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Warm up

0.1 Historical note

Mathematical probability has its origins in games of chance [...]. Early

calculations involving dice were included in a well-known and widely distributed

poem entitled De Vetula.1 Dice and cards continued as the main vessels of

gambling in the 15th. and 16th. centuries [...]. [...] (G. Cardano) went so far

as to write a book, On games of chance, sometime shortly after 1550. This was

not published however until 1663, by which time probability theory had already

had its official inauguration elsewhere.

It was around 1654 that B. Pascal and P. de Fermat generated a celebrated

correspondence about their solutions of the problem of the points. These were

soon widely known, and C. Huygens developed these ideas in a book published

in 1657, in Latin. [...] the intuitive notions underlying this work were similar

to those commonly in force nowdays.

These first simple ideas were soon extended by Jacob Bernoulli in Ars

conjectandi (1713) and by A. de Moivre in Doctrine of chances (1718, 1738,

1756). [...]. Methods, results, and ideas were all greatly refined and generalized

by P. Laplace [...]. Many other eminent mathematicians of this period wrote

on probability: Euler, Gauss, Lagrange, Legendre, Poisson, and so on.

However, as ever harder problems were tackled by ever more powerful

mathematical techniques during the 19th. century, the lack of a well-defined

axiomatic structure was recognized as a serious handicap. [...] A. Kolmogorov

provided the axioms which today underpin most mathematical probability.

Grimmett and Stirzaker (2001, p. 571)

1De vetula (”The Old Woman”) is a long thirteenth-century poem written in Latin. (For more details
see http://en.wikipedia.org/wiki/De vetula.)
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For more extensive and exciting accounts on the history of Statistics and Probability,

we recommend:

• Hald, A. (1998). A History of Mathematical Statistics from 1750 to 1930. John

Wiley & Sons. (QA273-280/2.HAL.50129);

• Stigler, S.M. (1986). The History of Statistics: the Measurement of Uncertainty

Before 1900. Belknap Press of Harvard University Press. (QA273-280/2.STI.39095).

0.2 (Symmetric) random walk

This section is inspired by Karr (1993, pp. 1–14) and has

the sole purpose of:

• illustrating concepts such as probability, random

variables, independence, expectation and

convergence of random sequences, and recall

some limit theorems;

• drawing our attention to the fact that exploiting

the special structure of a random process can

provide answers for some of the questions raised.

It refers to the random walk, a mathematical

formalization of path that consist of a succession of

random steps (http://en.wikipedia.org/wiki/Random walk), such as the ones portrayed

above.

The term random walk was first introduced by Karl Pearson in 1905

(http://en.wikipedia.org/wiki/Random walk).

Informal definition 0.1 — Symmetric random walk

The symmetric random walk (SRW) is a random experiment which can result from the

observation of a particle moving randomly on Z = {. . . ,−1, 0, 1, . . .}. Moreover, the

particle starts at the origin at time 0, and then moves either one step up or one step down

with equal likelihood. •

2



Remark 0.2 — Applications of random walk

The path followed by atom in a gas moving under the influence of collisions with other

atoms can be described by a random walk (RW). Random walk has also been applied in

other areas such as:

• economics (RW used to model shares prices and other factors);

• population genetics (RW describes the statistical properties of genetic drift);2

• mathematical ecology (RW used to describe individual animal movements, to

empirically support processes of biodiffusion, and occasionally to model population

dynamics);

• computer science (RW used to estimate the size of the Web);

• visual arts, such as Antony Gormley’s Quantum Cloud sculpture in London which

was designed by a computer using a random walk algorithm.3

•

The next proposition provides answers to the following questions:

• How can we model and analize the symmetric random walk?

• What random variables can arise from this random experiment and how can we

describe them?

2Genetic drift is one of several evolutionary processes which lead to changes in allele frequencies over
time.

3For more applications check http://en.wikipedia.org/wiki/Random walk.
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Proposition 0.3 — Symmetric random walk (Karr, 1993, pp. 1–4)

1. The model

Let:

• ωn be the step at time n (ωn = ±1);

• ω = (ω1, ω2, . . .) be a realization of the random walk;

• Ω be the sample space of the random experiment, i.e. the set of all possible

realizations.

2. Random variables

Two random variables immediately arise:

• Yn defined as Yn(ω) = ωn, the size of the nth step;4

• Xn which represents the position at time n and is defined as

Xn(ω) =
∑n

i=1 Yi(ω).

A realization of {Yn, n ∈ N} and the corresponding sample path of {Xn, n ∈ N}
are shown below for p = 1

2 .

1 2 3 4 5 6 7 8
t

!1

1

1 2 3 4 5 6 7 8
t

!4

!3

!2

!1

0

1

2

3

4

3. Probability and independence

The sets of outcomes of this random experiment are termed events. An event A ⊂ Ω

occurs with probability P (A).

Recall that a probability function is countable additive, i.e. for sequences of

(pairwise) disjoint events A1, A2, . . . (Ai ∩ Aj = ∅, i &= j) we have

P

(
+∞⋃

i=1

Ai

)
=

+∞∑

i=1

P (Ai). (1)

4Steps are functions defined on the sample space. Thus, steps are random variables.

4



Invoking the random and symmetric character of this walk, and assuming that

the steps are independent and identically distributed, all 2n possible values of

(Y1, . . . , Yn) are equally likely, and, for every (y1, . . . , yn) ∈ {−1, 1}n,

P (Y1 = y1, . . . , Yn = yn) =
n∏

i=1

P (Yi = yi) (2)

=

(
1

2

)n

. (3)

The interpretation of (2) is absence of probabilistic interaction or independence.

4. First calculations

Let us assume from now on that X0 = 0. Then:

• |Xn| ≤ n, ∀n ∈ IN ;

• Xn is even at even times (n mod 2 = 0) (e.g. X2 cannot be equal to 1);

• Xn is odd at odd times (n mod 2 = 1) (e.g. X1 cannot be equal to 0).

If n ∈ IN , k ∈ {−n, . . . , 0, . . . , n}, and n+k
2 is an integer (n mod 2 = k mod 2) then

the event {Xn = k} occurs if n+k
2 of the steps Y1, . . . , Yn are equal to 1 and the

remainder are equal to −1.

In fact, Xn = k if we observe a steps up and b steps down where

(a, b) :






a, b ∈ {0, . . . , n}
a + b = n

a− b = k

(4)

that is, a = n+k
2 and a has to be an integer in {0, . . . , n}.

As a consequence,

P (Xn = k) =

(
n

n+k
2

)
×

(
1

2

)n

, (5)

for n ∈ IN , k ∈ {−n, . . . , 0, . . . , n}, n+k
2 ∈ {0, 1, . . . , n}. Recall that the binomial

coefficient
(

n
n+k

2

)
(it often reads as “n choose n+k

2 ”) represents the number of subsets

of size n+k
2 of a set of size n.

5

More generally,

P (Xn ∈ B) = P ({ω : Xn(ω) ∈ B})
=

∑

k∈B∩{−n,...,0,...,n}

P (Xn = k), (6)

for any real set B ⊂ IR, by countable additivity of the probability function P .

(Rewrite (6) taking into account that n and k have to be both even or both odd.) •

Remark 0.4 — Further properties of the symmetric random walk (Karr, 1993,

pp. 4–5)

Exploiting the special structure of the SRW lead us to conclude that:

• the SRW cannot move from one level to another without passing through all values

between (“continuity”);

• all 2n length−n paths are equally likely so two events containing the same number

of paths have the same probability, no. paths
2n , which allows the probability of one

event to be determined by showing that the paths belonging to this event are in

one-to-one correspondence with those of an event of known probability — in many

cases this correspondence is established geometrically, namely via reasoning known

as reflection principle.5 •

Exercise 0.5 — Symmetric random walk

Prove that:

(a) P (X2 &= 0) = P (X2 = 0) = 1
2 ;

(b) P (Xn = −k) = P (Xn = k), for each n and k. •

Proposition 0.6 — Expectation and symmetric random walk (Karr, 1993, p. 5)

The average value of any ith−step of a SRW is equal to

E(Yi) = (−1)× P (Yi = −1) + (+1)× P (Yi = +1)

= 0. (7)

Additivity of probability translates to linearity of expectation, thus the average position

equals

5For each n, there are as many paths of length 2n origination at (0, 0) that do not cross
the x−axis before or at time 2n as there are paths from (0, 0) to (2n, 0) (Karr, 1993, pp. 7–8).

6



E(Xn) = E

(
n∑

i=1

Yi

)

=
n∑

i=1

E(Yi)

= 0. (8)

•

Proposition 0.7 — Conditioning and symmetric random walk (Karr, 1993, p. 6)

We can revise probability in light of the knowledge that some event has occurred. For

example, we know that P (X2n = 0) =
(
2n
n

)
×

(
1
2

)2n
. However, if we knew that X2n−1 = 1

then the event {X2n = 0} occurs with probability 1
2 . In fact,

P (X2n = 0|X2n−1 = 1) =
P (X2n−1 = 1, X2n = 0)

P (X2n−1 = 1)

=
P (X2n−1 = 1, Y2n = −1)

P (X2n−1 = 1)

=
P (X2n−1 = 1)× P (Y2n = −1)

P (X2n−1 = 1)

=
1

2
. (9)

Note that, since the steps Yi are independent random variables and X2n−1 =
∑2n−1

i=1 Yi,

we can state that Y2n is independent of X2n−1. •

Exercise 0.8 — Conditioning and asymmetric random walk6

Random walk models are often found in physics, from particle motion to a simple

description of a polymer.

A physicist assumes that the position of a particle at time n, Xn, is governed by

an asymmetric random walk — starting at 0 and with probability of an upward (resp.

downward) step equal to p (resp. 1− p), where p ∈ (0, 1)\{1
2}.

Derive P (X2n = 0|X2n−2 = 0), for n = 2, 3, . . . •

Proposition 0.9 — Time of first return to the origin and symmetric random

walk (Karr, 1993, pp. 7-9)

The time at which the SRW first returns to the origin,

6Exam 2010/01/19.
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T 0 = min{n ∈ IN : Xn = 0}, (10)

is an important functional of the SRW (it maps the SRW into a scalar). It can represent

the time to ruin.

Interestingly enough, for n ∈ IN , T 0 must be a positive and even r.v. (recall that

X0 = 0). And, for n ∈ IN :

P (T 0 > 2n) = P (X1 &= 0, . . . , X2n &= 0) =

(
2n

n

)
×

(
1

2

)2n

; (11)

P (T 0 = 2n) =
1

2n− 1

(
2n

n

)
×

(
1

2

)2n

. (12)

Moreover, using the Stirling’s approximation to n!, n! *
√

2π nn+ 1
2 e−n, we get

P (T 0 < +∞) = 1. (13)

If we note that P (T 0 > 2n) * 1√
πn and recall that

∑+∞
n=1

1
ns only converges for s ≥ 2,

we can conclude that T 0 assumes large values with probabilities large enough that

+∞∑

n=1

2n P (T 0 = 2n) = +∞⇒ E(T 0) = +∞. (14)

•

Exercise 0.10 — Time of first return to the origin and symmetric random walk

(a) Prove result (12) using (11).

(b) Use the Stirling’s approximation to n!, n! *
√

2π nn+ 1
2 e−n to prove that

lim
n→+∞

P (T 0 > 2n) = lim
n→+∞

1√
πn

.

(c) Use the previous result and the fact that

P (T 0 < +∞) = 1− lim
n→+∞

P (T 0 > 2n)

to derive (13).

(d) Verify that
∑+∞

n=1 2n P (T 0 = 2n) = 1 +
∑+∞

n=1 P (T 0 > 2n), even though we have

E(Z) = 2 ×
[
1 +

∑+∞
n=1 P (Z > 2n)

]
, for any positive and even random variable Z

with finite expected value E(Z) =
∑+∞

n=1 2n× P (Z = 2n). •

8



Proposition 0.11 — First passage times and symmetric random walk (Karr,

1993, pp. 9–11)

Similarly, the first passage time

T k = min{n ∈ IN : Xn = k}, (15)

has the following properties, for n ∈ IN , k ∈ {−n, . . . ,−1, 1, . . . , n} and n mod 2 =

k mod 2:

P (T k = n) =
|k|
n
× P (Xn = k); (16)

P (T k < ∞) = 1; (17)

E(T k) = +∞. (18)

•

The following results pertain to the asymptotic behaviour of the position of a

symmetric random walk and to the fraction of time spent positive.

Proposition 0.12 — Law of large numbers (Karr, 1993, p. 12)

Let Yn and Xn =
∑n

i=1 Yi represent the size of the nth. step and the position at time n

of a random walk, respectively. Then

P

(
lim

n→+∞

Xn

n
= 0

)
= 1, (19)

that is, the “empirical averages”, Xn
n = 1

n

∑n
i=1 Yi, converge to the “theoretical average”

E(Y1). •

Proposition 0.13 — Central limit theorem (Karr, 1993, pp. 12–13)

lim
n→+∞

P




Xn
n − E

(
Xn
n

)
√

V
(

Xn
n

) ≤ x



 = lim
n→+∞

P




Xn
n − E(Y1)√

V (Y1)
n

≤ x





=

∫ x

−∞

1√
2π

e−
y2

2 dy

= Φ(x), x ∈ IR. (20)

So, for large values of n, difficult-to-compute probabilities can be approximated. For

instance, for a < b, we get:

9

P (a < Xn ≤ b) =
∑

a<k≤b

P (Xn = k)

= P




a
n − 0
√

1
n

<
Xn
n − 0
√

1
n

≤
b
n − 0
√

1
n





* Φ(b/
√

n)− Φ(a/
√

n). (21)

•

Exercise 0.14 — Central limit theorem7

The words “symmetric random walk” refer to this situation.

The proverbial drunk (PD) is clinging to the lamppost. He decides to start

walking. The road runs east and west. In his inebriated state he is as likely

to take a step east (forward) as west (backward). In each new position he is

again as likely to go forward as backward. Each of his steps are of the same

length but of random direction — east or west.

http://www.physics.ucla.edu/∼chester/TECH/RandomWalk/3Pane.html

Admit that each step of PD has length equal to one meter and that he has already taken

exactly 100 (a hundred) steps.

Find an approximate value for the probability that PD is within a five meters

neighborhood of the lamppost. •

Proposition 0.15 — Arc sine law (Karr, 1993, pp. 13–14)

The fraction of time spent positive Wn
n = 1

n

∑n
i=1 IIN(Xi +Xi−1) has the following limiting

law:8

lim
n→+∞

P

(
Wn

n
≤ x

)
=

2

π
arcsin

√
x. (22)

Moreover, the associated limiting density function, 1

π
√

x(1−x)
, is a U−shaped density.

Thus, Wn
n is more likely to be near 0 or 1 than near 1/2.

7Exam 2010/02/04.
8According to Karr (1993, p. 12), being positive at time i requires that either Xi > 0 or Xi−1 > 0 (or

both).
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Please note that we can get the limiting distribution function by using the Stirling’s

approximation and the following result:

P (W2n = 2k) =

(
2k

k

)
×

(
2n− 2k

n− k

)
×

(
1

2

)2n

. (23)

•

Exercise 0.16 — Arc sine law

Prove result (22) (Karr, 1993, p. 13). •

Exercise 0.17 — Arc sine law9

The random walk hypothesis is due to French economist Louis Bachelier (1870–1946) and

asserts that the random nature of a commodity or stock prices cannot reveal trends and

therefore current prices are no guide to future prices. Surprisingly, an investor assumes

that his/her daily financial score is governed by a symmetric random walk starting at 0.

Obtain the corresponding approximate value for the probability that the fraction of

time the financial score is positive exceeds 50%. •

Exercise 0.18 — The cliff-hanger problem (Mosteller, 1965, pp. 51–54)

From where he stands (X0 = 1), one step toward the cliff would send the drunken man

over the edge. He takes random steps, either toward or away from the cliff. At any step,

his probability of taking a step away is p and of a step toward the cliff 1− p.

What is his chance of not escaping the cliff? (Write the results in terms of p.) •
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Chapter 1

Probability spaces

[...] have been taught that the universe evolves according to deterministic

laws that specify exactly its future, and a probabilistic description is necessary

only because of our ignorance. This deep-rooted skepticism in the validity

of probabilistic results can be overcome only by proper interpretation of the

meaning of probability. Papoulis (1965, p. 3)

Probability is the mathematics of uncertainty. It has flourished

under the stimulus of applications, such as insurance, demography, [...], clinical

trials, signal processing, [...], spread of infectious diseases, [...], medical

imaging, etc. and have furnished both mathematical questions and genuine

interest in the answers. Karr (1993, p. 15)

Much of our life is based on the belief that the future is largely unpredictable

(Grimmett and Stirzaker, 2001, p. 1), nature is liable to change and chance governs

life.

We express this belief in chance behaviour by the use of words such as random, probable

(probably), probability, likelihood (likeliness), etc.

There are essentially four ways of defining probability (Papoulis, 1965, p. 7) and this

is quite a controversial subject, proving that not all of probability and statistics is cut-

and-dried (Righter, 200–):

• a priori definition as a ratio of favorable to total number of alternatives (classical

definition; Laplace);1

1See the first principle of probability in http://en.wikipedia.org/wiki/Pierre-Simon Laplace
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• relative frequency (Von Mises);2

• probability as a measure of belief (inductive reasoning,3 subjective probability;

Bayesianism);4

• axiomatic (measure theory; Kolmogorov’s axioms).5

Classical definition of probability

The classical definition of probability of an event A is found a priori without actual

experimentation, by counting the total number N = #Ω < +∞ of possible outcomes

of the random experiment. If these outcomes are equally likely and NA = #A of these

outcomes the event A occurs, then

P (A) =
NA

N
=

#A

#Ω
. (1.1)

Criticism of the classical definition of probability

It is only holds if N = #Ω < +∞ and all the N outcomes are equally likely. Moreover,

• serious problems often arise in determining N = #Ω;

• it can be used only for a limited class of problems since the equally likely condition

is often violated in practice;

• the classical definition, although presented as a priori logical necessity, makes

implicit use of the relative-frequency interpretation of probability;

• in many problems the possible number of outcomes is infinite, so that to determine

probabilities of various events one must introduce some measure of length or area.

2Kolmogorov said: “[...] mathematical theory of probability to real ’random phenomena’ must depend
on some form of the frequency concept of probability, [...] which has been established by von Mises [...].”
(http://en.wikipedia.org/wiki/Richard von Mises)

3Inductive reasoning or inductive logic is a type of reasoning which involves moving from a set of
specific facts to a general conclusion (http://en.wikipedia.org/wiki/Inductive reasoning).

4Bayesianism uses probability theory as the framework for induction. Given new evidence, Bayes’
theorem is used to evaluate how much the strength of a belief in a hypothesis should change with the
data we collected.

5http://en.wikipedia.org/wiki/Kolmogorov axioms
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Relative frequency definition of probability

The relative frequency approach was developed by Von Mises in the beginning of the 20th.

century; at that time the prevailing definition of probability was the classical one and his

work was a healthy alternative (Papoulis, 1965, p. 9).

The relative frequency definition of probability used to be popular among engineers

and physicists. A random experiment is repeated over and over again, N times; if the

event A occurs NA times out of N , then the probability of A is defined as the limit of the

relative frequency of the occurrence of A:

P (A) = lim
N→+∞

NA

N
. (1.2)

Criticism of the relative frequency definition of probability

This notion is meaningless in most important applications, e.g. finding the probability of

the space shuttle blowing up, or of an earthquake (Righter, 200–), essentially because we

cannot repeat the experiment.

It is also useless when dealing with hypothetical experiments (e.g. visiting Jupiter).

Subjective probability, personal probability, Bayesian approach; criticism

Each person determines for herself what the probability of an event is ; this value is in

[0, 1] and expresses the personal belief on the occurrence of the event.

The Bayesian approach is the approach used by most engineers and many scientists and

business people. It bothers some, because it is not “objective”. For a Bayesian, anything

that is unknown is random, and therefore has a probability, even events that have already

occurred. (Someone flipped a fair coin in another room, the chance that it was heads or

tails is .5 for a Bayesian. A non-Bayesian could not give a probability.)

With a Bayesian approach it is possible to include nonstatistical information (such as

expert opinions) to come up with a probability. The general Bayesian approach is to come

up with a prior probability, collect data, and use the data to update the probability (using

Bayes’ Law, which we will study later). (Righter, 200–)

To understand the (axiomatic) definition of probability we shall need the following

concepts:

• random experiment, whose outcome cannot be determined in advance;

• sample space Ω, the set of all (conceptually) possible outcomes;

14



• outcomes ω, elements of the sample space, also referred to as sample points or

realizations;

• events A, a set of outcomes;

• σ−algebra on Ω, a family of subsets of Ω containing Ω and closed under

complementation and countable union.
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1.1 Random experiments

Definition 1.1 — Random experiment

A random experiment consists of both a procedure and observations,6 and its outcome

cannot be determined in advance. •

There is some uncertainty in what will be observed in the random experiment,

otherwise performing the experiment would be unnecessary.

Example 1.2 — Random experiments

Random experiment

E1 Give a lecture.

Observe the number of students seated in the 4th. row, which has 7 seats.

E2 Choose a highway junction.

Observe the number of car accidents in 12 hours.

E3 Walk to a bus stop.

Observe the time (in minutes) you wait for the arrival of a bus.

E4 Give n lectures.

Observe the number of students seated in the forth row in each of those n lectures.

E5 Consider a particle in a gas modeled by a random walk.

Observe the steps at times 1, 2, . . .

E6 Consider a cremation chamber.

Observe the temperature in the center of the chamber over the interval of time [0, 1].

•

Exercise 1.3 — Random experiment

Identify at least one random experiment based on your daily schedule. •

Definition 1.4 — Sample space (Yates and Goodman, 1999, p. 8)

The sample space Ω of a random experiment is the finest-grain, mutually exclusive,

collectively exhaustive set of all possible outcomes of the random experiment. •

6Yates and Goodman (1999, p. 7).
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The finest-grain property simply means that all possible distinguishable outcomes are

identified separately. Moreover, Ω is (usually) known before the random experiment takes

place. The choice of Ω balances fidelity to reality with mathematical convenience (Karr,

1993, p. 12).

Remark 1.5 — Categories of sample spaces (Karr, 1993, pp. 16–17)

In practice, most sample spaces fall into one of the six categories:

• Finite set

The simplest random experiment has two outcomes.

A random experiment with n possible outcomes may be modeled with a sample

space consisting of n integers.

• Countable set

The sample space for an experiment with countably many possible outcomes is

ordinarily the set IN = {1, 2, . . .} of positive integers or the set of {. . . ,−1, 0, +1, . . .}
of all integers.

Whether a finite or a countable sample space better describes a given phenomenon

is a matter of judgement and compromise. (Comment!)

• The real line IR (and intervals in IR)

The most common sample space is the real line IR (or the unit interval [0, 1] the

nonnegative half-line IR+
0 ), which is used for most all numerical phenomena that are

not inherently integer-valued.

• Finitely many replications

Some random experiments result from the n (n ∈ IN) replications of a basic

experiment with sample space Ω0. In this case the sample space is the Cartesian

product Ω = Ωn
0 .

• Infinitely many replications

If a basic random experiment is repeated infinitely many times we deal with the

sample space Ω = ΩIN
0 .

• Function spaces

In some random experiments the outcome is a trajectory followed by a system over

an interval of time. In this case the outcomes are functions. •
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Example 1.6 — Sample spaces

The sample spaces defined below refer to the random experiments defined in Example

1.2:

Random experiment Sample space (Ω) Classification of Ω

E1 {0, 1, 2, 3, 4, 5, 6, 7} Finite set

E2 IN0 = {0, 1, 2, . . .} Countable set

E3 IR+
0 Interval in IR

E4 {0, 1, 2, 3, 4, 5, 6, 7}n Finitely many replications

E5 {−1,+1}IN Infinitely many replications

E6 C([0, 1]) Function space

Note that C([0, 1]) represents the vector space of continuous, real-valued functions on

[0, 1]. •

18



1.2 Events and classes of sets

Definition 1.7 — Event (Karr, 1993, p. 18)

Given a random experiment with sample space Ω, an event can be provisionally defined

as a subset of Ω whose probability is defined. •

Remark 1.8 — An event A occurs if the outcome ω of the random experiment belongs

to A, i.e. ω ∈ A. •

Example 1.9 — Events

Some events associated to the six random experiments described in examples 1.2 and 1.6:

E.A. Event

E1 A = “observe at least 3 students in the 4th. row”

= {3, . . . , 7}

E2 B = “observe more than 4 car accidents in 12 hours”

= {5, 6, . . .}

E3 C = “wait more than 8 minutes”

= (8,+∞)

E4 D = “observe at least 3 students in the 4th. row, in 5 consecutive days”

= {3, . . . , 7}5

E5 E = “an ascending path”

= {(1, 1, . . .)}

E6 F = “temperature above 250o over the interval [0, 1]”

= {f ∈ C([0, 1]) : f(x) > 250, x ∈ [0, 1]}

•

Definition 1.10 — Set operations (Resnick, 1999, p. 3)

As subsets of the sample space Ω, events can be manipulated using set operations. The

set operations which you should know and will be commonly used are listed next:

• Complementation

The complement of an event A ⊂ Ω is

Ac = {ω ∈ Ω : ω &∈ A}. (1.3)

19

• Intersection

The intersection of events A and B (A, B ⊂ Ω) is

A ∩B = {ω ∈ Ω : ω ∈ A and ω ∈ B}. (1.4)

The events A and B are disjoint (mutually exclusive) if A ∩ B = ∅, i.e. they have

no outcomes in common, therefore they never happen at the same time.

• Union

The union of events A and B (A, B ⊂ Ω) is

A ∪B = {ω ∈ Ω : ω ∈ A or ω ∈ B}. (1.5)

Karr (1993) uses A + B to denote A ∪B when A and B are disjoint.

• Set difference

Given two events A and B (A, B ⊂ Ω), the set difference between B and A consists

of those outcomes in B but not in A:

B\A = B ∩ Ac. (1.6)

• Symmetric difference

Let A and B be two events (A, B ⊂ Ω). Then the outcomes that are in one but not

in both sets consist on the symmetric difference:

A∆B = (A\B) ∪ (B\A). (1.7)

•

Exercise 1.11 — Set operations

Represent the five set operations in Definition 1.10 pictorially by Venn diagrams. •

Proposition 1.12 — Properties of set operations (Resnick, 1999, pp. 4–5)

Set operations satisfy well known properties such as commutativity, associativity, De

Morgan’s laws, etc., providing now and then connections between set operations. These

properties have been condensed in the following table:
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Set operation Property

Complementation (Ac)c = A

∅c = Ω
Ωc = ∅

Intersection and union Commutativity
A ∩B = B ∩A, A ∪B = B ∪A

A ∩ ∅ = ∅, A ∪ ∅ = A

A ∩A = A, A ∪A = A

A ∩ Ω = A, A ∪ Ω = Ω
A ∩Ac = ∅, A ∪Ac = Ω

Associativity
(A ∩B) ∩ C = A ∩ (B ∩ C)
(A ∪B) ∪ C = A ∪ (B ∪ C)

De Morgan’s laws
(A ∩B)c = Ac ∪Bc

(A ∪B)c = Ac ∩Bc

Distributivity
(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)
(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

•

Definition 1.13 — Relations between sets (Resnick, 1999, p. 4)

Now we list ways sets A and B can be compared:

• Set containment or inclusion

A is a subset of B, written A ⊂ B or B ⊃ A, iff A ∩B = A. This means that

ω ∈ A ⇒ ω ∈ B. (1.8)

So if A occurs then B also occurs. However, the occurrence of B does not imply

the occurrence of A.

• Equality

Two events A and B are equal, written A = B, iff A ⊂ B and B ⊂ A. This means

ω ∈ A ⇔ ω ∈ B. (1.9)

•
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Proposition 1.14 — Properties of set containment (Resnick, 1999, p. 4)

These properties are straightforward but we stated them for the sake of completeness and

their utility in the comparison of the probabilities of events:

• A ⊂ A

• A ⊂ B, B ⊂ C ⇒ A ⊂ C

• A ⊂ C, B ⊂ C ⇒ (A ∪B) ⊂ C

• A ⊃ C, B ⊃ C ⇒ (A ∩B) ⊃ C

• A ⊂ B ⇔ Bc ⊂ Ac. •

These properties will be essential to calculate or relate probabilities of (sophisticated)

events.

Remark 1.15 — The jargon of set theory and probability theory

What follows results from minor changes of Table 1.1 from Grimmett and Stirkazer (2001,

p. 3):

Typical notation Set jargon Probability jargon

Ω Collection of objects Sample space

ω Member of Ω Outcome

A Subset of Ω Event (that some outcome in A occurs)

Ac Complement of A Event (that no outcome in A occurs)

A ∩B Intersection A and B occur

A ∪B Union Either A or B or both A and B occur

B\A Difference B occurs but not A

A∆B Symmetric difference Either A or B, but not both, occur

A ⊂ B Inclusion If A occurs then B occurs too

∅ Empty set Impossible event

Ω Whole space Certain event

•
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Functions on the sample space (such as random variables defined in the next chapter)

are even more important than events themselves.

An indicator function is the simplest way to associate a set with a (binary) function.

Definition 1.16 — Indicator function (Karr, 1993, p. 19)

The indicator function of the event A ⊂ Ω is the function on Ω given by

1A(w) =

{
1 if w ∈ A

0 if w &∈ A
(1.10)

Therefore, 1A indicates whether A occurs. •

The indicator function of an event, which resulted from a set operation on events A

and B, can often be written in terms of the indicator functions of these two events.

Proposition 1.17 — Properties of indicator functions (Karr, 1993, p. 19)

Simple algebraic operations on the indicator functions of the events A and B translate

set operations on these two events:

1Ac = 1− 1A (1.11)

1A∩B = min{1A,1B}
= 1A × 1B (1.12)

1A∪B = max{1A,1B}; (1.13)

1B\A = 1B∩Ac

= 1B × (1− 1A) (1.14)

1A∆B = |1A − 1B|. (1.15)

•

Exercise 1.18 — Indicator functions

Solve exercises 1.1 and 1.7 of Karr (1993, p. 40). •

The definition of indicator function quickly yields the following result when we are

able compare events A and B.
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Proposition 1.19 — Another property of indicator functions (Resnick, 1999, p.

5)

Let A and B be two events of Ω. Then

A ⊆ B ⇔ 1A ≤ 1B. (1.16)

Note here that we use the convention that for two functions f , g with domain Ω and range

IR, we have f ≤ g iff f(ω) ≤ g(ω) for all ω ∈ Ω. •

Motivation 1.20 — Limits of sets (Resnick, 1999, p. 6)

The definition of convergence concepts for random variables rests on manipulations of

sequences of events which require the definition of limits of sets. •

Definition 1.21 — Operations on sequences of sets (Karr, 1993, p. 20)

Let (An)n∈IN be a sequence of events of Ω. Then the union and the intersection of (An)n∈IN

are defined as follows

+∞⋃

n=1

An = {ω : ω ∈ An for some n} (1.17)

+∞⋂

n=1

An = {ω : ω ∈ An for all n}. (1.18)

The sequence (An)n∈IN is said to be pairwise disjoint if Ai ∩ Aj = ∅ whenever i &= j. •

Definition 1.22 — Lim sup, lim inf and limit set (Karr, 1993, p. 20)

Let (An)n∈IN be a sequence of events of Ω. Then we define the two following limit sets:

lim sup An =
+∞⋂

k=1

+∞⋃

n=k

An (1.19)

= {ω ∈ Ω : ω ∈ An for infinitely many values of n}
= {An, i.o.}

lim inf An =
+∞⋃

k=1

+∞⋂

n=k

An (1.20)

= {ω ∈ Ω : ω ∈ An for all but finitely many values of n}
= {An, ult.},

where i.o. and ult. stand for infinitely often and ultimately, respectively.
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Let A be an event of Ω. Then the sequence (An)n∈IN is said to converge to A, written

An → A or limn→+∞An = A, if

lim inf An = lim sup An = A. (1.21)

•

Example 1.23 — Lim sup, lim inf and limit set

Let (An)n∈IN be a sequence of events of Ω such that

An =

{
A for n even

Ac for n odd.
(1.22)

Then

lim sup An =
+∞⋂

k=1

+∞⋃

n=k

An

= Ω (1.23)

&=

lim inf An =
+∞⋃

k=1

+∞⋂

n=k

An

= ∅, (1.24)

so there is no limit set limn→An. •

Exercise 1.24 — Lim sup, lim inf and limit set

Solve Exercise 1.3 of Karr (1993, p. 40). •

Proposition 1.25 — Properties of lim sup and lim inf (Resnick, 1999, pp. 7–8)

Let (An)n∈IN be a sequence of events of Ω. Then

lim inf An ⊂ lim sup An (1.25)

(lim inf An)c = lim sup(Ac
n). (1.26)

•
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Definition 1.26 — Monotone sequences of events (Resnick, 1999, p. 8)

Let (An)n∈IN be a sequence of events of Ω. It is said to be monotone non-decreasing,

written An ↑, if

A1 ⊆ A2 ⊆ A3 ⊆ . . . . (1.27)

(An)n∈IN is monotone non-increasing, written An ↓, if

A1 ⊇ A2 ⊇ A3 ⊇ . . . . (1.28)

•

Proposition 1.27 — Properties of monotone sequences of events (Karr, 1993,

pp. 20–21)

Suppose (An)n∈IN be a monotone sequence of events. Then

An ↑ ⇒ lim
n→+∞

An =
+∞⋃

n=1

An (1.29)

An ↓ ⇒ lim
n→+∞

An =
+∞⋂

n=1

An. (1.30)

•

Exercise 1.28 — Properties of monotone sequences of events

Prove Proposition 1.27. •

Example 1.29 — Monotone sequences of events

The Galton-Watson process is a branching stochastic process arising from Francis Galton’s

statistical investigation of the extinction of family names. Modern applications include the

survival probabilities for a new mutant gene, [...], or the dynamics of disease outbreaks

in their first generations of spread, or the chances of extinction of small populations of

organisms. (http://en.wikipedia.org/wiki/Galton-Watson process)

Let (Xn)IN0 be a stochastic process, where Xn represents the size of generation n. A

(Xn)IN0 is Galton-Watson process if it evolves according to the recurrence formula:

• X0 = 1 (we start with one individual); and

• Xn+1 =
∑Xn

i=1 Z(n)
i , where, for each n, Z(n)

i represents the number of descendants of

the individual i from generation n and
(
Z(n)

i

)

i∈IN
is a sequence of i.i.d. non-negative

random variables.
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Let An = {Xn = 0}. Since A1 ⇒ A2 ⇒ . . ., i.e. (An)n∈IN is a non-decreasing monotone

sequence of events, written An ↑, we get An → A =
⋃+∞

n=1 An. Moreover, the extinction

probability is given by

P ({Xn = 0 for some n}) = P

(
+∞⋃

n=1

{Xn = 0}
)

= P

(
lim

n→+∞
{Xn = 0}

)

= P

(
+∞⋃

n=1

An

)

= P

(
lim

n→+∞
An

)
. (1.31)

Later on, we shall conclude that we can conveniently interchange the limit sign and

the probability function and add: P (Xn = 0 for some n) = P (limn→+∞{Xn = 0}) =

limn→+∞ P ({Xn = 0}). •

Proposition 1.30 — Limits of indicator functions (Karr, 1993, p. 21)

In terms of indicator functions,

An → A ⇔ 1An(w) → 1A(w), ∀w ∈ Ω. (1.32)

Thus, the convergence of sets is the same as pointwise convergence of their indicator

functions. •

Exercise 1.31 — Limits of indicator functions (Exercise 1.8, Karr, 1993, p. 40)

Prove Proposition 1.30. •

Motivation 1.32 — Closure under set operations (Resnick, 1999, p. 12)

We need the notion of closure because we want to combine and manipulate events to make

more complex events via set operations and we require that certain set operations do not

carry events outside the family of events. •

Definition 1.33 — Closure under set operations (Resnick, 1999, p. 12)

Let C be a collection of subsets of Ω. C is closed under a set operation7 if the set obtained

by performing the set operation on sets in C yields a set in C. •
7Be it a countable union, finite union, countable intersection, finite intersection, complementation,

monotone limits, etc.
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Example 1.34 — Closure under set operations (Resnick, 1999, p. 12)

• C is closed under finite union if for any finite collection A1, . . . , An of sets in C,
⋃n

i=1 Ai ∈ C.

• Suppose Ω = IR and C = {finite real intervals} = {(a, b] : −∞ < a < b < +∞}.
Then C is not closed under finite unions since (1, 2]∪ (36, 37] is not a finite interval.

However, C is closed under intersection since (a, b]∩(c, d] = (max{a, c}, min{b, d}] =

(a ∨ c, b ∧ d].

• Consider now Ω = IR and C = {open real subsets}. C is not closed under

complementation since the complement of an open set is not open. •

Definition 1.35 — Algebra (Resnick, 1999, p. 12)

A is an algebra (or field) on Ω if it is a non-empty class of subsets of Ω closed under finite

union, finite intersection and complementation.

A minimal set of postulates for A to be an algebra on Ω is:

1. Ω ∈ A

2. A ∈ A⇒ Ac ∈ A

3. A, B ∈ A⇒ A ∪B ∈ A. •

Remark 1.36 — Algebra

Please note that, by the De Morgan’s laws, A is closed under finite intersection ((A∪B)c =

Ac ∩Bc ∈ A), thus we do not need a postulate concerning finite intersection. •

Motivation 1.37 — σ-algebra (Karr, 1993, p. 21)

To define a probability function dealing with an algebra is not enough: we need to define

a collection of sets which is closed under countable union, countable intersection, and

complementation. •

Definition 1.38 — σ−algebra (Resnick, 1999, p. 12)

F is a σ−algebra on Ω if it is a non-empty class of subsets of Ω closed under countable

union, countable intersection and complementation.

A minimal set of postulates for F to be an σ−algebra on Ω is:
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1. Ω ∈ F

2. A ∈ F ⇒ Ac ∈ F

3. A1, A2, . . . ∈ F ⇒
⋃+∞

i=1 Ai ∈ F . •

Example 1.39 — σ−algebra (Karr, 1993, p. 21)

• Trivial σ−algebra

F = {∅, Ω}

• Power set

F = IP (Ω) = class of all subsets of Ω

In general, neither of these two σ−algebras is specially interesting or useful — we need

something in between. •

Definition 1.40 — Generated σ−algebra (http://en.wikipedia.org/wiki/Sigma-

algebra)

If U is an arbitrary family of subsets of Ω then we can form a special σ−algebra

containing U , called the σ−algebra generated by U and denoted by σ(U), by intersecting

all σ−algebras containing U .

Defined in this way σ(U) is the smallest/minimal σ−algebra on Ω that contains U . •

Example 1.41 — Generated σ−algebra (http://en.wikipedia.org/wiki/Sigma-

algebra; Karr, 1993, p. 22)

• Trivial example

Let Ω = {1, 2, 3} and U = {{1}}. Then σ(U) = {∅, {1}, {2, 3}, Ω} is a σ−algebra

on Ω.

• σ−algebra generated by a finite partition

If U = {A1, . . . , An} is a finite partition of Ω — that is, A1, . . . , An are disjoint and
⋃n

i=1 Ai = Ω — then σ(U) = {
⋃

i∈I Ai : I ⊆ {1, . . . , n}} which includes ∅.

• σ−algebra generated by a countable partition

If U = {A1, A2, . . .} is a countable partion of Ω — that is, A1, A2, , . . . are disjoint

and
⋃+∞

i=1 Ai = Ω — then σ(U) = {
⋃

i∈I Ai : I ⊆ IN} which also includes ∅. •
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Since we tend to deal with real random variables we have to define a σ−algebra on

Ω = IR and the power set on IR, IP (IR) is not an option. The most important σ−algebra

on IR is the one defined as follows.

Definition 1.42 — Borel σ−algebra on IR (Karr, 1993, p. 22)

The Borel σ−algebra on IR, denoted by B(IR), is generated by the class of intervals

U = {(a, b] : −∞ < a < b < +∞}, (1.33)

that is, σ(U) = B(IR). Its elements are called Borel sets.8 •

Remark 1.43 — Borel σ−algebra on IR (Karr, 1993, p. 22)

• Every “reasonable” set of IR — such as intervals, closed sets, open sets, finite sets,

and countable sets — belong to B(IR). For instance, {x} =
⋂+∞

n=1(x− 1/n, x].

• Moreover, the Borel σ−algebra on IR, B(IR), can also be generated by the class of

intervals {(−∞, a] : −∞ < a < +∞} or {(b, +∞) : −∞ < b < +∞}.

• B(IR) &= IP (IR). •

Definition 1.44 — Borel σ−algebra on IRd (Karr, 1993, p. 22)

The Borel σ−algebra on IRd, d ∈ IN , B(IRd), is generated by the class of rectangles that

are Cartesian products of real intervals

U =

{
d∏

i=1

(ai, bi] : −∞ < ai < bi < +∞, i = 1, . . . , d

}
. (1.34)

•

Exercise 1.45 — Generated σ−algebra (Exercise 1.9, Karr, 1993, p. 40)

Given sets A and B of Ω, identify all sets in σ({A, B}). •

Exercise 1.46 — Borel σ−algebra on IR (Exercise 1.10, Karr, 1993, p. 40)

Prove that {x} is a Borel set for every x ∈ IR. •

8Borel sets are named after Émile Borel. Along with René-Louis Baire and Henri
Lebesgue, he was among the pioneers of measure theory and its application to probability theory
(http://en.wikipedia.org/wiki/Émile Borel).
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1.3 Probabilities and probability functions

Motivation 1.47 — Probability function (Karr, 1993, p. 23)

A probability is a set function, defined for events; it should be countably additive (i.e.

σ−additive), that is, the probability of a countable union of disjoint events is the sum of

their individual probabilities. •

Definition 1.48 — Probability function (Karr, 1993, p. 24)

Let Ω be the sample space and F be the σ−algebra of events of Ω. A probability on

(Ω,F) is a function P : Ω → IR such that:

1. Axiom 1 9 — P (A) ≥ 0, ∀A ∈ F .

2. Axiom 2 — P (Ω) = 1.

3. Axiom 3 (countable additivity or σ−additivity)

Whenever A1, A2, . . . are (pairwise) disjoint events in F ,

P

(
+∞⋃

i=1

Ai

)
=

+∞∑

i=1

P (Ai). (1.35)

•

Remark 1.49 — Probability function

The probability function P transforms events in real numbers in [0, 1]. •

Definition 1.50 — Probability space (Karr, 1993, p. 24)

The triple (Ω,F , P ) is a probability space. •

Example 1.51 — Probability function (Karr, 1993, p. 25)

Let

• {A1, . . . , An} be a finite partition of Ω — that is, A1, . . . , An are (nonempty and

pairwise) disjoint events and
⋃n

i=1 Ai = Ω;

• F be the σ−algebra generated by the finite partition {A1, A2, . . . , An}, i.e. F =

σ({A1, . . . , An});

• p1, . . . , pn positive numbers such that
∑n

i=1 pi = 1.

9Righter (200—) called the first and second axioms duh rules.
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Then the function defined as

P

(
⋃

i∈I

Ai

)
=

∑

i∈I

pi, ∀I ⊆ {1, . . . , n}, (1.36)

where pi = P (Ai), is a probability function on (Ω,F). •

Exercise 1.52 — Probability function (Exercise 1.11, Karr, 1993, p. 40)

Let A, B and C be disjoint events such that: A ∪ B ∪ C = Ω; P (A) = 0.6, P (B) = 0.3

and P (C) = 0.1. Calculate all probabilities of all events in σ({A, B, C}). •

Motivation 1.53 — Elementary properties of probability functions

The axioms do not teach us how to calculate the probabilities of events. However, they

establish rules for their calculation such as the following ones. •

Proposition 1.54 — Elementary properties of probability functions (Karr, 1993,

p. 25)

Let (Ω,F , P ) be a probability space then:

1. Probability of the empty set

P (∅) = 0. (1.37)

2. Finite additivity

If A1, . . . , An are (pairwise) disjoint events then

P

(
n⋃

i=1

Ai

)
=

n∑

i=1

P (Ai). (1.38)

Probability of the complement of A

Consequently, for each A,

P (Ac) = 1− P (A). (1.39)

3. Monotonicity of the probability function

If A ⊆ B then

P (B \ A) = P (B)− P (A). (1.40)

Therefore if A ⊆ B then

P (A) ≤ P (B). (1.41)
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4. Addition rule

For all A and B (disjoint or not),

P (A ∪B) = P (A) + P (B)− P (A ∩B). (1.42)

•

Remark 1.55 — Elementary properties of probability functions

According to Righter (200—), (1.41) is another duh rule but adds one of Kahneman and

Tversky’s most famous examples, the Linda problem.

Subjects were told the story (in the 70’s):

• Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy.

As a student she was deeply concerned with issues of discrimination and social justice

and also participated in anti nuclear demonstrations.

They are asked to rank the following statements by their probabilities:

• Linda is a bank teller.

• Linda is a bank teller who is active in the feminist movement.

Kahneman and Tversky found that about 85% of the subjects ranked “Linda is a bank

teller and is active in the feminist movement” as more probable than “Linda is a bank

teller”. •

Exercise 1.56 — Elementary properties of probability functions

Prove properties 1. through 4. of Proposition 1.54 and that

P (B \ A) = P (B)− P (A ∩B) (1.43)

P (A∆B) = P (A ∪B)− P (A ∩B) = P (A) + P (B)− 2× P (A ∩B). (1.44)

Hints (Karr, 1993, p. 25):

• property 1. can be also proved by using the finite additivity;

• property 2. by considering An+1 = An+2 = . . . = ∅;

• property 3. by rewriting B as (B \ A) ∪ (A ∩B) = (B \ A) ∪ A;

• property 4. by rewriting A ∪B as (A \B) ∪ (A ∩B) ∪ (B \ A). •
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We proceed with some advanced properties of probability functions.

Proposition 1.57 — Boole’s inequality or σ−subadditivity (Karr, 1993, p. 26)

Let A1, A2, . . . be events in F . Then

P

(
+∞⋃

n=1

An

)
≤

+∞∑

n=1

P (An). (1.45)

•

Exercise 1.58 — Boole’s inequality or σ−subadditivity

Prove Boole’s inequality by using the disjointification technique (Karr, 1993, p. 26),10 the

fact that Bn = An \
(⋃n−1

i=1 Ai

)
⊆ An, and by applying the σ−additivity and monotonicity

of probability functions. •

Proposition 1.59 — Finite subadditivity (Resnick, 1999, p. 31)

The probability function P is finite subadditive in the sense that

P

(
n⋃

i=1

Ai

)
≤

n∑

i=1

P (Ai), (1.46)

for all events A1, . . . , An. •

Remark 1.60 — Finite additivity

Finite additivity is a consequence of Boole’s inequality (i.e. σ−subadditivity). However,

finite additivity does not imply σ−subadditivity. •

Proposition 1.61 — Inclusion-exclusion formula (Resnick, 1999, p. 30)

If A1, . . . , An are events, then the probability of their union can be written as follows:

P

(
n⋃

i=1

Ai

)
=

n∑

i=1

P (Ai)−
∑

1≤i<j≤n

P (Ai ∩ Aj) +
∑

1≤i<j<k≤n

P (Ai ∩ Aj ∩ Ak)

− . . .− (−1)n × P (A1 ∩ . . . ∩ An). (1.47)

•

10Note that
⋃+∞

n=1 An =
⋃+∞

n=1 Bn, where Bn = An \
(⋃n−1

i=1 Ai

)
are disjoint events.
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Remark 1.62 — Inclusion-exclusion formula (Resnick, 1999, p. 30)

The terms on the right side of (1.47) alternate in sign and give inequalities called

Bonferroni inequalities when we neglect the remainders. Two examples:

P

(
n⋃

i=1

Ai

)
≤

n∑

i=1

P (Ai) (1.48)

P

(
n⋃

i=1

Ai

)
≥

n∑

i=1

P (Ai)−
∑

1≤i<j≤n

P (Ai ∩ Aj). (1.49)

•

Exercise 1.63 — Inclusion-exclusion formula

Prove the inclusion-exclusion formula by induction using the addition rule for n = 2

(Resnick, 1999, p. 30). •

Proposition 1.64 — Monotone continuity (Resnick, 1999, p. 31)

Probability functions are continuous for monotone sequences of events in the sense that:

1. If An ↑ A, where An ∈ F , then P (An) ↑ P (A).

2. If An ↓ A, where An ∈ F , then P (An) ↓ P (A). •

Exercise 1.65 — Monotone continuity

Prove Proposition 1.64 by using the disjointification technique, the monotone character

of the sequence of events and σ−additivity (Resnick, 1999, p. 31).

For instance property 1. can be proved as follows:

• A1 ⊂ A2 ⊂ A3 ⊂ . . . ⊂ An ⊂ . . ..

• B1 = A1, B2 = A2 \A1, B3 = A3 \ (A1 ∪A2), . . . , Bn = An \
(⋃n−1

i=1 Ai

)
are disjoint

events.

• Since A1, A2, . . . is a non-decreasing sequence of events An ↑ A =
⋃+∞

n=1 An =
⋃+∞

n=1 Bn, Bn = An \ An−1, and
⋃n

i=1 Bi = An. If we add to this σ−additivity,

we conclude that

P (A) = P

(
+∞⋃

n=1

An

)
= P

(
+∞⋃

n=1

Bn

)
=

+∞∑

n=1

P (Bn)

= lim
n→+∞

↑
n∑

i=1

P (Bi) = lim
n→+∞

↑ P

(
n⋃

i=1

Bi

)
= lim

n→+∞
↑ P (An).

•
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Motivation 1.66 — σ−additivity as a result of finite additivity and monotone

continuity (Karr, 1993, p. 26)

The next theorem shows that σ − additivity is equivalent to the confluence of finite

additivity (which is reasonable) and monotone continuity (which is convenient and

desirable mathematically). •

Theorem 1.67 — σ−additivity as a result of finite additivity and monotone

continuity (Karr, 1993, p. 26)

Let P be a nonnegative, finitely additive set function on F with P (Ω) = 1. Then, the

following are equivalent:

1. P is σ−additive (thus a probability function).

2. Whenever An ↑ A in F , P (An) ↑ P (A).

3. Whenever An ↓ A in F , P (An) ↓ P (A).

4. Whenever An ↓ ∅ in F , P (An) ↓ 0. •

Exercise 1.68 — σ−additivity as a result of finite additivity and monotone

continuity

Prove Theorem 1.67.

Note that we need to prove 1. ⇒ 2. ⇒ 3. ⇒ 4. ⇒ 1. But since 2. ⇔ 3. by

complementation and 4. is a special case of 3. we just need to prove that 1. ⇒ 2. and

4. ⇒ 1. (Karr, 1993, pp. 26-27). •

Remark 1.69 — Inf, sup, lim inf and lim sup

Let a1, a2, . . . be a sequence of real numbers. Then

• Infimum

The infimum of the set {a1, a2, . . .} — written inf an — corresponds to the greatest

element (not necessarily in {a1, a2, . . .}) that is less than or equal to all elements of

{a1, a2, . . .}.11

• Supremum

The supremum of the set {a1, a2, . . .} — written sup an — corresponds to the

smallest element (not necessarily in {a1, a2, . . .}) that is greater than or equal to

every element of {a1, a2, . . .}.12

11For more details check http://en.wikipedia.org/wiki/Infimum
12http://en.wikipedia.org/wiki/Supremum
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• Limit inferior and limit superior of a sequence of real numbers 13

lim inf an = supk≥1 infn≥k an

lim sup an = infk≥1 supn≥k an.

Let A1, A2, . . . be a sequence of events. Then

• Limit inferior and limit superior of a sequence of sets

lim inf An =
⋃+∞

k=1

⋂+∞
n=k An

lim sup An =
⋂+∞

k=1

⋃+∞
n=k An. •

Motivation 1.70 — A special case of the Fatou’s lemma

This result plays a vital role in the proof of continuity of probability functions. •

Proposition 1.71 — A special case of the Fatou’s lemma (Resnick, 1999, p. 32)

Suppose A1, A2, . . . is a sequence of events in F . Then

P (lim inf An) ≤ lim inf P (An) ≤ lim sup P (An) ≤ P (lim sup An). (1.50)

•

Exercise 1.72 — A special case of the Fatou’s lemma

Prove Proposition 1.71 (Resnick, 1999, pp. 32-33; Karr, 1993, p. 27). •

Theorem 1.73 — Continuity (Karr, 1993, p. 27)

If An → A then P (An) → P (A). •

Exercise 1.74 — Continuity

Prove Theorem 1.73 by using Proposition 1.71 (Karr, 1993, p. 27). •

Motivation 1.75 — (1st.) Borel-Cantelli Lemma (Resnick, 1999, p. 102)

This result is simple but still is a basic tool for proving almost sure convergence of

sequences of random variables (see Chapter 5). •

13http://en.wikipedia.org/wiki/Limit superior and limit inferior
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Theorem 1.76 — (1st.) Borel-Cantelli Lemma (Resnick, 1999, p. 102; Karr, 1993,

p. 27)

Let A1, A2, . . . be any events in F . Then

+∞∑

n=1

P (An) < +∞ ⇒ P (lim sup An) = 0. (1.51)

•

Exercise 1.77 — (1st.) Borel-Cantelli Lemma

Prove Theorem 1.76 (Resnick, 1999, p. 102; Karr, 1993, p. 27). •
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1.4 Distribution functions; discrete, absolutely

continuous and mixed probabilities

Motivation 1.78 — Distribution function (Karr, 1993, pp. 28-29)

A probability function P on the Borel σ−algebra B(IR) is determined by its values

P ((−∞, x]), for all intervals (−∞, x].

Probability functions on the real line play an important role as distribution functions

of random variables. •

Definition 1.79 — Distribution function (Karr, 1993, p. 29)

Let P be a probability function defined on (IR,B(IR)). The distribution function

associated to P is represented by FP and defined by

FP (x) = P ((−∞, x]), x ∈ IR. (1.52)

•

Theorem 1.80 — Some properties of distribution functions (Karr, 1993, pp. 29-

30)

Let FP be the distribution function associated to P . Then

1. FP is non-decreasing. Hence, the left-hand limit

FP (x−) = lim
s↑x, s<x

FP (s) (1.53)

and the right-hand limit

FP (x+) = lim
s↓x, s>x

FP (s) (1.54)

exist for each x, and

FP (x−) ≤ FP (x) ≤ FP (x+). (1.55)

2. FP is right-continuous, i.e.

FP (x+) = FP (x) (1.56)

for each x.

3. FP has the following limits:

lim
x→−∞

FP (x) = 0 (1.57)

lim
x→+∞

FP (x) = 1. (1.58)

•
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Definition 1.81 — Distribution function (Resnick, 1999, p. 33)

A function FP : IR → [0, 1] satisfying properties 1., 2. and 3. from Theorem 1.80 is called

a distribution function. •

Exercise 1.82 — Some properties of distribution functions

Prove Theorem 1.80 (Karr, 1993, p. 30). •

Definition 1.83 — Survival (or survivor) function (Karr, 1993, p. 31)

The survival (or survivor) function associated to P is

SP (x) = 1− FP (x) = P ((x, +∞)), x ∈ IR. (1.59)

SP (x) are also termed tail probabilities. •

Proposition 1.84 — Probabilities in terms of the distribution function (Karr,

1993, p. 30)

The following table condenses the probabilities of various intervals in terms of the

distribution function

Interval I Probability P (I)

(−∞, x] FP (x)

(x,+∞) 1− FP (x)

(−∞, x) FP (x−)

[x,+∞) 1− FP (x−)

(a, b] FP (b)− FP (a)

[a, b) FP (b−)− FP (a−)

[a, b] FP (b)− FP (a−)

(a, b) FP (b−)− FP (a)

{x} FP (x)− FP (x−)

where x ∈ IR and −∞ < a < b < +∞. •
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Example 1.85 — Point mass (Karr, 1993, p. 31)

Let P be defined as

P (A) = εs(A) =

{
1, if s ∈ A

0, otherwise,
(1.60)

for every event A ∈ F , i.e. P is a point mass at s. Then

FP (x) = P ((−∞, x])

=

{
0, x < s

1, x ≥ s.
(1.61)

•

Example 1.86 — Uniform distribution on [0, 1] (Karr, 1993, p. 31)

Let P be defined as

P ((a, b]) = Length((a, b] ∩ [0, 1]), (1.62)

for any real interval (a, b] with −∞ < a < b < +∞. Then

FP (x) = P ((−∞, x])

=






0, x < 0

x, 0 ≤ x ≤ 1

1, x > 1.

(1.63)

•

We are going to revisit the discrete and absolutely continuous probabilities and

introduce mixed distributions.

Definition 1.87 — Discrete probabilities (Karr, 1993, p. 32)

A probability function P defined on (IR,B(IR)) is said to be discrete if there is a countable

set C such that P (C) = 1. •

Remark 1.88 — Discrete probabilities (Karr, 1993, p. 32)

Discrete probabilities are finite or countable convex combinations of point masses. The

associated distribution functions do not increase “smoothly” — they increase only by

means of jumps. •
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Proposition 1.89 — Discrete probabilities (Karr, 1993, p. 32)

Let P be a probability function on (IR,B(IR)). Then the following are equivalent:

1. P is a discrete probability.

2. There is a real sequence x1, x2, . . . and numbers p1, p2, . . . with pn > 0, for all n, and
∑+∞

n=1 pn = 1 such that

P (A) =
+∞∑

n=1

pn × εxn(A), (1.64)

for all A ∈ B(IR).

3. There is a real sequence x1, x2, . . . and numbers p1, p2, . . . with pn > 0, for all n, and
∑+∞

n=1 pn = 1 such that

FP (x) =
+∞∑

n=1

pn × 1(−∞,x](xn), (1.65)

for all x ∈ IR. •

Remark 1.90 — Discrete probabilities (Karr, 1993, p. 33)

The distribution function associated to a discrete probability increases only by jumps of

size pn at xn. •

Exercise 1.91 — Discrete probabilities

Prove Proposition 1.89 (Karr, 1993, p. 32). •

Example 1.92 — Discrete probabilities

Let px represent from now on P ({x}).

• Uniform distribution on a finite set C

px = 1
#C , x ∈ C

P (A) = #A
#C , A ⊆ C.

This distribution is also known as the Laplace distribution.

• Bernoulli distribution with parameter p (p ∈ [0, 1])

C = {0, 1}

px = px(1− p)1−x, x ∈ C.

This probability function arises in what we call a Bernoulli trial — a yes/no random

experiment which yields success with probability p.
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• Binomial distribution with parameters n and p (n ∈ IN, p ∈ [0, 1])

C = {0, 1, . . . , n}

px =
(

n
x

)
px(1− p)n−x, x ∈ C.

The binomial distribution is the discrete probability distribution of the number of

successes in a sequence of n independent yes/no experiments, each of which yields

success with probability p.

Moreover, the result
∑n

x=0 px = 1 follows from the binomial theorem

(http://en.wikipedia.org/wiki/Binomial theorem).

• Geometric distribution with parameter p (p ∈ [0, 1])

C = IN

px = (1− p)x−1p, x ∈ C.

This probability function is associated to the total number of

(i.i.d.) Bernoulli trials needed to get one sucess — the first sucess

(http://en.wikipedia.org/wiki/Geometric distribution). The graph of

FP (x) =

{
0, x < 1
∑[x]

i=1(1− p)i−1 p = 1− (1− p)[x], x ≥ 1,
(1.66)

where [x] represents the integer part of the real number x, follows:
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• Negative binomial distribution with parameters r and p (r ∈ IN, p ∈ [0, 1])

C = {r, r + 1, . . .}

px =
(

x−1
r−1

)
(1− p)x−rpr, x ∈ C.

This probability function is associated to the total number of (i.i.d.)

Bernoulli trials needed to get a pre-specified number r of sucesses

(http://en.wikipedia.org/wiki/Negative binomial distribution). The geometric

distribution is a particular case: r = 1.

• Hypergeometric distribution with parameters N, M, n (N, M, n ∈
IN and M, n ≤ N)

C = {x ∈ IN0 : max{0, n−N + M} ≤ x ≤ min{n, M}}

px =
(M

x )(N−M
n−x )

(N
n)

, x ∈ C.

It is a discrete probability that describes the number of successes in a

sequence of n draws from a finite population with size N without replacement

(http://en.wikipedia.org/wiki/Hypergeometric distribution).

• Poisson distribution with parameter λ (λ ∈ IR+)

C = IN0

px = e−λ λx

x! , x ∈ C.

It is discrete probability that expresses the probability of a number of events

occurring in a fixed period of time if these events occur with a known average rate

and independently of the time since the last event. The Poisson distribution can

also be used for the number of events in other specified intervals such as distance,

area or volume (http://en.wikipedia.org/wiki/Poisson distribution).

The figure comprises the distribution function for three different values of λ. •
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Motivation 1.93 — Absolutely continuous probabilities (Karr, 1993, p. 33)

Absolutely continuous probabilities are the antithesis of discrete probabilities in the sense

that they have “smooth” distribution functions. •

Definition 1.94 — Absolutely continuous probabilities (Karr, 1993, p. 33)

A probability function P on (IR,B(IR)) is absolutely continuous if there is a non-negative

function fP on IR such that

P ((a, b]) =

∫ b

a

fP (x)dx, (1.67)

for every interval (a, b] ∈ B(IR). •

Remark 1.95 — Absolutely continuous probabilities

If P is an absolutely continuous probability then FP (x) is an absolutely continuous real

function. •

Remark 1.96 — Continuous, uniformly continuous and absolutely continuous

functions

• Continuous function

A real function f is continuous in x if for any sequence {x1, x2, . . .} such that

limn→∞ xn = x, it holds that limn→∞ f(xn) = f(x).

One can say, briefly, that a function is continuous iff it preserves limits.

For the Cauchy definition (epsilon-delta) of continuous function see

http://en.wikipedia.org/wiki/Continuous function

• Uniformly continuous function

Given metric spaces (X, d1) and (Y, d2), a function f : X → Y is called uniformly

continuous on X if for every real number ε > 0 there exists δ > 0 such that for

every x, y ∈ X with d1(x, y) < δ, we have that d2(f(x), f(y)) < ε.

If X and Y are subsets of the real numbers, d1 and d2 can be the standard Euclidean

norm, |.|, yielding the definition: for all ε > 0 there exists a δ > 0 such that for all

x, y ∈ X, |x− y| < δ implies |f(x)− f(y)| < ε.

The difference between being uniformly continuous, and simply being continuous at

every point, is that in uniform continuity the value of δ depends only on ε and not

on the point in the domain (http://en.wikipedia.org/wiki/Uniform continuity).
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• Absolutely continuous function

Let (X, d) be a metric space and let I be an interval in the real line IR. A function f :

I → X is absolutely continuous on I if for every positive number ε, there is a positive

number δ such that whenever a (finite or infinite) sequence of pairwise disjoint sub-

intervals [xk, yk] of I satisfies
∑

k |yk − xk| < δ then
∑

k d (f(yk), f(xk)) < ε.

Absolute continuity is a smoothness property which is stricter than continuity and

uniform continuity.

The two following functions are continuous everywhere but not absolutely

continuous:

1. f(x) =

{
0, if x = 0

x sin(1/x), if x &= 0,

on a finite interval containing the origin;

2. f(x) = x2 on an unbounded interval.

(http://en.wikipedia.org/wiki/Absolute continuity) •

Proposition 1.97 — Absolutely continuous probabilities (Karr, 1993, p. 34)

A probability function P is absolutely continuous iff there is a non-negative function f

on IR such that∫ +∞

−∞
f(s)ds = 1 (1.68)

FP (x) =

∫ x

−∞
f(s)ds, x ∈ IR. (1.69)

•

Exercise 1.98 — Absolutely continuous probabilities

Prove Proposition 1.97 (Karr, 1993, p. 34). •

Example 1.99 — Absolutely continuous probabilities

• Uniform distribution on [a, b] (a, b ∈ IR, a < b)

fP (x) =

{
1

b−a , a ≤ x ≤ b

0, otherwise.

FP (x) =






0, x < a
x−a
b−a , a ≤ x ≤ b

1, x > b.

This absolutely continuous probability is such that all intervals of the same length

on the distribution’s support are equally probable.
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The support is defined by the two parameters, a

and b, which are its minimum and maximum values

(http://en.wikipedia.org/wiki/Uniform distribution (continuous)).

• Exponential distribution with parameter λ (λ ∈ IR+)

fP (x) =

{
λe−λx, x ≥ 0

0, otherwise.

FP (x) =

{
0, x < 0

1− e−λx, x ≥ 0.

The exponential distribution is used to describe the

times between consecutive events in a Poisson process.14

(http://en.wikipedia.org/wiki/Exponential distribution).

14I.e. a process in which events occur continuously and independently at a constant average rate.
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Let P ∗ be the (discrete) Poisson probability with parameter λ x. Then

P ∗({0}) = e−λ x = P ((x, +∞)) = 1− FP (x).

• Normal distribution with parameters µ (µ ∈ IR) and σ2 (σ2 ∈ IR+)

fP (x) = 1√
2πσ2

exp
{
− (x−µ)2

2σ2

}
, x ∈ IR

The normal distribution or Gaussian distribution is used describes data that cluster

around a mean or average. The graph of the associated probability density function

is bell-shaped, with a peak at the mean, and is known as the Gaussian function or

bell curve http://en.wikipedia.org/wiki/Normal distribution).

FP (x) =
∫ x

−∞ fP (s)ds, x ∈ IR

•

48



Motivation 1.100 — Mixed distributions (Karr, 1993, p. 34)

A probability function need not to be discrete or absolutely continuous... •

Definition 1.101 — Mixed distributions (Karr, 1993, p. 34)

A probability function P is mixed if there is a discrete probability Pd, an absolutely

continuous probability Pc and α ∈ (0, 1) such that P is a convex combination of Pd and

Pc, that is,

P = αPd + (1− α)Pc. (1.70)

•

Example 1.102 — Mixed distributions

Let M(λ)/M(µ)/1 represent a queueing system with Poisson arrivals (rate λ > 0) and

exponential service times (rate µ > 0) and one server.

In the equilibrium state, the probability function associated to the waiting time of an

arriving customer is

P (A) = (1− ρ)ε{0}(A) + ρPExp(µ(1−ρ))(A), A ∈ B(IR), (1.71)

where 0 < ρ = λ
µ < 1 and

PExp(µ(1−ρ))(A) =

∫

A

µ(1− ρ) e−µ(1−ρ) sds. (1.72)

The associated distribution function is given by

FP (x) =

{
0, x < 0

(1− ρ) + ρ
[
1− e−µ(1−ρ) x

]
, x ≥ 0.

(1.73)

•
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1.5 Conditional probability

Motivation 1.103 — Conditional probability (Karr, 1993, p. 35)

We shall revise probabilities to account for the knowledge that an event has occurred,

using a concept known as conditional probability. •

Definition 1.104 — Conditional probability (Karr, 1993, p. 35)

Let A and B be events. If P (A) > 0 the conditionally probability of B given A is equal to

P (B|A) =
P (B ∩ A)

P (A)
. (1.74)

In case P (A) = 0, we make the convention that P (B|A) = P (B). •

Remark 1.105 — Conditional probability (Karr, 1993, p. 35)

P (B|A) can be interpreted as the relative likelihood that B occurs given that A is known

to have occured. •

Exercise 1.106 — Conditional probability

Solve exercises 1.23 and 1.24 of Karr (1993, p. 40). •

Example 1.107 — Conditional probability (Grimmett and Stirzaker, 2001, p. 9)

A family has two children.

• What is the probability that both are boys, given that at least one is a boy?

The older and younger child may each be male or female, so there are four possible

combination of sexes, which we assume to be equally likely. Therefore

• Ω = {GG, GB, BG, BB}

where G = girl, B = boy, and P (GG) = P (GB) = P (BG) = P (BB) = 1
4 .

From the definition of conditional probability

P (BB|one boy at least) = P [BB|(GB ∪BG ∪BB)]

=
P [BB ∩ (GB ∪BG ∪BB)]

P (GB ∪BG ∪BB)

=
P (BB)

P (GB) + P (BG) + P (BB)

=
1
4

1
4 + 1

4 + 1
4

=
1

3
. (1.75)

A popular but incorrect answer to this question is 1
2 .
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This is the correct answer to another question:

• For a family with two children, what is the probability that both are boys given

that the younger is a boy?

In this case

P (BB|younger child is a boy) = P [BB|(GB ∪BB)]

= . . .

=
P (BB)

P (GB) + P (BB)

=
1
4

1
4 + 1

4

=
1

2
. (1.76)

•

Exercise 1.108 — Conditional probability (Grimmett and Stirzaker, 2001, p. 9)

The prosecutor’s fallacy15 — Let G be the event that an accused is guilty, and T the event

that some testimony is true.

Some lawyers have argued on the assumption that P (G|T ) = P (T |G). Show that this

holds iff P (G) = P (T ). •

Motivation 1.109 — Multiplication rule (Montgomery and Runger, 2003, p. 42)

The definition of conditional probability can be rewritten to provide a general expression

for the probability of the intersection of (two) events. This formula is referred to as a

multiplication rule for probabilities. •

Proposition 1.110 — Multiplication rule (Montgomery and Runger, 2003, p. 43)

Let A and B be two events. Then

P (A ∩B) = P (B|A)× P (A) = P (A|B)× P (B). (1.77)

More generally: let A1, . . . , An be events then

P (A1 ∩ A2 ∩ . . . ∩ An−1 ∩ An) = P (A1)× P (A2|A1)× P [A3|(A1 ∩ A2)]

. . .× P [An|(A1 ∩ A2 ∩ . . . An−1)]. (1.78)

•
15The prosecution made this error in the famous Dreyfus affair

(http://en.wikipedia.org/wiki/Alfred Dreyfus) in 1894.
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Example 1.111 — Multiplication rule (Montgomery and Runger, 2003, p. 43)

The probability that an automobile battery, subject to high engine compartment

temperature, suffers low charging current is 0.7. The probability that a battery is subject

to high engine compartment temperature 0.05.

What is the probability that a battery suffers low charging current and is subject to

high engine compartment temperature?

• Table of events and probabilities

Event Probability

C = battery suffers low charging current P (C) =?

T = battery subject to high engine compartment temperature P (T ) = 0.05

C|T = battery suffers low charging current given that it is P (C|T ) = 0.7

subject to high engine compartment temperature

• Probability

P (C ∩ T )
mult. rule

= P (C|T )× P (T )

= 0.7× 0.05

= 0.035. (1.79)

•

Motivation 1.112 — Law of total probability (Karr, 1993, p. 35)

The next law expresses the probability of an event in terms of its conditional probabilities

given elements of a partition of Ω. •

Proposition 1.113 — Law of total probability (Karr, 1993, p. 35)

Let {A1, A2, . . .} a countable partition of Ω. Then, for each event B,

P (B) =
+∞∑

i=1

P (B|Ai)× P (Ai). (1.80)

•

Exercise 1.114 — Law of total probability

Prove Proposition 1.113 by using σ−additivity of a probability function and the fact that

B =
⋃+∞

i=1 (B ∩ Ai) (Karr, 1993, p. 36). •
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Corollary 1.115 — Law of total probability (Montgomery and Runger, 2003, p. 44)

For any events A and B,

P (B) = P (B|A)× P (A) + P (B|Ac)× P (Ac). (1.81)

•

Example 1.116 — Law of total probability (Grimmett and Stirzaker, 2001, p. 11)

Only two factories manufacture zoggles. 20% of the zoggles from factory I and 5% from

factory II are defective. Factory I produces twice as many zoggles as factory II each week.

What is the probability that a zoggle, randomly chosen from a week’s production, is

not defective?

• Table of events and probabilities

Event Probability

D = defective zoggle P (D) =?

A = zoggle made in factory I P (A) = 2× [1− P (A)] = 2
3

Ac = zoggle made in factory II P (Ac) = 1− P (A) = 1
3

D|A = defective zoggle given that it is made in factory I P (D|A) = 0.20

D|Ac = defective zoggle given that it is made in factory II P (D|Ac) = 0.05

• Probability

P (Dc) = 1− P (D)
lawtotalprob

= 1− [P (D|A)× P (A) + P (D|Ac)× P (Ac)]

= 1−
(

0.20× 2

3
+ 0.05× 1

3

)

=
51

60
.

•
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Motivation 1.117 — Bayes’ theorem (Karr, 1993, p. 36)

Traditionally (and probably incorrectly) attributed to the English cleric Thomas Bayes

(http://en.wikipedia.org/wiki/Thomas Bayes), the theorem that bears his name is used

to compute conditional probabilities “the other way around”. •

Proposition 1.118 — Bayes’ theorem (Karr, 1993, p. 36)

Let {A1, A2, . . .} be a countable partition of Ω. Then, for each event B with P (B) > 0

and each n,

P (An|B) =
P (B|An)P (An)

P (B)

=
P (B|An)P (An)

∑+∞
i=1 P (B|Ai)P (Ai)

(1.82)

•

Exercise 1.119 — Bayes’ theorem (Karr, 1993, p. 36)

Prove Bayes’ theorem by using the definition of conditional probability and the law of

total probability (Karr, 1993, p. 36). •

Example 1.120 — Bayes’ theorem (Grimmett and Stirzaker, 2003, p. 11)

Resume Example 1.116...

If the chosen zoggle is defective, what is the probability that it came from factory II.

• Probability

P (A|D) =
P (D|A)× P (A)

P (D)

=
0.20× 2

3

1− 51
60

=
8

9
. (1.83)

•
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Chapter 2

Random variables

2.1 Fundamentals

Motivation 2.1 — Inverse image of sets (Karr, 1993, p. 43)

Before we introduce the concept of random variable (r.v.) we have to talk rather

extensively on inverse images of sets and inverse image mapping. •

Definition 2.2 — Inverse image (Karr, 1993, p. 43)

Let:

• X be a function with domain Ω and range Ω′, i.e. X : Ω → Ω′;

• F and F ′ be the σ − algebras on Ω and Ω′, respectively.

(Frequently Ω′ = IR and F ′ = B(IR).) Then the inverse image under X of the set B ∈ F ′

is the subset of Ω given by

X−1(B) = {ω : X(ω) ∈ B}, (2.1)

written from now on {X ∈ B} (graph!).

•

Remark 2.3 — Inverse image mapping (Karr, 1993, p. 43)

The inverse image mapping X−1 maps subsets of Ω′ to subsets of Ω. X−1 preserves all

set operations, as well as disjointness. •
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Proposition 2.4 — Properties of inverse image mapping (Karr, 1993, p. 43;

Resnick, 1999, p. 72)

Let:

• X : Ω → Ω′;

• F and F ′ be the σ − algebras on Ω and Ω′, respectively;

• B, B′ and {Bi : i ∈ I} be sets in F ′.

Then:

1. X−1(∅) = ∅

2. X−1(Ω′) = Ω

3. B ⊆ B′ ⇒ X−1(B) ⊆ X−1(B′)

4. X−1(
⋃

i∈I Bi) =
⋃

i∈I X−1(Bi)

5. X−1(
⋂

i∈I Bi) =
⋂

i∈I X−1(Bi)

6. B ∩B′ = ∅ ⇒ X−1(B) ∩X−1(B′) = ∅

7. X−1(Bc) = [X−1(B)]c. •

Exercise 2.5 — Properties of inverse image mapping

Prove Proposition 2.4 (Karr, 1993, p. 43). •

Proposition 2.6 — σ − algebras and inverse image mapping (Resnick, 1999, pp.

72–73)

Let X : Ω → Ω′ be a mapping with inverse image. If F ′ is a σ − algebra on Ω′ then

X−1(F ′) = {X−1(B) : B ∈ F ′} (2.2)

is a σ − algebra on Ω.

Exercise 2.7 — σ − algebras and inverse image mapping

Prove Proposition 2.6 by verifying the 3 postulates for a σ − algebra (Resnick, 1999, p.

73). •

57

Proposition 2.8 — Inverse images of σ − algebras generated by classes of

subsets (Resnick, 1999, p. 73)

Let C ′ be a class of subsets of Ω′. Then

X−1(σ(C ′)) = σ({X−1(C ′)}), (2.3)

i.e., the inverse image of the σ − algebra generated by C ′ is the same as the σ − algebra

on Ω generated by the inverse images. •

Exercise 2.9 — Inverse images of σ − algebras generated by classes of subsets

Prove Proposition 2.8. This proof comprises the verification of the 3 postulates for a

σ − algebra (Resnick, 1999, pp. 73–74) and much more. •

Definition 2.10 — Measurable space (Resnick, 1999, p. 74)

The pair (Ω,F) consisting of a set Ω and a σ − algebra on Ω is called a measurable

space. •

Definition 2.11 — Measurable map (Resnick, 1999, p. 74)

Let (Ω,F) and (Ω′,F ′) be two measurable spaces. Then a map X : Ω → Ω′ is called a

measurable map if

X−1(F ′) ⊆ F . (2.4)

•

Remark 2.12 — Measurable maps/ Random variables (Karr, 1993, p. 44)

A special case occurs when (Ω′,F ′) = (IR,B(IR)) — in this case X is called a random

variable. That is, random variables are functions on the sample space Ω for which inverse

images of Borel sets are events of Ω. •

Definition 2.13 — Random variable (Karr, 1993, p. 44)

Let (Ω,F) and (Ω′,F ′) = (IR,B(IR)) be two measurable spaces. A random variable (r.v.)

is a function X : Ω → IR such that

X−1(B) ∈ F , ∀B ∈ B(IR). (2.5)

•
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Remark 2.14 — Random variables (Karr, 1993, p. 44)

A r.v. is a function on the sample space: it transforms events into real sets.

The technical requirement that sets {X ∈ B} = X−1(B) be events of Ω is needed in

order that the probability

P ({X ∈ B}) = P (X−1(B)) (2.6)

be defined. •

Motivation 2.15 — Checking if X is a r.v. (Karr, 1993, p. 47)

To verify that X is a r.v. it is not necessary to check that {X ∈ B} = X−1(B) ∈ F for

all Borel sets B.

In fact, σ(X) ⊆ F once X−1(B) ∈ F for enough “elementary” Borel sets. •

Proposition 2.16 — Checking if X is a r.v. (Resnick, 1999, p. 77; Karr, 1993, p. 47)

The real function X : Ω → IR is a r.v. iff

{X ≤ x} = X−1((−∞, x]) ∈ F , ∀x ∈ IR. (2.7)

Similarly if we replace {X ≤ x} by {X > x}, {X < x} or {X ≥ x}. •

Example 2.17 — Random variable

• Random experiment

Throw a traditional fair die and observe the number of points.

• Sample space

Ω = {1, 2, 3, 4, 5, 6}

• σ−algebra on Ω

Let us consider a non trivial one:

F = {∅, {1, 3, 5}, {2, 4, 6}, Ω}

• Random variable

X : Ω → IR such that: X(1) = X(3) = X(5) = 0 and X(2) = X(4) = X(6) = 1
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• Inverse image mapping

Let B ∈ B(IR). Then

X−1(B) =






∅, if 0 &∈ B, 1 &∈ B

{1, 3, 5}, if 0 ∈ B, 1 &∈ B

{2, 4, 6}, if 0 &∈ B, 1 ∈ B

Ω, if 0 ∈ B, 1 ∈ B

∈ F , ∀B ∈ B(IR). (2.8)

Therefore X is a r.v. defined in F .

• A function which is not a r.v.

Y : Ω → IR such that: Y (1) = Y (2) = Y (3) = 1 and Y (4) = Y (5) = Y (6) = 0.

Y is not a r.v. defined in F because Y −1({1}) = {1, 2, 3} &∈ F . •

There are generalizations of r.v.

Definition 2.18 — Random vector (Karr, 1993, p. 45)

A d − dimensional random vector is a function X = (X1, . . . , Xd) : Ω → IRd such that

each component Xi, i = 1, . . . , d, is a random variable. •

Remark 2.19 — Random vector (Karr, 1993, p. 45)

Random vectors will sometimes be treated as finite sequences of random variables. •

Definition 2.20 — Stochastic process (Karr, 1993, p. 45)

A stochastic process with index set (or parameter space) T is a collection {Xt : t ∈ T} of

r.v. (indexed by T ). •

Remark 2.21 — Stochastic process (Karr, 1993, p. 45)

Typically:

• T = IN0 and {Xn : n ∈ IN0} is called a discrete time stochastic process;

• T = IR+
0 and {Xt : t ∈ IR+

0 } is called a continuous time stochastic process. •
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Proposition 2.22 — σ−algebra generated by a r.v. (Karr, 1993, p. 46)

The family of events that are inverse images of Borel sets under a r.v is a σ − algebra on

Ω. In fact, given a r.v. X, the family

σ(X) = {X−1(B) : B ∈ B(IR)} (2.9)

is a σ − algebra on Ω, known as the σ − algebra generated by X. •

Remark 2.23 — σ−algebra generated by a r.v.

• Proposition 2.22 is a particular case of Proposition 2.6 when F ′ = B(IR).

• Moreover, σ(X) is a σ − algebra for every function X : Ω → IR; and X is a r.v. iff

σ(X) ⊆ F , i.e., iff X is a measurable map (Karr, 1993, p. 46). •

Example 2.24 — σ−algebra generated by a constant r.v.

Let X : Ω → IR such that X(ω) = c, ∀ω ∈ Ω. Then

X−1(B) =

{
∅, if c &∈ B

Ω, if c ∈ B,
(2.10)

for any B ∈ B(IR), and σ(X) = {∅, Ω} (trivial σ − algebra). •

Example 2.25 — σ−algebra generated by an indicator r.v. (Karr, 1993, p. 46)

Let:

• A be a subset of the sample space Ω;

• X : Ω → IR such that

X(ω) = 1A(w) =

{
1, ω ∈ A

0, ω &∈ A.
(2.11)

Then X is the indicator r.v. of an event A. In addition,

σ(X) = σ(1A) = {∅, A,Ac, Ω} (2.12)

since

X−1(B) =






∅, if 0 &∈ B, 1 &∈ B

Ac, if 0 ∈ B, 1 &∈ B

A, if 0 &∈ B, 1 ∈ B

Ω, if 0 ∈ B, 1 ∈ B,

(2.13)

for any B ∈ B(IR). •
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Example 2.26 — σ−algebra generated by a simple r.v. (Karr, 1993, pp. 45-46)

A simple r.v. takes only finitely many values and has the form

X =
n∑

i=1

ai × 1Ai , (2.14)

where ai, i = 1, . . . , n, are (not necessarily distinct) real numbers and Ai, i = 1, . . . , n,

are events that constitute a partition of Ω. X is a r.v. since

{X ∈ B} =
n⋃

i=1

{Ai : ai ∈ B}, (2.15)

for any B ∈ B(IR).

For this simple r.v. we get

σ(X) = σ({A1, . . . , An})
= {

⋃

i∈I

Ai : I ⊆ {1, . . . , n}}, (2.16)

regardless of the values of a1, . . . , an. •

Definition 2.27 — σ−algebra generated by a random vector (Karr, 1993, p. 46)

The σ−algebra generated by the d− dimensional random vector (X1, . . . , Xd) : Ω → IRd

is given by

σ((X1, . . . , Xd)) = {(X1, . . . , Xd)
−1(B) : B ∈ B(IRd)}. (2.17)

•
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2.2 Combining random variables

To work with r.v., we need assurance that algebraic, limiting and transformation

operations applied to them yield other r.v.

In the next proposition we state that the set of r.v. is closed under:

• addition and scalar multiplication;1

• maximum and minimum;

• multiplication;

• division.

Proposition 2.28 — Closure under algebraic operations (Karr, 1993, p. 47)

Let X and Y be r.v. Then:

1. aX + bY is a r.v., for all a, b ∈ IR;

2. max{X, Y } and min{X, Y } are r.v.;

3. XY is a r.v.;

4. X
Y is a r.v. provided that Y (ω) &= 0, ∀ω ∈ Ω. •

Exercise 2.29 — Closure under algebraic operations

Prove Proposition 2.28 (Karr, 1993, pp. 47–48). •

Corollary 2.30 — Closure under algebraic operations (Karr, 1993, pp. 48–49)

Let X : Ω → IR be a r.v. Then

X+ = max{X, 0} (2.18)

X− = −min{X, 0}, (2.19)

the positive and negative parts of X (respectively), are non-negative r.v., and so is

|X| = X+ + X−. (2.20)

•

Remark 2.31 — Canonical representation of a r.v. (Karr, 1993, p. 49)

A r.v. can be written as a difference of its positive and negative parts:

X = X+ −X−. (2.21)

•

1I.e. the set of r.v. is a vector space.
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Theorem 2.32 — Closure under limiting operations (Karr, 1993, p. 49)

Let X1, X2, . . . be r.v. Then sup Xn, inf Xn, lim sup Xn and lim inf Xn are r.v.

Consequently if

X(ω) = lim
n→+∞

Xn(ω) (2.22)

exists for every ω ∈ Ω, then X is also a r.v. •

Exercise 2.33 — Closure under limiting operations

Prove Theorem 2.32 by noting that

{sup Xn ≤ x} = (sup Xn)−1((−∞, x])

=
+∞⋂

n=1

{Xn ≤ x}

=
+∞⋂

n=1

(Xn)−1((−∞, x]) (2.23)

{inf Xn ≥ x} = (inf Xn)−1([x, +∞))

=
+∞⋂

n=1

{Xn ≥ x}

=
+∞⋂

n=1

(Xn)−1([x, +∞)) (2.24)

lim sup Xn = inf
k

sup
n≥k

Xn (2.25)

lim inf Xn = sup
k

inf
n≥k

Xn (2.26)

and that when X = limn→+∞Xn exists, X = lim sup Xn = lim inf Xn (Karr, 1993,

p. 49). •

Corollary 2.34 — Series of r.v. (Karr, 1993, p. 49)

If X1, X2, . . . are r.v., then provided that X(ω) =
∑+∞

n=1 Xn(ω) converges for each ω, X is

a r.v. •

Motivation 2.35 — Transformations of r.v. and random vectors (Karr, 1993, p.

50)

Another way of constructing r.v. is as functions of other r.v. •

64



Definition 2.36 — Borel measurable function (Karr, 1993, p. 66)

A function g : IRn → IRm (for fixed n, m ∈ IN) is Borel measurable if

g−1(B) ∈ B(IRn), ∀B ∈ B(IRm). (2.27)

•

Remark 2.37 — Borel measurable function (Karr, 1993, p. 66)

• In order that g : IRn → IR be Borel measurable it suffices that

g−1((−∞, x]) ∈ B(IRn), ∀x ∈ IR. (2.28)

• A function g : IRn → IRm Borel measurable iff each of its components is Borel

measurable as a function from IRn to IR.

• Indicator functions, monotone functions and continuous functions are Borel

measurable.

• Moreover, the class of Borel measurable function has the closure properties under

algebraic and limiting operations as the family of r.v. on a probability space

(Ω,F , P ). •

Theorem 2.38 — Transformations of random vectors (Karr, 1993, p. 50)

Let:

• X1, . . . , Xd be r.v.;

• g : IRd → IR be a Borel measurable function.

Then Y = g(X1, . . . , Xd) is a r.v. •

Exercise 2.39 — Transformations of r.v.

Prove Theorem 2.38 (Karr, 1993, p. 50). •

Corollary 2.40 — Transformations of r.v. (Karr, 1993, p. 50)

Let:

• X be r.v.;

• g : IR → IR be a Borel measurable function.

Then Y = g(X) is a r.v. •
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2.3 Distributions and distribution functions

The main importance of probability functions on IR is that they are distributions of r.v.

Proposition 2.41 — R.v. and probabilities on IR (Karr, 1993, p. 52)

Let X be a r.v. and P a p.f. defined of (Ω,F). Then the set function

PX(B) = P (X−1(B)) = P ({X ∈ B}) (2.29)

is a probability function on IR. •

Exercise 2.42 — R.v. and probabilities on IR

Prove Proposition 2.41 by checking if the three axioms in the definition of probability

function hold (Karr, 1993, p. 52). •

Definition 2.43 — Distribution, distribution and survival function of a r.v.

(Karr, 1993, p. 52)

Let X be a r.v. Then

1. the probability function on IR

PX(B) = P (X−1(B)) = P ({X ∈ B}), B ∈ B(IR), is the distribution of X;

2. FX(x) = PX((−∞, x]) = P (X−1((−∞, x]) = P ({X ≤ x}), x ∈ IR, is the

distribution function of X;

3. SX(x) = 1 − FX(x) = PX((x, +∞)) = P (X−1((x, +∞)) = P ({X > x}), x ∈ IR, is

the survival (or survivor) function of X. •

Definition 2.44 — Discrete/absolutely continuous/mixed r.v. (Karr, 1993, p. 52)

X is said to be a discrete/absolutely continuous/mixed r.v. if PX is a discrete/absolutely

continuous/mixed p.f. •

Motivation 2.45 — Confronting r.v.

How can we confront two r.v. X and Y ? •
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Definition 2.46 — Identically distributed r.v. (Karr, 1993, p. 52)

Let X and Y be two r.v. Then X and Y are said to be identically distributed — written

X
d
= Y — if

PX(B) = P ({X ∈ B})
= P ({Y ∈ B}) = PY (B), B ∈ B(IR), (2.30)

i.e. if FX(x) = P ({X ≤ x) = P ({Y ≤ x}) = FY (x), x ∈ IR. •

Definition 2.47 — Equal r.v. almost surely (Karr, 1993, p. 52; Resnick, 1999, p.

167)

Let X and Y be two r.v. Then X is equal to Y almost surely — written X
a.s.
= Y — if

P ({X = Y }) = 1. (2.31)

•

Remark 2.48 — Identically distributed r.v. vs. equal r.v. almost surely (Karr,

1993, p. 52)

Equality in distribution of X and Y has no bearing on their equality as functions on Ω,

i.e.

X
d
= Y &⇒ X

a.s.
= Y, (2.32)

even though

X
a.s.
= Y ⇒ X

d
= Y. (2.33)

•

Example 2.49 — Identically distributed r.v. vs. equal r.v. almost surely

• X ∼ Bernoulli(0.5)

P ({X = 0}) = P ({X = 1}) = 0.5

• Y = 1−X ∼ Bernoulli(0.5) since

P ({Y = 0}) = P ({1−X = 0}) = P ({X = 1}) = 0.5

P ({Y = 1}) = P ({1−X = 1}) = P ({X = 0}) = 0.5

• X
d
= Y but X

a.s.

&= Y . •
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Exercise 2.50 — Identically distributed r.v. vs. equal r.v. almost surely

Prove that X
a.s.
= Y ⇒ X

d
= Y . •

Definition 2.51 — Distribution and distribution function of a random vector

(Karr, 1993, p. 53)

Let X = (X1, . . . , Xd) be a d− dimensional random vector. Then

1. the probability function on IRd

PX(B) = P (X−1(B)) = P ({X ∈ B}), B ∈ B(IRd), is the distribution of X;

2. the distribution function of X = (X1, . . . , Xd), also known as the joint distribution

function of X1, . . . , Xd is the function FX : IRd → [0, 1] given by

FX(x) = F(X1,...,Xd)(x1, . . . , xd)

= P ({X1 ≤ x1, . . . , Xd ≤ xd}), (2.34)

for any x = (x1, . . . , xd) ∈ IRd. •

Remark 2.52 — Distribution function of a random vector (Karr, 1993, p. 53)

The distribution PX is determined uniquely by FX . •

Motivation 2.53 — Marginal distribution function (Karr, 1993, p. 53)

Can we obtain the distribution of Xi from the joint distribution function? •

Proposition 2.54 — Marginal distribution function (Karr, 1993, p. 53)

Let X = (X1, . . . , Xd) be a d−dimensional random vector. Then, for each i (i = 1, . . . , d)

and x (x ∈ IR),

FXi(x) = lim
xj→+∞,j .=i

F(X1,...,Xi−1,Xi,Xi+1,...,Xd)(x1, . . . , xi−1, x, xi+1, . . . , xd). (2.35)

•

Exercise 2.55 — Marginal distribution function

Prove Proposition 2.54 by noting that {X1 ≤ x1, . . . , Xi−1 ≤ xi−1, Xi ≤ x, Xi+1 ≤ xi+1,

. . . , Xd ≤ xd} ↑ {Xi ≤ x} when xj → +∞, j &= i, and by considering the monotone

continuity of probability functions (Karr, 1993, p. 53). •
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Definition 2.56 — Discrete random vector (Karr, 1993, pp. 53–54)

The random vector X = (X1, . . . , Xd) is said to be discrete if X1, . . . , Xd are discrete r.v.

i.e. if there is a countable set C ⊂ IRd such that P ({X ∈ C}) = 1. •

Definition 2.57 — Absolutely continuous random vector (Karr, 1993, pp. 53–54)

The random vector X = (X1, . . . , Xd) is absolutely continuous if there is a non-negative

function fX : IRd → IR+
0 such that

FX(x) =

∫ x1

−∞
. . .

∫ xd

−∞
fX(s1, . . . , sd) dsd . . . ds1, (2.36)

for every x = (x1, . . . , xd) ∈ IRd. fX is called the joint density function of (X1, . . . , Xd). •

Proposition 2.58 — Absolutely continuous random vector; marginal density

function (Karr, 1993, p. 54)

If X = (X1, . . . , Xd) is absolutely continuous then, for each i (i = 1, . . . , d), Xi is

absolutely continuous and

fXi(x) =

∫ x1

−∞
. . .

∫ xd

−∞
fX(s1, . . . , si−1, x, si+1, . . . , sd) dsd . . . dsi−1dsi+1 . . . ds1. (2.37)

fXi is termed the marginal density function of Xi. •

Remark 2.59 — Absolutely continuous random vector (Karr, 1993, p. 54)

If the random vector is absolutely continuous then any “sub-vector” is absolutely

continuous. Moreover, the converse of Proposition 2.58 is not true, that is, the fact that

X1, . . . , Xd are absolutely continuous does not imply that (X1, . . . , Xd) is an absolutely

continuous random vector. •
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2.4 Key r.v. and random vectors and distributions

2.4.1 Discrete r.v. and random vectors

Integer-valued r.v. like the Bernoulli, binomial, hypergeometric, geometric, negative

binomial, hypergeometric and Poisson, and integer-valued random vectors like the

multinomial are discrete r.v. and random vectors of great interest.

• Uniform distribution on a finite set

Notation X ∼ Uniform({x1, x2, . . . , xn})

Parameter {x1, x2, . . . , xn} (xi ∈ IR, i = 1, . . . , n)

Range {x1, x2, . . . , xn}

P.f. P ({X = x}) = 1
n , x = x1, x2, . . . , xn

This simple r.v. has the form X =
∑n

i=1 xi × 1{xi}.

• Bernoulli distribution

Notation X ∼ Bernoulli(p)

Parameter p = P (sucess) (p ∈ [0, 1])

Range {0, 1}

P.f. P ({X = x}) = px(1− p)1−x, x = 0, 1

A Bernoulli distributed r.v. X is the indicator function of the event {X = 1}.

• Binomial distribution

Notation X ∼ Binomial(n, p)

Parameters n = number of Bernoulli trials (n ∈ IN)
p = P (sucess) (p ∈ [0, 1])

Range {0, 1, . . . , n}

P.f. P ({X = x}) =
(n
x

)
px(1− p)n−x, x = 0, 1, . . . , n

The binomial r.v. results from the sum of n i.i.d. Bernoulli distributed r.v.
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• Geometric distribution

Notation X ∼ Geometric(p)

Parameter p = P (sucess) (p ∈ [0, 1])

Range IN = {1, 2, 3, . . .}

P.f. P ({X = x}) = (1− p)x−1 p, x = 1, 2, 3, . . .

This r.v. satisfies the lack of memory property :

P ({X > k + x}|{X > k}) = P ({X > x}), ∀k, x ∈ IN. (2.38)

• Negative binomial distribution

Notation X ∼ NegativeBinomial(r, p)

Parameters r = pre-specified number of sucesses (r ∈ IN)
p = P (sucess) (p ∈ [0, 1])

Range {r, r + 1, . . .}

P.f. P ({X = x}) =
(x−1

r−1

)
(1− p)x−rpr, x = r, r + 1, . . .

The negative binomial r.v. results from the sum of r i.i.d. geometrically distributed

r.v.

• Hypergeometric distribution

Notation X ∼ Hypergeometric(N, M,n)

Parameters N = population size (N ∈ IN)
M = sub-population size (M ∈ IN,M ≤ N)
n = sample size (n ∈ IN, n ≤ N)

Range {max{0, n−N + M}, . . . ,min{n, M }}

P.f. P ({X = x}) = (M
x )(N−M

n−x )
(N

n) , x = max{0, n−N + M}, . . . ,min{n, M }

Note that the sample is collected without replacement. Otherwise X ∼
Binomial(n, M

N ).
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• Poisson distribution

Notation X ∼ Poisson(λ)

Parameter λ (λ ∈ IR+)

Range IN0 = {0, 1, 2, 3, . . .}

P.f. P ({X = x}) = e−λ λx

x! , x = 0, 1, 2, 3, . . .

The distribution was proposed by Siméon-Denis Poisson (1781–1840) and published,

together with his probability theory, in 1838 in his work Recherches sur la probabilité

des jugements en matiéres criminelles et matiére civile (Research on the probability

of judgments in criminal and civil matters). The Poisson distribution can be derived

as a limiting case of the binomial distribution.2

In 1898 Ladislaus Josephovich Bortkiewicz (1868–1931) published a book titled The

Law of Small Numbers. In this book he first noted that events with low frequency

in a large population follow a Poisson distribution even when the probabilities of

the events varied. It was that book that made the Prussian horse-kick data famous.

Some historians of mathematics have even argued that the Poisson distribution

should have been named the Bortkiewicz distribution.3

• Multinomial distribution

In probability theory, the multinomial distribution is a generalization of the binomial

distribution when we are dealing not only with two types of events — a success with

probability p and a failure with probability 1− p — but with d types of events with

probabilities p1, . . . , pd such that p1, . . . , pd ≥ 0,
∑d

i=1 pi = 1.4

Notation X = (X1, . . . ,Xd) ∼ Multinomiald−1(n, (p1, . . . , pd))

Parameters n = number of Bernoulli trials (n ∈ IN)
(p1, . . . , pd) where pi = P (event of type i)
(p1, . . . , pd ≥ 0,

∑d
i=1 pi = 1)

Range {(n1, . . . , nd) ∈ INd
0 :

∑d
i=1 ni = n}

P.f. P ({X1 = n1, . . . ,Xd = nd}) = n!Qd
i=1 ni!

∏d
i=1 pni

i ,

(n1, . . . , nd) ∈ INd
0 :

∑d
i=1 ni = n

2http://en.wikipedia.org/wiki/Poisson distribution
3http://en.wikipedia.org/wiki/Ladislaus Bortkiewicz
4http://en.wikipedia.org/wiki/Multinomial distribution
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Exercise 2.60 — Binomial r.v. (Grimmett and Stirzaker, 2001, p. 25)

DNA fingerprinting — In a certain style of detective fiction, the sleuth is required to

declare the criminal has the unusual characteristics...; find this person you have your

man. Assume that any given individual has these unusual characteristics with probability

10−7 (independently of all other individuals), and the city in question has 107 inhabitants.

Given that the police inspector finds such person, what is the probability that there

is at least one other? •

Exercise 2.61 — Binomial r.v. (Righter, 200–)

A student (Fred) is getting ready to take an important oral exam and is concerned about

the possibility of having an on day or an off day. He figures that if he has an on day,

then each of his examiners will pass him independently of each other, with probability

0.8, whereas, if he has an off day, this probability will be reduced to 0.4.

Suppose the student will pass if a majority of examiners pass him. If the student feels

that he is twice as likely to have an off day as he is to have an on day, should he request

an examination with 3 examiners or with 5 examiners? •

Exercise 2.62 — Geometric r.v.

Prove that the distribution function of X ∼ Geometric(p) is given by

FX(x) = P (X ≤ x) =

{
0, x < 1
∑[x]

i=1(1− p)i−1 p = 1− (1− p)[x], x ≥ 1,
(2.39)

where [x] represents the integer part of x. •

Exercise 2.63 — Hypergeometric r.v. (Righter, 200–)

From a mix of 50 widgets from supplier 1 and 100 from supplier 2, 10 widgets are randomly

selected and shipped to a customer.

What is the probability that all 10 came from supplier 1? •

Exercise 2.64 — Poisson r.v. (Grimmett and Stirzaker, 2001, p. 19)

In your pocket is a random number N of coins, where N ∼ Poisson(λ). You toss each

coin once, with heads showing with probability p each time.

Show that the total number of heads has a Poisson distribution with parameter λp. •
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Exercise 2.65 — Negative hypergeometric r.v. (Grimmett and Stirzaker, 2001, p.

19)

Capture-recapture — A population of N animals has had a number M of its members

captured, marked, and released. Let X be the number of animals it is necessary to

recapture (without re-release) in order to obtain r marked animals.

Show that

P ({X = x}) =
M
N

(
M−1
r−1

)(
N−M
x−r

)
(

N−1
x−1

) . (2.40)

•

Exercise 2.66 — Discrete random vectors

Prove that if

• Y ∼ Poisson(λ)

• (X1, . . . , Xd)|{Y = n} ∼ Multinomiald−1(n, (p1, . . . , pd))

then Xi ∼ Poisson(λpi), i = 1, . . . , d. •

Exercise 2.67 — Relating the p.f. of the negative binomial and binomial r.v.

Let X ∼ NegativeBinomial(r, p) and Y ∼ Binomial(x − 1, p). Prove that, for x = r, r +

1, r + 2, . . . and r = 1, 2, 3, . . ., we get

P (X = x) = p× P (Y = r − 1)

= p×
[
FBinomial(x−1,p)(r − 1)− FBinomial(x−1,p)(r − 2)

]
. (2.41)

•

Exercise 2.68 — Relating the d.f. of the negative binomial and binomial r.v.

Let X ∼ NegativeBinomial(r, p), Y ∼ Binomial(x, p) e Z = x − Y ∼ Binomial(x, 1− p).

Prove that, for x = r, r + 1, r + 2, . . . and r = 1, 2, 3, . . ., we have

FNegativeBinomial(r,p)(x) = P (X ≤ x)

= P (Y ≥ r)

= 1− FBinomial(x,p)(r − 1)

= P (Z ≤ x− r)

= FBinomial(x,1−p)(x− r). (2.42)

•
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2.4.2 Absolutely continuous r.v. and random vectors

• Uniform distribution on the interval [a, b]

Notation X ∼ Uniform(a, b)

Parameters a = minimum value (a ∈ IR)
b = maximum value (b ∈ IR, a < b)

Range [a, b]

P.d.f. fX(x) = 1
b−a , a ≤ x ≤ b

Let X be an absolutely continuous r.v. with d.f. FX(x). Then Y = FX(X) ∼
Uniform(0, 1).

• Beta distribution

In probability theory and statistics, the beta distribution is a family of continuous

probability distributions defined on the interval [0, 1] parameterized by two positive

shape parameters, typically denoted by α and β. In Bayesian statistics, it can be

seen as the posterior distribution of the parameter p of a binomial distribution,

if the prior distribution of p was uniform. It is also used in information theory,

particularly for the information theoretic performance analysis for a communication

system.

Notation X ∼ Beta(α,β)

Parameters α (α ∈ IR+)
β (β ∈ IR+)

Range [0, 1]

P.d.f. fX(x) = 1
B(α,β) xα−1 (1− x)β−1, 0 ≤ x ≤ 1

where

B(α, β) =

∫ 1

0

xα−1 (1− x)β−1dx (2.43)

represents the beta function. Note that

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
, (2.44)
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where

Γ(α) =

∫ +∞

0

yα−1 e−ydy (2.45)

is the Euler’s gamma function.

The uniform distribution on [0, 1] is a particular case of the beta distribution —

α = β = 1. Moreover, the beta distribution can be generalized to the interval [a, b]:

fY (y) =
1

B(α, β)

(y − a)α−1 (b− y)β−1

(b− a)α+β−1
, a ≤ y ≤ b. (2.46)

The p.d.f. of this distribution can take various forms on account of the “shape”

parameters a and b, as illustrated by the following graph and table:

Parameters Shape of the beta p.d.f.
α, β > 1 Unique mode at x = α−1

α+β−2

α < 1, β > 1 Unique anti-mode at x = α−1
α+β−2 (U − shape)

(α− 1)(β − 1) ≤ 0 J − shape
α = β Symmetric around 1/2 (e.g. constant ou parabolic)
α < β Positively assymmetric
α > β Negatively assymmetric

Exercise 2.69 — Relating the Beta and Binomial distributions

(a) Prove that the d.f. of the r.v. X ∼ Beta(α, β) can be written in terms of the

d.f. of Binomial r.v. when α and β are integer-valued:

FBeta(α,β)(x) = 1− FBinomial(α+β−1,x)(α− 1). (2.47)
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(b) Prove that the p.d.f. of the r.v. X ∼ Beta(α, β) can be rewritten in terms of the

p.f. of the r.v. Y ∼ Binomial(α + β − 2, x), when α and β are integer-valued:

fBeta(α,β)(x) = (α + β − 1)× P (Y = α− 1)

= (α + β − 1)×
[
FBinomial(α+β−2,x)(α− 1)

− FBinomial(α+β−2,x)(α− 2)
]
. (2.48)

•

• Normal distribution

The normal distribution or Gaussian distribution is a continuous probability

distribution that describes data that cluster around a mean or average. The graph of

the associated probability density function is bell-shaped, with a peak at the mean,

and is known as the Gaussian function or bell curve. The Gaussian distribution

is one of many things named after Carl Friedrich Gauss, who used it to analyze

astronomical data, and determined the formula for its probability density function.

However, Gauss was not the first to study this distribution or the formula for its

density function that had been done earlier by Abraham de Moivre.

Notation X ∼ Normal(µ,σ2)

Parameters µ (µ ∈ IR)
σ2 (σ2 ∈ IR+)

Range IR

P.d.f. fX(x) = 1√
2πσ

e−
(x−µ)2

2σ2 , −∞ < x < +∞

The normal distribution can be used to describe, at least approximately, any variable

that tends to cluster around the mean. For example, the heights of adult males in

the United States are roughly normally distributed, with a mean of about 1.8 m.

Most men have a height close to the mean, though a small number of outliers have

a height significantly above or below the mean. A histogram of male heights will

appear similar to a bell curve, with the correspondence becoming closer if more data

are used. (http://en.wikipedia.org/wiki/Normal distribution).

Standard normal distribution — Let X ∼ Normal(µ, σ2). Then the r.v. Z =
X−E(X)√

V (X)
= X−µ

σ is said to have a standard normal distribution, i.e. Z ∼ Normal(0, 1).

Moreover, Z has d.f. given by

FZ(z) = P (Z ≤ z) =

∫ z

−∞

1√
2π

e−
t2

2 dt = Φ(z), (2.49)
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and

FX(x) = P (X ≤ x)

= P

(
Z =

X − µ

σ
≤ x− µ

σ

)

= Φ

(
x− µ

σ

)
. (2.50)

• Exponential distribution

The exponential distributions are a class of continuous probability distributions.

They tend to be used to describe the times between events in a Poisson process,

i.e. a process in which events occur continuously and independently at a constant

average rate (http://en.wikipedia.org/wiki/Exponential distribution).

Notation X ∼ Exponential(λ)

Parameter λ = inverse of the scale parameter (λ ∈ IR+)

Range IR+
0 = [0,+∞)

P.d.f. fX(x) = λ e−λx, x ≥ 0

Consider X ∼ Exponencial(λ). Then

P (X > t + x|X > t) = P (X > x), ∀t, x ∈ IR+
0 . (2.51)

Equivalently,

(X − t|X > t) ∼ Exponencial(λ), ∀t ∈ IR+
0 . (2.52)

This property is referred as to lack of memory : no matter how old your equipment

is, its remaining life has same distribution as a new one.

The exponential (resp. geometric) distribution is the only absolutely continuous

(resp. discrete) r.v. satisfying this property.

• Gamma distribution

The gamma distribution is frequently a probability model for waiting

times; for instance, in life testing, the waiting time until death is a

random variable that is frequently modeled with a gamma distribution

(http://en.wikipedia.org/wiki/Gamma distribution).
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Notation X ∼ Gamma(α,β)

Parameters α = shape parameter (α ∈ IR+)
β = inverse of the scale parameter (β ∈ IR+)

Range IR+
0 = [0,+∞)

P.d.f. fX(x) = βα

Γ(α) xα−1 e−βx, x ≥ 0

Special cases

– Exponential — α = 1 which has the lack of memory property as the geometric

distribution in the discrete case;

– Erlang — α ∈ IN ;5

– Chi-square with n degrees of freedom — α = n/2, β = 1/2.

This distribution has a shape parameter α, therefore it comes as no surprise the

sheer variety of forms of the gamma p.d.f. in the following graph.

Parameters Shape of the gamma p.d.f.
α < 1 Unique supremum at x = 0
α = 1 Unique mode at x = 0
α > 1 Unique mode at x = α−1

β and positively assymmetric

The gamma distribution stand in the same relation to exponential as negative

binomial to geometric: sums of i.i.d exponential r.v. have gamma distribution.

χ2 distributions result from sums of squares of independent standard normal r.v.

5The Erlang distribution was developed by Agner Krarup Erlang (1878–1929) to examine the number
of telephone calls which might be made at the same time to the operators of the switching stations. This
work on telephone traffic engineering has been expanded to consider waiting times in queueing systems
in general. The distribution is now used in the fields of stochastic processes and of biomathematics
(http://en.wikipedia.org/wiki/Erlang distribution)
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It is possible to relate the d.f. of X ∼ Erlang(n, β) with the d.f. of a Poisson r.v.:

FErlang(n,β)(x) =
∞∑

i=n

e−βx(βx)i/i!

= 1− FPoisson(βx)(n− 1), x > 0, n ∈ IN. (2.53)

• d−dimensional uniform distribution

Notation X ∼ Uniform([0, 1]d)

Range [0, 1]d

P.d.f. fX(x) = 1, x ∈ [0, 1]d

• Bivariate Standard normal distribution

Notation X ∼ Normal

([
0
0

]
,

[
1 ρ

ρ 1

])

Parameter ρ = correlation between X1 and X2 (−1<ρ<1)
Range IR2

P.d.f. fX(x) = f(X1,X2)(x1, x2) = 1

2π
√

1−ρ2
exp

(
−1

2
x2
1−2ρx1x2+x2

2
1−ρ2

)
, x ∈ IR2

The graphical representation of the joint density of a random vector with a bivariate

standard normal distribution follows — it depends on the parameter ρ.

Case Graph and contour plot of the joint p.d.f.
of a bivariate STANDARD normal

ρ = 0 Circumferences centered in (0, 0)

-2

0

2x1
-2

0

2

x2

0
0.05

0.1

0.15

-2

0

2x1

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

80



Case Graph and contour plot of the joint p.d.f.
of a bivariate STANDARD normal (cont.)

ρ < 0 Ellipses centered in (0, 0) and asymmetric in relation to the axes,
suggesting that X2 decreases when X1 increases
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ρ > 0 Ellipses centered in (0, 0) and asymmetric in relation to the axes,
suggesting that X2 increases when X1 increases
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Both components of X = (X1, X2) have standard normal marginal densities and X1

and X2 are independent iff ρ = 0.
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2.5 Transformation theory

2.5.1 Transformations of r.v., general case

Motivation 2.70 — Transformations of r.v., general case (Karr, 1993, p. 60)

Let:

• X be a r.v. with d.f. FX ;

• Y = g(X) be a transformation of X under g, where g : IR → IR is a Borel measurable

function.

Then we know that Y = g(X) is also a r.v. But this is manifestly not enough: we wish

to know

• how the d.f. of Y relates to that of X?

This question admits an obvious answer when g is invertible and in a few other cases

described below. •

Proposition 2.71 — D.f. of a transformation of a r.v., general case (Rohatgi,

1976, p. 68; Murteira, 1979, p. 121)

Let:

• X be a r.v. with d.f. FX ;

• Y = g(X) be a transformation of X under g, where g : IR → IR is a Borel measurable

function;

• g−1((−∞, y]) = {x ∈ IR : g(x) ≤ y} be the inverse image of the Borel set (−∞, y]

under g.

Then

FY (y) = P ({Y ≤ y})
= P ({X ∈ g−1((−∞, y])}). (2.54)

•

Exercise 2.72 — D.f. of a transformation of a r.v., general case

Prove Proposition 2.71 (Rohatgi, 1976, p. 68).

Note that if g is a Borel measurable function then

g−1(B) ∈ B(IR), ∀B = (−∞, y] ∈ B(IR). (2.55)
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Thus, we are able to write

P ({Y ∈ B}) = P ({g(X) ∈ B}) = P ({X ∈ g−1(B)}). (2.56)

•

Remark 2.73 — D.f. of a transformation of a r.v., general case

Proposition 2.71 relates the d.f. of Y to that of X.

The inverse image g−1((−∞, y]) is a Borel set and tends to be a “reasonable” set —

a real interval or a union of real intervals. •

Exercise 2.74 — D.f. of a transformation of a r.v., general case (Karr, 1993, p.

70, Exercise 2.20(a))

Let X be a r.v. and Y = X2. Prove that

FY (y) = FX(
√

y)− FX [−(
√

y)−], (2.57)

for y ≥ 0. •

Exercise 2.75 — D.f. of a transformation of a r.v., general case (Rohatgi, 1976,

p. 68)

Let X be a r.v. with d.f. FX . Derive the d.f. of the following r.v.:

(a) |X|

(b) aX + b

(c) eX . •

Exercise 2.76 — D.f. of a transformation of a r.v., absolutely continuous case

The electrical resistance6 (X) of an object and its electrical conductance7 (Y ) are related

as follows: Y = X−1.

Assuming that X ∼ Uniform(900 ohm, 1100 ohm):

(a) Identify the range of values of the r.v. Y .

(b) Derive the survival function of Y , P (Y > y), and calculate P (Y > 10−3 mho). •

6The electrical resistance of an object is a measure of its opposition to the
passage of a steady electric current. The SI unit of electrical resistance is the ohm

(http://en.wikipedia.org/wiki/Electrical resistance).
7Electrical conductance is a measure of how easily electricity flows along a certain path through an

electrical element. The SI derived unit of conductance is the siemens (also called the mho, because it is
the reciprocal of electrical resistance, measured in ohms). Oliver Heaviside coined the term in September
1885 (http://en.wikipedia.org/wiki/Electrical conductance).
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Exercise 2.77 — D.f. of a transformation of a r.v., absolutely continuous case

Let X ∼ Uniform(0, 2π) and Y = sin X. Prove that

FY (y) =






0, y < −1
1
2 + arcsin y

π , −1 ≤ y ≤ 1

1, y > 1.

(2.58)

•

2.5.2 Transformations of discrete r.v.

Proposition 2.78 — P.f. of a one-to-one transformation of a discrete r.v.

(Rohatgi, 1976, p. 69)

Let:

• X be a discrete r.v. with p.f. P ({X = x});

• RX be a countable set such that P ({X ∈ RX}) = 1 and P ({X = x}) > 0,

∀x ∈ RX ;

• Y = g(X) be a transformation of X under g, where g : IR → IR is a one-to-one

Borel measurable function that transforms RX onto some set RY = g(RX).

Then the inverse map, g−1, is a single-valued function of y and

P ({Y = y}) =

{
P ({X = g−1(y)}), y ∈ RY

0, otherwise.
(2.59)

•

Exercise 2.79 — P.f. of a one-to-one transformation of a discrete r.v. (Rohatgi,

1976, p. 69)

Let X ∼ Poisson(λ). Obtain the p.f. of Y = X2 + 3. •

Exercise 2.80 — P.f. of a one-to-one transformation of a discrete r.v.

Let X ∼ Binomial(n, p) and Y = n−X. Prove that:

• Y ∼ Binomial(n, 1− p);

• FY (y) = 1− FX(n− y − 1), y = 0, 1, . . . , n. •

Remark 2.81 — P.f. of a transformation of a discrete r.v. (Rohatgi, 1976, p. 69)

Actually the restriction of a single-valued inverse on g is not necessary. If g has a finite (or

even a countable) number of inverses for each y, from the countable additivity property

of probability functions we can obtain the p.f. of the r.v. Y = g(X). •
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Proposition 2.82 — P.f. of a transformation of a discrete r.v. (Murteira, 1979,

p. 122)

Let:

• X be a discrete r.v. with p.f. P ({X = x});

• RX be a countable set such that P ({X ∈ RX}) = 1 and P ({X = x}) > 0,

∀x ∈ RX ;

• Y = g(X) be a transformation of X under g, where g : IR → IR is a Borel measurable

function that transforms RX onto some set RY = g(RX);

• Ay = {x ∈ RX : g(x) = y} be a non empty set, for y ∈ RY .

Then

P ({Y = y}) = P ({X ∈ Ay})
=

∑

x∈Ay

P ({X = x}), (2.60)

for y ∈ RY . •

Exercise 2.83 — P.f. of a transformation of a discrete r.v. (Rohatgi, 1976, pp.

69–70)

Let X be a discrete r.v. with p.f.

P ({X = x}) =






1
5 , x = −2
1
6 , x = −1
1
5 , x = 0
1
15 , x = 1
11
30 , x = 2

0, otherwise

(2.61)

Derive the p.f. of Y = X2. •
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2.5.3 Transformations of absolutely continuous r.v.

Proposition 2.84 — D.f. of a strictly monotonic transformation of an

absolutely continuous r.v. (Karr, 1993, pp. 60 and 68)

Let:

• X be an absolutely continuous r.v. with d.f. FX and p.d.f. fX ;

• RX be the range of the r.v. X, i.e. RX = {x ∈ IR : fX(x) > 0};

• Y = g(X) be a transformation of X under g, where g : IR → IR is a continuous,

strictly increasing, Borel measurable function that transforms RX onto some set

RY = g(RX);

• g−1 be the pointwise inverse of g.

Then

FY (y) = FX [g−1(y)], (2.62)

for y ∈ RY . Similarly, if

• g is a continuous, strictly decreasing, Borel measurable function

then

FY (y) = 1− FX [g−1(y)], (2.63)

for y ∈ RY . •

Exercise 2.85 — D.f. of a strictly monotonic transformation of an absolutely

continuous r.v.

Prove Proposition 2.84 (Karr, 1993, p. 60). •

Exercise 2.86 — D.f. of a strictly monotonic transformation of an absolutely

continuous r.v.

Let X ∼ Normal(0, 1). Derive the d.f. of

(a) Y = eX

(b) Y = µ + σX, where µ ∈ IR and σ ∈ IR+

(Karr, 1993, p. 60). •
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Remark 2.87 — Transformations of absolutely continuous and discrete r.v.

(Karr, 1993, p. 61)

in general, Y = g(X) need not be absolutely continuous even when X is, as shown in the

next exercise, while if X is a discrete r.v. then so is Y = g(X) regardless of the Borel

measurable function g. •

Exercise 2.88 — A mixed r.v. as a transformation of an absolutely continuous

r.v.

Let X ∼ Uniform(−1, 1). Prove that Y = X+ = max{0, X} is a mixed r.v. whose d.f. is

given by

FY (y) =






0, y < 0
1
2 , y = 0
1
2 + y

2 , 0 < y ≤ 1

1, y > 1

(2.64)

(Rohatgi, 1976, p. 70). •

Exercise 2.88 shows that we need some conditions on g to ensure that Y = g(X) is

also an absolutely continuous r.v. This will be the case when g is a continuous monotonic

function.

Theorem 2.89 — P.d.f. of a strictly monotonic transformation of an absolutely

continuous r.v. (Rohatgi, 1976, p. 70; Karr, 1993, p. 61)

Suppose that:

• X is an absolutely continuous r.v. with p.d.f. fX ;

• there is an open subset RX ⊂ IR such that P ({X ∈ RX}) = 1;

• Y = g(X) is a transformation of X under g, where g : IR → IR is a continuously

differentiable, Borel measurable function such that either dg(x)
dx > 0, ∀x ∈ RX , or

dg(x)
dx < 0, ∀x ∈ RX ;8

• g transforms RX onto some set RY = g(RX);

• g−1 represents the pointwise inverse of g.

8This implies that dg(x)
dx &= 0, ∀x ∈ RX .
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Then Y = g(X) is an absolutely continuous r.v. with p.d.f. given by

fY (y) = fX [g−1(y)]×
∣∣∣∣
dg−1(y)

dy

∣∣∣∣ , (2.65)

for y ∈ RY . •

Exercise 2.90 — P.d.f. of a strictly monotonic transformation of an absolutely

continuous r.v.

Prove Theorem 2.89 by considering the case dg(x)
dx > 0, ∀x ∈ RX , applying Proposition 2.84

to derive the d.f. of Y = g(X), and differentiating it to obtain the p.d.f. of Y (Rohatgi,

1976, p. 70). •

Remark 2.91 — P.d.f. of a strictly monotonic transformation of an absolutely

continuous r.v. (Rohatgi, 1976, p. 71)

The key to computation of the induced d.f. of Y = g(X) from the d.f. of X is P ({Y ≤
y}) = P ({X ∈ g−1((−∞, y])}). If the conditions of Theorem 2.89 are satisfied, we are

able to identify the set {X ∈ g−1((−∞, y])} as {X ≤ g−1(y)} or {X ≥ g−1(y)}, according

to whether g in strictly increasing or strictly decreasing. •

Exercise 2.92 — P.d.f. of a strictly monotonic transformation of an absolutely

continuous r.v.

Let X ∼ Normal(0, 1). Identify the p.d.f. and the distribution of

(a) Y = eX

(b) Y = µ + σX, where µ ∈ IR and σ ∈ IR+

(Karr, 1993, p. 61). •

Corollary 2.93 — P.d.f. of a strictly monotonic transformation of an absolutely

continuous r.v. (Rohatgi, 1976, p. 71)

Under the conditions of Theorem 2.89, and by noting that

dg−1(y)

dy
=

1
dg(x)

dx

∣∣∣∣∣
x=g−1(y)

, (2.66)

we conclude that the p.d.f. of Y = g(X) can be rewritten as follows:

fY (y) =
fX(x)∣∣∣dg(x)

dx

∣∣∣

∣∣∣∣∣∣
x=g−1(y)

, (2.67)

∀y ∈ RY . •

88



Remark 2.94 — P.d.f. of a non monotonic transformation of an absolutely

continuous r.v. (Rohatgi, 1976, p. 71)

In practice Theorem 2.89 is quite useful, but whenever its conditions are violated we

should return to P ({Y ≤ y}) = P ({X ∈ g−1((−∞, y])}) to obtain the FY (y) and then

differentiate this d.f. to derive the p.d.f. of the transformation Y . This is the case in the

next two exercises. •

Exercise 2.95 — P.d.f. of a non monotonic transformation of an absolutely

continuous r.v.

Let X ∼ Normal(0, 1) and Y = g(X) = X2. Prove that Y ∼ χ2
(1) by noting that

FY (y) = FX(
√

y)− FX(−√y), y > 0 (2.68)

fY (y) =
dFY (y)

dy

=

{
1

2
√

y ×
[
fX(

√
y) + fX(−√y)

]
, y ≥ 0

0, y < 0
(2.69)

(Rohatgi, 1976, p. 72). •

Exercise 2.96 — P.d.f. of a non monotonic transformation of an absolutely

continuous r.v.

Let X be an absolutely continuous r.v. with p.d.f.

fX(x) =

{
2x
π2 , 0 < x < π

0, otherwise
(2.70)

Prove that Y = sin X has p.d.f. given by

fY (y) =

{
2

π
√

1−y2
, 0 < y < 1

0, otherwise
(2.71)

(Rohatgi, 1976, p. 73). •

Motivation 2.97 — P.d.f. of a sum of monotonic restrictions of a function g of

an absolutely continuous r.v. (Rohatgi, 1976, pp. 73–74)

in the two last exercises the function y = g(x) can be written as the sum of two monotonic

restrictions of g in two disjoint intervals. Therefore we can apply Theorem 2.89 to each

of these monotonic summands.

In fact, these two exercises are special cases of the following theorem. •
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Theorem 2.98 — P.d.f. of a finite sum of monotonic restrictions of a function

g of an absolutely continuous r.v. (Rohatgi, 1976, pp. 73–74)

Let:

• X be an absolutely continuous r.v. with p.d.f. fX ;

• Y = g(X) be a transformation of X under g, where g : IR → IR is a Borel measurable

function that transforms RX onto some set RY = g(RX).

Moreover, suppose that:

• g(x) is differentiable for all x ∈ RX ;

• dg(x)
dx is continuous and nonzero at all points of RX but a finite number of x.

Then, for every real number y ∈ RY ,

(a) there exists a positive integer n = n(y) and real numbers (inverses)

g−1
1 (y), . . . , g−1

n (y) such that

g(x)|x=g−1
k (y) = y and

dg(x)

dx

∣∣∣∣
x=g−1

k (y)

&= 0, k = 1, . . . , n(y), (2.72)

or

(b) there does not exist any x such that g(x) = y and dg(x)
dx &= 0, in which case we write

n = n(y) = 0.

In addition, Y = g(X) is an absolutely continuous r.v. with p.d.f. given by

fY (y) =

{ ∑n(y)
k=1 fX [g−1

k (y)]×
∣∣∣dg−1

k (y)

dy

∣∣∣ , n = n(y) > 0

0, n = n(y) = 0,
(2.73)

for y ∈ RY . •

Exercise 2.99 — P.d.f. of a finite sum of monotonic restrictions of a function

g of an absolutely continuous r.v.

Let X ∼ Uniform(−1, 1). Use Theorem 2.98 to prove that Y = |X| ∼ Uniform(0, 1)

(Rohatgi, 1976, p. 74). •
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Exercise 2.100 — P.d.f. of a finite sum of monotonic restrictions of a function

g of an absolutely continuous r.v.

Let X ∼ Uniform(0, 2π) and Y = sin X. Use Theorem 2.98 to prove that

fY (y) =

{
1

π
√

1−y2
, −1 < y < 1

0, otherwise.
(2.74)

•

Motivation 2.101 — P.d.f. of a countable sum of monotonic restrictions of a

function g of an absolutely continuous r.v.

The formula P ({Y ≤ y}) = P ({X ∈ g−1((−∞, y])}) and the countable additivity of

probability functions allows us to compute the p.d.f. of Y = g(X) in some instance even

if g has a countable number of inverses. •

Theorem 2.102 — P.d.f. of a countable sum of monotonic restrictions of a

function g of an absolutely continuous r.v. (Rohatgi, 1976, pp. 74–75)

Let g be a Borel measurable function that maps RX onto some set RY = g(RX). Suppose

that RX can be represented as a countable union of disjoint sets Ak, k = 1, 2, . . . Then

Y = g(X) is an absolutely continuous r.v. with d.f. given by

FY (y) = P ({Y ≤ y})
= P ({X ∈ g−1((−∞, y])})

= P

({
X ∈

+∞⋃

k=1

[
g−1((−∞, y]) ∩ Ak

]
})

=
+∞∑

k=1

P
({

X ∈
[
g−1((−∞, y]) ∩ Ak

]})
(2.75)

for y ∈ RY .

If the conditions of Theorem 2.89 are satisfied by the restriction of g to each Ak, gk,

we may obtain the p.d.f. of Y = g(X) on differentiating the d.f. of Y .9 In this case

fY (y) =
+∞∑

k=1

fX [g−1
k (y)]×

∣∣∣∣
dg−1

k (y)

dy

∣∣∣∣ (2.76)

for y ∈ RY . •
9We remind the reader that term-by-term differentiation is permissible if the differentiated series is

uniformly convergent.
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Exercise 2.103 — P.d.f. of a countable sum of monotonic restrictions of a

function g of an absolutely continuous r.v.

Let X ∼ Exponential(λ) and Y = sin X. Prove that

FY (y) = 1 +
e−λπ+λ arcsin y − e−λ arcsin y

1− e−2πλ
, 0 < y < 1 (2.77)

fY (y) =






λe−λπ

(1−e−2λπ)×
√

1−y2
×

[
eλ arcsin y + e−λπ−λ arcsin y

]
, −1 ≤ y < 0

λ

(1−e−2λπ)×
√

1−y2
×

[
e−λ arcsin y + e−λπ+λ arcsin y

]
, 0 ≤ y < 1

0, otherwise

(2.78)

(Rohatgi, 1976, p. 75). •

2.5.4 Transformations of random vectors, general case

What follows is the analogue of Proposition 2.71 in a multidimensional setting.

Proposition 2.104 — D.f. of a transformation of a random vector, general case

Let:

• X = (X1, . . . , Xd) be a random vector with joint d.f. FX ;

• Y = (Y1, . . . , Ym) = g(X) = (g1(X1, . . . , Xd), . . . , gm(X1, . . . , Xd)) be a

transformation of X under g, where g : IRd → IRm is a Borel measurable function;

• g−1(
∏m

i=1(−∞, yi]) = {x = (x1, . . . , xd) ∈ IRd : g1(x1, . . . , xd) ≤ y1, . . .,

gm(x1, . . . , xd) ≤ ym} be the inverse image of the Borel set
∏m

i=1(−∞, yi] under

g.10

Then

FY (y) = P ({Y1 ≤ y1, . . . , Ym ≤ ym})

= P ({X ∈ g−1(
m∏

i=1

(−∞, yi])}). (2.79)

•

Exercise 2.105 — D.f. of a transformation of a random vector, general case

Let X = (X1, . . . , Xd) be an absolutely continuous random vector such that

Xi
indep∼ Exponential(λi), i = 1, . . . , d.

Prove that Y = mini=1,...,d Xi ∼ Exponential(
∑d

i=1 λi). •

10Let us remind the reader that since g is a Borel measurable function we have g−1(B) ∈ B(IRd), ∀B ∈
B(IRm).
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2.5.5 Transformations of discrete random vectors

Theorem 2.106 — Joint p.f. of a one-to-one transformation of a discrete

random vector (Rohatgi, 1976, p. 131)

Let:
• X = (X1, . . . , Xd) be a discrete random vector with joint p.f. P ({X = x});

• RX be a countable set of points such that P (X ∈ RX) = 1 and P ({X = x) > 0,

∀x ∈ IRX ;

• Y = (Y1, . . . , Yd) = g(X) = (g1(X1, . . . , Xd), . . . , gd(X1, . . . , Xd)) be a

transformation of X under g, where g : IRd → IRd is a one-to-one Borel measurable

function that maps RX onto some set RY ⊂ IRd;

• g−1 be the inverse mapping such that g−1(y) = (g−1
1 (y), . . . , g−1

d (y)).

Then the joint p.f. of Y = (Y1, . . . , Yd) is given by

P ({Y = y}) = P ({Y1 = y1, . . . , Yd = yd})
= P ({X1 = g−1

1 (y), . . . , Xd = g−1
d (y)}), (2.80)

for y = (y1, . . . , yd) ∈ RY . •

Remark 2.107 — Joint p.f. of a one-to-one transformation of a discrete random

vector (Rohatgi, 1976, pp. 131–132)

The marginal p.f. of any Yj (resp. the joint p.f. of any subcollection of Y1, . . . , Yd,

say (Yj)j∈I⊂{1,...,d}) is easily computed by summing on the remaining yi, i &= j (resp.

(Yi)i.∈I). •

Theorem 2.108 — Joint p.f. of a transformation of a discrete random vector

Let:
• X = (X1, . . . , Xd) be a discrete random vector with range RX ⊂ IRd;

• Y = (Y1, . . . , Ym) = g(X) = (g1(X1, . . . , Xd), . . . , gm(X1, . . . , Xd)) be a

transformation of X under g, where g : IRd → IRm is a Borel measurable function

that maps RX onto some set RY ⊂ IRm;

• Ay1,...,ym = {x = (x1, . . . , xd) ∈ RX : g1(x1, . . . , xd) = y1, . . . , gm(x1, . . . , xd) = ym}.

Then the joint p.f. of Y = (Y1, . . . , Ym) is given by

P ({Y = y}) = P ({Y1 = y1, . . . , Ym = ym})
=

∑

x=(x1,...,xd)∈Ay1,...,ym

P ({X1 = x1, . . . , Xd = xd}), (2.81)

for y = (y1, . . . , yd) ∈ RY . •
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Exercise 2.109 — Joint p.f. of a transformation of a discrete random vector

Let X = (X1, X2) be a discrete random vector with joint p.f. P (X = x, Y = y) given in

the following table:

X2X1
-2 0 2

−1 1
6

1
6

1
12

0 1
12

1
12 0

1 1
6

1
6

1
12

Derive the joint p.f. of Y1 = |X1| and Y2 = X2
2 . •

Theorem 2.110 — P.f. of the sum, difference, product and division of two

discrete r.v.

Let:

• (X, Y ) be a discrete bidimensional random vector with joint p.f. P (X = x, Y = y);

• Z = X + Y

• U = X − Y

• V = X Y

• W = X/Y , provided that P ({Y = 0}) = 0.

Then

P (Z = z) = P (X + Y = z)

=
∑

x

P (X = x, X + Y = z)

=
∑

x

P (X = x, Y = z − x)

=
∑

y

P (X + Y = z, Y = y)

=
∑

y

P (X = z − y, Y = y) (2.82)

P (U = u) = P (X − Y = u)

=
∑

x

P (X = x, X − Y = u)

=
∑

x

P (X = x, Y = x− u)
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=
∑

y

P (X − Y = u, Y = y)

=
∑

y

P (X = u + y, Y = y) (2.83)

P (V = v) = P (X Y = v)

=
∑

x

P (X = x, XY = v)

=
∑

x

P (X = x, Y = v/x)

=
∑

y

P (XY = v, Y = y)

=
∑

y

P (X = v/y, Y = y) (2.84)

P (W = w) = P (X/Y = w)

=
∑

x

P (X = x, X/Y = w)

=
∑

x

P (X = x, Y = x/w)

=
∑

y

P (X/Y = w, Y = y)

=
∑

y

P (X = wy, Y = y). (2.85)

•

Exercise 2.111 — P.f. of the difference of two discrete r.v.

Let (X, Y ) be a discrete random vector with joint p.f. P (X = x, Y = y) given in the

following table:

YX
1 2 3

1 1
12

1
12

2
12

2 2
12 0 0

3 1
12

1
12

4
12

(a) Prove that X and Y are identically distributed but are not independent.

(b) Obtain the p.f. of U = X − Y

(c) Prove that U = X−Y is not a symmetric r.v., that is U and −U are not identically

distributed. •
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Corollary 2.112 — P.f. of the sum, difference, product and division of two

independent discrete r.v.

Let:

• X and Y be two independent discrete r.v. with joint p.f. P (X = x, Y = y) =

P (X = x)× P (Y = y), ∀x, y

• Z = X + Y

• U = X − Y

• V = X Y

• W = X/Y , provided that P ({Y = 0}) = 0.

Then

P (Z = z) = P (X + Y = z)

=
∑

x

P (X = x)× P (Y = z − x)

=
∑

y

P (X = z − y)× P (Y = y) (2.86)

P (U = u) = P (X − Y = u)

=
∑

x

P (X = x)× P (Y = x− u)

=
∑

y

P (X = u + y)× P (Y = y) (2.87)

P (V = v) = P (X Y = v)

=
∑

x

P (X = x)× P (Y = v/x)

=
∑

y

P (X = v/y)× P (Y = y) (2.88)

P (W = w) = P (X/Y = w)

=
∑

x

P (X = x)× P (Y = x/w)

=
∑

y

P (X = wy)× P (Y = y). (2.89)

•
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Exercise 2.113 — P.f. of the sum of two independent r.v. with three well

known discrete distributions

Let X and Y be two independent discrete r.v. Prove that

(a) X ∼ Binomial(nX , p) ⊥⊥ Y ∼ Binomial(nY , p) ⇒ (X + Y ) ∼ Binomial(nX + nY , p)

(b) X ∼ NegativeBinomial(nX , p) ⊥⊥ Y ∼ NegativeBinomial(nY , p) ⇒ (X + Y ) ∼
NegativeBinomial(nX + nY , p)

(c) X ∼ Poisson(λX) ⊥⊥ Y ∼ Poisson(λY ) ⇒ (X + Y ) ∼ Poisson(λX + λY ),

i.e. the families of Poisson, Binomial and Negative Binomial distributions are closed under

summation of independent members.11 •

Exercise 2.114 — P.f. of the difference of two independent Poisson r.v.

Let X ∼ Poisson(λX) ⊥⊥ Y ∼ Poisson(λY ). Then (X − Y ) has p.f. given by

P (X − Y = u) =
+∞∑

y=0

P (X = u + y)× P (Y = y)

= e−(λX+λY )
+∞∑

y=max{0,−u}

λu+y
X λy

Y

(u + y)! y!
, u = . . . ,−1, 0, 1, . . . (2.90)

•

Remark 2.115 — Skellam distribution (http://en.wikipedia.org/wiki/

Skellam distribution)

The Skellam distribution is the discrete probability distribution of the difference of

independent r.v. X and Y having Poisson distributions with parameters λX and λY .

It is useful in describing the statistics of the difference of two images with simple photon

noise, as well as describing the point spread distribution in certain sports where all scored

points are equal, such as baseball, hockey and soccer.

When λX = λY = λ and u is also large, and of order of the square root of 2λ,

P (X − Y = u) * e−
u2

2×2λ

√
2π × 2λ

, (2.91)

the p.d.f. of a Normal distribution with parameters µ = 0 and σ2 = 2λ.

Please note that the expression of the p.f. of the Skellam distribution that can be

found in http://en.wikipedia.org/wiki/Skellam distribution is not correct. •

11Use the Vandermonde’s identity to prove result (a). In combinatorial mathematics,
Vandermonde’s identity, named after Alexandre-Théophile Vandermonde (1772), states that the
equality

(m+n
r

)
=

∑r
k=0

(m
k

)( n
r−k

)
, m, n, r ∈ IN0, for binomial coefficients holds; this

identity was given already in 1303 by the Chinese mathematician Zhu Shijie (Chu Shi-Chieh)
(http://en.wikipedia.org/wiki/Vandermonde’s identity).
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2.5.6 Transformations of absolutely continuous random vectors

Motivation 2.116 — P.d.f. of a transformation of an absolutely continuous

random vector (Karr, 1993, p. 62)

Recall that a random vector X = (X1, . . . , Xd) is absolutely continuous if there is a

function fX on Rd satisfying

FX(x) = FX1,...,Xd
(x1, . . . , xd)

=

∫ x1

−∞
. . .

∫ xd

−∞
fX1,...,Xd

(s1, . . . , sd) dsd . . . ds1. (2.92)

Computing the density of Y = g(X) requires that g be invertible, except for the special

case that X1, . . . , Xd are independent (and then only for particular choices of g). •

Theorem 2.117 — P.d.f. of a one-to-one transformation of an absolutely

continuous random vector (Rohatgi, 1976, p. 135; Karr, 1993, p. 62)

Let:

• X = (X1, . . . , Xd) be an absolutely continuous random vector with joint p.d.f. fX(x);

• RX be an open set of IRd such that P (X ∈ RX) = 1;

• Y = (Y1, . . . , Yd) = g(X) = (g1(X1, . . . , Xd), . . . , gd(X1, . . . , Xd)) be a

transformation of X under g, where g : IRd → IRd is a one-to-one Borel measurable

function that maps RX onto some set RY ⊂ IRd;

• g−1(y) = (g−1
1 (y), . . . , g−1

d (y)) be the inverse mapping defined over the range RY of

the transformation.

Assume that:

• both g and its inverse g−1 are continuous;

• the partial derivatives,
∂g−1

i (y)

∂yj
, 1 ≤ i, j ≤ d, exist and are continuous;

• the Jacobian of the inverse transformation g−1 (i.e. the determinant of the matrix

of partial derivatives
∂g−1

i (y)

∂yj
) is such that

J(y) =

∣∣∣∣∣∣∣∣

∂g−1
1 (y)

∂y1
· · · ∂g−1

1 (y)

∂yd
... · · · ...

∂g−1
d (y)

∂y1
· · · ∂g−1

d (y)

∂yd

∣∣∣∣∣∣∣∣
&= 0, (2.93)

for y = (y1, . . . , yd) ∈ RY .
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Then the random vector Y = (Y1, . . . , Yd) is absolutely continuous and its joint p.d.f. is

given by

fY (y) = fX

[
g−1(y)

]
× |J(y)|, (2.94)

for y = (y1, . . . , yd) ∈ RY . •

Exercise 2.118 — P.d.f. of a one-to-one transformation of an absolutely

continuous random vector

Prove Theorem 2.117 (Rohatgi, 1976, pp. 135–136). •

Exercise 2.119 — P.d.f. of a one-to-one transformation of an absolutely

continuous random vector

Let

• X = (X1, . . . , Xd) be an absolutely continuous random vector with joint p.d.f. fX(x);

• Y = (Y1, . . . , Yd) = g(X) = AX +b be an invertible affine mapping of IRd into itself,

where A is a nonsingular d× d matrix and b ∈ IRd.

Derive the inverse mapping g−1 and the joint p.d.f. of Y (Karr, 1993, p. 62). •

Exercise 2.120 — P.d.f. of a one-to-one transformation of an absolutely

continuous random vector

Let

• X = (X1, X2, X3) such that Xi
i.i.d.∼ Exponential(1);

• Y = (Y1, Y2, Y3) =
(
X1 + X2 + X3,

X1+X2
X1+X2+X3

, X1
X1+X2

)
.

Derive the joint p.d.f. of Y and conclude that Y1, Y2, and Y3 are also independent (Rohatgi,

1976, p. 137). •

Remark 2.121 — P.d.f. of a one-to-one transformation of an absolutely

continuous random vector (Rohatgi, 1976, p. 136)

In actual applications, we tend to know just k functions, Y1 = g1(X), . . . , Yk = gk(X).

In this case, we introduce arbitrarily (d− k) (convenient) r.v., Yk+1 = gk+1(X), . . . , Yd =

gd(X)), such that the conditions of Theorem 2.117 are satisfied.

To find the joint density of the k r.v. we simply integrate the joint p.d.f. fY over all

the (d− k) r.v. that were arbitrarily introduced. •

We can state a similar result to Theorem 2.117 when g is not a one-to-one

transformation.
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Theorem 2.122 — P.d.f. of a transformation, with a finite number of inverses,

of an absolutely continuous random vector (Rohatgi, 1976, pp. 136–137)

Assume the conditions of Theorem 2.117 and suppose that:

• for each y ∈ RY ⊂ IRd, the transformation g has a finite number k = k(y) of

inverses;

• RX ⊂ IRd can be partitioned into k disjoint sets, A1, . . . , Ak, such that the

transformation g from Ai (i = 1, . . . , k) into IRd, say g
i
, is one-to-one with inverse

transformation g−1
i

= (g−1
1 i (y), . . . , g−1

d i (y)), i = 1, . . . , k;

• the first partial derivatives of g−1
i

exist, are continuous and that each Jacobian

Ji(y) =

∣∣∣∣∣∣∣∣

∂g−1
1 i (y)

∂y1
· · · ∂g−1

1 i (y)

∂yd
... · · · ...

∂g−1
d i (y)

∂y1
· · · ∂g−1

d i (y)

∂yd

∣∣∣∣∣∣∣∣
&= 0, (2.95)

for y = (y1, . . . , yd) in the range of the transformation g
i
.

Then the random vector Y = (Y1, . . . , Yd) is absolutely continuous and its joint p.d.f. is

given by

fY (y) =
k∑

i=1

fX

[
g−1

i
(y)

]
× |Ji(y)|, (2.96)

for y = (y1, . . . , yd) ∈ RY . •

Theorem 2.123 — P.d.f. of the sum, difference, product and division of two

absolutely continuous r.v. (Rohatgi, 1976, p. 141)

Let:

• (X, Y ) be an absolutely continuous bidimensional random vector with joint p.d.f.

fX,Y (x, y);

• Z = X + Y , U = X − Y , V = X Y and W = X/Y .

Then

fZ(z) = fX+Y (z)

=

∫ +∞

−∞
fX,Y (x, z − x) dx

=

∫ +∞

−∞
fX,Y (z − y, y) dy (2.97)
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fU(u) = fX−Y (u)

=

∫ +∞

−∞
fX,Y (x, x− u) dx

=

∫ +∞

−∞
fX,Y (u + y, y) dy (2.98)

fV (v) = fXY (v)

=

∫ +∞

−∞
fX,Y (x, v/x)× 1

|x| dx

=

∫ +∞

−∞
fX,Y (v/y, y)× 1

|y| dy (2.99)

fW (w) = fX/Y (w)

=

∫ +∞

−∞
fX,Y (x, x/w)× |x|

w2
dx

=

∫ +∞

−∞
fX,Y (wy, y)× |y| dy. (2.100)

•

Remark 2.124 — P.d.f. of the sum and product of two absolutely continuous

r.v.

It is interesting to note that:

fZ(z) =
d FZ(z)

dz

=
d P (Z = X + Y ≤ z)

dz

=
d

dz

[∫ ∫

{(x,y): x+y≤z}
fX,Y (x, y) dy dx

]

=
d

dz

[∫ +∞

−∞

∫ z−x

−∞
fX,Y (x, y) dy dx

]

=

∫ +∞

−∞

d

dz

[∫ z−x

−∞
fX,Y (x, y) dy

]
dx

=

∫ +∞

−∞
fX,Y (x, z − x) dx; (2.101)

fV (v) =
d FV (v)

dv

=
d P (V = XY ≤ v)

dv
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=
d

dv

[∫ ∫

{(x,y): xy≤v}
fX,Y (x, y) dy dx

]

=






∫ +∞
−∞

d
dv

[∫ v/x

−∞ fX,Y (x, y) dy
]

dx, x > 0
∫ +∞
−∞

d
dv

[∫ +∞
v/x fX,Y (x, y) dy

]
dx, x < 0

=

∫ +∞

−∞

1

|x| fX,Y (x, v/x) dx. (2.102)

•

Corollary 2.125 — P.d.f. of the sum, difference, product and division of two

independent absolutely continuous r.v. (Rohatgi, 1976, p. 141)

Let:

• X and Y be two independent absolutely continuous r.v. with joint p.d.f.

fX,Y (x, y) = fX(x)× fY (y), ∀x, y;

• Z = X + Y , U = X − Y , V = X Y and W = X/Y .

Then

fZ(z) = fX+Y (z)

=

∫ +∞

−∞
fX(x)× fY (z − x) dx

=

∫ +∞

−∞
fX(z − y)× fY (y) dy (2.103)

fU(u) = fX−Y (u)

=

∫ +∞

−∞
fX(x)× fY (x− u) dx

=

∫ +∞

−∞
fX(u + y)fY (y) dy (2.104)

fV (v) = fXY (v)

=

∫ +∞

−∞
fX(x)× fY (v/x)× 1

|x| dx

=

∫ +∞

−∞
fX(v/y)× fY (y)× 1

|y| dy (2.105)

fW (w) = fX/Y (w)

=

∫ +∞

−∞
fX(x)× fY (x/w)× |x|

w2
dx
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=

∫ +∞

−∞
fX(wy)× fY (y)× |y| dy. (2.106)

•

Exercise 2.126 — P.d.f. of the sum and difference of two independent

absolutely continuous r.v.

Let X and Y be two r.v. which are independent and uniformly distributed in (0, 1). Derive

the p.d.f. of:

(a) (X + Y, X − Y ) (Rohatgi, 1976, pp. 137–138);

(b) X + Y ;

(c) X − Y . •

Exercise 2.127 — P.d.f. of the mean of two independent absolutely continuous

r.v.

Let X and Y be two independent r.v. with standard normal distribution. Prove that their

mean X+Y
2 ∼ Normal(0, 2−1). •

Remark 2.128 — D.f. and p.d.f. of the sum, difference, product and division

of two absolutely continuous r.v.

In several cases it is simpler to obtain the d.f. of those four algebraic functions of X and

Y than to derive the corresponding p.d.f. It suffices to apply Proposition 2.104 and then

differentiate the d.f. to get the p.d.f., as seen in the next exercises. •

Exercise 2.129 — D.f. and p.d.f. of the difference of two absolutely continuous

r.v.

Choosing adequate underkeel clearance (UKC) is one of the most crucial and most difficult

problems in the navigation of large ships, especially very large crude oil carriers.

Let X be the water depth in a passing shallow waterway, say a harbour or a channel,

and Y be the maximum ship draft. Then the probability of a safe passing a shallow

waterway can be expressed as P (UKC = X − Y > 0).

Assume that X and Y are independent r.v. such that X ∼ Gamma(n, β) and Y ∼
Gamma(m, β), where n, m ∈ IN and m < n. Derive an expression for P (UKC = X−Y >

0) taking into account that FGamma(k,β)(x) =
∑∞

i=k e−βx(βx)i/i!, k ∈ IN . •
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Exercise 2.130 — D.f. and p.d.f. of the sum of two absolutely continuous r.v.

Let X and Y be the durations of two independent system components set in what is called

a stand by connection.12 In this case the system duration is given by X + Y .

Prove that the p.d.f. of X + Y equals

fX+Y (z) =
αβ

(
e−βz − e−αz

)

α− β
, z > 0,

if X ∼ Exponencial(α) and Y ∼ Exponencial(β), where α, β > 0 and α &= β. •

Exercise 2.131 — D.f. of the division of two absolutely continuous r.v.

Let X and Y be the intensity of a transmitted signal and its damping until its reception,

respectively. Moreover, W = X/Y represents the intensity of the received signal.

Assume that the joint p.d.f. of (X, Y ) equals fX,Y (x, y) = λµe−(λx+µy) ×
I(0,+∞)×(0,+∞)(x, y). Prove that the d.f. of W = X/Y is given by:

FW (w) =

(
1− µ

µ + λw

)
× I(0,+∞)(w). (2.107)

•

12At time 0, only the component with duration X is on. The component with duration Y replaces the
other one as soon as it fails.
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2.5.7 Random variables with prescribed distributions

Motivation 2.132 — Construction of a r.v. with a prescribed distribution (Karr,

1993, p. 63)

Can we construct (or simulate) explicitly individual r.v., random vectors or sequences of

r.v. with prescribed distributions? •

Proposition 2.133 — Construction of a r.v. with a prescribed d.f. (Karr, 1993,

p. 63)

Let F be a d.f. on IR. Then there is a probability space (Ω,F , P ) and a r.v. X defined

on it such that FX = F . •

Exercise 2.134 — Construction of a r.v. with a prescribed d.f.

Prove Proposition 2.133 (Karr, 1993, p. 63). •

The construction of a r.v. with a prescribed d.f. depends on the following definition.

Definition 2.135 — Quantile function (Karr, 1993, p. 63)

The inverse function of F , F−1, or quantile function associated with F , is defined by

F−1(p) = inf{x : F (x) ≥ p}, p ∈ (0, 1). (2.108)

This function is often referred to as the generalized inverse of the d.f. •

Exercise 2.136 — Quantile functions of an absolutely continuous and a discrete

r.v.

Obtain and draw the graphs of the d.f. and quantile function of:

(a) X ∼ Exponential(λ);

(b) X ∼ Bernoulli(θ).

•
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Remark 2.137 — Existence of a quantile function (Karr, 1993, p. 63)

Even though F need be neither continuous nor strictly increasing, F−1 always exists.

As the figure of the quantile function (associated with the d.f.) of X ∼ Bernoulli(θ),

F−1 jumps where F is flat, and is flat where F jumps.

Although not necessarily a pointwise inverse of F , F−1 serves that role for many

purposes and has a few interesting properties. •

Proposition 2.138 — Basic properties of the quantile function (Karr, 1993, p.

63)

Let F−1 be the (generalized) inverse of F or quantile function associated with F . Then

1. For each p and x,

F−1(p) ≤ x iff p ≤ F (x); (2.109)

2. F−1 is non decreasing and left-continuous;

3. If F is absolutely continuous, then

F [F−1(p)] = p, ∀p ∈ (0, 1). (2.110)

•

Motivation 2.139 — Quantile transformation (Karr, 1993, p. 63)

A r.v. with d.f. F can be constructed by applying F−1 to a r.v. with distribution on (0, 1).

This is usually known as quantile transformation and is a very popular transformation in

random numbers generation/simulation on computer. •

Proposition 2.140 — Quantile transformation (Karr, 1993, p. 64)

Let F be a d.f. on IR and suppose U ∼ Uniform(0, 1). Then

X = F−1(U) has distribution function F. (2.111)

•

Exercise 2.141 — Quantile transformation

Prove Proposition 2.140 (Karr, 1993, p. 64). •

Example 2.142 — Quantile transformation

If U ∼ Uniform(0, 1) then both − 1
λ ln(1−U) and − 1

λ ln(U) have exponential distribution

with parameter λ (λ > 0). •
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Remark 2.143 — Quantile transformation (Karr, 1993, p. 64)

R.v. with d.f. F can be simulated by applying F−1 to the (uniformly distributed) values

produced by the random number generator.

Feasibility of this technique depends on either having F−1 available in closed form or

being able to approximate it numerically. •

Proposition 2.144 — The quantile transformation and the simulation of

discrete and absolutely continuous distributions

To generate (pseudo-)random numbers from a r.v. X with d.f. F , it suffices to:

1. Generate a (pseudo-)random number u from the Uniform(0, 1) distribution.

2. Assign

x = F−1(u) = inf{m ∈ IR : F (m) ≥ u}, (2.112)

the quantile of order u of X, where F−1 represents the generalized inverse of F . •

For a detailed discussion on (pseudo-)random number generation/generators and their

properties please refer to Gentle (1998, pp. 6–22). For a brief discussion — in Portuguese

— on (pseudo-)random number generation and Monte Carlo simulation method we refer

the reader to Morais (2003, Chapter 2).

Exercise 2.145 — The quantile transformation and the generation of the

Logistic distribution

X is said to have a Logistic(µ, σ) if its p.d.f. is given by

f(x) =
e−

x−µ
σ

σ
(
1 + e−

x−µ
σ

)2 ,−∞ < x < +∞. (2.113)

Define the quantile transformation to produce (pseudo-)random numbers with such a

distribution. •

Exercise 2.146 — The quantile transformation and the simulation of the

Erlang distribution

Describe a method to generate (pseudo-)random numbers from the Erlang(n, λ).13 •

13Let us remind the reader that the sum of n independent exponential distributions with parameter λ

has an Erlang(n, λ).
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Exercise 2.147 — The quantile transformation and the generation of the Beta

distribution

Let Y and Z be two independent r.v. with distributions Gamma(α, λ) and Gamma(β, λ),

respectively (α, β, λ > 0).

(a) Prove that X = Y/(Y + Z) ∼ Beta(α, β).

(b) Use this result to describe a random number generation method for the Beta(α, β),

where α, β ∈ IN .

(c) Use any software you are familiar with to generate and plot the histogram of 1000

observations from the Beta(4, 5) distribution. •

Example 2.148 — The quantile transformation and the generation of the

Bernoulli distribution (Gentle, 1993, p. 47)

To generate (pseudo-)random numbers from the Bernoulli(p) distribution, we should

proceed as follows:

1. Generate a (pseudo-)random number u from the Uniform(0, 1) distribution.

2. Assign

x =

{
0, if u ≤ 1− p

1, if u > 1− p
(2.114)

or, equivalently,

x =

{
0, if u ≥ p

1, if u < p.
(2.115)

(Is there any advantage of (2.115) over (2.114)?) •

Exercise 2.149 — The quantile transformation and the simulation of the

Binomial distribution

Describe a method to generate (pseudo-)random numbers from a Binomial(n, p)

distribution. •

Proposition 2.150 — The converse of the quantile transformation (Karr, 1993,

p. 64)

A converse of the quantile transformation (Propositon 2.140) holds as well, under certain

conditions. In fact, if FX is continuous (not necessarily absolutely continuous) then

FX(X) ∼ Uniform(0, 1). (2.116)

•
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Exercise 2.151 — The converse of the quantile transformation

Prove Propositon 2.150 (Karr, 1993, p. 64). •

Motivation 2.152 — Construction of random vectors with a prescribed

distribution (Karr, 1993, p. 65)

The construction of a random vector with an arbitrary d.f. is more complicated. We shall

address this issue in the next chapter for a special case: when the random vector has

independent components. However, we can state the following result. •

Proposition 2.153 — Construction of a random vector with a prescribed d.f.

(Karr, 1993, p. 65)

Let F : IRd → [0, 1] be a d−dimensional d.f. Then there is a probability space (Ω,F , P )

and a random vector X = (X1, . . . , Xd) defined on it such that FX = F . •

Motivation 2.154 — Construction of a sequence of r.v. with a prescribed joint

d.f. (Karr, 1993, p. 65)

How to construct a sequence {Xk}k∈IN of r.v. with a prescribed joint d.f. Fn where Fn is

the joint d.f. of Xn = (X1, . . . , Xn), for each n ∈ IN . The d.f. Fn must satisfy certain

consistency conditions since if such r.v. exists then

Fn(xn) = P (X1 ≤ x1, . . . , Xn ≤ xn)

= lim
x→+∞

P (X1 ≤ x1, . . . , Xn ≤ xn, Xn+1 ≤ x), (2.117)

for all x1, . . . , xn. •

Theorem 2.155 — Kolmogorov existence Theorem (Karr, 1993, p. 65)

Let Fn be a d.f. on IRn, and suppose that

lim
x→+∞

Fn+1(x1, . . . , xn, x) = Fn(x1, . . . , xn), (2.118)

for each n ∈ IN and x1, . . . , xn. Then there is a probability space say (Ω,F , P ) and a

sequence of {Xk}k∈IN of r.v. defined on it such that Fn is the d.f. of (X1, . . . , Xn), for each

n ∈ IN . •

Remark 2.156 — Kolmogorov existence Theorem

(http://en.wikipedia.org/wiki/Kolmogorov extension theorem)

Theorem 2.155 guarantees that a suitably “consistent” collection of finite-

dimensional distributions will define a stochastic process. This theorem is

credited to soviet mathematician Andrey Nikolaevich Kolmogorov (1903–1987,

http://en.wikipedia.org/wiki/Andrey Kolmogorov). •
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Chapter 3

Independence

Independence is a basic property of events and r.v. in a probability model.

3.1 Fundamentals

Motivation 3.1 — Independence (Resnick, 1999, p. 91; Karr, 1993, p. 71)

The intuitive appeal of independence stems from the easily envisioned property that the

ocurrence of an event has no effect on the probability that an independent event will

occur. Despite the intuitive appeal, it is important to recognize that independence is a

technical concept/definition which must be checked with respect to a specific model.

Independence — or the absence of probabilistic interaction — sets probability apart

as a distinct mathematical theory. •

A series of definitions of independence of increasingly sophistication will follow.

Definition 3.2 — Independence for two events (Resnick, 1999, p. 91)

Suppose (Ω,F , P ) is a fixed probability space. Events A, B ∈ F are independent if

P (A ∩B) = P (A)× P (B). (3.1)

•

Exercise 3.3 — Independence

Let A and B be two independent events. Show that:

(a) Ac and B are independent, and so are A and Bc, and Ac and Bc;

(b) A and B are independent iff P (B|A) = P (B|Ac), where P (A) ∈ (0, 1). •
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Exercise 3.4 — (In)dependence and disjoint events

Let A and B two disjoint events with probabilities P (A), P (B) > 0. Show that these

two events are not independent. •

Exercise 3.5 — Independence (Exercise 3.2, Karr, 1993, p. 95)

Show that:

(a) an event whose probability is either zero or one is independent of every event;

(b) an event that is independent of itself has probability zero or one. •

Definition 3.6 — Independence for a finite number of events (Resnick, 1999, p.

91)

The events A1, . . . , An ∈ F are independent if

P

(
⋂

i∈I

Ai

)
=

∏

i∈I

P (Ai), (3.2)

for all finite I ⊆ {1, . . . , n}. •

Remark 3.7 — Independence for a finite number of events (Resnick, 1999, p. 92)

Note that (3.2) represents
∑n

k=2

(
n
k

)
= 2n − n − 1 equations and can be rephrased as

follows:

• the events A1, . . . , An are independent if

P

(
n⋂

i=1

Bi

)
=

n∏

i=1

P (Bi), (3.3)

where, for each i = 1, . . . , n, Bi equals Ai or Ω. •

Corollary 3.8 — Independence for a finite number of events (Karr, 1993, p. 81)

Events A1, . . . , An are independent iff Ac
1, . . . , A

c
n are independent. •

Exercise 3.9 — Independence for a finite number of events (Exercise 3.1, Karr,

1993, p. 95)

Let A1, . . . , An be independent events.
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(a) Prove that P (
⋃n

i=1 Ai) = 1−
∏n

i=1[1− P (Ai)].

(b) Consider a parallel system with n components and assume that P (Ai) is the

reliability of the component i (i = 1, . . . , n). What is the system reliability? •

Motivation 3.10 — (2nd.) Borel-Cantelli lemma (Karr, 1993, p. 81)

For independent events, Theorem 1.76, the (1st.) Borel-Cantelli lemma, has a converse.

It states that if the events A1, A2, . . . are independent and the sum of the probabilities of

the An diverges to infinity, then the probability that infinitely many of them occur is 1. •

Theorem 3.11 — (2nd.) Borel-Cantelli lemma (Karr, 1993, p. 81)

Let A1, A2, . . . be independent events. Then

+∞∑

n=1

P (An) = +∞ ⇒ P (lim sup An) = 1. (3.4)

(Moreover, P (lim sup An) = 1 ⇒
∑+∞

n=1 P (An) = +∞ follows from the 1st. Borel-Cantelli

lemma.) •

Exercise 3.12 — (2nd.) Borel-Cantelli lemma

Prove Theorem 3.11 (Karr, 1993, p. 82). •

Definition 3.13 — Independent classes of events (Resnick, 1999, p. 92)

Let Ci ⊆ F , i = 1, . . . , n, be a class of events. Then the classes C1, . . . , Cn are said to be

independent if for any choice A1, . . . , An, with Ai ∈ Ci, i = 1, . . . , n, the events A1, . . . , An

are independent events according to Definition 3.6. •

Definition 3.14 — Independent σ−algebras (Karr, 1993, p. 94)

Sub σ − algebras G1, . . . ,Gn of σ − algebra F are independent if

P

(
n⋂

i=1

Ai

)
=

n∏

i=1

P (Ai), (3.5)

for all Ai ∈ Gi, i = 1, . . . , n. •

Motivation 3.15 — Independence of σ − algebras (Resnick, 1999, p. 92)

To provide a basic criterion for proving independence of σ−algebras, we need to introduce

the notions of π − system and d− system. •
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Definition 3.16 — π−system (Resnick, 1999, p. 32; Karr, 1993, p. 21)

Let P family of subsets of the sample space Ω. P is said to be a π− system if it is closed

under finite intersection: A, B ∈ P ⇒ A ∩B ∈ P. •

Remark 3.17 — π−system (Karr, 1993, p. 21)

A σ − algebra is a π − system. •

Definition 3.18 — d−system (Karr, 1993, p. 21)

Let D family of subsets of the sample space Ω. D is said to be a d− system 1 if it

1. contains the sample space Ω,

2. is closed under proper difference,2

3. and is closed under countable increasing union.3 •

Proposition 3.19 — Relating π− and d− systems and σ−algebras (Resnick, 1999,

p. 38)

If a class C is both a π − system and d− system then it is a σ − algebra. •

Theorem 3.20 — Basic independence criterion (Resnick, 1999, p. 92)

If, for each i = 1, . . . , n, Ci is a non-empty class of events satisfying

1. Ci is a π − system

2. Ci, i = 1, . . . , n, are independent

then the σ − algebras generated by these n classes of events, σ(Ci), . . . ,σ(Cn), are

independent. •

Exercise 3.21 — Basic independence criterion

Prove the basic independence criterion in Theorem 3.20 (Resnick, 1999, pp. 92–93). •

1Synonyms (Resnick, 1999, p. 36): λ− system, σ − additive, Dynkin class.
2If A, B ∈ D and A ⊆ B then B\A ∈ D.
3If A1 ⊆ A2 ⊆ . . . and Ai ∈ D then

⋃+∞
i=1 Ai ∈ D.
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Definition 3.22 — Arbitrary number of independent classes (Resnick, 1999, p.

93; Karr, 1993, p. 94)

Let T be an arbitrary index set. The classes {Ct, t ∈ T} are independent if, for each finite

I such that I ⊂ T , {Ct, t ∈ I} are independent.

An infinite collection of σ − algebras is independent if every finite subcollection is

independent. •

Corollary 3.23 — Arbitrary number of independent classes (Resnick, 1999, p.

93)

If {Ct, t ∈ T} are non-empty π − systems that are independent then {σ(Ct), t ∈ T} are

independent. •

Exercise 3.24 — Arbitrary number of independent classes

Prove Corollary 3.23 by using the basic independence criterion. •
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3.2 Independent r.v.

The notion of independence for r.v. can be stated in terms of Borel sets. Moreover, basic

independence criteria can be develloped based solely on intervals such as (−∞, x].

Definition 3.25 — Independence of r.v. (Karr, 1993, p. 71)

R.v. X1, . . . , Xn are independent if

P ({X1 ∈ B1, . . . , Xn ∈ Bn}) =
n∏

i=1

P ({Xi ∈ Bi}) , (3.6)

for all Borel sets B1, . . . , Bn. •

Independence for r.v. can also be defined in terms of the independence of σ−algebras.

Definition 3.26 — Independence of r.v. (Resnick, 1999, p. 93)

Let T be an arbitrary index set. Then {Xt, t ∈ T} is a family of independent r.v. if

{σ(Xt), t ∈ T} is a family of independent σ − algebras as stated in Definition 3.22. •

Remark 3.27 — Independence of r.v. (Resnick, 1999, p. 93)

The r.v. are independent if their induced/generated σ − algebras are independent. The

information provided by any individual r.v. should not affect the probabilistic behaviour

of other r.v. in the family.

Since σ(1A) = {∅, A,Ac, Ω} we have 1A1 , . . . ,1An independent iff A1, . . . , An are

independent. •

Definition 3.28 — Independence of an infinite set of r.v. (Karr, 1993, p. 71)

An infinite set of r.v. is independent if every finite subset of r.v. is independent. •

Motivation 3.29 — Independence criterion for a finite number of r.v. (Karr,

1993, pp. 71–72)

R.v. are independent iff their joint d.f. is the product of their marginal/individual d.f.

This result affirms the general principle that definitions stated in terms of all Borel

sets need only be checked for intervals (−∞, x]. •
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Theorem 3.30 — Independence criterion for a finite number of r.v. (Karr, 1993,

p. 72)

R.v. X1, . . . , Xn are independent iff

FX1,...,Xn(x1, . . . , xn) =
n∏

i=1

FXi(xi), (3.7)

for all x1, . . . , xn ∈ IR. •

Remark 3.31 — Independence criterion for a finite number of r.v. (Resnick,

1999, p. 94)

Theorem 3.30 is usually referred to as factorization criterion. •

Exercise 3.32 — Independence criterion for a finite number of r.v.

Prove Theorem 3.30 (Karr, 1993, p. 72; Resnick, 1999, p. 94, provides a more

straightforward proof of this result). •

Theorem 3.33 — Independence criterion for an infinite number of r.v. (Resnick,

1994, p. 94)

Let T be as arbitrary index set. A family of r.v. {Xt, t ∈ T} is independent iff

FI(xt, t ∈ I) =
∏

i∈I

FXt(xt), (3.8)

for all finite I ⊂ T and xt ∈ IR. •

Exercise 3.34 — Independence criterion for an infinite number of r.v.

Prove Theorem 3.33 (Resnick, 1994, p. 94). •

Specialized criteria for discrete and absolutely continuous r.v. follow from Theorem

3.30.

Theorem 3.35 — Independence criterion for discrete r.v. (Karr, 1993, p. 73;

Resnick, 1999, p. 94)

The discrete r.v. X1, . . . , Xn, with countable ranges R1, . . . ,Rn, are independent iff

P ({X1 = x1, . . . , Xn = xn}) =
n∏

i=1

P ({Xi = xi}), (3.9)

for all xi ∈ Ri, i = 1, . . . , n. •

Exercise 3.36 — Independence criterion for discrete r.v.

Prove Theorem 3.35 (Karr, 1993, p. 73; Resnick, 1999, pp. 94–95). •
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Exercise 3.37 — Independence criterion for discrete r.v.

The number of laptops (X) and PCs (Y ) sold daily in a store have a joint p.f. partially

described in the following table:

Y
X 0 1 2

0 0.1 0.1 0.3

1 0.2 0.1 0.1

2 0 0.1 a

Complete the table and prove that X and Y are not independent r.v. •

Theorem 3.38 — Independence criterion for absolutely continuous r.v. (Karr,

1993, p. 74)

Let X = (X1, . . . , Xn) be an absolutely continuous random vector. Then X1, . . . , Xn are

independent iff

fX1,...,Xn(x1, . . . , xn) =
n∏

i=1

fXi(xi), (3.10)

for all x1, . . . , xn ∈ IR. •

Exercise 3.39 — Independence criterion for absolutely continuous r.v.

Prove Theorem 3.38 (Karr, 1993, p. 74). •

Exercise 3.40 — Independence criterion for absolutely continuous r.v.

The r.v. X and Y represent the lifetimes (in 103 hours) of two components of a control

system and have joint p.d.f. given by

fX,Y (x, y) =

{
1, 0 < x < 1, 0 < y < 1

0, otherwise.
(3.11)

Prove that X and Y are independent r.v. •

Exercise 3.41 — Independence criterion for absolutely continuous r.v.

Let X and Y be two r.v. that represent, respectively, the width (in dm) and the length

(in dm) of a rectangular piece. Admit the joint p.d.f. of (X, Y ) is given by

fX,Y (x, y) =

{
2, 0 < x < y < 1

0, otherwise.
(3.12)

Prove that X and Y are not independent r.v. •
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Example 3.42 — Independent r.v. (Karr, 1993, pp. 75–76)

Independent r.v. are inherent to certain probability structures.

• Binary expansions4

Let P be the uniform distribution on Ω = [0, 1]. Each point ω ∈ Ω has a binary

expansion

ω → 0. X1(ω) X2(ω) . . . , (3.13)

where the Xi are functions from Ω to {0, 1}.

This expansion is “unique” and it can be shown that X1, X2, . . . are independent

and with a Bernoulli(p = 1
2) distribution.5 Moreover,

∑+∞
n=1 2−nXn ∼ Uniform(0, 1).

According to Resnick (1999, pp. 98-99), the binary expansion of 1 is 0.111. . . since

+∞∑

n=1

2−n × 1 = 1. (3.14)

In addition, if a number such a 1
2 has two possible binary expansions, we agree to

use the non terminating one. Thus, even though 1
2 has two expansions 0.0111. . .

and 0.1000. . . because

2−1 × 0 +
+∞∑

n=2

2−n × 1 =
1

2
(3.15)

2−1 × 1 +
+∞∑

n=2

2−n × 0 =
1

2
, (3.16)

by convention, we use the first binary expansion.

• Multidimensional uniform distribution

Suppose that P is the uniform distribution on [0, 1]n. Then the coordinate r.v.

Ui((ω1, . . . ,ωn)) = ωi, i = 1, . . . , n, are independent, and each of them is uniformly

distributed on [0, 1]. In fact, for intervals I1, . . . , In,

P ({U1 ∈ I1, . . . , Un ∈ In}) =
n∏

i=1

P ({Ui ∈ Ii}) . (3.17)

4Or dyadic expansions of uniform random numbers (Resnick, 1999, pp. 98-99).
5The proof of this result can also be found in Resnick (1999, pp. 99-100).
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In other cases, whether r.v. are independent depends on the value of a parameter.

• Bivariate normal distribution

Let (X, Y ) be a random vector with a bivariate normal distribution with p.d.f.

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

[
−x2 − 2ρxy + y2

2(1− ρ2)

]
, (x, y) ∈ IR2 (3.18)

X and Y have both marginal standard normal distributions then, by the

factorization criterion, X and Y are independent iff ρ = 0. •

Exercise 3.43 — Bivariate normal distributed r.v. (Karr, 1993, p. 96, Exercise

3.8)

Let (X, Y ) have the bivariate normal p.d.f.

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

[
−x2 − 2ρxy + y2

2(1− ρ2)

]
, (x, y) ∈ IR2. (3.19)

(a) Prove that X ∼ Y ∼ Normal(0, 1).

(b) Prove that X and Y are independent iff ρ = 0.

(c) Prove that P ({X ≥ 0, Y ≥ 0}) = 1
4 + 1

2π arcsin(ρ) (Grimmett and Stirzaker, 2001,

pp. 196–197). •

Exercise 3.44 — I.i.d. r.v. with absolutely continuous distributions (Karr, 1993,

p. 96, Exercise 3.9)

Let (X, Y ) be an absolutely continuous random vector where X and Y are i.i.d. r.v. with

absolutely continuous d.f. F . Prove that:

(a) P ({X = Y }) = 0;

(b) P ({X < Y }) = 1
2 . •
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3.3 Functions of independent r.v.

Motivation 3.45 — Disjoint blocks theorem (Karr, 1993, p. 76)

R.v. that are functions of disjoint subsets of a family of independent r.v. are also

independent. •

Theorem 3.46 — Disjoint blocks theorem (Karr, 1993, p. 76)

Let:

• X1, . . . , Xn be independent r.v.;

• J1, . . . , Jk be disjoint subsets of {1, . . . , n};

• Yl = gl

(
X(l)

)
, where gl is a Borel measurable function and X(l) = {Xi, i ∈ Jl} is a

subset of the family of the independent r.v., for each l = 1, . . . , k.

Then

Y1 = g1

(
X(1)

)
, . . . , Yk = gk

(
X(k)

)
(3.20)

are independent r.v. •

Remark 3.47 — Disjoint blocks theorem (Karr, 1993, p. 77)

According to Definitions 3.25 and 3.28, the disjoint blocks theorem can be extended to

(countably) infinite families and blocks. •

Exercise 3.48 — Disjoint blocks theorem

Prove Theorem 3.46 (Karr, 1993, pp. 76–77). •

Example 3.49 — Disjoint blocks theorem

Let X1, . . . , X5 be five independent r.v., and J1 = {1, 2} and J2 = {3, 4} two disjoint

subsets of {1, . . . , 5}. Then

• Y1 = X1 + X2 = g1(Xi, i ∈ J1 = {1, 2}) and

• Y2 = X3 −X4 = g2(Xi, i ∈ J2 = {3, 4})

are independent r.v. •
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Corollary 3.50 — Disjoint blocks theorem (Karr, 1993, p. 77)

Let:

• X1, . . . , Xn be independent r.v.;

• Yi = gi(Xi), i = 1, . . . , n, where g1, . . . , gn are (Borel measurable) functions from IR

to IR.

Then Y1, . . . , Yn are independent r.v. •

We have already addressed the p.d.f. (or p.f.) of a sum, difference, product or

division of two independent absolutely continuous (or discrete) r.v. However, the sum

of independent absolutely continuous r.v. merit special consideration — its p.d.f. has a

specific designation: convolution of p.d.f..

Definition 3.51 — Convolution of p.d.f. (Karr, 1993, p. 77)

Let:

• X and Y be two independent absolutely continuous r.v.;

• f and g be the p.d.f. of X and Y , respectively.

Then the p.d.f. of X + Y is termed the convolution of the p.d.f. f and g, represented by

f , g and given by

(f , g)(t) =

∫ +∞

−∞
f(t− s)× g(s) ds. (3.21)

•

Proposition 3.52 — Properties of the convolution of p.d.f. (Karr, 1993, p. 78)

The convolution of p.d.f. is:

• commutative — f , g = g , f , for all p.d.f. f and g;

• associative — (f , g) , h = f , (g , h), for all p.d.f. f , g and h. •

Exercise 3.53 — Convolution of p.f.

How could we define the convolution of the p.f. of two independent discrete r.v.? •
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Exercise 3.54 — Sum of independent binomial distributions

Let X ∼ Binomial(nX , p) and Y ∼ Binomial(nY , p) be independent.

Prove that X + Y ∼ Binomial(nX + nY , p) by using the Vandermonde’s identity

(http://en.wikipedia.org/wiki/Vandermonde’s identity).6 •

Exercise 3.54 gives an example of a distribution family which is closed under

convolution. There are several other families with the same property, as illustrated by

the next proposition.

Proposition 3.55 — A few distribution families closed under convolution

R.v. Convolution

Xi ∼indep Binomial(ni, p), i = 1, . . . , k
∑k

i=1 Xi ∼ Binomial
(∑k

i=1 ni, p
)

Xi ∼indep NegativeBinomial(ri, p), i = 1, . . . , n
∑n

i=1 Xi ∼ NegativeBinomial
(∑k

i=1 ri, p
)

Xi ∼indep Poisson(λi), i = 1, . . . , n
∑n

i=1 Xi ∼ Poisson (
∑n

i=1 λi)

Xi ∼indep. Normal(µi, σ2
i ), i = 1, . . . , n

∑n
i=1 Xi ∼ Normal

(∑n
i=1 µi,

∑n
i=1 σ2

i

)

∑n
i=1 ci Xi ∼ Normal

(∑n
i=1 ci µi,

∑n
i=1 c2

i σ2
i

)

Xi ∼indep. Gamma(αi, λ), i = 1, . . . , n
∑n

i=1 Xi ∼ Gamma (
∑n

i=1 αi, λ)

•

Exercise 3.56 — Sum of (in)dependent normal distributions

Let (X, Y ) have a (non-singular) bivariate normal distribution with mean vector and

covariance matrix

µ =

[
µX

µY

]
and ΣΣ =

[
σ2

X ρσXσY

ρσXσY σ2
Y

]
, (3.22)

respectively, that is, the joint p.d.f. is given by

fX,Y (x, y) =
1

2πσXσY

√
1− ρ2

exp

{
− 1

2(1− ρ2)

[(
x− µX

σX

)2

(3.23)

−2ρ

(
x− µX

σX

) (
y − µY

σY

)
+

(
y − µY

σY

)2
]}

, (x, y) ∈ IR2, (3.24)

6In combinatorial mathematics, Vandermonde’s identity, named after Alexandre-Théophile
Vandermonde (1772), states that the equality

(m+n
r

)
=

∑r
k=0

(m
k

)( n
r−k

)
, m, n, r ∈ IN0, for binomial

coefficients holds. This identity was given already in 1303 by the Chinese mathematician Zhu Shijie (Chu
Shi-Chieh).
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for |ρ| = |corr(X, Y )| < 1.7

Prove that X + Y is normally distributed with parameters E(X + Y ) = µX + µY and

V (X + Y ) = V (X) + 2cov(X, Y ) + V (Y ) = σ2
X + 2ρσXσY + σ2

Y . •

Exercise 3.57 — Distribution of the minimum of two exponentially distributed

r.v. (Karr, 1993, p. 96, Exercise 3.7)

Let Xi ∼ Exponential(λ) and Y ∼ Exponential(µ) be two independent r.v.

Calculate the distribution of Z = min{X, Y }. •

Exercise 3.58 — Distribution of the minimum of exponentially distributed r.v.

Let X
i.i.d.∼ Exponential(λi) and ai > 0, for i = 1, . . . , n.

Prove that mini=1,...,n{ai Xi} ∼ Exponential
(∑n

i=1
λi
ai

)
. •

Exercise 3.59 — Distribution of the minimum of Pareto distributed r.v.

The Pareto distribution, named after the Italian economist Vilfredo Pareto, was originally

used to model the wealth of individuals, X.8

We say that X ∼ Pareto(b, α) if

fX(x) =
α bα

xα+1
, x ≥ b, (3.25)

where b > 0 is the minimum possible value of X (it also represents the scale parameter)

and α > 0 is called the Pareto index (or the shape parameter)

Consider n individuals with wealths Xi
i.i.d.∼ X, i = 1, . . . , n. Identify the survival

function of the minimal wealth of these n individuals and comment on the result. •

Proposition 3.60 — A few distribution families closed under the minimum

operation

R.v. Minimum

Xi ∼indep Geometric(pi), i = 1, . . . , n mini=1,...,n Xi ∼ Geometric (1−
∏n

i=1(1− pi))

Xi ∼indep Exponential(λi), ai > 0, i = 1, . . . , n mini=1,...,n aiXi ∼ Exponential
(∑n

i=1
λi
ai

)

Xi ∼indep Pareto(b, αi), i = 1, . . . , n, a > 0 mini=1,...,n aXi ∼ Pareto (ab,
∑n

i=1 αi)

7The fact that two random variables X and Y both have a normal distribution does not imply that
the pair (X, Y ) has a joint normal distribution. A simple example is one in which Y = X if |X| > 1
and Y = −X if |X| < 1. This is also true for more than two random variables. (For more details see
http://en.wikipedia.org/wiki/Multivariate normal distribution).

8The Pareto distribution seemed to show rather well the way that a larger portion of
the wealth of any society is owned by a smaller percentage of the people in that society
(http://en.wikipedia.org/wiki/Pareto distribution).
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R.v. Minimum

Xi ∼i.i.d. Weibull(α,β), i = 1, . . . , n mini=1,...,n Xi ∼ Weibull
(
α/n

1
β , β

)

Xi ∼indep Weibull(αi, β), i = 1, . . . , n mini=1,...,n Xi ∼ Weibull
((∑n

i=1 α−β
i

)− 1
β

, β

)

•

Exercise 3.61 — A few distribution families closed under the minimum

operation

Prove Proposition 3.60 •
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3.4 Order statistics

Algebraic operations on independent r.v., such as the minimum, the maximum and order

statistics, are now further discussed because they play a major role in applied areas such

as reliability.

Definition 3.62 — System reliability function (Barlow and Proschan, 1975, p. 82)

The system reliability function for the interval [0, t] is the probability that the system

functions successfully throughout the interval [0, t].

If T represents the system lifetime then the system reliability function is the survival

function of T ,

ST (t) = P ({T > t}) = 1− FT (t). (3.26)

If the system has n components with independent lifetimes X1, . . . , Xn, with survival

functions SX1(t), . . . , SXn(t), then system reliability function is a function of those n

reliability functions, i.e,

ST (t) = h [SX1(t), . . . , SXn(t)] . (3.27)

If they are not independent then ST (t) depends on more than the component marginal

distributions at time t. •

Definition 3.63 — Order statistics

Given any r.v., X1, X2, . . . , Xn,

• the 1st. order statistic is the minimum of X1, . . . , Xn, X(1) = mini=1,...,n Xi,

• nth. order statistic is the maximum of X1, . . . , Xn, X(n) = maxi=1,...,n Xi, and

• the ith. order statistic corresponds to the ith.-smallest r.v. of X1, . . . , Xn, X(i),

i = 1, . . . , n.

Needless to say that the order statistics X(1), X(2), . . . , X(n) are also r.v., defined by sorting

X1, X2, . . . , Xn in increasing order. Thus, X(1) ≤ X(2) ≤ . . . ≤ X(n). •

Motivation 3.64 — Importance of order statistics in reliabilty

A system lifetime T can be expressed as a function of order statistics of the components

lifetimes, X1, . . . , Xn.

If we assume that Xi
i.i.d.∼ X, i = 1, . . . , n, then the system reliability function ST (t) =

P ({T > t}) can be easily written in terms of the survival function (or reliability function)

of X, SX(t) = P ({X > t}), for some of the most usual reliability structures. •
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Example 3.65 — Reliability function of a series system

A series system functions if all its components function. Therefore the system lifetime is

given by

T = min{X1, . . . , Xn} = X(1). (3.28)

If Xi
i.i.d.∼ X, i = 1, . . . , n, then the system reliability function is defined as

ST (t) = P

(
n⋂

i=1

{Xi > t}
)

= [SX(t)]n, (3.29)

where SX(t) = P ({X > t}). •

Exercise 3.66 — Reliability function of a series system

A series system has two components with i.i.d. lifetimes with common failure rate function

given by λX(t) = fX(t)
SX(t) = 0.5t−0.5, t ≥ 0, i.e., SX(t) = exp

[
−

∫ t

0 λX(s) ds
]
. (Prove this

result!).

Derive the system reliability function. •

Example 3.67 — Reliability function of a parallel system

A parallel system functions if at least one of its components functions. Therefore the

system lifetime is given by

T = max{X1, . . . , Xn} = X(n). (3.30)

If Xi
i.i.d.∼ X, i = 1, . . . , n, then the system reliability function equals

ST (t) = 1− FT (t)

= 1− P

(
n⋂

i=1

{Xi ≤ t}
)

= 1− [1− SX(t)]n , (3.31)

where SX(t) = P ({X > t}). •

Exercise 3.68 — Reliability function of a parallel system

An obsolete electronic system has 6 valves set in parallel. Assume that the components

lifetime (in years) are i.i.d. r.v. with common p.d.f. fX(t) = 50 t e−25t2 , t > 0.

Obtain the system reliability for 2 months. •
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Proposition 3.69 — Joint p.d.f. of the order statistics and more (Murteira, 1980,

pp. 57, 55, 54)

Let X1, . . . , Xn be absolutely continuous r.v. such that Xi
i.i.d.∼ X, i = 1, . . . , n. Then:

fX(1),...,X(n)
(x1, . . . , xn) = n!×

n∏

i=1

fX(xi), (3.32)

for x1 ≤ . . . ≤ xn;

FX(i)
(x) =

n∑

j=i

(
n

j

)
× [FX(x)]j × [1− FX(x)]n−j

= 1− FBinomial(n,FX(x))(i− 1), (3.33)

for i = 1, . . . , n;

fX(i)
(x) =

n!

(i− 1)! (n− i)!
× [FX(x)]i−1 × [1− FX(x)]n−i × fX(x), (3.34)

for i = 1, . . . , n;

fX(i),X(j)
(xi, xj) =

n!

(i− 1)! (j − i− 1)! (n− j)!

× [FX(xi)]
i−1 × [FX(xj)− FX(xi)]

j−i−1 × [1− FX(xj)]
n−j

×fX(xi)× fX(xj), (3.35)

for xi < xj, and 1 ≤ i < j ≤ n. •

Exercise 3.70 — Joint p.d.f. of the order statistics and more

Prove Proposition 3.69 (http://en.wikipedia.org/wiki/Order statistic). •

Example 3.71 — Reliability function of a k-out-of-n system

A k-out-of-n system functions if at least k out of its n components function. A series

system corresponds to a n-out-of-n system, whereas a parallel system corresponds to a

1-out-of-n system. The lifetime of a k-out-of-n system is also associated to an order

statistic:

T = X(n−k+1). (3.36)

If Xi
i.i.d.∼ X, i = 1, . . . , n, then the system reliability function can also be derived by using

the auxiliary r.v.

Zt = number of X ′
is > t ∼ Binomial(n, SX(t)). (3.37)
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In fact,

ST (t) = P (Zt ≥ k)

= 1− P (Zt ≤ k − 1)

= 1− FBinomial(n,SX(t))(k − 1)

= P (n− Zt ≤ n− k)

= FBinomial(n,FX(t))(n− k). (3.38)

•

Exercise 3.72 — Reliability function of a k-out-of-n system

Admit a machine has 4 engines and it only functions if at least 3 of those engines are

working. Moreover, suppose the lifetimes of the engines (in thousand hours) are i.i.d. r.v.

with Exponential distribution with scale parameter λ−1 = 2.

Obtain the machine reliability for a period of 1000 h. •
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3.5 Constructing independent r.v.

The following theorem is similar to Proposition 2.133 and guarantees that we can also

construct independent r.v. with prescribed d.f.

Theorem 3.73 — Construction of a finite collection of independent r.v. with

prescribed d.f. (Karr, 1993, p. 79)

Let F1, . . . , Fn be d.f. on IR. Then there is a probability space (Ω,F , P ) and r.v.

X1, . . . , Xn defined on it such that X1, . . . , Xn are independent r.v. and FXi = Fi for

each i. •

Exercise 3.74 — Construction of a finite collection of independent r.v. with

prescribed d.f.

Prove Proposition 3.73 (Karr, 1993, p. 79). •

Theorem 3.75 — Construction of a sequence of independent r.v. with

prescribed d.f. (Karr, 1993, p. 79)

Let F1, F2, . . . be d.f. on IR. Then there is a probability space (Ω,F , P ) and a r.v.

X1, X2, . . . defined on it such that X1, X2, . . . are independent r.v. and FXi = Fi for

each i. •

Exercise 3.76 — Construction of a sequence of independent r.v. with

prescribed d.f.

Prove Proposition 3.75 (Karr, 1993, pp. 79-80). •
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3.6 Bernoulli process

Motivation 3.77 — Bernoulli (counting) process (Karr, 1993, p. 88)

Counting sucesses in repeated, independent trials, each of which has one of two possible

outcomes (success9 and failure). •

Definition 3.78 — Bernoulli process (Karr, 1993, p. 88)

A Bernoulli process with parameter p is a sequence {Xi, i ∈ IN} of i.i.d. r.v. with Bernoulli

distribution with parameter p = P (success). •

Definition 3.79 — Important r.v. in a Bernoulli process (Karr, 1993, pp. 88–89)

In isolation a Bernoulli process is neither deep or interesting. However, we can identify

three associated and very important r.v.:

• Sn =
∑n

i=1 Xi, the number of successes in the first n trials (n ∈ IN);

• Tk = min{n : Sn = k}, the time (trial number) at which the kth. success occurs

(k ∈ IN), that is, the number of trials needed to get k successes;

• Uk = Tk−Tk−1, the time (number of trials) between the kth. and (k−1)th. successes

(k ∈ IN, T0 = 0, U1 = T1). •

Definition 3.80 — Bernoulli counting process (Karr, 1993, p. 88)

The sequence {Sn, n ∈ IN} is usually termed as Bernoulli counting process (or success

counting process). •

Exercise 3.81 — Bernoulli counting process

Simulate a Bernoulli process with parameter p = 1
2 and consider n = 100 trials. Plot the

realizations of both the Bernoulli process and the Bernoulli counting process. •

Definition 3.82 — Bernoulli success time process (Karr, 1993, p. 88)

The sequence {Tk, k ∈ IN} is usually called the Bernoulli success time process. •

9Or arrival.
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Proposition 3.83 — Important distributions in a Bernoulli process (Karr, 1993,

pp. 89–90)

In a Bernoulli process with parameter p (p ∈ [0, 1]) we have:

• Sn ∼ Binomial(n, p), n ∈ IN ;

• Tk ∼ NegativeBinomial(k, p), k ∈ IN ;

• Uk
i.i.d.∼ Geometric(p)

d
= NegativeBinomial(1, p), k ∈ IN . •

Exercise 3.84 — Bernoulli counting process

(a) Prove that Tk ∼ NegativeBinomial(k, p) and Uk
i.i.d.∼ Geometric(p), for k ∈ IN .

(b) Consider a Bernoulli process with parameter p = 1/2 and obtain the probability of

having 57 successes between times 10 and 100. •

Exercise 3.85 — Relating the Bernoulli counting process and random walk

(Karr, 1993, p. 97, Exercise 3.21)

Let Sn be a Bernoulli (counting) process with p = 1
2 .

Prove that the process Zn = 2Sn − n is a symmetric random walk. •

Proposition 3.86 — Properties of the Bernoulli counting process (Karr, 1993,

p. 90)

The Bernoulli counting process {Sn, n ∈ IN} has:

• independent increments — i.e., for 0 < n1 < . . . < nk, the r.v. Sn1 , Sn2 − Sn1 ,

Sn3 − Sn2 , . . ., Snk
− Snk−1

are independent;

• stationary increments — that is, for fixed j, the distribution of Sk+j − Sk is the

same for all k ∈ IN . •

Exercise 3.87 — Properties of the Bernoulli counting process

Prove Proposition 3.86 (Karr, 1993, p. 90). •
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Remark 3.88 — Bernoulli counting process (web.mit.edu/6.262/www/lectures/

6.262.Lec1.pdf)

Some application areas for discrete stochastic processes such as the Bernoulli counting

process (and the Poisson process, studied in the next section) are:

• Operations Research

Queueing in any area, failures in manufacturing systems, finance, risk modelling,

network models

• Biology and Medicine

Epidemiology, genetics and DNA studies, cell modelling, bioinformatics, medical

screening, neurophysiology

• Computer Systems

Communication networks, intelligent control systems, data compression, detection

of signals, job flow in computer systems, physics – statistical mechanics. •

Exercise 3.89 — Bernoulli process modelling of sexual HIV transmission

(Pinkerton and Holtgrave (1998, pp. 13–14))

In the Bernoulli-process model of sexual HIV transmission, each act of sexual intercourse

is treated as an independent stochastic trial that is associated to a probability α of HIV

transmission. α is also known as the infectivity of HIV and a number of factors are

believed to influence α.10

(a) Prove that the expression of the probability of HIV transmission in n multiple

contacts with the same infected partner is 1− (1− α)n.

(b) Assume now that the consistent use of condoms reduce the infectivity from α to

α′ = (1− 0.9)×α.11 Derive the relative change reduction in the probability defined

in (a) due to the consistent use of condoms. Evaluate this reduction when α = 0.01

and n = 10. •

Definition 3.90 — Independent Bernoulli processes

Two Bernoulli counting processes {S(1)
n , n ∈ IN} and {S(2)

n , n ∈ IN} are independent

if for every positive integer k and all times n1, . . . , nk, we have that the random

vector
(
S(1)

n1 , . . . , S(1)
nk

)
associated with the first process is independent of

(
S(2)

n1 , . . . , S(2)
nk

)

associated with the second process. •
10Such as the type of sex act engaged, sex role, etc.
11α′ is termed reduced infectivity ; 0.9 represents a conservative estimate of condom effectiveness.
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Proposition 3.91 — Merging independent Bernoulli processes

Let {S(1)
n , n ∈ IN} and {S(2)

n , n ∈ IN} be two independent Bernoulli counting processes

with parameters α and β, respectively. Then the merged process {S(1)
n ⊕ S(2)

n , n ∈ IN} is

a Bernoulli counting process with parameter α + β − αβ.

•

Exercise 3.92 — Merging independent Bernoulli processes

Prove Proposition 3.91. •

Proposition 3.93 — Splitting a Bernoulli process (or sampling a Bernoulli

process)

Let {Sn, n ∈ IN} be a Bernoulli counting process with parameter α. Splitting the original

Bernoulli counting process based on a selection probability p yields two Bernoulli counting

processes with parameters αp and α(1− p).

•

Exercise 3.94 — Splitting a Bernoulli process

Prove Proposition 3.93.

Are the two resulting processes independent?12 •

12NO! If we try to merge the two splitting processes and assume they are independent we get a
parameter αp + α(1− p)− αp× α(1− p) which is different form α.
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3.7 Poisson process

In what follows we use the notation of Ross (1989, Chapter 5) which is slightly different

from the one of Karr (1993, Chapter 3).

Motivation 3.95 — Poisson process (Karr, 1993, p. 91)

Is there a continuous analogue of the Bernoulli process? yes!

The Poisson process, named after the French mathematician Siméon-Denis Poisson

(1781–1840), is the stochastic process in which events occur continuously and

independently of one another. Examples that are well-modeled as Poisson processes

include the radioactive decay of atoms, telephone calls arriving at a switchboard, and

page view requests to a website.13 •

Definition 3.96 — Counting process (in continuous time) (Ross, 1989, p. 209)

A stochastic process {N(t), t ≥ 0} is said to be a counting process if N(t) represents the

total number of events (e.g. arrivals) that have occurred up to time t. From this definition

we can conclude that a counting process {N(t), t ≥ 0} must satisfy:

• N(t) ∈ IN0, ∀ t ≥ 0;

• N(s) ≤ N(t), ∀ 0 ≤ s < t;

• N(t)−N(s) corresponds to the number of events that have occurred in the interval

(s, t], ∀ 0 ≤ s < t. •

Definition 3.97 — Counting process (in continuous time) with independent

increments (Ross, 1989, p. 209)

The counting process {N(t), t ≥ 0} is said to have independent increments if the number

of events that occur in disjoint intervals are independent r.v., i.e.,

• for 0 < t1 < . . . < tn, N(t1), N(t2)−N(t1), N(t3)−N(t2), . . ., N(tn)−N(tn−1) are

independent r.v.

•

13For more examples, check http://en.wikipedia.org/wiki/Poisson process.
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Definition 3.98 — Counting process (in continuous time) with stationary

increments (Ross, 1989, p. 210)

The counting process {N(t), t ≥ 0} is said to have stationary increments if distribution

of the number of events that occur in any interval of time depends only on the length of

the interval,14 that is,

• N(t2 + s)−N(t1 + s)
d
= N(t2)−N(t1), ∀ s > 0, 0 ≤ t1 < t2. •

Definition 3.99 — Poisson process (Karr, 1993, p. 91)

A counting process {N(t), t ≥ 0} is said to be a Poisson process with rate λ (λ > 0) if:

• {N(t), t ≥ 0} has independent and stationary increments;

• N(t) ∼ Poisson(λt). •

Remark 3.100 — Poisson process (Karr, 1993, p. 91)

Actually, N(t) ∼ Poisson(λt) follows from the fact that {N(t), t ≥ 0} has independent

and stationary increments, thus, redundant in Definition 3.99. •

Definition 3.101 — The definition of a Poisson process revisited (Ross, 1989, p.

212)

The counting process {N(t), t ≥ 0} is said to be a Poisson process with rate λ, if

• N(0) = 0;

• {N(t), t ≥ 0} has independent and stationary increments;

• P ({N(h) = 1}) = λh + o(h);15

• P ({N(h) ≥ 2}) = o(h). •

Exercise 3.102 — The definition of a Poisson process revisited

Prove that Definitions 3.99 and 3.101 are equivalent (Ross, 1989, pp. 212–214).

14The distributions do not depend on the origin of the time interval; they only depend on the length
of the interval.

15The function f is said to be o(h) if limh→0
f(h)

h = 0 (Ross, 1989, p. 211).
The function f(x) = x2 is o(h) since limh→0

f(h)
h = limh→0 h = 0.

The function f(x) = x is not o(h) since limh→0
f(h)

h = limh→0 1 = 1 &= 0.

136



Proposition 3.103 — Joint p.f. of N(t1), . . . , N(tn) in a Poisson process (Karr,

1993, p. 91)

For 0 < t1 < . . . < tn and 0 ≤ k1 ≤ . . . ≤ kn,

P ({N(t1) = k1, . . . , N(tn) = kn}) =
n∏

j=1

e−λ(tj−tj−1) [λ(tj − tj−1)]kj−kj−1

(kj − kj−1)!
, (3.39)

where t0 = 0 and k0 = 0. •

Exercise 3.104 — Joint p.f. of N(t1), . . . , N(tn) in a Poisson process

Prove Proposition 3.103 (Karr, 1993, p. 92) by taking advantage, namely, of the fact that

a Poisson process has independent and stationary increments. •

Exercise 3.105 — Joint p.f. of N(t1), . . . , N(tn) in a Poisson process (“Stochastic

Processes” — Test of 2002-11-09)

A machine produces electronic components according to a Poisson process with rate equal

to 10 components per hour. Let N(t) be the number of produced components up to time

t.

Evaluate the probability of producing at least 8 components in the first hour given

that exactly 20 components have been produced in the first two hours. •

Definition 3.106 — Important r.v. in a Poisson process (Karr, 1993, pp. 88–89)

Let {N(t), t ≥ 0} be a Poisson process with rate λ. Then:

• Sn = inf{t : N(t) = n} represents the time of the occurrence of the nth. event (e.g.

arrival), n ∈ IN ;

• Xn = Sn − Sn−1 corresponds to the time between the nth. and (n − 1)th. events

(e.g. interarrival time), n ∈ IN .

•
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Proposition 3.107 — Important distributions in a Poisson process (Karr, 1993,

pp. 92–93)

So far we know that N(t) ∼ Poisson(λt), t > 0. We can also add that:

• Sn ∼ Erlang(n, λ), n ∈ IN ;

• Xn
i.i.d.∼ Exponential(λ), n ∈ IN . •

Remark 3.108 — Relating N(t) and Sn in a Poisson process

We ought to note that:

N(t) ≥ n ⇔ Sn ≤ t (3.40)

FSn(t) = FErlang(n,λ)(t)

= P ({N(t) ≥ n})

=
+∞∑

j=n

e−λt(λt)j

j!

= 1− FPoisson(λt)(n− 1), n ∈ IN. (3.41)

•

Exercise 3.109 — Important distributions in a Poisson process

Prove Proposition 3.107 (Karr, 1993, pp. 92–93). •

Exercise 3.110 — Time between events in a Poisson process

Suppose that people immigrate into a territory at a Poisson rate λ = 1 per day.

What is the probability that the elapsed time between the tenth and the eleventh

arrival exceeds two days? (Ross, 1989, pp. 216–217). •

Exercise 3.111 — Poisson process

Simulate a Poisson process with rate λ = 1 considering the interval [0, 100]. Plot the

realizations of the Poisson process.

The sample path of a Poisson process should look like this:

•
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Motivation 3.112 — Conditional distribution of the first arrival time (Ross,

1989, p. 222)

Suppose we are told that exactly one event of a Poisson process has taken place by time

t (i.e. N(t) = 1), and we are asked to determine the distribution of the time at which the

event occurred (S1). •

Proposition 3.113 — Conditional distribution of the first arrival time (Ross,

1989, p. 223)

Let {N(t), t ≥ 0} be a Poisson process with rate λ > 0. Then

S1|{N(t) = 1} ∼ Uniform(0, t). (3.42)

•

Exercise 3.114 — Conditional distribution of the first arrival time

Prove Proposition 3.113 (Ross, 1989, p. 223). •

Proposition 3.115 — Conditional distribution of the arrival times (Ross, 1989,

p. 224)

Let {N(t), t ≥ 0} be a Poisson process with rate λ > 0. Then

fS1,...,Sn|{N(t)=n}(s1, . . . , sn) =
n!

tn
, (3.43)

for 0 < s1 < . . . < sn < t and n ∈ IN . •

Remark 3.116 — Conditional distribution of the arrival times (Ross, 1989, p.

224)

Proposition 3.115 is usually paraphrased as stating that, under the condition that n events

have occurred in (0, t), the times S1, . . . , Sn at which events occur, considered as unordered

r.v., are i.i.d. and Uniform(0, t).16 •

Exercise 3.117 — Conditional distribution of the arrival times

Prove Proposition 3.115 (Ross, 1989, p. 224). •

Proposition 3.118 — Merging independent Poisson processes

Let {N1(t), t ≥ 0} and {N2(t), t ≥ 0} be two independent Poisson processes17 with

rates λ1 and λ2, respectively.

16I.e., they behave as the order statistics Y(1), . . . , Y(n), associated to Yi
i.i.d.∼ Uniform(0, t).

17How can one define two independent Poisson processes? As in Definition 3.90: two Poisson processes
{N1(t), t ≥ 0} and {N2(t), t ≥ 0} are independent if for every positive integer k and all times t1, . . . , tk,
we have that the random vector (N1(t1), . . . , N1(tk)) associated with the first process is independent of
(N2(t1), . . . , N2(tk)) associated with the second process.
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Then the merged process {N1(t)+N2(t), t ≥ 0} is a Poisson process with rate λ1 +λ2.

•

Exercise 3.119 — Merging independent Poisson processes

Prove Proposition 3.118. •

Exercise 3.120 — Merging independent Poisson processes

Men and women enter a supermarket according to independent Poisson processes having

respective rates two and four per minute.

(a) Starting at an arbitrary time, compute the probability that at least two men arrive

before three women arrive (Ross, 1989, p. 242, Exercise 20).

(b) What is the probability that the number of arrivals (men and women) exceeds ten

in the first 20 minutes? •

Proposition 3.121 — Splitting a Poisson process (or sampling a Poisson

process)

Let {N(t), t ≥ 0} be a Poisson process with rate λ. Splitting the original Poisson process

based on a selection probability p yields two independent Poisson processes with rates

λp and λ(1− p).

Moreover, we can add that N1(t)|{N(t) = n} ∼ Binomial(n, p) and N2(t)|{N(t) = n} ∼
Binomial(n, 1− p). •
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Exercise 3.122 — Splitting a Poisson process

Prove Proposition 3.121 (Ross, 1989, pp. 218–219).

Why are the two resulting processes independent? •

Exercise 3.123 — Splitting a Poisson process

If immigrants to area A arrive at a Poisson rate of ten per week, and if each immigrant

is of English descent with probability 1
12 , then what is the probability that no people of

English descent will emigrate to area A during the month of February (Ross, 1989, p.

220). •

Exercise 3.124 — Splitting a Poisson process (Ross, 1989, p. 243, Exercise 23)

Cars pass a point on the highway at a Poisson rate of one per minute. If five percent of

the cars on the road are Dodges, then:

(a) What is the probability that at least one Dodge passes during an hour?

(b) If 50 cars have passed by an hour, what is the probability that five of them were

Dodges?

(c) Given that ten Dodges have passed by in an hour, obtain the expected value of the

number of cars to have passed by in that time. •
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3.8 Generalizations of the Poisson process

In this section we consider three generalizations of the Poisson process. The first of these

is the non homogeneous Poisson process, which is obtained by allowing the arrival rate at

time t to be a function of t.

Definition 3.125 — Non homogeneous Poisson process (Ross, 1989, p. 234)

The counting process {N(t), t ≥ 0} is said to be a non homogeneous Poisson process with

intensity function λ(t) (t ≥ 0) if

• N(0) = 0;

• {N(t), t ≥ 0} has independent increments;

• P ({N(t + h)−N(t) = 1}) = λ(t)× h + o(h), t ≥ 0;

• P ({N(t + h)−N(t) ≥ 2}) = o(h), t ≥ 0.

Moreover,

N(t + s)−N(s) ∼ Poisson

(∫ t+s

s

λ(z) dz

)
(3.44)

for s ≥ 0 and t > 0. •

Exercise 3.126 — Non homogeneous Poisson process (“Stochastic Processes” test,

2003-01-14)

The number of arrivals to a shop is governed by a Poisson process with time dependent

rate

λ(t) =

{
4 + 2t, 0 ≤ t ≤ 4

24− 3t, 4 < t ≤ 8.

(a) Obtain the expression of the expected value of the number of arrivals until t

(0 ≤ t ≤ 8). Derive the probability of no arrivals in the interval [3,5].

(b) Determine the expected value of the number of arrivals in the last 5 opening hours

(interval [3, 8]) given that 15 customers have arrived in the last 3 opening hours

(interval [5, 8]). •
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Exercise 3.127 — The output process of an infinite server Poisson queue and

the non homogeneous Poisson process

Prove that the output process of the M/G/∞ queue — i.e., the number of customers who

(by time t) have already left the infinite server queue with Poisson arrivals and general

service d.f. G — is a non homogeneous Poisson process with intensity function λG(t). •

Definition 3.128 — Compound Poisson process (Ross, 1989, p. 237)

A stochastic process {X(t), t ≥ 0} is said to be a compound Poisson process if it can be

represented as

X(t) =
N(t)∑

i=1

Yi, (3.45)

where

• {N(t), t ≥ 0} is a Poisson process with rate λ (λ > 0) and

• Yi
i.i.d.∼ Y and independent of {N(t), t ≥ 0}. •

Proposition 3.129 — Compound Poisson process (Ross, 1989, pp. 238–239)

Let {X(t), t ≥ 0} be a compound Poisson process. Then

E[X(t)] = λt× E[Y ] (3.46)

V [X(t)] = λt× E[Y 2]. (3.47)

•

Exercise 3.130 — Compound Poisson process

Prove Proposition 3.129 by noting that E[X(t)] = E{E[X(t)|N(t)]} and

V [X(t)] = E{V [X(t)|N(t)]}+ V {E[X(t)|N(t)]} (Ross, 1989, pp. 238–239). •

Exercise 3.131 — Compound Poisson process (Ross, 1989, p. 239)

Suppose that families migrate to an area at a Poisson rate λ = 2 per week. Assume that

the number of people in each family is independent and takes values 1, 2, 3 and 4 with

respective probabilities 1
6 ,

1
3 ,

1
3 and 1

6 .

What is the expected value and variance of the number of individuals migrating to

this area during a five-week period? •
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Definition 3.132 — Conditional Poisson process (Ross, 1983, pp. 49–50)

Let:

• Λ be a positive r.v. having d.f. G; and

• {N(t), t ≥ 0} be a counting process such that, given that {Λ = λ}, {N(t), t ≥ 0}
is a Poisson process with rate λ.

Then {N(t), t ≥ 0} is called a conditional Poisson process and

P ({N(t + s)−N(s) = n}) =

∫ +∞

0

e−λt(λt)n

n!
dG(λ). (3.48)

•

Remark 3.133 — Conditional Poisson process (Ross, 1983, p. 50)

{N(t), t ≥ 0} is not a Poisson process. For instance, whereas it has stationary increments,

it has not independent increments. •

Exercise 3.134 — Conditional Poisson process

Suppose that, depending on factors not at present understood, the rate at which seismic

shocks occur in a certain region over a given season is either λ1 or λ2. Suppose also that

the rate equals λ1 for p× 100% of the seasons and λ2 in the remaining time.

A simple model would be to suppose that {N(t), t ≥ 0} is a conditional Poisson

process such that Λ is either λ1 or λ2 with respective probabilities p and 1− p.

Prove that the probability that it is a λ1−season, given n shocks in the first t units of

a season, equals

p e−λ1t(λ1t)n

p e−λ1t(λ1t)n + (1− p) e−λ2t(λ2t)n
, (3.49)

by applying the Bayes’ theorem (Ross, 1983, p. 50). •

Stochastic process Independent increments? Stationary increments?

Homogeneous PP Yes!!! Yes!!!

Non-homogeneous PP Yes!!! No!

Conditional PP No! Yes!!!

Compound PP Yes!!! Yes!!!
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Chapter 4

Expectation

One of the most fundamental concepts of probability theory and mathematical statistics

is the expectation of a r.v. (Resnick, 1999, p. 117).

Motivation 4.1 — Expectation (Karr, 1993, p. 101)

The expectation represents the center of gravity of a r.v. and has a measure theory

counterpart in integration theory.

Key computational formulas — not definitions of expectation — to obtain the

expectation of

• a discrete r.v. X with values in a countable set C and p.f. P ({X = x}) and

• the one of an absolutely continuous r.v. Y with p.d.f. fY (y)

are

E(X) =
∑

x∈C

x× P ({X = x}) (4.1)

E(Y ) =

∫ +∞

−∞
y × fY (y) dy, (4.2)

respectively.

When X ≥ 0 it is permissible that E(X) = +∞, but finiteness is mandatory when X

can take both positive and negative (or null) values. •

Remark 4.2 — Desired properties of expectation (Karr, 1993, p. 101)

1. Constant preserved

If X ≡ c then E(X) = c.
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2. Monotonicity

If X ≤ Y 1 then E(X) ≤ E(Y ).

3. Linearity

For a, b ∈ IR, E(aX + bY ) = aE(X) + bE(Y ).

4. Continuity2

If Xn → X then E(Xn) → E(X).

5. Relation to the probability

For each event A, E(1A) = P (A).3 •

Expectation is to r.v. as probability is to events so that properties of expectation

extend those of probability.

4.1 Definition and fundamental properties

Many integration results are proved by first showing that they hold true for simple r.v.

and then extending the result to more general r.v. (Resnick, 1999, p. 117).

4.1.1 Simple r.v.

Let (Ω,F , P ) be a probability space and let us remind the reader that X is said to be a

simple r.v. if it assumes only finitely many values in which case

X =
n∑

i=1

ai × 1Ai , (4.3)

where:

• a1, . . . , an are real numbers not necessarily distinct;

• {A1, . . . , An} constitutes a partition of Ω;

• 1Ai is the indicator function of event Ai, i = 1, . . . , n.

1I.e. X(ω) ≤ Y (ω),∀ω ∈ Ω.
2Continuity is not valid without restriction.
3Recall that 1Ai(ω) = 1, if w ∈ Ai, and 1Ai(ω) = 0, otherwise.
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Consider, for example, X ∼ Binomial(2, p). In this case:

• Ω = {FF, FS, SF, SS} (where F = fail and S = success);

• A1 = FF , A2 = FS, A3 = SF , A4 = SS;

• a1 = 0, a2 = 1, a3 = 1, a4 = 2;

• X =
∑n

i=1 ai × 1Ai .

Definition 4.3 — Expectation of a simple r.v. (Karr, 1993, p. 102)

The expectation of the simple r.v. X =
∑n

i=1 ai × 1Ai is given by

E(X) =
n∑

i=1

ai × P (Ai). (4.4)

•

Remark 4.4 — Expectation of a simple r.v. (Resnick, 1999, p. 119; Karr, 1993, p.

102)

• Note that Definition 4.3 coincides with our knowledge of discrete probability from

more elementary courses: the expectation is computed by taking a possible value,

multiplying by the probability of the possible value and then summing over all

possible values.

• E(X) is well-defined in the sense that all representations of X yield the same value

for E(X): different representations of X, X =
∑n

i=1 ai×1Ai and X =
∑m

j=1 a′j×1A′j
,

lead to the same expected value E(X) =
∑n

i=1 ai × P (Ai) =
∑m

j=1 a′j × P (A′
j).

• The expectation of an indicator function is indeed the probability of the associated

event. •

Proposition 4.5 — Properties of the set of simple r.v. (Resnick, 1999, p. 118)

Let E be the set of all simple r.v. defined on (Ω,F , P ). We have the following properties

of E .

1. E is a vector space, i.e.:

(a) if X =
∑n

i=1 ai × 1Ai ∈ E and α ∈ IR then αX =
∑n

i=1 αai × 1Ai ∈ E ; and
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(b) If X =
∑n

i=1 ai × 1Ai ∈ E and Y =
∑m

j=1 bj × 1Bj ∈ E then

X + Y =
n∑

i=1

m∑

j=1

(ai + bj)× 1Ai∩Bj ∈ E . (4.5)

2. If X, Y ∈ E then XY ∈ E since

XY =
n∑

i=1

m∑

j=1

(ai × bj)× 1Ai∩Bj . (4.6)

•

Proposition 4.6 — Expectation of a linear combination of simple r.v. (Karr,

1993, p. 103)

Let X and Y be two simple r.v. and a, b ∈ IR. Then aX + bY is also a simple r.v. and

E(aX + bY ) = aE(X) + bE(Y ). (4.7)

•

Exercise 4.7 — Expectation of a linear combination of simple r.v.

Prove Proposition 4.6 by capitalizing on Proposition 4.5 (Karr, 1993, p. 103). •

Exercise 4.8 — Expectation of a sum of discrete r.v. in a distribution problem

(Walrand, 2004, p. 51, Example 4.10.6)

Suppose you put m balls randomly in n boxes. Each box can hold an arbitrarily large

number of balls.

Prove that the expected number of empty boxes is equal to n×
(

n−1
n

)m
. •

Exercise 4.9 — Expectation of a sum of discrete r.v. in a selection problem

(Walrand, 2004, p. 52, Example 4.10.7)

A cereal company is running a promotion for which it is giving a toy in every box of

cereal. There are n different toys and each box is equally likely to contain any one of the

n toys.

Prove that the expected number of boxes of cereal you have to purchase to collect all

n toys is given by n×
∑n

m=1
1
m . •

Remark 4.10 — Monotonicity of expectation for simple r.v. (Karr, 1993, p. 103)

The monotonicity of expectation for simple r.v. is a desired property which follows from
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• linearity and

• positivity (or better said non negativity) — if X ≥ 0 then E(X) ≥ 0 —, a seemingly

weaker property of expectation.

In fact, if X ≤ Y ⇔ Y −X ≥ 0 then

• E(Y )− E(X) = E(Y −X) ≥ 0.

This argument is valid provided that E(Y )− E(X) is not of the form +∞−∞. •

Proposition 4.11 — Monotonicity of expectation for simple r.v. (Karr, 1993, p.

103)

Let X and Y be two simple r.v. such that X ≤ Y . Then E(X) ≤ E(Y ). •

Example 4.12 — On the (dis)continuity of expectation of simple r.v. (Karr,

1993, pp. 103–104)

Continuity of expectation fails even for simple r.v. Let P be the uniform distribution on

[0, 1] and

Xn = n× 1(0, 1
n ). (4.8)

(Xn takes values: n, if ω ∈ (0, 1
n); 0, otherwise.) Then Xn(ω) → 0, ∀w ∈ Ω, but

E(Xn) = 1, for each n.

Thus, we need additional conditions to guarantee continuity of expectation. •
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4.1.2 Non negative r.v.

Before we proceed with the definition of the expectation of non negative r.v.,4 we need

to recall the measurability theorem. This theorem state that any non negative r.v. can

be approximated by a simple r.v., and it is the reason why it is often the case that an

integration result about non negative r.v. — such as the expectation and its properties

— is proven first to simple r.v.

Theorem 4.13 — Measurability theorem (Resnick, 1999, p. 91; Karr, 1993, p. 50)

Suppose X(ω) ≥ 0, for all ω. Then X : Ω → IR is a Borel measurable function (i.e.

a r.v.) iff there is an increasing sequence of simple and non negative r.v. X1, X2, . . .

(0 ≤ X1 ≤ X2 ≤ . . .) such that

Xn ↑ X, (4.9)

(Xn(ω) ↑ X(ω), for every ω). •

Exercise 4.14 — Measurability theorem

Prove Theorem 4.13 by considering

Xn =
n2n∑

k=1

k − 1

2n
1{ k−1

2n ≤X< k
2n } + n× 1{X≥n}, (4.10)

for each n (Resnick, 1999, p. 118; Karr, 1993, p. 50). •

Motivation 4.15 — Expectation of a non negative r.v. (Karr, 1993, pp. 103–104)

We now extend the definition of expectation to all non negative r.v. However, we have

already seen that continuity of expectation fails even for simple r.v. and therefore we

cannot define the expected value of a non negative r.v. simply as E(X) = limn→+∞E(Xn).

Unsurprisingly, if we apply the measurability theorem then the definition of

expectation of a non negative r.v. virtually forces monotone continuity for increasing

sequences of non negative r.v.:

• if X1, X2, . . . are simple and non negative r.v. and X is a non negative r.v. such that

Xn ↑ X (pointwise) then E(Xn) ↑ E(X).

4Karr (1993) and Resnick (1999) call these r.v. positive when they are actually non negative.
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It is convenient and useful to assume that these non negative r.v. can take values in the

extended set of non negative real numbers, IR
+
0 .

Further on, we shall have to establish another restricted form of continuity: dominated

continuity for integrable r.v.5 •

Definition 4.16 — Expectation of a non negative r.v. (Karr, 1993, p. 104)

The expectation of a non negative r.v. X is

E(X) = lim
n→+∞

E(Xn) ≤ +∞, (4.11)

where Xn are simple and non negative r.v. such that Xn ↑ X.

The expectation of X over the event A is E(X; A) = E(X × 1A). •

Remark 4.17 — Expectation of a non negative r.v. (Karr, 1993, p. 104)

The limit defining E(X)

• exists in the set of extended non negative real numbers IR
+
0 , and

• does not depend on the approximating sequence {Xn, n ∈ IN}, as stated in the next

proposition. •

Proposition 4.18 — Expectation of a non negative r.v. (Karr, 1993, p. 104)

Let {Xn, n ∈ IN} and {X̃m, m ∈ IN} be sequences of simple and non negative r.v.

increasing to X. Then

lim
n→+∞

E(Xn) = lim
m→+∞

E(X̃m). (4.12)

•

Exercise 4.19 — Expectation of a non negative r.v.

Prove Proposition 4.18 (Karr, 1993, p. 104; Resnick, 1999, pp. 122–123). •

We now list some basic properties of the expectation operator applied to non negative

r.v. For instance, linearity, monotonicity and monotone continuity/convergence. This last

property describes how expectation and limits interact, and under which circunstances

we are allowed to interchange expectation and limits.

5We shall soon define integrable r.v.
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Proposition 4.20 — Expectation of a linear combination of non negative r.v.

(Karr, 1993, p. 104; Resnick, 1999, p. 123)

Let X and Y be two non negative r.v. and a, b ∈ IR+. Then

E(aX + bY ) = aE(X) + bE(Y ). (4.13)

•

Exercise 4.21 — Expectation of a linear combination of non negative r.v.

Prove Proposition 4.20 by considering two sequences of simple and non negative r.v.

{Xn, n ∈ IN} and {Yn, n ∈ IN} such that Xn ↑ X and Yn ↑ Y — and, thus, (aXn + bYn) ↑
(aX + bY ) — (Karr, 1993, p. 104). •

Corollary 4.22 — Monotonicity of expectation for non negative r.v. (Karr,

1993, p. 105)

Let X and Y be two non negative r.v. such that X ≤ Y . Then E(X) ≤ E(Y ). •

Remark 4.23 — Monotonicity of expectation for non negative r.v. (Karr, 1993,

p. 105)

Monotonicity of expectation follows, once again, from positivity and linearity. •

Motivation 4.24 — Fatou’s lemma (Karr, 1993, p. 105)

The next result plays a vital role in the definition of monotone continuity/convergence. •

Theorem 4.25 — Fatou’s lemma (Karr, 1993, p. 105; Resnick, 1999, p. 132)

Let {Xn, n ∈ IN} be a sequence of non negative r.v. Then

E(lim inf Xn) ≤ lim inf E(Xn). (4.14)

•

Remark 4.26 — Fatou’s lemma (Karr, 1993, p. 105)

The inequality (4.14) in Fatou’s lemma can be strict. For instance, in Example 4.12 we

are dealing with E(lim inf Xn) = 0 < lim inf E(Xn) = 1. •

Exercise 4.27 — Fatou’s lemma

Prove Theorem 4.25 (Karr, 1993, p. 105; Resnick, 1999, p. 132). •
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Exercise 4.28 — Fatou’s lemma and continuity of p.f.

Verify that Theorem 4.25 could be used in a part of the proof of the continuity of p.f. if

we considered Xn = 1An (Karr, 1993, p. 106). •

We now state another property of expectation of non negative r.v.: the monotone

continuity/convergence of expectation.

Theorem 4.29 — Monotone convergence theorem (Karr, 1993, p. 106; Resnick,

1999, pp. 123–124)

Let {Xn, n ∈ IN} be an increasing sequence of non negative r.v. and X a non negative

r.v. If

Xn ↑ X (4.15)

then

E(Xn) ↑ E(X). (4.16)

•

Remark 4.30 — Monotone convergence theorem (Karr, 1993, p. 106)

The sequence of simple and non negative r.v. from Example 4.12, Xn = n × 1(0, 1
n ), does

not violate the monotone convergence theorem because in that instance it is not true that

Xn ↑ X.6 •

Exercise 4.31 — Monotone convergence theorem

Prove Theorem 4.29 (Karr, 1993, p. 106; Resnick, 1999, pp. 124–125, for a more

sophisticated proof). •

Exercise 4.32 — Monotone convergence theorem and monotone continuity of

p.f.

Verify that Theorem 4.29 could be used to prove the monotone continuity of p.f. if we

considered Xn = 1An and X = 1A, where An ↑ A (Karr, 1993, p. 106). •

One of the implications of the monotone convergence theorem is the linearity of

expectation for convergent series, and is what Resnick (1999, p. 131) calls the series version

of the monotone convergence theorem. This results refers under which circunstances we

are allowed to interchange expectation and limits.

6Please note that the sequence is not even increasing: n increases but the sequence of sets (0, 1
n ) is a

decreasing one.
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Theorem 4.33 — Expectation of a linear convergent series of non negative r.v.

(Karr, 1993, p. 106; Resnick, 1999, p. 131)

Let {Yk, k ∈ IN} be a collection of non negative r.v. such that
∑+∞

k=1 Yk(ω) < +∞, for

every ω. Then

E

(
+∞∑

k=1

Yk

)
=

+∞∑

k=1

E(Yk). (4.17)

•

Exercise 4.34 — Expectation of a linear convergent series of non negative r.v.

Prove Theorem 4.33 by considering Xn =
∑n

k=1 Yk and applying the monotone

convergence theorem (Karr, 1993, p. 106). •

Exercise 4.35 — Expectation of a linear convergent series of non negative r.v.

and σ−additivity

Verify that Theorem 4.33 could be used to prove the σ−additivity of p.f. if we considered

Yk = 1Ak
, where Ak are disjoint, so that

∑+∞
k=1 Yk = 1S+∞

k=1 Ak
(Karr, 1993, p. 106). •

Proposition 4.36 – “Converse” of the positivity of expectation (Karr, 1993, p.

107)

Let X be a non negative r.v. If E(X) = 0 then X
a.s.
= 0. •

Exercise 4.37 – “Converse” of the positivity of expectation

Prove Proposition 4.36 (Karr, 1993, p. 107). •
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4.1.3 Integrable r.v.

It is time to extend the definition of expectation to r.v. X that can take both positive

and negative (or null) values. But first recall that:

• X+ = max{X, 0} represents the positive part of the r.v. X;

• X− = −min{X, 0} = max{−X, 0} represents the negative part of the r.v. X;

• X = X+ −X−;

• |X| = X+ + X−.

The definition of expectation of such a r.v. preserves linearity and is based on the fact

that X can be written as a linear combination of two non negative r.v.: X = X+ −X−.

Definition 4.38 — Integrable r.v.; the set of integrable r.v. (Karr, 1993, p. 107;

Resnick, 1999, p. 126)

Let X be a r.v., not necessarily non negative. Then X is said to be integrable if

E(|X|) < +∞.

The set of integrable r.v. is denoted by L1 or L1(P ) if the probability measure needs

to be emphasized. •

Definition 4.39 — Expectation of an integrable r.v. (Karr, 1993, p. 107)

Let X be an integrable r.v. Then the expectation of X is given by

E(X) = E(X+)− E(X−). (4.18)

For an event A, the expectation of X over A is E(X; A) = E(X × 1A). •

Remark 4.40 — Expectation of an integrable r.v. (Karr, 1993, p. 107; Resnick,

1999, p. 126)

1. If X is an integrable r.v. then

E(X+) + E(X−) = E(X+ + X−) = E(|X|) < +∞ (4.19)

so both E(X+) and E(X−) are finite, E(X+)− E(X−) is not of the form ∞−∞,

thus, the definition of expectation of X is coherent.
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2. Moreover, since |X×1A| ≤ |X|, E(X; A) = E(X×1A) is finite (i.e. exists!) as long

as E(|X|) < +∞, that is, as long as E(X) exists.

3. Some conventions when X is not integrable...

If E(X+) < +∞ but E(X−) = +∞ then we consider E(X) = −∞.

If E(X+) = +∞ but E(X−) < +∞ then we take E(X) = +∞.

If E(X+) = +∞ and E(X−) = +∞ then E(X) does not exist. •

What follows refers to properties of the expectation operator.

Theorem 4.41 — Expectation of a linear combination of integrable r.v. (Karr,

1993, p. 107)

Let X and Y be two integrable r.v. — i.e., X, Y ∈ L1 — and a, b ∈ IR. Then aX + bY is

also an integrable r.v.7 and

E(aX + bY ) = aE(X) + bE(Y ). (4.20)

•

Exercise 4.42 — Expectation of a linear combination of integrable r.v.

Prove Theorem 4.41 (Karr, 1993, p. 108). •

Corollary 4.43 — Modulus inequality (Karr, 1993, p. 108; Resnick, 1999, p. 128)

If X ∈ L1 then

|E(X)| ≤ E(|X|). (4.21)

•

Exercise 4.44 — Modulus inequality

Prove Corollary 4.43 (Karr, 1993, p. 108). •

Corollary 4.45 — Monotonicity of expectation for integrable r.v. (Karr, 1993,

p. 108; Resnick, 1999, p. 127)

If X, Y ∈ L1 and X ≤ Y then

E(X) ≤ E(Y ). (4.22)

•

Exercise 4.46 — Monotonicity of expectation for integrable r.v.

Prove Corollary 4.45 (Resnick, 1999, pp. 127–128). •

7That is, aX + bY ∈ L1. In fact, L1 is a vector space.
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The continuity of expectation for integrable r.v. can be finally stated.

Theorem 4.47 — Dominated convergence theorem (Karr, 1993, p. 108; Resnick,

1999, p. 133)

Let X1, X2, . . . ∈ L1 and X ∈ L1 with

Xn → X. (4.23)

If there is a dominating r.v. Y ∈ L1 such that

|Xn| ≤ Y, (4.24)

for each n, then

lim
n→+∞

E(Xn) = E(X). (4.25)

•

Remark 4.48 — Dominated convergence theorem (Karr, 1993, p. 109)

The sequence of simple r.v., Xn = n × 1(0, 1
n ), from Example 4.12 does not violate the

dominated convergence theorem because any r.v. Y dominating Xn for each n must satisfy

Y ≥
∑+∞

n=1 n × 1( 1
n+1 , 1

n ), which implies that E(Y ) = +∞, thus Y &∈ L1 and we cannot

apply Theorem 4.47. •

Exercise 4.49 — Dominated convergence theorem

Prove Theorem 4.47 (Karr, 1993, p. 109; Resnick, 1999, p. 133, for a detailed proof). •

Exercise 4.50 — Dominated convergence theorem and continuity of p.f.

Verify that Theorem 4.47 could be used to prove the continuity of p.f. if we considered

Xn = 1An , where An → A, and Y ≡ 1 as the dominating integrable r.v. (Karr, 1993, p.

109). •

4.1.4 Complex r.v.

Definition 4.51 — Integrable complex r.v.; expectation of a complex r.v. (Karr,

1993, p. 109)

A complex r.v. Z = X + iY ∈ L1 if E(|Z|) = E(
√

X2 + Y 2) < +∞, and in this case the

expectation Z is E(Z) = E(X) + iE(Y ). •
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4.2 Integrals with respect to distribution functions

Integrals (of Borel measurable functions) with respect to d.f. are known as Lebesgue–

Stieltjes integrals. Moreover, they are really expectations with respect to probabilities on

IR and are reduced to sums and Riemann (more generally, Lebesgue) integrals.

4.2.1 On integration

Remark 4.52 — Riemann integral (http://en.wikipedia.org/wiki/Riemann integral)

In the branch of mathematics known as real analysis, the Riemann integral, created

by Bernhard Riemann (1826–1866), was the first rigorous definition of the integral of a

function on an interval.

• Overview

Let g be a non-negative real-valued function of the interval [a, b], and let

S = {(x, y) : 0 < y < g(x)} be the region of the plane under the graph of the

function g and above the interval [a, b].

The basic idea of the Riemann integral is to use very simple approximations for the

area of S, denoted by
∫ b

a g(x) dx, namely by taking better and better approximations

— we can say that “in the limit” we get exactly the area of S under the curve.

• Riemann sums

Choose a real-valued function f which is defined on the interval [a, b]. The Riemann

sum of f with respect to the tagged partition a = x0 < x1 < x2 < . . . < xn = b

together with t0, . . . , tn−1 (where xi ≤ ti ≤ xi+1) is

n−1∑

i=0

g(ti)(xi+1 − xi), (4.26)

where each term represents the area of a rectangle with height g(ti) and length

xi+1 − xi. Thus, the Riemann sum is the signed area under all the rectangles.

• Riemann integral

Loosely speaking, the Riemann integral is the limit of the Riemann sums of a

function as the partitions get finer.

If the limit exists then the function is said to be integrable (or more specifically

Riemann-integrable).
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• Limitations of the Riemann integral

With the advent of Fourier series, many analytical problems involving integrals came

up whose satisfactory solution required interchanging limit processes and integral

signs.

Failure of monotone convergence — The indicator function 1Q on the rationals is not

Riemann integrable. No matter how the set [0, 1] is partitioned into subintervals,

each partition will contain at least one rational and at least one irrational number,

since rationals and irrationals are both dense in the reals. Thus, the upper Darboux

sums8 will all be one, and the lower Darboux sums9 will all be zero.

Unsuitability for unbounded intervals — The Riemann integral can only integrate

functions on a bounded interval. It can however be extended to unbounded intervals

by taking limits, so long as this does not yield an answer such as +∞−∞.

What about integrating on structures other than Euclidean space? — The Riemann

integral is inextricably linked to the order structure of the line. How do we free

ourselves of this limitation? •

Remark 4.53 — Lebesgue integral (http://en.wikipedia.org/wiki/Lebesgue integral;

http://en.wikipedia.org/wiki/Henri Lebesgue)

Lebesgue integration plays an important role in real analysis, the axiomatic theory of

probability, and many other fields in the mathematical sciences. The Lebesgue integral is

a construction that extends the integral to a larger class of functions defined over spaces

more general than the real line.

• Lebesgue’s theory of integration

Henri Léon Lebesgue (1875–1941) invented a new method of integration to solve

this problem. Instead of using the areas of rectangles, which put the focus on the

domain of the function, Lebesgue looked at the codomain of the function for his

fundamental unit of area. Lebesgue’s idea was to first build the integral for what he

called simple functions, measurable functions that take only finitely many values.

Then he defined it for more complicated functions as the least upper bound of all

the integrals of simple functions smaller than the function in question.

8The upper Darboux sum of g with respect to the partition is
∑n−1

i=0 (xi+1 − xi)Mi+1, where
Mi+1 = supx∈[xi,xi+1] g(x).

9The lower Darboux sum of g with respect to the partition is
∑n

i=0(xi+1 − xi)mi+1, where
mi+1 = infx∈[xi,xi+1] g(x).
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Lebesgue integration has the beautiful property that every bounded function defined

over a bounded interval with a Riemann integral also has a Lebesgue integral, and

for those functions the two integrals agree. But there are many functions with a

Lebesgue integral that have no Riemann integral.

As part of the development of Lebesgue integration, Lebesgue invented the concept

of Lebesgue measure, which extends the idea of length from intervals to a very large

class of sets, called measurable sets.

• Integration

We start with a measure space (Ω,F , µ) where Ω is a set, F is a σ − algebra of

subsets of Ω and µ is a (non-negative) measure on F of subsets of Ω.

In the mathematical theory of probability, we confine our study to a probability

measure µ, which satisfies µ(Ω) = 1.

In Lebesgue’s theory, integrals are defined for a class of functions called measurable

functions.

We build up an integral
∫

Ω g dµ for measurable real-valued functions g defined on Ω

in stages:

– Indicator functions. To assign a value to the integral of the indicator

function of a measurable set S consistent with the given measure µ, the only

reasonable choice is to set∫

Ω

1S dµ = µ(S).

– Simple functions. A finite linear combination of indicator functions
∑

k ak1Sk
. When the coefficients ak are non-negative and Sk are disjoint sets

of Ω, we set
∫

Ω

(
∑

k

ak1Sk
) dµ =

∑

k

ak

∫

Ω

1Sk
dµ =

∑

k

ak µ(Sk).

– Non-negative functions. We define
∫

Ω

g dµ = sup

{ ∫

Ω

s dµ : 0 ≤ s ≤ g, s simple

}
.

– Signed functions. g = g+ − g−... And it makes sense to define
∫

Ω

gdµ =

∫

Ω

g+dµ−
∫

Ω

g−dµ.

•
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Remark 4.54 — Lebesgue/Riemann–Stieltjes integration

(http://en.wikipedia.org/wiki/Lebesgue-Stieltjes integration)

The Lebesgue–Stieltjes integral is the ordinary Lebesgue integral with respect to a measure

known as the Lebesgue–Stieltjes measure, which may be associated to any function of

bounded variation on the real line.

• Definition

The Lebesgue–Stieltjes integral
∫ b

a g(x) dF (x) is defined when g : [a, b] → IR is Borel-

measurable and bounded and F : [a, b] → IR is of bounded variation in [a, b] and

right-continuous, or when g is non-negative and F is monotone and right-continuous.

• Riemann–Stieltjes integration and probability theory

When g is a continuous real-valued function of a real variable and F is a

non-decreasing real function, the Lebesgue–Stieltjes integral is equivalent to the

Riemann–Stieltjes integral, in which case we often write
∫ b

a g(x) dF (x) for the

Lebesgue–Stieltjes integral, letting the measure PF remain implicit.

This is particularly common in probability theory when F is the cumulative

distribution function of a real-valued random variable X, in which case
∫ ∞

−∞
g(x) dF (x) = EF [g(X)].

•

4.2.2 Generalities

First of all, we should recall that given a d.f. F on IR, there is a unique p.f. on IR such

that PF ((a, b]) = F (b)− F (a).

Moreover, all functions g appearing below are assumed to be Borel measurable.

Definition 4.55 — Integral of a nonnegative g with respect to a d.f. (Karr, 1993,

p. 110)

Let F be a d.f. on IR and g a non negative function. Then the integral of g with respect

to F is given by
∫

IR

g(x) dF (x) = EF (g) ≤ +∞, (4.27)

where the expectation is that of g(X) as a Borel measurable function of the r.v. X defined

on the probability space (IR,B(IR), PF ). •
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Definition 4.56 — Integrable of a function with respect to a d.f. (Karr, 1993, p.

110)

Let F be a d.f. on IR and g a signed function. Then g is said to be integrable with respect

to F if
∫

IR g(x) dF (x) < +∞, and this case, the integral of g with respect to F equals
∫

IR

g(x) dF (x) =

∫

IR

g+(x) dF (x)−
∫

IR

g−(x) dF (x). (4.28)

•

Definition 4.57 — Integral of a function over a set with respect to a d.f. (Karr,

1993, p. 110)

Let F be a d.f. on IR and g either non negative or integrable and B ∈ B(IR). The integral

of g over B with respect to F is equal to
∫

B

g(x) dF (x) =

∫

IR

g(x)× 1B(x) dF (x). (4.29)

•

The properties of the integral of a function with respect to a d.f. are those of

expectation:

1. Constant preserved

2. Monotonicity

3. Linearity

4. Relation to PF

5. Fatou’s lemma

6. Monotone convergence theorem

7. Dominated convergence theorem
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4.2.3 Discrete distribution functions

Keep in mind that integrals with respect to discrete d.f. are sums.

Theorem 4.58 — Integral with respect to a discrete d.f. (Karr, 1993, p. 111)

Consider a d.f. F (t) that can be written as

F (x) =
∑

i

pi × 1[xi,+∞)(x). (4.30)

Then, for each g ≥ 0,
∫

IR

g(x) dF (x) =
∑

i

g(xi)× pi. (4.31)

•

Exercise 4.59 — Integral with respect to a discrete d.f.

Prove Theorem 4.58 (Karr, 1993, p. 111). •

Corollary 4.60 — Integrable function with respect to a discrete d.f. (Karr, 1993,

p. 111)

The function g is said to be integrable with respect to the discrete d.f. F iff
∑

i

|g(xi)|× pi < +∞, (4.32)

and in this case
∫

IR

g(x) dF (x) =
∑

i

g(xi)× pi. (4.33)

•

4.2.4 Absolutely continuous distribution functions

Now note that integrals with respect to absolutely continuous d.f. are Riemann integrals.

Theorem 4.61 — Integral with respect to an absolutely continuous d.f. (Karr,

1993, p. 112)

Suppose that the d.f. F is absolutely continuous and is associated to a piecewise continuous

p.d.f. f . If g is a non negative function and piecewise continuous then
∫

IR

g(x) dF (x) =

∫ +∞

−∞
g(x)× f(x) dx, (4.34)

where the integral on the right-hand side is an improper Riemann integral. •
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Exercise 4.62 — Integral with respect to an absolutely continuous d.f.

Prove Theorem 4.61 (Karr, 1993, p. 112). •

Corollary 4.63 — Integral with respect to an absolutely continuous d.f. (Karr,

1993, p. 112)

A piecewise continuous function g is said to be integrable with respect to the d.f. F iff
∫ +∞

−∞
|g(x)|f(x) dx < +∞, (4.35)

and in this case
∫

IR

g(x) dF (x) =

∫ +∞

−∞
g(x)× f(x) dx. (4.36)

•

4.2.5 Mixed distribution functions

Recall that a mixed d.f. F is a convex combination of a discrete d.f.

Fd(x) =
∑

i

pi × 1[xi,+∞)(x) (4.37)

and an absolutely continuous d.f.

Fa(x) =

∫ x

−∞
fa(s) ds. (4.38)

Thus,

F (x) = α× Fd(x) + (1− α)× Fa(x), (4.39)

where α ∈ (0, 1).

Corollary 4.64 — Integral with respect to a mixed d.f. (Karr, 1993, p. 112)

The integral of g with respect to the mixed d.f. F is a corresponding combination of

integrals with respect to Fd and Fa:
∫

IR

g(x) dF (x) = α×
∫

IR

g(x) dFd(x) + (1− α)×
∫

IR

g(x) dFa(x)

= α×
∑

i

g(xi)× pi + (1− α)×
∫ +∞

−∞
g(x)× fa(x) dx. (4.40)

In order that the integral with respect to a mixed d.f. exists, g must be piecewise

continuous and either non negative or integrable with respect to both Fd and Fa. •
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4.3 Computation of expectations

So far we have defined the expectation for simple r.v.

The expectations of other types of r.v. — such as non negative, integrable and mixed

r.v. — naturally involve integrals with respect to distribution functions.

4.3.1 Non negative r.v.

The second equality in the next formula is quite convenient because it allows us to obtain

the expectation of a non negative r.v. — be it a discrete, absolutely continuous or mixed

— in terms of an improper Riemann integral.

Theorem 4.65 — Expected value of a non negative r.v. (Karr, 1993, p. 113)

If X ≥ 0 then

E(X) =

∫ +∞

0

x dFX(x) =

∫ +∞

0

[1− FX(x)] dx. (4.41)

•

Exercise 4.66 — Expected value of a non negative r.v.

Prove Theorem 4.65 (Karr, 1993, pp. 113–114). •

Corollary 4.67 — Expected value of a non negative integer-valued r.v. (Karr,

1993, p. 114)

Let X be a non negative integer-valued r.v. Then

E(X) =
+∞∑

n=1

n× P ({X = n}) =
+∞∑

n=1

P ({X ≥ n}) =
+∞∑

n=0

P ({X > n}). (4.42)

•

Exercise 4.68 — Expected value of a non negative integer-valued r.v.

Prove Corollary 4.67 (Karr, 1993, p. 114). •

Corollary 4.69 — Expected value of a non negative absolutely continuous r.v.

Let X be a non negative absolutely continuous r.v. with p.d.f. fX(x).

E(X) =

∫ +∞

0

x× fX(x) dx =

∫ +∞

0

[1− FX(x)] dx. (4.43)

•
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Exercise 4.70 — A nonnegative r.v. with infinite expectation

Let X ∼ Pareto(b = 1, α = 1). i.e.

fX(x) =

{
α bα

xα+1 = 1
x2 , x ≥ b = 1

0, otherwise.
(4.44)

Prove that E(X) exists and E(X) = +∞ (Resnick, 1999, p. 126, Example 5.2.1). •

4.3.2 Integrable r.v.

Let us remind the reader that X is said to be an integrable r.v. if E(|X|) = E(X+) +

E(X−) < +∞.

Theorem 4.71 — Expected value of an integrable r.v. (Karr, 1993, p. 114)

If X is an integrable r.v. then

E(X) =

∫ +∞

−∞
x dFX(x). (4.45)

•

Exercise 4.72 — Expected value of an integrable r.v.

Prove Theorem 4.71 (Karr, 1993, p. 114). •

Corollary 4.73 — Expected value of an integrable discrete or absolutely

continuous r.v.

Let X be an integrable discrete or absolutely continuous r.v. with p.f. P (X = x) or p.d.f.

fX(x) then

E(X) =
∑

x

x× P (X = x) dx (4.46)

E(X) =

∫ +∞

−∞
x× fX(x) dx, (4.47)

respectively. •

Exercise 4.74 — Real r.v. without expectation

After having derived the c.d.f. of X+ and X−, use Theorem 4.65 to prove that E(X+) =

E(X−) = +∞ — and therefore E(X) does not exist — if X has p.d.f. equal to:

(a) fX(x) =

{
1

2x2 , |x| > 1

0, otherwise;
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(b) fX(x) =
1

π(1 + x2)
, x ∈ IR.

(Resnick, 1999, p. 126, Example 5.2.1.)10 •

4.3.3 Mixed r.v.

When dealing with mixed r.v. X we take advantage of the fact that FX(x) is a convex

combination of the d.f. of a discrete r.v. Xd and the d.f. of an absolutely continuous r.v.

Xa.

Corollary 4.75 — Expectation of a mixed r.v.

The expected value of the mixed r.v. X with d.f. FX(x) = α×FXd
(x)+ (1−α)×FXa(x),

where α ∈ (0, 1), is given by
∫

IR

x dFX(x) = α×
∫

IR

x dFXd
(x) + (1− α)×

∫

IR

x dFXa(x)

= α×
∑

i

xi × P ({Xd = xi})

+(1− α)×
∫ +∞

−∞
x× fXa(x) dx (4.48)

= α E(Xd) + (1− α) E(Xa). (4.49)

•
Exercise 4.76 — Expectation of a mixed r.v.

A random variable X has the following d.f.:11

FX(x) =






0, x < 0

0.3, 0 ≤ x < 2

0.3 + 0.2x, 2 ≤ x < 3

1, x ≥ 3.

(4.50)

(a) Why is X a mixed r.v.?

(b) Write FX(x) as a linear combination of the d.f. of two r.v.: a discrete and an

absolutely continuous r.v.

(c) Obtain the expected value of X, by using the fact that X is non negative, thus,

E(X) =
∫ +∞

0 [1− FX(x)] dx.

Compare this value with the one you would obtain using Corollary 4.75. •

10There is a typo in the definition of the first p.d.f. in Resnick (1999): x > 1 should read as |x| > 1.
The second p.d.f. corresponds to the one of a r.v. with (standard) Cauchy distribution.

11Adapted from Walrand (2004, pp. 53–55, Example 4.10.9).
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Exercise 4.77 — Expectation of a mixed r.v. in a queueing setting

Consider a M/M/1 system.12 Let:

• Ls be the number of customers an arriving customer finds in the system in

equilibrium;13

• Wq be the waiting time in queue of this arriving customer.14

Under these conditions, we can state that

P (Ls = k) = (1− ρ)× ρk, k ∈ IN0; (4.51)

thus, Ls ∼ geometric∗(1− ρ), where ρ = λ
µ ∈ (0, 1) and E(Ls) = ρ

1−ρ .

(a) Argue that Wq|{Ls = k} ∼ Gamma(k, µ), for k ∈ IN .

(b) Prove that Wq|{Wq > 0} ∼ Exponential(µ(1− ρ)).

(c) Demonstrate that Wq is a mixed r.v. with d.f. given by:

FWq(w) =

{
0, w < 0

(1− ρ) + ρ× FExp(µ(1−ρ))(w), w ≥ 0.
(4.52)

(d) Verify that E(Wq) = ρ
µ(1−ρ) . •

12The arrivals to the system are governed by a Poisson process with rate λ, i.e. the time between arrivals
has an exponential distribution with parameter λ; needless to say, M stands for memoryless. The service
times are not only i.i.d. with exponential distribution with parameter µ, but also independent from the
arrival process. There is only one server, and the service policy is FCFS (first come first served). ρ = λ

µ

represents the traffic intensity and we assume that ρ ∈ (0, 1).
13Equilibrium roughly means that a lot of time has elapsed since the system has been operating and

therefore the initial conditions no longer influence the state of system.
14Wq is the time elapsed from the moment the customer arrives until his/her service starts in the

system in equilibrium.
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4.3.4 Functions of r.v.

Unsurprisingly, we are surely able to derive expressions for the expectation of a Borel

measurable function g of the r.v. X, E[g(X)]. Obtaining this expectation does not require

the derivation of the d.f. of g(X) and follows from section 4.2.

In the two sections we shall discuss the expectation of specific functions of r.v.:

g(X) = Xk, k ∈ IN .

Theorem 4.78 — Expected value of a function of a r.v. (Karr, 1993, p. 115)

Let X be a r.v., and g be a Borel measurable function either non negative or integrable.

Then

E[g(X)] =

∫

IR

g(x) dFX(x). (4.53)

•

Exercise 4.79 — Expected value of a function of a r.v.

Prove Theorem 4.78 (Karr, 1993, p. 115). •

Corollary 4.80 — Expected value of a function of a discrete r.v. (Karr, 1993, p.

115)

Let X be a discrete r.v., and g be a Borel measurable function either non negative or

integrable. Then

E[g(X)] =
∑

xi

g(xi)× P ({X = xi}). (4.54)

•

Corollary 4.81 — Expected value of a function of an absolutely continuous r.v.

(Karr, 1993, p. 115)

Let X be an absolutely continuous r.v., and g be a Borel measurable function either non

negative or integrable. Then

E[g(X)] =

∫ +∞

−∞
g(x)× fX(x) dx. (4.55)

•
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4.3.5 Functions of random vectors

When dealing with functions of random vectors, the only useful formulas are those

referring to the expectation of functions of discrete and absolutely continuous random

vectors.

These formulas will be used to obtain, for instance, what we shall call measures of

(linear) association between r.v.

Theorem 4.82 — Expectation of a function of a discrete random vector (Karr,

1993, p. 116)

Let:

• X1, . . . , Xd be a discrete r.v., with values in the countable sets C1, . . . , Cd,

respectively;

• g : IRd → IR be a Borel measurable function either non negative or integrable (i.e.

g(X1, . . . , Xd) ∈ L1).

Then

E[g(X1, . . . , Xd)] =
∑

x1∈C1

. . .
∑

xd∈Cd

g(x1, . . . , xd)× P ({X1 = x1, . . . , Xd = xd}).(4.56)

•

Theorem 4.83 — Expectation of a function of an absolutely continuous

random vector (Karr, 1993, p. 116)

Let:

• (X1, . . . , Xd) be an absolutely continuous random vector with joint p.d.f.

fX1,...,Xd
(x1, . . . , xd);

• g : IRd → IR be a Borel measurable function either non negative or integrable.

Then

E[g(X1, . . . , Xd)]

=

∫ +∞

−∞
. . .

∫ +∞

−∞
g(x1, . . . , xd)× fX1,...,Xd

(x1, . . . , xd) dx1 . . . dxd. (4.57)

•

Exercise 4.84 — Expectation of a function of an absolutely continuous random

vector

Prove Theorem 4.83 (Karr, 1993, pp. 116–117). •

171

4.3.6 Functions of independent r.v.

When all the components of the random vector (X1, . . . , Xd) are independent, the formula

of E[g(X1, . . . , Xd)] can be simplified.

The next results refer to two independent random variables (d = 2). The generalization

for d > 2 is straightforward.

Theorem 4.85 — Expectation of a function of two independent r.v. (Karr, 1993,

p. 117)

Let:

• X and Y be two independent r.v.

• g : IR2 → IR+ be a Borel measurable non negative function.

Then

E[g(X, Y )] =

∫

IR

[∫

IR

g(x, y) dFX(x)

]
dFY (y)

=

∫

IR

[∫

IR

g(x, y) dFY (y)

]
dFX(x). (4.58)

•

Moreover, the expectation of the product of functions of independent r.v. is the product

of their expectations. Also note that the product of two integrable r.v. need not be

integrable.

Corollary 4.86 — Expectation of a function of two independent r.v. (Karr,

1993, p. 118)

Let:

• X and Y be two independent r.v.

• g1, g2 : IR → IR be two Borel measurable functions either non negative or integrable.

Then g1(X)× g2(Y ) is integrable and

E[g1(X)× g2(Y )] = E[g1(X)]× E[g2(Y )]. (4.59)

•

Exercise 4.87 — Expectation of a function of two independent r.v.

Prove Theorem 4.85 (Karr, 1993, p. 117) and Corollary 4.86 (Karr, 1993, p. 118). •
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4.3.7 Sum of independent r.v.

We are certainly not going to state that E(X + Y ) = E(X) + E(Y ) when X and Y are

simple or non negative or integrable independent r.v.15

Instead, we are going to write the d.f. of the sum of two independent r.v. in terms

of integrals with respect to the d.f. and define a convolution of d.f.16

Theorem 4.88 — D.f. of a sum of two independent r.v. (Karr, 1993, p. 118)

Let X and Y be two independent r.v. Then

FX+Y (t) =

∫

IR

FX(t− y) dFY (y) =

∫

IR

FY (t− x) dFX(x). (4.60)

•

Exercise 4.89 — D.f. of a sum of two independent r.v.

Prove Theorem 4.88 (Karr, 1993, p. 118). •

Corollary 4.90 — D.f. of a sum of two independent discrete r.v.

Let X and Y be two independent discrete r.v. Then

FX+Y (t) =
∑

y

FX(t− y)× P ({Y = y}) =
∑

x

FY (t− x)× P ({X = x}). (4.61)

•

Remark 4.91 — D.f. of a sum of two independent discrete r.v.

The previous formula is not preferable to the one we derived for the p.f. of X + Y in

Chapter 2 because it depends in fact on two sums... •

Corollary 4.92 — D.f. of a sum of two independent absolutely continuous r.v.

Let X and Y be two independent absolutely continuous r.v. Then

FX+Y (t) =

∫ +∞

−∞
FX(t− y)× fY (y) dy =

∫ +∞

−∞
FY (t− x)× fX(x) dx. (4.62)

•

Let us revisit an exercise from Chapter 2 to illustrate the use of Corollary 4.92.

15This result follows from the linearity of expectation.
16Recall that in Chapter 2 we derived expressions for the p.f. and the p.d.f. of the sum of two

independent r.v.
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Exercise 4.93 — D.f. of the sum of two independent absolutely continuous r.v.

Let X and Y be the durations of two independent system components set in what is called

a stand by connection.17 In this case the system duration is given by X + Y .

(a) Derive the d.f. of X + Y , assuming that X ∼ Exponencial(α) and Y ∼
Exponencial(β), where α, β > 0 and α &= β, and using Corollary 4.92.

(b) Prove that the associated p.d.f. equals fX+Y (z) =
αβ(e−βz−e−αz)

α−β , z > 0. •

Definition 4.94 — Convolution of d.f. (Karr, 1993, p. 119)

Let X and Y be independent r.v. Then

(FX , FY )(t) = FX+Y (t) =

∫

IR

FX(t− y) dFY (y) =

∫

IR

FY (t− x) dFX(x) (4.63)

is said to be the convolution of the d.f. FX and FY . •

17At time 0, only the component with duration X is on. The component with duration Y replaces the
other one as soon as it fails.
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4.4 Lp spaces

Motivation 4.95 — Lp spaces (Karr, 1993, p. 119)

While describing a r.v. in a partial way, we tend to deal with E(Xp), p ∈ [1, +∞), or a

function of several such expected values. Needless to say that we have to guarantee that

E(|X|p) is finite. •

Definition 4.96 — Lp spaces (Karr, 1993, p. 119)

The space Lp, for a fixed p ∈ [1, +∞), consists of all r.v. X whose pth absolute power is

integrable, that is,

E(|X|p) < +∞. (4.64)

•

Exercise 4.97 — Exponential distributions and Lp spaces

Let X ∼ Exponential(λ), λ > 0.

Prove that X ∈ Lp, for any p ∈ [1, +∞). •

Exercise 4.98 — Pareto distributions and Lp spaces

Let X ∼ Pareto(b, α) i.e.

fX(x) =

{
α bα

xα+1 , x ≥ b

0, otherwise
(4.65)

where b > 0 is the minimum possible value of X and α > 0 is called the Pareto index.

For which values of p ∈ [1, +∞) we have X ∈ Lp? •
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4.5 Key inequalities

What immediately follows is a table with an overview of a few extremely useful inequalities

involving expectations.

Some of these inequalities are essential to prove certain types of convergence of

sequences of r.v. in Lp and uniform integrability (Resnick, 1999, p. 189)18 and provide

answers to a few questions we compiled after the table.

Finally, we state and treat each inequality separately.

Proposition 4.99 — A few (moment) inequalities (Karr, 1993, p. 123;

http://en.wikipedia.org)

(Moment) inequality Conditions Statement of the inequality

Young h : IR+
0 → IR+

0 continuous, strictly increasing, a× b ≤ H(a) + K(b)

h(0) = 0, h(+∞) = +∞, H(x) =
R x
0 h(y) dy

k pointwise inverse of h, K(x) =
R x
0 k(y) dy

a, b ∈ IR+

Hölder X ∈ Lp, Y ∈ Lq , E(|X × Y |) ≤ E
1
p (|X|p)× E

1
q (|Y |q)

where p, q ∈ [1, +∞) : 1
p + 1

q = 1 (X × Y ∈ L1)

Cauchy-Schwarz X, Y ∈ L2 E(|X × Y |) ≤
p

E(X2)× E(Y 2)

(X × Y ∈ L1)

Liapunov X ∈ Ls, 1 ≤ r ≤ s E
1
r (|X|r) ≤ E

1
s (|X|s)

(Ls ⊆ Lr)

Minkowski X, Y ∈ Lp, p ∈ [1, +∞) E
1
p (|X + Y |p) ≤ E

1
p (|X|p) + E

1
p (|Y |p)

(X + Y ∈ Lp)

Jensen g convex; X, g(X) ∈ L1 g[E(X)] ≤ E[g(X)]

g concave; X, g(X) ∈ L1 g[E(X)] ≥ E[g(X)]

Chebyshev X ≥ 0, P ({X ≥ a}) ≤ E[g(X)]
g(a)

g non negative and increasing, a > 0

(Chernoff) X ≥ 0, a, t > 0 P ({X ≥ a}) ≤ E(etX )
eta

(Markov) X ∈ L1, a > 0 P ({|X| ≥ a}) ≤ E[|X|]
a ;

X ∈ Lp, a > 0 P ({|X| ≥ a}) ≤ E[|X|p]
ap

(Chebyshev-Bienaymé) X ∈ L2, a > 0 P ({|X − E(X)| ≥ a}) ≤ V (X)
a2

X ∈ L2, a > 0 P
“n

|X − E(X)| ≥ a
p

V (X)
o”

≤ 1
a2

(Cantelli) X ∈ L2, a > 0 P ({|X − E(X)| ≥ a}) ≤ 2V (X)
a2+V (X)

(one-sided Chebyshev) X ∈ L2, a > 0 P
“n

X − E(X) ≥ a
p

V (X)
o”

≤ 1
1+a2

•

18For a definition of uniform integrability see http://en.wikipedia.org/wiki/Uniform integrability.
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Motivation 4.100 — A few (moment) inequalities

• Young — How can we relate the areas under (resp. above) an increasing function h

in the interval [0, a] (resp. in the interval of [0, h−1(b)]) with the area of the rectangle

with vertices (0, 0), (0, b), (a, 0) and (a, b), where b ∈ (0, maxx∈[0,a] h(x)]?

• Hölder/Cauchy-Schwarz — What are the sufficient conditions on r.v. X and Y

to be dealing with an integrable product XY ?

• Liapunov — What happens to the spaces Lp when p increases in [1, +∞)? Is it a

decreasing (increasing) sequence of sets?

What happens to the norm of a r.v. in Lp, ||X||p = E
1
p (|X|p)? Is it an increasing

(decreasing) function of p ∈ [1, +∞)?

• Minkowski — What are the sufficient conditions on r.v. X and Y to be dealing

with a sum X + Y ∈ Lp? Is Lp a vector space?

• Jensen — Under what conditions we can relate g[E(X)] and E[g(X)]?

• Chebyshev — When can we provide non trivial upper bounds for the tail

probability P ({X ≥ a}) •

4.5.1 Young’s inequality

The first inequality (not a moment inequality) is named after William Henry Young

(1863–1942), an English mathematician, and can be used to prove Hölder inequality.

Lemma 4.101 — Young’s inequality (Karr, 1993, p. 119)

Let:

• h : IR+
0 → IR+

0 be a continuous and strictly increasing function such that h(0) = 0,

h(+∞) = +∞;

• k be the pointwise inverse of h;

• H(x) =
∫ x

0 h(y) dy be the area under h in the interval [0, x];

• K(x) =
∫ x

0 k(y) dy be the area above h in the interval [0, h−1(x)] = [0, k(x)];

• a, b ∈ IR+.

Then

a× b ≤ H(a) + K(b). (4.66)
•
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Exercise 4.102 — Young’s inequality (Karr, 1993, p. 119)

Prove Lemma 4.101, by using a graphical argument (Karr, 1993, p. 119). •

Remark 4.103 — A special case of Young’s inequality

If we apply Young’s inequality to h(x) = xp−1, p ∈ [1, +∞) and consider

• a and b non negative real numbers,

• q = 1 + 1
p−1 ∈ [1, +∞) i.e. 1

p + 1
q = 1,

then

a× b ≤ ap

p
+

bq

q
. (4.67)

For the proof of this result see http://en.wikipedia.org/wiki/Young’s inequality, which

states (4.67) as Young’s inequality. See also Karr (1993, p. 120) for a reference to (4.67)

as a consequence of Young’s inequality as stated in (4.66). •

4.5.2 Hölder’s moment inequality

In mathematical analysis Hölder’s inequality, named after the German mathematician

Otto Hölder (1859–1937), is a fundamental inequality between integrals, an indispensable

tool for the study of Lp spaces and essential to prove Liapunov’s and Minkowski’s

inequalities.

Interestingly enough, Hölder’s inequality was first found by the British mathematician

L.J. Rogers (1862–1933) in 1888, and discovered independently by Hölder in 1889.

Theorem 4.104 — Hölder’s moment inequality (Karr, 1993, p. 120)

Let

• X ∈ Lp, Y ∈ Lq, where p, q ∈ [1, +∞) : 1
p + 1

q = 1.

Then

X × Y ∈ L1 (4.68)

E(|XY |) ≤ E
1
p (|X|p)× E

1
q (|Y |q). (4.69)

•
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Remarks 4.105 — Hölder’s (moment) inequality

• The numbers p and q above are said to be Hölder conjugates of each other.

• For the detailed statement of Hölder inequality in measure spaces, check

http://en.wikipedia.org/wiki/Hölder’s inequality. Two notable special cases

follow...

• In case we are dealing with S, a measurable subset of IR with the Lebesgue measure,

and f and g are measurable real-valued functions on S then Hölder’s inequality reads

as follows:

∫

S

|f(x)× g(x)| dx ≤
(∫

S

|f(x)|p dx

) 1
p

×
(∫

S

|g(x)|q dx

) 1
q

. (4.70)

• When we are dealing with n−dimensional Euclidean space and the counting

measure, we have

n∑

k=1

|xk × yk| ≤
(

n∑

k=1

|xk|p
) 1

p

×
(

n∑

k=1

|yk|q
) 1

q

, (4.71)

for all (x1, . . . , xn), (y1, . . . , yn) ∈ IRn.

• For a generalization of Hölder’s inequality involving n (instead of 2) Hölder

conjugates, see http://en.wikipedia.org/wiki/Hölder’s inequality. •

Exercise 4.106 — Hölder’s moment inequality

Prove Theorem 4.104, by using the special case of Young’s inequality (4.67), considering

a = |X|

E
1
p (|X|p)

and b = |Y |

E
1
q (|Y |q)

, taking expectations to (4.67), and applying the result

1
p + 1

q = 1 (Karr, 1993, p. 120). •
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4.5.3 Cauchy-Schwarz’s moment inequality

A special case of Hölder’s moment inequality — p = q = 2 — is nothing but the Cauchy-

Schwarz’s moment inequality.

In mathematics, the Cauchy-Schwarz inequality19 is a useful inequality encountered

in many different settings, such as linear algebra applied to vectors, in analysis applied to

infinite series and integration of products, and in probability theory, applied to variances

and covariances.

The inequality for sums was published by Augustin Cauchy in 1821, while the

corresponding inequality for integrals was first stated by Viktor Yakovlevich Bunyakovsky

in 1859 and rediscovered by Hermann Amandus Schwarz in 1888 (often misspelled

“Schwartz”).

Corollary 4.107 — Cauchy-Schwarz’s moment inequality (Karr, 1993, p. 120)

Let X, Y ∈ L2. Then

X × Y ∈ L1 (4.72)

E(|X × Y |) ≤
√

E(|X|2)× E(|Y |2). (4.73)

•

Remarks 4.108 — Cauchy-Schwarz’s moment inequality

(http://en.wikipedia.org/wiki/Cauchy-Schwarz inequality)

• In the Euclidean space IRn with the standard inner product, the Cauchy-Schwarz’s

inequality is

(
n∑

i=1

xi × yi

)2

≤
(

n∑

i=1

x2
i

)
×

(
n∑

i=1

y2
i

)
. (4.74)

• The triangle inequality for the inner product is often shown as a consequence of the

Cauchy-Schwarz inequality, as follows: given vectors x and y, we have

‖x + y‖2 = 〈x + y, x + y〉
≤ (‖x‖+ ‖y‖)2 . (4.75)

•
19Also known as the Bunyakovsky inequality, the Schwarz inequality, or the Cauchy-Bunyakovsky-

Schwarz inequality (http://en.wikipedia.org/wiki/Cauchy-Schwarz inequality).
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Exercise 4.109 — Confronting the squared covariance and the product of the

variance of two r.v.

Prove that

|cov(X, Y )|2 ≤ V (X)× V (Y ), (4.76)

where X, Y ∈ L2 (http://en.wikipedia.org/wiki/Cauchy-Schwarz’s inequality). •

4.5.4 Lyapunov’s moment inequality

The spaces Lp decrease as p increases in [1, +∞). Moreover, E(|X|p)
1
p is an increasing

function of p ∈ [1, +∞).

The following moment inequality is a special case of Hölder’s inequality and is due to

Aleksandr Mikhailovich Lyapunov (1857–1918), a Russian mathematician, mechanician

and physicist.20

Corollary 4.110 — Lyapunov’s moment inequality (Karr, 1993, p. 120)

Let X ∈ Ls, where 1 ≤ r ≤ s. Then

Ls ⊆ Lr (4.77)

E
1
r (|X|r) ≤ E

1
s (|X|s). (4.78)

•
Remarks 4.111 — Lyapunov’s moment inequality

• Taking s = 2 and r = 1 we can conclude that

E2(|X|) ≤ E(X2). (4.79)

This result is not correctly stated in Karr (1993, p. 121) and can be also deduced

from the Cauchy-Schwarz’s inequality, as well as from Jensen’s inequality, stated

below.

• Rohatgi (1976, p. 103) states Liapunov’s inequality in a slightly different way. It

can be put as follows: for X ∈ Lk, k ∈ [1, +∞),

E
1
k (|X|k) ≤ E

1
k+1 (|X|k+1). (4.80)

20Lyapunov is known for his development of the stability theory of a dynamical system,
as well as for his many contributions to mathematical physics and probability theory
(http://en.wikipedia.org/wiki/Aleksandr Lyapunov).
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• The equality in (4.78) holds iff X is a degenerate r.v., i.e. X
d
= c, where c is a real

constant (Rohatgi, 1976, p. 103). •

Exercise 4.112 — Lyapunov’s moment inequality

Prove Corollary 4.110, by applying Hölder’s inequality to X ′ = Xr, where X ∈ Lr, and

to Y
d
= 1, and considering p = s

r (Karr, 1993, pp. 120–121).21 •

4.5.5 Minkowski’s moment inequality

The Minkowski’s moment inequality establishes that the Lp spaces are vector spaces.

Theorem 4.113 — Minkowski’s moment inequality (Karr, 1993, p. 121)

Let X, Y ∈ Lp, p ∈ [1, +∞). Then

X + Y ∈ Lp (4.81)

E
1
p (|X + Y |p) ≤ E

1
p (|X|p) + E

1
p (|Y |p). (4.82)

•
Remarks 4.114 — Minkowski’s moment inequality

(http://en.wikipedia.org/wiki/Minkowski inequality)

• The Minkowski inequality is the triangle inequality22 in Lp.

• Like Hölder’s inequality, the Minkowski’s inequality can be specialized to (sequences

and) vectors by using the counting measure:

(
n∑

k=1

|xk + yk|p
) 1

p

≤
(

n∑

k=1

|xk|p
) 1

p

+

(
n∑

k=1

|yk|p
) 1

p

, (4.83)

for all (x1, . . . , xn), (y1, . . . , yn) ∈ IRn. •

Exercise 4.115 — Minkowski’s moment inequality

Prove Theorem 4.113, by applying the triangle inequality followed by Hölder’s inequality

and the fact that q(p− 1) = p and 1− 1
q = 1

p (Karr, 1993, p. 121). •

21Rohatgi (1976, p. 103) provides an alternative proof.
22The real line is a normed vector space with the absolute value as the norm, and so the triangle

inequality states that |x + y| ≤ |x|+ |y|, for any real numbers x and y. The triangle inequality is useful
in mathematical analysis for determining the best upper estimate on the size of the sum of two numbers,
in terms of the sizes of the individual numbers (http://en.wikipedia.org/wiki/Triangle inequality).
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4.5.6 Jensen’s moment inequality

Jensen’s inequality, named after the Danish mathematician and engineer Johan Jensen

(1859–1925), relates the value of a convex function of an integral to the integral of the

convex function. It was proved by Jensen in 1906.

Given its generality, the inequality appears in many forms depending on the context.

In its simplest form the inequality states, that

• the convex transformation of a mean is less than or equal to the mean after convex

transformation.

It is a simple corollary that the opposite is true of concave transformations

(http://en.wikipedia.org/wiki/Jensen’s inequality).

Theorem 4.116 — Jensen’s moment inequality (Karr, 1993, p. 121)

Let g convex and assume that X, g(X) ∈ L1. Then

g[E(X)] ≤ E[g(X)] (4.84)

•

Corollary 4.117 — Jensen’s moment inequality for concave functions

Let g concave and assume that X, g(X) ∈ L1. Then

g[E(X)] ≥ E[g(X)] (4.85)

•

Remarks 4.118 — Jensen’s (moment) inequality

(http://en.wikipedia.org/wiki/Jensen’s inequality)

• A proof of Jensen’s inequality can be provided in several ways. However, it is worth

analyzing an intuitive graphical argument based on the probabilistic case where X

is a real r.v.

Assuming a hypothetical distribution of X values, one can immediately identify the

position of E(X) and its image g[E(X)] = ϕ[E(X)] in the graph.

Noticing that for convex mappings Y = g(X) = ϕ(X) the corresponding

distribution of Y values is increasingly “stretched out” for increasing values of X,

the expectation of Y = g(X) will always shift upwards with respect to the position

of g[E(X)] = ϕ[E(X)], and this “proves” the inequality.
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• For a real convex function g, numbers x1, x2, . . . , xn in its domain, and positive

weights ai, i = 1, . . . , n, Jensen’s inequality can be stated as:

g

(∑n
i=1 ai × xi∑n

i=1 ai

)
≤

∑n
i=1 ai × g(xi)∑n

i=1 ai
. (4.86)

The inequality is reversed if g is concave.

• As a particular case, if the weights ai = 1, i = 1, . . . , n, then

g

(
1

n

n∑

i=1

xi

)
≤ 1

n

n∑

i=1

g(xi) ⇔ g(x̄) ≤ g(x). (4.87)

• For instance, considering g(x) = log(x), which is a concave function, we can establish

the arithmetic mean-geometric mean inequality:23 for any list of n non negative real

numbers x1, x2, . . . , xn,

x̄ =
x1 + x2 + . . . + xn

n
≥ n
√

x1 × x2 × . . .× xn = mg. (4.88)

Moreover, equality in (4.88) holds iff x1 = x2 = . . . = xn. •

Exercise 4.119 — Jensen’s moment inequality (for concave functions)

Prove Theorem 4.116 (Karr, 1993, pp. 121-122), Corollary 4.117 and Equation (4.88). •

Exercise 4.120 — Jensen’s inequality and the distance between the mean and

the median

Prove that for any r.v. having an expected value and a median, the mean and the median

can never differ from each other by more than one standard deviation:

|E(X)−med(X)| ≤
√

V (X), (4.89)

by using Jensen’s inequality twice — applied to the absolute value function and to the

square root function24 (http://en.wikipedia.org/wiki/Chebyshev’s inequality). •

23See http://en.wikipedia.org/wiki/AM-GM inequality.
24In this last case we should apply the concave version of Jensen’s inequality.
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4.5.7 Chebyshev’s inequality

Curiously, Chebyshev’s inequality is named after the Russian mathematician

Pafnuty Lvovich Chebyshev (1821–1894), although it was first formulated by

his friend and French colleague Irénée-Jules Bienaymé (1796–1878), according to

http://en.wikipedia.org/wiki/Chebyshev’s inequality.

In probability theory, the Chebyshev’s inequality,25 in the most usual version — what

Karr (1993, p. 122) calls the Bienaymé-Chebyshev’s inequality —, can be ultimately stated

as follows:

• no more than 1
k2 × 100% of the values of the r.v. X are more than k standard

deviations away from the expected value of X.

Theorem 4.121 — Chebyshev’s inequality (Karr, 1993, p. 122)

Let:

• X be a non negative r.v.;

• g non negative and increasing function on IR+;

• a > 0.

Then

P ({X ≥ a}) ≤ E[g(X)]

g(a)
. (4.90)

•

Exercise 4.122 — Chebyshev’s inequality

Prove Theorem 4.121 (Karr, 1993, p. 122). •

Remarks 4.123 — Several cases of Chebyshev’s inequality (Karr, 1993, p. 122)

• Chernoff ’s inequality26

X ≥ 0, a, t > 0 ⇒ P ({X ≥ a}) ≤ E(etX)
eta

• Markov’s inequalities

X ∈ L1, a > 0 ⇒ P ({|X| ≥ a}) ≤ E[|X|]
a

X ∈ Lp, a > 0 ⇒ P ({|X| ≥ a}) ≤ E[|X|p]
ap

25Also known as Tchebysheff’s inequality, Chebyshev’s theorem, or the Bienaymé-Chebyshev’s
inequality (http://en.wikipedia.org/wiki/Chebyshev’s inequality).

26Karr (1993) does not mention this inequality. For more details see
http://en.wikipedia.org/wiki/Chernoff’s inequality.
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• Chebyshev-Bienaymé’s inequalities

X ∈ L2, a > 0 ⇒ P ({|X − E(X)| ≥ a}) ≤ V (X)
a2

X ∈ L2, a > 0 ⇒ P
({

|X − E(X)| ≥ a
√

V (X)
})

≤ 1
a2

• Cantelli’s inequality

X ∈ L2, a > 0 ⇒ P ({|X − E(X)| ≥ a}) ≤ 2V (X)
a2+V (X)

• One-sided Chebyshev’s inequality

X ∈ L2, a > 0 ⇒ P
({

X − E(X) ≥ a
√

V (X)
})

≤ 1
1+a2

According to http://en.wikipedia.org/wiki/Chebyshev’s inequality, the one-sided

version of the Chebyshev inequality is also called Cantelli’s inequality, and is due

to the Italian mathematician Francesco Paolo Cantelli (1875–1966). •

Remark 4.124 — Chebyshev(-Bienaymé)’s inequality

(http://en.wikipedia.org/wiki/Chebyshev’s inequality)

The Chebyshev(-Bienaymé)’s inequality can be useful despite loose bounds because

it applies to random variables of any distribution, and because these bounds can be

calculated knowing no more about the distribution than the mean and variance. •

Exercise 4.125 — Chebyshev(-Bienaymé)’s inequality

Assume that we have a large body of text, for example articles from a publication and that

we know that the articles are on average 1000 characters long with a standard deviation

of 200 characters.

(a) Prove that from the Chebyshev(-Bienaymé)’s inequality we can then infer that the

chance that a given article is between 600 and 1400 characters would be at least

75%.

(b) The inequality is coarse: a more accurate guess would be possible if the distribution

of the length of the articles is known.

Demonstrate that, for example, a normal distribution would yield a 75% chance of

an article being between 770 and 1230 characters long.

(http://en.wikipedia.org/wiki/Chebyshev’s inequality.) •
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Exercise 4.126 — Chebyshev(-Bienaymé)’s inequality

Let X ∼ Uniform(0, 1).

(a) Obtain P
({

|X − 1
2 | < 2

√
1/12

})
.

(b) Obtain a lower bound for P
({

|X − 1
2 | < 2

√
1/12

})
, by noting that E(X) = 1

2 and

V (X) = 1
12 . Compare this bound with the value you obtained in (a).

(Rohatgi, 1976, p. 101.) •

Exercise 4.127 — Meeting the Chebyshev(-Bienaymé)’s bounds exactly

Typically, the Chebyshev(-Bienaymé)’s inequality will provide rather loose bounds.

(a) Prove that these bounds cannot be improved upon for the r.v. X with p.f.

P ({X = x}) =






P ({X = −1}) = 1
2k2 , x = −1

P ({X = 0}) = 1− 1
k2 , x = 0

P ({X = 1}) = 1
2k2 , x = 1

0, otherwise,

(4.91)

where k > 1, that is, P
(
|X − E(X)| ≥ k

√
V (X)

)
= 1

k2 . (For more details see

http://en.wikipedia.org/wiki/Chebyshev’s inequality.)27

(b) Prove that equality holds exactly for any r.v. Y that is a linear transformation of

X.28 •

Remark 4.128 — Chebyshev(-Bienaymé)’s inequality and the weak law of

large numbers (http://en.wikipedia.org/ wiki/Chebyshev’s inequality)

Chebyshev(-Bienaymé)’s inequality is used for proving the following version of the weak

law of large numbers: when dealing with a sequence of i.i.d. r.v., X1, X2, . . ., with finite

expected value and variance (µ, σ2 < +∞),

lim
n→+∞

P
({∣∣X̄n − µ

∣∣ < ε
})

= 1, (4.92)

where X̄n = 1
n

∑n
i=1 Xi. That is, X̄n

P→ µ as n → +∞. •
27This is the answer to Exercise 4.36 from Karr (1993, p. 133).
28Inequality holds for any r.v. that is not a linear transformation of X

(http://en.wikipedia.org/wiki/Chebyshev’s inequality).
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Exercise 4.129 — Chebyshev(-Bienaymé)’s inequality and the weak law of

large numbers

Use Chebyshev(-Bienaymé)’s inequality to prove the weak law of large numbers stated in

Remark 4.128. •

Exercise 4.130 — Cantelli’s inequality (Karr, 1993, p. 132, Exercise 4.30)

When does P ({|X − E(X)| ≥ a}) ≤ 2V (X)
a2+V (X) give a better bound than Chebyshev(-

Bienaymé)’s inequality? •

Exercise 4.131 — One-sided Chebyshev’s inequality and the distance between

the mean and the median

Use the one-sided Chebyshev’s inequality to prove that for any r.v. having an expected

value and a median, the mean and the median can never differ from each other by more

than one standard deviation, i.e.

|E(X)−med(X)| ≤
√

V (X) (4.93)

(http://en.wikipedia.org/wiki/Chebyshev’s inequality). •
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4.6 Moments

Motivation 4.132 — Moments of r.v.

The nature of a r.v. can be partial described in terms of a number of features — such

as the expected value, the variance, the skewness, kurtosis, etc. — that can written in

terms of expectation of powers of X, the moments of a r.v. •

4.6.1 Moments of r.v.

Definition 4.133 — kth. moment and kth. central moment of a r.v. (Karr, 1993,

p. 123)

Let

• X be a r.v. such that X ∈ Lk, for some k ∈ IN .

Then:

• the kth. moment of X is given by the Riemann-Stieltjes integral

E(Xk) =

∫ ∞

−∞
xk dFX(x); (4.94)

• similarly, the kth. central moment of X equals

E
{
[X − E(X)]k

}
=

∫ +∞

−∞
[x− E(X)]k dFX(x). (4.95)

•

Remarks 4.134 — kth. moment and kth. central moment of a r.v. (Karr, 1993,

p. 123; http://en.wikipedia.org/wiki/Moment (mathematics))

• The kth. central moment exists under the assumption that X ∈ Lk because Lk ⊆ L1,

for any k ∈ IN (a consequence of Lyapunov’s inequality).

• If the kth. (central) moment exists29 so does the (k − 1)th. (central) moment, and

all lower-order moments. This is another consequence of Lyapunov’s inequality.

• If X ∈ L1 the first moment is the expectation of X; the first central moment is thus

null. In higher orders, the central moments are more interesting than the moments

about zero. •

29Or the kth. moment about any point exists. Note that the kth. central moment is nothing but the
kth. moment about E(X).
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Proposition 4.135 — Computing the kth. moment of a non negative r.v.

If X is a non negative r.v. and X ∈ Lk, for k ∈ IN , we can write the kth. moment of X

in terms of the following Riemann integral:

E(Xk) =

∫ ∞

0

k xk−1 × [1− FX(x)] dx. (4.96)

•

Exercise 4.136 — Computing the kth. moment of a non negative r.v.

Prove Proposition 4.135. •

Exercise 4.137 — Computing the kth. moment of a non negative r.v.

Let X ∼ Exponential(λ). Use Proposition 4.135 to prove that E(Xk) = Γ(k+1)
λk , for any

k ∈ IN . •

Exercise 4.138 — The median of a r.v. and the minimization of the expected

absolute deviation (Karr, 1993, p. 130, Exercise 4.1)

The median of the r.v. X, med(X), is such that P ({X ≤ med(X)}) ≥ 1
2 and P ({X ≥

med(X)}) ≥ 1
2 .

Prove that if X ∈ L1 then

E(|X −med(X)|) ≤ E(|X − a|), (4.97)

for all a ∈ IR. •

Exercise 4.139 — Minimizing the mean squared error (Karr, 1993, p. 131,

Exercise 4.12)

Let {A1, . . . , An} be a finite partition of Ω. Suppose that we know which of A1, . . . , An

has occurred, and wish to predict whether some other event B has occurred. Since we

know the values of the indicator functions 1A1 , . . . ,1An , it make sense to use a predictor

that is a function of them, namely linear predictors of the form Y =
∑n

i=1 ai×1Ai , whose

accuracy is assessed via the mean squared error:

MSE(Y ) = E[(1B − Y )2]. (4.98)

Prove that the values ai = P (B|Ai), i = 1, . . . , n minimize MSE(Y ). •
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Exercise 4.140 — Expectation of a r.v. with respect to a conditional

probability function (Karr, 1993, p. 132, Exercise 4.20)

Let A be an event such that P (A) > 0.

Show that if X is positive or integrable then E(X|A), the expectation of X with

respect to the conditional probability function PA(B) = P (B|A), is given by

E(X|A)
def
=

E(X; A)

P (A)
, (4.99)

where E(X; A) = E(X × 1A) represents the expectation of X over the event A. •

4.6.2 Variance and standard deviation

Definition 4.141 — Variance and standard deviation of a r.v. (Karr, 1993, p.

124)

Let X ∈ L2. Then:

• the 2nd. central moment is the variance of X,

V (X) = E {[ X − E(X)]2}; (4.100)

• the positive square root of the variance is the standard deviation of X,

SD(X) = +
√

V (X). (4.101)

•

Remark 4.142 — Computing the variance of a r.v. (Karr, 1993, p. 124)

The variance of a r.v. X ∈ L2 can also be expressed as

V (X) = E(X2)− E2(X), (4.102)

which is more convenient than (4.100) for computational purposes. •

Exercise 4.143 — The meaning of a null variance (Karr, 1993, p. 131, Exercise

4.19)

Prove that if V (X) = 0 then X
a.s.
= E(X). •

Exercise 4.144 — Comparing the variance of X and min{X, c} (Karr, 1993, p.

133, Exercise 4.32)

Let X be a r.v. such that E(X2) < +∞ and c a real constant. Prove that

V (min{X, c}) ≤ V (X). (4.103)
•
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Proposition 4.145 — Variance of the sum (or difference) of two independent

r.v. (Karr, 1993, p. 124)

If X, Y ∈ L2 and are two independent r.v. then

V (X + Y ) = V (X − Y ) = V (X) + V (Y ). (4.104)

•

Exercise 4.146 — Expected values and variances of some important r.v. (Karr,

1993, pp. 125 and 130, Exercise 4.1)

Verify the entries of the following table.

Distribution Parameters Expected value Variance

Discrete Uniform({x1, x2, . . . , xn}) {x1, x2, . . . , xn} 1
n

∑n
i=1 xi

(
1
n

∑n
i=1 x2

i

)
−

(
1
n

∑n
i=1 xi

)2

Bernoulli(p) p ∈ [0, 1] p p (1− p)

Binomial(n, p) n ∈ IN ; p ∈ [0, 1] n p n p (1− p)

Hipergeometric(N, M,n) N ∈ IN n M
N n M

N

(
1− M

N

)

M ∈ IN, M ≤ N

n ∈ IN, n ≤ N

Geometric(p) p ∈ [0, 1] 1
p

1−p
p2

Poisson(λ) λ ∈ IR+ λ λ

NegativeBinomial(r, p) r ∈ IN ; p ∈ [0, 1] r
p

r(1−p)
p2

Uniform(a, b) a, b ∈ IR, a < b a+b
2

(b−a)2

12

Normal(µ,σ2) µ ∈ IR; σ2 ∈ IR+ µ σ2

Lognormal(µ,σ2) µ ∈ IR; σ2 ∈ IR+ eµ+ 1
2 σ2

(eσ2 − 1)e2µ+σ2

Exponential(λ) λ ∈ IR+ 1
λ

1
λ2

Gamma(α,β) α,β ∈ IR+ α
β

α
β2

Beta(α,β) α,β ∈ IR+ α
α+β

αβ
(α+β)2(α+β+1)

Weibull(α,β) α,β ∈ IR+ α Γ
(
1 + 1

β

)
α2

[
Γ

(
1 + 2

β

)
− Γ2

(
1 + 1

β

)]

•
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Definition 4.147 — Normalized (central) moments of a r.v.

(http://en.wikipedia.org/wiki/Moment (mathematics))

Let X be a r.v. such that X ∈ Lk, for some k ∈ IN . Then:

• the normalized kth. moment of the X is the kth. moment divided by [SD(X)]k,

E(Xk)

[SD(X)]k
; (4.105)

• the normalized kth. central moment of X is given by

E{[X − E(X)]k}
[SD(X)]k

; (4.106)

These normalized central moments are dimensionless quantities, which represent the

distribution independently of any linear change of scale. •

4.6.3 Skewness and kurtosis

Motivation 4.148 — Skewness of a r.v.

(http://en.wikipedia.org/wiki/Moment (mathematics))

Any r.v. X ∈ L3 with a symmetric p.(d.)f. will have a null 3rd. central moment. Thus,

the 3rd. central moment is a measure of the lopsidedness of the distribution. •

Definition 4.149 — Skewness of a r.v.

(http://en.wikipedia.org/wiki/Moment (mathematics))

Let X ∈ L3 be a r.v. Then the normalized 3rd. central moment is called the skewness —

or skewness coefficient (SC) —,

SC(X) =
E{[X − E(X)]3}

[SD(X)]3
. (4.107)

•

Remark 4.150 — Skewness of a r.v.

(http://en.wikipedia.org/wiki/Moment (mathematics))

• A r.v. X that is skewed to the left (the tail of the p.(d.)f. is heavier on the left) will

have a negative skewness.

• A r.v. that is skewed to the right (the tail of the p.(d.)f. is heavier on the right),

will have a positive skewness. •
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Exercise 4.151 — Skewness of a r.v.

Prove that the skewness of:

(a) X ∼ Exponential(λ) equals SC(X) = 2

(http://en.wikipedia.org/wiki/Exponential distribution);

(b) X ∼ Pareto(b, α) is given by SC(X) = 2(1+α)
α−3

√
α−2

α , for α > 3

(http://en.wikipedia.org/wiki/Pareto distribution). •

Motivation 4.152 — Kurtosis of a r.v.

(http://en.wikipedia.org/wiki/Moment (mathematics))

The normalized 4th. central moment of any normal distribution is 3. Unsurprisingly, the

normalized 4th. central moment is a measure of whether the distribution is tall and skinny

or short and squat, compared to the normal distribution of the same variance. •

Definition 4.153 — Kurtosis of a r.v.

(http://en.wikipedia.org/wiki/Moment (mathematics))

Let X ∈ L4 be a r.v. Then the kurtosis — or kurtosis coefficient (KC) — is defined to be

the normalized 4th. central moment minus 3,30

KC(X) =
E{[X − E(X)]4}

[SD(X)]4
− 3. (4.108)

•

Remarks 4.154 — Kurtosis of a r.v.

(http://en.wikipedia.org/wiki/Moment (mathematics))

• If the p.(d.)f. of the r.v. X has a peak at the expected value and long tails, the 4th.

moment will be high and the kurtosis positive. Bounded distributions tend to have

low kurtosis.

• KC(X) must be greater than or equal to [SC(X)]2 − 2; equality only holds for

Bernoulli distributions (prove!).

• For unbounded skew distributions not too far from normal, KC(X) tends to be

somewhere between [SC(X)]2 and 2× [SC(X)]2. •
30Some authors do not subtract three.
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Exercise 4.155 — Kurtosis of a r.v.

Prove that the kurtosis of:

(a) X ∼ Exponential(λ) equals KC(X) = 6

(http://en.wikipedia.org/wiki/Exponential distribution);

(b) X ∼ Pareto(b, α) is given by 6(α3+α2−6α−2)
α(α−3)(α−4) for α > 4

(http://en.wikipedia.org/wiki/Pareto distribution). •

4.6.4 Covariance

Motivation 4.156 — Covariance (and correlation) between two r.v.

It is crucial to obtain measures of how much two variables change together, namely

absolute and relative measures of (linear) association between pairs of r.v. •

Definition 4.157 — Covariance between two r.v. (Karr, 1993, p. 125)

Let X, Y ∈ L2 be two r.v. Then the covariance between X and Y is equal to

cov(X, Y ) = E{[X − E(X)]× [Y − E(Y )]}
= E(XY )− E(X)E(Y ) (4.109)

(this last formula is more useful for computational purposes, prove it!) •

Remark 4.158 — Covariance between two r.v.

(http://en.wikipedia.org/wiki/Covariance)

The units of measurement of the covariance between the r.v. X and Y are those of X

times those of Y . •

Proposition 4.159 — Properties of the covariance

Let X, Y, Z ∈ L2, X1, . . . , Xn ∈ L2, Y1, . . . , Yn ∈ L2, and a, b ∈ IR. Then:

1. X ⊥⊥Y ⇒ cov(X, Y ) = 0

2. cov(X, Y ) = 0 &⇒ X ⊥⊥Y

3. cov(X, Y ) &= 0 ⇒ X ⊥& ⊥Y
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4. cov(X, Y ) = cov(Y, X) (symmetric operator!)

5. cov(X, X) = V (X) ≥ 0 and V (X) = 0 ⇒ X
a.s.
= E(X) (positive semi-definite

operator!)

6. cov(aX, bY ) = a b cov(X, Y )

7. cov(X + a, Y + b) = cov(X, Y )

8. cov(aX + bY, Z) = a cov(X, Z) + b cov(Y, Z) (bilinear operator!)

9. cov
(∑n

i=1 Xi,
∑n

j=1 Yj

)
=

∑n
i=1

∑n
j=1 cov(Xi, Yj)

10. cov
(∑n

i=1 Xi,
∑n

j=1 Xj

)
=

∑n
i=1 V (Xi) + 2×

∑n
i=1

∑n
j=i+1 cov(Xi, Xj). •

Exercise 4.160 — Covariance

Prove properties 6 through 10 from Proposition 4.159. •

Proposition 4.161 — Variance of some linear combinations of r.v.

Let X1, . . . , Xn ∈ L2. Then:

V (c1 X1 + c2 X2) = c2
1 V (X1) + c2

2 V (X2) + 2c1c2cov(X1, X2); (4.110)

V (X1 + X2) = V (X1) + V (X2) + 2cov(X1, X2); (4.111)

V (X1 −X2) = V (X1) + V (X2)− 2cov(X1, X2); (4.112)

V

(
n∑

i=1

ci Xi

)
=

n∑

i=1

c2
i V (Xi) + 2

n∑

i=1

n∑

j=i+1

ci cj cov(Xi, Xj). (4.113)

When we deal with uncorrelated r.v. — i.e., if cov(Xi, Xj) = 0, ∀i &= j — or with pairwise

independent r.v. — that is, Xi⊥⊥Xj, ∀i &= j —, we have:

V

(
n∑

i=1

ci Xi

)
=

n∑

i=1

c2
i V (Xi). (4.114)

And if, besides being uncorrelated or (pairwise) independent r.v., we have ci = 1, for

i = 1, . . . , n, we get:

V

(
n∑

i=1

Xi

)
=

n∑

i=1

V (Xi), (4.115)

i.e. the variance of the sum of uncorrelated or (pairwise) independent r.v. is the sum of

the individual variances. •
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4.6.5 Correlation

Motivation 4.162 — Correlation between two r.v.

(http://en.wikipedia.org/wiki/Correlation and dependence)

The most familiar measure of dependence between two r.v. is (Pearson’s) correlation.

It is obtained by dividing the covariance between two variables by the product of their

standard deviations.

Correlations are useful because they can indicate a predictive relationship that can

be exploited in practice. For example, an electrical utility may produce less power on a

mild day based on the correlation between electricity demand and weather. Moreover,

correlations can also suggest possible causal, or mechanistic relationships. •

Definition 4.163 — Correlation between two r.v. (Karr, 1993, p. 125)

Let X, Y ∈ L2 be two r.v. Then the correlation31 between X and Y is given by

corr(X, Y ) =
cov(X, Y )√
V (X) V (Y )

. (4.116)

•

Remark 4.164 — Correlation between two r.v.

(http://en.wikipedia.org/wiki/Covariance)

Correlation is a dimensionless measure of linear dependence. •

Definition 4.165 — Uncorrelated r.v. (Karr, 1993, p. 125)

Let X, Y ∈ L2. Then if

corr(X, Y ) = 0 (4.117)

X and Y are said to be uncorrelated r.v.32 •

Exercise 4.166 — Uncorrelated r.v. (Karr, 1993, p. 131, Exercise 4.14)

Give an example of r.v. X and Y that are uncorrelated but for which there is a function

g such that Y = g(X). •

Exercise 4.167 — Uncorrelated r.v. (Karr, 1993, p. 131, Exercise 4.18)

Prove that if V, W ∈ L2 and (V, W )
d
= (−V, W ) then V and W are uncorrelated. •

31Also know as the Pearson’s correlation coefficient (http://en.wikipedia.org/wiki/Correlation and
dependence).

32X, Y ∈ L2 are said to be correlated r.v. if corr(X, Y ) &= 0.
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Exercise 4.168 — Sufficient conditions to deal with uncorrelated sample mean

and variance (Karr, 1993, p. 132, Exercise 4.28)

Let Xi
i.i.d.∼ X, i = 1, . . . , n, such that E(X) = E(X3) = 0.

Prove that the sample mean X̄ = 1
n

∑n
i=1 Xi and the sample variance

S2 = 1
n−1

∑n
i=1(Xi − X̄)2 are uncorrelated r.v. •

Proposition 4.169 — Properties of the correlation

Let X, Y ∈ L2, and a, b ∈ IR. Then:

1. X ⊥⊥Y ⇒ corr(X, Y ) = 0

2. corr(X, Y ) = 0 &⇒ X ⊥⊥Y

3. corr(X, Y ) &= 0 ⇒ X ⊥& ⊥Y

4. corr(X, Y ) = corr(Y, X)

5. corr(X, X) = 1

6. corr(aX, bY ) = corr(X, Y )

7. −1 ≤ corr(X, Y ) ≤ 1, for any pair of r.v.33

8. corr(X, Y ) = −1 ⇔ Y
a.s.
= aX + b, a < 0

9. corr(X, Y ) = 1 ⇔ Y
a.s.
= aX + b, a > 0. •

Exercise 4.170 — Properties of the correlation

Prove properties 7 through 9 from Proposition 4.169. •

Exercise 4.171 — Negative linear association between three r.v. (Karr, 1993, p.

131, Exercise 4.17)

Prove that there are no r.v. X, Y and Z such that corr(X, Y ) = corr(Y, Z) =

corr(Z, X) = −1. •

Remark 4.172 — Interpretation of the sign of a correlation

The correlation sign entre X e Y should be interpreted as follows:

• if corr(X, Y ) is “considerably” larger than zero (resp. smaller than zero) we can

cautiously add that if X increases then Y “tends” to increase (resp. decrease). •

33A consequence of Cauchy-Schwarz’s inequality.
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Remark 4.173 — Interpretation of the size of a correlation

(http://en.wikipedia.org/wiki/Pearson product-moment correlation coefficient)

Several authors have offered guidelines for the interpretation of a correlation coefficient.

Others have observed, however, that all such criteria are in some ways arbitrary and

should not be observed too strictly.

The interpretation of a correlation coefficient depends on the context and purposes.

A correlation of 0.9 may be very low if one is verifying a physical law using high-quality

instruments, but may be regarded as very high in the social sciences where there may be

a greater contribution from complicating factors. •

Remark 4.174 — Correlation and linearity

(http://en.wikipedia.org/wiki/Correlation and dependence)

Properties 8 and 9 from Proposition 4.169 suggest that

• correlation “quantifies” the linear association between X e Y .

Thus, if the absolute value of corr(X, Y ) is very close to the unit we are tempted to add

that the association between X and Y is “likely” to be linear.

However, the Pearson’s correlation coefficient indicates the strength of a linear

relationship between two variables, but its value generally does not completely characterize

their relationship.

The image on the right shows scatterplots of Anscombe’s quartet, a set of four different

pairs of variables created by Francis Anscombe. The four y variables have the same mean

(7.5), standard deviation (4.12), correlation (0.816) and regression line (y = 3 + 0.5x).

However, as can be seen on the plots, the distribution of the variables is very different.

The first one (top left) seems to be distributed normally, and corresponds to what one

would expect when considering two variables correlated and following the assumption of

normality.
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The second one (top right) is not distributed normally; while an obvious relationship

between the two variables can be observed, it is not linear, and the Pearson correlation

coefficient is not relevant.

In the third case (bottom left), the linear relationship is perfect, except for one outlier

which exerts enough influence to lower the correlation coefficient from 1 to 0.816.

Finally, the fourth example (bottom right) shows another example when one outlier

is enough to produce a high correlation coefficient, even though the relationship between

the two variables is not linear. •

Remark 4.175 — Correlation and causality

(http://en.wikipedia.org/wiki/Correlation and dependence)

The conventional dictum that “correlation does not imply causation” means that

correlation cannot be used to infer a causal relationship between the variables.34

This dictum should not be taken to mean that correlations cannot indicate the

potential existence of causal relations. However, the causes underlying the correlation,

if any, may be indirect and unknown, and high correlations also overlap with identity

relations, where no causal process exists. Consequently, establishing a correlation between

two variables is not a sufficient condition to establish a causal relationship (in either

direction).

Several sets of (x, y) points, with the correlation coefficient of x and y for each set.

Note that the correlation reflects the noisiness and direction of a linear relationship (top

row), but not the slope of that relationship (middle), nor many aspects of nonlinear

relationships (bottom). The figure in the center has a slope of 0 but in that case the

correlation coefficient is undefined because the variance of y is zero. •

34A correlation between age and height in children is fairly causally transparent, but a correlation
between mood and health in people is less so. Does improved mood lead to improved health; or does
good health lead to good mood; or both? Or does some other factor underlie both? In other words,
a correlation can be taken as evidence for a possible causal relationship, but cannot indicate what the
causal relationship, if any, might be.
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4.6.6 Moments of random vectors

Moments of random vectors are defined component, pairwise, etc. Instead of an expected

value (resp. variance) we shall deal with a mean vector (resp. covariance matrix).

Definition 4.176 — Mean vector and covariance matrix of a random vector

(Karr, 1993, p. 126)

Let X = (X1, . . . , Xd) be a d−dimensional random vector. Then provided that:

• Xi ∈ L1, i = 1, . . . , d, the mean vector of X is the d−vector of the individual means,

µ = (E(X1), . . . , E(Xd));

• Xi ∈ L2, i = 1, . . . , d, the covariance matrix of X is a d × d matrix given by

ΣΣ = [cov(Xi, Xj)]i,j=1,...,d. •

Proposition 4.177 — Properties of the covariance matrix of a random vector

(Karr, 1993, p. 126)

Let X = (X1, . . . , Xd) be a d−dimensional random vector with covariance matrix ΣΣ.

Then:

• the diagonal of ΣΣ has entries equal to cov(Xi, Xi) = V (Xi), i = 1, . . . , d;

• ΣΣ is a symmetric matrix since cov(Xi, Xj) = cov(Xj, Xi), i, j = 1, . . . , d;

• ΣΣ is a positive-definite matrix, that is,
∑d

i=1

∑d
j=1 ci × cov(Xi, Xj) × cj > 0, for

every d−vector c = (c1, . . . , cd). •

Exercise 4.178 — Mean vector and covariance matrix of a linear combination

of r.v. (matrix notation)

Let:

• X = (X1, . . . , Xd) a d−dimensional random vector;

• µ = (E(X1), . . . , E(Xd)) the mean vector of X;

• ΣΣ = [cov(Xi, Xj)]i,j=1,...,d the covariance matrix of X;

• c = (c1, . . . , cd) a vector of weights.

By noting that
∑d

i=1 ci Xi = c2X, verify that:

• E
(∑d

i=1 ci Xi

)
= c2 µ;

• V
(∑d

i=1 ci Xi

)
= c2 ΣΣ c. •
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4.6.7 Multivariate normal distributions

Motivation 4.179 — Multivariate normal distribution (Tong, 1990, p. 1)

There are many reasons for the predominance of the multivariate normal distribution:

• it represents a natural extension of the univariate normal distribution and provides

a suitable model for many real-life problems concerning vector-valued data;

• even if the original data cannot be fitted satisfactorily with a multivariate normal

distribution, by the central limit theorem the distribution of the sample mean vector

is asymptotically normal;

• the p.d.f. of a multivariate normal distribution is uniquely determined by the mean

vector and the covariance matrix;

• zero correlation imply independence between two components of the random vector

with multivariate normal distribution;

• the family of multivariate normal distributions is closed under linear transformations

or linear combinations;

• the marginal distribution of any subset of components of a random vector with

multivariate normal distribution is also multivariate normal;

• the conditional distribution in a multivariate normal distribution is also multivariate

normal. •

Remark 4.180 — Multivariate normal distribution (Tong, 1990, p. 2)

Studies of the bivariate normal distribution seem to begin in the middle of the XIX

century, and moved forward in 1888 with F. Galton’s (1822–1911) work on the applications

of correlations analysis in genetics. In 1896, K. Pearson (1857–1936) gave a definitive

mathematical formulation of the bivariate normal distribution.

The multivariate normal distribution was treated comprehensively for the first time

in 1892 by F.Y. Edgeworth (1845–1926). •

A random vector has a multivariate normal distribution if it is a linear transformation

of a random vector with i.i.d. components with standard normal distribution (Karr, 1993,

p. 126).
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Definition 4.181 — Multivariate normal distribution (Karr, 1993, p. 126)

Let:

• µ = (µ1, . . . , µd) ∈ IRd;

• ΣΣ = [σij]i,j=1,...,d be a symmetric, positive-definite, non-singular d× d matrix;35

Then the random vector X = (X1, . . . , Xd) has a multivariate normal distribution with

mean vector µ and covariance matrix ΣΣ if

X = ΣΣ
1
2 Y + µ, (4.118)

where:

• Y = (Y1, . . . , Yd) with Yi
i.i.d.∼ Normal(0, 1), i = 1, . . . , d;

• ΣΣ
1
2 is the unique matrix satisfying

(
ΣΣ

1
2

)2
× ΣΣ

1
2 = ΣΣ.

In this case we write X ∼ Normald(µ, ΣΣ). •

We can use Definition 4.181 to simulate a multivariate normal distribution as

mentioned below.

Remark 4.182 — Simulating a multivariate normal distribution (Gentle, 1998,

pp. 105–106)

Since Yi
i.i.d.∼ Normal(0, 1), i = 1, . . . , d, implies that X = ΣΣ

1
2 Y + µ ∼ Normald(µ, ΣΣ)

we can obtain a d−dimensional pseudo-random vector from this multivariate normal

distribution if we:

1. generate d independent pseudo-random numbers, y1, . . . , yd, from the standard

normal distribution;

2. assign x = ΣΣ
1
2 y + µ, where y = (y1, . . . , yd).

Gentle (1998, p. 106) refers other procedures to generate pseudo-random numbers with

multivariate normal distribution. •

35A d × d matrix A is called invertible or non-singular or non-degenerate if there exists an
d × d matrix B such that AB = BA = Id, where Id denotes the d × d identity matrix.
(http://en.wikipedia.org/wiki/Invertible matrix) .
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Proposition 4.183 — Characterization of the multivariate normal distribution

(Karr, 1993, pp. 126–127)

Let X ∼ Normald(µ, ΣΣ) where µ = (µ1, . . . , µd) and ΣΣ = [σi j]i,j=1,...,d. Then:

E(Xi) = µi, i = 1, . . . , d; (4.119)

cov(Xi, Xj) = σij, i, j = 1, . . . , d; (4.120)

fX(x) = (2π)−
d
2 |ΣΣ|− 1

2 × exp

[
−1

2
(x− µ)2ΣΣ−1(x− µ)

]
, (4.121)

for x = (x1, . . . , xd) ∈ IRd. •

Exercise 4.184 — P.d.f. of a bivariate normal distribution

Let (X1, X2) have a (non-singular) bivariate normal distribution with mean vector and

covariance matrix

µ =

[
µ1

µ2

]
and ΣΣ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
, (4.122)

respectively, where |ρ| = |corr(X, Y )| < 1.

(a) Verify that the joint p.d.f. is given by

fX1,X2(x1, x2) =
1

2πσ1σ2

√
1− ρ2

exp

{
− 1

2(1− ρ2)

[(
x1 − µ1

σ1

)2

−2ρ

(
x1 − µ1

σ1

) (
x2 − µ2

σ2

)
+

(
x2 − µ2

σ2

)2
]}

, (x1, x2) ∈ IR2. (4.123)

(b) Use Mathematica to plot this joint p.d.f. for µ1 = µ2 = 0 and σ2
1 = σ2

2 = 1, and at

least five different values of the correlation coefficient ρ. •

Exercise 4.185 — Normally distributed r.v. with a non bivariate normal

distribution

We have already mentioned that if two r.v. X1 and X2 both have a standard normal

distribution this does not imply that the random vector (X1, X2) has a joint normal

distribution.36

Prove that X2 = X1 if |X1| > c and X2 = −X1 if |X1| < c, where c > 0, illustrates

this fact. •
36See http://en.wikipedia.org/wiki/Multivariate normal distribution.
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In what follows we describe a few distributional properties of bivariate normal

distributions and, more generally, multivariate normal distributions.

Proposition 4.186 — Marginal distributions/moments in the bivariate normal

setting (Tong, 1990, p. 8, Theorem 2.1.1)

Let X = (X1, X2) be distributed according to a bivariate normal distribution with

parameters

µ =

[
µ1

µ2

]
and ΣΣ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
. (4.124)

Then the marginal distribution of Xi, i = 1, 2, is normal. In fact,

Xi ∼ Normal(µi, σ
2
i ), i = 1, 2. (4.125)

The following figure37 shows the two marginal distributions of a bivariate normal

distribution:

•

Consider the partitions of X, µ and ΣΣ given below,

X =

[
X1

X2

]
, µ =

[
µ

1

µ
2

]
and ΣΣ =

[
ΣΣ11 ΣΣ12

ΣΣ21 ΣΣ22

]
, (4.126)

where:

• X1 = (X1, . . . , Xk) is made up of the first k < d components of X;

• X2 = (Xk+1, . . . , Xd) is made up of the remaining components of X;

• µ
1

= (µ1, . . . , µk);

• µ
2

= (µk+1, . . . , µd);

37Taken from http://www.aiaccess.net/English/Glossaries/GlosMod/e gm multinormal distri.htm.
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• ΣΣ11 = [σij]i,j=1,...,k; ΣΣ12 = [σij]1≤i<j≤k;

• ΣΣ21 = ΣΣ212;

• ΣΣ22 = [σij]i,j=k+1,...,d.

The following figure (where d = p)38 represents the covariance matrix of X1, ΣΣ11, which

is just the upper left corner square submatrix of order k of the original covariance matrix:

Theorem 4.187 — Marginal distributions/moments in the multivariate normal

setting (Tong, 1990, p. 30, Theorem 3.3.1)

Let X ∼ Normald(µ, ΣΣ). Then for every k < d the marginal distributions of X1 and X2

are also multivariate normal:

X1 ∼ Normalk(µ1
, ΣΣ11) (4.127)

X2 ∼ Normald−k(µ2
, ΣΣ22), (4.128)

respectively. •

The family of multivariate normal distributions is closed under linear transformations,

as stated below.

Theorem 4.188 — Distribution/moments of a linear transformation of a

bivariate normal random vector (Tong, 1990, p. 10, Theorem 2.1.2)

Let:

• X ∼ Normal2(µ, ΣΣ);

• C = [cij] be a 2× 2 real matrix;

• b = (b1, b2) be a real vector.

Then

Y = CX + b ∼ Normal2(Cµ + b,CΣΣC2). (4.129)

•
38Also taken from http://www.aiaccess.net/English/Glossaries/GlosMod/e gm multinormal distri.htm.
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Exercise 4.189 — Distribution/moments of a linear transformation of a

bivariate normal random vector

(a) Prove that if in Theorem 4.188 we choose

C =

[
σ−1

1 0

0 σ−1
2

]
(4.130)

and b = −Cµ, then Y is a bivariate normal variable with zero means, unit variances

and correlation coefficient ρ (Tong, 1990, p. 10).

(b) Now consider a linear transformation of Y , Y ∗, by rotating the xy axes by 45 degrees

counterclockwise:

Y ∗ =
1√
2

[
1 −1

1 1

]
Y . (4.131)

Verify that Y ∗ is a bivariate normal variable with zero means, variances 1 − ρ and

1 + ρ and null correlation coefficient (Tong, 1990, p. 10). Comment.

(c) Conclude that if X ∼ Normal2(µ, ΣΣ) such that |ρ| < 1 then

[
1√
1−ρ

0

0 1√
1+ρ

] [
1√
2
− 1√

2
1√
2

1√
2

] [
σ−1

1 0

0 σ−1
2

] [
X1 − µ1

X2 − µ2

]
∼ Normal2(0, I2), (4.132)

where 0 = (0, 0) and I2 is the 2× 2 identity matrix (Tong, 1990, p. 11).

(d) Prove that if Zi
i.i.d.∼ Normal(0, 1) then

[
σ1 0

0 σ2

] [
1√
2

1√
2

− 1√
2

1√
2

] [ √
1− ρ 0

0
√

1 + ρ

] [
Z1

Z2

]
+

[
µ1

µ2

]

st
=

[
σ1 0

σ2ρ σ2

√
1− ρ2

] [
Z1

Z2

]
+

[
µ1

µ2

]
∼ Normal2(µ, ΣΣ),

(4.133)

i.e. we can obtain a bivariate normal distribution with any mean vector

and (non-singular, semi-definite positive) covariance matrix through a

transformation of two independent standard normal r.v. (Tong, 1990, p. 11;

http://xbeta.org/wiki/show/Bivariate+normal+distribution). •
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Theorem 4.190 — Distribution/moments of a linear transformation of a

multivariate normal distribution (Tong, 1990, p. 32, Theorem 3.3.3)

Let:

• X ∼ Normald(µ, ΣΣ);

• C = [cij] be any given k × d real matrix;

• b is any k × 1 real vector.

Then

Y = CX + b ∼ Normalk(Cµ + b,CΣΣC2). (4.134)

•

The family of multivariate normal distributions is closed not only under linear

transformations, as stated in the previous theorem, but also under linear combinations.

Corollary 4.191 — Distribution/moments of a linear combination of the

components of a multivariate normal random vector (Tong, 1990, p. 33, Corollary

3.3.3)

Let:

• X ∼ Normald(µ, ΣΣ) partitioned as in (4.126);

• C1 and C2 be two m× k and m× (d− k) real matrices, respectively.

Then

Y = C1 X1 + C2 X2 ∼ Normalm(µ
Y
, ΣΣY ), (4.135)

where the mean vector and the covariance matrix of Y are given by

µ
Y

= C1 µ
1
+ C2 µ

2
(4.136)

ΣΣY = C1 ΣΣ11 C2
1 + C2 ΣΣ22 C2

1 + C1 ΣΣ12 C2
2 + C2 ΣΣ21 C2

1 , (4.137)

respectively. •
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The result that follows has already been proved in Chapter 3 and is a particular case

of Theorem 4.193.

Corollary 4.192 — Correlation and independence in a bivariate normal setting

(Tong, 1990, p. 8, Theorem 2.1.1)

Let X = (X1, X2) ∼ Normal2(µ, ΣΣ). Then X1 and X2 are independent iff ρ = 0. •

In general, r.v. may be uncorrelated but highly dependent. But if a random vector

has a multivariate normal distribution then any two or more of its components that are

uncorrelated are independent.

Theorem 4.193 — Correlation and independence in a multivariate normal

setting (Tong, 1990, p. 31, Theorem 3.3.2)

Let X ∼ Normald(µ, ΣΣ) partitioned as in (4.126). Then X1 and X2 are independent

random vectors iff ΣΣ12 = ΣΣ212 = 0k×(d−k). •

Corollary 4.194 — Linear combination of independent multivariate normal

random vectors (Tong, 1990, p. 33, Corollary 3.3.4)

Let X1, . . . , XN be independent Normald(µi
, ΣΣi), i = 1, . . . , N , random vectors. Then

Y =
N∑

i=1

ci X i ∼ Normald

(
N∑

i=1

ci µi
,

N∑

i=1

c2
i ΣΣi

)
. (4.138)

•

Proposition 4.195 — Independence between the sample mean vector and

covariance matrix (Tong, 1990, pp. 47–48)

Let:

• N be a positive integer;

• X1, . . . , XN be i.i.d. random vectors with a common Normald(µ, ΣΣ) distribution,

such that ΣΣ is positive definite;

• X̄N = 1
N

∑N
t=1 X t = (X̄1, . . . , X̄d) denote the sample mean vector, where

X̄i = 1
N

∑N
t=1 Xit and Xit the ith component of X t;

• SN = [Sij]i,j=1,...,d denote the sample covariance matrix, where

Sij = 1
N−1

∑N
t=1(Xit − X̄i)(Xjt − X̄j).

Then X̄N and SN are independent. •
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Definition 4.196 — Mixed (central) moments

Let:

• X = (X1, . . . , Xd) be a random d−vector;

• r1, . . . , rd ∈ IN .

Then:

• the mixed moment of order (r1, . . . , rd) of X is given by

E [Xr1
1 × . . .×Xrd

d ] , (4.139)

and is also called a (
∑d

i=1 ri)th order moment of X;39

• the mixed central moment of order (r1, . . . , rd) of X is defined as

E {[X1 − E(X1)]
r1 × . . . [Xd − E(Xd)]

rd} . (4.140)

•

The Isserlis’ theorem is a formula that allows one to compute mixed moments of the

multivariate normal distribution with null mean vector40 in terms of the entries of its

covariance matrix.

Remarks 4.197 — Isserlis’ theorem (http://en.wikipedia.org/wiki/Isserlis’ theorem)

• In his original paper from 1918, Isserlis considered only the fourth-order moments,

in which case the formula takes appearance

E(X1X2X3X4) = E(X1X2)× E(X3X4) + E(X1X3)× E(X2X4)

+E(X1X4)× E(X2X3), (4.141)

which can be written in terms of the covariances: σ12 × σ34 + σ13 × σ24 + σ14 × σ23.

It also added that if (X1, . . . , X2n) is a zero mean multivariate normal random vector,

then

E(X1 . . . X2n−1) = 0 (4.142)

E(X1 . . . X2n) =
∑ ∏

E(XiXj), (4.143)

39See for instance http://en.wikipedia.org/wiki/Multivariate normal distribution.
40Or mixed central moments of the difference between a multivariate normal random vector X and its

mean vector.

210



where the notation
∑ ∏

means summing over all distinct ways of partitioning

X1, . . . , X2n into pairs.

• This theorem is particularly important in particle physics, where it is known as

Wick’s theorem.

• Another applications include the analysis of portfolio returns, quantum field theory,

generation of colored noise, etc. •

Theorem 4.198 — Isserlis’ theorem

(http://en.wikipedia.org/wiki/Multivariate normal distribution)

Let:

• X = (X1, . . . , Xd) ∼ Normald(µ, ΣΣ);

• E
[∏d

i=1(Xi − µi)ri

]
be the mixed central moment of order (r1, . . . , rd) of X;

• k =
∑d

i=1 ri.

Then:

• if k is odd (i.e. k = 2n− 1, n ∈ IN)

E

[
d∏

i=1

(Xi − µi)
ri

]
= 0; (4.144)

• if k is even (i.e. k = 2n, n ∈ IN)

E

[
d∏

i=1

(Xi − µi)
ri

]
=

∑ ∏
σij, (4.145)

where the
∑ ∏

is taken over all allocations of the set {1, 2, . . . , n} into n (unordered)

pairs, that is, if you have a k = 2n = 6th order central moment, you will be summing

the products of n = 3 covariances. •
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Exercise 4.199 — Isserlis’ theorem

Let X = (X1, . . . , X4) ∼ Normal4(0, ΣΣ = [σij]). Prove that

(a) E(X4
i ) = 3σ2

ii, i = 1, . . . , 4,

(b) E(X3
i Xj) = 3σiiσij, i, j = 1, . . . , 4,

(c) E(X2
i X2

j ) = σiiσjj + 2σ2
ij, i, j = 1, . . . , 4,

(d) E(X2
i XjXl) = σiiσjl + 2σijσil, i, j, l = 1, . . . , 4,

(e) E(XiXjXlXn) = σijσlm + σilσjn + σinσjl, i, j, l, n = 1, . . . , 4

(http://en.wikipedia.org/wiki/Isserlis’ theorem). •

In passing from univariate to multivariate distributions, some essentially new features

require our attention: these features are connected not only with relations among sets of

variables including covariance and correlation, but also regressions (conditional expected

values) and, generally, conditional distributions (Johnson and Kotz, 1969, p. 280).

Theorem 4.200 — Conditional distributions and regressions in the bivariate

normal setting (Tong, 1990, p. 8, Theorem 2.1.1)

Let X = (X1, X2) be distributed according to a bivariate normal distribution with

parameters

µ =

[
µ1

µ2

]
and ΣΣ =

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
=

[
σ11 σ12

σ21 σ22

]
. (4.146)

If |ρ| < 1 then

X1|{X2 = x2} ∼ Normal

(
µ1 +

ρσ1

σ2
(x2 − µ2), σ

2
1(1− ρ2)

)
, (4.147)

i.e.

X1|{X2 = x2} ∼ Normal
(
µ1 + σ12 σ−1

22 (x2 − µ2), σ11 − σ12 σ−1
22 σ21

)
. (4.148)

•

Exercise 4.201 — Conditional distributions and regressions in the bivariate

normal setting

Prove that (4.147) and (4.148) are equivalent. •
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The following figure41 shows the conditional distribution of Y |{X = x0} of a random

vector (X, Y ) with a bivariate normal distribution:

The inverse Mills ratio is the ratio of the probability density function over the

cumulative distribution function of a distribution and corresponds to a specific conditional

expectation, as stated below.

Definition 4.202 — Inverse Mills’ ratio

(http://en.wikipedia.org/wiki/Inverse Mills ratio; Tong, 1990, p. 174)

Let X = (X1, X2) be a bivariate normal random vector with zero means, unit variances

and correlation coefficient ρ. Then the conditional expectation

E(X1|{X2 > x2}) = ρ
φ(x2)

Φ(−x2)
(4.149)

is often called the inverse Mills’ ratio. •

Remark 4.203 — Inverse Mills’ ratio

(http://en.wikipedia.org/wiki/Inverse Mills ratio)

A common application of the inverse Mills’ ratio arises in regression analysis to take

account of a possible selection bias. •

Exercise 4.204 — Conditional distributions and the inverse Mills’ ratio in the

bivariate normal setting

Assume that X1 represents the log-dose of insuline that has been administrated and X2

the decrease in blood sugar after a fixed amount of time. Also assume that (X1, X2) has

a bivariate normal distribution with mean vector and covariance matrix

µ =

[
0.56

53

]
e ΣΣ =

[
0.027 2.417

2.417 407.833

]
. (4.150)

41Once again taken from http://www.aiaccess.net/English/Glossaries/GlosMod/e gm multinormal distri.htm.
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(a) Obtain the probability that the decrease in blood sugar exceeds 70, given that log-dose

of insuline that has been administrated is equal to 0.5.

(b) Determine the log-dose of insuline that has to be administrated so that the expected

value of the decrease in blood sugar equals 70.

(c) Obtain the expected value of the decrease in blood sugar, given that log-dose of

insuline that has been administrated exceeds 0.5. •

Theorem 4.205 — Conditional distributions and regressions in the

multivariate normal setting (Tong, 1990, p. 35, Theorem 3.3.4)

Let X ∼ Normald(µ, ΣΣ) partitioned as in (4.126). Then

X1|{X2 = x2} ∼ Normalk
(
µ

1
+ ΣΣ12 ΣΣ−1

22 (x2 − µ
2
), ΣΣ11 − ΣΣ12 ΣΣ−1

22 ΣΣ21

)
. (4.151)

•

Exercise 4.206 — Conditional distributions and regressions in the multivariate

normal setting

Derive (4.148) from (4.151). •
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4.6.8 Multinomial distributions

The genesis and the definition of multinomial distributions follow.

Motivation 4.207 — Multinomial distribution

(http://en.wikipedia.org/wiki/Multinomial distribution)

The multinomial distribution is a generalization of the binomial distribution.

The binomial distribution is the probability distribution of the number of “successes”

in n independent Bernoulli trials, with the same probability of “success” on each trial.

In a multinomial distribution, the analog of the Bernoulli distribution is the categorical

distribution, where each trial results in exactly one of some fixed finite number d of possible

outcomes, with probabilities p1, . . . , pd (pi ∈ [0, 1], i = 1, . . . , d, and
∑d

i=1 pi = 1), and

there are n independent trials. •

Definition 4.208 — Multinomial distribution (Johnson and Kotz, 1969, p. 281)

Consider a series of n independent trials, in each of which just one of d mutually exclusive

events E1, . . . , Ed must be observed, and in which the probability of occurrence of event

Ei is equal to pi for each trial, with, of course, pi ∈ [0, 1], i = 1, . . . , d, and
∑d

i=1 pi = 1.

Then the joint distribution of the r.v. N1, . . . , Nd, representing the numbers of occurrences

of the events E1, . . . , Ed (respectively) in n trials, is defined by

P ({N1 = n1, . . . , Nd = nd}) =
n!

∏d
i=1 ni!

×
d∏

i=1

pni
i , (4.152)

for ni ∈ IN0, i = 1, . . . , d, such that
∑d

i=1 ni = n. The random d−vector N = (N1, . . . , Nd)

is said to have a multinomial distribution with parameters n and p = (p1, . . . , pd)) — in

short N ∼ Multinomiald−1(n, p = (p1, . . . , pd)).42 •

Remark 4.209 — Special case of the multinomial distribution (Johnson and Kotz,

1969, p. 281)

Needless to say, we deal with the binomial distribution when d = 2, i.e.,

Multinomial2−1(n, p = (p, 1− p))
d
= Binomial(n, p). (4.153)

Curiously, J. Bernoulli, who worked with the binomial distribution, also used the

multinomial distribution. •
42The index d− 1 follows from the fact that the r.v. Nd (or any other component of N) is redundant:

Nd = n−
∑d−1

i=1 Ni.
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Remark 4.210 — Applications of multinomial distribution

(http://controls.engin.umich.edu/wiki/index.php/Multinomial distributions)

Multinomial systems are a useful analysis tool when a “success-failure” description is

insufficient to understand the system. For instance, in chemical engineering applications,

multinomial distributions are relevant to situations where there are more than two possible

outcomes (temperature = high, med, low).

A continuous form of the multinomial distribution is the Dirichlet distribution

(http://en.wikipedia.org/wiki/Dirichlet distribution).43 •

Exercise 4.211 — Multinomial distribution (p.f.)

In a recent three-way election for a large country, candidate A received 20% of the votes,

candidate B received 30% of the votes, and candidate C received 50% of the votes.

If six voters are selected randomly, what is the probability that there will be exactly

one supporter for candidate A, two supporters for candidate B and three supporters for

candidate C in the sample? (http://en.wikipedia.org/wiki/Multinomial distribution) •

Exercise 4.212 — Multinomial distribution

A runaway reaction occurs when the heat generation from an exothermic reaction exceeds

the heat loss. Elevated temperature increases reaction rate, further increasing heat

generation and pressure buildup inside the reactor. Together, the uncontrolled escalation

of temperature and pressure inside a reactor may cause an explosion. The precursors to a

runaway reaction — high temperature and pressure — can be detected by the installation

of reliable temperature and pressure sensors inside the reactor. Runaway reactions can

be prevented by lowering the temperature and/or pressure inside the reactor before they

reach dangerous levels. This task can be accomplished by sending a cold inert stream into

the reactor or venting the reactor.

Les is a process engineer at the Miles Reactor Company that has been assigned to

work on a new reaction process. Using historical data from all the similar reactions

that have been run before, Les has estimated the probabilities of each outcome occurring

during the new process. The potential outcomes of the process include all permutations

of the possible reaction temperatures (low and high) and pressures (low and high). He

has combined this information into the table below:

43The Dirichlet distribution is in turn the multivariate generalization of the beta distribution.
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Outcome Temperature Pressure Probability

1 high high 0.013

2 high low 0.267

3 low high 0.031

4 low low 0.689

Worried about risk of runaway reactions, the Miles Reactor Company is implementing

a new program to assess the safety of their reaction processes. The program consists

of running each reaction process 100 times over the next year and recording the reactor

conditions during the process every time. In order for the process to be considered safe,

the process outcomes must be within the following limits:

Outcome Temperature Pressure Frequency

1 high high n1 = 0

2 high low n2 ≤ 20

3 low high n3 ≤ 2

4 low low n4 = 100− n1− n2− n3

Help Les predict whether or not the new process is safe by

answering the following question: “What is the probability that the

new process will meet the specifications of the new safety program?”

(http://controls.engin.umich.edu/wiki/index.php/Multinomial distributions). •

Remark 4.213 — Multinomial expansion (Johnson and Kotz, 1969, p. 281)

If we recall the multinomial theorem44 then the expression of P ({N1 = n1, . . . , Nd = nd})
can be regarded as the coefficient of

∏d
i=1 tni

i in the multinomial expansion of

(t1 p1 + . . . + td pd)
n =

∑

(n1,...,nd)

P ({N1 = n1, . . . , Nd = nd})×
d∏

i=1

tni
i , (4.155)

where the summation is taken over all (n1, . . . , nd) ∈ {(m1, . . . ,md) ∈ INk
0 :

∑d
i=1 mi = n}

and N ∼ Multinomiald−1(n, p = (p1, . . . , pd)). •

44For any positive integer d and any nonnegative integer n, we have

(x1 + . . . + xd)n =
∑

(n1,...,nd)

n!
∏d

i=1 ni!
×

d∏

i=1

xni
i , (4.154)

where the summation is taken over all d−vectors of nonnegative integer indices n1, . . . , nd such that the
sum of all ni is n. As with the binomial theorem, quantities of the form 00 which appear are taken to be
equal 1. See http://en.wikipedia.org/wiki/Multinomial theorem for more details.
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Definition 4.214 — Mixed factorial moments

Let:

• X = (X1, . . . , Xd) be a random d−vector;

• r1, . . . , rd ∈ IN .

Then the mixed factorial moment of order (r1, . . . , rd) of X is equal to

E
[
X(r1)

1 × . . .×X(rd)
d

]

= E {[X1(X1 − 1) . . . (X1 − r1 + 1)]× . . .× [Xd(Xd − 1) . . . (Xd − rd + 1)]} . (4.156)

•

Marginal moments and marginal central moments, and covariances and correlations

between the components of a random vector can be written in terms of mixed

(central/factorial) moments. This is particularly useful when we are dealing with the

multinomial distribution.

Exercise 4.215 — Writing the variance and covariance in terms of mixed

(central/factorial) moments

Write

(a) the marginal variance of Xi and

(b) cov(Xi, Xj)

in terms of mixed factorial moments. •

Proposition 4.216 — Mixed factorial moments of a multinomial distribution

(Johnson and Kotz, 1969, p. 284)

Let:

• N = (N1, . . . , Nd) ∼ Multinomiald−1(n, p = (p1, . . . , pd));

• r1, . . . , rd ∈ IN .

Then the mixed factorial moment of order (r1, . . . , rd) is equal to

E
[
N (r1)

1 × . . .×N (rd)
d

]
= n(

Pd
i=1 ri) ×

d∏

i=1

pri
i , (4.157)

where n(
Pd

i=1 ri) = n!
(n−

Pd
i=1 ri))!

. •
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From the general formula (4.157), we find the expected value of Ni, and the covariances

and correlations between Ni and Nj.

Corollary 4.217 — Mean vector, covariance and correlation matrix

of a multinomial distribution (Johnson and Kotz, 1969, p. 284;

http://en.wikipedia.org/wiki/Multinomial distribution)

The expected number of times the event Ei was observed over n trials, Ni, is

E(Ni) = n pi, (4.158)

for i = 1, . . . , d.

The covariance matrix is as follows. Each diagonal entry is the variance

V (Ni) = n pi (1− pi), (4.159)

for i = 1, . . . , d. The off-diagonal entries are the covariances

cov(Ni, Nj) = −n pi pj, (4.160)

for i, j = 1, . . . , d, i &= j. All covariances are negative because, for fixed n, an increase in

one component of a multinomial vector requires a decrease in another component. The

covariance matrix is a d× d positive-semidefinite matrix of rank d− 1.

The off-diagonal entries of the corresponding correlation matrix are given by

corr(Ni, Nj) = −
√

pi pj

(1− pi) (1− pj)
, (4.161)

for i, j = 1, . . . , d, i &= j.45 Note that the number of trials (n) drops out of the expression

of corr(Ni, Nj). •

Exercise 4.218 — Mean vector, covariance and correlation matrices of a

multinomial distribution

Use (4.157) to derive the entries of the mean vector, and the covariance and correlation

matrices of a multinomial distribution. •

Exercise 4.219 — Mean vector and correlation matrix of a multinomial

distribution

Resume Exercise 4.211 and calculate the mean vector and the correlation matrix.

Comment the values you have obtained for the off-diagonal entries of the correlation

matrix. •
45The diagonal entries of the correlation matrix are obviously equal to 1.
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Proposition 4.220 — Marginal distributions in a multinomial setting (Johnson

and Kotz, 1969, p. 281)

The marginal distribution of any Ni, i = 1, . . . , d, is Binomial with parameters n and pi.

I.e.

Ni ∼ Binomial(n, pi). (4.162)

for i = 1, . . . , d. •

(4.162) is a special case of a more general result.

Proposition 4.221 — Joint distribution of a subset of r.v. from a multinomial

distribution (Johnson and Kotz, 1969, p. 281)

The joint distribution of any subset of s (s = 1, . . . , d − 1) r.v., say Na1 , . . . , Nas of the

Nj’s, is also multinomial with an (s + 1)th r.v. equal to Nas+1 = n−
∑s

i=1 Nai . In fact

P
({

Na1 = na1 , . . . , Nas = nas , Nas+1 = n−
∑s

i=1 nai

})

= n!Qs
i=1 nai !×(n−

Ps
i=1 nai )!

×
∏s

i=1

[
p

nai
ai ×

(
1−

∑s
j=1 paj

)n−
Ps

j=1 naj

]
,

(4.163)

for nai ∈ IN0, i = 1, . . . , s such that
∑s

i=1 nai ≤ n. •

Proposition 4.222 — Some regressions and conditional distributions in the

multinomial distribution setting (Johnson and Kotz, 1969, p. 284)

• The regression of Ni on Nj (j &= i) is linear:

E(Ni|Nj) = (n−Nj)×
pi

1− pj
. (4.164)

• The multiple regression of Ni on Nb1 , . . . , Nbr (bj &= i, j = 1, . . . , r) is also linear:

E(Ni|{Nb1 , . . . , Nbr}) =

(
n−

r∑

j=1

Nbj

)
× pi

1−
∑r

j=1 pbj

. (4.165)

• The random vector (Na1 , . . . Nas) conditional on a event referring to any subset of the

remaining Nj’s, say {Nb1 = nb1 , . . . , Nbr = nbr}, has also a multinomial distribution.

Its p.f. can be found in Johnson and Kotz (1969, p. 284). •
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Remark 4.223 — Conditional distributions and the simulation of a

multinomial distribution (Gentle, 1998, p. 106)

The following conditional distributions taken from Gentle (1998, p. 106) suggest a

procedure to generate pseudo-random vectors with a multinomial distribution:

• N1 ∼ Binomial(n, p1);

• N2|{N1 = n1} ∼ Binomial
(
n− n1,

p2

1−p1

)
;

• N3|{N1 = n1, N2 = n2} ∼ Binomial
(
n− n1 − n2,

p3

1−p1−p2

)
;

• . . .

• Nd−1|{N1 = n1, . . . , Nd−2 = nd−2} ∼ Binomial
(
n−

∑d−2
i=1 ni,

pd−1

1−
Pd−2

i=1 pi

)
;

• Nd|{N1 = n1, . . . , Nd−1 = nd−1}
d
= n−

∑d−1
i=1 ni.

Thus, we can generate a pseudo-random vector from a multinomial distribution

by sequentially generating independent pseudo-random numbers from the binomial

conditional distributions stated above.

Gentle (1998, p. 106) refers other ways of generating pseudo-random vectors from a

multinomial distribution. •

Remark 4.224 — Speeding up the simulation of a multinomial distribution

(Gentle, 1998, p. 106)

To speed up the generation process, Gentle (1998, p. 106) recommends that we previously

order the probabilities p1, . . . , pd in descending order — thus, getting the vector of

probabilities (p(d), . . . , p(1)), where p(d) = maxi=1,...,d pi, . . ., and p(1) = mini=1,...,d pi. Then

we generate d pseudo-random numbers with the following binomial distributions with

parameters

1. n and the largest probability of “success” p(d), say n(d),

2. n− n(d) and
p(d−1)

1−p(d−1)
, say n(d−1),

3. n− n(d) − n(d−1) and
p(d−2)

1−p(d−1)−p(d−2)
, say n(d−1),

4. . . .

5. n−
∑d−2

i=1 n(d+1−i) and
p(2)

1−
Pd−2

i=1 p(d+1−i)
, say n(2),
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and finally

6. assign n(1) = n−
∑d−1

i=1 n(d+1−i). •

Remark 4.225 — Speeding up the simulation of a multinomial distribution

(http://en.wikipedia.org/wiki/Multinomial distribution)

Assume the parameters p1, . . . pd are already sorted descendingly (this is only to speed up

computation and not strictly necessary). Now, for each trial, generate a pseudo-random

number from U ∼ Uniform(0, 1), say u. The resulting outcome is the event Ej where

j = arg min
j′=1,...,k

(
j′∑

i=1

pi ≥ u

)

= F−1
Z (u), (4.166)

with Z an integer r.v. that takes values 1, . . . , d, with probabilities p1, . . . pd, respectively.

This is a sample for the multinomial distribution with n = 1.

The absolute frequencies of events E1, . . . , Ed, resulting from n independent repetitions

of the procedure we just described, constitutes a pseudo-random vector from a multinomial

distribution with parameters n and p = (p1, . . . pd). •
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Chapter 5

Convergence concepts and classical

limit theorems

Throughout this chapter we assume that {X1, X2, . . .} is a sequence of r.v. and X is a

r.v., and all of them are defined on the same probability space (Ω,F , P ).

Stochastic convergence formalizes the idea that a sequence of r.v. sometimes is

expected to settle into a pattern.1 The pattern may for instance be that:

• there is a convergence of Xn(ω) in the classical sense to a fixed value X(ω), for each

and every event ω;

• the probability that the distance between Xn from a particular r.v. X exceeds any

prescribed positive value decreases and converges to zero;

• the series formed by calculating the expected value of the (absolute or quadratic)

distance between Xn and X converges to zero;

• the distribution of Xn may “grow” increasingly similar to the distribution of a

particular r.v. X.

Just as in real analysis, we can distinguish among several types of convergence

(Rohatgi, 1976, p. 240). Thus, in this chapter we investigate modes of convergence of

sequences of r.v.:

• almost sure convergence (
a.s.→);

• convergence in probability (
P→);

1See http://en.wikipedia.org/wiki/Convergence of random variables.

223

• convergence in quadratic mean or in L2 (
q.m.→ );

• convergence in L1 or in mean (
L1

→);

• convergence in distribution (
d→).

It is important for the reader to be familiarized with all these modes of convergence,

the way they can be related and with the applications of such results and understand

their considerable significance in probability, statistics and stochastic processes.

5.1 Modes of convergence

The first four modes of convergence (
∗→, where ∗ = a.s., P, q.m., L1) pertain to the

sequence of r.v. and to X as functions of Ω, while the fifth (
d→) is related to the convergence

of d.f. (Karr, 1993, p. 135).

5.1.1 Convergence of r.v. as functions on Ω

Motivation 5.1 — Almost sure convergence (Karr, 1993, p. 135)

Almost sure convergence — or convergence with probability one — is the probabilistic

version of pointwise convergence known from elementary real analysis. •

Definition 5.2 — Almost sure convergence (Karr, 1993, p. 135; Rohatgi, 1976, p.

249)

The sequence of r.v. {X1, X2, . . .} is said to converge almost surely to a r.v. X if

P

({
w : lim

n→+∞
Xn(ω) = X(ω)

})
= 1. (5.1)

In this case we write Xn
a.s.→ X (or Xn → X with probability 1). •

Remark 5.3 — Almost sure convergence

Equation (5.1) does not mean that limn→+∞ P ({w : Xn(ω) = X(ω)}) = 1. •

Exercise 5.4 — Almost sure convergence

Let {X1, X2, . . .} be a sequence of independent r.v. such that Xn ∼ Bernoulli( 1
n), n ∈ IN .

Prove that Xn &
a.s.→ 0, by deriving P ({Xn = 0, for every m ≤ n ≤ n0}) and observing

that this probability does not converge to 1 as n0 → +∞ for all values of m (Rohatgi,

1976, p. 252, Example 9). •
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Motivation 5.5 — Convergence in probability (Karr, 1993, p. 135;

http://en.wikipedia.org/wiki/Convergence of random variables)

Convergence in probability essentially means that the probability that |Xn −X| exceeds

any prescribed, strictly positive value converges to zero.

The basic idea behind this type of convergence is that the probability of an “unusual”

outcome becomes smaller and smaller as the sequence progresses. •

Definition 5.6 — Convergence in probability (Karr, 1993, p. 136; Rohatgi, 1976, p.

243)

The sequence of r.v. {X1, X2, . . .} is said to converge in probability to a r.v. X — denoted

by Xn
P→ X — if

lim
n→+∞

P ({|Xn −X| > ε}) = 0, (5.2)

for every ε > 0. •

Remarks 5.7 — Convergence in probability (Rohatgi, 1976, p. 243;

http://en.wikipedia.org/wiki/Convergence of random variables)

• The definition of convergence in probability says nothing about the convergence

of r.v. Xn to r.v. X in the sense in which it is understood in real analysis. Thus,

Xn
P→ X does not imply that, given ε > 0, we can find an N such that |Xn−X| < ε,

for n ≥ N .

Definition 5.6 speaks only of the convergence of the sequence of probabilities

P (|Xn −X| > ε) to zero.

• Formally, Definition 5.6 means that

∀ε, δ > 0, ∃Nδ : P ({|Xn −X| > ε}) < δ, ∀n ≥ Nδ. (5.3)

• The concept of convergence in probability is used very often in statistics. For

example, an estimator is called consistent if it converges in probability to the

parameter being estimated.

• Convergence in probability is also the type of convergence established by the weak

law of large numbers. •
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Example 5.8 — Convergence in probability

Let {X1, X2, . . .} be a sequence of i.i.d. r.v. such that Uniform(0, θ), where θ > 0.

(a) Check if X(n) = maxi=1,...,n Xi
P→ θ.

• R.v.

Xi
i.i.d.∼ X, i ∈ IN

X ∼ Uniform(0, θ)

• D.f. of X

FX(x) =






0, x < 0
x
θ , 0 ≤ x ≤ θ

1, x > θ

• New r.v.

X(n) = maxi=1,...,n Xi

• D.f. of X(n)

FX(n)
(x) = [FX(x)]n

=






0, x < 0(
x
θ

)n
, 0 ≤ x ≤ θ

1, x > θ

• Checking the convergence in probability X(n)
P→ θ

Making use of the definition of this type of convergence and capitalizing on the

d.f. of X(n), we get, for every ε > 0:

lim
n→+∞

P
(
|X(n) − θ| > ε

)
= 1− lim

n→+∞
P

(
θ − ε ≤ X(n) ≤ θ + ε

)

= 1− lim
n→+∞

[
FX(n)

(θ + ε)− FXn)
(θ − ε)

]

=






1− limn→+∞

[
FX(n)

(θ)− FX(n)
(θ − ε)

]
,

0 < ε < θ

1− limn→+∞ FX(n)
(θ), ε ≥ θ

=






1− limn→+∞
[
1−

(
θ−ε
θ

)n]

= 1− (1− 0), 0 < ε < θ

1− 1, ε ≥ θ

= 0.
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• Conclusion

X(n)
P→ θ.

Interestingly enough, X(n) is the ML estimator of θ and also a consistent

estimator of θ (X(n)
P→ θ). However, E[X(n)] = nθ/(n + 1) &= θ, i.e. X(n) is

a biased estimator of θ.

(b) Prove that X(1:n) = mini=1,...,n Xi
P→ 0.

• New r.v.

X(1:n) = mini=1,...,n Xi

• D.f. of X(1:n)

FX(1:n)
(x) = 1− [1− FX(x)]n

=






0, x < 0

1−
(
1− x

θ

)n
, 0 ≤ x ≤ θ

1, x > θ

• Checking the convergence in probability X(1:n)
P→ 0

For every ε > 0, we have

lim
n→+∞

P
(
|X(1:n) − 0| > ε

)
= 1− lim

n→+∞

[
FX(1:n)

(ε)− FX(1:n)
(−ε)

]

= 1− lim
n→+∞

FX(1:n)
(ε)

=






1− limn→+∞
[
1−

(
1− ε

θ

)n]

= 1− (1− 0), 0 < ε < θ

1− limn→+∞ FX(1:n)
(θ) = 1− 1, ε ≥ θ

= 0.

• Conclusion

X(1:n)
P→ 0. •

Remark 5.9 — Chebyshev(-Bienaymé)’s inequality and convergence in

probability

Chebyshev(-Bienaymé)’s inequality can be useful to prove that some sequences of r.v.

converge in probability to a degenerate r.v. (i.e. a constant). •
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Example 5.10 — Chebyshev(-Bienaymé)’s inequality and convergence in

probability

Let {X1, X2, . . .} be a sequence of r.v. such that Xn ∼ Gamma(n, n), n ∈ IN . Prove that

Xn
P→ 1, by making use of Chebyshev(-Bienaymé)’s inequality.

• R.v.

Xn ∼ Gamma(n, n), n ∈ IN

E(Xn) = n
n = 1

V (Xn) = n
n2 = 1

n

• Checking the convergence in probability Xn
P→ 1

The application of the definition of this type of convergence and Chebyshev(-

Bienaymé)’s inequality leads to

lim
n→+∞

P (|Xn − 1| > ε) = lim
n→+∞

P

(
|Xn − E(Xn)| ≥ ε√

V (Xn)

√
V (Xn)

)

≤ lim
n→+∞

1
(

ε√
1
n

)2

=
1

ε2
lim

n→+∞

1

n
= 0,

for every ε > 0.

• Conclusion

Xn
P→ 1. •

Exercise 5.11 — Chebyshev(-Bienaymé)’s inequality and convergence in

probability

Prove that X(n) = maxi=1,...,n Xi, where Xi ∼i.i.d. Uniform(0, θ), is a consistent estimator

of θ > 0, by using Chebyshev(-Bienaymé)’s inequality and the fact that E[X(n)] = n
n+1 θ

and V [X(n)] = n
(n+2)(n+1)2 θ2. •
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Exercise 5.12 — Convergence in probability

Let {X1, X2, . . .} be a sequence of r.v. such that Xn ∼ Bernoulli( 1
n), n ∈ IN .

(a) Show that Xn
P→ 0, by obtaining P ({|Xn| > ε}), for 0 < ε < 1 and ε ≥ 1 (Rohatgi,

1976, pp. 243–244, Example 5).

(b) Verify that E(Xk
n) → E(Xk), where k ∈ IN and X

d
= 0. •

Exercise 5.13 — Convergence in probability does not imply convergence of

kth. moments

Let {X1, X2, . . .} be a sequence of r.v. such that Xn
d
= n× Bernoulli( 1

n), n ∈ IN , i.e.

P ({Xn = x}) =






1− 1
n , x = 0

1
n , x = n

0, otherwise.

(5.4)

Prove that Xn
P→ 0, however E(Xk

n) &→ E(Xk), where k ∈ IN and the r.v. X is degenerate

at 0 (Rohatgi, 1976, p. 247, Remark 3). •

Motivation 5.14 — Convergence in quadratic mean and in L1

We have just seen that convergence in probability does not imply the convergence of

moments, namely of orders 2 or 1. •

Definition 5.15 — Convergence in quadratic mean or in L2 (Karr, 1993, p. 136)

Let X, X1, X2, . . . belong to L2. Then the sequence of r.v. {X1, X2, . . .} is said to converge

to X in quadratic mean (or in L2) — denoted by Xn
q.m.→ X (or Xn

L2

→ X) — if

lim
n→+∞

E
[
(Xn −X)2

]
= 0. (5.5)

•

Exercise 5.16 — Convergence in quadratic mean

Let {X1, X2, . . .} be a sequence of r.v. such that Xn ∼ Bernoulli
(

1
n

)
.

Prove that Xn
q.m.→ X, where the r.v. X is degenerate at 0 (Rohatgi, 1976, p. 247,

Example 6). •

Exercise 5.17 — Convergence in quadratic mean (bis)

Let {X1, X2, . . .} be a sequence of r.v. with P
({

Xn = ± 1
n

} )
= 1

2 .

Prove that Xn
q.m.→ X, where the r.v. X is degenerate at 0 (Rohatgi, 1976, p. 252,

Example 11). •
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Exercise 5.18 — Convergence in quadratic mean implies convergence of 2nd.

moments (Karr, 1993, p. 158, Exercise 5.6(a))

Show that Xn
q.m.→ X ⇒ E(X2

n) → E(X2) (Rohatgi, 1976, p. 248, proof of Theorem 8). •

Exercise 5.19 — Convergence in quadratic mean of partial sums (Karr, 1993, p.

159, Exercise 5.11)

Let X1, X2, . . . be pairwise uncorrelated r.v. with mean zero and partial sums

Sn =
∑n

i=1 Xi.

Prove that if there is a constant c such that V (Xi) ≤ c, for every i, then
Sn
nα

q.m.→ 0 for all α > 1
2 . •

Definition 5.20 — Convergence in mean or in L1 (Karr, 1993, p. 136)

Let X, X1, X2, . . . belong to L1. Then the sequence of r.v. {X1, X2, . . .} is said to converge

to X in mean (or in L1) — denoted by Xn
L1

→ X — if

lim
n→+∞

E (|Xn −X|) = 0. (5.6)

•

Exercise 5.21 — Convergence in mean implies convergence of 1st. moments

(Karr, 1993, p. 158, Exercise 5.6(b))

Prove that Xn
L1

→ X ⇒ E(Xn) → E(X). •
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5.1.2 Convergence in distribution

Motivation 5.22 — Convergence in distribution

(http://en.wikipedia.org/wiki/Convergence of random variables)

Convergence in distribution is very frequently used in practice, most often it arises from

the application of the central limit theorem. •

Definition 5.23 — Convergence in distribution (Karr, 1993, p. 136; Rohatgi, 1976,

pp. 240–1)

The sequence of r.v. {X1, X2, . . .} converges to X in distribution — denoted by Xn
d→ X

— if

lim
n→+∞

FXn(x) = FX(x), (5.7)

for all x at which FX is continuous. •

Remarks 5.24 — Convergence in distribution

(http://en.wikipedia.org/wiki/Convergence of random variables; Karr, 1993, p. 136;

Rohatgi, 1976, p. 242)

• With this mode of convergence, we increasingly expect to see the next r.v. in a

sequence of r.v. becoming better and better modeled by a given d.f., as seen in

exercises 5.25 and 5.26.

• It must be noted that it is quite possible for a given sequence of d.f. to converge to

a function that is not a d.f., as shown in Example 5.27 and Exercise 5.28.

• The requirement that only the continuity points of FX should be considered is

essential, as we shall see in exercises 5.29 and 5.30.

• The convergence in distribution does not imply the convergence of corresponding

p.(d.)f., as shown in Exercise 5.32. Sequences of absolutely continuous r.v. that

converge in distribution to discrete r.v. (and vice-versa) are obvious illustrations, as

shown in examples 5.31 and 5.33. •

Exercise 5.25 — Convergence in distribution

Let X1, X2, . . . , Xn be i.i.d. r.v. with common p.d.f.

f(x) =

{
1
θ , 0 < x < θ

0, otherwise,
(5.8)
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where 0 < θ < +∞, and X(n) = max1,...,n Xi.

Show that X(n)
d→ θ (Rohatgi, 1976, p. 241, Example 2). •

Exercise 5.26 — Convergence in distribution (bis)

Let:

• {X1, X2, . . .} be a sequence of r.v. such that Xn ∼ Bernoulli(pn), n = 1, 2, . . .;

• X ∼ Bernoulli(p).

Prove that Xn
d→ X iff pn → p. •

Example 5.27 — A sequence of d.f. converging to a non d.f. (Murteira, 1979, pp.

330–331)

Let {X1, X2, . . .} be a sequence of r.v. with d.f.

FXn(x) =






0, x < −n
x+n
2n , −n ≤ x < n

1, x ≥ n.

(5.9)

Please note that limn→+∞ FXn(x) = 1
2 , x ∈ IR, as suggested by the graph below with some

terms of the sequence of d.f., for n = 1, 103, 106 (from top to bottom):

!1000 !500 500 1000

0.2

0.4

0.6

0.8

1.0

Consequently, the limit of the sequence of d.f. is not itself a d.f. •

Exercise 5.28 — A sequence of d.f. converging to a non d.f.

Consider the sequence of d.f.

FXn(x) =

{
0, x < n

1, x ≥ n,
(5.10)

where FXn(x) is the d.f. of the r.v. Xn degenerate at x = n.

Verify that FXn(x) converges to a function (that is identically equal to 0!!!) which is

not a d.f. (Rohatgi, 1976, p. 241, Example 1). •
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Exercise 5.29 — The requirement that only the continuity points of FX should

be considered is essential

Let Xn ∼ Uniform
(

1
2 −

1
n , 1

2 + 1
n

)
and X be a r.v. degenerate at 1

2 .

(a) Prove that Xn
d→ X (Karr, 1993, p. 142).

(b) Verify that FXn

(
1
2

)
= 1

2 for each n, and these values do not converge to FX

(
1
2

)
= 1.

Is there any contradiction with the convergence in distribution previously proved?

(Karr, 1993, p. 142.) •

Exercise 5.30 — The requirement that only the continuity points of FX should

be considered is essential (bis)

Let Xn ∼ Uniform
(
0, 1

n

)
and X a r.v. degenerate at 0.

Prove that Xn
d→ X, even though FXn(0) = 0, for all n, and FX(0) = 1,

that is, the convergence of d.f. fails at the point x = 0 where FX is discontinuous

(http://en.wikipedia.org/wiki/Convergence of random variables). •

Example 5.31 — Convergence in distribution does not imply convergence of

corresponding p.(d.)f. (Murteira, 1979, p. 331)

Let {X1, X2, . . .} be a sequence of r.v. such that Xn ∼ Normal
(
0, 1

n2

)
.

An analysis of the representation of some terms of the sequence of d.f. (e.g. n =

1, 10, 50, from left to right in the following graph) and the notion of convergence in

distribution leads us to conclude that Xn
d→ X, where X

d
= 0, even though

lim
n→+∞

FXn(0) = lim
n→+∞

Φ



0− 0√
1
n2



 = Φ(0) =
1

2

!3 !2 !1 1 2 3

0.2

0.4

0.6

0.8

1.0
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and

lim
n→+∞

FXn(x) =






0, x < 0
1
2 , x = 0

1, x > 0

is not a a d.f. (it is not left- or right-continuous).

Note that X
d
= 0, therefore the d.f. of the limit of the sequence of r.v. {X1, X2, . . .} is

the Heaviside function, i.e. FX(x) = I[0,+∞)(x). •

Exercise 5.32 — Convergence in distribution does not imply convergence of

corresponding p.(d.)f.

Let {X1, X2, . . .} be a sequence of r.v. with p.f.

P ({Xn = x}) =

{
1, x = 2 + 1

n

0, otherwise.
(5.11)

(a) Prove that Xn
d→ X, where X a r.v. degenerate at 2.

(b) Verify that none of the p.f. P ({Xn = x}) assigns any probability to the point x = 2,

for all n, and that P ({Xn = x}) → 0 for all x (Rohatgi, 1976, p. 242, Example 4). •

Example 5.33 — A sequence of discrete r.v. that converges in distribution to

an absolutely continuous r.v. (Rohatgi, 1976, p. 256, Exercise 10)

Let:

• {X1, X2, . . .} be a sequence of r.v. such that Xn ∼ Geometric
(

λ
n

)
, where n > λ > 0;

• {Yn, n ∈ IN} a sequence of r.v. such that Yn = Xn
n .

Show that Yn
d→ Exponential (λ).

• R.v.

Xn ∼ Geometric
(

λ
n

)
, n ∈ IN

• P.f. of Xn and Yn

P (Xn = x) =
(
1− λ

n

)x−1 × λ
n , x = 1, 2, . . .

P (Yn = y) = P (Xn = ny) =
(
1− λ

n

)ny−1 × λ
n , y = 1

n , 2
n , . . .
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• D.f. of Yn

FYn(y) = FXn(ny)

=

{
0, y < 1

n∑[ny]
x=1 P (Xn = x), y ≥ 1

n ,

where [ny] represents the integer part of the real number ny and

[ny]∑

x=1

P (Xn = x) =
[ny]−1∑

x=0

(
1− λ

n

)x

× λ

n

= 1−
(

1− λ

n

)[ny]

.

• Checking the convergence in distribution

Let us remind the reader that [ny] = ny − ε, for some ε ∈ [0, 1). Thus:

lim
n→+∞

FYn(y) = 1− lim
n→+∞

(
1− λ

n

)[ny]

= 1− lim
n→+∞

(
1− λ

n

)ny

× lim
n→+∞

(
1− λ

n

)−ε

= 1−
[

lim
n→+∞

(
1− λ

n

)n]y

× 1

= 1− e−λy

= FExponential(λ)(y).

• Conclusion

Yn
d→ Exponential(λ). •

Exercise 5.34 — A sequence of discrete r.v. that converges in distribution to

an absolutely continuous r.v. (bis)

Let {X1, X2, . . .} be a sequence of discrete r.v. such that Xn ∼ Uniform{0, 1, . . . , n}.
Prove that Yn = Xn

n

d→ Uniform(0, 1).2 •

2This result is very important in the generation of pseudo-random numbers from the Uniform(0, 1)
distribution by using computers since these machines “deal” with discrete mathematics.
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The following table condenses the definitions of convergence of sequences of r.v.

Mode of convergence Assumption Defining condition

Xn
a.s.→ X (almost sure) — P ({w : Xn(ω) → X(ω)}) = 1

Xn
P→ X (in probability) — P ({|Xn −X| > ε}) → 0, for all ε > 0

Xn
q.m→ X (in quadratic mean) X, X1, X2, . . . ∈ L2 E

[
(Xn −X)2

]
→ 0

Xn
L1

→ X (in L1) X, X1, X2, . . . ∈ L1 E (|Xn −X|) → 0

Xn
d→ X (in distribution) — FXn(x) → FX(x), at continuity points x of FX

Exercise 5.35 — Modes of convergence and uniqueness of limit (Karr, 1993, p.

158, Exercise 5.1)

Prove that for all five forms of convergence the limit is unique. In particular:

(a) if Xn
∗→ X and Xn

∗→ Y , where ∗ = a.s., P, q.m., L1, then X
a.s.
= Y ;

(b) if Xn
d→ X and Xn

d→ Y , then X
d
= Y ; •

Exercise 5.36 — Modes of convergence and the vector space structure of the

family of r.v. (Karr, 1993, p. 158, Exercise 5.2)

Prove that, for ∗ = a.s., P, q.m., L1,

Xn
∗→ X ⇔ Xn −X

∗→ 0, (5.12)

i.e. the four function-based forms of convergence are compatible with the vector space

structure of the family of r.v. •
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5.1.3 Alternative criteria

The definition of almost sure convergence and its verification are far from trivial. More

tractable criteria have to be stated...

Proposition 5.37 — Relating almost sure convergence and convergence in

probability (Karr, 1993, p. 137; Rohatgi, 1976, p. 249)

Xn
a.s.→ X iff

∀ε > 0, lim
n→+∞

P

({
sup
k≥n

|Xk −X| > ε

})
= 0, (5.13)

i.e.

Xn
a.s.→ X ⇔ Yn = sup

k≥n
|Xk −X| P→ 0. (5.14)

•

Remarks 5.38 — Relating almost sure convergence and convergence in

probability (Karr, 1993, p. 137; Rohatgi, 1976, p. 250, Remark 6)

• Proposition 5.37 states an equivalent form of almost sure convergence that

illuminates its relationship to convergence in probability.

• Xn
a.s.→ 0 means that,

∀ε, η > 0, ∃n0 ∈ IN : P

({
sup
k≥n0

|Xk| > ε

})
< η. (5.15)

Indeed, we can write, equivalently, that

lim
n→+∞

P

(
⋃

k≥n

{|Xk| > ε}
)

= 0, (5.16)

for ε > 0 arbitrary. •

Exercise 5.39 — Relating almost sure convergence and convergence in

probability

Prove Proposition 5.37 (Karr, 1993, p. 137; Rohatgi, 1976, p. 250). •
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Exercise 5.40 — Relating almost sure convergence and convergence in

probability (bis)

Let {X1, X2, . . .} be a sequence of r.v. with P
({

Xn = ± 1
n

} )
= 1

2 .

Prove that Xn
a.s.→ X, where the r.v. X is degenerate at 0, by using (5.16) (Rohatgi,

1976, p. 252). •

Theorem 5.41 — Cauchy criterion (Rohatgi, 1976, p. 270)

Xn
a.s.→ X ⇔ lim

n→+∞
P

({
sup
m

|Xn+m −Xn| ≤ ε

})
= 1, ∀ε > 0. (5.17)

•

Exercise 5.42 — Cauchy criterion

Prove Theorem 5.41 (Rohatgi, 1976, pp. 270–2). •

Definition 5.43 — Complete convergence (Karr, 1993, p. 138)

The sequence of r.v. {X1, X2, . . .} is said to converge completely to X if

+∞∑

n=1

P ({|Xn −X| > ε} ) < +∞, (5.18)

for every ε > 0. •

The next results relate complete convergence, which is stronger than almost sure

convergence, and sometimes more convenient to establish (Karr, 1993, p. 137).

Proposition 5.44 — Relating almost sure convergence and complete

convergence (Karr, 1993, p. 138)

+∞∑

n=1

P ({|Xn −X| > ε} ) < +∞, ∀ε > 0 ⇒ Xn
a.s.→ X. (5.19)

•

Remark 5.45 — Relating almost sure convergence and complete convergence

(Karr, 1993, p. 138)

Xn
P→ X iff the probabilities P ({|Xn −X| > ε} ) converge to zero, while Xn

a.s.→ X if (but

not only if) the convergence of probabilities P ({|Xn −X| > ε} ) is fast enough that their

sum,
∑+∞

n=1 P ({|Xn −X| > ε} ), is finite. •
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Exercise 5.46 — Relating almost sure convergence and complete convergence

Show Proposition 5.44, by using the (1st.) Borel-Cantelli lemma (Karr, 1993, p. 138). •

Theorem 5.47 — Almost sure convergence of a sequence of independent r.v.

(Rohatgi, 1976, p. 265)

Let {X1, X2, . . .} be a sequence of independent r.v. Then

Xn
a.s.→ 0 ⇔

+∞∑

n=1

P ({|Xn| > ε} ) < +∞, ∀ε > 0. (5.20)

•

Exercise 5.48 — Almost sure convergence of a sequence of independent r.v.

(a) Prove Theorem 5.47 (Rohatgi, 1976, pp. 265–6).

(b) Use Theorem 5.47 to solve Exercise 5.40. •

The definition of convergence in distribution is cumbersome because of the proviso

regarding continuity points of the limit d.f. FX . An alternative criterion follows.

Theorem 5.49 — Alternative criterion for convergence in distribution (Karr,

1993, p. 138)

Let C be the set of bounded, continuous functions f : IR → IR. Then

Xn
d→ X ⇔ E[f(Xn)] → E[f(X)], ∀ f ∈ C. (5.21)

•

Remark 5.50 — Alternative criterion for convergence in distribution (Karr,

1993, p. 138)

Theorem 5.49 provides a criterion for convergence in distribution which is superior to the

definition of convergence in distribution in that one needs not to deal with continuity

points of the limit d.f. •

Exercise 5.51 — Alternative criterion for convergence in distribution

Prove Theorem 5.49 (Karr, 1993, pp. 138–139). •

Since in the proof of Theorem 5.49 the continuous functions used to approximate

indicator functions can be taken to be arbitrarily smooth we can add a sufficient condition

that guarantees convergence in distribution.
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Corollary 5.52 — Sufficient condition for convergence in distribution (Karr,

1993, p. 139)

Let:

• k be a fixed non-negative integer;

• C(k) be the space of bounded, k−times uniformly continuously differentiable

functions f : IR → IR.

Then

E[f(Xn)] → E[f(X)], ∀ f ∈ C(k) ⇒ Xn
d→ X. (5.22)

•

The next table summarizes the alternative criteria and sufficient conditions for almost

sure convergence and convergence in distribution of sequences of r.v.

Alternative criterion or sufficient condition Mode of convergence

∀ε > 0, limn→+∞ P
({

supk≥n |Xk −X| > ε
})

= 0 ⇔ Xn
a.s.→ X

Yn = supk≥n |Xk −X| P→ 0 ⇔ Xn
a.s.→ X

limn→+∞ P ({supm |Xn+m −Xn| ≤ ε}) = 1, ∀ε > 0 ⇔ Xn
a.s.→ X

∑+∞
n=1 P ({|Xn −X| > ε} ) < +∞, ∀ ε > 0 ⇒ Xn

a.s.→ X
∑+∞

n=1 P ({|Xn| > ε} ) < +∞, ∀ ε > 0 ⇔ Xn
a.s.→ 0

E[f(Xn)] → E[f(X)], ∀ f ∈ C ⇔ Xn
d→ X

E[f(Xn)] → E[f(X)], ∀ f ∈ C(k) for a fixed k ∈ IN0 ⇒ Xn
d→ X

We should also add that Grimmett and Stirzaker (2001, p. 310) state that if Xn
P→ X

and P ({|Xn| ≤ k}) = 1, for all n and some k, then Xn
Lr

→ X, for all r ≥ 1,3 namely

Xn
q.m.→ X (which in turn implies Xn

L1

→ X).

3Let X, X1, X2, . . . belong to Lr (r ≥ 1). Then the sequence of r.v. {X1, X2, . . .} is said to converge
to X in Lr) — denoted by Xn

Lr

→ X — if limn→+∞E (|Xn −X|r) = 0 (Grimmett and Stirzaker, 2001,
p. 308).
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5.2 Relationships among the modes of convergence

Given the plethora of modes of convergence, it is natural to inquire how they can be

always related or hold true in the presence of additional assumptions (Karr, 1993, pp. 140

and 142).

5.2.1 Implications always valid

Proposition 5.53 — Almost sure convergence implies convergence in

probability (Karr, 1993, p. 140; Rohatgi, 1976, p. 250)

Xn
a.s.→ X ⇒ Xn

P→ X. (5.23)

•

Exercise 5.54 — Almost sure convergence implies convergence in probability

Show Proposition 5.53 (Karr, 1993, p. 140; Rohatgi, 1976, p. 251). •

Proposition 5.55 — Convergence in quadratic mean implies convergence in L1

(Karr, 1993, p. 140)

Xn
q.m.→ X ⇒ Xn

L1

→ X. (5.24)

•

Exercise 5.56 — Convergence in quadratic mean implies convergence in L1

Prove Proposition 5.55, by applying Cauchy-Schwarz’s inequality (Karr, 1993, p. 140). •

Proposition 5.57 — Convergence in L1 implies convergence in probability

(Karr, 1993, p. 141)

Xn
L1

→ X ⇒ Xn
P→ X. (5.25)

•

Exercise 5.58 — Convergence in L1 implies convergence in probability

Prove Proposition 5.57, by using Chebyshev’s inequality (Karr, 1993, p. 141). •

Proposition 5.59 — Convergence in probability implies convergence in

distribution (Karr, 1993, p. 141)

Xn
P→ X ⇒ Xn

d→ X. (5.26)

•
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Exercise 5.60 — Convergence in probability implies convergence in

distribution

Show Proposition 5.59, (Karr, 1993, p. 141). •

Figure 5.1 shows that convergence in distribution is the weakest form of convergence,

since it is implied by all other types of convergence studied so far.

Xn
q.m.→ X ⇒ Xn

L1

→ X

⇒
Xn

P→ X ⇒ Xn
d→ X

⇒
Xn

a.s.→ X

Figure 5.1: Implications always valid between modes of convergence.

Grimmett and Stirzaker (2001, p. 314) refer that convergence in distribution is the

weakest form of convergence for two reasons: it only involves d.f. and makes no reference

to an underlying probability space.4 However, convergence in distribution has an useful

representation in terms of almost sure convergence, as stated in the next theorem.

Theorem 5.61 — Skorokhod’s representation theorem (Grimmett and Stirzaker,

2001, p. 314)

Let {X1, X2, . . .} be a sequence of r.v., {F1, F2, . . .} the associated sequence of d.f. and X

be a r.v. with d.f. F . If Xn
d→ X then there is a probability space (Ω′,F ′, P ′) and r.v.

{Y1, Y2, . . .} and Y mapping Ω′ into IR such that {Y1, Y2, . . .} and Y have d.f. {F1, F2, . . .}
and F and Yn

a.s.→ Y . •

Remark 5.62 — Skorokhod’s representation theorem (Grimmett and Stirzaker,

2001, p. 315)

Although Xn may fail to converge to X in any mode than in distribution, there is a

sequence of r.v. {Y1, Y2, . . .} such that Yn is identically distributed to Xn, for every n,

which converges almost surely to a “copy” of X. •

4Let us remind the reader that that there is an equivalent formulation of convergence in distribution
which involves d.f. alone: the sequence of d.f. {F1, F2, . . .} converges to the d.f. F , if limn→+∞ Fn(x) =
F (x) at each point x where F is continuous (Grimmett and Stirzaker, 2001, p. 190).
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5.2.2 Counterexamples

Counterexamples to all implications among the modes of convergence (and more!) are

condensed in Figure 5.2 and presented by means of several exercises.

Xn
q.m.→ X &⇐ Xn

L1

→ X

&⇐
Xn

P→ X &⇐ Xn
d→ X

&⇐
Xn

a.s.→ X

Figure 5.2: Counterexamples to implications among the modes of convergence.

Before proceeding with exercises, recall exercises 5.4 and 5.12 which pertain to the

sequence of r.v. {X1, X2, . . .}, where Xn ∼ Bernoulli( 1
n), n ∈ IN . In the first exercise

we proved that Xn &
a.s.→ 0, whereas in the second one we concluded that Xn

P→ 0. Thus,

combining these results we can state that Xn
P→ 0 &⇒ Xn

a.s.→ 0.

Exercise 5.63 — Almost sure convergence does not imply convergence in

quadratic mean

Let {X1, X2, . . .} be a sequence of r.v. such that

P ({Xn = x}) =






1− 1
n , x = 0

1
n , x = n

0, otherwise.

(5.27)

Prove that Xn
a.s.→ 0, and, hence, Xn

P→ 0 and Xn
d→ 0, but Xn &

L1

→ 0 and Xn &
q.m.→ 0

(Karr, 1993, p. 141, Counterexample a)). •

Exercise 5.64 — Almost sure convergence does not imply convergence in

quadratic mean (bis)

Let {X1, X2, . . .} be a sequence of r.v. such that

P ({Xn = x}) =






1− 1
nr , x = 0

1
nr , x = n

0, otherwise,

(5.28)

where r ≥ 2.

Prove that Xn
a.s.→ 0, but Xn &

q.m.→ 0 for r = 2 (Rohatgi, 1976, p. 252, Example 10). •
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Exercise 5.65 — Convergence in quadratic mean does not imply almost sure

convergence

Let Xn ∼ Bernoulli
(

1
n

)
.

Prove that Xn
q.m.→ 0, but Xn &

a.s.→ 0 (Rohatgi, 1976, p. 252, Example 9). •

Exercise 5.66 — Convergence in L1 does not imply convergence in quadratic

mean

Let {X1, X2, . . .} be a sequence of r.v. such that

P ({Xn = x}) =






1− 1
n , x = 0

1
n , x =

√
n

0, otherwise.

(5.29)

Show that Xn
a.s.→ 0 and Xn

L1

→ 0, however Xn &q.m.→ 0 (Karr, 1993, p. 141,

Counterexample b)). •

Exercise 5.67 — Convergence in probability does not imply almost sure

convergence

For each positive integer n there exists integers m and k (uniquely determined) such that

n = 2k + m, m = 0, 1, . . . , 2k − 1, k = 0, 1, 2, . . . (5.30)

Thus, for n = 1, k = m = 0; for n = 5, k = 2, m = 1; and so on.

Define r.v. Xn, for n = 1, 2, . . ., on Ω = [0, 1] by

Xn(ω) =

{
2k, m

2k ≤ w < m+1
2k

0, otherwise.
(5.31)

Let the probability distribution of Xn be given by P ({I}) = length of the interval I ⊂ Ω.

Thus,

P ({Xn = x}) =






1− 1
2k , x = 0

1
2k , x = 2k

0, otherwise.

(5.32)

Prove that Xn
P→ 0, but Xn &

a.s.→ 0 (Rohatgi, 1976, pp. 251–2, Example 8). •
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Exercise 5.68 — Convergence in distribution does not imply convergence in

probability

Let {X2, X3, . . .} be a sequence of r.v. such that

FXn(x) =






0, x < 0
1
2 −

1
n , 0 ≤ x < 1

1, x ≥ 1,

(5.33)

i.e. Xn ∼ Bernoulli
(

1
2 + 1

n

)
, n = 2, 3, . . .

Prove that Xn
d→ X, where X ∼ Bernoulli

(
1
2

)
and independent of any Xn, but

Xn &
P→ X (Karr, 1993, p. 142, Counterexample d)). •

Exercise 5.69 — Convergence in distribution does not imply convergence in

probability (bis)

Let X, X1, X2, . . . be identically distributed r.v. and let the joint p.f. of (X, Xn) be P ({X =

0, Xn = 1}) = P ({X = 1, Xn = 0}) = 1
2 .

Prove that Xn
d→ X, but Xn &

P→X (Rohatgi, 1976, p. 247, Remark 2). •
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5.2.3 Implications of restricted validity

Proposition 5.70 — Convergence in distribution to a constant implies

convergence in probability (Karr, 1993, p. 140; Rohatgi, 1976, p. 246)

Let {X1, X2, . . .} be a sequence of r.v. and c ∈ IR. Then

Xn
d→ c ⇒ Xn

P→ c. (5.34)

•

Remark 5.71 — Convergence in distribution to a constant is equivalent to

convergence in probability (Rohatgi, 1976, p. 246)

If we add to the previous result the fact that Xn
P→ c ⇒ Xn

d→ c, we can conclude that

Xn
P→ c ⇔ Xn

d→ c. (5.35)

•

Exercise 5.72 — Convergence in distribution to a constant implies convergence

in probability

Show Proposition 5.70 (Karr, 1993, p. 142). •

Exercise 5.73 — Convergence in distribution to a constant implies convergence

in probability (bis)

Let (X1, . . . , Xn) be a random vector where Xi are i.i.d. r.v. with common p.d.f.

fX(x) = θx−2 × I[θ,+∞)(x),

where θ ∈ IR+.

(a) After having proved that

FX(1:n)
(x) = P

(
min

i=1,...,n
Xi ≤ x

)
= [1− (θ/x)n]× I[θ,+∞)(x), (5.36)

derive the following result: X(1:n)
d→ θ.

(b) Is X(1:n) a consistent estimator of θ? •

Definition 5.74 — Uniform integrability (Karr, 1993, p. 142)

A sequence of r.v. {X1, X2, . . .} is uniformly integrable if Xn ∈ L1 for each n ∈ IN and if

lim
a→+∞

sup
n

E(|Xn|; {|Xn| > a}) = 0. (5.37)

Recall that the expected value of a r.v. X over an event A is given by E(X; A) = E(X ×
1A). •
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Proposition 5.75 — Alternative criterion for uniform integrability (Karr, 1993,

p. 143)

A sequence of r.v. {X1, X2, . . .} is uniformly integrable iff

• supn E(|Xn|) < +∞ and

• {X1, X2, . . .} is uniformly absolutely continuous: for each ε > 0 there is δ > 0 such

that supn E(|Xn|; A) < ε whenever P (A) > δ. •

Proposition 5.76 — Combining convergence in probability and uniform

integrability is equivalent to convergence in L1 (Karr, 1993, p. 144)

Let X, X1, X2, . . . ∈ L1. Then

Xn
P→ X and {X1, X2, . . .} is uniformly integrable ⇔ Xn

L1

→ X. (5.38)

•

Exercise 5.77 — Combining convergence in probability and uniform

integrability is equivalent to convergence in L1

Prove Proposition 5.76 (Karr, 1993, p. 144). •

Exercise 5.78 — Combining convergence in probability of the sequence of r.v.

and convergence of sequence of the means implies convergence in L1 (Karr,

1993, p. 160, Exercise 5.16)

Let X, X1, X2, . . . be positive r.v.

Prove that if Xn
P→ X and E(Xn) → E(X), then Xn

L1

→ X. •

Exercise 5.79 — Increasing character and convergence in probability

combined imply almost sure convergence (Karr, 1993, p. 160, Exercise 5.15)

Show that if X1 ≤ X2 ≤ . . . and Xn
P→ X, then Xn

a.s.→ X. •

Exercise 5.80 — Strictly decreasing and positive character and convergence

in probability combined imply almost sure convergence (Rohatgi, 1976, p. 252,

Theorem 13)

Let {X1, X2, . . .} be a strictly decreasing sequence of positive r.v.

Prove that if Xn
P→ 0 then Xn

a.s.→ 0. •
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5.3 Convergence under transformations

Since the original sequence(s) of r.v. is (are) bound to be transformed, it is natural to

inquire whether the modes of convergence are preserved under continuous mappings and

algebraic operations of the r.v.

5.3.1 Continuous mappings

Only convergence almost surely, in probability and in distribution are preserved under

continuous mappings (Karr, 1993, p. 145).

Theorem 5.81 — Preservation of {a.s., P, d}−convergence under continuous

mappings (Karr, 1993, p. 148)

Let:

• {X1, X2, . . .} be a sequence of r.v. and X a r.v.;

• g : IR → IR be a continuous function.

Then

Xn
∗→ X ⇒ g(Xn)

∗→ g(X), ∗ = a.s., P, d. (5.39)

•

Exercise 5.82 — Preservation of {a.s., P, d}−convergence under continuous

mappings

Show Theorem 5.81 (Karr, 1993, p. 148). •

5.3.2 Algebraic operations

With the exception of the convergence in distribution, addition is preserved by the modes

of convergence of r.v. as functions on Ω, as stated in the next theorem.

Theorem 5.83 — Preservation of {a.s., P, q.m, L1}−convergence under addition

(Karr, 1993, p. 145)

Let Xn
∗→ X and Yn

∗→ Y , where ∗ = a.s., P, q.m, L1. Then

Xn + Yn
∗→ X + Y, ∗ = a.s., P, q.m, L1. (5.40)

•
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Remark 5.84 — Preservation of {a.s., P, q.m, L1}−convergence under addition

Under the conditions of Theorem 5.83,

• Xn ± Yn
∗→ X ± Y, ∗ = a.s., P, q.m, L1. •

Exercise 5.85 — Preservation of {a.s., P, q.m, L1}−convergence under addition

Prove Theorem 5.83 (Karr, 1993, pp. 145–6). •

Convergence in distribution is only preserved under addition if one of the limits is

constant.

Theorem 5.86 — Slutsky’s theorem or preservation of d−convergence under

(restricted) addition (Karr, 1993, p. 146)

Let:

• Xn
d→ X;

• Yn
d→ c, c ∈ IR.

Then

Xn + Yn
d→ X + c. (5.41)

•

Remarks 5.87 — Slutsky’s theorem or preservation of d−convergence under

(restricted) addition and subtraction

(http://en.wikipedia.org/wiki/Slutsky’s theorem; Rohatgi, 1976, p. 253)

• The requirement that {Yn} converges in distribution to a constant is important —

if it were to converge to a non-degenerate random variable, Theorem 5.86 would be

no longer valid.

• Theorem 5.86 remains valid if we replace all convergences in distribution with

convergences in probability because it implies the convergence in distribution.

• Moreover, Theorem 15 (Rohatgi, 1976, p. 253) reads as follows:

Xn
d→ X, Yn

P→ c, c ∈ IR ⇒ Xn ± Yn
d→ X ± c. (5.42)

In this statement, the condition of Yn
d→ c, c ∈ IR in Theorem 5.86 was replaced

with Yn
P→ c, c ∈ IR. This by no means a contradiction because these two conditions

are equivalent, according to Proposition 5.70. •
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Exercise 5.88 — Slutsky’s theorem or preservation of d−convergence under

(restricted) addition

Prove Theorem 5.86 (Karr, 1993, p. 146; Rohatgi, 1976, pp. 253–4). •

As for the product, almost sure convergence and convergence in probability are

preserved.

Theorem 5.89 — Preservation of {a.s., P}−convergence under product (Karr,

1993, p. 147)

Let Xn
∗→ X and Yn

∗→ Y , where ∗ = a.s., P . Then

Xn × Yn
∗→ X × Y, ∗ = a.s., P. (5.43)

•

Exercise 5.90 — Preservation of {a.s., P}−convergence under product

Show Theorem 5.89 (Karr, 1993, p. 147). •

Theorem 5.91 — (Non)preservation of q.m.−convergence under product (Karr,

1993, p. 147)

Let Xn
q.m.→ X and Yn

q.m.→ Y . Then

Xn × Yn
L1

→ X × Y. (5.44)

•

Remark 5.92 — (Non)preservation of q.m.−convergence under product (Karr,

1993, pp. 146–7)

Quadratic mean convergence of products does not hold in general, since X × Y need not

belong to L2 when X and Y do:

Xn
q.m.→ X, Yn

q.m.→ Y &⇒ Xn × Yn
q.m.→ X × Y. (5.45)

However, the product of r.v. in L2 belongs to L1, and L2 convergence of factors implies

L1 convergence of products. •

Exercise 5.93 — (Non)preservation of q.m.−convergence under product

Prove Theorem 5.91 (Karr, 1993, p. 147; Rohatgi, 1976, p. 254). •
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Convergence in distribution is preserved under product, provided that one limit factor

is constant (Karr, 1993, p. 146).

Theorem 5.94 — Slutsky’s theorem (bis) or preservation of d−convergence

under (restricted) product (Karr, 1993, p. 147)

Let:

• Xn
d→ X;

• Yn
d→ c, c ∈ IR.

Then

Xn × Yn
d→ X × c. (5.46)

•

Remark 5.95 — Slutsky’s theorem or preservation of d−convergence under

(restricted) product (Rohatgi, 1976, p. 253)

Rohatgi (1976, p. 253, Theorem 15) also states that

Xn
d→ X, Yn

P→ c, c ∈ IR ⇒ Xn × Yn
d→ X × c (5.47)

Xn
d→ X, Yn

P→ c, c ∈ IR\{0} ⇒ Xn

Yn

d→ X

c
. (5.48)

(Discuss the validity of both results.) •

Preservation under...

Mode of convergence Continuous mapping Addition & Subtraction Product
a.s.→ (almost sure) Yes Yes Yes

P→ (in probability) Yes Yes Yes

q.m.→ (in quadratic mean) No Yes
L1

→

L1

→ (in L1) No Yes Yes

d→ (in distribution) Yes RV∗ RV∗

∗ Restricted validity (RV): one of the summands/factors has to converge in distribution to a constant

Exercise 5.96 — Slutsky’s theorem or preservation of d−convergence under

(restricted) product

Prove Theorem 5.94 (Karr, 1993, pp. 147–8). •
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Example/Exercise 5.97 — Slutsky’s theorem or preservation of d−convergence

under (restricted) product

Consider the sequence of r.v. {X1, X2, . . .}, where Xn
i.i.d.∼ X and let X̄n = 1

n

∑n
i=1 Xi and

S2
n = 1

n−1

∑n
i=1(Xi − X̄n)2 be the sample mean and the variance of the first n r.v.

(a) Show that

X̄n − µ

Sn/
√

n
d→ Normal(0, 1), (5.49)

for any X ∈ L4.

• R.v.

Xi
i.i.d.∼ X, i ∈ IN

X : E(X) = µ, V (X) = σ2 = µ2, E [(X − µ)4] = µ4, which are finite

moments since X ∈ L4.

• Auxiliary results

E(X̄n) = µ

V (X̄n) = σ2

n = µ2

n

E(S2
n) = σ2 = µ2

V (S2
n) =

(
n

n−1

)2
[

µ4−µ2
2

n − 2(µ4−2µ2
2)

n2 + 2(µ4−3µ2
2)

n3

]
(Murteira, 1980, p. 46).

• Asymptotic sample distribution of X̄n−µ
Sn/

√
n

To show that X̄n−µ
Sn/

√
n

d→ Normal(0, 1) it suffices to note that

X̄n − µ

Sn/
√

n
=

X̄n−µ
σ/
√

n√
S2

n
σ2

, (5.50)

prove that X̄n−µ
σ/
√

n

d→ Normal(0, 1) and
√

S2
n

σ2

P→ 1, and then apply Slutsky’s

theorem as stated in (5.48).

• Convergence in distribution of the numerator

It follows immediately from the Central Limit Theorem.5

5This well known theorem is thoroughly discussed by Karr (1993, pp. 190–196) and also in Section
5.9.
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• Convergence in probability of the denominator

By using the definition of convergence in probability and the Chebyshev(-

Bienaymé)’s inequality, we get, for any ε > 0:

lim
n→+∞

P
(
|S2

n − σ2| > ε
)

= lim
n→+∞

P

(
∣∣S2

n − E(S2
n)

∣∣ ≥ ε√
V (S2

n)

√
V (S2

n)

)

≤ lim
n→+∞

1
(

ε√
V (S2

n)

)2

=
1

ε2
lim

n→+∞
V (S2

n)

= 0, (5.51)

i.e. S2
n

P→ σ2.

Finally, note that convergence in probability is preserved under continuous

mappings such as g(x) =
√

x
σ , hence

S2
n

P→ σ2 ⇒
√

S2
n

σ2

P→
√

σ2

σ2
= 1. (5.52)

• Conclusion
X̄−µ
S/
√

n

d→ Normal(0, 1).

(b) Discuss the utility of this result. •

Exercise 5.98 — Slutsky’s theorem or preservation of d−convergence under

(restricted) division

Let Xi
i.i.d.∼ Normal(0, 1), i ∈ IN .

Determine the limiting distribution of Wn = Un
Vn

, where

Un =

∑n
i=1 Xi√

n
(5.53)

Vn =

∑n
i=1 X2

i

n
, (5.54)

by proving that

Un
d→ Normal(0, 1) (5.55)

Vn
d→ 1 (5.56)

(Rohatgi, 1976, pp. 254, Example 12). •
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Exercise 5.99 — Slutsky’s theorem or preservation of d−convergence under

(restricted) division (bis)

Let {X1, X2, . . .} a sequence of i.i.d. r.v. with common distribution Bernoulli(p) and X̄n =
1
n

∑n
i=1 Xi the maximum likelihood estimator of p.

(a) Prove that

X̄n − p√
X̄n(1−X̄n)

n

d→ Normal(0, 1). (5.57)

(b) Discuss the relevance of this convergence in distribution. •
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5.4 Convergence of random vectors

Before defining modes of convergence of a sequence of random d−vectors we need two

recall the definition of norm of a vector.

Definition 5.100 — L2 (or Euclidean) and L1 norms of x (Karr, 1993, p. 149)

Let x ∈ IRd and x(i) its ith component. Then

||x||L2 =

√√√√
d∑

i=1

x(i)2 (5.58)

||x||L1 =
d∑

i=1

|x(i)| (5.59)

denote the L2 norm (or Euclidean norm) and the L1 norm of x, respectively. •

Remark 5.101 — L2 (or Euclidean) and L1 norms of x

(http://en.wikipedia.org/wiki/Norm mathematics0Definition)

On IRd, the intuitive notion of length of the vector x is captured by its L2 or Euclidean

norm: this gives the ordinary distance from the origin to the point x, a consequence of

the Pythagorean theorem.

The Euclidean norm is by far the most commonly used norm on IRd, but there are

other norms, such as the L1 norm on this vector space. •

Definition 5.102 — Four modes of convergence (as functions of Ω) of sequences

of random vectors (Karr, 1993, p. 149)

Let X, X1, X2, . . . be random d−vectors. Then the four modes of convergence Xn
∗→ X,

∗ = a.s., P, q.m., L1 are natural extensions of their counterparts in the univariate case:

• Xn
a.s.→ X if P ({ω : limn→+∞ ||Xn(ω)−X(ω)||L1= 0}) = 1;

• Xn
P→ X if limn→+∞ P ({||Xn −X||L1 > ε}) = 0, for every ε > 0;

• Xn
q.m.→ X if limn→+∞E (||Xn −X||L2) = 0;

• Xn
L1

→ X if limn→+∞E (||Xn −X||L1) = 0. •

Proposition 5.103 — Alternative criteria for the four modes of convergence of

sequences of random vectors (Karr, 1993, p. 149)

Xn
∗→ X, ∗ = a.s., P, q.m., L1 iff the same kind of stochastic convergence holds for each

component, i.e. Xn(i)
∗→ X(i), ∗ = a.s., P, q.m., L1, i = 1, . . . , d. •
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Remark 5.104 — Convergence in distribution of a sequence of random vectors

(Karr, 1993, p. 149)

Due to the intractability of multi-dimension d.f., convergence in distribution — unlike

the four previous modes of convergence — has to be defined by taking advantage of the

alternative criterion for convergence in distribution stated in Theorem 5.49. •

Definition 5.105 — Convergence in distribution of a sequence of random

vectors

(Karr, 1993, p. 149)

Let X, X1, X2, . . . be random d−vectors. Then:

• Xn
d→ X if E[f(Xn)] → E[f(X)], for all bounded, continuous functions f : IRd →

IR. •

Proposition 5.106 — A sufficient condition for the convergence in distribution

of the components of a sequence of random vectors (Karr, 1993, p. 149)

Unlike the four previous modes of convergence, convergence in distribution of the

components of a sequence of random vectors is implied, but need not imply, convergence

in distribution of the sequence of random vectors:

Xn
d→ X ⇒ (&⇐) Xn(i)

d→ X(i), (5.60)

for each i. •

A sequence of random vectors converges in distribution iff every linear combination

of their components converges in distribution; this result constitutes the Cramér-Wold

device.

Theorem 5.107 (Cramér-Wold device) — An alternative criterion for the

convergence in distribution of a sequence of random vectors (Karr, 1993, p.

150)

Let X, X1, X2, . . . be random d−vectors. Then

Xn
d→ X ⇔ a2Xn =

d∑

i=1

a(i)×Xn(i)
d→

d∑

i=1

a(i)×X(i) = a2X, (5.61)

for all a ∈ IRd. •

Exercise 5.108 — An alternative criterion for the convergence in distribution

of a sequence of random vectors

Show Theorem 5.107 (Karr, 1993, p. 150). •
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As with sequences of r.v., convergence almost surely, in probability and in distribution

are preserved under continuous mappings of sequences of random vectors.

Theorem 5.109 — Preservation of {a.s., P, d}−convergence under continuous

mappings of random vectors (Karr, 1993, p. 148)

Let:

• {X1, X2, . . .} be a sequence of random d−vectors and X a random d−vector;

• g : IRd → IRm be a continuous mapping of IRd into IRm.

Then

Xn
∗→ X ⇒ g(Xn)

∗→ g(X), ∗ = a.s., P, d. (5.62)

•
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5.5 Limit theorems for Bernoulli summands

Let {X1, X2, . . .} be a Bernoulli process with parameter p ∈ (0, 1). In this section we

study the asymptotic behavior of the Bernoulli counting process {S1, S2, . . .}, where Sn =
∑n

i=1 Xi ∼ Binomial(n, p).

5.5.1 Laws of large numbers for Bernoulli summands

Motivation 5.110 — Laws of large numbers

(http://en.wikipedia.org/wiki/Law of large numbers; Murteira, 1979, p. 313)

In probability theory, the law of large numbers (LLN) is a theorem that describes the

result of performing the same experiment a large number of times. According to the law,

the average of the results obtained from a large number of trials (e.g. Bernoulli trials)

should be close to the expected value, and will tend to become closer as more trials are

performed.

For instance, when a fair coin is flipped once, the expected value of the number of

heads is equal to one half. Therefore, according to the law of large numbers, the proportion

of heads in a large number of coin flips should be roughly one half, as depicted by the

next figure (where N stands for n).

This illustration suggests the following statement: Sn
n = X̄n converges, in some sense, to

p = 1
2 . In fact, if we use Chebyshev(-Bienaymé)’s inequality we can prove that

lim
n→+∞

P

({∣∣∣∣
Sn

n
− p

∣∣∣∣ > ε

})
= 0, (5.63)

that is, Sn
n

P→ p = 1
2 . (Show this result!) In addition, we can also prove that the proportion

of heads after n flips will almost surely converge to one half as n approaches infinity, i.e.,
Sn
n

a.s.→ p = 1
2 . Similar convergences can be devised for the mean of n i.i.d. r.v.

The Indian mathematician Brahmagupta (598–668) and later the Italian

mathematician Gerolamo Cardano (1501–1576) stated without proof that the accuracies

of empirical statistics tend to improve with the number of trials. This was then formalized

as a law of large numbers (LLN).
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The LLN was first proved by Jacob Bernoulli. It took him over 20 years to develop a

sufficiently rigorous mathematical proof which was published in his Ars Conjectandi (The

Art of Conjecturing) in 1713. He named this his Golden Theorem but it became generally

known as ”Bernoulli’s Theorem”. In 1835, S.D. Poisson further described it under the

name La loi des grands nombres (The law of large numbers). Thereafter, it was known

under both names, but the Law of large numbers is most frequently used.

Other mathematicians also contributed to refinement of the law, including Chebyshev,

Markov, Borel, Cantelli and Kolmogorov. These further studies have given rise to two

prominent forms of the LLN:

• the weak law of large numbers (WLLN);

• the strong law of large numbers (SLLN);

These forms do not describe different laws but instead refer to different ways of describing

the mode of convergence of the cumulative sample means to the expected value:

• the WLLN refers to a convergence in probability;

• the SLLN is concerned with an almost sure convergence;

Needless to say that the SLLN implies the WLLN. •

Theorem 5.111 — Weak law of large numbers for Bernoulli summands

(Karr, 1993, p. 151)

Let:

• {X1, X2, . . .} be a Bernoulli process with parameter p ∈ (0, 1);

• Sn
n = X̄n be the proportion of successes in the first n Bernoulli trials.

Then

Sn

n
q.m.→ p, (5.64)

therefore

Sn

n
P→ p. (5.65)

•
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Exercise 5.112 — Weak law of large numbers for Bernoulli summands

Show Theorem 5.111, by calculating the limit of E
[(

Sn
n − p

)2
]

(thus proving the

convergence in quadratic mean) and combining Proposition 5.55 (which states that

convergence in quadratic mean implies convergence in L1) and Proposition 5.57 (it says

that convergence in L1 implies convergence in probability) (Karr, 1993, p. 151). •

Theorem 5.113 — Strong law of large numbers for Bernoulli summands or

Borel’s SLLN (Karr, 1993, p. 151; Rohatgi, 1976, p. 273, Corollary 3)

Let:

• {X1, X2, . . .} be a Bernoulli process with parameter p ∈ (0, 1);

• Sn
n = X̄n be the proportion of successes in the first n Bernoulli trials.

Then
Sn

n
a.s.→ p. (5.66)

•

Exercise 5.114 — Strong law of large numbers for Bernoulli summands or

Borel’s SLLN

Prove Theorem 5.113, by: using Theorem 4.121 (Chebyshev’s inequality) with g(x) = x4

to set an upper limit to P ({|Sn − np| > nε}), which is smaller than O(n−2),6 thus, proving

that
∑+∞

i=1 P
({
|Sn

n − p| > ε
})

< ∞, i.e., that the sequence {S1
1 , S2

2 , . . .} completely

converges to p; finally applying Proposition 5.44 which relates almost sure convergence

and complete convergence (Karr, 1993, pp. 151–152).7 •

Remark 5.115 — Weak and strong laws of large numbers for Bernoulli

summands (http://en.wikipedia.org/wiki/Law of large numbers; Karr, 1993, p. 152)

• Theorem 5.113 can be invoked to support the frequency interpretation of probability.

• The WLLN for Bernoulli summands states that for a specified large n, Sn
n is likely

to be near p. Thus, it leaves open the possibility that the event {|Sn
n − p| > ε}, for

any ε > 0, happens an infinite number of times, although at infrequent intervals.

The SLLN for Bernoulli summands shows that this almost surely will not occur.

In particular, it implies that with probability 1, we have that, for any ε > 0, the

inequality |Sn
n − p| > ε holds for all large enough n.

6Let f(x) and g(x) be two functions defined on some subset of the real numbers. One writes f(x) =
O(g(x)) as x → ∞ iff there exists a positive real number M and a real number x0 such that |f(x)| ≤
M |g(x)| for all x > x0 (http://en.wikipedia.org/wiki/Big O notation).

7A simple proof (using the 2nd. Borel-Cantelli lemma) can be found in Rohatgi (1976, p. 265).
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• Finally, the proofs of theorems 5.111 and 5.113 only involve the moments of Xi.

Unsurprisingly, these two theorems can be reproduced for other sequences of i.i.d.

r.v., namely those in L2 (in the case of the WLLN) and in L4 (for the SLLN), as we

shall see in sections 5.6 and 5.7. •

5.5.2 Central limit theorems for Bernoulli summands

Motivation 5.116 — Central limit theorems for Bernoulli summands (Karr,

1993, p. 152)

They essentially state that, in the Bernoulli summands case and for large n,

Sn ∼ Binomial(n, p) is such that Sn−E(Sn)√
V (Sn)

= Sn−np√
np(1−p)

has approximately a standard

normal distribution.

The local (resp. global) central limit theorem — also known as the DeMoivre-Laplace

local (resp. global) limit theorem — provides an approximation to the p.f. (resp. d.f.) of

Sn in terms of the standard normal p.d.f. (resp. d.f.). •

Theorem 5.117 — DeMoivre-Laplace local limit theorem (Karr, 1993, p. 153)

Let:

• kn = 0, 1, . . . , n;

• xn = kn−np√
np(1−p)

= o(n1/6);8

• φ(x) = 1√
2π

e−x2/2 be the standard normal p.d.f.

Then

lim
n→+∞

P ({Sn = kn})
φ(xn)√
np(1−p)

= 1. (5.67)

•

Exercise 5.118 — DeMoivre-Laplace local limit theorem

Show Theorem 5.117 (Karr, 1993, p. 153). •

8The relation f(x) = o(g(x)) is read as “f(x) is little-o of g(x)”. Intuitively, it
means that g(x) grows much faster than f(x). Formally, it states limx→∞

f(x)
g(x) = 0

(http://en.wikipedia.org/wiki/Big O notation#Little-o notation).
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Remark 5.119 — DeMoivre-Laplace local limit theorem (Karr, 1993, p. 153)

The proof of Theorem 5.117 shows that the convergence in (5.67) is uniform in values of

k satisfying |k − np| = o(n2/3). As a consequence, for large values of n and values of kn

not to different from np,

P ({Sn = kn}) *
1√

np(1− p)
× φ

[
kn − np√
np(1− p)

]
, (5.68)

that is, the p.f. of Sn ∼ Binomial(n, p) evaluated at kn can be properly approximated by

the p.d.f. of a normal distribution, with mean E(Sn) = np and variance V (Sn) = np(1−p),

evaluated at kn−np√
np(1−p)

. •

Theorem 5.120 — DeMoivre-Laplace global limit theorem (Karr, 1993, p. 154;

Murteira, 1979, p. 347)

Let Sn ∼ Binomial(n, p), n ∈ IN . Then

Sn − np√
np(1− p)

d→ Normal(0, 1). (5.69)

•

Remark 5.121 — DeMoivre-Laplace global limit theorem (Karr, 1993, p. 155;

Murteira, 1979, p. 347)

• Theorem 5.120 justifies the following approximation:

P (Sn ≤ x) * Φ

[
x− np√
np(1− p)

]
. (5.70)

• According to Murteira (1979, p. 348), the well known continuity correction was

proposed by Feller in 1968 to improve the normal approximation to the binomial

distribution,9 and can be written as:

P (a ≤ Sn ≤ b) * Φ

[
b + 1

2 − np
√

np(1− p)

]
− Φ

[
a− 1

2 − np
√

np(1− p)

]
. (5.71)

9However, http://en.wikipedia.org/wiki/Continuity correction suggests that continuity correction
dates back from Feller, W. (1945). On the normal approximation to the binomial distribution. The
Annals of Mathematical Statistics 16, pp. 319–329.
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• The proof of the central limit theorem for summands (other than Bernoulli

ones) involves a Taylor series expansion10 and requires dealing with the notion of

characteristic function of a r.v.11 Such proof can be found in Murteira (1979, pp.

354–355); Karr (1993, pp. 190–196) devotes a whole section to this theorem. •

Exercise 5.122 — DeMoivre-Laplace global limit theorem

Show Theorem 5.120 (Karr, 1993, pp. 154–155). •

5.5.3 The Poisson limit theorem

Motivation 5.123 — Poisson limit theorem

(Karr, 1993, p. 155; http://en.wikipedia.org/wiki/Poisson limit theorem)

• In the two central limit theorems for Bernoulli summands, although n → +∞,

the parameter p remained fixed. These theorems provide useful approximations to

binomial probabilities, as long as the values of p are close to neither zero or one,

and inaccurate ones, otherwise.

• The Poisson limit theorem gives a Poisson approximation to the binomial

distribution, under certain conditions, namely, it considers the effect of

simultaneously allowing n → +∞ and p = pn → 0 with the proviso that n×pn → λ,

where λ ∈ IR+. This theorem was obviously named after Siméon-Denis Poisson

(1781–1840). •

Theorem 5.124 — Poisson limit theorem (Karr, 1993, p. 155)

Let:

• {X1, X2, . . .} be a sequence of r.v. such that Xn ∼ Binomial(n, pn), for each n;

• n× pn → λ, where λ ∈ IR+.

Then

Xn
d→ Poisson(λ). (5.72)

•
10The Taylor series of a real or complex function f(x) that is infinitely differentiable in a neighborhood

of a real (or complex number) a is the power series written in the more compact sigma notation as
∑+∞

n=0
f(n)(a)

n! (x−a)n, where f (n)(a) denotes the nth derivative of f evaluated at the point a. In the case
that a = 0, the series is also called a Maclaurin series (http://en.wikipedia.org/wiki/Taylor series).

11For a scalar random variable X the characteristic function is defined as the expected value of eitX ,
E(eitX), where i is the imaginary unit, and t ∈ IR is the argument of the characteristic function
(http://en.wikipedia.org/wiki/Characteristic function (probability theory)).
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Example/Exercise 5.125 — Poisson limit theorem

(a) Consider 0 < λ < n and let us verify that

lim
n → +∞
pn → 0

npn = λ fix

(
n

x

)
px

n (1− pn)n−x = e−λ λx

x!
.

• R.v.

Xn ∼ Binomial(n, pn)

• Parameters

n

pn = λ
n (0 < λ < n)

• P.f.

P (Xn = x) =
(

n
x

) (
λ
n

)x (
1− λ

n

)n−x
, x = 0, 1, . . . , n

• Limit p.f.

For any x ∈ {0, 1, . . . , n}, we get

lim
n→+∞

P (Xn = x) =
λx

x!
× lim

n→+∞

n(n− 1) . . . (n− x + 1)

nx

× lim
n→+∞

(
1 +

−λ

n

)n

× lim
n→+∞

(
1− λ

n

)−x

=
λx

x!
× 1× e−λ × 1

= e−λ λx

x!
.

• Conclusion

If the limit p.f. of Xn coincides with p.f. of X ∼ Poisson(λ) then the same holds

for the limit d.f. of Xn and the d.f. of X. Hence

Xn
d→ Poisson(λ).

(b) Now, prove Theorem 5.124 (Karr, 1993, p. 155).

(c) Suppose that in an interval of length 1000, 500 points are placed randomly.

Use the Poisson limit theorem to prove that we can approximate the p.f. of the number

points that will be placed in a sub-interval of length 10 by

e−5 5k

k!
(5.73)

(http://en.wikipedia.org/wiki/Poisson limit theorem). •
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5.6 Weak law of large numbers

Motivation 5.126 — Weak law of large numbers (Rohatgi, 1976, p. 257)

Let:

• {X1, X2, . . .} be a sequence of r.v. in L2;

• Sn =
∑n

i=1 Xi be the sum of the first n terms of such a sequence.

In this section we are going to answer the next question in the affirmative:

• Are there constants an and bn (bn > 0) such that Sn−an
bn

P→ 0 ?

In other words, what follows are extensions of the WLLN for Bernoulli summands

(Theorem 5.111), to other sequences of:

• i.i.d. r.v. in L2;

• pairwise uncorrelated and identically distributed r.v. in L2;

• pairwise uncorrelated r.v. in L2;

• r.v. in L2 with a specific variance behavior;

• i.i.d. r.v. in L1. •

Definition 5.127 — Obeying the weak law of large numbers (Rohatgi, 1976, p.

257)

Let:

• {X1, X2, . . .} be a sequence of r.v.;

• Sn =
∑n

i=1 Xi, n = 1, 2, . . .;

Then {X1, X2, . . .} is said to obey the weak law of large numbers (WLLN) with respect

to the sequence of constants {b1, b2, . . .} (bn > 0, bn ↑ +∞) if there is a sequence of real

constants {a1, a2, . . .} such that

Sn − an

bn

P→ 0. (5.74)

an and bn are called centering and norming constants, respectively. •
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Remark 5.128 — Obeying the weak law of large numbers (Rohatgi, 1976, p. 257)

The definition in Murteira (1979, p. 319) is a particular case of Definition 5.127 with

an =
∑n

i=1 E(Xi) and bn = n.

• Let {X1, X2, . . .} be a sequence of r.v., X̄n = 1
n

∑n
i=1 Xi, and {Z1, Z2, . . .} be another

sequence of r.v. such that Zn = Sn−an
bn

= X̄n − E(X̄n), n = 1, 2, . . .

Then {X1, X2, . . .} is said to obey the WLLN if Zn
P→ 0.

Hereafter the convergence results are stated either in terms of Sn or X̄n. •

Theorem 5.129 — Weak law of large numbers, i.i.d. r.v. in L2 (Karr, 1993, p.

152)

Let {X1, X2, . . .} be a sequence of i.i.d. r.v. in L2 with common expected value µ and

variance σ2. Then

X̄n
q.m.→ µ, (5.75)

therefore {X1, X2, . . .} obeys the WLLN:

X̄n
P→ µ, (5.76)

i.e., Sn−nµ
n

P→ 0.12 •

Exercise 5.130 — Weak law of large numbers, i.i.d. r.v. in L2

Prove Theorem 5.129, by mimicking the proof of the WLLN for Bernoulli summands. •

Exercise 5.131 — Weak law of large numbers, i.i.d. r.v. in L2 (bis)

Let {X1, X2, . . .} a sequence of i.i.d. r.v. with common p.d.f.

f(x) =

{
e−x+q, x > q

0, otherwise
(5.77)

(a) Prove that X̄n = 1
n

∑n
i=1 Xi

P→ 1 + q.

(b) Show that X(1:n) = mini=1,...,n Xi
P→ q.13 •

A closer look to the proof Theorem 5.129 leads to the conclusion that the r.v. need

only be pairwise uncorrelated and identically distributed in L2, since in this case we still

have V (X̄n) = σ2

n (Karr, 1993, p. 152).

12As suggested by Rohatgi (1976, p. 258, Corollary 3).
13Use the d.f. of X(1:n).
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Theorem 5.132 — Weak law of large numbers, pairwise uncorrelated and

identically distributed r.v. in L2 (Karr, 1993, p. 152; Rohatgi, 1976, p. 258)

Let {X1, X2, . . .} be a sequence of pairwise uncorrelated and identically distributed r.v.

in L2 with common expected value µ and variance σ2. Thus, X̄n
q.m.→ µ and14 hence

{X1, X2, . . .} obeys the WLLN:

X̄n
P→ µ. (5.78)

•

We can also drop the assumption that we are dealing with identically distributed r.v.

as suggested by the following theorem.

Theorem 5.133 — Weak law of large numbers, pairwise uncorrelated r.v. in

L2 (Rohatgi, 1976, p. 258, Theorem 1)

Let:

• {X1, X2, . . .} be a sequence of pairwise uncorrelated r.v. in L2 with E(Xi) = µi and

V (Xi) = σ2
i ;

• an =
∑n

i=1 µi;

• bn =
∑n

i=1 σ2
i .

If bn → +∞ then

Sn − an

bn
=

∑n
i=1 Xi −

∑n
i=1 µi∑n

i=1 σ2
i

P→ 0, (5.79)

i.e., {X1, X2, . . .} obeys the WLLN with respect to bn. •

Exercise 5.134 — Weak law of large numbers, pairwise uncorrelated r.v. in L2

(a) Show Theorem 5.132.

(b) Prove Theorem 5.133 by applying Chebyshev(-Bienaymé)s inequality (Rohatgi, 1976,

p. 258). •

Remark 5.135 — Weak law of large numbers, pairwise uncorrelated r.v. in L2

A careful inspection of the proof of Theorem 5.133 (Rohatgi, 1976, p. 258) leads us to

restate it as follows:

• Let {X1, X2, . . .} be a sequence of pairwise uncorrelated r.v. in L2 with E(Xi) = µi

and V (Xi) = σ2
i , an =

∑n
i=1 µi, and

14Rohatgi (1976, p. 258, Corollary 1) does not refer this convergence in quadratic mean.
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bn =

√√√√
n∑

i=1

σ2
i . (5.80)

If bn → +∞ then

Sn − an

bn
=

Sn − E(Sn)√
V (Sn)

P→ 0. (5.81)

Theorem 5.133 can be further generalized: the sequence of r.v. need only have the mean

of its first n terms, X̄n, with a specific variance behavior, as stated below. •

Theorem 5.136 — WLLN and Markov’s theorem (Murteira, 1979, p. 320)

Let {X1, X2, . . .} be a sequence of r.v. in L2. If

lim
n→+∞

V (X̄n) = lim
n→+∞

1

n2
V

(
n∑

i=1

Xi

)
= 0, (5.82)

then

X̄n − E(X̄n)
P→ 0, (5.83)

that is, {X1, X2, . . .} obeys the WLLN with respect to bn = n (an =
∑n

i=1 E(Xi)). •

Exercise 5.137 — WLLN and Markov’s theorem

Show Theorem 5.136, by simply applying Chebyshev(-Bienaymé)’s inequality. •

Remark 5.138 — (Special cases of) Markov’s theorem (Murteira, 1979, pp. 320–

321; Rohatgi, 1979, p. 258)

• The WLLN holds for a sequence of pairwise uncorrelated r.v., with common expected

value µ and uniformly limited variance V (Xn) < k, n = 1, 2, . . . ; k ∈ IR+.15

• The WLLN also holds for a sequence of pairwise uncorrelated and identically

distributed r.v. in L2, with common expected value µ and σ2 (Theorem 5.132).

15This corollary of Markov’s theorem is due to Chebyshev. Please note that when we dealing with
pairwise uncorrelated r.v., the condition (5.82) in Markov’s theorem still reads: limn→+∞ V (X̄n) =
limn→+∞

1
n2

∑n
i=1 V (Xi) = 0.
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• Needless to say that the WLLN holds for any sequence of i.i.d. r.v. in L2 (Theorem

5.129) and therefore X̄n is a consistent estimator of µ.

Moreover, according to http://en.wikipedia.org/wiki/Law of large numbers, the

assumption of finite variances (V (Xi) = σ2 < +∞) is not necessary; large or infinite

variance will make the convergence slower, but the WLLN holds anyway, as stated

in Theorem 5.143. This assumption is often used because it makes the proofs easier

and shorter. •

The next theorem provides a necessary and sufficient condition for a sequence of r.v.

{X1, X2, . . .} to obey the WLLN.

Theorem 5.139 — An alternative criterion for the WLLN (Rohatgi, 1976, p. 258)

Let:

• {X1, X2, . . .} be a sequence of r.v. (in L2);

• Yn = X̄n − E(X̄n), n = 1, 2, . . ..

Then {X1, X2, . . .} satisfies the WLLN with respect to bn = n (an =
∑n

i=1 E(Xi)), i.e.

X̄n − E(X̄n)
P→ 0, (5.84)

iff

lim
n→+∞

E

(
Y 2

n

1 + Y 2
n

)
= 0. (5.85)

•

Remark 5.140 — An alternative criterion for the WLLN (Rohatgi, 1976, p. 259)

Since condition (5.85) does not apply to the individual r.v. Xi Theorem 5.139 is of limited

use. •

Exercise 5.141 — An alternative criterion for the WLLN

Show Theorem 5.139 (Rohatgi, 1976, pp. 258–259). •

Exercise 5.142 — An alternative criterion for the WLLN (bis)

Let (X1, . . . , Xn) be jointly normal and such that: E(Xi) = 0 and V (Xi) = 1 (i = 1, 2, . . .);

and,

cov(Xi, Xj) =






1, i = j

ρ ∈ (−1, 1), |j − i| = 1

0, |j − i| > 1.

(5.86)

Use Theorem 5.139 to prove that X̄n
P→ 0 (Rohatgi, 1976, pp. 259–260, Example 2). •
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Finally, the assumption that the r.v. belong to L2 is dropped and we state a theorem

due to Soviet mathematician Aleksandr Yakovlevich Khinchin (1894–1959).

Theorem 5.143 — Weak law of large numbers, i.i.d. r.v. in L1 (Rohatgi, 1976, p.

261)

Let {X1, X2, . . .} be a sequence of i.i.d. r.v. in L1 with common finite mean µ.16 Then

{X1, X2, . . .} satisfies the WLLN with respect to bn = n (an = nµ), i.e.

X̄n
P→ µ. (5.87)

•

Exercise 5.144 — Weak law of large numbers, i.i.d. r.v. in L1

Prove Theorem 5.143 (Rohatgi, 1976, p. 261). •

Exercise 5.145 — Weak law of large numbers, i.i.d. r.v. in L1 (bis)

Let {X1, X2, . . .} be a sequence of i.i.d. r.v. to X ∈ Lk, for some positive integer k, and

common kth. moment E(Xk). Apply Theorem 5.143 to prove that:

(a) 1
n

∑n
i=1 Xk

i
P→ E(Xk);17

(b) if k = 2 then 1
n

∑n
i=1 X2

i − (X̄n)2 P→ V (X) (Rohatgi, 1976, p. 261, Example 4).18 •

Exercise 5.146 — Weak law of large numbers, i.i.d. r.v. in L1 (bis bis)

Let {X1, X2, . . .} be a sequence of i.i.d. r.v. with common p.d.f.

fX(x) =

{
1+δ
x2+δ , x ≥ 1

0, otherwise,
(5.88)

where δ > 0.19 Show that X̄n
P→ E(X) = 1+δ

δ (Rohatgi, 1976, p. 262, Example 5). •

16Please note that nothing is said about the variance, it need not to be finite.
17This means that the kth. sample moment, 1

n

∑n
i=1 Xk

i , is a consistent estimator of E(Xk) if the i.i.d.
r.v. belong to Lk.

18I.e., the sample variance, 1
n

∑n
i=1 X2

i − (X̄n)2, is a consistent estimator of V (X) if we are dealing
with i.i.d. r.v. in L2.

19This is the p.d.f. of a Pareto(1, 1 + δ) r.v.
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5.7 Strong law of large numbers

This section is devoted to a few extensions of the SLLN for Bernoulli summands (or

Borel’s SLLN), Theorem 5.113. They refer to sequences of:

• i.i.d. r.v. in L4;

• dominated i.i.d. r.v.;

• independent r.v. in L2 with a specific variance behavior;

• i.i.d. r.v. in L1.

Theorem 5.147 — Strong law of large numbers, i.i.d. r.v. in L4 (Karr, 1993, p.

152; Rohatgi, 1976, pp. 264–265, Theorem 1)

Let {X1, X2, . . .} be a sequence of i.i.d. r.v. in L4, with common expected value µ. Then

X̄n
a.s.→ µ. (5.89)

•

Exercise 5.148 — Strong law of large numbers, i.i.d. r.v. in L4

Prove Theorem 5.147, by following the same steps as in the proof of the SLLN for Bernoulli

summands (Rohatgi, 1976, p. 265). •

The proviso of a common finite fourth moment can be dropped if there is a degenerate

r.v. that dominates the i.i.d. r.v. X1, X2, . . .

Corollary 5.149 — Strong law of large numbers, dominated i.i.d. r.v. (Rohatgi,

1976, p. 265)

Let {X1, X2, . . .} be a sequence of i.i.d. r.v., with common expected value µ and such that

P ({|Xn| < k}) = 1, for all n, (5.90)

where k is a positive constant. Then

X̄n
a.s.→ µ. (5.91)

•

The next lemma is essential to prove yet another extension of Borel’s SLLN (Theorem

5.113).
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Lemma 5.150 — Kolmogorov’s inequality (Rohatgi, 1976, p. 268)

Let {X1, X2, . . .} be a sequence of independent r.v., with common null mean and variances

σ2
i , i = 1, 2, . . . Then, for any ε > 0,

P

({
max

k=1,...,n
|Sk| > ε

})
≤

∑n
i=1 σ2

i

ε2
. (5.92)

•

Exercise 5.151 — Kolmogorov’s inequality

Show Lemma 5.150 (Rohatgi, 1976, pp. 268–269). •

Remark 5.152 — Kolmogorov’s inequality (Rohatgi, 1976, p. 269)

If we take n = 1 then Lemma 5.150 can be written as P ({|X1| > ε}) ≤ σ2
1

ε2 , which is

Chebyshev’s inequality. •

The condition of dealing with i.i.d. r.v. in L4 can be further relaxed as long as the r.v.

are still independent and the variances of X1, X2, . . . have a specific behavior, as stated

below.

Theorem 5.153 — Strong law of large numbers, independent r.v. in L2 (Rohatgi,

1976, p. 272)

Let {X1, X2, . . .} be a sequence of independent r.v. in L2 with variances σ2
i , i = 1, 2, . . .,

such that
+∞∑

i=1

V (Xi) < +∞. (5.93)

Then

Sn − E(Sn)
a.s.→ 0. (5.94)

•

Exercise 5.154 — Strong law of large numbers, independent r.v. in L2

Prove Theorem 5.153 by making use of Kolmogorov’s inequality and Cauchy’s criterion

(Rohatgi, 1976, p. 272). •

Theorem 5.155 — Strong law of large numbers, i.i.d. r.v. in L1, or

Kolmogorov’s SLLN (Karr, 1993, p. 188; Rohatgi, 1976, p. 274, Theorem 7)

Let {X1, X2, . . .} be a sequence of i.i.d. r.v. to X. Then

X̄n
a.s.→ µ (5.95)

iff X ∈ L1, and then µ = E(X). •
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Exercise 5.156 — Strong law of large numbers, i.i.d. r.v. in L1, or

Kolmogorov’s SLLN

Show Theorem 5.155 (Karr, 1993, pp. 188–189; Rohatgi, 1976, pp. 274–275) •

5.8 Characteristic functions

In probability theory, the characteristic function of any real-valued r.v. X:

• uniquely defines its probability distribution (Karr, 1993, p. 163);

• always exists when treated as a function of a real-

valued argument, unlike the moment-generating function

(http://en.wikipedia.org/wiki/Characteristic function (probability theory)).

Furthermore:

1. the obtention of the characteristic function of a sum of independent r.v. is converted

to the simpler operation of pointwise multiplication (Karr, 1993, p. 163) of the

individual characteristic functions;

2. a sequence of r.v. converge in distribution iff the corresponding characteristic

functions converge pointwise (Karr, 1993, p. 163).

Result 1. proves to be absolutely necessary to tackle the fairly complex problem of

determining the distribution of a sum of independent r.v. (Resnick, 1999, p. 293). Result

2. plays an essential role in the rigorous proof of the Central Limit Theorem (Resnick,

1999, p. 295) and is the main reason to study the characteristic function in this chapter.

Before we proceed, let us remind the reader that, for a given complex number z =

x + iy:

• the real part of z is Re(z) = x;

• the imaginary part of z is Im(z) = y;

• the complex conjugate of z is z̄ = x− iy;

• z is real iff z̄ = z;

• the modulus of z is |z| =
√

x2 + y2;

• eit = cos(t) + i sin(t) (Euler’s formula).
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Definition 5.157 — Characteristic function (Karr, 1993, p. 163; Resnick, 1999, p.

295)

The characteristic function of the real-valued r.v. X, with c.d.f. FX(x), is the complex

valued function of a real variable t,

ϕX : IR → C, (5.96)

defined as the expected value of eitX :

ϕX(t) = E(eitX)

=

∫ ∞

−∞
eitx dFX(x). (5.97)

•

Remark 5.158 — Characteristic function (Resnick, 1999, p. 295)

By using Euler’s formula, the characteristic function can be rewritten as

ϕX(t) =

∫ ∞

−∞
cos(tx) dFX(x) + i

∫ ∞

−∞
sin(tx) dFX(x). (5.98)

•

Example 5.159 — Characteristic function (Karr, 1993, p. 164)

The characteristic functions of a few key discrete and absolutely continuous distributions:

Distribution of X Characteristic function ϕX(t)

Bernoulli(p) 1− p + p eit

Binomial(n, p) (1− p + p eit)n

c eitc

Geometric(p) p eit

1−(1−p) eit

NegativeBinomial(r, p)
[

p eit

1−(1−p) eit

]r

Poisson(λ) eλ(eit−1)

Exponential(λ) λ
λ−it

Gamma(α, λ)
(

λ
λ−it

)α

Normal(µ, σ2) eµit−σ2t2

2

Uniform(a, b) eitb−eita

it(b−a)

•
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Exercise 5.160 — Characteristic function

Obtain the characteristic function of at least two discrete (resp. three absolutely

continuous) distributions. •

The characteristic function of a real-valued r.v. X always exists because it is

an integral of a bounded continuous function over a space whose measure is finite

(http://en.wikipedia.org/wiki/Characteristic function (probability theory)). In fact, by

successively using Jensen’s inequality, Euler’s formula and the Pythagorean trigonometric

identity, we get

|ϕX(t)| = |E(eitX)|
≤ E(|eitX |)

= E

[√
sin2(tX) + cos2(tX)

]

= 1.

We now list other elementary properties of characteristic functions.

Proposition 5.161 — Elementary properties of characteristic

functions (Karr, 1993, pp. 164–165; Resnick, 1999, pp. 296–297;

http://en.wikipedia.org/wiki/Characteristic function (probability theory))

1. The characteristic function ϕX(t) is uniformly continuous on IR.

2. ϕX(t) satisfies:

(a) ϕX(0) = 1 (i.e., it is non-vanishing in a region around zero);

(b) ϕX(−t) = ϕX(t) (that is, it is Hermitian).

3. The effect on ϕX(t) of an affine transformation on X is given by

ϕaX+b(t) = ϕX(at)× eibt, (5.99)

where a, b ∈ IR.

4. Let ϕX(t) be the complex conjugate of ϕX(t). Then

ϕX(−t) = ϕX(t) = ϕ−X(t). (5.100)

5. The real part of ϕX(t), Re[ϕX(t)] =
∫∞
−∞ cos(tx) dFX(x), is an even function, i.e.,

Re[ϕX(t)] = Re[ϕX(−t)].
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6. The imaginary part of ϕX(t), Im[ϕX(t)] =
∫∞
−∞ sin(tx) dFX(x), is an odd function,

that is, Im[ϕX(t)] = −Im[ϕX(−t)].

7. If X and Y are independent r.v. then

ϕX+Y (t) = ϕX(t)× ϕY (t). (5.101)

8. The previous result can be generalise as follows. Let X1, . . . , Xn be independent

r.v. and a1, . . . , an be real constants. Then the characteristic function of the linear

combination of Xi’s is equal to

ϕa1X1+...+anXn(t) = ϕX1(a1t)× · · ·× ϕXn(ant). (5.102)

9. Let: X1, . . . , Xn be i.i.d. r.v. with common characteristic function ϕX(t); Sn =
∑n

i=1 Xi; an &= 0 and bn ∈ IR. Then

ϕa−1
n Sn−nbn

(t) = e−itnbn ×
[
ϕX(a−1

n t)
]n

. (5.103)

This property is a generalisation of Result 7. in a direction useful for the Central

Limit Theorem.

10. If a r.v. X has a moment-generating function MX(t) = E(etX), then the domain of

the characteristic function can be extended to the complex plane, and ϕX(−it) =

MX(t). •

Exercise 5.162 — Elementary properties of characteristic functions

Prove results:

(a) 1. (Karr, 1993, p. 164);

(b) 3.;

(c) 7. (Karr, 1993, p. 165);

(d) 9. •

For a brief account on criteria for characteristic functions the reader is

referred to http://en.wikipedia.org/wiki/Characteristic function (probability theory)

#Criteria for characteristic functions

The c.d.f. of the r.v. X can be obtained in terms of the characteristic function ϕX(t),

as stated in the next two results.
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Theorem 5.163 — Inversion theorem (Karr, 1993, p. 166)

Let a < b be two continuity points of the c.d.f. of the r.v. X. Then

P (a < X < b) = FX(b)− FX(a)

= lim
T→+∞

1

2π

∫ T

−T

e−ita − e−itb

it
× ϕX(t) dt. (5.104)

•

Remark 5.164 — Inversion theorem

(http://en.wikipedia.org/wiki/Characteristic function (probability theory))

Let x be a continuity point of the c.d.f. of the r.v. X. Then

FX(x) =
1

2
− 1

π

∫ +∞

0

Im[e−itx × ϕX(t)]

t
dt. (5.105)

•

Exercise 5.165 — Inversion theorem

Prove Theorem 5.163 by making use of the trigonometric identity
∫ +∞

0

sin(αx)

x
dx = sign(α)× π

2

(Karr, 1993, pp. 166–167). •

We can recover not only the p.d.f. of an absolutely continuous r.v., but also the

individual probabilities P (X = x) using the characteristic function of X.

Theorem 5.166 — Fourier inversion theorem (Karr, 1993, p. 167; Resnick, 1999, p.

303)

If
∫ +∞
−∞ |ϕX(t)| dt < ∞ then X is an absolutely continuous r.v. with p.d.f. given by

fX(x) =
1

2π

∫ +∞

−∞
e−itx × ϕX(t) dt (5.106)

•

Exercise 5.167 — Fourier inversion theorem

(a) Prove Theorem 5.166 (Karr, 1993, p. 168).

(b) Derive the p.d.f. of a standard normal r.v. by applying Theorem 5.166 (Karr, 1993,

p. 168). •
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Proposition 5.168 — Inversion theorem (Karr, 1993, p. 168)

Let X be a real discrete r.v. and ϕX(t) its characteristic function. Then

P (X = x) = lim
T→+∞

1

2T

∫ T

−T

e−itx × ϕX(t) dt, (5.107)

for x ∈ IR. •

Exercise 5.169 — Inversion theorem

Prove Proposition 5.168 (Karr, 1993, p. 168). •

Interestingly enough, the p.f. of an integer-valued r.v. X can be also written in terms

of ϕX(t), as mentioned below.

Corollary 5.170 — Inversion theorem: integer-valued r.v. (Karr, 1993, p. 169)

Let X be an integer-valued r.v. Then

P (X = n) =
1

2π

∫ π

−π

e−int × ϕX(t) dt, (5.108)

for n ∈ Z. •

Exercise 5.171 — Inversion theorem: integer-valued r.v.

(a) Prove Corollary 5.170 (Karr, 1993, p. 169).

(b) Derive the p.f. of a Bernoulli(p) r.v., by using Corollary 5.170.

(c) Use Mathematica to obtain the p.f. of a Poisson(1) r.v., by using Corollary 5.170. •

Characteristic functions can also be used to find moments of a r.v. X provided that

they exist. Furthermore, by verifying a simple condition, characteristic functions establish

that the moments of X exist.

Theorem 5.172 — Calculation of moments known to exist (Karr, 1993, p. 169;

Resnick, 1999, pp. 301–302)

Consider that the kth absolute moment of a r.v. X exists, i.e., E(|X|k) < ∞. Then E(Xk)

can be computed by taking k−fold derivatives of the characteristic function of X:

E(Xk) = i−k ϕ(k)
X (0) (5.109)

= i−k

[
dk ϕX(t)

dtk

]

t=0

, (5.110)

for k ∈ N. •
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Exercise 5.173 — Calculation of moments known to exist

(a) Prove Theorem 5.172 (Karr, 1993, p. 169).

(b) Use Theorem 5.172 to derive the first and second moments of X ∼ Normal(0, 1)

(Karr, 1993, p. 171). •

Theorem 5.174 — Establishing the existence of moments (Karr, 1993, p. 170)

Let k be an even positive integer and suppose ϕ(k)
X (0) exists. Then E(|X|k) < ∞.20 •

Remark 5.175 — Establishing the existence of moments

(http://en.wikipedia.org/wiki/Characteristic function (probability theory))

Let k be an odd positive integer. Then if a characteristic function ϕX has a kth derivative

at zero, then the r.v. X has all moments only up to k − 1. •

Exercise 5.176 — Establishing the existence of moments

Prove Theorem 5.174 (Karr, 1993, p. 170). •

The Taylor expansion of characteristic functions is crucial to prove some limit theorems

(Karr, 1993, p. 171).

Theorem 5.177 — Taylor expansions of characteristic functions (Karr, 1993, p.

171)

If E(|X|k) < ∞, for some integer k ∈ N, then

ϕX(t) =
k∑

j=0

(it)j

j!
E(Xj) + o(|t|k), (5.111)

as t → 0.21 •

Remark 5.178 — Taylor expansions of characteristic functions (Resnick, 1999,

p. 300)

If E(|X|k) < ∞, for all k ∈ N, then

ϕX(t) =
+∞∑

j=0

(it)j

j!
E(Xj). (5.112)

•

20Thus, all moments E(Xj), j = 1, . . . , k, exist.
21Recall that the relation f(x) ∈ o(g(x)) is read as “f(x) is little-o of g(x)”. Intuitively, it means that

g(x) grows much faster than f(x), or similarly, the growth of f(x) is nothing compared to that of g(x)
and limx→∞

f(x)
g(x) = 0.
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The next theorem states that the characteristic function of a r.v. uniquely determines

its distribution (Resnick, 1999, p. 302).

Theorem 5.179 — Uniqueness theorem (Karr, 1993, p. 167; Resnick, 1999, p. 302)

If ϕX(t) = ϕY (t), for all t, then X
d
= Y . •

Exercise 5.180 — Uniqueness theorem

Use Theorem 5.163 to prove Theorem 5.179 (Karr, 1993, p. 167; Resnick, 1999, pp. 302–

303). •

The next theorem allows us to conclude the convergence in distribution of a sequence

of r.v. from the pointwise convergence of their characteristic functions and vice versa.

Theorem 5.181 — Continuity theorem (Karr, 1993, p. 171)

Xn
d→ X iff

ϕXn(t) → ϕX(t), for each t ∈ IR. (5.113)

•

Exercise 5.182 — Continuity theorem

Prove Theorem 5.181 (Karr, 1993, pp. 171–172). •

The following result — the Lévy continuity theorem — establishes that the pointwise

limit of a sequence of characteristic functions is a characteristic function, provided that

it is continuous at zero (Karr, 1993, p. 172).

The Lévy continuity theorem is frequently used to prove the law of large numbers and

the Central Limit Theorem.

Theorem 5.183 — Lévy continuity theorem (Karr, 1993, p. 172; Resnick, 1999, pp.

304–305)

Let {X1, X2, . . .} be a sequence of r.v. and ϕX1(t), ϕX2(t), . . . the corresponding

characteristic functions. If

(i) ϕ(t) = limn→+∞ ϕXn(t) for every t ∈ IR

(ii) ϕ is continuous at zero

then there is a r.v. X such that

ϕX = ϕ (5.114)

Xn
d→ X. (5.115)

•
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Exercise 5.184 — Lévy continuity theorem

Prove Theorem 5.183 by using the following result, stated and proved by Resnick (1999,

p. 311): there is K ∈ IR such that for each X,

P (|X| ≥ a−1) ≤ K

a

∫ a

0

{1−Re[ϕX(t)]} dt, (5.116)

for all a > 0 (Karr, 1993, pp. 172–173; Resnick, 1999, 311–312). •

Exercise 5.185 — Continuity theorems

Use the continuity theorems and other results you may see fit to prove:

(a) the weak law of large numbers stated in Theorem 5.143 (Karr, 1993, pp. 173–174);

(b) the Poisson limit theorem stated in Theorem 5.124 (Karr, 1993, p. 174);

(c)
∑+∞

i=1 2−i Xi
d
= Uniform(−1, 1), when the Xi are i.i.d. r.v. with common p.f. P (Xi =

−1) = P (Xi = 1) = 1
2 (Karr, 1993, p. 173). •

5.9 The Central Limit Theorem

The Central Limit Theorem (CLT) is probably the most notable case of convergence

in distribution. It states that, given certain conditions, the sum (or the

arithmetic mean) of a sufficiently large number of i.i.d. r.v., each with a well-

defined expected value and well-defined variance, will be approximately normally

distributed (http://en.wikipedia.org/wiki/Central limit theorem#Classical CLT). This

result is particularly important because, unlike the Binomial, Poisson and Normal

distributions, most distributions are not closed under convolution and it is crucial to

provide an approximate distribution for sums (or means) of r.v.

The CLT has several variants. The version we state below:

• refers to i.i.d. r.v.;

• is sometimes referred to as the Lindeberg-Lévy CLT (Murteira, 1979, p. 354);

• extends the DeMoivre-Laplace global limit theorem (Theorem 5.120), in which the

Sn have binomial distributions (Karr, 1993, p. 174).
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Theorem 5.186 — Lindeberg-Lévy Central Limit Theorem (or CLT for i.i.d.

r.v.) (Resnick, 1999, p. 313; Karr, 1993, p. 174; Murteira, 1979, p. 354)

Let:

• {X1, X2, . . .} be a sequence of i.i.d. r.v. such that E(Xi) = µ and V (Xi) = σ2 ∈ IR+,

for i = 1, 2, . . .;

• Sn =
∑n

i=1 Xi be the sum of the first n terms of that sequence of i.i.d. r.v.;

• {Z1, Z2, . . .} be the sequence of the standardized partial sums, where

Zn =
Sn − E(Sn)√

V (Sn)

=
Sn − nµ√

nσ2
. (5.117)

Then

Zn
d→ Normal(0, 1). (5.118)

•

Remark 5.187 — Lindeberg-Lévy Central Limit Theorem (or CLT for i.i.d.

r.v.)

• This variant of the CLT allows us to add that, when we deal with a sufficiently large

number n of i.i.d. r.v. X1, . . . , Xn, with common mean µ and common positive and

finite variance σ2, the c.d.f. of the sum of these r.v. can be approximate as follows:

P (Sn ≤ s) = P

(
Sn − nµ√

nσ2
≤ s− nµ√

nσ2

)
CLT* Φ

(
s− nµ√

nσ2

)
. (5.119)

• Because of the continuity theorem, characteristic functions22 are used in the most

frequently seen proof of this version of the CLT. •

Exercise 5.188 — Lindeberg-Lévy Central Limit Theorem (or CLT for i.i.d.

r.v.)

Prove Theorem 5.186 (Karr, 1993, p. 174; Murteira, 1979, pp. 354–355; Resnick, 1999,

pp. 313–314). •
22And their Taylor expansions omitting terms of higher order than the 2nd degree.
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In the classical form of the CLT, the r.v. must be identically distributed. However,

the CLT can be generalized to the case where the summands are independent r.v. but

not identically distributed (Resnick, 1999, p. 314), given that they comply with certain

conditions.

Interestingly, the next variant of the CLT is due to Lyapunov and was proved before

the Lindberg-Lévy CLT (Murteira, 1979, p. 359). The Lyapunov CLT requires that the

r.v. |Xi| have finite moments of some order (2 + δ), δ > 0, and that the rate of growth of

these moments is limited by the Lyapunov condition given below.

Theorem 5.189 — Lyapunov Central Limit Theorem (Murteira, 1979, p. 359;

Resnick, 1999, p. 319; Karr, 1993, p. 191)

Let:

• {X1, X2, . . .} be a sequence of independent r.v. such that E(Xi) = µi and V (Xi) =

σ2
i ,

23 i = 1, 2, . . .;

• Sn =
∑n

i=1 Xi be the partial sum of the first n terms of that sequence of independent

r.v.;

• {Z1, Z2, . . .} be the sequence of the standardized partial sums, where

Zn =
Sn − E(Sn)√

V (Sn)

=

∑n
i=1 Xi −

∑n
i=1 µi√∑n

i=1 σ2
i

. (5.120)

Then

Zn
d→ Normal(0, 1) (5.121)

if {X1, X2, . . .} satisfies the Lyapunov condition, i.e., if

∃ δ > 0 :





E(|Xn|2+δ) < +∞, n = 1, 2, . . .

limn→+∞
1

(
Pn

i=1 σ2
i )

2+δ

∑n
i=1 E

[
|Xi − µi|2+δ

]
= 0. (5.122)

•

Exercise 5.190 — Lyapunov Central Limit Theorem

Prove Theorem 5.189 (Karr, 1993, p. 192). •

23These variances are all finite because the sequence of of r.v. satisfies the Lyapunov condition.
Moreover, Murteira (1979, p. 359) mentions that σ1 &= 0; we strongly believe this condition should
read as follows: at least one of the variances should be non null.
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Theorem 5.191 — Lindberg-Feller Central Limit Theorem (Karr, 1993, p. 194;

Murteira, 1979, p. 360; Resnick, 1999, p. 315)

Let:

• {X1, X2, . . .} be a sequence of independent r.v. such that E(Xi) = µi and V (Xi) =

σ2
i ,

24 i = 1, 2, . . .;

• Sn =
∑n

i=1 Xi be the partial sum of the first n terms of that sequence of independent

r.v.;

• {Z1, Z2, . . .} be the sequence of the standardized partial sums, where Zn =
Sn−E(Sn)√

V (Sn)
=

Pn
i=1 Xi−

Pn
i=1 µi√Pn

i=1 σ2
i

.

Then

Zn
d→ Normal(0, 1) (5.123)

and

lim
n→+∞

max
k=1,...,n

σ2
k

V (Sn)
= 0, (5.124)

iff {X1, X2, . . .} satisfies the Lindberg condition, that is, if

lim
n→+∞

1

V (Sn)

n∑

k=1

∫

|x−µk|>εV (Sn)

(x− µk)
2 dFXk

(x) = 0. (5.125)

•

Remark 5.192 — Lindberg-Feller Central Limit Theorem

• The Lindberg condition is not by itself a necessary condition for the validity of the

CLT (Karr, 1993, p. 196).25

• Lindberg (resp. Feller) proved the necessary (resp. sufficient) part of the Lindberg-

Feller CLT (Murteira, 1979, p. 360).

24Once again these variances are all finite (Murteira, 1979, p. 360) and at least one of them should be
non null. Curiously, Resnick (1999, p. 314) does not mention these conditions on the variances.

25For instance, if Xi ∼ Normal(0, 2i), then V (Sn) = 2n+1−1 * 2n+1 and limn→+∞maxk=1,...,n
σ2

k
V (Sn) =

2 &= 0. In this case, (5.124) fails and so does the Lindberg condition, even though
Sn/

√
V (Sn) ∼ Normal(0, 1), for all n (Karr, 1993, p. 196). However, once we stipulate that

limn→+∞maxk=1,...,n
σ2

k
V (Sn) = 0 the Lindberg conditions is necessary: if X1, X2, . . . are independent

r.v., with limn→+∞maxk=1,...,n
σ2

k
V (Sn) = 0, and if Zn

d→ Normal(0, 1), then {X1, X2, . . .} satisfies the
Lindberg condition (Karr, 1993, Theorem 7.18, p. 196).
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• The Lindberg condition essentially means that, for each k, most of the mass of Xk is

centred in an interval about the mean µk and this interval is small when compared

to V (Sn) (Resnick, 1999, p. 315).

• If the sequence of r.v. {X1, X2, . . .} satisfies the Lyapunov condition then it also

satisfies the Lindberg condition (Karr, 1993, p. 193). •

Exercise 5.193 — Lindberg-Feller Central Limit Theorem

Prove Theorem 5.191 (Karr, 1993, pp. 194–196). •

Finally, note that characteristic functions can be extended to random

vectors (http://en.wikipedia.org/wiki/Characteristic function (probability theory)

#Generalizations) and, unsurprisingly, the CLT has a multivariate variant.

In fact, when we deal with a sequence of i.i.d. random vectors in IRk,

{X1, X2, . . .}, with mean vector µ = [E(Xi)]i=1,...,k and covariance matrix

Σ = [cov(Xi, Xj)]i,j=1,...,k, and take componentwise summations of these

vectors, then the multidimensional CLT states that when scaled, the sequence

of the resulting vectors converges to a multivariate normal distribution

(http://en.wikipedia.org/wiki/Central limit theorem#Multidimensional CLT).

5.10 The law of the iterated logarithm

It is important to determine the growth rate of the partial sums Sn: that rate is√
2n σ2 ln[ln(n)], thus the name “law of the iterated logarithm” (Karr, 1993, p. 196).

According to http://en.wikipedia.org/wiki/Law of the iterated logarithm, the original

statement of the law of the iterated logarithm is due to A.Y. Khinchin (1924); another

statement was given by A.N. Kolmogorov in 1929.

Karr (1993, pp. 197–200) only proves this result when the summands are i.i.d. and

have standard normal distribution.

Theorem 5.194 — Law of the iterated logarithm, i.i.d. summands with

standard normal distribution (Karr, 1993, p. 198)

Let:

• {X1, X2, . . .} be a sequence of i.i.d. r.v. with Normal(0, 1) distribution;
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• Sn =
∑n

i=1 Xi be the partial sum of the first n terms of that sequence of i.i.d. r.v.

Then

lim sup
n→+∞

Sn√
2n ln[ln(n)]

= lim
n→+∞

sup
m≥n

Sm√
2m ln[ln(m)]

a.s.
= 1. (5.126)

•

Exercise 5.195 — Law of the iterated logarithm, standard normal and i.i.d.

summands

Prove Theorem 5.194 Karr (1993, pp. 198–200). •

Theorem 5.196 — Law of the iterated logarithm, i.i.d. summands (Karr, 1993,

p. 200)

Let:

• {X1, X2, . . .} be a sequence of i.i.d. r.v. such that E(Xi) = µ and V (Xi) = σ2 ∈ IR+,

i = 1, 2, . . .;

• Sn =
∑n

i=1 Xi be the partial sum of the first n terms of that sequence of i.i.d. r.v.

Then

lim sup
n→+∞

Sn − nµ√
2n σ2 ln[ln(n)]

a.s.
= 1. (5.127)

•

Remark 5.197 — Law of the iterated logarithm, i.i.d. summands

(http://en.wikipedia.org/wiki/Law of the iterated logarithm)

Let {X1, X2, . . .} be a sequence of i.i.d. r.v. such that E(Xi) = 0 and V (Xi) = 1, i =

1, 2, . . ., and Sn the associated partial sum.

On one hand,

X̄n =
Sn

n
P→ 0 (resp.

a.s.→ 0), (5.128)

according to the weak (resp. strong) law of large numbers. On the other hand,

Sn√
n

d→ Normal(0, 1), (5.129)

by the CLT. Thus, the law of iterated logarithm operates “in between” the law of large

numbers and the central limit theorem. •
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5.11 Applications of the limit theorems

Monte Carlo integration and the characterisation of maximum likelihood estimators

(MLE) and empirical distribution functions benefit from the strong law of large numbers,

central limit theorem and the law of the iterated logarithm (Karr, 1993, pp. 200–207).

Theorem 5.198 — Monte Carlo integration and the strong law of large

numbers (Karr, 1993, p. 201)

Let:

• h be a continuous (or even just Borel measurable) function on [0, 1] and such that∫ 1

0 |h(x)| dx < ∞;

• {U1, U2, . . .} be a sequence of i.i.d. r.v. with the same distribution as U ∼
Uniform(0, 1).

Then 1
n

∑n
i=1 h(Ui), the Monte Carlo estimator of E[h(U)] =

∫ 1

0 h(x) dx, satisfies

1

n

n∑

i=1

h(Ui)
a.s.→

∫ 1

0

h(x) dx, (5.130)

that is, 1
n

∑n
i=1 h(Ui) is a strongly consistent estimator of

∫ 1

0 h(x) dx •

Since
a.s.→ ⇒ P→ , we can add that 1

n

∑n
i=1 h(Ui) is a (weakly) consistent estimator

of
∫ 1

0 h(x) dx.

Exercise 5.199 — Monte Carlo integration and the strong law of large numbers

Prove Theorem 5.198 (Karr, 1993, p. 201). •

Under widely satisfied conditions, maximum likelihood estimators are not only

consisted, but also asymptotically normal (Karr, 1003, pp. 201–202).

Theorem 5.200 — Maximum likelihood estimation and the weak law of large

numbers (Karr, 1993, pp. 201–202)

Let:

• {X1, X2, . . .} be a sequence of i.i.d. r.v. with the same p.d.f. (or p.f.) f(., θ) as the

r.v. X;

• θ ∈ IR is an unknown parameter we wish to estimate;

• θ̂n = θ̂n(X1, . . . , Xn) be the MLE of θ based on the random sample of size n,

(X1, . . . , Xn).

287

Suppose:

• the mapping θ → f(x, θ) is continuous for (almost) every x ∈ IR;

• for each θ and γ > 0,

kθ(γ) = inf
|θ′−θ|>γ

∫ +∞

−∞

[√
f(x, θ)−

√
f(x, θ′)

]2

dx > 0; (5.131)

• for each θ,

lim
δ→0

{∫ +∞

−∞
sup
|h|≤δ

[√
f(x, θ)−

√
f(x, θ + h)

]2

dx

} 1
2

= 0; (5.132)

• for each θ,

lim
c→+∞

∫ +∞

−∞
sup
|u|≥c

[√
f(x, θ)×

√
f(x, θ + u)

]2

dx < 1. (5.133)

Then θ̂n is a consistent estimator of θ, i.e.,

θ̂n
P→ θ. (5.134)

•

Exercise 5.201 — Maximum likelihood estimation and limit theorems

Prove Theorem 5.200 (Karr, 1993, pp. 202–204). •

Theorem 5.202 — Maximum likelihood estimation and the CLT (Karr, 1993, p.

204)

Under the conditions of Theorem 5.200 and the finiteness of the Fisher information,

I(θ) = E

[(
∂ ln f(X, θ)

∂θ

)2
]

, (5.135)

we get the asymptotic normality of the standardised estimation error:
√

n I(θ)[θ̂n − θ]
d→ Normal(0, 1). (5.136)

•

Exercise 5.203 — Maximum likelihood estimation and the CLT

Prove Theorem 5.202 (Karr, 1993, pp. 204–205). •
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Proposition 5.204 — Empirical distribution functions and the strong law of

large numbers

Let:

• {X1, X2, . . .} be a sequence of i.i.d. r.v. with the same entirely unknown c.d.f. F as

the r.v. X;

• Fn(x, X) = 1
n

∑n
i=1 I(−∞,x](Xi), x ∈ IR, be the empirical distribution function for

the random sample X = (X1, . . . , Xn);26

Not only

P [Fn(x, X) = s] =
n!

(ns)! (n− ns)!
× [F (x)]ns × [1− F (x)]n−ns, (5.137)

for s = 0, 1
n , 2

n , . . . , n−1
n , 1,

E[Fn(x, X)] = F (x), (5.138)

V [Fn(x, X)] =
F (x) [1− F (x)]

n
, (5.139)

but more important

Fn(x, X)
a.s.→ F (x), (5.140)

that is, Fn(x, X) is a strongly consistent estimator of F (x). •

This convergence is also uniform. This result is also known as the Glivenko-Cantelli

theorem.

Theorem 5.205 — Glivenko-Cantelli theorem

Under the conditions of Proposition 5.204, we have

∀ε > 0, lim
n→+∞

P [sup
x∈IR

|Fn(x, X)− F (x)| < ε] = 1, (5.141)

i.e.,

sup
x∈IR

|Fn(x, X)− F (x)| a.s.→ 0. (5.142)

•

Suffice to say that we could have applied the CLT and conclude that

Fn(x, X)− F (x)√
F (x)[1−F (x)]

n

d→ Normal(0, 1). (5.143)

26Fn(x,X) corresponds to the proportion Xi’s smaller than or equal to x in the random sample
(X1, . . . ,Xn).
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Expectedly, Fn(x, X) is used in the statistic of the Kolmogorov-Smirnov goodness of

fit of test, supx∈IR |Fn(x, X)− F0(x)|, where F0 represents the conjectured (and known)

distribution. Interestingly enough, for any absolutely continuous c.d.f. F , it is possible

to:

• provide an asymptotic distribution for
√

n supx∈IR |Fn(x, X)− F (x)| — this result

constitutes the Kolmogorov-Smirnov theorem;

• state a law of the iterated logarithm for empirical distribution functions.

Theorem 5.206 — Kolmogorov-Smirnov theorem (Karr, 1993, pp. 206–207)

Under the conditions of Proposition 5.204 and an absolutely continuous c.d.f. F , we have

√
n sup

x∈IR
|Fn(x, X)− F (x)| d→ Y, (5.144)

where the c.d.f. of Y is given by

FY (y) = 1− 2
∞∑

i=1

(−1)i+1e−2i2y2
, y > 0. (5.145)

•

Theorem 5.207 — Law of iterated logarithm for empirical distribution

functions (Karr, 1993, p. 207)

Under the conditions of Proposition 5.206

lim sup
n→+∞

√
n supx∈IR |Fn(x, X)− F (x)|√

2× {supx∈IR F (x)[1− F (x)]}× ln[ln(n)]

a.s.
= 1. (5.146)

•

290



References

• Grimmett, G.R. and Stirzaker, D.R. (2001). Probability and Random Processes

(3rd. edition). Oxford University Press. (QA274.12-.76.GRI.30385 and QA274.12-

.76.GRI.40695 refer to the library code of the 1st. and 2nd. editions from 1982 and

1992, respectively.)

• Karr, A.F. (1993). Probability. Springer-Verlag.

• Murteira, B.J.F. (1979). Probabilidades e Estat́ıstica, Vol. 1. Editora McGraw-Hill

de Portugal, Lda.

• Murteira, B.J.F. (1980). Probabilidades e Estat́ıstica, Vol. 2. Editora McGraw-Hill

de Portugal, Lda. (QA273-280/3.MUR.34472, QA273-280/3.MUR.34475)

• Resnick, S.I. (1999). A Probability Path. Birkhäuser. (QA273.4-.67.RES.49925)
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