Neural networks

Motivation
- Humans are able to process complex tasks efficiently (perception, pattern recognition, reasoning, etc.)
- Ability to learn from examples
- Adaptability and fault tolerance

Engineering applications
- Nonlinear approximation and classification
- Learning (adaptation) from data: black-box modeling
- Very-Large-Scale Integration (VLSI) implementation
Biological neuron

- **Soma**: body of the neuron.
- **Dendrites**: receptors (inputs) of the neuron.
- **Axon**: output of neuron; connected to dendrites of other neurons via synapses.
- **Synapses**: transfer of information between neurons (electrochemical signals).

Neural networks

- Biological neural networks
 - Neuron switching time: 0.001 second
 - Number of neurons: 10^{11} (100 bilion)
 - Connections per neuron (synapses): 10^{14} (100 trillion)
 - Recognition time: 10^{-3} s (milliseconds)

- **parallel computation**

- Artificial neural networks
 - Weighted connections amongst units
 - Highly parallel, distributed process
 - Emphasis on tuning weights automatically
Use of neural networks

- Input is high-dimensional
- Output is multidimensional
- Mathematical form of system is unknown
- Interpretability of identified model is unimportant

Applications
- Pattern recognition
- Classification
- Prediction
- Modeling

<table>
<thead>
<tr>
<th>Biological neural network</th>
<th>Artificial neural network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soma</td>
<td>Neuron</td>
</tr>
<tr>
<td>Dendrite</td>
<td>Input</td>
</tr>
<tr>
<td>Axon</td>
<td>Output</td>
</tr>
<tr>
<td>Synapse</td>
<td>Weight</td>
</tr>
</tbody>
</table>

ANN: history

1943 Warren McCulloch & Walter Pitts

Definition of a neuron:
- The activity of a neuron is an all or none process
- The structure of the net does not change with time

Too simple structure, however:
- Proved that networks of their neurons could represent any finite logical expression
- Used a massively parallel architecture
- Provided important foundation for further development
1948 Donald Hebb

- Major contributions:
 - Recognized that information is stored in the weight of the synapses
 - Postulated a learning rate that is proportional to the product of neuron activation values
 - Postulated a cell assembly theory: repeated simultaneous activation of weakly-connected cell group results in a more strongly connected group.

1957 Frank Rosenblatt

- Defined first computer implementation: the perceptron
- Attracted attention of engineers and physicists, using model of biological vision
- Defined information storage as being “in connections or associations rather than topographic representations”
- Defined both self-organizing and supervised learning mechanisms
1959 Bernard Widrow & Marcian Hoff

- Engineers who simulated networks on computers and implemented designs in hardware (Adaline and Madaline).
- Formulated Least Mean Squares (LMS) algorithm that minimizes sum-squared error.
- LMS adapts weights even when classifier output is correct.

1977 David Rumelhart

- Introduced computer implementation of backpropagation learning and delta rule

1982 John Hopfield

- Implemented recurrent network
- Developed way to minimize “energy” of network, defined stable states
- First NNs on silicon chips built by AT&T using Hopfield net
ANN: history

1989 Cybenko (approximation theory)

1990 Jang et al. (neuro-fuzzy systems)

1993 Barron (complexity vs. accuracy)

ADAPTIVE NETWORKS
Adaptive (neural) networks

- Massively connected computational units inspired by the working of the human brain
- Provide a mathematical model for biological neural networks (brains)
- Characteristics:
 - learning from examples
 - adaptive and fault tolerant
 - robust for fulfilling complex tasks

Network classification

- Learning methods (supervised, unsupervised)
- Architectures (feedforward, recurrent)
- Output types (binary, continuous)
- Node types (uniform, hybrid)
- Implementations (software, hardware)
- Connection weights (adjustable, hard-wired)
- Inspirations (biological, psychological)
Adaptive network architecture

- Nodes are static (no dynamics) and parametric
- Network can consist of heterogeneous nodes
- Links do not have weights or parameters associated
- Node functions are differentiable except at a finite number of points

Adaptive networks categories

- Feedforward

- Recurrent
Adap. network representations

- Layered

- Topological ordering

Feedforward adaptive network

- Static mapping between input and output spaces
- Aim: construct network to obtain nonlinear mapping regulated by a data set (training data set) of desired input-output pairs of a target system to be modeled
- Procedures: learning rules or adaptation algorithms (parameter adjustment to improve network performance)
- Network performance: measured as the discrepancy between desired and network’s output for same input (error measure)
Examples of adaptive networks

- **Adaptive network with single linear node**

 \[x_3 = f_3(x_1, x_2; a_1, a_2, a_3) = a_1 x_1 + a_2 x_2 + a_3 \]

- **Perceptron network (linear classifier)**

 \[x_3 = f_3(x_1, x_2; a_1, a_2, a_3) = a_1 x_1 + a_2 x_2 + a_3 \]

 \[x_4 = f_4(x_3) = \begin{cases}
 1 & \text{if } x_3 \geq 0 \\
 0 & \text{if } x_3 < 0
\end{cases} \]

Examples of adaptive networks

- **Multilayer perceptron** (3-3-2 neural network)

 \[x_7 = \frac{1}{1 + \exp[-(w_{4,7} x_4 + w_{5,7} x_5 + w_{6,7} x_6 + t_7)]] \]

 - Parameter set of node 7: \(\{ w_{4,7}, w_{5,7}, w_{6,7}, t_7 \} \)
SUPERVISED LEARNING
NEURAL NETWORKS

Perceptron

- Early (and popular) attempt to build intelligent and self-learning systems by using simple components
- Derived from McCulloch-Pitts (1943) model of the biological neuron
- Models output by weighted combinations of selected features (feature classifier)
- Essentially a linear classifier
- Incremental learning roughly based on gradient descent
Training algorithm

- Perceptron (Rosenblatt, 1958). Can only learn **linearly separable** functions.

- **Training algorithm:**
 1. Select an input vector \mathbf{x} from the training data set
 2. If the perceptron gives an incorrect response, modify all connection weights w_j
Training algorithm

- Weight training:
 \[w_i(l+1) = w_i(l) + \Delta w_i(l) \]
- Weight correction is given by the delta rule:
 \[\Delta w_i(l) = \alpha x_i(l)e(l) \]
 - \(\alpha \) - learning rate
 - \(e(l) = y_d(l) - y(l) \)

Question: Can we represent a simple exclusive-OR (XOR) function with a single-layer perceptron?

XOR problem

How to classify the patterns correctly?

Linear classification is not possible!
Example

- Linearly separable classifications
 - If classification is linearly separable, we can have any number of classes with a perceptron.
 - For example, consider classifying furniture according to height and width:

![Diagram of linear classification](image)

Example

- Each category can be separated from the other 2 by a straight line:
 - 3 straight lines
 - each output node fires if point is on right side of straight line:

![Diagram of classification with output nodes](image)

More than one output node could fire at same time!
Artificial neuron

- x_i: i-th input of the neuron
- w_i: synaptic strength (weight) for x_i
- $y = \sigma(\sum w_i x_i)$: output signal

Types of neurons

- Threshold θ (McCulloch and Pitts, 1943):
 $$y = \text{sign}\left(\sum_{i=1}^{n} w_i x_i - \theta\right)$$
- Other types of activation functions ($net = \sum w_i x_i$):
 - $y_{\text{step}} = \begin{cases} 1, & \text{if } net \geq 0 \\ 0, & \text{if } net < 0 \end{cases}$
 - $y_{\text{sigmoid}} = \frac{1}{1 + e^{-net}}$
 - $y_{\text{linear}} = net$
Activation functions

- **Logistic**
 \[f(x) = \frac{1}{1 + e^{-x}} \]

- **Hyperbolic tangent**
 \[f(x) = \tanh\left(\frac{x}{2}\right) = \frac{1 - e^{-x}}{1 + e^{-x}} \]

- **Identity (linear)**
 \[f(x) = x \]

*sigmoidal or squashing functions

Single-layer perceptron (SLP)

- Single-layer perceptron can only classify linearly separable patterns, regardless of the activation function used.
- How to cope with problems which are not linearly separable?

Using multilayer neural networks!
Multi-Layer Perceptron for XOR

\[w_1 \theta = -w_0 \]

Backpropagation MLP

- Most commonly used NN structures for applications in wide range of areas:
 - Pattern recognition, signal processing, data compression and automatic control
- Well-known applications:
 - NETtalk: trained an MLP to pronounce English text;
 - Carnegie Mellon University’s ALVINN (Autonomous Land Vehicle in a Neural Network) used an NN for steering an autonomous vehicle;
 - Optical Character Recognition (OCR).
Multi-Layer Perceptron

- Can learn functions that are not linearly separable.

Most common MLP
Most common MLP

- Output of neurons in the hidden-layer h_j:

$$h_j = \sigma\left(\sum_{i=1}^{n} w_{ij}^h x_i + b_j^h\right) = \sigma\left(\sum_{i=0}^{n} w_{ij}^h x_i\right)$$

$$= \tanh\left(\sum_{i=0}^{n} w_{ij}^h x_i\right) \quad \sigma \Rightarrow \text{sigmoid}$$

- Output of neurons in the output-layer y_k:

$$y_k = \sigma\left(\sum_{j=1}^{m} w_{jk}^o h_j + b_j^o\right) = \sigma\left(\sum_{j=0}^{m} w_{jk}^o h_k\right)$$

$$= \sum_{j=0}^{m} w_{jk}^o h_j \quad \sigma \Rightarrow \text{linear}$$

Learning in NN

- Biological neural networks:
 - Synaptic connections amongst neurons which simultaneously exhibit high activity are strengthen.

- Artificial neural networks:
 - Mathematical approximation of biological learning.
 - Error minimization (nonlinear optimization problem).
 - Error backpropagation (first-order gradient)
 - Newton methods (second-order gradient)
 - Levenberg-Marquardt (second-order gradient)
 - Conjugate gradients
 - ...
Supervised learning

Training data: \(X = \begin{bmatrix} x_1^T & x_2^T & \cdots & x_N^T \end{bmatrix}^T \)
\(Y = \begin{bmatrix} y_1^T & y_2^T & \cdots & y_N^T \end{bmatrix}^T \)

Error backpropagation

- Initialize all weights and thresholds to small random numbers

Repeat
1. Input training examples and compute network and hidden layer outputs
2. Adjust output weights using output error
3. Propagating output error backwards, adjust hidden-layer weights

Until satisfied with approximation
Backpropagation in MLP

- Compute the output of the output-layer, and compute error:
 \[e_k = y_{d,k} - y_k, \quad k = 1, \ldots, l \]

- The cost function to be minimized is the following:
 \[J(w) = \frac{1}{2} \sum_{k=1}^{l} \sum_{q=1}^{N} e_{kq}^2 \]

- \(N \) – number of data points

Learning using gradient

- Output weight learning for output \(y_k \):
 \[w_{jk}^o (p + 1) = w_{jk}^o (p) - \alpha \nabla J (w_{jk}^o) \]
 \[\nabla J (w_{jk}^o) = \left(\frac{\partial J}{\partial w_{1k}^o}, \frac{\partial J}{\partial w_{2k}^o}, \ldots, \frac{\partial J}{\partial w_{mk}^o} \right)^T \]
Output-layer weights

\[y_k = \sum_{j=0}^{m} w_{jk}^o h_j, \quad e_k = y_{d,k} - y_k, \quad J(w_{jk}^o, w_{0j}^h) = \frac{1}{2} \sum_{k=1}^{f} e_k^2 \]

Applying the chain rule with then:

\[\frac{\partial J}{\partial w_{jk}^o} = \frac{\partial J}{\partial e_k} \frac{\partial e_k}{\partial y_k} \frac{\partial y_k}{\partial w_{jk}^o} \]

with \(\frac{\partial J}{\partial e_k} = e_k, \quad \frac{\partial e_k}{\partial y_k} = -1, \quad \frac{\partial y_k}{\partial w_{jk}^o} = h_j \)

then \(\frac{\partial J}{\partial w_{jk}^o} = -h_j e_k \)

Thus: \(w_{jk}^o (p + 1) = w_{jk}^o (p) - \alpha \nabla J (w_{jk}^o) = w_{jk}^o (p) + \alpha h_j e_k \)

Recall that for SLP: \(\Delta w_j = \alpha x_j e \)
Hidden-layer weights

Partial derivatives:

\[\frac{\partial J}{\partial h_j} = \sum_{k=1}^{k} -e_k w^o_{jk}, \quad \frac{\partial h_j}{\partial \text{net}_j} = \sigma'_j(h_j), \quad \frac{\partial \text{net}_j}{\partial w^h_{ij}} = x_i \]

then

\[\frac{\partial J}{\partial w^h_{ij}} = -x_i \sigma'_j(h_j) \sum_{k=1}^{l} (-e_k w^o_{jk}) \]

and \(\Delta w^h_{ij}(p) = \alpha x_i \sigma'_j(h_j) \sum_{k=1}^{l} (-e_k w^o_{jk}) \)
Error backpropagation algorithm

- Initialize all weights to small random numbers

Repeat:

1. Input training example and compute network outputs.
2. Adjust output weights using gradients:
 \[
 w_{jk}^o(p+1) = w_{jk}^o(p) + \alpha h_j e_k
 \]
3. Adjust hidden-layer weights:
 \[
 w_{ij}^h(p+1) = w_{ij}^h(p) + \alpha x_i \sigma'_j(h_j) \sum_{k=1}^l (-e_k w_{jk}^o)
 \]

Until satisfied or fixed number of epochs \(p \)

First-order gradient methods

Diagram showing the optimization process with a function \(J(w) \) and steps to minimize it.
Second-order gradient methods

- **Update rule** for the weights:
 \[w(p + 1) = w(p) - H(w(p))\nabla J(w(p)) \]
 \[w(p) = w^h_i, w^o_{jk}, \ldots \]

- **H(w)** is the Hessian matrix of **w**

- Learning does not depend on a learning coefficient \(\alpha \)
- Much more efficient in general
Approximation power

- General function approximators
- “Feedforward neural network with one hidden layer and sigmoidal activation functions can approximate any continuous function arbitrarily well on a compact set” (Cybenko)
- Intuitive relation to localized receptive fields
- Little constructive results

Function approximation

\[y = w_1^o \tanh(w_1^h x + b_1^h) + w_2^o \tanh(w_2^h x + b_2^h) \]

Activation (weighted summation)
Function approximation

Transformation through \tanh of z

Summation of neuron outputs

RADIAL BASIS FUNCTION NETWORKS
Radial Basis Function Networks (RBFN)

- Feedforward neural networks where hidden units do not implement an activation function; they represent a radial basis function.
- Developed as an approach to improve accuracy and decrease training time complexity.

Radial Basis Function Networks

- Activation functions are radial basis functions
- Activation level of \(i \)th receptive field (hidden unit):
 \[
 R_i(x) = R_i\left(\frac{\|x - u_i\|}{\sigma_i}\right)
 \]

 - \(u_i \) - center of basis function
 - \(\sigma_i \) - spread of basis function
 - \(j = 1, 2, ..., n \)
 - No connection weights between input and hidden layers
Radial Basis Function Networks

- Localized activation functions. Gaussian and logistic:

\[
R_i(x) = \exp\left(-\frac{\|x - u_i\|^2}{2\sigma_i^2}\right)
\]

\[
R'_i(x) = \frac{1}{1 + \exp\left(\frac{\|x - u_i\|^2}{\sigma_i^2}\right)}
\]

- Weighted sum or average output:

\[
y(x) = \sum_{i=1}^{H} c_i w_i = \sum_{i=1}^{H} c_i R'_i(x)
\]

\[
y(x) = \frac{\sum_{i=1}^{H} c_i R_i(x)}{\sum_{i=1}^{H} R_i(x)}
\]

- \(c_i\) can be constants or functions of inputs: \(c_i = a_i^T x + b_i\)

RBFN architecture

- Weighted sum
- Weighted average

Localized activation functions in the hidden layer
RBFN learning

- Supervised learning to update all parameters (e.g. with Genetic Algorithms)
- Sequential training: fix basis functions and then adjust output weights by:
 - orthogonal least squares
 - data clustering
 - soft competition based on “maximum likelihood estimate”
- σ_i sometimes estimated based on standard deviations
- Many other schemes also exist

Least-squares estimate of weights

- Given basis functions R and a set of input-output data: $[x_k, y_k], k = 1, \ldots, N$, estimate optimal weights c_{ij}

1. Compute the output of the neurons:

 $$ R_i(x_k) = e^{-\frac{||s_i - u_i||^2}{2\sigma_i^2}} $$

 The output is linear in the weights: $y = R \cdot c$.

2. Least squares estimate:

 $$ c = [R^T R]^{-1} R^T y $$
RB FN and Sugeno systems

Equivalent if the following hold:

- Both RBFN and TS use same aggregation method for output (weighted sum or weighted average).
- Number of basis functions in RBFN equals number of rules in TS.
- TS uses Gaussian membership functions with same σ (variance) as basis functions and rule firing is determined by product.
- RBFN response function (c_i) and TS rule consequents are equal.
Approximation properties of NN

- [Cybenko, 1989]: A feedforward NN with at least one hidden layer can approximate any continuous function $\mathbb{R}^p \rightarrow \mathbb{R}^n$ on a compact interval, if sufficient hidden neurons are available.

- [Barron, 1993]: A feedforward NN with one hidden layer and sigmoidal activation functions can achieve an integrated squared error of the order $J = O(1/h)$.
 - independently of the dimension of the input space p
 - h: number of hidden neurons (for smooth functions)

Approximation properties

- For a basis function expansion (polynomial, trigonometric, singleton fuzzy model, etc.) with h terms, $J = O(1/h^{2/p})$, where p is the dimension of the input.

Examples:
1. $p = 2$: polynomial $J = O(1/h^{2/2}) = O(1/h)$
 neural net $J = O(1/h)$
2. $p = 10$, $h = 21$: polynomial $J = O(1/21^{2/10}) = 0.54$
 neural net $J = O(1/21) = 0.048$
Example of approximation

- To achieve the same accuracy:

 - \(J = \mathcal{O}(1 / h_n) = \mathcal{O}(1 / h_b) \),
 - \(h_n = h_b^{2/\rho} \),
 - \(h_b = \sqrt[h_n]{h_b^\rho} = \sqrt{21^{10}} \approx 4 \times 10^6 \)

Hopfield network

- **Recurrent ANN.** Example (single-layer):

 - Learning capability is much higher.
 - Successive iterations may not necessarily converge; may lead to chaotic behavior (unstable network).
Feedforward backpropagation network

1. Input and target
 - \(P = [0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10]; \) %input
 - \(T = [0 \ 1 \ 2 \ 3 \ 4 \ 3 \ 2 \ 1 \ 2 \ 3 \ 4]; \) %target

2. Create net
 - help newff
 - net = newff(P,T,5);

3. Simulate and plot net
 - \(Yi = \text{sim}(\text{net},P); \)
 - plot(P,T,'rs-',P,Yi,'-o')
 - legend('T','Yi',0),xlabel('P')
4. Train the network for 50 epochs
 - `net.trainParam.epochs = 50;`
 - `net = train(net,P,T);`
 - `T = [0 1 2 3 4 3 2 1 2 3 4]; %target`

5. Simulate net and plot the results
 - `Y = sim(net,P);`
 - `figure;`
 - `plot(P,T,'rs-','P,Yi','bo','P,Y','g^');`
 - `legend('T','Yi','Y',0),xlabel('P')`
Compute the mean absolute and squared errors

- \(\text{ma_error} = \text{mae}(T-Y) \)

 \(\text{ma_error} = 0.1120 \)

- \(\text{ms_error} = \text{mse}(T-Y) \)

 \(\text{ms_error} = 0.0169 \)

Plot the network error

- \(\text{figure,plot}(P,T-Y,'o'), \text{grid} \)
- \(\text{ylabel('error'),xlabel('P')} \)
Check the parameters of the network

- `net`

Some important parameters

- inputs: `{1x1 cell}` of inputs
- layers: `{2x1 cell}` of layers
- outputs: `{1x2 cell}` containing 1 output
- targets: `{1x2 cell}` containing 1 target
- biases: `{2x1 cell}` containing 2 biases
- inputWeights: `{2x1 cell}` containing 1 input weight
- layerWeights: `{2x2 cell}` containing 1 layer weight
Feedforward backpropagation network

- `adaptFcn: 'trains'`
- `initFcn: 'initlay'`
- `performFcn: 'mse'`
- `trainFcn: 'trainlm'`
- `adaptParam: .passes`
- `trainParam: .epochs, .goal, .show, .time`
- `IW: {2x1 cell} containing 1 input weight matrix`
- `LW: {2x2 cell} containing 1 layer weight matrix`
- `b: {2x1 cell} containing 2 bias vectors`

Note that every time that a network is initialized, different random numbers are used for the weights.

Example in the following:
- Initialization and training of 10 networks
- Computation of mean absolute error
- Computation of mean squared error
Feedforward backpropagation network

- MA_error = []; MS_error = [];
- for i = 1:10
 - net = newff(P,T,5);
 - net.trainParam.epochs = 50;
 - net = train(net,P,T);
 - Y = sim(net,P);
 - MA_error = [MA_error mae(T-Y)];
 - MS_error = [MS_error mse(T-Y)];
- end

Feedforward backpropagation network

- figure,
- subplot(2,1,1),plot(MA_error,'o'),grid,
- title('Mean Absolute Error')
- subplot(2,1,2),plot(MS_error,'o'),grid
- title('Mean Squared Error')