plane, provided that the initial data for Φ and its normal derivative are given on the line AB, X + Y = 0,
as shown in Fig. 1. This can be done using the Riemann–Volterra method (see, for example, [17]):

Φ (X0, Y0) =
1
2


(RΦ)| X=XA

Y=YA
+ (RΦ)| X=XB

Y=YB



+


AB


dX

1
2
R ∂XΦ −

1
2
Φ ∂XR


− dY


1
2
R ∂YΦ −

1
2
Φ ∂YR


+


Ω

dXdY Rσ , (8)

where R (X, Y ; X0, Y0) = J0


4k2 (X − X0) (Y − Y0)

is the Riemann function for the first canonical form of the KGE (7)

and J0 the Bessel function of the first kind of order zero. Noticing that Φ| X=XA
Y=YA

= ψ (XA − YA) , Φ| X=XB
Y=YB

= ψ (XB − YB) ,

XA = −Y0, YA = Y0, XB = X0, YB = −X0, as well as dY = −dX and 1
2 (∂X + ∂Y )Φ = ψ̂ (X − Y ) on AB, formula (8) can be

reduced to

Φ (X0, Y0) =
1
2


R| X=XA

Y=YA
ψ (−2Y0)+ R| X=XB

Y=YB
ψ (2X0)



+

 X0

−Y0
dX

Rψ̂ (X − Y )− ψ (X − Y )

1
2
(∂X + ∂Y ) R


Y=−X

+


Ω

dXdYRσ . (9)
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Ω

Fig. 1. An X, Y plane diagram for definition of the modal amplitude at the point P(X0, Y0).

Ω

Fig. 2. A z ′, τ ′ plane diagram for definition of the modal amplitude at the point P(z, τ ).

2.4. General modal solution in the space-time domain

Coming back to the initial coordinate system by the substitution X0 =
1
2 (τ + z) , Y0 =

1
2 (τ − z) , X =

1
2


τ ′

+ z ′

,

Y =
1
2


τ ′

− z ′

, so that dXdY =

∂(X,Y )
∂(τ ′,z′)dτ

′dz ′
=

1
2dτ

′dz ′ and X =
1
2 z

′, Y = −
1
2 z

′ on AB, we finally construct the desired
solution to problem (6)

Ψ (e,o)
mn (z, τ ) =

1
2


R (z − τ , 0; z, τ ) ψ (e,o)

mn (z − τ)+ R (z + τ , 0; z, τ ) ψ (e,o)
mn (z + τ)


+

1
2

 z+τ

z−τ
dz ′


R

z ′, 0; z, τ


ψ̂ (e,o)

mn


z ′

− ∂τ ′R


z ′, 0; z, τ


ψ (e,o)

mn


z ′


+
1
2


Ω

dz ′dτ ′R

z ′, τ ′

; z, τ

S(e,o)mn


z ′, τ ′


, (10)

where

R

z ′, τ ′

; z, τ


= J0


k(e,o)mn


(τ ′ − τ)2 − (z ′ − z)2


(11)

stands for representation of the Riemann function in the z ′, τ ′ domain, and the integration area Ω corresponds to the 45°
right triangle shown in Fig. 2. The general-type modal solution to the original problem (1)–(3) is expansion (5) in which the
modal amplitudes Ψ (e,o)

mn are represented by Eq. (10).
The Riemann–Volterramethod is used in particular for proving the fact that the solution provided by integral formula (8)

or (10) is unique [18]. Themodal amplitude (10) represents an alternative to the classical Green function solution and, as one
might expect, in the particular case of zero initial conditions coincides with the convolution of a causal Green function and
the source term (cf. solution (16), (20) constructed by Geyi in [3]). An important feature of the Riemann–Volterra ansatz is
the straightforward introduction of the restricted integration area on the z ′, τ ′ plane, an idea that may be further exploited
for deriving explicit formulas for waves emanated by sources constrained in space-time (as all the real-world sources
are). As the huge variety of practically interesting particular restrictions and features of the sources cannot be covered by
universal formulas, the subsequent sectionswill be devoted to introduction of some sufficiently general procedures allowing
to describe the wave propagation in the domains that are semi-infinite or finite in the longitudinal direction.
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3. Source turned on at a fixed instant

3.1. Source turned on at a fixed instant: modal solution and its symmetry

A wave source turned on at a fixed instant, taken as τ = 0, does not generate waves prior to this instant, which results
in problem (1)–(3) with

S (u, v, z, τ ) ≡ 0 ⇒ Ψ (u, v, z, τ ) ≡ 0, ∂τΨ (u, v, z, τ ) ≡ 0 for τ < 0, (12)

having a simpler modal solution

Ψ (e,o)
mn (z, τ ) =

1
2


Ω

dz ′dτ ′J0


k(e,o)mn


(τ ′ − τ)2 − (z ′ − z)2


S(e,o)mn


z ′, τ ′


=

 τ

0
dτ ′F (e,o)

mn


τ ′, z, τ


, (13)

where

F

τ ′, z, τ

 def
=

1
2

 z+(τ−τ ′)

z−(τ−τ ′)
dz ′R0


z ′

− z, τ ′
− τ


S

z ′, τ ′


, R0 (z, τ )

def
= J0


k

τ 2 − z2


(14)

(throughout the remainder of this subsection we again suppress the superscripts and subscripts in Ψ (e,o)
mn , k(e,o)mn , S(e,o)mn and

F
(e,o)
mn , as they play no role in the subsequent analysis).
The calculation of the modal amplitude Ψ (z, τ ) involves integration of the product R0


z ′

− z, τ ′
− τ


S

z ′, τ ′


over a

segment of the z ′ axis that unrestrictedly expands with increase of the observation time τ and thus requires definition
of the source term S(z, τ ) for all values of z. As a consequence, formulas (13), (14) can only be applied to the infinite
model configurations (−∞ < z < ∞). Is it possible to extend the results to the semi-infinite (0 < z < ∞) and finite
(0 < z < L = const) waveguiding systems? Previous investigations carried out for the problems conforming the spherical
geometry (r, φ, θ) [8,9,11], possessing the natural restriction r > 0, indicate such a possibility, at least for the case of the
Dirichlet condition imposed at r = 0: for the resulting Euler–Poisson–Darboux equation, the Riemann–Volterra solution
was constructed by reconfiguring the initially triangle domain of integration over r ′, τ ′ into a trapezium that always lies in
the region r ′ > 0 (see, e.g., Fig. 1(b) of [8]). This reconfiguration relies on the specific symmetry property of the Riemann
function, which is either odd or even with respect to r ′. As seen from Eq. (11), the Riemann function of the KGE does not
possess the same property with respect to z ′, and here we must explore other symmetries for the desired extension of the
method applicability.

With the help of Leibniz’s theorem (see, e.g., Subsection 1.5(iv) of [19]), solution (13) gives the quadrature formulas for
modes of the potential derivatives, which are directly connected with the field components. In particular, the z component
of the potential gradient is

∂zΨ (z, τ ) =

 τ

0
dτ ′ ∂zF


τ ′, z, τ


, (15)

where

∂zF

τ ′, z, τ


=

S

z +


τ − τ ′


, τ ′

− S


z −


τ − τ ′


, τ ′


2

−
k
2

 z+(τ−τ ′)

z−(τ−τ ′)
dz ′

z ′

− z

R1

z ′

− z, τ ′
− τ


S

z ′, τ ′


,

R1 (z, τ )
def
= J1


k

τ 2 − z2


/

τ 2 − z2.

Changing the variable of integration to ς =
z − z ′

, one can represent F and ∂zF in the following symmetric form

F =

 τ−τ ′

0
dς R0


ς, τ ′

− τ
 S z + ς, τ ′


+ S


z − ς, τ ′


2

, (16)

∂zF =
S

z +


τ − τ ′


, τ ′

− S


z −


τ − τ ′


, τ ′


2

− k
 τ−τ ′

0
dς ςR1


ς, τ ′

− τ
 S z + ς, τ ′


− S


z − ς, τ ′


2

. (17)
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Thus (13) and (15) yield

Ψ (z, τ ) =

 τ

0
dτ ′

 τ−τ ′

0
dς R0


ς, τ ′

− τ

Sym [S]


z, ς, τ ′


(18)

∂zΨ (z, τ ) =

 τ

0
dτ ′


Asym [S]


z, τ − τ ′, τ ′


− k

 τ−τ ′

0
dς ςR1


ς, τ ′

− τ

Asym [S]


z, ς, τ ′


, (19)

where

Sym
Asym

[S] (z, ς, τ )
def
=

1
2
[S (z + ς, τ)± S (z − ς, τ)] (20)

are the two components of the even/odd decomposition of the source

S (z + ς, τ) = Sym [S] (z, ς, τ )+ Asym [S] (z, ς, τ ) . (21)

Now we can state the following:

(i) If for z = z0, ∀ς, τ the source exhibits the property

S (z0 + ς, τ) = −S (z0 − ς, τ) (22)

then

Ψ (z0 + ς, τ) = −Ψ (z0 − ς, τ) and Ψ |z=z0 = 0. (23)

(ii) If for z = z0, ∀ς, τ the source exhibits the property

S (z0 + ς, τ) = S (z0 − ς, τ) (24)

then

Ψ (z0 + ς, τ) = Ψ (z0 − ς, τ) and ∂zΨ |z=z0 = 0. (25)

Using formula (16) one can check by direct calculations that

F

τ ′, z + ς, τ


=


−F


τ ′, z − ς, τ


case (i)

F

τ ′, z − ς, τ


case (ii)

(26)

which, in view of (13), proves the first equations in (23) and (25). In case (i) Sym [S] ≡ 0 while in case (ii) Asym [S] ≡ 0, so
the second equations in (23) and (25) follow from formulas (18) and (19).

3.2. Semi-infinite configurations with boundary condition at z = 0

Many practically important models (e.g., wave propagation along a semi-infinite waveguide) involve the problem of
the previous section defined for a semi-infinite elliptic cylinder, 0 < z < ∞ and an additional homogeneous boundary
condition, Dirichlet

Ψ (u, v, z, τ )|z=0 = 0 ⇒ Ψ (e,o)
mn (z, τ )


z=0 = 0, ∀m, n (27)

or Neumann (normal derivative ∂n = −∂z)

∂zΨ (u, v, z, τ )|z=0 = 0 ⇒ ∂zΨ
(e,o)
mn (z, τ )


z=0 = 0, ∀m, n. (28)

Here formula (13) yields different solutions of inhomogeneous KGE (6) for different continuations of the source S(e,o)mn to
the region −∞ < z < 0. Problems of type (27) or (28) may be solved using an approach similar to the method of mirror
charges: the odd continuation of the source term for −∞ < z < 0

S (u, v, z, τ ) = −S (u, v,−z, τ ) ⇒ S(e,o)mn (z, τ ) = −S(e,o)mn (−z, τ ) (29)

leads to a particular case of (22), (23) for z0 = 0, satisfying theDirichlet boundary condition (27),while the even continuation

S (u, v, z, τ ) = S (u, v,−z, τ ) ⇒ S(e,o)mn (z, τ ) = S(e,o)mn (−z, τ ) , (30)

leads to a particular case of (24), (25) for z0 = 0, thus satisfying the Neumann boundary condition (28). Note that for the
initially continuous function S defined so that

S|z=0 ≠ 0 ⇒ S(e,o)mn


z=0 ≠ 0 (31)
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a

b

c

Fig. 3. A scheme of continuation of the source (modal source) S(S(e,o)m,n ) beyond 0 < z < L for the homogeneous Dirichlet (a), Neumann (b), and mixed
(c) boundary conditions.

the odd continuation (29) results in the source discontinuity of the first kind at the point z = 0 while, as follows from
formulas (18), (19) for z = 0, Ψ (e,o)

mn is continuous at this point with the limiting behavior

Ψ (e,o)
mn (z, τ ) =

 τ

0
dτ ′

S(e,o)mn

τ − τ ′, τ ′


k(e,o)mn

−

 τ−τ ′

0
dς ς

J1

k(e,o)mn


(τ ′ − τ)2 − ς2



(τ ′ − τ)2 − ς2

S(e,o)mn


ς, τ ′

 k(e,o)mn z

+O


k(e,o)mn z
2

.

3.3. Finite-length configurations with boundary conditions at z = 0, L

Other practicalmodels (e.g., waves in a cavity) involve the problemdefined for the segment 0 < z < Lwith two boundary
conditions at z = 0, L. In the case of the Dirichlet conditions

Ψ (u, v, z, τ )|z=0,L = 0, (32)

we can find the modal solution using formula (13) via the odd continuation of the source

S (u, v, z, τ ) = −S (u, v,−z, τ ) ⇒ S(e,o)mn (z, τ ) = −S(e,o)mn (−z, τ ) (33)

for −L < z < 0 and the periodic continuation for |z| > L

S (u, v, z + 2κL, τ ) = S (u, v, z, τ ) ⇒ S(e,o)mn (z + 2κL, τ ) = S(e,o)mn (z, τ ) , κ = 0, ±1, ±2, . . . . (34)

As seen from Fig. 3(a), this leads to S(e,o)mn (ς, τ ) = −S(e,o)mn (−ς, τ) and S(e,o)mn (L + ς, τ) = −S(e,o)mn (L − ς, τ) in the entire
axis, so S(e,o)mn exhibits property (22) for z0 = 0, L and ∀m, n, which results in obeying (23) and, consequently, (32).
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Fig. 4. Waveguide configuration with limited source region.

Using the same approach, it is easy to demonstrate that the Neumann conditions

∂zΨ (u, v, z, τ )|z=0,L = 0 (35)

are fulfilled provided that the source is evenly continued for −L < z < 0

S (u, v, z, τ ) = S (u, v,−z, τ ) ⇒ S(e,o)mn (z, τ ) = S(e,o)mn (−z, τ ) (36)

and then subjected to periodic continuation (34). As seen from Fig. 3(b), S(e,o)mn (ς, τ ) = S(e,o)mn (−ς, τ) and S(e,o)mn (L + ς, τ) =

S(e,o)mn (L − ς, τ). This results in condition (24) being valid for z0 = 0, L and ∀m, n, which brings about (25) and proves (35).
The mixed boundary conditions

Ψ (u, v, z, τ )|z=0 = 0, ∂zΨ (u, v, z, τ )|z=L = 0 (37)

can be satisfied by continuation

S (u, v, z, τ ) = S (u, v, 2L − z, τ ) ⇒ S(e,o)mn (z, τ ) = S(e,o)mn (2L − z, τ ) , (38)

of the source to the area L < z < 2L, followed by the odd continuation to the area −2L < z < 0

S (u, v, z, τ ) = −S (u, v,−z, τ ) ⇒ S(e,o)mn (z, τ ) = −S(e,o)mn (−z, τ ) (39)

and imposing the 4L periodicity

S (u, v, z + 4κL, τ ) = S (u, v, z, τ ) ⇒ S(e,o)mn (z + 4κL, τ ) = S(e,o)mn (z, τ ) , κ = 0, ±1, ±2, . . . . (40)

As illustrated in Fig. 3(c), this continuation corresponds to the 4L-periodic source for which S(e,o)mn (ς, τ ) = −S(e,o)mn (−ς, τ)

and S(e,o)mn (L + ς, τ) = S(e,o)mn (L − ς, τ), providing fulfillment of boundary conditions (37).
In a way intuitive conclusions about evenness or oddness of the discussed source continuations with respect to ς based

on the schematic plots of Fig. 3 can be strictly proved using the Fourier expansions (whose truncated versions may, in some
situations, serve as an approximation of real source distributions), see Appendix B.

4. Finite-length, finite-duration source

Let us consider a source S (u, v, z, τ ) limited in the longitudinal direction by the condition 0 < z < l (Fig. 4) that, being
turned on at the moment τ = 0, acts during a finite time T . Such a source can be explicitly described by the expression

S (u, v, z, τ ) = h (z) h (l − z) h (τ ) h (T − τ) s (u, v, z, τ ) , (41)

where h (z) =


0 z < 0
1 z > 0 is a unit step function and s (u, v, z, τ ) is, as previously, some given function.

This leads to the modal representation

S(e,o)mn (z, τ ) = h (z) h (l − z) h (τ ) h (T − τ) s(e,o)mn (z, τ ) . (42)

Formula (13) for the modal amplitudes becomes

Ψ (e,o)
mn (z, τ ) =

1
2


ΩlT

dz ′dτ ′ J0


k(e,o)mn


(τ ′ − τ)2 − (z ′ − z)2


s(e,o)mn


z ′, τ ′


, (43)

where the shape of the integration area ΩlT shall take into account the boundedness of the support of S(e,o)mn (z, τ ). In the
following, the Riemann function J0


k(e,o)mn


(τ ′ − τ)2 − (z ′ − z)2


is denoted as R


z ′, τ ′

; z, τ

and the indices o, e,m and n

are dropped.
The sequence of explicit solutions has a number of distinct forms, depending on the interrelations between l, T , z, and

τ . They can be derived with the help of a strictly formalized procedure using z ′, τ ′ plane diagrams similar to that of Fig. 2.
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Fig. 5. Integration areasΩlT for the case of finite-length, finite-duration source (41).

The simplicity of this procedure makes it worthwhile to discuss only the case z > l; the results for other ranges of z can be
derived straightforwardly within the same conceptual framework.

For z > l, the short-duration pulse condition T < l partitions the explicit formulas into two sets. Let us suppose that this
condition holds and fix the observation point position, z ′

= z, subsequently increasing the observation time from the initial
value τ = 0. Then

0 < z − l < z − l + T < z < z + T (44)

and the following cases can be distinguished:

A1: 0 < τ < z − l. As seen from Fig. 5(a), the intersection of the integration area Ω with the domain of source support
RlT =


0 ≤ z ′

≤ l, 0 ≤ τ ′
≤ T


is empty,ΩlT = Ω ∩ RlT = Ø, and

Ψ (z, τ ) = 0. (45)

A2: z − l < τ < z − l + T . The integration areaΩlT is shown in Fig. 5(b) and

Ψ (z, τ ) =
1
2

 l

z−τ
dz ′

 τ−(z−z′)

0
dτ ′R


z ′, τ ′

; z, τ

s

z ′, τ ′


. (46)



356 A.B. Utkin / Wave Motion 49 (2012) 347–363

Table 1
Description of the wavefronts defining the space-time structure of the solutions in cases A1–A5 and B1–B5.

Wave-front Moment of arrival at z ′
= z Starting point Information carried

τ ′ z ′

W1 z − l 0 l Source turned on at the point nearest to z ′
= z

W2 z − l + T T l Source turned off at the point nearest to z ′
= z

W3 z 0 0 Source turned on at the point farthest to z ′
= z

W4 z + T T 0 Source turned off at the point farthest to z ′
= z

A3: z − l + T < τ < z. The integration areaΩlT is shown in Fig. 5(c) and

Ψ (z, τ ) =
1
2

 z−τ+T

z−τ
dz ′

 τ−(z−z′)

0
dτ ′

+

 l

z−τ+T
dz ′

 T

0
dτ ′


R

z ′, τ ′

; z, τ

s

z ′, τ ′


. (47)

A4: z < τ < z + T . The integration areaΩlT is shown in Fig. 5(e) and

Ψ (z, τ ) =
1
2

 z−τ+T

0
dz ′

 τ−(z−z′)

0
dτ ′

+

 l

z−τ+T
dz ′

 T

0
dτ ′


R

z ′, τ ′

; z, τ

s

z ′, τ ′


. (48)

A5: z + T < τ < ∞. The integration areaΩlT = RlT , see Fig. 5(f),

Ψ (z, τ ) =
1
2

 l

0
dz ′

 T

0
dτ ′R


z ′, τ ′

; z, τ

s

z ′, τ ′


. (49)

In the opposite situation of the long-duration pulse T > lwe have

0 < z − l < z < z − l + T < z + T (50)

and the sequence of cases illustrated in the left side of Fig. 5:

B1: 0 < τ < z − l. As seen from Fig. 5(a), the case is identical to case A1 and

Ψ (z, τ ) = 0. (51)

B2: z − l < τ < z. Apart from the range of variation of τ , the case is identical to case A2, ΩlT is shown in Fig. 5(b), and
Ψ (z, τ ) is given by Eq. (46).

B3: z < τ < z − l + T . The case has no analogue in the previous sequence,ΩlT is shown in Fig. 5(d), and

Ψ (z, τ ) =
1
2

 l

0
dz ′

 τ−(z−z′)

0
dτ ′R


z ′, τ ′

; z, τ

s

z ′, τ ′


. (52)

B4: z − l + T < τ < z + T . Again, apart from the range of variation of τ , the case is identical to its counterpart A4, see
Fig. 5(e), and Ψ (z, τ ) is given by Eq. (48).

B5: z + T < τ < ∞. The case is identical to case A5, Ψ (z, τ ) is given by Eq. (49).

Requiring no causality condition (like retarded nature of the argument, wave propagation in a fixed direction, etc.), the
description of waves with the help of the Riemann–Volterra method yields solutions whose space-time structure readily
admits interpretation in terms of causal propagation of information: the limiting values of τ defining cases A1–A5 and
B1–B5 correspond to the moments of arrival, at the point z ′

= z, the wavefronts described in Table 1, propagating along
the z direction with the speed c . The short-duration pulse condition T < l imposes the arrival of the wavefronts in the
sequence W1–W4, while in the opposite case T > l they arrive in the sequence W1–W4. This short analysis demonstrates
that cases like A1–A4 (B1–B4) arise due to inherent properties of the imposed space-time constraints rather than due to
some mathematical trickery.

An example of the modal amplitudes Ψ (e)
01 , Ψ (e)

11 , and Ψ (o)
11 calculated for a long-duration pulse is given in Fig. 6. Although

the source-pulse duration is finite, the waveguide, rather than free-space, propagation regime disperse the wave modes
over the entire range z − l < τ < ∞ (see [2,3], especially the discussion on results presented in Figs. 10 and 11 of Ref. [3]).

5. Finite-length, finite-duration source pulse traveling at constant speed

The general form of limited source (41) discussed in the previous section admits, in particular, simultaneous wave
excitation in the entire volume of the elliptic cylinder 0 < z < l, 0 ≤ u < u0. Many practical problems of acoustics
and, especially, electrodynamics, involvemore restrictivemodels of a traveling pulsed source propagating with finite speed.
In this section the application of the developed ansatz is illustrated for the case of a pulsed source generated at the cross-
section z = 0 from τ = 0 to T , and traveling at a constant speed βc along the z axis till z = l. To demonstrate the technique
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Fig. 6. Dependence of the unity-normalized integration areaΩlT and the first three elliptic modesψ (e)
01 , ψ

(e)
11 , ψ

(o)
11 on the dimensionless time τ/h for cases

B1–B5. The observation point is fixed at z/h = 54 while T/h = 18 and l/h = 3 (long-duration pulse).

developed in Section 3.2, let us suppose that the problem is posed for a semi-infinite waveguide, 0 < z < ∞, and involves
Dirichlet boundary condition (27). In this situation the source can be represented in the explicit form

S (u, v, z, τ ) = h (l − z) h (τ ) h (βτ − z) h (z − β (τ − T )) s (u, v, z, τ )
= h (l − z) h (βτ − z) h (z − βτ + βT ) s (u, v, z, τ ) , z > 0, (53)

where s (u, v, z, τ ) is a given function. Correspondingly,

S(e,o)mn (z, τ ) = h (l − z) h (βτ − z) h (z − βτ + βT ) s(e,o)mn (z, τ ) , (54)

where s(e,o)mn (z, τ ) is a known function derived from s (u, v, z, τ ) using Eqs. (A.1) and (A.2). The odd continuation of the source
required for satisfaction of the boundary condition is

S(e,o)mn (z, τ ) =


h (l − z) h (βτ − z) h (β (T − τ)+ z) s(e,o)mn (z, τ ) for z > 0
h (l + z) h (βτ + z) h (β (T − τ)− z) s(e,o)mn (z, τ ) for z < 0,

(55)

where, to satisfy (33), the function s(e,o)mn (z, τ ) is defined for −∞ < z < 0 according to the rule

s(e,o)mn (z, τ ) = −s(e,o)mn (−z, τ ) (56)

within the V-shaped domain of the source support VlT = {−l ≤ z ≤ l, |z| /β ≤ τ ≤ |z| /β + T } shown in Fig. 7.
We will consider a particular case

β < 1,
1 − β

β
l < T < 2l ⇒ T <

1 + β

β
l, T +

1 − β

β
l <

1 + β

β
l, (57)

and, for the purpose of more comprehensive illustration, fix the observation time τ (instead of fixing the observation
location, as is done in the previous section) so that

τ > T +
1 + β

β
l. (58)

In this situation

0 < τ −
1 + β

β
l − T < τ −

1 + β

β
l < τ −

1 − β

β
l − T < τ − T < τ −

1 − β

β
l < τ, (59)
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a b

c d

e f

Fig. 7. Integration areasΩlT for the case of finite-length, finite-duration source pulse traveling at constant speed along a semi-infinite waveguide.

giving rise to the following cases illustrated in Fig. 7:

C1: 0 < z < τ −
1+β
β

l − T . As seen from Fig. 7(a), in this initial case the integration areaΩ covers entirely the domain of
source support VlT , so ΩlT = Ω ∩ VlT = VlT . Reducing, with the help of change of variable z ′

→ −z ′

z ′ < 0


, the

integration to the area containing only real (i.e., non-fictitious) source, z > 0, one gets

Ψ (z, τ ) =
1
2

 l

0
dz ′

 z′/β+T

z′/β
dτ ′


R

z ′, τ ′

; z, τ

− R


−z ′, τ ′

; z, τ


s

z ′, τ ′


(60)

(again, the indices o, e, m and n are dropped).
C2: τ −

1+β
β

l − T < z < τ −
1+β
β

l. As illustrated in Fig. 7(b), in the segment −l < z ′ < 0 we have two different limits of

integration over τ ′ depending on whether z ′ less or greater than −
β

1+β (τ − z − T ). After a change of the integration
variable z ′′

= −z ′ for −l < z ′ < 0 that, as in the previous case, restricts the integration to the area of real sources,
concretization of formula (43) reads

Ψ (z, τ ) =
1
2

 l

0
dz ′

 z′/β+T

z′/β
dτ ′R


z ′, τ ′

; z, τ

s

z ′, τ ′


−

1
2

 β
1+β (τ−z−T )

0
dz ′′

 z′/β+T

z′/β
dτ ′

+

 l

β
1+β (τ−z−T )

dz ′′


−z′′−z+τ

z′/β
dτ ′



× R

−z ′′, τ ′

; z, τ

s

z ′′, τ ′


. (61)
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C3: τ −
1+β
β

l < z < τ −
1−β
β

l − T . In contrast to case C2, in the area of negative z ′ the integration domain is restricted by

the segment −
β

1+β (τ − z) < z ′ < 0 (see Fig. 7(c)), which yields

Ψ (z, τ ) =
1
2

 l

0
dz ′

 z′/β+T

z′/β
dτ ′R


z ′, τ ′

; z, τ

s

z ′, τ ′


−

1
2

 β
1+β (τ−z−T )

0
dz ′′

 z′/β+T

z′/β
dτ ′

+

 β
1+β (τ−z)

β
1+β (τ−z−T )

dz ′′


−z′′−z+τ

z′/β
dτ ′


R

−z ′′, τ ′

; z, τ

s

z ′′, τ ′


. (62)

C4: τ−
1−β
β

l−T < z < τ−T . As seen from Fig. 7(d), the areaΩ starts cutting the right part of the source support, resulting

in appearance of two different limits of integration over τ ′ for 0 < z ′ <
β

1−β (τ − z − T ) and β

1−β (τ − z − T ) < z ′ < l,
which results in

Ψ (z, τ ) =
1
2

 β
1−β (τ−z−T )

0
dz ′

 z′/β+T

z′/β
dτ ′

+

 l

β
1−β (τ−z−T )

dz ′

 z′−z+τ

z′/β
dτ ′


R

z ′, τ ′

; z, τ

s

z ′, τ ′


−

1
2

 β
1+β (τ−z−T )

0
dz ′′

 z′/β+T

z′/β
dτ ′

+

 β
1+β (τ−z)

β
1+β (τ−z−T )

dz ′′


−z′′−z+τ

z′/β
dτ ′


× R


−z ′′, τ ′

; z, τ

s

z ′′, τ ′


. (63)

C5: τ − T < z < τ −
1−β
β

l. The intersection ofΩ and VlT result in the unique upper limit of integration over τ ′, z ′
− z + τ

(taking the form −z ′′
− z + τ for negative z ′), see Fig. 7(e), leading to

Ψ (z, τ ) =
1
2

 l

0
dz ′

 z′−z+τ

z′/β
dτ ′R


z ′, τ ′

; z, τ

s

z ′, τ ′


−

1
2

 β
1+β (τ−z)

0
dz ′′


−z′′−z+τ

z′′/β
dτ ′R


−z ′′, τ ′

; z, τ

s

z ′′, τ ′


. (64)

C6: τ −
1−β
β

l < z < τ . Here the area of positive z ′ the integration domain is restricted by the segment β

1−β (τ − z) < z ′ < l
as shown in Fig. 7(e), which yields

Ψ (z, τ ) =
1
2

 β
1−β (τ−z)

0
dz ′

 z′−z+τ

z′/β
dτ ′R


z ′, τ ′

; z, τ

s

z ′, τ ′


−

1
2

 β
1+β (τ−z)

0
dz ′′


−z′′−z+τ

z′/β
dτ ′R


−z ′′, τ ′

; z, τ

s

z ′′, τ ′


. (65)

C7: τ < z < ∞. In this last caseΩlT = Ω ∩ VlT = Ø and Ψ (z, τ ) = 0.

As in the situation of the previous section, one can straightforwardly describe the subdivision of the integration procedure
into cases C1–C7 in terms of propagation of information. For example, the segment of z ′ corresponding to case C6 is delimited
by the wavefront from the source pulse initially turned on at τ ′

= 0, z ′
= 0 (for τ ′

= τ , positioned at z ′
= τ ) and the

wavefront from the source turned off at the end of its trajectory τ ′
= l/β , z ′

= l (for τ ′
= τ , positioned at z ′

= l+ τ − l/β).
Here an important additional phenomenon is the reflection of counter-propagating wavefronts on the boundary z = 0.

Fig. 8 illustrates the dependence of the normalized integration area ΩlT on the dimensionless longitudinal coordinate
z/h for cases C1–C7 plotted together with snapshots of the first three unity-normalized elliptic modes Ψ (e)

01 , Ψ (e)
11 , and Ψ (o)

11 .
As these modes are generated by a more complex transient source than those discussed in Refs. [2–5], they exhibit far more
complicated structure.

6. Conclusions

In this article we first have shown how the well-known classical expansion in terms of the Mathieu functions, describing
the steady-state vibrational modes of a stretch membrane having an elliptical boundary, can be transformed to transient
modal solutions of the inhomogeneous wave equations related to contemporary topical problems, in particular, the
problems of propagation of ultra-short (ultra wideband) pulses within elliptic waveguides. Notably, the completeness of the
Mathieu sine and cosine modes enables one to construct a general modal solution for the case of arbitrary initial conditions
imposed upon Ψ and ∂τΨ . A part of the problem-solving procedure is the introduction of the specific Klein–Gordon
equation ansatz based on the Riemann–Volterra method, which has significant independent merit and constitutes the
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Fig. 8. Dependence of the integration areaΩlT (normalized to 2lT) on the dimensionless longitudinal coordinate z/h for cases C1–C7 plotted together with
snapshots of the first three unity-normalized elliptic modes ψ (e)

01 , ψ
(e)11, and ψ (o)

11 . The dimensionless time τ/h is fixed at 26 while β = 0.7, l/h = 7, and
T/h = 6.

second objective of the article. Application of this ansatz is not restricted to the elliptic cross-section geometry; it can be
equally applied to KGEs resulted from many modern analytical approaches to solving the wave and Maxwell’s equations
without resorting to the frequency Fourier analysis [1–7].

Focusing on these principal goals, the article omits:

(i) Specific issues related to the vector nature of the electromagnetic waves, reduction of Maxwell’s equations to the
set of scalar wave equations, and reduction of the specific boundary conditions for the field components to the
homogeneous boundary conditions imposed upon scalar wavefunctions. For the case of elliptic geometry, detailed
treatment of the subject can be found in [15, Chapter XIX] and [14,20–23], while Refs. [2–5] analyze more powerful
and universal methods, suitable for general-type cylindrical waveguides, comprising simultaneous scalarization of
Maxwell’s equations and separation of the transverse variables.

(ii) Discussion of the transverse structure of the constructed transient modes. Such a structure, corresponding to the
classical Mathieu modes, is widely considered in the literature (see, for example, illustrations in [24] and a plot
package [25]).

(iii) Techniques for computation of the resulting integral solutions. Although the explicit consideration of the actual,
essentially bounded, integration domains significantly alleviates the computational burden (cf. the solution obtained
in [2, Section 5.2], and [3, Appendix C]), calculation of the final integrals requires special consideration in the domains
of rapid oscillation of the Riemann function. Such a necessity, however, cannot be regarded as a serious drawback of
the method, as the easy-to-estimate asymptotic behavior of J0(·)makes possible application of efficient analytical [26]
and numerical techniques [27].

Extension of the method to other models is the most straightforward for the circular cylindrical coordinate system. The
Klein–Gordon problems resulting from application of the transverse–longitudinal decomposition [2,5] and expansions by
eigenvalues [3] can also be solved using the Riemann–Volterra method. The space-time domain approach to the problems
of wave propagation in the spherical coordinate system—for example, the transient-multipole expansion—leads to the
Euler–Poisson–Darboux, rather than to the Klein–Gordon, equation. The fact that this equation also has a known Riemann
function enables the procedure of Section 2 to be easily adapted to the case. Finally, Olevskii’s theorem [28] opens the
prospect of construction of the Riemann functions to more complicated PDEs, extending the method to description of such
phenomena as wave propagation in dispersive media [9].

In the developed method, at increasing the spatial or temporal coordinate of the observation point, the integration
domain changes its shape, giving rise to case formulas. As discussed in Sections 4 and 5, the case structure is not a kind
of mathematical trickery inherent to the particular realization of the Riemann–Volterra solvers: generation of a pulsed
transient current is accompanied by a series of events, and different cases correspond to different sequences in which the
information about these events comes at the observation point. On the other hand, popular time-domain methods based
on Green functions yield apparently different results with initially infinite, rather than triangle, domains of integration.
Without going into a detailed discussion, let us point up the similarity between the two approaches. Here the key point is
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formula 3.876.1 of [29]
∞

0
dx

sin

q
√
x2 + a2


√
x2 + a2

cos (bx) =
π

2
J0

a

q2 − b2


h (q − b) , (66)

that in the simplest case of an infinite source pulse launched at τ = 0 (discussed, for example, by Geyi [3]) yields for
the Green function technique the same integrand as the Riemann–Volterra method and an X-shaped integration domain
z −

τ ′
− τ

 < z ′ < z +
τ ′

− τ
 that, together with another condition implied on the source support, 0 < τ ′ < τ due

to causality, brought us to the same triangle domain of integration as the Riemann–Volterra procedure of Section 2 (Fig. 2)
with the kernel

Gn

z, τ ; z ′, τ ′


=

c
π


∞

0
dp

sin

τ − τ ′


p2 + k2mn



p2 + k2mn

cos

p

z − z ′


=

c
2
J0


kmn


(τ ′ − τ)2 − (z ′ − z)2


h

τ − τ ′

−
z − z ′

 , (67)

see Ref. [3, Eq. (16)].
As spatiotemporal description of essentially nonsinusoidal ultrashort electromagnetic pulses gains increasing

importance for localized wave generation, anti-stealth radar applications, electronic warfare and radio-frequency
weaponization [30], the author believe that the method introduced in the article may also find several practicable
applications in study of signal and precursor propagation in media [31,32], optimization of cavities, waveguides and UWB
emitters [33] as well as in the assessment of the vulnerability of microwave and electronic systems to voltage and current
surges [4].

Appendix A. Expansion in terms of Mathieu modes

For arbitrary integrable function ζ (u, v), the coefficients of the expansion of type (4) can be obtained using the
orthogonality properties of the Mathieu modes as discussed in Section 16.15 of Ref. [15]:

ζ (e)mn =

 u0
0 du

 2π
0 dv ζ (u, v) Cem


u, q(e)mn


cem


v, q(e)mn


(cosh 2u − cos 2v)

π
 u0
0 duCe2m


u, q(e)mn

 
cosh 2u −Θ

(e)
mn

 , (A.1)

ζ (o)mn =

 u0
0 du

 2π
0 dv ζ (u, v) Sem


u, q(o)mn


sem


v, q(o)mn


(cosh 2u − cos 2v)

π
 u0
0 duSe2m


u, q(o)mn

 
cosh 2u −Θ

(o)
mn

 , (A.2)

where
Θ(e)

mn

Θ(o)
mn


=

1
π

 2π

0
dv


ce2m


v, q(e)mn


se2m


v, q(o)mn

 cos 2v. (A.3)

Appendix B. Proof of oddness or evenness of the source continuations for finite-length configurations

(a) Dirichlet boundary conditions (32). The 2L-periodic definition of the source (33), (34) can be expanded into the Fourier
series (in order not to clutter the formulas, the dependence on u, v, and τ is dropped)

S (z) =

∞
j=1

Sj sin

jπ

z
L


, Sj =

1
L

 L

−L
S (z) sin


jπ

z
L


dz =

2
L

 L

0
S (z) sin


jπ

z
L


dz, (B.1)

all cosine coefficients being zero due to (33). From this follows S (ς) = −S (−ς), −∞ < ς < ∞, that is, property (22) for
z0 = 0. The source representation as a function of L + ς takes the form providing the same property for z0 = L:

S (L + ς) =

∞
j=1

Sj sin

jπ

L + ς

L


=

∞
j=1

(−1)j Sj sin

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ς

L


= −S (L − ς) . (B.2)

(b) Neumann boundary conditions (35). The analogous Fourier expansion of the 2L-periodic source (34), (36) is

S (z) =
1
2
S0 +

∞
j=1
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jπ

z
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
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1
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z
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dz, (B.3)
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all sine coefficients being zero in view of (36), so S (ς) = S (−ς). The source representation as a function of L + ς is

S (L + ς) =
1
2
S0 +

∞
j=1

Sj cos

jπ
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L


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2
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L


= S (L − ς) . (B.4)

Thus the source possesses property (24) for both z0 = 0 and z0 = L.
(c)Mixed boundary conditions (37). Here 4L-periodic odd source (38)–(40) can be represented via the Fourier series
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∞
j=1

Sj sin

jπ

z
2L


, (B.5)

where
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Using the continuation rule (38) and the integration variable z̃ = 2L − z, the last integral can be rewritten as 2L

L
S (2L − z) sin
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jπ

z
2L


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0
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zeroing the coefficient Sj for any even j. Thus the summation in (B.5) must be carried out over odd indices, reducing the
series into

S (z) =

∞
j=1

S2j+1 sin

(2j + 1) π

z
2L


, (B.8)

which readily provides property (22) for z0 = 0 and, taking the form

S (L + ς) =

∞
j=1

S2j+1 sin

(2j + 1) π

L + ς

2L



=
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property (24) for z0 = L.
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