Analog-Digital Interface

Computer Organization
Architectures for Embedded Computing

Tuesday, 26 November 13
Summary

• Previous Class
 – Dependability
 • Redundancy
 • Error Correcting Codes

• Today:
 – Analog-Digital Interface
 • Converters, Sensors / Actuators
 • Sampling
 • DSP
 • Frequency spectrum of signals
• Everything in the physical world is an analog signal
 – Sound
 – Light
 – Temperature
 – Gravitational force
Small Computers Rule the Marketplace
Diversity of Devices
An Analog World

• Need to convert into electrical signals

• **Transducers**: device that converts a primary form of energy into a corresponding signal with a different energy form
 – Primary Energy Forms: mechanical, thermal, electromagnetic, optical, chemical, etc.
 – take form of a sensor or an actuator

• **Sensor** (e.g., thermometer)
 – a device that detects/measures a signal or stimulus
 – acquires information from the “real world”

• **Actuator** (e.g., heater)
 – a device that generates a signal or stimulus
Transducers

- Microphone/speakers
- Valve Control
- Motor Control
- Microaccelerometer
 - cantilever beam
 - suspended mass
- Pressure
- Gyroscope (rotation)
Sensor Calibration

- Sensors can exhibit non-ideal effects
 - offset: nominal output ≠ nominal parameter value
 - nonlinearity: output not linear with parameter changes
 - cross parameter sensitivity: secondary output variation with, e.g., temperature

- Calibration = adjusting output to match parameter
 - analog signal conditioning
 - look-up table
 - digital calibration
 - $T = a + bV + cV^2$, $T=$ temperature; $V=$ sensor voltage;
 - $a, b, c =$ calibration coefficients

- Compensation
 - remove secondary sensitivities
 - must have sensitivities characterized
 - can remove with polynomial evaluation
 - $P = a + bV + cT + dVT + e V^2$, where $P=$ pressure, $T=$ temperature
Analog-to-Digital Converter (ADC, A/D, or A to D): a device that converts continuous signals to discrete digital numbers.

- Quantizing - breaking down analog value in a set of finite states
- Encoding - assigning a digital word or number to each state and matching it to the input signal
ADC reads periodic samples of the input and generates a binary value.
Workings of an A/D

Clock signal

Input
analog signal

Sample and hold

analog signal segment

A/D Conversion

Output
Equally spaced Digital signal

Diagram shows the process of an A/D converter, including sampling and holding, analog-to-digital conversion, and the output as an equally spaced digital signal.
Sampling Resolution

• Resolution
 – Number of discrete values that represent a range of analog values
 • Eg, 3-bit ADC, 8 values
 • Range / 8 = Step

• Quantization Error
 – How far off discrete value is from actual
 – $\frac{1}{2}$ LSB \rightarrow Range / 16
For an n-bit ADC, the number of possible states that the converter can output is:

\[N = 2^n \]

Analog quantization size:
\[Q = \frac{V_{\text{max}} - V_{\text{min}}}{N} \]

Example: For a 0-10V signals and a 3-bit A/D converter.
\[N = 2^3 = 8. \]

Analog quantization size:
\[Q = \frac{(10V - 0V)}{8} = 1.25V \]
Each bit is weighted with an analog value, such that a 1 in that bit position adds its analog value to the total analog value represented by the digital encoding.

<table>
<thead>
<tr>
<th>Digital Bit</th>
<th>Bit Weight (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>10/2 = 5</td>
</tr>
<tr>
<td>6</td>
<td>10/4 = 2.5</td>
</tr>
<tr>
<td>5</td>
<td>10/8 = 1.25</td>
</tr>
<tr>
<td>4</td>
<td>10/16 = 0.625</td>
</tr>
<tr>
<td>3</td>
<td>10/32 = 0.313</td>
</tr>
<tr>
<td>2</td>
<td>10/64 = 0.157</td>
</tr>
<tr>
<td>1</td>
<td>10/128 = 0.078</td>
</tr>
<tr>
<td>0</td>
<td>10/256 = 0.039</td>
</tr>
</tbody>
</table>
• What range to use?

![Diagram showing sampling range](image)

- **Range Too Small**
 - Ideal Range: $V_{r\,+}$ to $V_{r\,-}$

- **Range Too Big**
 - Ideal Range: $V_{r\,+}$ to $V_{r\,-}$

- **Ideal Range**
 - Ideal Range: $V_{r\,+}$ to $V_{r\,-}$
Digital-to-Analog Converter (DAC, D/A or D to A): device for converting a digital (usually binary) code to an analog signal (current, voltage or charges).

Digital-to-Analog Converters are the interface between the abstract digital world and the analog real life.

Simple switches, a network of resistors, current sources or capacitors may implement this conversion.
Digital-to-Analog Resolution

Poor Resolution (1 bit)

Better Resolution (3 bits)

Vout

Desired Analog signal

Approximate output

Digital Input

Vout

Desired Analog signal

Approximate output

Digital Input
Signal from DAC can be smoothed by a Low-pass filter.
Analog Circuits

- Most real-world signals are analog
- They are continuous in time and amplitude
- Analog circuits process these signals using
 - Resistors
 - Capacitors
 - Inductors
 - Amplifiers
 - ...
- Analog signal processing examples
 - Audio processing in FM radios
 - Video processing in traditional TV sets
Limitations of Analog Signal Processing

- Accuracy limitations due to
 - Component tolerances
 - Undesired nonlinearities
- Limited repeatability due to
 - Tolerances
 - Changes in environmental conditions
 - Temperature
 - Vibration
- Sensitivity to electrical noise
- Limited dynamic range for voltage and currents
- Inflexibility to changes
- Difficulty of implementing certain operations
 - Nonlinear operations
 - Time-varying operations
- Difficulty of storing information
Digital Signal Processing

- Represent signals by a sequence of numbers
 - Sampling or analog-to-digital conversions
- Perform processing on these numbers with a digital processor
 - Digital signal processing
- Reconstruct analog signal from processed numbers
 - Reconstruction or digital-to-analog conversion

- Analog input – analog output
 - Digital recording of music
- Analog input – digital output
 - Touch tone phone dialing
- Digital input – analog output
 - Text to speech
- Digital input – digital output
 - Compression of a file on computer
Pros and Cons of Digital Signal Processing

• Pros
 – Accuracy can be controlled by choosing word length
 – Repeatable
 – Sensitivity to electrical noise is minimal
 – Dynamic range can be controlled using floating point numbers
 – Flexibility can be achieved with software implementations
 – Non-linear and time-varying operations are easier to implement
 – Digital storage is cheap
 – Digital information can be encrypted for security
 – Price/performance and reduced time-to-market

• Cons
 – Sampling causes loss of information
 – A/D and D/A requires mixed-signal hardware
 – Limited speed of processors
 – Quantization and round-off errors
Sampling Rate: frequency at which ADC evaluates analog signal.

What sample rate do we need?
- Too little: we can’t reconstruct the signal we care about
- Too much: waste computation, energy, resources
Aliasing: different frequencies are indistinguishable when they are sampled.

For example, a 2 kHz sine wave being sampled at 1.5 kHz would be reconstructed as a 500 Hz (the aliased signal) sine wave.
Nyquist Sampling Theorem

If a continuous-time signal contains no frequencies higher than f_{max}, it can be completely determined by discrete samples taken at a rate:

$$f_{\text{sample}} > 2 \times f_{\text{max}}$$

$f_{\text{sample}} = 2f_{\text{max}}$ is known as the Nyquist Sampling frequency

Example:
Humans can process audio signals 20 Hz – 20 KHz
Audio CDs: sampled at 44.1 KHz
Jean Fourier proposed a wild idea in 1807:

Any periodic function can be rewritten as a weighted sum of Sines and Cosines of different frequencies.

\[f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right) \]

- Lagrange, Laplace, Poisson and others found it hard to believe!
- Called Fourier Series
 - Odd functions only need the sine
 - Even functions only need the cosine
A Sum of Sinusoids

• Building block:

\[A_n \sin(n \omega x + \varphi_n) \]

• Add enough of them to get any signal \(f(x) \) you want!
A Sum of Sinusoids

- **Square Wave**
- **Sawtooth Wave**
- **Triangle Wave**
- **Semicircle**
• Reparametrize the signal by ω instead of x:

\[
\begin{align*}
f(x) & \quad \xrightarrow{\text{Fourier Transform}} \quad F(\omega)
\end{align*}
\]

For every ω from 0 to ∞, $F(\omega)$ holds the amplitude A and phase ϕ of the corresponding sine: $A \sin(\omega x + \phi)$

\[
F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi\omega x} \, dx
\]

\[
e^{ik} = \cos k + i \sin k \quad i = \sqrt{-1}
\]

Time domain (x) \Rightarrow Frequency domain (ω)

• $F(\omega)$ is the **frequency spectrum** of $f(x)$
Inverse Fourier Transform

- Using a similar, but inverse transformation, the signal in the x domain can be obtained from the frequency domain ω:

$$f(x) = \int_{-\infty}^{\infty} F(\omega) e^{i2\pi\omega x} \, dx$$

Many operations, specially with sound, image and video, are more easily computed in the frequency domain.
Common Transform Pairs

<table>
<thead>
<tr>
<th>Time Function</th>
<th>Frequency Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boxcar</td>
<td>Sinc</td>
</tr>
</tbody>
</table>
| \(G(t) = \begin{cases}
1, & |t| < \tau/2 \\
0, & |t| > \tau/2
\end{cases} \) | \(s(f) = \frac{1}{\tau} \text{sinc} \left(\frac{f}{\tau} \right) \) |

Sinc function graph:
- \(s(f) = \frac{1}{\tau} \text{sinc} \left(\frac{f}{\tau} \right) \)
Discrete Fourier Transform

- Fourier transform applies equally to discrete-time signals:

\[h_k = \frac{1}{N} \sum_{n=0}^{N-1} H_n e^{-2\pi i kn/N} \quad H_n = \sum_{k=0}^{N-1} h_k e^{2\pi i kn/N} \]
Conclusions

• Physical quantities need to be converted to binary in order to be processed by computers
 – Sensors translate to electric signals
 – Actuators perform physical actions with electric commands

• To levels of discretization:
 – Amplitude
 • DACs & ADCs
 – Time
 • Sampling

• Signals can be converted to the frequency domain
 – Frequency spectrum
 – Nyquist theorem
 – Many operations easier in this domain: DSP
Analog-Digital Interface

Computer Organization
Architectures for Embedded Computing

Tuesday, 26 November 13