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Abstract

This thesis presents a framework for the multi-disciplinary design analysis and optimization of sailplane

wings. Its objective was to run an aero-structural optimization on sailplane wings. A literature review

on the studies from various authors is presented and used as base for the establishment of the multi-

disciplinary optimization (MDO) framework. The approach used employs a multi-disciplinary feasible

architecture. The geometric parametrization method employed follows a free-form deformation method.

To solve the aero-structural analysis problem, a panel method coupled with a finite-element solver is

implemented in the framework, tested and used for the MDO of sailplane wings. The coupled non-

linear system is solved using an approximate Newton-Krylov approach. The optimization algorithm uses

sequential quadratic programming. Two study cases on sailplane wings are exploited within the MDO

framework: a semi-tapered wing and a real sailplane wing, based on the L-23 Super Blanik from the

Portuguese Air Force. Single disciplinary analysis assess the capabilities of the disciplinary modules of

the framework. Results are presented for a drag minimization problem using aerodynamic and multi-

disciplinary optimizations. They reveal important trade-offs between disciplinary optimum and multi-

disciplinary optimum at the preliminary design stage.

Keywords: Aero-structural problem, Multi-disciplinary optimization, Free-form deformation method,

Panel method, Finite-element method, Sailplane wings.
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Resumo

A presente dissertação apresenta uma plataforma para o design multi-disciplinar de asas de planadores.

O objectivo é a realização de uma optimização aero-estrutural em asas de planadores. Foi feita uma

revisão bibliográfica sobre os estudos de vários autores da área, que serviram de base para o estabelec-

imento da plataforma de optimização multi-disciplinar. Foi utilizada uma arquitectura Multi-Disciplinar

Feasible. O método de parametrização geométrica utilizado segue uma abordagem livre de software

CAD, usando um método de deformação livre de forma. Para resolver o problema aero-estrutural, foram

testados e implementados, um método de painéis juntamente com um método de elementos finitos. O

sistema de equações acopladas não-lineares é resolvido utilizando um método aproximado de Newton-

Krylov. O algoritmo de optimização faz uso de programação sequencial quadrática. Dois casos de es-

tudo de asas de planadores são usados: uma asa com afilamento e uma asa real baseada no planador

L-23 Super Blanik da Força Aérea Portuguesa. Foram realizadas análises disciplinares para avaliar as

capacidades dos módulos disciplinares da plataforma. São apresentados resultados para um problema

de minimização de arrasto, utilizando quer optimização aerodinâmica que optimização multi-disciplinar.

Os resultados obtidos revelam importantes cedências, entre o óptimo disciplinar e multi-disciplinar, na

fase de design preliminar de uma asa.

Palavras-chave: Problema aero-estrutural, Optimização multi-disciplinar, Método de deformação

livre de forma, Método dos painéis, Método dos elementos finitos, Asas de planadores.
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Chapter 1

Introduction

1.1 Motivation

The course of aircraft design, taught in the last year of the Master of Science (MSc) program in aerospace

engineering at Instituto Superior Técnico (IST), addresses the main stages of an aircraft conceptual

design.This course made the students realize that one of the most important stages, if not the most

important one, is the aircraft preliminary design. It has to be made, considering not only the elegance

and beauty of the aircraft but also the requirements in terms of aerodynamics, propulsion, structures,

controls, among others. Typically, the integration of the disciplines is only handled in the latter stages of

the design, when a scale model or prototype is tested in a wind tunnel or flown. This is the method that

has been in use for the last 30 years and the reason for it is that the basic design of subsonic civilian air-

crafts has not changed. With it, the basic wing shape has been thoroughly analyzed and well optimized

by a generation of engineers that has more than a decade of experience designing these wing configu-

rations. However, with the emergence of a new generation of aircrafts, with new design approaches like

the blended-wing body, should a ”build and test” approach be used, it would be too time and resources

consuming. This is where the power of multi-disciplinary optimization (MDO) techniques can make a

difference.

As Abdo and Samareh (2005) of Bombardier Aerospace realized, ”The greatest potential benefits

can be obtained by applying formal optimization at preliminary design stage”. However, the utilization of

the MDO in aircraft design is relatively recent. In fact, it has only fully emerged as a technique viable for

aircraft design in the last two decades. And within this time it has proven to provide good results either

in terms of computational costs or in terms of accurate flow physics analysis. So the fact that a MSc

thesis could be made on this relatively new area, that is now emerging to its full capability and that it is

now beginning to be used in the major aircraft constructor companies, was an interesting opportunity.

Other important aspect that led to the decision of making this thesis, was the fact that it focus on two

of the most important disciplines of aeronautical engineering course: aerodynamics and aeronautical

structures. So an opportunity arose to apply the lessons learned in a practical work, enriching theoreti-

cal knowledge with some computational experimentation.

1



Aero-structural optimization of wings is the subject of the thesis presented in this document. As a

graduating aeronautical engineer of the Portuguese Air Force Academy, the interest in gaining knowl-

edge that may enable the development of skills useful to the Air Force in its future projects is very moti-

vating. At the present time, the Air Force Academy is involved in projects like PERSEUS - Protection of

European borders and Seas through the intelligent Use of Surveillance (PERSEUS, 2010) or PITVANT -

Project for Research and Technology in Unmanned Aerial Vehicles (Morgado and de Sousa, 2009), that

may benefit from using MDO early in the design stages of aircraft project. With this approach, time can

be gained and a better and unusual feasible result may be achieved, without the normal approach of ”do

as others have done” or ”build and then test”. Recently the Air Force has created a new department,

called Engineering and Programs Direction (DEP), whose objective is to provide technical skills required

for the management of weapons systems at all stages of their life cycles, focusing on those that fall in

the realization of modernization projects, as well as those related to quality management, environmental

certification and airworthiness of military aircraft property of the Portuguese Air Force (PAF, 2009). This

department may also benefit from the use of MDO techniques especially in modernization projects. So,

the acquisition of knowledge in MDO can be a real asset to a graduating aeronautical engineer. The

fact that the MDO in this thesis would be applied to sailplane wings also presents an extra appeal since,

as an Air Force student, I was granted with the opportunity of taking a brief sailplane pilot course and

perform some instruction flights. This gliding and soaring experience made possible the realization that

sailplanes, although simple design aircrafts, present an interesting subject for the research in the multi-

disciplinary field. This due to the fact that sailplane aircrafts are designed to have strong and flexible

wings and a great flight performance. These aircrafts, especially their wings, make a simple but com-

plete case study for the application of an MDO framework.

Therefore, this work may make a contribution not only to the development of a graduate aeronau-

tical engineer, but also to the enrichment of the MDO community and, eventually, a contribution for its

increasing use in the aircraft design process of future projects.

1.2 Project Objective and Synopsis

The thesis presented in this document under the subject of ”Aero-structural Optimization of Sailplane

Wings” has the main objective of running an MDO on sailplane wings. To this end, the student was

proposed to develop skills in the area of numerical modeling in both the aerodynamic and the structural

aspects, which allow to simulate and evaluate the performance of various wings. With those skills, the

student should establish a framework for an aero-structural MDO tool. Then this tool, should be applied

in some exercises of multi-disciplinar analysis (MDA) and optimization. After these exercises with the

MDO tool, the student should achieve the optimum geometric parameters for high performance wings

at both the aerodynamic or structural levels. The methodology employed in the realization of the thesis

was divided into seven phases, according to Fig. 1.1.

The first task was a literature review. Its main focus was on MDO history, its role in aircraft design

and on works that have been and still being developed and published in this field. It provided the
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Figure 1.1: Work flow scheme for the thesis.

information needed to begin choosing the MDO architecture for the tool. Within this task, it has been

made a research on gliding and soaring along with sailplane aircrafts and the case studies were chosen:

one wing based on the standard class sailplane and one based on a real Portuguese Air Force aircraft.

Then research was made on aerodynamic and structural models used to run the respective simulations.

Software and code that have been and still being developed for this effect were researched, chosen and

implemented within the framework of the MDO tool. Simultaneously, optimization methods were studied

to find a suitable optimizer for the tool. Finally, exercises were made to test and assess the performance

of the MDO tool. From the first task to the last, the record of all important information was made in an

written document which was the base for the present document.

1.3 State-of-The-Art

The first surveys on MDO problems and approaches were published by the MDO Technical Commite

(1991). Two years later, Sobieszczanski-Sobieski (1993) showed that MDO could be used as an efficient

way to overcome the computational challenges on a new emerging method for aircraft conceptual design.

During the following years, various papers were published that examined and tested one or various MDO

architectures, as for their method of defining the problem formulation and/or the efficiency of their opti-

mization algorithm. The most relevant architectures include Multi-Disciplinary Feasible (MDF) by Cramer

(1994), Individual Discipline Feasible (IDF) by Dennis and Lewis (1994), Collaborative Optimization (CO)

by Braun et al. (1996) and Bi-Level Integrated Synthesis System (BLISS) by Sobieszczanski-Sobieski

et al. (1998).

The MDO research has matured in the last thirteen years, with the publication of many compara-

tive studies. From Hulme and Bloebaum (1998) that compare several MDO methods, as for example

the MDF and IDF, with five analytical examples of varying complexity or size, through Alexandrov and

Kodiyalam (1998) who pointed out the importance of problem formulation evaluation detached from the

traditional optimization metrics. Then Chen et al. (2002) who used two application examples with the

same metrics to evaluate three different MDO methods (CO, CSSO, and BLISS) or Perez et al. (2004)
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who through the evaluation of different MDO architectures, using an extended set of metrics, demon-

strated the promising features of evaluation metrics based both on the formulation considerations and

on the optimization performance criteria. More recently, Tedford (2006) or Martins and Tedford (2006)

developed an MDO framework in Python to provide a platform for comparisons relating various MDO

architectures and demonstrated its potential on identifying trends on the performance of that architec-

tures. Yi et al. (2007) made a comparison study of six different methods using mathematical examples.

Research of MDO architectures is still a very active field and many universities have specialized teams

making and publishing studies. Today, specialized laboratories like the Multidisciplinary Design Opti-

mization Laboratory in University of Michigan (MDO Lab of UoM, 2010-11) , Multidisciplinary Design

Optimization Laboratory in University of Toronto’s Institute for Aerospace Studies (MDO Lab of UoT,

2000-11) and Aerospace Design Laboratory in Stanford University’s Department of Aeronautics and

Astronautics (AD Lab of SU, 2010-11) are on the leading edge of MDO research

Aero-structural analysis techniques are a specialization of more general fluid-structure interaction

(FSI) solution methods. Although these methods are a wider field of research, some studies are worth

mentioning as their results have contributed with important ideas for the development of more aero-

structural specialized techniques. Felippa et al. (2001) performed a review of solution techniques for

coupled nonlinear problems using partitioned solvers. Later, Kim et al. (2003) developed a solution

procedure for coupled multi-physics problems using a multi-level Newton’s method. Applying their ap-

proach to a coupled FSI problem they have realized the importance of using accurate linearizations of

the coupling terms. In 2005, there were two papers published (Biros and Ghattas, 2005a) and (Biros

and Ghattas, 2005b), where a Lagrange–Newton–Krylov–Schur approach to the simultaneous solu-

tion of PDE-constrained optimization problems was presented. This approach was applied to a design

problem using the incompressible Navier–Stokes equations. More recently, Heil et al. (2008) solved a

time-dependent FSI problem by applying Newton’s method to a second-order backward difference dis-

cretization of the coupled system and using a monolithic approach with both direct and iterative solvers

to the resulting equations. In their study, they demonstrate that a monolithic approach is very reliable

and competitive. Although there are several authors that have developed methods for MDA and MDO

over the past decade, to limit the search field of the literature review, a focus was made on studies only

in the aero-structural specialization.

In 1999, Reuther et al. published an article where an initial aero-structural analysis and optimization

framework for MDO was presented. Later in 2002, Martins developed that aero-structural analysis and

optimization framework with a method to calculate the sensitivities of aerodynamic and structural cost

functions with respect to both aerodynamic shape and structural variables that was both accurate and

efficient. That framework coupled a linear finite-element structural model to a finite-volume Euler CFD

solver and achieved a coupled solution using a pseudo-time marching scheme with periodic updates of

the displaced shape. A structural model composed of solid, three-dimensional elements was used to

represent the stiffened aircraft wing. To transfer loads and displacements across the aircraft outer-mold

line (OML), they used a systematic scheme based on the work developed by Brown (1997). Martins

et al. (2005) developed a sensitivity analysis of the aero-structural equations for both the adjoint and
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direct formulations, with a block Gauss–Seidel technique for solving the coupled adjoint system and

applied it to the optimization of a supersonic business jet (Martins et al., 2002).

Around the same time, Maute et al. (2001) presented an aero-structural analysis that coupled the

Euler equations to a linear finite-element model, where, following the previous work of Maman and

Farhat (1995), a mesh movement strategy based on a spring analogy and a load and displacement

transfer technique was employed. Formulations of both the adjoint and direct methods for computing

the sensitivities of the coupled aero-structural system were presented and, to solve the coupled nonlin-

ear equations, they used a nonlinear block Gauss–Seidel method with relaxation. In 2004, Maute and

Allen developed an aero-structural optimization problem in which the internal structure of the wing box

is parametrized using a single isotropic material with penalization approach to determine the topology

of the optimal structure. It used a solution method similar to the previously described by Maute et al.

(2001). The methods referred above were improved in terms of robustness and efficiency by Barcelos

et al. (2006), who developed a class of Newton–Krylov–Schur methods for solving the coupled nonlin-

ear fluid-structure-mesh movement problem. They realized that their technique was more robust and

efficient than the original Gauss–Seidel method presented by Maute et al. (2001). It consists of using

an approximate Newton’s method for the solution of the nonlinear coupled equations and of using a

Schur complement approach at each iteration to solve the coupled linear system that results from a lin-

earization of the residual. The same authors, Barcelos and Maute , presented in 2008 an aero-structural

solution technique coupling the Navier–Stokes equations with a turbulence model to a linear structure

and mesh movement strategy.

Van Der Weide et al. (2006) showed results for the use of a CFD solver, SUmb, in unsteady turbo-

machinery computations. This flow solver was developed under the sponsorship of the Department of

Energy Advanced Strategic Computing (ASC) Initiative. It can be used to solve the compressible Euler,

laminar Navier-Stokes and RANS equations on multi-block structured meshes. Although the primary

objective of this code within the Stanford ASC program is to compute the flows in the rotating compo-

nents of jet engines, SUmb has been developed as a generic solver and it can be applicable to a variety

of other types of problems, including external aerodynamic flows. It has also the advantage of having

compatibility with a Python interface. This interface is available, for example, in a multi-disciplinary envi-

ronment like the one presented by Alonso et al. (2004). Following these studies, an evaluation was made

to use this finite-volume, cell-center multi-block solver. During this evaluation, it was also reviewed the

possibility of using this code implementation with the adjoint technique for sensitivity analysis proper to

the highly coupled nature of the aero-structural problem (Mader et al., 2008). Kenway et al. (2010) pre-

sented a method for the important and complex problem of geometric parametrization for high-fidelity

MDO. This method follows a geometry parametrization approach with no resource to computer-aided

design (CAD) software and it was shown that presents several advantages over other parametrization

techniques, as for example the efficient computation of analytic derivatives for gradient-based optimiza-

tion. Kennedy and Martins (2010) presented a comparison of methods for aero-structural analysis and

optimization. In that study, they show that the approximate Newton–Krylov method is shown to be an ef-

ficient and robust solution technique to solve the coupled nonlinear aero-structural system. In the same
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study, they develop an adjoint-based sensitivity method of high-level of accuracy and exploit three lev-

els of parallelism: optimization-level, system-level and discipline-level. An aero-structural induced drag

minimization problem is also solved using a panel method coupled to a finite-element solver for a typical

subsonic turboprop aircraft wing. The optimizer used employed a state-of-the-art optimization algorithm,

well-suited for large-scale optimization problems (linear and nonlinear).

These studies, with emphasis for the most recent ones, were the base for the proposed work. There-

fore, to achieve its objective, i.e., run an MDO on a sailplane wings, this thesis aims to develop a similar

work in the field of MDO.
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Chapter 2

Gliding and Soaring

2.1 Introduction

This chapter describes the relevant information behind the activity of soaring and gliding. It starts by

presenting a brief review of soaring history. Then it addresses to the principles of gliding and soaring

flight, highlighting the differences in relation to the general power driven flight. The last section presents

the glider aircraft, its uses and classes.

2.2 Brief History of Gliding and Soaring Flight

Since Man began observing the nature, free flying like an eagle was always a dream. Therefore, it is

natural that through history, many used their imagination to build some practical and impractical ideas

to try to lift themselves into the air. The first spoken tentatives are dated in 200 BC in China, with hot

air balloons and kites 1. There, war lords realized that kites could be used for scaring and at same

time observing the enemy. Later, it was in Europe that some early attempts of glider flying were made,

like the Benedictine Monk Eilmer of Malmesbury that flew 200 meters in a glider, before crashed and

sustained injuries (White, 1961). In Renaissance, the famous Leonardo Da Vinci developed a sketch of

a glider in which some control surfaces were placed towards the tips, trying to imitate bird wings. While

his drawings exist and are deemed flight-worthy in principle, he never actually build it.

In the 18th century, a first rigorous study of the physics of flight was made by an English engineer

named Sir George Cayley. In 1799, he exhibited a plan for a glider which, except for platform, had a

completely modern look. Over the next five decades, trying to improve its project, he invented most of

basic aerodynamics principles, such as ”lift” and ”drag”. In 1856, Jean-Marie Le Bris made the first flight

higher than his point of departure, in his glider ”L’Albatros artificiel” pulled by a horse on a beach (Houard

and Peslin, 1943). It was the first time that towing was used to make a take-off. The next two decades

made gliders be of great relevance to the powered aviation history as they were the predecessors to

the Wright Flyer I (Culick and Jex, 1985), the first aircraft to perform a sustained, controlled, powered
1Light frame covered with some thin material usually a form of cloth, to be flown in the wind at the end of a long string, they

were the predecessors of gliders.
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heavier-than-air flight. Before building the actual Flyer I, Orville and Wilbur built and tested a series of

glider designs from 1900 to 1902. Although their first two gliders performed well below predictions from

experiments and theory, their will prevailed and, through the development of their own wind tunnel and

more sophisticated measuring devices (M.G.Dodson, 2005), they produced a third glider with far better

performance (Fig. 2.1). This was successfully used as base for the design of the Flyer I (Sitek and

Blunt, 1940). After 1903, gliders lost relevance to hot air balloons and powered aircrafts. Only after

Figure 2.1: Wright brothers 1902 glider.

1919, gliders would emerge again. The Treaty of Versailles, consequence of the World War, imposed re-

strictions on powered aircraft usage in Germany. This enforced German engineers to develop ever more

efficient gliders and to discover ways of using the natural forces in the atmosphere. The importance

of developing training in gliders would grow. To promote the glider development, German held the first

gliding competition at the Wasserkuppe 2, in 1920. In the following years, gliding sport spread to other

countries like the U.S.A. or Russia. During this time, many records were set, as the Martens one hour

marker in 1922 or the eight hour marker reached by Maneyrol (Sitek and Blunt, 1940). Gliding was even

scheduled to be an Olympic sport in the 1940 Games (Welch, 1980), although that would never happen

due to the World War II (WWII). During the war, gliding performed an important role, carrying troops and

heavy equipment to combat zones. These gliders provided advantages, as carrying heavy equipment or

ensuring quicker troop assemble on the ground. In the 1950’s, after the war, many clubs and manufac-

turers emerged, many of which still exist today, led by the WWII trained pilots and engineers.

Since 1970’s, the evolution of gliders has been following the exponential evolution of structural engi-

neering, material science, computational fluid dynamics (CFD) and electronics. Many modern gliders are

manufactured in new composite materials such as glass fiber and carbon fiber, which provide greater

strength at lower weight. Also advances in CFD, allowed the development of new wing and airfoils

shapes. Finally, the advances the Global Positioning System (GPS) and in weather forecasting, have

allowed many pilots to make flights that were once unthinkable. To the present day, gliding sport has

been actively growing (Roake, 2005), and its importance either as a training method for military and

commercial pilots or as a recreational activity and competitive air sport is undeniable.

2The Wasserkuppe is a high plateau (elevation 950 m or 3,100 ft), the highest peak in the Rhon Mountains within the German
state of Hessen.
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2.3 Principles of Gliding and Soaring Flight

Although the terms gliding and soaring are used interchangeably, the air sport is called ”soaring”. In

soaring, pilots fly unpowered aircrafts known as gliders or sailplanes using only the naturally currents of

rising air in the atmosphere to remain airborne. This is the most relevant aspect of soaring and is what

makes it unique.

Section 2.2 presented some early man’s attempts to fly and the consequent failures. These were

mostly due to the lack of knowledge of both the physical conditions needed to remain airborne and the

structure and physical properties of the atmosphere. These early failures, however, provided the fuel for

much thought. What started only as abstract observations became more and more of scientific nature.

From the years preceding the World War One to the present day, sailplanes and soaring have been

subject of many studies, so that the aircraft and its flying techniques are ever refined. The following

paragraphs contain brief discussions on the basic principles of glider flight and how the atmosphere

affect the different gliding phases.

Fundamental Principles of Flight The principles of flight for sailplanes are the same as for all the

aircrafts: it is the action of forces on the entire vehicle that allows it to stay airborne. A sailplane is said

to be at equilibrium when all the forces acting on the center of gravity cancel out. The forces that act on

a sailplane are illustrated in Fig. 2.2. These forces act either on the center of pressure (C.P.) or on the

Figure 2.2: Forces acting upon a glider (Sitek and Blunt, 1940).

center of gravity (C.G.). The changes of these forces lead to changes in the relative positions of this two

points. As for the aerodynamic forces, all parts of a sailplane either cause lift or drag or both. However,

it is the wing the responsible for the major fraction of lift. To generate lift, the air flow has to be moving

at a certain velocity and direction in relation to the wing as represented in Fig. 2.3, where α is the angle

of attack, between the chord c and the free-stream velocity V∞, R is the resultant aerodynamic force.

The components of the resultant force, perpendicular and parallel to the free-stream, are lift L and drag

D, respectively. In Fig. 2.3(a), the wing airfoil shape deflects the flow downwards as it passes the wing

surface. The wing airfoil exerts a force on the air to change its direction, in turn the air must exert a force

on the wing, equal in size but opposite in direction. This resultant force manifests itself as differing air

pressures and flow velocities at the two sides of the wing surface. A region of lower air pressure and

higher velocity is generated over the top surface of the wing and a region of higher pressure and lower

velocity arises on the bottom. The resultant force can be divided into components normal and axial to

the chord, N and A, respectively. The total normal and axial forces( per unit span) are obtained by
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(a) Deflection of the air flow through the wing shape. (b) Resultant Aerodynamic force and the compo-
nents into which it splits.

Figure 2.3: Results of the interaction of the motion of air with a wing.

integrating the pressure p and the wall stress τ from the leading edge to the trailing edge, (Anderson,

2001):

N
′

= −
∫ TE

LE

(pu cos(θ) + τu sin(θ))dsu +

∫ TE

LE

(pl cos(θ) + τl sin(θ))dsl, (2.1)

A
′

=

∫ TE

LE

(−pu sin(θ) + τu cos(θ))dsu +

∫ TE

LE

(pl sin(θ) + τl cos(θ))dsl, (2.2)

where the subscripts u and l refer to the upper and lower surfaces, respectively. So, the total lift and

drag can be obtained by relating L and D with N and A through the angle of attack α:

L = N cos(α)−A sin(α), (2.3)

D = N sin(α)−A cos(α). (2.4)

In aerodynamics, the dimensionless force coefficients, lift and drag coefficients, are defined as:

CL ≡
L

q∞S
and CD ≡

D

q∞S
, (2.5)

where the free-stream dynamic pressure is defined as q∞ = (1/2)p∞V∞, being p∞ the free-stream pres-

sure. There are also two additional dimensionless quantities of immediate use, which are the pressure

coefficient and the skin friction coefficient,

Cp ≡
p− p∞
q∞

and Cf ≡
τ

q∞
. (2.6)

Sir George Cayley and the Wright Brothers were the firsts to study airfoil shapes, however, today

aeronautical engineers have a large variety of databases with the qualities and characteristics of many

airfoil shapes. Some of the key reference in airfoil selection is the ”Theory of Wing Sections” by Abbott

and Doenhoff (1949), based on and the previous article from the same authors, ”Characteristics of Airfoil

Sections” (Abbott and Doenhoff, 1945).

As important as lift, is the drag component of the resulting force. Drag results from three main

sources:

10



• Form Drag, which results from the friction of the air around the airfoil and, in some cases, of the

interference causes in transonic flow;

• Induced Drag, which is the result from the down-wash component on the net air flow over the wing,

which is correlated with the trailing vortices that interact with the flow on the wing;

• Compressibility Drag, which is the result of the flow compressibility interaction with the other two

drag components, when the Mach number is increased from the compressibility threshold.

The drag components are not of equal magnitude and their relation to airspeed is not the same. The

compressibility drag effect, for instance, is negligible in soaring flight, as the speeds involved are too

low to cause significant compressibility of the incident airflow. So, in the case studies of this thesis, the

compressibility effect can be neglected. The remaining components also change with speed as shown

in Fig. 2.4.

Figure 2.4: Relationship between airspeed and the different components of drag.

The total drag can be mathematically estimated from those two main components as presented in

Eq. 2.7 (Corke, 2003),

CD = CD0 + kC2
L, (2.7)

where the first term in the form drag and the second in the induced drag. In the second term the

k corresponds to the correlation factor, k = 1/(πAe) where the e, is the Oswald efficiency number,

which accounts for the taper ratio and the fuselage effects on the wing. Another important quantity in

aerodynamics, is the L/D ratio. This ratio depends on the wing area, the kind of airfoil, the relative wind

and the ”aspect ratio of the wing”. The last is the geometric relationship between the wing span and the

wing mean chord, A = (2b)/(Cr(1 + λ)) = b2/S, where the taper ratio is defined as λ = cr/ct, being the

cr and ct, the wing root and tip chords, respectively, and b the wing span. In general aircrafts the aspect

ratio is relatively small, in the range of 6 to 9, however, in sailplanes it is often greater, from 16 to 23.

Sailplane Performance The main objective behind the study of aerodynamics is to make flight more

efficient. The efficiency in gliding can be measured by the maximum range or maximum endurance.

To understand the difference between these two concepts, it must be assumed that the sailplane is at
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equilibrium, resulting the equations of motion

T −D −Wsin(γ) = mV̇ = 0,

L−Wcos(γ) = mVS = 0,
(2.8)

where γ is the flight path angle (Fig. 2.6) and VS = V sin(γ) is the sinking speed. Dividing one equation

by the other, the relation between the flight path angle and the L/D ratio arises, tan(γ) = −D/L =

−1/(L/D). This expression gives a negative flight path angle as would be expected in soaring. If the

glide angle is defined as the negative of the flight path angle, the expression turns to

tan(γ1) =
1
L
D

, (2.9)

where the γ1 is the glide angle. Therefore, in soaring, the glide angle is independent of the weight of the

sailplane and the lowest glide angle corresponds to the maximum L/D ratio.

•Glide Range The gliding range, R, corresponds to the longest distance traveled along the ground

during the glide descent. Assuming an initial altitude, h1 and a ground altitude, h2, the range can be

calculated from

R =
h1 − h2
tan γ1

=
L

D
(h1 − h2). (2.10)

Here the ratio L/D is also called ”gliding ratio”. Other important term is the ”speed to fly”, which corre-

sponds to forward speed that provides the best gliding ratio. To find this speed, the polar curve is used.

This graphic shows the relation between sink rate and forward speed. An example is illustrated in Fig.

2.5. The best gliding angle, forward and sinking speeds are obtained from the line, between the origin

Figure 2.5: Example of a sailplane polar curve showing glide angle for best glide.

and the polar curve, with the least slope. Modern sailplanes have speeds to fly from around 20m/s to

30m/s.

• Glide Endurance To achieve the longest duration of gliding flight, the gliding angle has to be kept

at a minimum, thus generating a minimum sinking speed. Mathematically, this speed is given as

VS = V sin(γ) = −V D

W
. (2.11)
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As the gliding angle is usually small, a small angle assumption (L = Wcos(γ) ≈W ) can be made, so

VS = −V D

W
≈ −V D

L
= −

√
W

1/2ρS

CD

C
3/2
L

. (2.12)

The sinking rate is directly related to the quantity CD/C
3/2
L and is also dependent of the weight, W .

Therefore, to minimize the sink rate (Maximize endurance), these quantities must be minimized.

These two measurements of performance are important in the context of this thesis as they configure

two possible optimization problems: one, where the objective is to maximize the range ( by maximizing

the L/D ratio), the other, where the endurance is maximized (by minimizing the drag and the weight).

Gliding Flight Phases The profile for a soaring flight has four main phases: take-off and climb, cruise,

descending and landing. Each of these phases has differences compared to the powered aircraft flight

phases:

• Take-off and Climb Apart from a few exceptions, most of the sailplanes do not have engines. To

take-off and climb, specific methods are used, each requiring specialized training either for the pilots or

the technicians operating the launching devices. These methods can be bungee launch, auto-tow, winch

launch and aerotowing. The first three methods rely on ground launching devices and are evolutions of

each other. A hook in the sailplane is attached to a wire, which is pulled by either human power (bungee

launch), a vehicle (auto-tow) or a winch (winch launch). The sailplane is then dragged until it becomes

airborne and gains sufficient altitude to release the hook and begin the flight. The forth method, it is

the most common, in which a powered airplane is used to tow the sailplane to the desired height and

location.

• Cruise Flight In soaring, this flight phase can be also called cross-country. To overcome the need

of thrust, the sailplane has to be off-balance, so that there is a force pulling it forward. Figure 2.6 shows

an example of that off-balance. By changing the angle of attack of the sailplane, a pilot can change

Figure 2.6: Imbalance of forces acting upon the sailplane to provide it with thrust (Sitek and Blunt, 1940).
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the direction of the forces acting upon it, creating an horizontal resultant force. This force provides

the acceleration or deceleration. However, this also affect the vertical resultant force and therefore the

sinking speed of the sailplane. This reinforces importance of the L/D ratio as the pilot wants to gain

thrust without losing much lift or increase the sinking speed. Another consequence is that to remain

airborne or to ascend in air, the sailplane pilot needs to rely on outer sources of energy. These are

associated with the atmospheric phenomena of air masses rising in the atmosphere. These phenomena

can be classified as thermals, ridge lifts and wave lifts. The first is a stream of rising hot air are formed

on the ground through the warming of the surface by sunlight. When encountered, these can be used to

gain altitude before flying towards the destination or to the next thermal. This thermal to thermal flight is

known as ”thermalling” and can allow for great distance flights (Fig. 2.7(a)). Another type of soaring is

”ridge soaring” (Fig. 2.7(c)). Ridge lift come from the the air flow deflected upward by the wind blows on

the sides of hills. By flying in and out these ridge lifts, the sailplane can be kept airborne for long periods

of time. The last type of cross-country soaring is the ”mountain wave soaring” (Fig. 2.7(b)), which relies

on wave lifts that occur when strong winds blow perpendicular to a mountain or ridge. The wind forces

air flow to climb the mountain and over the top and then down the opposite side. There it bounces off in

a layer of stable air near the ground and is deflected upward. By flying in and out these wave lifts, the

sailplane can gain altitude faster.

• Landing To land, the pilot lets the sailplane glide to the landing strip. As sailplanes have high

L/D ratio, air-brakes are often needed. These devices disrupt the air flow, causing its separation over

the wings, allowing the sailplane to sink faster due to reduced lift and increased drag.

2.4 Sailplane Aircraft

A sailplane is an heavier-than-air vehicle that flies through the dynamic reaction of the air against their

lifting surfaces and which free flight does not depend on an engine (Federal Aviation Administration,

2003). Through history the activity of soaring, has been put to many practical purposes. In its early

history, sailplanes were used mainly as research aircrafts. Today, though with less frequency, there

are still some cases where sailplanes are used to test aircraft designs. Also, before the general use of

meteorological balloons, instrumented sailplanes were the most accurate way to acquire meteorological

data.

Since the goal of flight is to remain airborne, sailplanes were and are the best aircraft to learn how this

is done. They are cheaper to produce and to fly, so anyone who wants to learn or perfect its flying

skills, can do it easily with a sailplane. This fact was also acknowledge in the military field, where air

forces recognize that pilots with sailplane training become more skilled than those who have not. In

the Portuguese Air Force Academy, for instance, there are two types of sailplanes whose mission is to

provide additional training to pilots and flight experience to non-pilot cadets, so all can experience the

free flight.

Today, however, most sailplanes are used in recreational and competition soaring. Initially the com-
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(a) Cross-country soaring through thermal lifts. (b) Cross-country soaring through wave lifts.

(c) Cross-country soaring through ridge lifts.

Figure 2.7: Cross-country soaring through atmospheric phenomena (Soaring Society of America, 2010).

petition objective was to increase the duration of the flight but, nowadays, there are competitions that

require pilots to fly in races around pre-defined courses. These test the pilots abilities and the sailplanes

performance to make best use of local weather conditions. These competitions also boost manufacturers

and pilots to maximize sailplane performance and design. The Fédération Aéronautique Internationale

(FAI)3 divides competition sailplanes into seven main classes: Open Class,Standard Class,15 meter

Class,18 meter Class,20 meter Two-Seater Class,Club Class and World Class. The first as the name

states places no restrictions except a limit of 850 kg in the maximum take-off weight (MTOW). The stan-

dard class restricts the sailplane wings span and usage of lift-enhancing devices, as well as imposes a

maximum MTOW of 525 kg. The 15 to 20 meters classes also restrict the wing spans and MTOWs, as

class names state. The club class allows a wide range of older small gliders within a specified range of

performances and the world class allows only the PW-5 glider.

3The Fédération Aéronautique Internationale is the world governing body for air sports and aeronautics and astronautics world
records.
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2.5 Summary

A brief description on the topic of gliding and soaring along it the sailplane aircraft was made in this

chapter. First, approaching the history behind the use of sailplanes since the beginning of the aviation

history as a research aircraft for flight requirements and conditions, to the present day where sailplanes

are used mostly as a recreational activity and air sport. Also, Section 2.3 presented the fundamentals of

aerodynamics in general sailplane flight. Finally, the most important types of sailplanes that existed in the

past and those that exist actually according to the world governing body for air sports and aeronautics

are presented.
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Chapter 3

Multi-Disciplinary Analysis and

Optimization

3.1 Introduction

This chapter presents the subject of MDA and MDO to the reader. It begins with a description of multi-

disciplinary history in aeronautic industry, with a particular mention to its objective. Then, the theory

behind each phase of the work developed is presented: from the theory of multi-disciplinary problem

definition and approach strategies to the theory behind the MDO tool components.

3.2 Multi-Disciplinary Design History in Aeronautic Industry

An aircraft, from an engineering perspective, can be described as a complex multi-disciplinary system.

As said by Ajmera et al. (2004), the design of an aircraft generally consists of a hierarchical and evo-

lutionary sequence of steps starting from conceptual design phase through a preliminary design phase

and a detailed design phase ending in a prototype building and testing.

Since the beginning of the aeronautical industry, the design was performed by various individual

teams, each with expertise in a specific discipline, such as aerodynamics or propulsion. Although dif-

ferent teams were involved in the aircraft design, they did not work independently of each other. If that

were to happen, we would end up with some strange aircrafts like those in the Fig. 3.1. Instead, every

team would use its members experience and judgment to develop a workable design, usually sequen-

tially starting from an outline of the shape of the body made by the aerodynamic team, which then,

would be fitted with an inside structure by the structures team or modified and fitted with motors by the

propulsion team. This methodology in aircraft design was widely used and led to good results in the

early times of the aeronautical industry. However, in the 80’s there were two major developments that

led to the modification of the methodology used by aircraft design engineers. The first was the devel-

opment of computer-aided design (CAD). The four decades of great computational improvements had
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Figure 3.1: Aircraft design by specific design teams (Kroo, 2008).

a deeply effect in the aerospace industry, allowing designers to quickly generate, modify and analyze

designs and ultimately validate them much earlier, in the design process, thus potentially saving costly

redesigns later in the design stage (Kenway et al., 2010). The second development was the changes in

the acquisition policy of most airlines and military organizations, from a performance-centered approach,

to one that emphasis life-cycle cost issues. This made economic factors and attributes, known as the

”requirements” (including manufacture, reliability, maintainability), much more important than they were

before. These major developments led to the emergence of multi-disciplinary design teams over the one

discipline specialized teams. This way, the design process of an aircraft became mainly a compromise

between different aspects and opposing constrains of the individual disciplines. Besides, it has been

shown that repeated sequential optimization of individual disciplines does not necessarily result in an

optimal multi-disciplinary system (Chittick and Martins, 2007).

An aircraft is a multi-disciplinary system as its analysis often require several fields of expertise. Per-

forming computational analysis, together with numerical optimization, made MDO emerge as one of the

fields of engineering that can provide optimal solutions to aircraft analysis problems.

The development of fluid flow and structural methods continue to be subject of active research to

these days, but it can be considered a mature field. There are tools, such as CFD and computational

structural mechanics (CSM), that can actually perform high-fidelity numerical analysis of disciplines like

aeronautics and structures in an expedite way. In an MDO, these tools are coupled together to produce

an optimal solution between two or more individual disciplines.

As shown in the history of aircraft design analysis, there is a tight coupling between several individ-

ual disciplines. Such interactions make aircraft design problems very suitable to the application of MDO

methodologies but simultaneously very complex to perform. In theory, MDO strategies are expandable

to an infinite number of disciplines, if the engineer or design team can pay the increased calculation cost.

To surpass this difficulty, many studies addressed the best way to implement an MDO. These show that

a modular scheme is the best way to accommodate the individual disciplines in an MDO framework

(Isaacs et al., 2003), thereby making it possible to insert or remove individual disciplinary analysis mod-
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ules, reducing the reprogramming costs associated (Alonso et al., 2004).

Today, the majority of the MDO studies focuses on two of the main disciplines of aircraft design,

aerodynamics and structures. These, together, form the so called ”basic” aero-structural optimization

problem. To solve this kind of problem, there mainly two levels of fidelity analysis. On one hand, low-

fidelity analysis, used in the first stages of the design process, to determine the best general character-

istics for the aircraft, regarding the requirements defined by the engineer. At this level, one can ignore

certain design factors or reduce the level of detail of the analysis, to decrease the computational costs.

Although not detailed, this level of analysis is generally used to obtain a comprehensive idea of the main

aero-structural characteristics design space, such as lift-to-drag ratio and weight. On the other hand,

high-fidelity analysis is used to get smaller improvements, that can refine the esoterical characteristics

of the aircraft, such as refining the twist in the wing shape. This level requires detailed discretization of

the computational domain and rigorous analysis methods, such as CFD or CSM. As a result, the compu-

tational resources required are much greater than that of the low-fidelity. However, it is the high-fidelity

analysis that allow the achievement of an optimal detailed design.

Ultimately, there are two factors that have slowed industry’s adoption of MDO (Kenway et al., 2010).

The first is the increased computational cost and complexity of the optimization problems when run-

ning high-fidelity analysis. The second, and perhaps the main factor, is that the inter-disciplinary nature

of MDO strategies does not integrate easily into well established aerodynamics and structural design

groups. Yet, there are proven cases where MDO has performed successfully in the conceptual and

preliminary design stages of aircraft design [(Liebeck, 2004),(Wakayama and Kroo, 1998) and (Kafyeke

et al., 2002)].

3.2.1 Multi-Disciplinary Optimization Objective

The main objective of an MDO involving two or more individual disciplines is always to complement the

engineer intuition about a design problem in a way that it can allow it to make better design decisions

and trade-offs earlier and easier in the design process. For that, MDO will use an optimization process

that will evolve the design upon the results of the individual analysis of each discipline according to a

certain MDO approach strategy and come to a final result that may not be expected by the engineer. An

important part of the objective of MDO is therefore to improve the efficiency of the optimization procedure

or, in other words, the time needed to achieve a result. To save time, an engineer can adjust the level of

coupling in an MDO problem. This adjustment can, however, lead the optimizer to unfeasible points in

the design space where an individual discipline analysis provided a good result but the coupled analysis

not. This is a drawback of granting the optimizer more freedom to explore the design space and the

main reason why there are different approach strategies in MDO.
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3.3 Multi-Disciplinary Optimization Problem Definition

The first step to understand an MDO problem is to know its common definition. In nature, disciplines

are physically separated, so in MDO, a separate analyzer is also needed for each discipline. For each,

an independent design optimization problem can be defined. These independent problems are often

simpler than the overall MDO problem. So the coupling of the disciplines is only addressed in the

overall system level. An MDO problem can be seen as a system containing multiple sub-systems, as

illustrated in Fig. 3.2. Each of these sub-systems handles a discipline, having implicitly a set of discipline

governing equations. These, solved with an appropriate set of inputs, will generate a disciplinary state.

A generalized representation for these equations is

yi = f(xi, yi, z), i, j = 1, ..., n , j 6= i, (3.1)

where n is the number of coupled disciplines denoted by i, representing the ith discipline, xi is the

local variable vector, the vector yj corresponds to interdisciplinary couplings, and z denotes the global

variable vector. When provided with a set of design variable inputs, the sub-systems will generate

discipline feasible states and outputs. The set of inputs needed for each discipline, consists not only

Figure 3.2: Overall system for an MDO problem.

of disciplinary variables but also of coupling variables. The last provide information regarding the state

of the other disciplines, needed to solve the overall problem. As said by Martins and Tedford (2006),

this relationship between the inputs of one discipline and the outputs of another is responsible for the

coupled system of analysis. The common approach to MDO problems is using an iterative block method.

When the difference in the coupling variable sets, between successive iterations, is so small that can

be neglected, one can say that a convergence criterion is achieved and the MDO problem has reached

a solution. In its formulation, the problem can be compared to an simple optimization problem as three

entities need to be defined: the objective function, the design variable set and the constraint set.

The MDO problem has two main differences compared to a optimization problem with a single discipline

(Yi et al., 2007). First, due to the coupling nature of most MDO problems, the analyzer of each discipline

needs inputs that result from the analysis in other disciplines. Second, there are common objective
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functions, design variables and constraints, shared by the disciplines. These differences make MDO

problems larger and more complex than disciplinary optimization problems. In MDO problems, both the

design variable and constraint sets can be grouped based on their effect, out of every discipline and

in the global system. Therefore, two types of variables exist: local and global. The local variables are

required to only one disciplinary system and are only used to solve that discipline governing equations.

Likewise, there are local constraints. In contrast, those variables and constraints that are needed for

multiple disciplines, are considered global. There are also two types of optimization constraints. They

can set a range of values for the variables (inequality constraints) or they can be residual equations

solved only at optima (equality constraints). Martins and Tedford (2006) stated that if instead of requiring

the solution to the disciplinary governing equations at each design point, there are equality constraints

in the MDO problem, then it can be stated as a standard optimization problem, without the presence of

disciplinary sub-systems or a coupled analysis. Ultimately, the way how an MDO problem is converted

into one or more standard optimization problems is what defines the MDO strategy or architecture.

3.3.1 Multi-Disciplinary Optimization Architectures

With the definition of the MDO problem comes the need for an MDO architecture, so that the problem

turns into one or more standard optimization problems. Then classical optimization algorithms may be

employed.

A wide variety of MDO architectures have been proposed and evaluated either by defining a different

problem formulation or by finding the most efficient optimization algorithms [MDO Technical Commite

(1991) and Sobieszczanski-Sobieski (1993)]. Also, research in the advantages and disadvantages of

each MDO architecture has been made by many authors, such as Sobieszczanski-Sobieski and Haftka

(1997) ,Tedford and Martins (2009) or Perez et al. (2004). An important aspect of approaching an MDO

problem is the fact that its formulation can vary according to the architecture used. Before selecting an

architecture, there are some aspects of the MDO problem that have to be examined, like for instance,

the number of the disciplines involved, the number of design variables or if they are local, global or cou-

pling variables. Other aspect is the method used to solve the optimization problem created. Currently

must studies use gradient-based methods, although some recent research has been made to use non-

gradient-based methods such as genetic algorithms, neural networks or simulated annealing.

The MDO architectures can be classified in: single-level methods and multi-level methods. Single-

level methods, like Individual Discipline Feasible (IDF) (Dennis and Lewis, 1994), or Multi-Disciplinary

Feasible design (MDF) (Cramer, 1994), include only one optimizer at a system-level, which runs a sys-

tem analysis in each step. This has the authority over the global system and dictates its current state. In

each system iteration, the coupled relationship of the disciplines is solved. These methods are simple to

implement and are more appropriate for simple problems with two or three disciplines. Yet, as problem

complexity grows, a single-level method may not be the best approach, as combining multiple disciplines

in a single-level structure can become too difficult. Multi-level methods which include Concurrent Sub-

space Optimization (CSSO) (Sobieszczanski-Sobieski, 1988) and Bi-level Integrated Systems Synthesis
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(BLISS) (Sobieszczanski-Sobieski et al., 1998), create for each discipline a subspace, in which optimiza-

tions are made. Each individual discipline has a separate local optimizer, that modifies the design. Also,

there is a global optimizer at the system-level, that manages the relationship between disciplines. These

methods create a hierarchical structure in the global system. These approaches mimic an industrial

setting where each disciplinary sub-group was some degree of freedom to work independently, based

on design objectives determined by the system-level optimizer (Martins and Tedford, 2006).

Comparison of Architectures Extensive studies on architecture comparison are referenced [(Balling

and Wilkinson, 1996), (Chen et al., 2002) and (Park, 2007)]. However, this topic makes a brief descrip-

tion of some of advantages or disadvantages of the most common architectures.

Yi et al. (2007) made a comparison between MDO methods using mathematical examples. In

their study, seven methods were qualitatively and quantitatively compared based on their performance

through several mathematical examples. In the end, they have presented their conclusion summarized

in the Table 3.1, which presents the need for additional information in the formulation process. Figure

3.3 shows the relationship between the number of function calls and the additional required informa-

tion, where AAO stands for All-At-Once method (Cramer et al., 1993), CO for Collaborative Optimization

method (Braun, 1996), MDOIS for MDO based on Independent Subspaces (Shin and G.J.Park, 2005)

and the O/x, signal where additional information is required or not, respectively. The additional required

Table 3.1: Required information for each MDO method (Yi et al., 2007).

Methodology Design variables Equality constraints System analysis Optimizer OSA GSE

MDF x x O x x x
IDF O O x x x x
AAO O O x x x x
CSSO O O O O O O
BLISS x x O O O O
CO O O x O O,x x
MDOIS x x O O x O,x

Figure 3.3: Number of function calls versus required information (Yi et al., 2007).

information consists of design variables, equality constraints, system analysis, additional required op-
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timizer, Global Sensitivity Equation (GSE) and Optimum Sensitivity Analysis (OSA). The addition of

information in design variables or equality constraints makes it difficult to find an optimum solution.

Moreover, the number of function calls can increase if additional GSE or OSA information is needed. In

sum, MDF is recommended if a system analysis is simple and MDOIS is recommended if each discipline

is able to modify the design. Another comparison study made by Perez et al. (2004), evaluated MDO

architectures using an extended set of proposed metrics which took into consideration optimization and

formulation characteristics. The metrics proposed in this study were simplicity, transparency, portability,

efficiency and accuracy. The summary of the results is reproduced in the Table 3.2. The results show

Table 3.2: MDO comparison summary Perez et al. (2004).
Accuracy Efficiency Transparency Simplicity Portability

Best MFD IDF MFD MFD CO
. IDF BLISS IDF IDF CSSO
. BLISS CSSO CO CO BLISS
. CO CO CSSO CSSO IDF

Worst CSSO MFD BLISS BLISS MFD

MDF as the most accurate method since it performs full disciplinary system analysis. Unfortunately, its

efficiency suffers with the increase in complexity, so its better used with simple system analysis (Yi et al.,

2007). The IDF method is shown to be a feasible alternative to MDF when portability analysis is not

an issue. Bi-level optimization schemes proved to be computationally expensive but their accuracy is

similar to centralized schemes. Its main advantage lies in the portability for distributed analysis which is

in accordance with the study made by Martins and Tedford (2006). This study also presented an MDO

framework in Python1 for comparisons in MDO architecture performance. The conclusion of this study

is consistent with the other two mentioned above, as in terms of robustness, MDF and IDF proved to be

able to consistently return optimal solutions, with the least number of failures.

As for this thesis, the objective is to perform a simple aero-structural optimization on sailplane wings.

Therefore, the methodology in which the MDO problem is to be approached should be the simpler, the

most transparent and at same time have high accuracy and robustness. Looking at the results and

conclusions of the studies mentioned above, the architectures that seem best adapted to this thesis

objective, are the single-level methods, IDF and MDF.

Multi-Disciplinary Feasible The MDF architecture is often viewed as the most traditional approach.

In it, an optimizer is placed over an MDA module. This takes in the optimizers set of design variables,

optimal global z and local variables x and iterates over the discipline analyses until a consistent set of

coupling variables has been generated. Then, the complete variable set is used to compute the values

of the objective and constraint functions. The MDA is typically solved by a block-iterative procedure like

the Gauss-Seidel iteration2 and is considered to be converged once the coupling variables generated by

each discipline analysis have remained constant within a specified tolerance over successive iterations.

1Python is a general-purpose, high-level programming language whose design philosophy emphasizes code readability.
2The Gauss–Seidel method is an iterative method used to solve a linear systems of equations.
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This architecture requires a solution of the MDA at each design point. This aspect ensures that a multi-

disciplinary feasible solution is present throughout the optimization process, so if the optimization is

terminated prematurely, a physically realizable design point will still be achieved. The computation of

the MDA at each design point also negates the need to include the discipline coupling variables as

optimization variables. A schematic representation of the flow of information using MDF architecture is

presented in Fig. 3.4. Mathematically, this architecture can be described as

Minimize :
z,x

f(z, yi(x, yj , z), x), i, j = 1, ..., n j 6= i,

s.t.: g(z, yi(x, yj , z)) ≤ 0,
(3.2)

where f is the objective function and g represent all the global and local system constraints.

The MDF main advantage is that it ensures that a global feasible solution is present throughout the

optimization process. The amount of effort required to implement MDF for a given problem, is directly

related to the effort required to build an appropriate MDA module. General iterative solvers, such as

block Gauss-Seidel, are commonly used, but may suffer from convergence difficulties. Also an important

consideration is that general iterative schemes are much less efficient than fully integrated MDA solvers.

For example, if all the discipline analyses are linear, Newton solvers are computationally much more

efficient than generalized iterative solvers. However, additional time is need to develop and implement

them, if they are not already developed. The sensitivity analysis method employed is also important

as the use of gradient-based optimizers with MDF method can result in low performance. If either a

finite difference or complex-step method is used to compute the the sensitivities of the objective and

constraints with respect to the design variables, an MDA must be solved for each sensitivity which can

have a prohibitive cost (Martins et al., 2003). To solve this, Martins and Tedford (2006) proposes the

use of semi-analytic sensitivity analysis methods. A disadvantage of MDF is that the space for parallel

processing, outside the MDA module, is very limited because the multi-disciplinary system is addressed

as a whole. So, if it is to be used within a parallel framework, the computational costs may be higher

than if a decoupled approach is used.

Figure 3.4: Multi-disciplinary design feasible architecture.
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Individual Discipline Feasible (IDF) The IDF approach can be seen as a decoupled version of the

MDF approach. Instead of enforcing multi-disciplinary feasibility, IDF only requires a discipline feasibil-

ity at each design point. At each iteration, the discipline residuals are satisfied but a multi-disciplinary

feasible solution may or may not be present. Therefore, if for some reason the optimization process fails

at some point, the design solution achieved will be fully realizable in each discipline spectrum but, at an

overall system level, it may not be feasible as no coherent multi-disciplinary state is present and the opti-

mization process did not fully converged. As the disciplinary analysis are decoupled, they no longer rely

on one another for their coupling variable inputs. Instead, the extra coupling variables are introduced in

the formulation, adding coupling variables to the optimization variable set. Then, the optimizer provides

each discipline with both design variables and an estimate of the other disciplines coupling variables.

To ensure that a multi-disciplinary feasible solution is achieved, one additional feasibility constraint is

added to the problem formulation for each coupling variable. These constraints ensure that at the opti-

mum, the estimate of the coupling variables provided by the optimizer and the actual coupling variables

are equivalent. A schematic representation of the flow of information using a IDF architecture is in Fig.

3.5. Mathematically, it can be described as

Minimize :
z,y′x

f(z, yi(x, y
′

j , z), x) i, j = 1, ..., n j 6= i,

s.t.: g(z, yix, y
′

j , z), x) ≤ 0; y
′

i − yi(x, y
′

j , z) = 0

(3.3)

where y
′

is the extra coupling variable vector created to decouple the disciplinary analysis.

The IDF main advantage is that need for an MDA is eliminated. The disciplinary analyses are uncoupled

and can be evaluated in parallel, which can increase its overall performance. This uncoupled nature

allows that each disciplinary analysis can be solved only once per design point, making IDF objective

evaluation typically less costly than MDF evaluation. As IDF increases both in dimensionality of the

optimization problem and in the number of constraints, the number of sensitivity analyses required can

become too costly. If the problem has a large number of coupling variables, calculating the sensitivi-

ties of the optimization variables with respect to the constraints may be prohibitive since the matrix of

sensitivities nearly squares with the number of optimization variables.

Figure 3.5: Individual discipline feasible architecture.
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3.4 MDO Framework

Ultimately, the architecture chosen from the two presented was the MDF. The fact that it ensured a global

feasible solution throughout the optimization process made it preferable over the IDF architecture. This

section presents the MDA framework established for the MDO architecture chosen to be employed in

this thesis. The disciplines for the proposed MDA are aerodynamics and structures, so a solver for each

discipline analysis had to be chosen. But the first step required for the disciplinary analysis to be com-

puted was a proper geometric parametrization method. Kenway et al. (2010) presented a method that

follows a CAD-free geometry parametrization approach and showed that it presents several advantages

over other parametrization techniques. As the study presented good results and the fact that having

no need to use a CAD software for the geometric parametrization is an advantage itself, the CAD-free

method presented was chosen to be used within the MDO framework. This decision has come with other

implications. The study presented was made using tools developed at the University of Toronto (UoT)

MDO Lab. Therefore, to reproduce the stated method, access to the same tools was requested. With the

access granted, a repository of MDO tools became available. Several tools were tested to find a viable

combination for an MDO framework to be established to achieve the objective of this thesis, i.e., running

an MDO on sailplane wings. The two disciplines involved in the presented objective are coupled by na-

ture, since aerodynamic loads cause changes in the wings structural deflection, which in turn, changes

the aerodynamic characteristics of the wing. So, the MDO framework would need to use two discipline

analyzing tools that could be easily coupled together. Using the available repository, two aerodynamic

disciplinary solvers and one structural solver were tested. Based on the fidelity of the results, the ease

of implementation and the possibility of coupling, two were chosen: a panel code named Tripan for the

aerodynamic analysis, and a parallel finite-element analysis package named TACS for structural analy-

sis. As result of the choice of an MDF architecture only one global optimizer was needed to handle the

non-linear, constrained, aero-structural optimization problem. After testing some optimizers with math-

ematical optimization problems, the optimizer chosen was a sparse sequential quadratic programming

(SQP) algorithm for non-linear problems, called SNOPT (Gill, 2008). This algorithm was one of the fully

integrated algorithms present in the pyOpt MDO Lab module (Perez et al., 2011). This object-oriented

framework for formulating and solving non-linear constrained optimization problems was then chosen

to handle the optimization process. So the overall scheme of the MDF architecture established for the

MDO tool was the on represented in the Fig. 3.6.
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Figure 3.6: MDO framework established for the aero-structural optimization of sailplane wings.

3.5 MDO Tool Structure

This section presents the structure of the MDO tool established in this thesis. As stated in the previous

section, the MDO architecture chosen was MDF. However, the MDF architecture only covers the MDA

and optimization. So a more wider structure had to be established to the MDO tool. For that structure

a modular scheme was chosen. Also an interface had to be elected for the tool. Following the work

of the authors mentioned in the previous sections, the interface chosen for the tool was through script

files3. Although the core components were mostly written in Fortran and C languages, all could be

wrapped or were already wrapped in Python language. This fact made clear the choice to go with

Python as the scripting language. With the interface, disciplinary solvers and optimizer components

chosen, the structure to the final MDO tool was created. Figure 3.7 shows the scheme of the overall

MDO tool structure established and used to run the aero-structural optimization of sailplane wings. The

next sections will address to each module in the established MDO tool.

Figure 3.7: MDO tool structure established for the aero-structural optimization of sailplane wings.

3A script is a file written in a scripting language or extension language that allows control of one or more applications. Usually
the scripting language is different from the core programming language of the application it controls to provide the user a more
comprehensive interface through a higher level programming language.
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3.6 Geometry Module

The geometry generation and parametrization is of fundamental importance to an MDO problem. This

section presents the geometry module of the MDO tool. For that, a first sub-section about aircraft wings

will be presented, followed by a sub-section with information about the employed methods. A last sub-

section will address to the script created to use this module.

3.6.1 Case Study

The subject of study in this thesis are sailplane wings. Two case studies were chosen: an academic

semi-tapered sailplane wing and a real sailplane wing. The general aerodynamic characteristics of

sailplane wings have been already been mentioned in Chapter 2. Therefore, this sub-section will focus

on the presentation of the L-23 Super Blanik sailplane and the main structural components of sailplane

wings. The LET L-23 Super Blanik is one of the most popular sailplanes in the world of flight instruction.

Due mainly to the excellent cost-to-performance ratio, it was a success throughout the world. In its

composition, it is an ”all-metal” sailplane. It exists in two versions, single and two-seater sailplane. It

has a simple and robust cantilever, mono-spar (supported by an auxiliary spar), tapered, high-wing and

a T-tail. The wing also has some twist, sweep and dihedral. Last but not least is the fact that, nowadays,

it is one of the two sailplanes operated by the Department of the Air Corps Student Activities, in the

Portuguese Air Force Academy. Other countries like Brazil or U.S.A., have also adopted this glider as

their instruction sailplane. Figure 3.8 shows a cutaway of the L-23 sailplane.

Figure 3.8: Cutaway of the L-23 Super Blanik sailplane (L-23 sailplane maintenance manual, 2011).
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Wing Components The main structural components that form a sailplane wing internal structure are

(Megson, 2007):

Spars The spar is often considered the main structural member of the wing. It is the component that

supports the main aerodynamic loads and serves as structural interface between the wing and

the fuselage. Generally, this component is configured approximately normal to the flow direction,

extending outward from the fuselage to the wing tip, although it can be placed with a certain

angle related to the sweep angle of the wing. The most common current wing structural layout

for personal aircrafts is the cantilever, where a single large beam, designed as the main spar, is

placed nearer the leading edge at about 25% of the total chord to carry the lift load through the

fuselage to the other wing. To resist forward and aft movement, the wing has usually a second

smaller drag-spar near the trailing edge. This auxiliary spar is tied to the main spar with ribs or a

stressed skin (forming a wing-box structure) providing the wing rigidity needed either in flight or on

the ground.

Ribs The ribs are structural members of the wing and often considered its skeleton. They serve as

connectors between spars and are responsible along with stringers for the support and shaping of

the skin, also they serve as attachment points for control surfaces, flaps, undercarriage or engines.

In the traditional layout, ribs are placed so they have the orientation of the flow direction.

Stringers In conjunction with the ribs the stringers are structural members that are responsible for giving

an airfoil shape to the wing skin as well as to help support wing bending and act as interrupter to

the spread of cracks. They have the function of supporting the skin panels and prevent thin-wall

buckling under compression or shear loads. In the traditional layout, stringers are placed between

ribs, assembled to the skin and oriented parallel to the spar direction.

Skin The last structural member described is the skin on the wing. The skin in conjunction with ribs

and spars compose a wing-box structure. Generally, the wing skin consists of panels comprising

the top and bottom of the wing-box attached to each other and attached to ribs giving the wing its

aerodynamic shape.

Figure 3.9 shows the generic components of a traditional wing-box structure.

3.6.2 CAD-Free Method for Geometry Generation and Parametrization

To use high fidelity tools like CFD and CSM, detailed discretization of the computational domain are

required (the accuracy of the solutions may depend on it). In CFD analysis, a model of the “wetted

surface” or “outer mold line” (OML) of the wing is required. Also the computational domain for a CFD

analysis is three dimensional and may include a large number of nodes. On the other hand, CSM anal-

ysis of that same wing, require not only the OML but also a description of the internal aircraft structure

components like ribs, skins, spars and stiffeners. So to chose the geometric parametrization method

some research was made. Samareh (2001) presented a survey of shape parameterization techniques
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Figure 3.9: Representation of a wing-box configuration.

for high-fidelity MDO, where he identifies eight types of geometric parameterizations: basis vector, do-

main element, partial differential equation, discrete, polynomial and spline, CAD-based analytical and

free-form deformation (FFD). Kenway et al. (2010) presented a CAD-free approach method that uses

both spline and FFD volume based approaches. This method presented various advantages like the

efficient computation of analytic derivatives for gradient-based optimization. Thus, it was the method

followed and employed in the geometry module for the geometric parametrization of the proposed MDO.

In order to implement the method in the geometry module, a set of geometry tools from the MDO Lab

was used. These tools include functionalities with both B-spline curves and surfaces. The tools are

called pySpline and pyGeo and their usefulness will be detailed in the next paragraphs.

pySpline is a underlying B-spline library for curves and surfaces developed by Gaetan Kenway for the

MDO Lab of the UoT. Its evaluation routines are written in Fortran90 and wrapped using f2py 4 (Martins

et al., 2001) to provide a high-level, object-oriented application programming interface in Python. The

recurrence relations for the B-spline basis functions are

Ni,0(u) =

1 ifti ≤ u ≤ ti+1

0 otherwise
, (3.4)

Ni,p(u) =
u− ti
ti+p − ti

Ni,p−1 +
ti+p+1 − u
ti+p+1 − ti+1

Ni+1,p−1, (3.5)

where u is the parametric location with respect to knots ti. The parametric equations for B-spline curves

and surfaces can then be written as

C(u) =

Nu−1∑
i=0

Ni,pu(u)Pi, (3.6)

S(u, v) =

Nu−1∑
i=0

Nv−1∑
j=0

Ni,pu
(u)Nj,pv

(v)Pi,j , (3.7)

4F2PY is a tool that provides an easy interface between Python and Fortran languages.
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V (u, v, w) =

Nu−1∑
i=0

Nv−1∑
j=0

Nw−1∑
k=0

Ni,pu
(u)Nj,pv

(v)Nk,pw
(w)Pi,j,k, (3.8)

where the control points pi,j , i = 0, ..., Nu − 1; j = 0, ..., Nv − 1; k = 0, ..., Nw − 1 exist is three spatial

dimensions. The Ni,pu
, Nj,pv

, Nk,pw
functions are the polynomial B-spline basis functions of degree

pu, pv and pw, respectively. One of the biggest advantages of B-splines is the analytic formulation of

their derivatives. So, differentiating the basis functions l times, the lth order derivative with respect to

the parameter value can be evaluated. Hence the derivatives for curves, surfaces and volumes are,

respectively,
∂l

∂lu
C(u) =

Nu−1∑
i=0

N
(l)
i,pu

(u)Pi, (3.9)

∂l+m

∂lu∂mv
S(u, v) =

Nu−1∑
i=0

Nv−1∑
j=0

N
(l)
i,pu

(u)N
(m)
j,pv

(v)Pi,j , (3.10)

∂l+m+n

∂lu∂mv∂nw
V (u, v, w) =

Nu−1∑
i=0

Nv−1∑
j=0

Nw−1∑
k=0

N
(l)
i,pu

(u)N
(m)
j,pv

(v)N
(n)
k,pw

(w)Pi,j,k. (3.11)

The first derivative of the B-spline basis function is expressed as

N
(l)
i,p =

p

ti+p − ti
Ni,p−1(u)− p

ti+p+1 − ti+1
Ni+1,p−1(u). (3.12)

The compact nature of the B-spline basis functions results that most p + 1control points in a given di-

rection will affect a fixed parametric location. Moreover, the linear nature of the B-spline shape functions

results that the derivative of a point in a volume at parametric location u, v, w, with respect to a control

point Pi,j,k is the product of shape functions expressed as

∂V (u, v, w)

∂Pi,j,k
= Ni,pu

(u)Nj,pv
(v)Nk,pw

(w). (3.13)

For configurations of some complex geometry, as an airplane wing, using only isolated curves, surfaces

or volumes are not enough. It is necessary to combine the entities together in some topological manner.

pyGeo is the tool that handles this function, working as a geometry surfacing engine. It performs mul-

tiple functions including producing surfaces from cross sections, fitting surfaces and has built-in design

variable handling. The actual B-spline surfaces are of the pySpline surface type and come from the

previously seen tool, pySpline. pyGeo is able to generate, from argument inputs, lifting surface objects

(from splined surfaces), load in a plot3D surface patches and load the surface patches from an IGES

format file5. pyGeo has also the capability to generate outputs with the geometry object (splined sur-

faces) in Tecplot Data file format 6 or IGES file format. Figure 3.10 shows examples of B-spline surface

geometries generated with pyGeo.

Finally, the tool used to generate the finite-element analogues to the structural members within the

5The Initial Graphics Exchange Specification (IGES) is a file format which defines a vendor neutral data format that allows the
digital exchange of information among Computer-Aided Design (CAD) systems.

6Tecplot is the name of a family of visualization software tools developed by Tecplot, Inc.. Tecplot 360 for example is a CFD
and numerical simulation software package that is generally used for post-processing simulation results.
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wing is called pyLayout. This Python module is used for automatic parametric structure generation of

wings. Given a description of the structural layout within the OML of the wing, pyLayout automatically

generates a wing-box finite-element model that mimics the structural characteristics of the real wing. The

description required can be simple, with only the required information of position and number of ribs and

spars, or complex, with various optional informations like the element order for the finite-elements, the

number of elements between each rib (span-wise), the number of elements between each spar (chord-

wise), the number of elements in the thickness or the number and positioning of holes in ribs, spars

or skins. This module possesses features that allow it to generate a wide range of structural layouts,

from simple wing-box finite-element models like the one in Fig. 3.11(a), to more complex wing-box

finite-element models like the one in Fig. 3.11(b).

After generating the structure, pyLayout module creates an output file that can be loaded by the

structures module.

(a) B-spline surface representation generated from input file. (b) B-spline surface representation generated from IGES file.

Figure 3.10: B-spline surface representations generated with pySpline and pyGeo.

(a) Simple wing-box finite-element model. (b) Complex wing-box finite-element model.

Figure 3.11: Wing-box finite-element models generated by pyLayout module.
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Free-form Deformation The CAD-free geometry parametrization method uses a technique known as

FFD. This technique is an approach to the free-form solid modeling used in soft object animation in the

computer graphics field. It was first presented by Sederberg and Parry (1986). A good physical analogy

that is often used to explain the FFD approach, is the one where an object (or objects) that one wants

to deform, is embedded in a clear, flexible, plastic material. The object is assumed to be flexible, so

that it deforms along (in a consistent motion) with the material surrounding it. This material containing

the object usually takes form of a simple geometric shape and usually is mapped using a R3 → R3

map, like tri-variate Bézier or B-spline volume. With this technique, any object can be embedded inside

the volume. To perform that, a Newton search can be used to determine the u, v, w values, mapping

parameter space to physical space. After the embedding, the objects can be indirectly deformed by

making high level modifications to the FFD volume geometry. The use of this technique allows easier

parameterizations of solid object models since it is not the object geometry itself that is parametrized

but the volume where it is embedded. As a consequence, this technique only uses a set of design

variables which will produce the desired modifications to the object, rather than the objects geometry

itself. Although it may have the disadvantage of making the design variables not have physical meaning

for design engineers, this technique can be adapted to be used in MDO applications (Samareh, 1999).

3.6.3 Code for the Geometry Module

This sub-section presents a generic script for the parametrization of a wing geometry to be used in an

MDO problem. To lighten this document, it is only presented a brief description of the functions of each

section of the script. The full transcription of the script, along with the programming comments, can be

found in Appendix A. The script is structured in five parts and its structure is represented in Fig. 3.12.

Figure 3.12: Script structure to generate a wing geometry and structural layout.

The first part has the lines needed to import standard and external Python modules as well as

the specific MDO extension modules. In part 1.1, some specific functions from the scientific computing

package for Python (NumPy)7 are imported. Also an the MPI extension of package mpi4py 8 is imported,

7For detailed information on NumPy package for Python see http://numpy.scipy.org/.
8MPI for Python is a Message Passing Interface (MPI) standard package for the Python programming language. It
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to allow this script to be extended to run in multiple processors. In part 1.2., the MDO Lab tools are

imported, namely, the pyGeo, pySpline and pyLayout, reviewed in Sub-section 3.6.2.

The second part handles the geometry variables. It is in this part that the user sets the variables

to obtain the desired wing geometry, either in terms of OML and in terms of structural layout. These

variables are span, wing chord at tip and root (it can be also defined with the tapper ratio of the wing) and

airfoil shapes at specified sections in the wing. Each of these sections has a set of variables associated:

span location, chord, position of the leading edge and rotation. By manipulating these values, the user

can add sweep, dihedral and twist angles to the wing geometry. Part 2.2 handles the information about

the inner structural layout. First the number of spars, ribs and stringers are defined. Then, the position

of the leading and trailing edge spars are specified. Finally, there are some options on the order and

number of the finite-elements to be used for the structural mesh. Also, the number of control points used

by pyGeo to generate the wing geometry object can be defined.

Part 3 should not be modified by the user as it contains the code that defines the functions to generate

.wake, .edge and .tripan files with the panel mesh for Tripan.

The forth part of the script calls pyGeo to generate the geometry object.

The last part defines the code for generating flow and structural solver input files.

Once the script is run, the output files for the aerodynamic and structural analysis are generated and

can be used as presented in Sections 3.7 and 3.8.

3.7 Aerodynamics Module

This section presents information about the module that handles the aerodynamic analysis. A first sub-

section introduces computational methods for aerodynamic analysis. Then, a sub-section addresses the

methods employed. Finally, a sub-section documents an example script used to implement and test the

aerodynamics module.

3.7.1 Computational Methods and Computational Aerodynamics

Computational Methods In Sub-section 2.2, it was highlighted that in the early years of the aviation

history, the developments in aircraft design resulted mostly from experimentation. Today, computational

methods have become standard practice, resulting from the fast and exponential evolution of electron-

ics and digital computers over the last three decades. They allowed the emergence of new complex

calculation methods, only possible through numerical analysis, that revolutionized a wide range of dis-

ciplines. Computational methods have become an indispensable tool to engineers in aircraft design.

Alonso (2011) gives a general overview of the capabilities of computational methods and potential prob-

lems that they present. From that overview, it is worth to highlight the fact that computational methods

allow the analysis of the behavior of complex systems that otherwise would not be possible using just

analytic theories, they also allow the reduction of the costs of design and production by giving detailed

allows any Python program to exploit multiple processors. For detailed information on Mpi4py package for Python see
http://http://mpi4py.scipy.org/.

34



information without the need of experimentation. However, it is important to know that computational

methods are just tools and, therefore, have to be used with caution. There are four main aspects to

avoid problems from the misguided use of these methods (Alonso, 2011): the model used must be in

accordance with the phenomena that is being analyzed, otherwise the solution will not be valid; the

accuracy of a numerical solution is heavily dependent on the domain discretization used; the solution of

a computational method is only valid in the range of the model used; the solutions obtained should be

carefully observed to assess if they follow the expected trends, based on the theoretical principles.

Computational Methods applied to Aerodynamics As with all the major aerospace disciplines, aero-

dynamics was also changed by the use of computational methods. It was in 1967 that the first paper

on a practical three-dimensional method to solve the linearized potential equations was published at

the Douglas company (Hess and Smith, 1967). The presented method discretized the surface of the

geometry with panels, giving birth to a new class of programs that would use the surface panel method-

ology, the ”Panel Methods”. Although the first method was simple and did not include lifting flows, many

researchers and aircraft companies realized its potential. During the following years, additional capa-

bilities were added, as in 1968, when Paul Rubbert and Gary Saaris of Boeing Aircraft introduced the

fist lifting Panel Method. Many more companies like, Lockheed, McDonnel Aircraft or NASA followed

the trend and began to create and use the panel methodology, to run aerodynamic analysis. Today,

panel methods have many more capabilities like the use of higher order codes, the solution of unsteady

flows or the coupling with boundary layer formulations. This versatility made them gain wide-spread

acceptance, throughout the aerospace industry. The big advantages that this computational method

presented, and still presents, are simplicity and speed. The fact is that, any modern personal computer

can easily setup and perform the analysis of potential flows around bodies, given an appropriate panel

code. Nevertheless, the ” solution is only as good as the model that is being solved”, so it is important to

acknowledge that panel methods have limited applicability when high-speed non-linear flow is present.

Even though panel methods represented a revolution in the field of aerodynamics, they were just the

beginning. Figure 3.13 gives a good illustration on the evolution of computational methods in aerody-

namics. As the complexity of the modeled flow is increased, more complex computational methods are

required. Though panel methods with boundary layer corrections can provide quite accurate predictions

of lift and drag when the flow remains attached, when the inviscid outer solution interacts with the in-

ner boundary layer, the solution becomes increasingly difficult to obtain with the onset of separation.

Also when the modeled flows have high Reynolds numbers, the turbulent effects have to be evaluated

and taken into account, usually by Reynolds averaging of the fluctuating components. This requires a

turbulence model like Reynolds-averaged Navier-Stokes (RANS) equations, which is the most common

approach to turbulence modeling. As the computing power is growing rapidly, new and more accurate

methods are rising, as Large Eddy Simulation (LES), in which the smallest scales of the turbulent flow

are removed through a filtering operation and their effect modeled using sub-grid scale models. This al-

lows the largest and most important scales of the turbulence to be resolved. In time, even the extremely

computational costing Direct Numerical Simulation (DNS) will be generally used, allowing the resolution
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Figure 3.13: Hierarchy of aerodynamic models with corresponding complexity and computational cost
(Alonso, 2011).

of the entire range of turbulent length scales through marginalizing the effect of models.

3.7.2 Aerodynamic Analysis

Modern gliders have average speeds to fly is in the range of 20m/s to 30m/s, which for an average

flight altitude of 1000 meters, give low Mach numbers. This is an important fact, as it allows the airflow

to be considered incompressible. Also, modern sailplanes are designed to be smooth and have wing

geometries that avoid flow separation and minimize viscous effects. Therefore, is a valid assumption to

consider an inviscid, incompressible and irotational model to accurately simulate flow in which a sailplane

flies. Reminding Sub-section 3.4, two flow solver were tested: the SUmb and the Tripan. SUmb is a

multi-block structured flow solver developed in the Stanford University Center for Integrated Turbulence

Simulations (CITS). It is a code that solves the compressible Euler, laminar Navier-Stokes and Reynolds-

Averaged Navier-Stokes equations (Weide et al., 2005). On the other hand, Tripan is an unstructured,

three-dimensional panel code. The two modules could be used for the aerodynamic analysis, however,

as the course of the work revealed, the Tripan flow solver was better suited to be coupled with the

structural solver. As the other modules presented for the geometry parametrization, the Tripan module

is wrapped in Python, allowing the easy integration in the established MDO tool. These reasons led to

the choice of this panel code as the aerodynamic solver for the MDO tool. Though not implemented,

SUmb, as an high-fidelity model, was validated and used to verify the accuracy of Tripan, as Sub-section

4.3.1 will present.

Tripan uses a first-order panel method with constant source and doublet singularity elements, dis-

tributed over the surface of a body, discretized with quadrilateral and triangular panels. Further informa-

tion on panel methods and its implementation can be found in references [(Anderson, 2001) and (Hess

and Smith, 1967)]. This method allows the calculation of aerodynamic forces, moments and pressures

for inviscid, incompressible, external lifting flows. Yet, it has well known limitations, especially of accuracy

when computing drag (Smith, 1996).

To perform the aerodynamic analysis on the proposed MDO, the Tripan panel method determines

the source strengths based on the onset flow conditions while the boundary conditions for the doublet
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strengths constitute a dense linear system, represented by

A(u,w) = 0, (3.14)

where u and w are the vectors of the structural and aerodynamic state variables. The linear system rep-

resented in Eq. 3.14 is solved using the parallel, linear algebra routines in PETSc 9 (Balay et al., 2004)

and using the Krylov subspace method GMRES 10 (Saad and H.Schultz, 1986), with a block Jacobi In-

complete LU(ILU) preconditioner formed using a sparse approximate-Jacobian. The study presented by

Kennedy and Martins (2010) shows that this is an effective method, requiring the least overall computa-

tional time, amongst the range of preconditioning options considered. The preconditioner is assembled

by considering only those panels that are within a predetermined radius from the current panel centroid

(closest panels have the strongest effect on a given panel). The effect of a higher ILU preconditioner

fill-level can be achieved by selecting a larger radius. A final important feature in the Tripan is that, it is

implemented with an adjoint sensitivity method which will be discussed in Sub-section 3.11.2.

3.7.3 Code for the Aerodynamic Analysis

In the scheme presented in Fig. 3.7, the aerodynamics module receives input files from the geometry

module and then it communicates with the structural module to perform the coupled aero-structural

analysis. Though this is the final purpose of this module, to better understand how it works and how the

user can define the aerodynamic design variables, this sub-section presents a description of a generic

script for a simple aerodynamic analysis. The a full script with programming comments is listed in

Appendix B. Figure 3.14 shows a representation of the script structure used.

Figure 3.14: Script structure to perform an aerodynamic analysis.

The script is structured in three parts. The first one is used to import the Python and MDO extension

modules, namely Tripan, and to define the output directory for the results.

The second part is used to set up Tripan panels. It should be used as presented in the Appendix B.

Part 3 is the core of the script, as it is here that the input files are defined and the aerodynamic

analysis is performed. It is divided in four sub-parts. The first one is here the user can define the input

files generated with the geometry module. Then the script calls the setting up of the Tripan object and

9PETSc is an open-source suite of data structures and routines for the scalable (parallel) solution of scientific applications
modeled by partial differential equations.

10The generalized minimal residual method (GMRES) is an iterative method for the numerical solution of a system of linear
equations. The method approximates the solution by the vector in a Krylov subspace with minimal residual.
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solver. The second sub-part is here the user can define the design parameters for the airflow model.

These properties are the Mach number, the air density, speed of sound and angle of attack. Air speed

and dynamic pressure are calculated from the defined properties. The third sub-part sets the Tripan load

case and handles the solution of the aerodynamic analysis using the implicit GMRES method. The last

sub-part handles the outputs. The possible outputs are the surface solution, the wake, the aerodynamic

loads, the lift distribution (semi-span) and the sectional pressure coefficient.

3.8 Structures Module

This section presents the second disciplinary module of the MDO tool. A first sub-section is dedicated

to computational methods. Then, a sub-section presents the the methods and the tools employed in the

structures module. Lastly, a sub-section documents a generic script for the structural analysis.

3.8.1 Computational Methods for Structural Mechanics

As the computational power rapidly evolved, analytical methods have given their space to more accurate

and flexible numeric methods. The discipline of structures is the perfect proof. This discipline addresses

to structural analysis, whose focus is the determination of the effects of loads on physical structures

and components. There are many branches in this discipline, often related to the type of structures

that is being studied, as for example aircraft structures. Structures can also be viewed as a wider

study field of other disciplines like applied mechanics or materials science. This makes it one of the

main disciplines in aircraft design. Throughout the history of structural analysis, various methods were

developed to predict the behavior of structures under the effect of loads. From the Euler–Bernoulli beam

equation, in the 18th century, to the introduction of the name ”finite-element method” (FEM) in 1956

by Turner et al. (1956), many methods were presented and used to perform structural analysis and

determine information, such as structural loads, geometry, support conditions, and materials properties.

Today, however, this analysis is performed using mainly two approaches, the analytic methods, such as

the mechanics of materials or the elasticity theory and computational methods like the finite-element

approach. The first approach uses analytical formulations whose applicability is limited to simple linear

elastic models, leading to closed-form solutions. The second approach uses actually numerical methods

for solving differential equations generated by structure mechanics theories, such as elasticity theory

and mechanics of materials. Similarly to computational aerodynamics, structural analysis software are

composed of numerical methods used to solve the discretized structural equations of motion, on a

suitable mesh, created from the geometry of the structure. These programs are also being more and

more used in aircraft structural design, to optimize the shape and properties of structures and materials.

Given the proper time and study, their integration in MDO frameworks will be even more used.

38



3.8.2 Structural Analysis

Structures represent the second discipline in the proposed MDO. The methods and tools chosen to

perform the structural analysis followed the most recent studies published by Kennedy and Martins

(2010), Kennedy (2011) and Kenway et al. (2010). In these, structural analysis was performed by a

finite-element code developed by Graeme J. Kennedy of UoT. This code, called Toolkit for the Analysis

of Composite Structures (TACS), has been tested and it has been developed to have an easy coupling

with aerodynamic codes for MDAs. This reason made it the elected tool for the structures module.

TACS was designed for the analysis of stiffened, thin-walled, composite structures using either linear

or geometrically non-linear strain relationships. It can use higher-order finite-elements to enhance the

stress prediction capability. The residuals of the structural governing equations are expressed as

S(u,w) = Sc(u)− F(u,w), (3.15)

where where u is a vector of displacements and rotations (structural state variables), w is a vector of

aerodynamic state variables, Sc are the residuals due to conservative forces and internal strain energy

and F are the follower forces due to aerodynamic loads. The Jacobian of the structural residuals involves

two terms. The first is the tangent stiffness matrix K = ∂Sc/∂u. The second is the derivative of the

consistent force vector with respect to the structural displacements. These terms are computed using

a matrix-free approach. Mathematically the Jacobian of the structural residuals is represented by the

expression in Equation 3.16.
∂S

∂u
= K− ∂F

∂u
. (3.16)

TACS uses the Krylov subspace method GMRES and the the Krylov method GCROT 11(Hicken and

Zingg, 2010), to solve the non-symmetric, linear systems of Eq. 3.16. It handles stress constraints by

applying a local failure constraint at each Gauss point in the finite-element model. These local failure

constraints compute a load factor, λk, required for that point to fail. The load factor implies that the current

point will fail at λk times the current stress level. For a safe-life design, the criterion min {tk} > Fs is

applied, where Fs is the safety factor. This method applied to an optimization has some specificities.

Instead of using the minimum value directly, a Kreisselmeier-Steinhauser (KS) constraint aggregation

technique is applied to groups of these local constraints (Wrenn, 1989). Normally these groups are

aggregated amongst similar structural components. In TACS code, the KS function is computed as

λKS = min {λk} −
1

σ
ln

[
N∑
i=1

exp {−σ(λi −min {λk})}

]
, (3.17)

where σ is a weighting parameter that controls the degree of approximation and λKS is the aggregated

KS value. This approach has the advantage that it reduces the number of constraints required in the

optimization, while keeping a conservative approximation, in that λKS is a lower bound. Values of σ

between 30 and 50 are recommended.

11 GCROT is a Krylov method that uses Generalized Conjugate Residual with inner orthogonalization and Outer Truncation.
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A final mention to the fact that TACS, although written in C++ language, contains a Python interface.

This allows the easy modification and flexibility in building the desired finite-element models.

3.8.3 Code for the Structural Analysis

This sub-section documents the script created to test the structures module of the established MDO tool.

To achieve this objective, a simple structural analysis of a generic wing was run, in which a single point

load to the tip was applied. The input structural mesh of the wing was created with the script presented in

Sub-section 3.6.3. Figure 3.15 shows a representation of the script structure used to perform a structural

analysis. The full transcript of the script can be found in Appendix C.

Figure 3.15: Script structure to perform a structural analysis.

The script is structured in three parts. The first part handles the importation of Python and MDO

extension modules and the definition of the output directory for the results. The MDO extension modules

imported are, ’TACS’, ’elements’, ’contitutive’ and ’functions’. The first one is the TACS core code, the

second and the third are the extensions with the functions needed to define the finite-element class and

the constitutive class. The last one handles the functions needed for auxiliary calculations.

The part 2 has an auxiliary function code to create Tecplot visualization file with the numeration of

the nodes in the structural mesh. This is important as it is only when the TACS object is created that the

numeration of the nodes is done. This is required if a nodal point load is to be applied.

Part 3 is the core of the script. It starts with a sub-part used to load the structural mesh file created

with the geometry module. There, the variables ’nribs’,’nspars’ and ’ncomponents’ store the number of

ribs, spars and components. The second sub-part handles the set-up of the KS function domains, the

definition of the design material properties and the finite-element type used in the structural mesh. Part

3.3 has the code for the creation of the TACS object and KS functions. The first is created assigning

six variables to each node, for the six degrees of freedom. Also the number of load cases that with be

computed is defined. Then, the KS functions are created for each domain defined above. Part 3.4 is

where the user defines the design parameters for each load case. In the example listed in Appendix C,

a point load of 500 N is applied to a node at the tip of the wing-box structure. The fifth sub-part operates

the setting of the parameters for the solver. Sub-part 3.6 processes the solving of the structural system.

The last sub-part is used to set up the solution files, consisting of the displacements, stresses and strains

in the structure.
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3.9 Aero-Structural Coupling

The present section explains how the two disciplinary modules couple together. This is an important

aspect of the MDO tool as it is important to maintain the level of accuracy when the iteration goes from

one solver to another. When using a coupling method in an MDO framework, it is important that the

level of fidelity in the coupling guarantees that the accuracy of the individual disciplines is not affected

(Martins, 2002). Also, the discretization in each discipline (the aerodynamic mesh and the finite-element

mesh) must preserve the geometric consistency during the analysis process.

3.9.1 Displacement Transfer Between Modules

The objective of the load-displacement transfer process is to accurately translate the nodal displace-

ments of the structural model to aerodynamic mesh point displacements. The flow solution is affected

by the position and shape of the solid boundary, which is dictated by the structural displacements. In

turn, these displacements are affected by the forces applied to the structure due the flow pressures at

that boundary. In the tool established for this thesis, the load and displacements transfer scheme follows

the method described by Brown (1997). This method rely on extrapolation functions for the displace-

ments of the internal structure to obtain the aerodynamic mesh displacements. These extrapolation

functions must satisfy two conditions. The first one is that these functions must accurately reproduce a

rigid body motion. In other words, for a given set of nodal displacements corresponding to a rigid body

mode, the extrapolation must yield a rigid body displacement of the aerodynamic mesh. The second

condition is that the resulting aerodynamic mesh displacement field must be continuous over the whole

surface. To extrapolate the structural displacement field, each point of the aerodynamic mesh, xA, must

be associated to a point on the structural model, xS . The association is made so that the distance

between the two points is minimized. When the association is made, it remains the same either in the

initial and perturbed geometries. Figure 3.16 shows a representation of the displacement procedure.

Figure 3.16: Illustration of the displacement extrapolation procedure (Martins, 2002).

The link between the point in the aerodynamic mesh and the point on the structural model is made

through the vector, r = xA − xS , which maintains its position and orientation relative to the associated
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finite-element point. The displacement of the aerodynamic mesh point, uA, can then written as

uA = uS − r× θS, (3.18)

where uS is the displacement of the structural model point, and θA and θS are equal rotations (θA = θS).

Note that the equality uses small angle approximation. Once the displacements for each aerodynamic

mesh point have been found, the displacement field can be obtained by interpolating between the points

using the aerodynamic mesh parametric description stored in the geometry database. In other words,

the mapping from the aerodynamic mesh to the finite-element model is performed on explicit point by

point basis, for a finite number of points. Displacement field continuity in the aerodynamic mesh is then

enforced directly, without requiring continuity from the underlying structural model.

3.9.2 Load Transfer Between Modules

The load transfer procedure is similar to the displacement transfer. The pressures calculated by the

aerodynamic flow solver are transferred to the structural nodes through aerodynamic mesh points. To

perform the transfer, an appropriate cell and the parametric location of each mesh point within this cell, is

identified. The aerodynamic pressures are then calculated by using bilinear interpolation on the surface

of the aerodynamic mesh. The accuracy of this transfer is assumed ensured by the fact that the OML

surface is of comparable or better fidelity than that of the aerodynamic mesh, and that the two surface

representations are consistent. The distributed pressure load, applied to a structural finite-element

model, must first be transformed into an equivalent set of nodal forces. This transformation has two

requirements. The first is that the resultant nodal forces and moments are the same as those that result

from the pressure field for each element. The second is that the load transfer must be conservative. To

ensure the former, the virtual work performed by the load vector, f , undergoing a virtual displacement

of the structural model, δu, must be equal to the work performed by the distributed pressure field, p,

undergoing the equivalent displacement of the aerodynamic mesh, uA. So the virtual work is the finite-

element model is given by

δWS = fδu, (3.19)

and the virtual work of the aerodynamic pressure forces is given by

δWA =

∫
pnuAdS, (3.20)

where the integral is taken over the entire aerodynamic surface and n represents the unit vector normal

to the surface. So conservation requires that δWS = δWA and that the load vector is consistent and

conservative. That load vector may be given by

f =

∫
pnNdS, (3.21)
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where N is a transfer matrix between the aerodynamic and structural meshes, calculated in a pre-

processing step. Figure 3.17 shows a representation on how a distributed pressure field is integrated to

produce a force vector that is translated into the nodal forces of a finite-element using Eq. 3.21.

Figure 3.17: Load transfer scheme (Martins, 2002).

3.10 Aero-Structural Solution

In Sections 3.7 and 3.8, the modules for the aerodynamics and structures were presented. In each, the

focus was the disciplinary sub-systems. This section focuses on method for solving the coupled aero-

structural system. This coupled non-linear system of equations is a combination of the aerodynamic and

structural residuals, Eqs. 3.14 and 3.15, respectively, represented by

R(q, x) =

∣∣∣∣∣∣A(w, u, x)

S(w, u, x)

∣∣∣∣∣∣ = 0, (3.22)

where, x are the design variables and q is the combination of aerodynamic and structural states, qT =[
wTuT

]
. During the solution procedure, a point is considered converged when the relative tolerance of

both residuals is reduced below a specified tolerance, such that

∥∥A(w(n), u(n))
∥∥
2
< εr

∥∥A(w(0), u(0))
∥∥
2∥∥S(w(n), u(n))

∥∥
2
< εr

∥∥S(w(0), u(0))
∥∥
2

. (3.23)

This stop criterion is applied to each discipline separately, rather than to the aero-structural system, to

avoid situations where the initial residual of one discipline is significantly greater than the initial residual

of the other.
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3.10.1 Approximate Newton-Krylov Method

To solve the aero-structural system, an approximate Newton-Krylov Method is used. When applied to

Eq. 3.22, this method results in the linear system of equations for the update, ∆q(n), expressed as

∂R

∂q
∆q(n) = −R(q(n)). (3.24)

This method can converge quadratically if the starting point is sufficiently close to the solution and the

Jacobian remains non-singular. However, to achieve convergence when the starting points are far from

the solution, the Newton method may have to be globalized with some strategy, to ensure progress is

made towards the solution until a suitable starting point is found. So, solving Eq. 3.24 inexactly for each

update is typically more efficient than finding an accurate solution. This is the methodology used, so a

tolerance of εnk = 10−3 was set to the Newton update (Kennedy and Martins, 2010),∥∥∥∥R(q(n)) +
∂R

∂q
∆q(n)

∥∥∥∥
2

< εnk

∥∥∥R](q(n))
∥∥∥
2
, (3.25)

with the update, q(n+1) = q(n) + ∆q(n). To guarantee that Eq. 3.23 is satisfied, the stop criterion used

for the Newton–Krylov approach is

∥∥∥R(q(n))
∥∥∥
2
< εnkmin

∥∥∥A(q(o))
∥∥∥
2
,
∥∥∥S(q(o))

∥∥∥
2
. (3.26)

At each iteration, the Newton update is determined using a preconditioned Krylov method. The pre-

conditioner is based upon a single application of block Jacobi. This is applied to each discipline set of

equations. So, a preconditioner can be seen as a sub-Krylov method for each discipline.

3.11 Optimizer

This section addresses the optimizer module of the MDO tool. First, documents some background

information on optimization methods. A second sub-section presents the sensitivity analysis method

used. Finally, a sub-section addresses the optimization algorithm used in the MDO tool.

3.11.1 Optimization Methods

MDO frameworks are based on numerical analysis methods that evaluate the relative merit of a set of

feasible designs. The merit of a design is based on the value of an objective function that is computed

using numerical simulations, such as Tripan and TACS. The choice of that function is very important

and requires a knowledge of the multi-disciplinary design problem. To efficiently achieve a feasible de-

sign point, numerical simulations must be combined with automatic optimization procedures. These are

optimization algorithms created to find the design variables that yield the optimum point for a design

problem. At the moment, there are two main categories of algorithms. The first includes the ’zeroth or-

der methods’, such as grid searching, random searches and evolutionary algorithms. These only need
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information of the value of the objective function. Grid searching (Nocedal and Wright, 2006), performs

systematical surveys to the design space by evaluating each point in a multi-dimensional grid. The

number of function evaluations associated with this method increases exponentially with the number of

design variables, making it prohibitive in problems that yield more than a few design variables. Ran-

dom searches (Alexandrov et al., 1997) are a non-systematic way of restrict the design space. These

methods do not require as many function evaluations. However, they cannot guarantee that the system

optimum will be found. Also, its cost tend to increase if large numbers of design variables are used.

Evolutionary algorithms (Floreano and Mattiussi, 2008) are another type of methods that offer simplicity

and robustness. These use computational models of evolutionary processes to choose the design pa-

rameters. They often achieve multiple optimal solutions but, again, their cost grows with the increase of

design variables. So this first category of ’zeroth order methods’ has a general disadvantage, because,

as the number of design parameters increases, the number of function evaluations needed to reach the

optimum solution rapidly increases to a point where the computational cost is unbearable.

The second category of algorithms for numerical optimization includes the ’gradient-based methods’.

These methods use the value of the objective function and the value of its gradient with respect to the

design variables. They use the interpretation of first and sometimes second order sensitivity information

to make the steps in the design space toward the optimum point. These methods have the advantage

that they will converge to the optimum with a smaller number of function evaluations. Yet, these methods

are not guaranteed to succeed as they rely on the fact that the objective function must vary smoothly

within the design space. Also, they often converge to a local optimum and not the global optimum. Within

the gradient methods, the steepest descent (Snyman, 2005) is the simplest. In it, each optimization step

is taken in the direction of the gradient vector. Other methods are Newton and Quasi-Newton (Gill et al.,

1982). The first requires second order derivatives (the Hessian matrix) in addition to the first derivatives.

This method show a higher rate of convergence. Quasi-Newton, Conjugate Gradient, and variable metric

strategies approximate the Hessian during the search. The general characteristic of these methods is

that they use the sensitivity information to identify a search direction in the design space. Then, a

one-dimensional search in that direction is performed, until a new search direction is found.

Both zeroth and gradient categories of optimization algorithms have a role in solving optimization

problems. In a problem with a low number of design variables and multiple local minima or discontinu-

ities, the zeroth order methods are more suitable. On the other hand, in optimizations like those in aircraft

MDO, that feature a large number of design variables and a smooth design space, the benefit goes for

the gradient-based methods. In particular, gradient methods are regular practice for aerodynamic shape

optimization problems. This because, they are often parameterized with hundreds of design variables

and require computationally expensive high-fidelity analyses. Therefore, a gradient-based strategy is

also employed in the established MDO tool, virtually enabling the use of hundreds of design parameters

and providing a level of detail that cannot be treated by non-gradient methods.
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3.11.2 Aero-Structural Sensitivity Analysis

Efficient gradient-based optimization requires the accurate and efficient computation of the objective

and constraint gradients. In a typical aero-structural optimization problem, there are fewer objective and

constraint functions than there are design variables. For that reason, an adjoint implementation of the

sensitivity equations is appropriate. Following Martins (2002), an aero-structural adjoint method that is

based entirely on analytical derivatives was employed. This method was proven to be highly accurate at

low computational cost when compared with finite-difference or complex-step calculations. The implicit

aero-structural adjoint equations are
∂RT

∂q
ψ =

∂f

∂q
, (3.27)

where ψ refers to the adjoint vector and f is either an aerodynamic or structural function of interest. The

total derivative is then determined using

df

dx
=
∂f

∂x
− ψT ∂R

∂x
. (3.28)

This method is implemented for all the objective functions and constraints considered in the MDO prob-

lem, namely,the aerodynamic lift, drag and mass as well as the KS functions. To compute the adjoint, it

is necessary to solve the adjoint Eq. 3.27 using a Krylov method. This method solves the adjoint equa-

tion using a fully-coupled approach. Matrix-vector products use the exact Jacobian-transpose of the

coupled aero-structural system. One iteration of a transpose block Jacobi is used as the preconditioner,

with similar settings to those used in the Newton–Krylov solution method. Once the adjoint vector ψ

has been determined, the total sensitivities must be computed using Eq. 3.28. This requires the partial

derivative of the residuals with respect to the design variables.

3.11.3 Optimization Algorithm

The optimization algorithm used to implement the gradient-based optimization in the established MDO

tool is called SNOPT (Gill, 2008). This module was created in Fortran but has been compiled with a

Python interface, named pySNOPT, for an easy integration in MDO frameworks. pySNOPT implements

a SQP algorithm used with user provided gradients, from the already stated adjoint method. This opti-

mizer has also the capability of automatically computing sensitivities, using the finite-differences method

or the complex-step method. Ultimately, this module is able to solve non-linear problems with a high

number of variables and can even deal with discontinuities in the design space unless they are near the

optimum.

3.12 Summary

This chapter presented the subject of MDA and MDO. Starting from the multi-disciplinary problem defini-

tion and its approach strategies and finishing with the methods and modules implemented, in the MDO

tool established in this thesis.
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Chapter 4

Results

4.1 Introduction

The aim of this thesis is to run an MDO on sailplane wings, considering both the aerodynamics and

structures disciplines. To do that, an MDO tool was established. Then, disciplinary analysis were run to

evaluate the disciplinary modules. Finally, an MDA and MDO were performed. Thus, the exercises run

were: geometry parametrization; aerodynamic and structural analysis; aerodynamic and aero-structural

optimizations. The following sections document and discuss, the results obtained for each exercise.

4.2 Case Studies

4.2.1 Geometry of Sailplane Wings

This sub-section is intended to present the geometric parameters of the two case studies chosen: a

standard class sailplane wing and the L-23 Super Blanik sailplane wing.

Standard Class Sailplane Wing Design requirements are needed to create an initial geometry for the

optimization process. Considering a standard class sailplane, the main design requirements are:

• Maximum wing-span of the sailplanes of 15 m;

• Fixed wing sections;

• Maximum take-off gross weight of 525 kg.

To complete the design parameters, a semi-tapered wing geometry was chosen. The geometric pa-

rameters used are listed in Table 4.1. The semi-tapered wing geometry was chosen because the use

of tapper ratio in sailplane wing design has become standard practice. One major reason for that is

because taper ratio is a proven way to reduce the induced drag, which is very important in sailplane

performance. It was decided not to include sweep, dihedral or twist angles. Sweep angle is not rele-

vant since as its objective is to reduce the incident Mach number, but, in this case, it is already in the
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incompressible range. Dihedral was also not chosen as its objective is to ensure roll stability and not to

directly affect the cruise performance. Twist angle was not used because it is a design parameter that

it will be studied in the optimization. For the chosen wing geometry, a well studied academic airfoil, the

NACA 2412, was used for all wing sections. At the structural level, the internal layout chosen was a

configuration with two spars and twelve ribs. The thickness values were set to 5 mm in the skin, 10 mm

in the spars and 8 mm in the ribs and the maximum take-off weight to 430 kg. This initial settings were

merely academic and do not mimic any specific sailplane wing.

L-23 Super Blanik Wing The LET L-23 Super Blanik has an all-metal, cantilever, mono-spar, tapered

wing that consists of two assemblies. The basic dimensions of the entire sailplane are presented in

Fig. 4.1. The main geometry parameters of the wing are summarized in the Table 4.1.

Figure 4.1: Basic dimensions for the L-23 sailplane (L-23 sailplane flight manual, 2011).

Table 4.1: Initial geometry parameters for the case studies.
Design Parameter L-23 Wing Semi-tapered Wing

Span 16.2 15 m
Aspect Ratio 13.7 22
Reference Area 19.15 10.22 m2

Taper Ratio 0.429 0.4
Dihedral Angle 3 0 ◦

Sweep Angle -5 0 ◦

Twist Angle -3 0 ◦

The real structural layout of the L-23 wing, presented in the technical drawing of Fig. 3.8, was used

as reference for its structural modeling. Therefore, the wing internal layout is modeled with seventeen

ribs, one main spar and an auxiliary spar. Although it is not the exact modeling of the real layout, it

was the best approximation that was possible to recreate using the geometry module. Also a maximum

take-off weight of 530kg was used (L-23 sailplane maintenance manual, 2011).
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4.2.2 Modeled Geometries

This sub-section presents the geometry objects created using the geometry module of the MDO tool.

The script used to created the OML, aerodynamic and structural meshes is referred in Sub-section3.6.3.

Figure 4.3 shows the geometry objects created. For each case study, an OML and an aerodynam-

ic/structural mesh are presented. As observable, the aerodynamic meshes are almost perfectly coin-

cident with the OML of the desired wing geometries. Also, the structural models of the wing boxes fit

perfectly in the OMLs. So, the use of pySpline in combination with pyGeo has proven to provide quality

aerodynamic geometry objects and the use of pyLayout also assured well suited internal structural lay-

outs. These results show that the CAD-free approach is a valid method for the generation of geometry

objects for high-fidelity MDO.

4.3 Aerodynamics

The results obtained with the aerodynamics module of the MDO tool are presented in this section.

First, to attest these results, a verification and validation study of the Tripan code is made. Then, the

aerodynamic analysis and optimization results for the case studies are presented.

4.3.1 Verification and Validation of the Aerodynamic Analysis

Validation of SUmb Flow Solver To verify the fidelity of the aerodynamics simulation code, it is impor-

tant to do a validation. As it was presented in Chapter 3, the code used for the aerodynamics analysis

is Tripan. Doing an experimentation on a real or model wing for the validation of this code was a nearly

impossible task due to the time and resources required for the construction, instrumentation and run of

tests. Thus, the methodology chosen was to perform a verification of Tripan with another code that could

be validated using experimental data available. The work-flow for this task is presented in Fig. 4.2.

Figure 4.2: Task scheme for the verification of Tripan code.

The first task was to validate SUmb so that it may be used for the Tripan verification. To fulfill this, a

classical study of three dimensional turbulent transonic flows was chosen, the rebuilding of the ONERA

M6 wing wind tunnel experiments (Schmitt and Charpin, 1979). In this, the flow over the ONERA M6

wing is studied by testing it in a wind tunnel at transonic Mach numbers (0.7, 0.84, 0.88, 0.92) and

various angles-of-attack, up to 6 degrees. The Reynolds numbers were about 12 million based on the

mean aerodynamic chord. Records were taken of the upper and lower pressures for seven wing sections

along the span, as shown in Fig. 4.4. To rebuild the wind tunnel tests, the flow was numerically build

using SUmb. The flow conditions for the simulation were set to match the experiment values of Mach
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(a) Aerodynamic mesh for the semi-tapered wing geometry. (b) Aerodynamic mesh for the L-23 wing geometry.

(c) Structural mesh of the semi-tapered wing geometry. (d) Structural mesh of the L-23 wing geometry.

(e) Aero-structural combination for the semi-tapered wing ge-
ometry.

(f) Aero-structural combination for the L-23 wing geometry.

Figure 4.3: Objects generated with the geometry module.
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Figure 4.4: ONERA M6 wing in the wind tunnel (Schmitt and Charpin, 1979).

number, Reynolds number and angle-of-attack. Table 4.2 summarizes the experiment conditions and

the corresponding simulation conditions.

Table 4.2: Free-stream conditions.
Design Parameter Experimental Simulation

Mach 0.8395 0.8395
Reynolds 11.72E+06 -
Angle of Attack 3.06 3.06 ◦

Pressure - 315980 Pa
Temperature - 255.6 K
Density - 1.367 Kg/m3

The ONERA M6 wing is a swept, semi-span wing with no twist. It uses a symmetric airfoil. The

semi-section of the airfoil is the ONERA D section (Schmitt and Charpin, 1979). The properties of the

geometric layout of the wing are summarized in Table 4.3.

Table 4.3: ONERA M6 wing layout data (Schmitt and Charpin, 1979).
Design Parameter

Span 1.1963 m
Mean Aerodynamic Chord 0.64607 m
Aspect ratio 3.8
Taper Ratio 0.562
Leading-edge Sweep 30 ◦

Trailing-edge Sweep 15.8 ◦

To improve this study, a cross comparison of the obtained results was done against the WIND code

results from NASA (Slater, 2008). Figure 4.5 presents the views of the computational domains used

in each code. Also a view of the SUmb mesh is presented in the Fig. 4.6. Through the view of wall

pressures in Fig. 4.7 or the Mach number contour in Fig. 4.7, it is possible to identify where is the

localization of the forming transonic shock. A comparison of the SUmb results with the experimental

data and with the numerical WIND data is presented in the six sectional Cp graphics of Fig. 4.8. On note

for the fact that the Cp is negative for pressures less than free-stream, which occurs on the top of the

wing. Thus, Cp values are plotted to indicate that the lower pressure region on the top of the wing (top
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(a) Surfaces, zones and grids for WIND (Slater, 2008). (b) Surfaces, zones and grids for SUmb.

Figure 4.5: Comparison between surfaces, zones and grids for SUmb validation.

Figure 4.6: ONERA M6 mesh for SUmb validation.

line of graphics) and the high pressure region is on the bottom of the wing (bottom line of graphics).

From the results, it is clear that the two numerical solvers are very close to one another. In some

cases, like sections (d) and (e), it is even possible to see localizations where SUmb tends to be slightly

closer to the Cp values observed in the experimental data. Overall, its clear that the agreement between

numerical solvers is good. Compared to the experimental data, the flow structure computed by the two

numerical solvers seems to be not sharp enough in the shock resolution. One reason for that may be

that the aerodynamic meshes bring some level of dissipation. Also a note for the wing tip section where

at the trailing edge, the results were less accurate, probably due to the increased effect of vorticity.

However, for the validation purpose it is meant for, i.e., to validate an incompressible, inviscid flow solver

(Tripan), the good agreement between SUmb, WIND and experimental data was considered enough.
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(a) Flow pressure coefficient zones on the symmetry plane and
wing surfaces.

(b) Flow Mach zones on the symmetry plane and wing surfaces

Figure 4.7: Cp and Mach zones obtained with SUmb.

Verification of Tripan Flow Solver The next step was the verification of Tripan using SUmb. As

mentioned in Sub-section 3.7.2, this solver is for incompressible, inviscid external flows. So to verify

this code, a flow that met these requirements was used. Its properties, based on the 1976 standard

atmosphere up to 230,000 ft, are summarized in Table 4.4.

Table 4.4: Free-stream conditions for Tripan verification.
Design Parameter

Mach 0.2
Angle of Attack 0 ◦

Pressure 315980 Pa
Temperature 255.6 K
Density 1.367 Kg/m3

Speed of Sound 322 m/s

The case study used to perform the comparison analysis was the ONERA M6 wing. The grid used

for SUmb was the same as in its validation, however for Tripan, a highly refined mesh was created with

the geometry module. These meshes are presented in Fig. 4.9. The script used to run the simulation

with Tripan was similar to the presented in Section 3.7. To illustrate the flow around the wing, the Cp

distribution over the wing surface, for the two codes, is shown in Fig. 4.10. Figure 4.11 presents Cp

distribution for three sections whose locations are at 20%, 50% and 85% of the wing span. Results

show that the two numerical flow solvers are very close to one another. Only in the trailing-edge, a

slightly difference is noted. In sum, the good agreement between solvers verify that Tripan provides

accurate results when simulating incompressible inviscid flows.
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(a) Cp values for the section at z/span = 0.2 (b) Cp values for the section at z/span = 0.44

(c) Cp values for the section at z/span = 0.65 (d) Cp values for the section at z/span = 0.8

(e) Cp values for the section at z/span = 0.95 (f) Cp values for the section at z/span = 0.99

Figure 4.8: Comparison between the results for Cp with SUmb, WIND and experimental data. (The
accuracy of the Cp measurements for the experimental data was determined to be +/- 0.02.)
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(a) Surfaces grids for Tripan. (b) Surfaces grids for SUmb.

Figure 4.9: Comparison between the surfaces grids for Tripan and SUmb.

(a) Results for Cp with Tripan. (b) Results for Cp with SUmb.

Figure 4.10: Comparison between the surface results for Cp with SUmb and Tripan.

4.3.2 Aerodynamic Analysis

Once verified the code used in the aerodynamics module, aerodynamic analysis on the case studies

were run. This section presents and discuss the results from that analysis. The geometry objects used

in this analysis were those presented in Sub-section 4.2.1. As an academic exercise, there are no

imposing requirements for the simulations performed. However, as the case studies are sailplane wings,

the conditions chosen were those from a cross-country soaring flight at 1000m, with a velocity of 25m/s.

Table 4.5 summarizes the free-stream conditions defined in the simulation, based on the 1976 standard

atmosphere up to 230,000 ft.
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(a) Comparison between the results for Cp for a section at 20%
of wing span.

(b) Comparison between the results for Cp for a section at 50%
of wing span.

(c) Comparison between the results for Cp for a section at 85%
of wing span.

Figure 4.11: Comparison between the sectional results for Cp with SUmb and Tripan.

Table 4.5: Free-stream conditions for the aerodynamic analysis.
Design Parameter

Mach 0.074
Angle of Attack 3 ◦

Density 1.112 Kg/m3

Speed of Sound 336 m/s
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Convergence Study Sub-section 4.2.2 presented the geometry objects created. However, the exact

number of panels used for the discretization the aerodynamic mesh was not presented. The reason was

because a convergence study was performed to determine the proper number of panels. This section

presents the results of the convergence study for the aerodynamic mesh.

The free-stream conditions are kept constant and equal to those presented in Table 4.5. The case

study geometry chosen was the simplest of the two cases, the semi-tapered wing. Using this case study

as reference, a range of Tripan objects was created from a simple mesh with 150 panels, to a highly

refined mesh with 12,150 panels. Then, an aerodynamic analysis was performed on each one of these

meshes. To assess the results obtained, a relative error evaluation was performed. The absolute error

is a measure of the deviation from the value calculated for a real value. It can be calculated from the

computed value, x and the exact value, X, using

∆ = x−X. (4.1)

However, in some cases, the difference between the value measured and the real value may be imper-

ceptible. So another usual method of measuring the accuracy is to compute the relative error. This error

allows a better assessment of the accuracy and is calculated from the absolute value of the absolute

error divided by the exact value. Mathematically, it can be represented as

δ =
|∆|
X
, (4.2)

where the |∆|is the absolute error of x and X is the exact value. In this study, the real value of the

aerodynamic quantities is not known, so the value computed for the most refined mesh is used as

the best approximation to the real value. Thus, from the various aerodynamic analysis performed, a

graphic with the convergence of the results was compiled and presented in Fig. 4.12. As Tripan uses a

Figure 4.12: Results for the convergence study on the mesh resolution with Tripan.

panel code, the error for the lift coefficient converges much faster that the drag coefficient. Although the

computed drag value is not accurate, as the code can not compute the total drag, it was important to
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assess its convergence. Also, the time required to perform the aerodynamic analysis was measured. It is

observable that time grows exponentially with the number of panels used. From the results seen, a panel

number near 7,000, was considered to give the best relation between accuracy error (approximately

10%) and time to perform the analysis (approximately two minutes).

Aerodynamic Analysis of the Case Studies With every parameter defined, the aerodynamics mod-

ule of the MDO tool was used to perform the aerodynamic analysis on the case studies. Figures 4.13

and 4.14 summarize the results obtained. For each case study, Cp distribution over the wing, Cp over

four sections along the wing semi-span and lift distribution over the wing are presented.

(a) Results for Cp distribution over the wing. (b) Results for lift distribution over the wing.

(c) Results for Cp distribution over four sections.

Figure 4.13: Aerodynamic analysis results for the semi-tapered sailplane wing.
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(a) Results for Cp distribution over the wing. (b) Results for lift distribution over the wing.

(c) Results for Cp distribution over four sections.

Figure 4.14: Aerodynamic analysis results for the L-23 sailplane wing.

As expected, although the free-stream conditions are the same, the results change with each case

study. From the observation of the normalized lift distribution over the semi-span of the wing, one can

see that the semi-tapered wing shows the nearest to an optimal distribution, approaching the elliptical

distribution. On the other hand, the L-23 wing shows a near constant slope until 75% of the span. Then

it rapidly increases towards the tip. These results are interesting as they show that the semi-tapered

wing has a lift distribution closest to the optimum than the L-23. That could be expected since the

first configures an academic case study. Also the taper ratio used was 0.4, which, from theory, is the

optimal ratio for incompressible velocity ranges. However, the lift distribution of the L-23 wing was not

as expected. As a real wing with proven performance, it was expected a more elliptical distribution. Yet,

if one accounts for the fact that, although tapered, the L-23 wing also has a constant twist and sweep
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angles, then the results seem more comprehensive. Also, the fact that this is a real wing geometry, that

was already optimized by the manufacturer, taking into account more than aerodynamics, can justify

these results. The Cp distribution over the wing shows clearly that some other factors were taken into

account. The L-23 has more inboard lift, which results in a weaker bending moment at the wing root.

This fact allowed the use of lighter and less strong structural components, which consequently reduced

the total weight of the wing structure. As for the Cp distributions over wing sections, results also show

some interesting differences. The semi-tapered wing presents high pressure gradients, between the

upper and lower surfaces of the wing, after the leading edge zone. These gradually progress towards

a negative value at the trailing edge. On the contrary, the Cp distributions over the L-23 wing sections

show higher gradients through the major portion of the section. The increase and decrease of pressure

on the upper and lower surfaces are also smoother. These differences come from the airfoils used for

each case. In the semi-tapered, a NACA 2412 airfoil is used for all the wing and in the L-23 the airfoil

morphs from a NACA 632A-615 at root to NACA 632A-612 at tip (both laminar airfoils). The differences

in the values of the gradients are mostly due to the difference in the thickness of the airfoils. Also, the

differences in the evolution of the Cp values at the upper and lower surfaces come from the differences

slopes of the surface geometries. It is clear that the airfoils in the L-23 wing have been chosen to provide

better results in gliding performance. In sum, for the same flow conditions, the L-23 wing shows higher

Cp gradients over the wing than the semi-tapered, therefore generating higher lift values. From an MDO

point of view, using a L-23 wing like design can make a better initial design point, as it already provides

better results.

A note about the simulation process is that for the L-23 wing, near the leading-edge of some sections,

there are some observable deviations that, though subtle, can denounce some numerical errors. This

will be remarked for future works. Also, it is notable that the most time consuming analysis only took 4

minutes to perform.

In summary, the aerodynamic module provided good results performing aerodynamic analysis over

the case studies, denoting the differences between the choices of the initial design properties for a

sailplane wing design. These are important as they can reduce the time and effort in the initial prelimi-

nary stages of design.

4.3.3 Aerodynamic Optimization

One of the main objectives in sailplane performance is the maximization of the L/D ratio, to maximize

the range of the flight. Naturally, the next step in the exercises run with the established MDO tool was an

aerodynamic optimization of the case studies. The initial flight condition for the optimization is the same

as that of the aerodynamic analysis, presented in Table 4.5. The objective function was the L/D ratio. As

an academic exercise, there were no imposing constraints. However, some requirements were created

to test the optimization process. So, in the two case studies, a lift constraint was applied. That constraint

was set through CL to equilibrate the weight of the sailplane (WSailplane). With the lift constrained, the

range optimization problem is turned into a drag minimization problem. So, using the initial conditions
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as stated and imposing a minimum lift as constrain, the optimizer had to adjust the geometry variables

so that the required CL is achieved with the minimum drag possible. The geometric design variables

chosen are four twist angles (θ(z)) and four chord scale factors (c(z)). The span is fixed to maximum of

15 m in the semi-tapered wing, as required by the standard sailplane class, and to 16.2 m in the L-23

wing. So the changes in section chord will reflect in the wing areas and, therefore, in the aspect ratio

and CL value. Mathematically, the optimization problem is represented as

Minimize : CD,

s.t.: L = WSailplane,

w.r.t.: α, θ(z/b), c(z/b), z/b = 0.3, 0.6, 0.9, 1.

(4.3)

• Case Study : Semi-Tapered Wing The semi-tapered standard class sailplane wing configures a

simple wing geometry. For this reason, its optimization is a study of much interest. If reaching an

optimized wing design is the goal in the preliminary stages of the aircraft design, then this case study

configures the good solid initial geometry. The results should confirm the theories and the reasons for

the implementation of more complex geometries like tapered or swept wings. A summary of the initial

and final parameters of the aerodynamic optimization for the present case study is shown in Table 4.6.

Table 4.6: Aerodynamic optimization parameters for the semi-tapered wing.
Constraint Initial Value Optimized Value Lower Bound Upper Bound

CL 0.54 1.188 1.188 1.188

Parameter Initial Value Optimized Value Lower Bound Upper Bound

Angle of Attack 3 5 -4 7 ◦

Twist (z/b=30%) 0 5 -10 10 ◦

Twist (z/b=60%) 0 5 -10 10 ◦

Twist (z/b=90%) 0 5 -10 10 ◦

Twist Tip 0 -1.45 -10 10 ◦

Chord Scale (z/b=30%) 1 1 0.5 2
Chord Scale (z/b=60%) 1 1.19 0.5 2
Chord Scale (z/b=90%) 1 0.99 0.5 2
Chord Tip 1 0.84 0.5 2

CD 0.00157 0.00763
Time 0 6040 seconds

The results verify that, although the initial CL was much lower than the requested value, the constraint

was fulfilled. As consequence of the lower initial CL, the angle of attack had to be increased which result

in the initial increase of CD verified in Fig. 4.17(a). The values of twist and scale changed as well.

The twist group of variables show that once reached a sufficient angle of attack, the optimizer chose to

increase the twist angle of the sections. On the contrary, the closest section to the wing tip was changed

to have negative twist. By increasing twist, the local angle of attack was also increased, allowing the

wing to generate more lift. As for the scale group of variables, it shows a decrease as the sections

approach the wing tip. That corresponds to inserting even more tapper to the already initially semi-

tapered geometry. From an aerodynamic perspective, that was expected since introduction of taper
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ratio leads to a lift distribution closest to the elliptical, therefore reducing the wing drag. Also as the span

is fixed, reducing the wing chord, reduces the overall wing area, which increases the aspect ratio of the

wing. This set of results shows that the optimizer tried to reduce drag as much as possible. Yet, the final

CD is much higher than the initial CD. This shows a trade-off that had to be made by the optimizer in

order to fulfill the CL constraint. For a better visualization of the aerodynamic results, Fig. 4.15 shows

the lift and Cp distribution over the wing surface and some sectional data of the optimized wing.

(a) Results for Cp distribution over the wing. (b) Results for lift distribution over the wing.

(c) Results for Cp distribution over four sections.

Figure 4.15: Aerodynamic optimization results for the semi-tapered sailplane wing.

Comparing the optimization results to the analysis results, it is notable the difference in the lift distri-

butions and Cp values. The lift distribution evidents the high taper ratio and very small chord at the tip.

That is the reason for the peak around 50% of the span. Also, the sectional data reveals that the angle of

attack is much higher than the initial. In sum, the presented results show that, to fulfill the CL constraint,

optimizer had to make changes to the geometry of the wing that had repercussions in its aerodynamic
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performance. Yet, the optimization was performed successfully, since drag was reduced to the minimum

possible when the wing is generating the requested lift, as shown by a 2.54% decrease in the CD value

of the final optimized design, when, compared to the first major iteration design (assumed as the first

design to respect the CL constraint). Figure 4.17(a) shows the history of the optimization objective with

major iterations.

• Case Study : L-23 Super Blanik Wing This case study differs from the above as the initial geometry

for the optimization is actually a real wing of a sailplane. Although this type of initial geometry would

not be usually used as an initial design point for the preliminary design stage, it configures as a good

test for the MDO tool. In this exercise, the objective is to change a real wing geometry and see how its

performance can be or not to be improved, as fulfilling the defined constraints. It is important not to forget

that, as this is a real wing with proven results ( as the L-23 Super Blanik showed in its history), its design

is already complex and optimized for the manufacturer’s requirements. Comparing to the previous case

study, the optimization of the L-23 wing should be faster or lead to unexpected results. A note for the fact

that the initial twist variables, although present a null value in the optimization problem, they are in fact

negative, as the L-23 wing has a twist angle of −3◦ . So, the final optimized twist values should be added

to the initial real value, to calculate the real optimized twist values. The summary of the parameters of

the aerodynamic optimization of the L-23 sailplane wing is presented in Table 4.7.

Table 4.7: Aerodynamic optimization parameters for the L-23 wing.
Constraint Initial Value Optimized Value Lower Bound Upper Bound

CL 0.981 0.779 0.779 0.779

Parameter Initial Value Optimized Value Lower Bound Upper Bound

Angle of Attack 3 3.15 -4 7 ◦

Twist (z/b=30%) 0 0 -10 10 ◦

Twist (z/b=60%) 0 5 -10 10 ◦

Twist (z/b=90%) 0 5 -10 10 ◦

Twist Tip 0 -5 -10 10 ◦

Chord Scale (z/b=30%) 1 1 0.5 2
Chord Scale (z/b=60%) 1 0.5 0.5 2
Chord Scale (z/b=90%) 1 0.5 0.5 2
Chord Tip 1 0.5 0.5 2

CD 0.0143 0.00997
Time 0 12680 seconds

The results from the optimization of the model of the real L-23 wing show some differences from the

first case study. The most notorious is the angle of attack, which in this case study was decreased to a

value little lower than the initial. This can be explained as the initial geometry and the airfoil of its sections

provide better aerodynamic performance and therefore produce a CL value over the CL constraint. This

was stated in the aerodynamic analysis to this case study. Thus, not to increase lift, the angle of attack

was briefly maintained. Despite this difference, the other optimized variables confirm the trend shown by

the previous case study. The taper ratio is increased from the root to the tip. This resulted in a smaller

wing area and bigger aspect ratio. These changes to the taper ratio are also reflected in the decrease
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of CD, that is verified against the initial value. Although the section at tip shows a negative twist of -5◦ ,

all the other sections show positive twist, confirming that the optimizer introduced some wash-in to the

wing (positive twist), to nullify the initial negative twist of the L-23 wing. Unlike what happened in the

semi-tapered case study, in this one the CL constraint was fulfilled without a major change in the angle of

attack. This allowed space for the optimizer to make small refinements, like the twist angles, to improve

the wing aerodynamic performance. As with the first case study, the lift and Cp distribution over the wing

surface and some sectional data of the optimized wing are illustrated in Fig.4.16.

(a) Results for Cp distribution over the wing. (b) Results for lift distribution over the wing.

(c) Results for Cp distribution over four sections.

Figure 4.16: Aerodynamic optimization results for the L-23 sailplane wing.

From the top view, it is possible to observe that the initial negative sweep angle is negated by the

change in the scale of the last sections of the wing, from approximately 35% span. This change affects

the incident velocity of that airflow which, for instance, makes the next sections (towards the tip) generate

more lift. The optimized wing lift distribution shows some differences from the initial, being closest to the
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optimum (elliptical) distribution. The overall results show that using the L-23 wing as the stating point for

the optimization allowed more space to the optimizer to enhance the aerodynamic performance of the

wing geometry. TheCL constraint was easily achieved and then the remaining parameters were modified

by the optimizer to improve the wing performance. Ultimately, the optimization objective was achieved, as

drag was reduced to a even lower value than the initial, while the overall aerodynamic performance was

increased. As shown in the convergence history of the optimization objective, presented in Fig.4.17(b),

the CD value decreased 30.6% in the final optimized design.

(a) Convergence history for the semi-tapered case study. (b) Convergence history for the L-23 case study.

Figure 4.17: Convergence history for the aerodynamic optimization of the case studies.

This concludes Section 4.3, dedicated to the presentation of the results obtained with the MDO

framework modules for the analysis and optimization in the discipline of Aerodynamics.

4.4 Structures

This section shows the results obtained with the structures module of the MDO tool. It documents the

structural analysis of the case studies presented at Section 4.2.

Similar to the aerodynamic analysis, there were no imposing requirements for the structural simula-

tions performed. Thus, the conditions chosen are merely academic. The exercise performed consisted

in the study of the stresses and deformations of the wing-box structures of the case studies, when

subjected to a single vertical wing tip nodal load of 500 N .

The mechanical properties used for all the wing structures were based on Aluminum 7075, a refer-

ence in the aeronautic industry, whose properties are listed in Table 4.8.

The finite-elements used for the structural mesh are based on mixed interpolation of tensorial com-

ponents approach (MITC) shell elements (Chapelle et al., 2003) and the internal structural layouts of the

case studies were defined in Sub-section 4.2.1. The only information needed to define all the parameters

for the structural models of the case study wings is the level of mesh refinement.
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Table 4.8: Mechanical properties of Aluminum 7075.
Mechanical properties

Density 2810 Kg/m3

Young’s Modulus 71.7 GPa
Poisson’s Ratio 0.33
Yield Strength 434 MPa

4.4.1 Convergence Study

The first step to assess the results of the structural analysis is to determine how many elements are

needed to have a reliable structural mesh discretization. Therefore, a convergence study for the struc-

tural mesh was performed and the results are documented in this section.

The number of structural components and the layout chosen for this study were the same as pre-

sented in Sub-section 4.2.1 for the case study of the semi-tapered wing. The exercise performed in the

study was the same as the one used for the structural analysis, described in the beginning of Section

4.4. So, a single load was applied to the node located in the lower middle zone of the rib component

nearest the wing tip. An illustration of the process is shown in Fig. 4.18.

Figure 4.18: Example of a point load applied to the middle node of the wing-box tip (rib component).

Using the stated exercise, the result studied was the vertical displacement. This was computed for a

set of structural meshes, ranging from 6,000 to 22,000 elements. Figure 4.19 shows the results of the

convergence study.

To assess the accuracy, the relative error was used. As the real value of the deformation was

unknown, a reference value given by a mesh refined with 22,000 elements was used. As expected,

a convergence in the value for the maximum vertical deformation in the structure is verified as the

number of elements is increased. Also the time required to perform the analysis was measured. As

observable from Fig. 4.19, the time grows almost linearly with the number of elements used. From the

results seen, a total number of elements above 7,500 was considered to give the best relation between

accuracy error (approximately 10%) and time to perform the analysis (approximately 13 seconds). This

number correspond to a span, chord and vertical spacing division of 9, 12 and 10 elements, respectively.
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Figure 4.19: Results for the convergence study between accuracy and element number with TACS.

4.4.2 Structural Analysis

Once defined the structure of the mesh to use with TACS, all parameters needed to perform structural

analysis to the wing-boxes of the case studies were defined. Using the methodology previously de-

scribed, the structural analysis of the case studies were performed. Figures 4.20 and 4.21 summarize

the results for each case study.

(a) Results for deformation of the wing structural layout (outlined
is the undisplaced structure).

(b) Results for the Von Mises stress of the wing structural layout.

Figure 4.20: Structural analysis results for the semi-tapered sailplane wing.

The results show that the two structures have different stiffness, being the L-23 wing-box the stronger.

That was already expected since the structure layouts of the two wing-boxes are different. Although both

have the same number of spars, the number of ribs is higher in the L-23 wing-box. Also the span of the

L-23 wing-box is greater than the one of the semi-tapered wing-box. The former fact should result in

a higher deformation of the L-23 wing-box. Yet, that was not verified proving that the difference in the

number of ribs is more important for the structure stiffness than its dimension. That was probably a

reason why the manufacturer of the L-23 designed its wing-box with such number of rib components.

The other results shown present the Von Mises stresses in the structure components. These give
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(a) Results for deformation of the wing structural layout (outlined
is the undisplaced structure).

(b) Results for the Von Mises stress of the wing structural layout.

Figure 4.21: Structural analysis results for the L-23 sailplane wing.

information about how much effort are the components sustaining. The results show important differ-

ences between the structures of the two case studies. In the semi-tapered wing, the higher stresses are

concentrated near the middle zone of the wing root skin panels. Then, they rapidly decrease towards

the wing-box tip zone. On the other hand, in the L-23 wing-box, the values of the Von Mises stresses are

much lower. The maximum values are verified in the lower skin panels at the wing-box root. So, sweep,

twist and dihedral angles applied to the wing box increase the effort made in the bottom skin panels near

the root. The higher height of the L-23 wing-box also allows the observation of zones that are sustaining

higher stresses within the ribs. From a structural perspective, the structure of the L-23 showed better

results, thus, a wing-box structure with higher height and higher number of ribs presents a better starting

point for an MDO of a sailplane wing. In summary, the structures module provided consistent results for

the exercised structural analysis over the two case studies. These highlighted the differences between

the structure layouts of wing-boxes, mainly due to the difference in the number of rib components. Al-

though simple, these observations are important in the preliminary design stage, as they can allow the

early choice of the better overall structure layout for the main components of the sailplane wing. Then,

in later design stages, refinements to the structure can be made with less effort.

4.5 Multi-Disciplinary Analysis and Optimization

The aero-structural optimization results for the presented case studies are documented in this section.

The previous steps were performed and documented in order to assess the performance of the disci-

plinary modules of the MDO tool. However, the objective of the established MDO tool was to run the

aero-structural optimization of the case studies. So a first sub-section presents a multi-disciplinar anal-

ysis on the case studies. The results obtained were used as reference for the initial design geometries

for the MDO. Then, a second sub-section presents the aero-structural optimization of the case studies.

The results from this optimization are discussed and the important differences and trade-offs in relation
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to the results, either the MDA performed and the aerodynamic optimization, are highlighted.

4.5.1 Aero-Structural Analysis

This section focuses on the results of the aero-structural analysis of the initial geometries and structures

of the two case studies. The new aspect of this exercise is that the transfer scheme referred in Section

3.9 was employed within the MDO tool, to pass the loads from the aerodynamic mesh to the structural

model and the displacement from the former to the first.

The objects studied were those used in the previous disciplinary exercises. The conditions used to

simulate the initial flight condition was the same used for the aerodynamic analysis of Sub-section 4.3.2.

As for the structural model, the layouts and specifications used, were already presented in Section 4.2

and Section 4.4. To recap the aerodynamic and structural parameters of the initial case studies, a

summary is presented in Table 4.9. Using the methodology presented in Chapter 3, an aero-structural

analysis was performed with the established MDO tool. Figures 4.22 and 4.23 summarize the results

obtained for the two case studies. For each, the pressure coefficient distribution over the wing, the lift

distribution over the span, the deformation of the wing-box and the Von Mises stresses are presented.

The results of the aero-structural analysis are consistent with the disciplinary analysis. With the stated

Table 4.9: Overall parameters for the aero-structural analysis.
Aerodynamic Parameters Value

Mach 0.0743
Angle of Attack 3 ◦

Density 1.1117 Kg/m3

Speed of Sound 336.4346 m/s

Structural Parameters Value

Material Density 2810 Kg/m3

Material Young Module 71.7 GPa
Material Poisson Ratio 0.33
Material Correlation Factor 0.8333
Material Yield Strength 434 MPa
Top Skin Thickness 5 mm
Bottom Skin Thickness 5 mm
Spar Thickness 10 mm
Rib Thickness 8 mm

initial conditions, the wing that generates more lift is clearly the L-23 sailplane wing. That was expected

from the results verified in the aerodynamic analysis of this case study. Also, the differences in the

airfoil shapes were once again evidenced, with the L-23 laminar airfoils having smother slopes in the

Cp evolution and higher Cp gradients between surfaces. In the lift distribution results, the trend was

the same as in the aerodynamic analysis, with the semi-tapered wing showing the closest to optimal

distribution.

In relation to the structural results, some differences were noted, with the L-23 wing-box showing

lightly higher maximum Von Mises stresses than the semi-tapered wing-box, in the lower skin panels
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near the wing-box root. Although showing more deformation, the structure in the semi-tapered wing is

sustaining less effort. On one hand, the L-23 higher stiffness guarantees that the wing aerodynamic

shape is maintained in flight condition, providing better aerodynamic performance. On the other hand, it

shows less flexibility than the semi-tapered, thus requiring that its components support higher stresses.

In the simulation, it is important to refer that the loads and displacements seem to have been suc-

cessfully transfered between the aerodynamic and structural meshes, as it was possible to verify that

the deformation of the wing-boxes was consistent with the deformation of the OML of the wing surfaces.

Overall, the results corroborate the idea that some compromises where made in the design of the L-

23 wing, between aerodynamic performance and structural performance. Being the semi-tapered case

study a simpler initial geometry.

4.5.2 Aero-Structural Optimization

The last exercise performed in the scope of this thesis was an aero-structural optimization. This was also

its main objective. So the other exercises were steps towards this objective, beginning with the exercise

of generating the case study geometries, with the geometry module, to the exercise of performing an

aero-structural analysis using the disciplinary modules of the established MDO tool. Similar to what was

described in the previous sub-section, for the MDA, the parameters used to simulate the initial flight

condition were the same used for the aerodynamic analysis of Sub-section 4.3.2. As for the structural

model, the layouts and specifications used were already presented in Section 4.2 and Section 4.4. The

methodology was also discussed in Chapter 3. So, the MDO tool established in this thesis was used to

perform an aero-structural optimization on the sailplane wing of the case studies.

In addition to the maximization of the L/D ratio, to maximize the range of flight, the weight mini-

mization is one of the main objectives in sailplane performance enhancement. The weight reduction

can make the flight last longer or, in other words, maximize the flight endurance. So, the established

optimization problem, used to perform the MDO on the case studies, was a drag minimization with a

weight constraint, enforcing the weight reduction. As this was an academic study, the requirements for

the optimization study were not imposed, so two types of constraints were set. An aerodynamic con-

straint set to the L/W ratio and a set of structural constraints for the maximum Von Mises stresses.

The aerodynamic constraint implied that the lift generated by the wing had to be equal to the sailplane

weight. This was not fixed, since reducing the weight of the wing structure was one of the objectives of

the optimization. So a percentage of the initial weight of the sailplane was fixed, allowing the remaining

percentage to change according to the wing structures weight. The Von Mises stress constraints were

done indirectly through KS function constraints. KS functions are used to aggregate all stresses into a

single constraint, for the skin, spar and rib group elements. These were set to the range of 0.3 to 2,

which can be interpreted as the minimum safety before failure. So the variation of the structural weight

was possible due to the variations on the component thicknesses, (structural) variables in the optimiza-

tion problem and the variation of lift was possible due to the variation of the aerodynamic parameters:

angle of attack, twist and scale.
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(a) Results for lift distribution over the wing. (b) Results for Cp distribution over the wing.

(c) Results for the Von Mises stress of the wing structural layout. (d) Results for deformation of the wing structural layout (outlined
is the undisplaced structure).

(e) Results for Cp distribution over four sections.

Figure 4.22: Aero-structural analysis results for the semi-tapered sailplane wing.
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(a) Results for lift distribution over the wing. (b) Results for Cp distribution over the wing.

(c) Results for the Von Mises stress of the wing structural layout. (d) Results for deformation of the wing structural layout (outlined
is the undisplaced structure).

(e) Results for Cp distribution over four sections.

Figure 4.23: Aero-structural analysis results for the L-23 sailplane wing.
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Mathematically, the aero-structural optimization problem is represented as

Minimize : CD,

s.t.: L = WSailplane,

0.3 < KS < 2,

w.r.t.: α, θ(z/b), c(z/b), z/b = 0.3, 0.6, 0.9, 1,

T op Skin, Bottom Skin, Spar, Rib Thicknesses.

(4.4)

As the script for the aero-structural optimization is extensive, it is remitted to Appendix D. The next topics

within this sub-section will address the results of each case study.

• Case Study : Semi-tapered Wing To summarize the results of the aero-structural optimization, a

comparison of the initial and optimized design variables and constraints is given in Table 4.10. As the

number of thickness variables was too long, a median was made for each group of components.

Table 4.10: Aero-structural optimization parameters for the semi-tapered wing.

Constraint Initial Value Optimized Value Lower Bound Upper Bound

Total Mass 430 382.3 0 525 Kg
Vertical resultant force - 0 0 0.3 N
KS top skin group - 0.345 0.3 2
KS bottom skin group - 0.436 0.3 2
KS spar group - 0.458 0.3 2
KS rib group - 2 0 2

Parameter Initial Value Optimized Value Lower Bound Upper Bound

Angle of Attack 3 7 -4 7 ◦

Twist (z/b=30%) 0 5 -10 10 ◦

Twist (z/b=60%) 0 5 -10 10 ◦

Twist (z/b=90%) 0 5 -10 10 ◦

Twist Tip 0 5 -10 10 ◦

Chord Scale (z/b=30%) 1 0.769 0.5 2
Chord Scale (z/b=60%) 1 0.769 0.5 2
Chord Scale (z/b=90%) 1 0.769 0.5 2
Chord Tip 1 0.769 0.5 2

Median Top Skin Thickness 5 1.5 1.5 10 mm
Median Bottom Skin Thickness 5 1.5 1.5 10 mm
Median Spar Thickness 10 5 5 10 mm
Median Rib Thickness 8 5 1.5 10 mm

CD 0.00158 0.00515
Time 0 32827 seconds

The results of the aero-structural optimization of the semi-tapered case study show that its objective

was achieved, which was the weight reduction of the wing. Looking to the optimization constraints, all

of them have been fulfilled, so a feasible design was generated in the optimization. The aerodynamic

parameters show some important aspects of the optimization. First, the optimized angle of attack is

equal to the defined upper bound. This shows that the optimizer had to increase the angle of attack to
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its maximum to generate an higher value for the lift. Therefore, the drag was also increased significantly

in the starting iterations of the optimization, as visible in Fig.4.24(f). Also, when that limit was reached,

the optimizer increased the twist angle in all the sections of the wing, so a higher local angle of attack

could be reached and, therefore, more lift could be generated. The scale of the sections along the

span was also decreased, introducing a higher taper ratio to the wing. Yet, the scale values were

not lowered to the minimum allowed, as was seen in the aerodynamic optimization. This should be

expected since that would probably decrease the drag of the wing. However, as the objective was weight

reduction, some trade-offs had to be made between the aerodynamic and structural performance. This

fact explains why the optimized drag value was higher than the initial. Also, decreasing the chord of

the wing sections to lower values, would have implications in the structural stiffness of its wing box

and, therefore, in the values of the KS constraints. The structural parameters are consistent with the

constraint values. The median thickness of the top skin, bottom skin and spar groups were lowered to

the minimum possible, therefore reducing the weight of the wing-box structure from the first iterations, as

shown in Fig.4.24(f). Therefore, the value of their KS functions was also lowered. The optimizer chosen

to lower these thicknesses so that the lift, generated by the wing surface, could balance the weight of

the aircraft. However, the median rib thickness was not lowered to its minimum possible. This justifies

the higher value of the KS function in this group of components. This indicates that this value could not

be lowered due to the structural constraints. For example, reducing the rib thickness could increase the

stresses that had to be sustained by other structural components, which, for instance, would decrease

the value of their KS functions to a point where they would not be within the constraint bounds. So a

trade-off has made by the optimizer between lowering the structural weight and fulfilling the structural

constraints. Figure 4.24 shows some relevant results of the optimized wing geometry. Looking to the

figures, one can see the higher deformation of the wing-box. Also the Von Mises stresses comproved

that a higher effort is being made by the structural components, with the root skin panels of the upper

surface showing the higher stresses. These results are consistent with the minimum KS function value,

which corresponds to the top skin group. The Cp distributions over the presented sections and the lift

distribution over the wing comproved the higher angle of attack present in the optimized parameters.

Yet, the optimization problem was successfully accomplished, as the objective of reducing the weight

and drag of the sailplane was achieved while fulfilling all the structural and aerodynamic constraints.

Using the MDO technique a final optimized design, respecting all the constraints, was obtained with an

increase of 225% in the CD and a decrease of 11% in the total weight.

• Case study : L-23 Super Blanik Wing As in the first case study, a summary of the results for the

aero-structural optimization of the L-23 case study is given in Table 4.11. As with the semi-tapered

case study, the results of the aero-structural optimization of the L-23 case study show that its objective

was achieved, which was the weight reduction of the wing. Looking to the optimization constraints, all

of them have been fulfilled, so a feasible design was generated in the optimization. The aerodynamic

parameters show some important aspects of the optimization that highlight the difference between the

case studies. The optimized angle of attack is lower than the initial. This shows that the optimizer had
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Table 4.11: Aero-structural optimization parameters for the L-23 wing.
Constraint Initial Value Optimized Value Lower Bound Upper Bound

Total Mass 530 525 0 525 Kg
Vertical resultant force - 0 0 0 N
KS top skin group - 0.340 0.3 2
KS bottom skin group - 0.358 0.3 2
KS spar group - 0.353 0.3 2
KS rib group - 2 0 2

Parameter Initial Value Optimized Value Lower Bound Upper Bound

Angle of Attack 3 1.24 -4 7 ◦

Twist (z/b=30%) 0 5 -10 10 ◦

Twist (z/b=60%) 0 5 -10 10 ◦

Twist (z/b=90%) 0 5 -10 10 ◦

Twist Tip 0 5 -10 10 ◦

Chord Scale (z/b=30%) 1 0.768 0.5 2
Chord Scale (z/b=60%) 1 0.768 0.5 2
Chord Scale (z/b=90%) 1 0.768 0.5 2
Chord Tip 1 0.768 0.5 2

Median Top Skin Thickness 5 1.5 1.5 10 mm
Median Bottom Skin Thickness 5 1.5 1.5 10 mm
Median Spar Thickness 5 5 5 10 mm
Median Rib Thickness 8 10 1.5 10 mm

CD 0.00774 0.00687
Time 0 17635 seconds

to decrease the angle of attack to decrease the lift generated. Thus, the initial decrease in drag visible

in the starting iterations of the optimization process (Fig.4.25(f)). However, the twist angles in all the

sections of the wing were increased, so that more lift could be generated with less drag increase. The

scale of the sections along the span was decreased, introducing a higher taper ratio to the wing. Yet, the

scale values were not lowered to the minimum allowed, as was seen in the aerodynamic optimization.

These results are consistent with those of the first case study. Yet, in this case study, the overall drag

was minimized in relation to the initial geometry. If the scale values were lowered even more, there could

have been implications in the structural results.

The structural parameters are consistent with the constraint values. The median thickness of the

top skin, bottom skin and spar groups, were lowered to the minimum possible, therefore reducing the

value of their KS functions (lowering the associated safety factor). The optimizer chose to lower these

thicknesses so that the lift, generated by the wing surface, could balance the weight of the aircraft. Again,

the median rib thickness showed different results, being in the upper bound value. This explains why the

KS function value of the rib group is at the higher bound, and why the weight has been optimized to the

higher bound value as visible in Fig.4.25(f). The optimizer chose not to reduce the rib thickness more,

as it could increase the stresses that had to be sustained by the other structural components, which, for

instance, would decrease the value of their KS functions. The values of the KS functions for the other

component groups are near the lower bound so having them sustaining more effort was not an option.

Again, a trade-off has been made by the optimizer between lowering the structural weight and fulfilling

the structural constraints.
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(a) Results for lift distribution over the wing. (b) Results for Cp distribution over the wing.

(c) Results for the Von Mises stress of the wing structural layout. (d) Results for deformation of the wing structural layout, (out-
lined in the undisplaced structure).

(e) Results for Cp distribution over four sections. (f) Convergence history.

Figure 4.24: Aero-structural optimization results for the semi-tapered sailplane wing.

For a better visualization of the results, Fig. 4.25 shows the relevant aerodynamic and structural

results.
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(a) Results for lift distribution over the wing. (b) Results for Cp distribution over the wing.

(c) Results for the Von Mises stress of the wing structural layout. (d) Results for deformation of the wing structural layout, (out-
lined in the undisplaced structure).

(e) Results for Cp distribution over four sections. (f) Convergence history for the L-23 case study.

Figure 4.25: Aero-structural optimization results for the L-23 sailplane wing.
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The deformation of the wing-box was higher that the one verified in the MDA. Also the Von Mises

stresses comproved that a higher effort was made by the structural components, with the root skin

panels of the upper and lower surfaces showing the higher stresses. These results are consistent with

the minimum KS function values of these groups. The Cp distributions over the presented sections and

the lift distribution over the wing, comproved the higher overall angle of attack due to the increase in

the twist angles. Indeed, the sections near the wing tip show some higher gradients in the Cp evolution

over the airfoils, which is also consistent with higher local angles of attack. In general, the optimization

problem was successfully accomplished, as the objective of reducing the drag and weight of the sailplane

was achieved while fulfilling all the aerodynamic and structural constraints. Using the MDO technique a

final optimized design, respecting all the constraints, was obtained with a decrease of 11% in the CD and

a decrease of 0.009% in the total weight. Also the differences from the simple disciplinary optimization

were evident, proving that some trade-offs had to be made between the structural performance and the

aerodynamic performance.

4.6 Summary

This chapter presented the exercises run with the MDO tool, from the generation of the case study

surfaces to the results of the MDO. The results proved that adding aerodynamics and structures to the

optimization process, from the same initial design, lead to different optimized results. Making these

compromises earlier in the preliminary design stages of an aircraft design can reduce the efforts and

resources of the following stages, as some trade-offs have already been made. In sum, this section

assessed the MDO tool established in this thesis for the MDO of sailplane wings.
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Chapter 5

Conclusions and Future Work

5.1 Achievements and Acquired Knowledge

The motivation for this thesis was to develop knowledge in the field of multi-disciplinary design of air-

craft wing configurations. Two core disciplines were considered, aerodynamics and structures, for the

objective of this thesis, which was running an aero-structural optimization of sailplane wings.

A literature review was made in order to the acquisition of knowledge in the field of MDO. From this

review, which lasted until the end of the thesis, it was clear the importance that MDO approaches can

have in preliminary design stages of aircraft design. Its usage can save important resources and help

engineers to enhance their view. This review also provided the contact with the tools and architecture

that would be used in the MDO framework. Based on that review, an multi-disciplinary feasible architec-

ture was chosen for the framework. For the disciplinary analysis a panel code was chosen and proved

to be well suited for the analysis of incompressible flows and a finite-element code was employed for the

analysis of stresses and deformations. The implementation of the tools required a deeper knowledge of

programming languages, which was important to complement the knowledge acquired during the aero-

nautical engineering course. The optimization algorithm employed was a sequential quadratic program-

ming with adjoint sensitivities evaluation, which is very used in aero-structural optimization problems.

This implementation stage was confirmed as the longest step of the realization of this thesis, as the task

of coupling and testing the modules often revealed tough. This, however, was important as it allowed the

increase of knowledge of the code, methods and processes behind the MDO framework and in some

cases, the detection of bugs. With the MDO tool established, tests were created and used to assess the

framework performance. These tests provided deeper knowledge of the behavior of wing geometries

and structures in a cruise flight condition. Also, worth of mention is the fact that, though, the exer-

cises performed were simple, through the course of this thesis, the formulation of these aero-structural

problems was the hardest task, as transforming multiple disciplinary problems into one multi-disciplinary

problem is complex and time consuming. And if this happen with a simple aero-structural MDO exercise,

in a real aircraft project, were the number of either disciplines and variables is much higher, the time and

effort needed for such task can be unbearable. Maybe this is why MDO is not yet a standard practice in
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aircraft industry. Still, after the problems have been formulated, the aero-structural optimization run with

the established MDO tool performed rapidly and smoothly. This fact is very important if its taken into

account that the work for this thesis was all made using a normal notebook. So, if used with a proper

workstation with more computational power, multi-disciplinary problems with higher complexity can be

solved by using MDO, in a faster pace, saving time when compared with a discipline iterative approach.

Finally, from the results obtained with the aerodynamic only and aero-structural optimizations, it was

possible to capture the multi-disciplinary trade-offs between what was best in terms of aerodynamics and

what was feasible in terms of aero-structural requirements. So, using MDO in preliminary design stage

exercises have shown that taking into account more than one discipline can lead to better optimized

designs. Having this multi-disciplinary perspective right from the beginning of the aircraft design process

can reduce the feasible design space, allowing resources to be saved from later re-designs. With this

verification, the objective of this thesis was accomplished, as an aero-structural optimization was run

and proven that MDO can really make a difference in the early design stages, by extending the engineer

view of the design multi-disciplinary problems and allowing earlier multi-disciplinary optimum points to

be found. Thus, I personally think that the base skills acquired during the realization of this thesis, in the

field of MDO, will be a real asset in future projects.

5.2 Directives for Future Work

Future work in the development of the aero-structural MDO framework established in this thesis is ex-

pected, to explore the full capabilities of each of the modules employed, so that more realistic aircraft

design problems can be solved. A specialized study can be made about each module, by performing

more complex exercises. This is important as some aerodynamic results have shown that there are

some numerical deviation when computing the sectional Cp. Also, different flight conditions should be

considered, as its implementation is already possible within the current framework. These could be

associated with the performance of sailplanes as, for example, to minimize the sinking speed or an ma-

neuver flight condition. From a structural point of view, critical aerodynamic load cases associated with

the structural stress constraints could be also considered.

Regarding the modules, it would be interesting to improve the geometry module so different aircraft

wings could be employed in the MDO framework, as for example wings with lift-enhancement devices.

The aerodynamic module Tripan could also be improved so that a method more complex method could

be used for high-fidelity analysis. This would allow the modeling of compressible flows, which would

extend the range of possible flight conditions. The structural module TACS was the least explored

in the exercises performed with the framework. Despite this, future works could use its full potential,

for example, in terms of the use of composite materials. Also, an interesting work could consist of a

validation of the TACS with experimental tests, for example with the Portuguese Air Force sailplanes.

In sum, the work developed within the present thesis has established a base MDO framework that

have only been explored to its minor portion and, if desired, it can be extended and used in more complex

multi-disciplinary studies in the future.
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Appendix A

Script for the Geometry Module

Listing A.1: Full script for wing geometry generation.�
# ! / usr / b in / python
# =============================================================================
# Geometry o f a Wing
# =============================================================================
# A gener ic semi−tappered wing i s used f o r t h i s example .
# =============================================================================
# Geometry Paramet r i za t ion and generat ion f o r Tr ipan and TACS
# =============================================================================
# Par t 1 : Impor t ing Standard Python Modules
import os , sys , s t r i n g , pdb , copy , t ime , numpy , datet ime
# Set the beginning o f the t imer f o r code
t0 = datet ime . datet ime . now ( )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 1 . 1 : Impor t ing Ex te rna l Python Modules
from numpy import l inspace , cos , s in , zeros , ones , i n t c , tan , p i
from mpi4py import MPI

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 1 . 2 : Impor t ing Extension modules
from mdo import he lper import ∗
exec ( import modules ( ’ pyGeo ’ , ’ pySpl ine ’ , ’ pyLayout ’ ) )

# =============================================================================
# Par t 2 : De f in ing The Geometric Parameters o f the Wing
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 2 . 1 : Se lec t i on the number o f sec t ions and the a i r f o i l shape
# Def in ing the Wing Span , Tapper and the chord dimensions a t roo t and t i p
span = 15.0 # m
tapper = 0.56
cr = 0.8016 # m
c t = cr∗ tapper # m
# Create the a i r f o i l l i s t
nsect ions = 3
s e c l i s t = [ ’ geo / naca2412 . dat ’ ]∗ (2∗ nsect ions−1)
s e c l i s t [ 0 ] = ’ geo / naca2412 . dat ’
s e c l i s t [−1] = ’ geo / naca2412 . dat ’
# I n i t i a l i z i n g v a r i a b l e s
xm = zeros (2∗ nsect ions−1)
ym = zeros (2∗ nsect ions−1)
zm = zeros (2∗ nsect ions−1)
rxm = zeros (2∗ nsect ions−1)
rym = zeros (2∗ nsect ions−1)
rzm = zeros (2∗ nsect ions−1)
scale = ones(2∗ nsect ions−1)
o f f s e t = zeros ( (2∗ nsect ions −1 ,2))
# When to swi tch to the l a s t
pspan = [ 0 .0 , 0.97 , 1.0 ]
sspan = [ cr , c t , c t ]
# Ca lcu la te the chord i n the middle sec t ions wi th tapper
u one = ( pspan [ 1 ] − pspan [ 0 ] ) / ( pspan [ 1 ] − pspan [ 0 ] )
sspan [ 1 ] = c t∗u one + (1.0−u one )∗ cr
# Def in ing the values f o r xm,ym,zm, ro tx , r o t y and ro tz , to add Sweep , D iehdra l
# or Twis t Angles to the wing
for i in xrange ( nsect ions ) :

zm[ i ] = − pspan[−( i +1 ) ] ∗ 0.5∗span
zm[ i +nsect ions−1] = pspan [ i ] ∗ 0.5∗span
scale [ i ] = sspan[−( i +1 ) ]
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scale [ i +nsect ions−1] = sspan [ i ]
o f f s e t [ i , 0 ] = 0.25
o f f s e t [ i +nsect ions −1,0] = 0.25

# I f the wing as Sweep Angle ( example : −5 degrees )
#X del ta one = numpy . tan (numpy . p i ∗−5/180)∗(pspan [ 1 ]∗ span / 2 )
# X de l ta = numpy . tan (numpy . p i ∗−5/180)∗(span / 2 )
#xm[ 0 ] = X de l ta
#xm[ 1 ] = X del ta one
#xm[ 2 ] = 0
#xm[ 3 ] = X del ta one
#xm[ 4 ] = X de l ta
# I f the wing as Dihedra l Angle ( example : 3 degrees )
#Y del ta one = numpy . tan (numpy . p i ∗3/180)∗ ( pspan [ 1 ]∗ span / 2 )
# Y de l ta = numpy . tan (numpy . p i ∗3/180)∗ ( span / 2 )
#ym[ 0 ] = Y de l ta
#ym[ 1 ] = Y del ta one
#ym[ 2 ] = 0
#ym[ 3 ] = Y del ta one
#ym[ 4 ] = Y de l ta
# I f the wing as Twist Angle ( example : −3 degrees )
# t w i s t a n g l e = −3.0
#rzm [ 0 ] = t w i s t a n g l e
#rzm [ 1 ] = t w i s t a n g l e
#rzm [2 ]=0
#rzm [ 3 ] = t w i s t a n g l e
#rzm [ 4 ] = t w i s t a n g l e

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 2 . 2 : Se lec t i on the number o f spars , r i b s and s t r i n g e r s
#Number o f Ribs and Spars
n r i bs = 10
nspars = 2
# I f there are holes i n the r i b s
# r i b h o l e s p e c = [ [ ] f o r i i n xrange ( n r i bs ) ]
# f o r i r i b i n xrange ( n r i bs ) :
# r i b h o l e s p e c [ i r i b ] = [ [ 0 , 2 ] , [ 2 , 3 ] ]
# I f there are holes i n the sk ins
# sk in ho le spec = [ [ ] f o r i i n xrange ( nr ibs −1)]
# f o r i s k i n i n xrange ( nr ibs −1):
# sk in ho le spec [ i s k i n ] = [ [ 5 , 8 ] ]
# Blanking : t u rn on or o f f spars , r i b s or sk ins
#Choose not to blank spars
spar b lank = numpy . ones ( ( nspars , n r ibs −1) , numpy . i n t c )
# or to blank the middle spars
# spar b lank = numpy . zeros ( ( nspars , nr ibs −1) , ’ i n t c ’ )
# spar b lank [ 0 , : ] = 1 # LE Spar
# spar b lank [−1 , : ] = 1 # TE Spar
# spar b lank [ nspars / 2 , 0 : 5 ] = 1 # Middle Spars
# Blanking f o r r i b s
#Choose not to blank r i b s
r i b b l a n k = numpy . ones ( ( nr ibs , nspars−1) , numpy . i n t c ) # None
# Turn o f f the roo t r i b
r i b b l a n k [ 0 , : ] = 0
# or to blank the middle r i b s
# r i b b l a n k = numpy . zeros ( ( nspars , nr ibs −1) , ’ i n t c ’ )
# r i b b l a n k [ 0 , : ] = 1 # Root r i b
# r i b b l a n k [−1 , : ] = 1 # Tip r i b
# Set the p o s i t i o n f o r the LE Spar and the TE Spar to form the Wing Box
# x = 0 corresponds to the 1/4 chord l o c a t i o n
x l e r o o t = −0.1∗cr
x t e r o o t = 0.5∗ cr # This i s the 3/4 chord l o c a t i o n
x l e t i p = −0.1∗ c t
x t e t i p = 0.5∗ c t # This i s the 3/4 chord l o c a t i o n
# Set the f i n i t e−element order
elem order = 2
# Sets the l e v e l o f r e f i n i n g f o r the s t r u c t u r a l mesh
r e f i n e l e v e l = 1
# Sets the number o f c o n t r o l po in t s f o r the pyGeo geometry ob jec t
Nc t l = 27

# =============================================================================
# Par t 3 : De f in ing The Code f o r the f u n c t i o n s t h a t generate Tr ipan Inpu t F i l e s
def w r i t e t r i p a n f i l e ( geo , t r i f i l e , wakef i le , e d g e f i l e =None ,

nu=40 , nv=50 , spacing= ’ cosine ’ , beta = 2 . 0 ) :
U = zeros ( ( nu+1 ,nv +1) )
V = zeros ( ( nu+1 ,nv +1) )
i f spacing == ’ cosine ’ :

u = 0 .5∗ (1 .0 − cos ( l i nspace ( 0 . 0 , p i , nu + 1 ) ) )
v = 0.5 + 0.25∗ (1 .0 − cos ( l i nspace ( 0 . 0 , p i , nv + 1 ) ) )

e l i f spacing == ’ hype rbo l i c ’ :
x = l inspace ( 0 . 0 , 1 . 0 , nu+1)
u = x − beta ∗ x ∗ ( x−1.0) ∗ ( x−0.5)

x = l inspace ( 0 . 0 , 1 . 0 , nv+1)
v = 0 .5∗ (1 .0 + x − beta ∗ x ∗ ( x−1.0) ∗ ( x−0.5))

else :
u = l inspace ( 0 . 0 , 1 . 0 , nu+1)
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v = l inspace ( 0 . 5 , 1 . 0 , nv+1)
# end
# Assume t h a t you only want h a l f o f the wing !
for j in xrange ( nv +1) :

for i in xrange ( nu +1) :
U[ i , j ] = u [ i ]
V [ i , j ] = v [ j ]

# Evaluate the top sur face second
ntop = zeros ( ( nu+1 ,nv +1) , i n t c )
Xtop = geo . su r f s [ 0 ] ( U,V)
# Evaluate the bottom sur face
nbot = zeros ( ( nu+1 ,nv +1) , i n t c )
Xbot = geo . su r f s [ 1 ] ( U,V)
# Wri te the TriPan f i l e . . .
fp = open ( t r i f i l e , ’w ’ )
npts = 2∗nu∗( nv+1)
npanels = 2∗nu∗nv
fp . w r i t e ( ’%d %d\n ’%(npts , npanels ) )
# Wri te out the top sur face
for j in xrange ( nv +1) :

for i in xrange ( nu +1) :
ntop [ i , j ] = i + j ∗(nu+1)
fp . w r i t e ( ’ %.8g %.8g %.8g \n ’%(Xtop [ i , j , 0 ] ,

Xtop [ i , j , 1 ] , Xtop [ i , j , 2 ] ) )
# Wri te out the bottom sur face
for j in xrange ( nv +1) :

for i in xrange ( nu +1) :
i f ( i == 0 or i == nu ) :

nbot [ i , j ] = ntop [ i , j ]
else :

nbot [ i , j ] = i−1 + j ∗(nu−1) + ( nu+1)∗ ( nv+1)
fp . w r i t e ( ’ %.8g %.8g %.8g \n ’%(Xbot [ i , j , 0 ] ,

Xbot [ i , j , 1 ] , Xbot [ i , j , 2 ] ) )
# Wri te out the c o n n e c t i v i t y i n f o rma t i on f o r the top sur face
for j in xrange ( nv ) :

for i in xrange ( nu ) :
fp . w r i t e ( ’%d %d %d %d \n ’%(ntop [ i , j ] , ntop [ i +1 , j ] ,

ntop [ i +1 , j +1 ] , ntop [ i , j + 1 ] ) )
# Wri te out the c o n n e c t i v i t y i n f o rma t i on f o r the bottom sur face
for j in xrange ( nv ) :

for i in xrange ( nu ) :
fp . w r i t e ( ’%d %d %d %d \n ’%(nbot [ i , j ] , nbot [ i , j +1 ] ,

nbot [ i +1 , j +1 ] , nbot [ i +1 , j ] ) )
fp . c lose ( )
# Create the wake f i l e along the t r a i l i n g edge
fp = open ( wakef i le , ’w ’ )
nseg = 1
fp . w r i t e ( ’%d\n ’%(nseg ) )
fp . w r i t e ( ’%d\n ’%(nv +1) )
for j in xrange ( nv ,−1,−1):

fp . w r i t e ( ’%d %d\n ’%(ntop [0 , j ] , 3 ) )
fp . c lose ( )
i f e d g e f i l e != None :

fp = open ( edge f i l e , ’w ’ )
fp . w r i t e ( ’%d\n ’%(nv +1) )
for j in xrange ( nv +1) :

fp . w r i t e ( ’%d %d\n ’%(ntop [−1, j ] , ntop [0 , j ] ) )
fp . c lose ( )

return

# =============================================================================
# Par t 4 : De f in ing The Code f o r the generat ion o f pyGeo Geometry ob jec t
#Names f o r the Output F i l e s
geo name = ’ geo / wing . i gs ’
geo tec name = ’ geo / wing geo . dat ’
bdf name = ’mesh / wing . bdf ’
bdf tec name = ’mesh / w ing s t ruc . dat ’
#Generate a wing f i l e w i th Y = 0
i f not os . path . i s f i l e ( ’ geo / zero . dat ’ ) :

fp = open ( ’ geo / ONERA air fo i l . dat ’ , ’ r ’ )
l i n e s = fp . read ( )
xs = s t r i n g . s p l i t ( l i n e s )
fp . c lose ( )
fp = open ( ’ geo / zero . dat ’ , ’w ’ )
for i in xrange (0 , len ( xs ) , 2 ) :

fp . w r i t e ( ’%s 0.0 \n ’%(xs [ i ] ) )
fp . c lose ( )

k = 2
geo = pyGeo . pyGeo ( ’ l i f t i n g s u r f a c e ’ ,

xsec t ions= s e c l i s t ,
sca le=scale , o f f s e t = o f f s e t ,
x=xm, y=ym, z=zm,
r o t x =rxm , r o t y =rym , r o t z =rzm ,
Nc t l =Nct l ,
k span=k ,
c o n f i l e = ’ geo / wing . con ’ ,
t i p = ’ rounded ’ )
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geo . writeIGES ( geo name )
f i n a l t i m e = datet ime . datet ime . now ( ) − t0
pr in t ’ To ta l t ime spent i n the generat ion o f . i gs f i l e : ’ , f i n a l t i m e

# =============================================================================
# Par t 5 : De f in ing The Code f o r the generat ion o f Tr ipan and TACS Inpu t F i l e s
i f os . path . i s f i l e ( ’ geo / wing . i gs ’ ) :

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 5 . 1 : S c r i p t f o r the generat ion o f TACS Inpu t f i l e s

geo = pyGeo . pyGeo ( ’ iges ’ , ’ geo / wing . i gs ’ )
geo . doConnec t i v i t y ( ) # ’ wing . con ’ )
geo . w r i t eT ecp l o t ( geo tec name , edge labe ls=True )
# Now, generate aerodynamic ana lys i s f i l e s
w r i t e t r i p a n f i l e ( geo , ’ geo / wing 15x20 . t r i p a n ’ , ’ geo / wing 15x20 . wake ’ ,

e d g e f i l e = ’ geo / wing 15x20 . edge ’ ,
nu=15 , nv=20 , spacing= ’ hype rbo l i c ’ , beta =1.8)

w r i t e t r i p a n f i l e ( geo , ’ geo / wing 35x60 . t r i p a n ’ , ’ geo / wing 35x60 . wake ’ ,
e d g e f i l e = ’ geo / wing 35x60 . edge ’ ,
nu=35 , nv=60 , spacing= ’ hype rbo l i c ’ , beta =1.8)

t r i p a n t i m e = datet ime . datet ime . now ( ) − t0
pr in t ’ To ta l t ime spent i n the generat ion o f t r i p a n and t e c p l o t f i l e s : ’ , t r i p a n t i m e

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 5 . 2 : S c r i p t f o r the generat ion o f TACS Inpu t f i l e s
# Set up an ar ray o f c o n s t i t u t i v e p r o p e r t i e s
X = numpy . zeros ( ( nr ibs , nspars , 3 ) )
#Semi−span
semi span = span / 2 . 0 # m
z t i p = semi span∗0.98
z loc = numpy . l i nspace (1e−4, z t i p , n r i bs )
for j in xrange ( n r i bs ) :

v = (1 .0∗ j ) / ( n r ibs −1.0)
for k in xrange ( nspars ) :

u = (1.0∗ k ) / ( nspars−1.0)
x t i p = (1.0−u)∗ x l e t i p + u∗ x t e t i p
x r o o t = (1.0−u)∗ x l e r o o t + u∗ x t e r o o t
X [ j , k , 2 ] = z loc [ j ]
X [ j , k , 0 ] = (1.0−v )∗ x r o o t + v∗ x t i p

# Set up the b lank ing f o r the top / bottom sk ins −
# no lead ing or t r a i l i n g edges
t op b lank = numpy . ones ( ( nr ibs−1, nspars +1) , numpy . i n t )
bo t b lank = numpy . ones ( ( nr ibs−1, nspars +1) , numpy . i n t )
top b lank [ : , [ 0 , −1 ] ] = 0
bo t b lank [ : , [ 0 , −1 ] ] = 0
# Set the spacing i n the d i f f e r e n t d i r e c t i o n s
span spacing = r e f i n e l e v e l ∗ 5
chord spacing = r e f i n e l e v e l ∗ 8
v e r t i c a l s p a c i n g = r e f i n e l e v e l ∗ 6
# Set the number o f elements along the sk in between r i b s
span space = span spacing∗numpy . ones ( nr ibs−1, numpy . i n t c )
# Set the number o f elements along the sk in between spars
chord space = chord spacing∗numpy . ones ( nspars +1 , numpy . i n t c )
# Set the number o f elements along the s t r i n g e r s between r i b s
# s t r i nge r space = 3
# r i b s t i f f n e r s p a c e = 3
# Set the number o f elements along the holes i n r i b s
# r ib O space = 1
# Set the number o f elements along the holes i n sk ins
#skin O space = 2
# Set up pyLayout
t e l i s t = [ ]
# Now, generate aerodynamic s t r u c t u r a l f i l e s
l ayou t = pyLayout . Layout ( geo , t e l i s t , n r ibs , nspars , X=X,

e lement order=elem order ,
r i b space=chord space ,
span space=span space ,
v space= v e r t i c a l s p a c i n g ,
top b lank=top b lank ,
bo t b lank=bot b lank ,
spar b lank=spar b lank ,
r i b b l a n k = r i b b l a n k )

l ayou t . f i n a l i z e ( bdf name , bdf tec name )
tacs t ime = datet ime . datet ime . now ( ) − t0
pr in t ’ To ta l t ime spent i n the generat ion o f t r i pan , t e c p l o t and TACS f i l e s : ’ , t acs t ime

# =============================================================================
� �
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Appendix B

Script for the Aerodynamics Module

Listing B.1: Full script for an aerodynamic analysis.�
# =============================================================================
# Aerodynamic Ana lys is o f a Wing
# =============================================================================
# A gener ic semi−tappered wing i s used f o r t h i s example .
# =============================================================================
# Aerodynamic Ana lys is With Tr ipan Flow Solver
# =============================================================================
# Par t 1 : Impor t ing Standard Python Modules
import os , sys , s t r i n g , pdb , copy , t ime , s t r i n g , re , numpy , datet ime
# Set the beginning o f the t imer f o r code
t0 = datet ime . datet ime . now ( )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 1 . 1 : Impor t ing Ex te rna l Python Modules and s e t t i n g o f broadcast ing v a r i a b l e
from mpi4py import MPI
comm = MPI .COMMWORLD

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 1 . 2 : Impor t ing Extension modules and i n i t i a l i z i n g ’comm ’ va r i a b l e s
from mdo import he lper import ∗
exec ( import modules ( ’ pySpl ine ’ , ’ t r i p a n ’ , ’ f u n c t i o n s ’ ) )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 1 . 3 : De f in ing the f o l d e r f o r the r e s u l t s output
p r e f i x = ’ . / r e s u l t s / ’
for arg in sys . argv :

# Find the p r e f i x from the command l i n e arguments
m = re . match ( ’ ( p r e f i x = ) ( .∗ ) ’ , arg )
i f m:

p r e f i x = m. group ( 2 )
# create a new d i r e c t o r y and broadcast i t to every th ing
i f os . path . i s d i r ( p r e f i x ) :

i = 1
while os . path . i s d i r ( os . path . j o i n ( p r e f i x , ’ Aero Analysis Num%d ’%( i ) ) ) :

i = i +1
p r e f i x = os . path . j o i n ( p r e f i x , ’ Aero Analysis Num%d ’%( i ) )
os . mkdir ( p r e f i x )
p r e f i x = p r e f i x + os . sep

else :
pr in t ’ P r e f i x i s not a d i r e c t o r y ! ’

p r e f i x = MPI .COMMWORLD. bcast ( p r e f i x , r oo t =0)
pr in t ’ Using p r e f i x = %s ’%( p r e f i x )

# =============================================================================
# Par t 2 : De f in ing The Funct ions to set up the Tr ipan Object
def setUpTriPanWing (comm, t r i f i l e = ’ geo / wing . t r i p a n ’ , wake f i l e = ’ geo / wing . edge ’ ) :

# Set up TriPan using the f i l e s
ndownstream = 100
sym d i rec t i on = 2 # Use symmetry about the z−ax is
down dist = 150.0
t ime dependent = 0 # A steady s ta te s imu la t i on
a wake di r = numpy . zeros ( 3 )
b wake di r = numpy . zeros ( 3 )
a wake di r [ 1 ] = 1.0
b wake di r [ 2 ] = 1.0
# St re tch the wake downstream
wake h is to ry = t r i p a n . WakeHistory ( ndownstream , down dist ,

t r i p a n . WakeHistory .STRETCHED)
t r i P a n = t r i p a n . Tr iPane l (comm,

t r i f i l e , wakef i le , wake his tory ,
t ime dependent , ndownstream ,
a wake dir , b wake dir , sym d i rec t i on )
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npanels = t r i P a n . getNumPanels ( )
t r i P a n . setPCSizes ( 1 . 5 , 150∗npanels )
pr in t ’ Tr iPan panels ’ , npanels
return t r i P a n

# =============================================================================
# Par t 3 : Core o f the S c r i p t f o r Aerodynamic Ana lys is With Tr ipan Flow Solver
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 1 : Se t t i ng Up the Tr ipan Flow Solver
# Def in ing The Names f o r the Tr ipan Inpu t F i l e s
t r i f i l e = ’ geo / wing 50x100 . t r i p a n ’ ; wake f i l e = ’ geo / wing 50x100 . wake ’
e d g e f i l e = ’ geo / wing 50x100 . edge ’ ;
#Set Up Tr ipan Object
t r i P a n = setUpTriPanWing (comm, t r i f i l e = t r i f i l e , wake f i l e = wake f i l e )
edgeinfo = t r i p a n . Tr iPanEdgeInfo ( e d g e f i l e )
#Set Up Tr ipan Solver
n f l i g h t c o n s = 1
t r i O p t = t r i p a n . TriPanOpt ( t r iPan , n f l i g h t c o n s )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 2 : De f in ing The Design Parameters f o r the Atmosphere p r o p e r t i e s
Semi Span = 15/2
# Generic atmospheric cond i t i ons f o r 1000m , 25m/ s wi th MAC as re ference lengh t
Minf = 0.0743 # Imcompressible Mach number
rho = 1.11164 # A i r dens i t y kg /mˆ3
a i n f = 336.4379 # Speed of sound m/ s
alpha = (4 .0 /180 .0 )∗numpy . p i # Angle o f a t t ack
V in f = Minf∗a i n f # A i r Speed
Qinf = 0.5∗ rho∗V in f∗∗2 # Dynamic Pressure

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 3 : So lv ing the Aerodynamic System
# Funct ion to get the Wing Area to compute c o e f f i c i e n t s
area func = t r i p a n . Tr iPanProjectedArea ( )
A rea re f = area func . eva lFunct ion ( t r i P a n )
pr in t ’ Area Tr ipan = ’ , A rea re f
# Se t t i ng the Load Case , the Wing Angle o f At tack and F l i g h t Cond i t ion
load case = 0
alpha num = 0
fcon = t r i p a n . F l i g h t C o n d i t i o n ( rho , Minf , V in f , alpha ,

alpha num , load case )
t r i O p t . addF l i gh tCond i t i on (0 , fcon )
t r i O p t . s e t F l i g h t C o n d i t i o n ( 0 )
# Se t t i ng the opt ions f o r the General ized Minimal Residual Method (GMRES) Solver
gmres i te rs = 60
max i te rs = 5∗gmres i te rs
t r i O p t . setGMRESIters ( gmres i te rs , max i te rs )
t r i O p t . moni tor ( )
# Solve the aerodynamic problem
t r i O p t . so lve ( )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 4 : Se t t i ng Up the So lu t i on Output F i l e s
# Se t t i ng the names f o r the Output F i l e s
obj aero name = p r e f i x + ’ w ing ob j aero . dat ’
tecp lo t so l name = p r e f i x + ’ w i n g t r i p a n s o l u t i o n . dat ’
wake sol name = p r e f i x + ’ w ing wake f i l e . dat ’
l oad f i l e name = ’ load data / wing aero load . dat ’
l i f t d i s t n a m e = p r e f i x + ’ w i n g l i f t d i s t . dat ’
# Generat ing Surface s o l u t i o n output
t r i O p t . w r i t e A e r o F i l e ( obj aero name )
# Generat ing . dat Tacp lo t V i s u a l i z a t i o n f i l e s
ou t t ype = 1
t r i P a n . wr i t eSeqTecp lo tF i l e ( tecp lo t so l name , −1.0, ou t t ype )
t r i P a n . wr i teWakeFi le ( wake sol name )
# Generat ing Load data
t r i P a n . wr i teAeroForceF i le ( Qinf , l oad f i l e name )
# Generat ing l i f t d i s t r i b u t i o n graph
Zloc = numpy . l i nspace (0 .01 , Semi Span )
t r i P a n . w r i t e L i f t D i s t r i b u t i o n ( l i f t d i s t n a m e , Zloc )
# Eva lua t ion o f aerodynamic f u nc t i o n s
l i f t f u n c = t r i p a n . T r i P a n L i f t ( )
drag func = t r i p a n . TriPanDrag ( )
l i f t = t r i O p t . evalAeroFunc ( l i f t f u n c )
drag = t r i O p t . evalAeroFunc ( drag func )
# Wr i t i ng some outputs f o r user v i s u a l i z a t i o n
pr in t ’ L i f t = ’ , l i f t ∗Qinf∗2
pr in t ’ Drag = ’ , drag∗Qinf∗2
pr in t ’CL = ’ , ( l i f t / A rea re f )∗2
pr in t ’CD = ’ , ( drag / Area re f )∗2
f i n a l t i m e = datet ime . datet ime . now ( ) − t0
pr in t ’ To ta l t ime spent i n the aerodynamic ana lys i s : ’ , f i n a l t i m e

# =============================================================================
� �
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Appendix C

Script for the Structures Module

Listing C.1: Full script for an structural analysis.�
# =============================================================================
# S t r u c t u r a l Ana lys is o f a Wing
# =============================================================================
# A gener ic semi−tappered wing i s used f o r t h i s example .
# =============================================================================
# S t r u c t u r a l Ana lys is With TACS
# =============================================================================
# Par t 1 : Impor t ing Standard Python Modules
import os , sys , s t r i n g , re , numpy , datet ime
# Set the beginning o f the t imer f o r code
t0 = datet ime . datet ime . now ( )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 1 . 1 : Impor t ing Ex te rna l Python Modules
from mpi4py import MPI
comm = MPI .COMMWORLD

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 1 . 2 : Impor t ing Extension modules and i n i t i a l i z i n g ’comm ’ va r i a b l e s
from mdo import he lper import ∗
exec ( import modules ( ’TACS ’ , ’ elements ’ , ’ c o n s t i t u t i v e ’ , ’ f u n c t i o n s ’ ) )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 1 . 3 : De f in ing the f o l d e r f o r the r e s u l t s output
p r e f i x = ’ . / r e s u l t s / ’
for arg in sys . argv :

# Find the p r e f i x from the command l i n e arguments
m = re . match ( ’ ( p r e f i x = ) ( .∗ ) ’ , arg )
i f m:

p r e f i x = m. group ( 2 )
# create a new d i r e c t o r y and broadcast i t to every th ing
i f os . path . i s d i r ( p r e f i x ) :

i = 1
while os . path . i s d i r ( os . path . j o i n ( p r e f i x , ’ S t ruc tu ra l Ana lys is Num%d ’%( i ) ) ) :

i = i +1
p r e f i x = os . path . j o i n ( p r e f i x , ’ S t ruc tu ra l Ana lys is Num%d ’%( i ) )
os . mkdir ( p r e f i x )
p r e f i x = p r e f i x + os . sep

else :
pr in t ’ P r e f i x i s not a d i r e c t o r y ! ’

p r e f i x = MPI .COMMWORLD. bcast ( p r e f i x , r oo t =0)
pr in t ’ Using p r e f i x = %s ’%( p r e f i x )

# =============================================================================
# Par t 2 : De f in ing a Funct ion to w r i t e a t e c p l o t f i l e w i th the node numbering o f s t r u c t u r a l mesh
def wr i teNodeIn fo (comm) :

i f os . path . i s f i l e ( p r e f i x + ’ tecplot node number . dat ’ ) :
pr in t ’ ’
pr in t ’ There i s a l ready a Tecp lo t F i l e w i th s t r u c t u r a l mesh nodes . ’
pr in t ’ ’
return

else :
# Create a . dat t e c p l o t f i l e w i th the nodes l o c a l i z a t i o n f o r the s t r c t u r a l mesh
nnodes = tacs . getNumNodes ( )
Xpts = numpy . zeros (3∗nnodes )
tacs . getNodes ( Xpts )
pr in t numpy . s ize ( Xpts )
f i leName = p r e f i x + ’ tecplot node number . dat ’
fp = open ( fi leName , ’w ’ )
pr in t >>fp , ’ TITLE = \” S t r u c t u r a l Mesh Nodes ” ’
pr in t >>fp , ’VARIABLES = X, Y, Z , Node ’
pr in t >>fp , ’ZONE T = \”Node numbering\” I = ’ , nnodes
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pr in t >>fp , ’DATAPACKING=POINT ’
for i in range ( nnodes ) :

pr in t >>fp , Xpts [3∗ i ] , Xpts [3∗ i +1 ] , Xpts [3∗ i +2 ] , i # i +1
fp . c lose ( )
pr in t ’ ’
pr in t ’ Tecp lo t F i l e w i th s t r u c t u r a l mesh nodes done ! ’
pr in t ’ ’
return

return

# =============================================================================
# Par t 3 : Core o f the S c r i p t f o r S t r u c t u r a l Ana lys is With TACS S t r u c t u r a l Solver
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 1 : Loading the s t r u c t u r a l mesh
# The name of the s t r u c t u r a l f i l e to open
bdf fname = ’mesh / wing . bdf ’
# Create the mesh loader c lass
mesh = TACS. TACSMeshLoader (comm)
mesh . scanBdfF i le ( bdf fname )
# Get the number o f r i b s and spars − r e l i e s on a pyLayout−generated f i l e
n r i bs = mesh . getNumRibs ( )
nspars = mesh . getNumSpars ( )
ncomponents = mesh . getNumComponents ( )
# Se t t i ng some outputs f o r v i s u a l i z a t i o n and c o n t r o l
pr in t ’ ’
pr in t ’ From . bdf f i l e : ’
pr in t ’Number o f Components : %d ’%(ncomponents )
pr in t ’Number o f Ribs : %d ’%(n r i bs )
pr in t ’Number o f Spars : %d ’%(nspars )
pr in t ’ ’

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 2 : Se t t i ng the domains f o r KS func t ions ,
# d e f i n i n g the ma te r i a l p r o p e r t i e s and f i n i t e−element type
# Set up the l i s t s t h a t w i l l con ta in the domains o f the KS f u n c t i o n s
ks func domains = [ ]
for k in xrange ( 4 ) :

ks func domains . append ( [ ] )
# The cu r ren t design v a r i a b l e number
dv num = 0
# Se t t i ng an outputs to l i s t components inpo r ted from s t r u c t u r a l mesh
pr in t ’ ’
pr in t ’ L i s t o f Components : ’
pr in t ’ ’
for k in range (mesh . getNumComponents ( ) ) :

# Get the element and component d e s c r i p t i o n s
e lem descr ip t = mesh . getElementDescr ip t ( k )
comp descr ipt = mesh . getComponentDescript ( k )
pr in t ’ Component %s i s a element o f type %s ’%(comp descr ipt , e lem descr ip t )
# The re ference ax is used to de f ine the l o c a l coord ina te system i n
# the s h e l l elements .

r e f a x i s = numpy . ar ray ( [ 0 . 0 , 0 .0 , 1 . 0 ] ) # Reference ax is f o r the spars and sk in ( z d i r e c t i o n )
# Determine where the element w i l l be loca ted
i f comp descr ipt [ 0 : 3 ] == ’ Top ’ :

e lem id = 0
ks func domains [ 0 ] . append ( k )

e l i f comp descr ipt [ 0 : 3 ] == ’ Bot ’ :
e lem id = 1
ks func domains [ 1 ] . append ( k )

e l i f comp descr ipt [ 0 : 4 ] == ’ Spar ’ :
e lem id = 2
ks func domains [ 2 ] . append ( k )

else :
# The r i b s are i n the x−y plane − perpend icu la r to the z−ax is
elem id = 3
ks func domains [ 3 ] . append ( k )
r e f a x i s = numpy . ar ray ( [ 1 . 0 , 0 .0 , 0 . 0 ] ) # Reference ax is f o r the r i b s ( x d i r e c t i o n )

# Def in ing the Design Ma te r i a l P rope r t i es − Example uses Aluminium as re ference
# Set up the c o n s t i t u t i v e r e l a t i o n s h i p ( Ma te r i a l P rope r t i es )
rho = 2810.0 # kg /mˆ3
E = 70e9 # 70 GPa
nu = 0.33
kco r r = 0.8333 # the shear c o r r e c t i o n f a c t o r
ys = 434.0e6 # 434 MPa
t = 0.005 # 5 mm sk in th ickness everywhere
t num = dv num
t min = 0.001
t max = 0.01
# Increase the design v a r i a b l e number
dv num += 1
# Create an i s o t r o p i c ma te r i a l c lass f o r the s t r u c t u r e .
# Se t t i ng the c o n s t i t u t i v e c lass For DShel l elements
con = c o n s t i t u t i v e . isoFSDTSt i f fness ( rho , E, nu , kcorr ,

ys , t , t num , t min , t max )
# MITC ( Mixed i n t e r p o l a t i o n o f t e n s o r i a l components)−based s h e l l element
elem = elements . MITCShell2 ( con , elements . MITCShell2 . LINEAR , e lem id ) #
# Se t t i ng the f i n i t e−element
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mesh . setElement ( k , elem )
pr in t ’ ’

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 3 : Creat ing TACS ob jec t and KS f u n c t i o n s
# Create the TACSAssembler ob jec t on a l l processors
vars per node = 6
nload cases = 1
tacs = mesh . createTACS ( vars per node , nload cases )
# Create the KS f u nc t i o ns
load case = 0
ks weight = 30.0
ks funcs = [ ]
for domain in ks func domains :

pr in t domain
domain = numpy . ar ray ( domain , dtype=numpy . i n t c )
# Se t t i ng SimpleKSFai lure KS f u n c t i o n f a i l u r e−load aggregat ion
ks = f u n c t i o n s . SimpleKSFai lure ( tacs , ks weight , load case )
# Make the correspondence of the KS domain wi th the KS f u n c t i o n
mesh . setFunctionDomain ( ks , domain )
ks funcs . append ( ks )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 4 : Se t t i ng design parameters f o r the load case ( s t r u c t u r a l ana l ys i s )
# Create the vec to rs and matr ices t h a t w i l l be used
mat = tacs . createFEMat ( )
rhs = tacs . createVec ( )
ans = tacs . createVec ( )
# Create a load case :
# Po in t Load :
# Set the fo rce load
f o r ce l oad = numpy . ar ray ( [ 0 . 0 , 500.0 , 0 .0 , 0 .0 , 0 .0 , 0 . 0 ] )
node load = 1128 #1128 ou 7601
tacs . addPointLoad ( load case , node load , f o r ce l oad )
pr in t ’ Po in t load fo rce o f %d app l ied a t node %d ! ’ %( fo r ce l oad [ 1 ] , node load )
# Create a set o f nodal po in t−loads − only i n the y−d i r e c t i o n
# fo rces = tacs . createVec ( )
# fo rces . setMod ( 1 . 0 , 6 , 1) # Set foces [ i ] = 1.0 i f ( i%6 == 1)
# fo rces . applyBCs ( )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 5 : Se t t i ng up the so l ve r parameters f o r TACS S t r u c t u r a l Solver
# Create the p recond i t i one r − i n t h i s case a d i r e c t so lve
l ev = 4500
f i l l = 10.0
reorder schur = 1
pc = TACS. PcScMat ( mat , lev , f i l l , reo rder schur )
pc . se tMon i to rFac torF lag ( 1 )
pc . se tA l l t oa l lAssemb lyF lag ( 1 )
# Set up the GMRES so lve r
gmres i te rs = 15
n r e s t a r t = 5
s f l e x i b l e = 0
gmres = TACS.GMRES( mat , pc , gmres i te rs , n r e s t a r t , i s f l e x i b l e )
rank = MPI .COMMWORLD. rank
f req = 1
gmres . se tMon i to r (TACS. KSMPrintStdout ( ’GMRES ’ , rank , f r eq ) )
# Set the convergence to le rances f o r GMRES. The t e s t i s to see i f :
# |R| < r t o l ∗| R i n i t | or |R| < a t o l
r t o l = 1e−10
a t o l = 1e−30
gmres . setTolerances (1e−10, 1e−30)

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 6 : So lv ing the S t r u c t u r a l System
# Assemble the s t i f f n e s s mat r i x and the r e s i d u a l .
tacs . assembleMat ( load case , mat , rhs )
# Factor the p recond i t i one r
pc . f a c t o r ( )
# Solve the system of equat ions using GMRES
gmres . so lve ( rhs , ans )
# Assemble the r e s i d u a l to check the r e s i d u a l norm
tacs . assembleRes ( load case , rhs )
ans . sca le (−1.0)
rnorm = rhs . norm ( )
# Set the v a r i a b l e s i n t o TACS
tacs . se tVar iab les ( load case , ans )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 7 : Se t t i ng Up the So lu t i on Output F i l e s
# Create a outout w i th the numbering o f the nodes f o r the s t r u c t u r a l mesh
wr i teNodeIn fo (comm)
# Wri te the vec to r ans to a b inary f i l e
a n s w e r f i l e = p r e f i x + ’ answer . b in ’
ans . w r i t e T o F i l e ( a n s w e r f i l e )
# Wri te th ings to an HDF5 f i l e d i r e c t l y
h5 = TACS.TACSToHDF5( tacs )
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for i in xrange ( 4 ) :
h5 . addGroup ( ’ Zone %d ’%( i ) , i , elements .SHELL,

h5 .WRITE CON |
h5 .WRITE NODES |
h5 .WRITE DISPLACEMENTS |
h5 .WRITE STRESSES |
h5 . WRITE STRAINS |
h5 .WRITE EXTRAS)

h5 . w r i t e T o F i l e ( load case , p r e f i x + ’ W ing S t ruc t so l%d . h5 ’%(comm. s ize ) ,
’ The s t r u c t u r a l s o l u t i o n ’ )

# =============================================================================
� �
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Appendix D

Script for the MDO Framework

Listing D.1: Full script for the Aero-structual Optimization.�
# =============================================================================
# Aero−s t r u c t u r a l Op t im iza t ion o f a Standard Class Compet i t ion G l i de r
# =============================================================================
# Res t r i c t ed to a maximum wing−span of 15 metres and f i x e d wing sec t ions
# ( f l a p s or o ther l i f t −enhancing devices not al lowed ) , maximum a l l−up mass 525 kg .
# =============================================================================
# Aero−s t r u c t u r a l Op t im iza t ion With MDO t o o l
# =============================================================================
# Par t 1 : Impor t ing Standard Python Modules
import os , sys , s t r i n g , pdb , copy , t ime , s t r i n g , re , numpy , datet ime
# Set the beginning o f the t imer f o r code
t0 = datet ime . datet ime . now ( )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 1 . 1 : Impor t ing Ex te rna l Python Modules and s e t t i n g o f broadcast ing v a r i a b l e
from mpi4py import MPI
t ry :

from petsc4py import PETSc
except :

pass

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 1 . 2 : Impor t ing Extension modules and i n i t i a l i z i n g ’comm ’ va r i a b l e s
from mdo import he lper import ∗
exec ( import modules ( ’ pyGeo ’ , ’ pySpl ine ’ , ’ pyLayout ’ ) )
exec ( import modules ( ’ t r i p a n ’ , ’TACS ’ , ’ elements ’ , ’ c o n s t i t u t i v e ’ , ’ f u n c t i o n s ’ ) )
exec ( import modules ( ’ pyOpt op t im iza t ion ’ , ’pySNOPT ’ ) )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 1 . 3 : De f in ing the f o l d e r f o r the r e s u l t s output
p r e f i x = ’ . / r e s u l t s / ’
for arg in sys . argv :

# Find the p r e f i x from the command l i n e arguments
m = re . match ( ’ ( p r e f i x = ) ( .∗ ) ’ , arg )
i f m:

p r e f i x = m. group ( 2 )
# create a new d i r e c t o r y and broadcast i t to every th ing
i f os . path . i s d i r ( p r e f i x ) :

i = 1
while os . path . i s d i r ( os . path . j o i n ( p r e f i x , ’ AS Optimization Num%d ’%( i ) ) ) :

i = i +1
p r e f i x = os . path . j o i n ( p r e f i x , ’ AS Optimization Num%d ’%( i ) )
os . mkdir ( p r e f i x )
p r e f i x = p r e f i x + os . sep

else :
pr in t ’ P r e f i x i s not a d i r e c t o r y ! ’

p r e f i x = MPI .COMMWORLD. bcast ( p r e f i x , r oo t =0)
pr in t ’ Using p r e f i x = %s ’%( p r e f i x )

# =============================================================================
# Par t 2 : De f in ing The A u x i l i a r y Funct ions and Classes
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 2 . 1 : Set up the comparing v a r i a b l es c lass
class compare design vars :

def i n i t ( s e l f , d v d i c t ) :
s e l f . d v d i c t = d v d i c t
return

def compare ( s e l f , x , y ) :
xarg = numpy . a t l e a s t 1 d ( s e l f . d v d i c t [ x ] )
yarg = numpy . a t l e a s t 1 d ( s e l f . d v d i c t [ y ] )
return i n t ( xarg [ 0 ] − yarg [ 0 ] )
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# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 2 . 2 : Set up the f u n c t i o n to get the v e l o c i t y vec to rs
def getknots ( nu , ku , low =0.0 , high = 1 . 0 ) :

tu = numpy . zeros ( nu+ku )
for i in xrange ( ku ) :

tu [ i ] = low
tu [ nu+ku−1− i ] = high

tu [ ku−1:nu+1] = numpy . l i nspace ( low , high , nu−ku+2)
return tu

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 2 . 3 : Set up the re ference ax is f o r the geometry f u n c t i o n s
def s e t u p a e r o r e f a x i s ( n f i x e d =3 , n r e f =8 , d v s t a r t =0 , p chord =0.25 , spanNum=−1):

t w i s t = True
scale = True
# Now read / create the remaining po in t s
f fd vo lumes = [ ]
nx = 4
ny = 2
nz = 16
Xf fd = numpy . zeros ( ( nx , ny , nz ) )
Y f fd = numpy . zeros ( ( nx , ny , nz ) )
Z f f d = numpy . zeros ( ( nx , ny , nz ) )
for k in xrange ( nz ) :

for j in xrange ( ny ) :
for i in xrange ( nx ) :

X f fd [ i , j , k ] = −1.0 + (4.0∗ i ) / ( nx−1.0)
Y f fd [ i , j , k ] = −0.5 + (1.0∗ j ) / ( ny−1.0)
Z f f d [ i , j , k ] = (15.0∗ k ) / ( nz−1.0)

# Set up the knot vec to rs
kx = numpy . min ( [ 4 , nx ] )
ky = numpy . min ( [ 4 , ny ] )
kz = numpy . min ( [ 4 , nz ] )
Tx = getknots ( nx , kx )
Ty = getknots ( ny , ky )
Tz = getknots ( nz , kz )
# Create the FFD volume f o r t h i s b lock
f fd vo lume = elements . R3SplineFFD ( i n t ( kx ) , i n t ( ky ) , i n t ( kz ) ,

Tx , Ty , Tz ,
Xf fd , Yf fd , Z f f d )

# Append i t to the l i s t
f fd vo lumes . append ( f fd vo lume )
# The provided coord ina tes f o l l o w the scheme :
# Y == out the wing
# X == streamwise
# Z == up
Xaxis = numpy . zeros (3∗ ( n f i x e d + n r e f ) )
Xaxis [ 2 : : 3 ] = numpy . l i nspace (0 , 15.0 , n f i x e d + n r e f )
# Twist / sca le
twis t nums = −numpy . ones ( n f i x e d +n re f , numpy . i n t c )
twis t nums [ n f i x e d : ] = numpy . arange ( d v s t a r t , d v s t a r t +n re f ,

dtype=numpy . i n t c )
d v s t a r t += n r e f
scale nums = −numpy . ones ( n f i x e d +n re f , numpy . i n t c )
scale nums [ n f i x e d : ] = numpy . arange ( d v s t a r t , d v s t a r t +n re f ,

dtype=numpy . i n t c )
span num = −1 # F ix ing Span
ax is = numpy . zeros ( 3 )
ax is [ 2 ] = −1.0
f f d t w i s t = elements . FFDTwistScale ( twist nums , scale nums , span num ,

Xaxis , ax is )
i f t w i s t :

# Set the bounds on the t w i s t
u b t w i s t = (10.0∗numpy . p i ) / 180 .0
l b t w i s t = −u b t w i s t
lower = l b t w i s t ∗numpy . ones ( n f i x e d + n r e f )
upper = u b t w i s t∗numpy . ones ( n f i x e d + n r e f )
f f d t w i s t . setTwistBounds ( lower , upper )

i f scale :
# Set the bounds on the scale
l b s c a l e =0.2
ub scale =2.0
lower = l b s c a l e∗numpy . ones ( n f i x e d + n r e f )
upper = ub scale∗numpy . ones ( n f i x e d + n r e f )
f f d t w i s t . setScaleBounds ( lower , upper )

i f span num >= 0:
# Set the bounds on the span
lb span =0.5
ub span =1.5
f f d t w i s t . setSpanBounds ( lbspan , ubspan )

for f fd vo lume in f fd vo lumes :
f fd vo lume . addFFDObject ( f f d t w i s t )

return f fd vo lumes

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 2 . 4 : De f in ing The Funct ion to set up the ma te r i a l c lass
def s e t u p w i n g t a c s i s o (comm, bdf name ,

92



dv num=0 , d v d i c t ={} , ys=370e6 ,
nload cases =1) :

mesh = TACS. TACSMeshLoader (comm)
mesh . scanBdfF i le ( bdf name )
n r i bs = mesh . getNumRibs ( )
nspars = mesh . getNumSpars ( )
# The empty data f o r the r i b s / spars / sk ins
t op sk in con = numpy . empty ( ( n r ibs−1, nspars−1) , numpy . ob jec t )
bo t sk in con = numpy . empty ( ( n r ibs−1, nspars−1) , numpy . ob jec t )
spar con = numpy . empty ( ( nspars , nr ibs −1) , numpy . ob jec t )
r i b c on = numpy . empty ( ( nr ibs , nspars−1) , numpy . ob jec t )
# The re ference p o s i t i o n s
y ax i s = numpy . ar ray ( [ 0 . 0 , 1 .0 , 0 . 0 ] )
z a x i s t o p = numpy . ar ray ( [ 0 . 0 , 0 .0 , 1 . 0 ] )
z a x i s b o t = − z a x i s t o p
# Create the r i b s
dcon = c r e a t e i s o s t i f f n e s s (dvnum=−1, t =0.01)
dcon . setRefAxis ( y ax i s )
r i b c on [ : , : ] = dcon
# Create c o n s t i t u t i v e c lasses f o r the top and bottom sk in
t s k i n = 0.005
con va ls = [ ]
con dvs = [ ]
con a l low = [ ]
d e l t a t = 0.010 # 1 mm
for j in xrange ( nspars−1):

for i in xrange ( nr ibs −1):
top sk in con [ i , j ] = c r e a t e i s o s t i f f n e s s ( t = t sk in ,

dvnum=dv num ,
t m in =0.0015 , ys=ys )

top sk in con [ i , j ] . setRefAxis ( z a x i s t o p )
d v d i c t [ ’ Top sk in th ickness (%d,%d ) ’%( i , j ) ] = dv num
# Set the c o n s t r a i n t up
i f i > 0:

con va ls . append ( [ 1 . 0 , −1.0])
con dvs . append ( [ dv num−1, dv num ] )
con a l low . append ( d e l t a t )

i f j < nspars−1:
con va ls . append ( [ 1 . 0 , −1.0])
con dvs . append ( [ dv num , dv num + nr ibs −1])
con a l low . append ( d e l t a t )

# Increment the design v a r i a b l e number
dv num += 1

for j in xrange ( nspars−1):
for i in xrange ( nr ibs −1):

bo t sk in con [ i , j ] = c r e a t e i s o s t i f f n e s s ( t = t sk in ,
dvnum=dv num ,
t m in =0.0015 , ys=ys )

bo t sk in con [ i , j ] . setRefAxis ( z a x i s b o t )
d v d i c t [ ’ Bottom sk in th ickness (%d,%d ) ’%( i , j ) ] = dv num
# Set the c o n s t r a i n t up
i f i > 0:

con va ls . append ( [ 1 . 0 , −1.0])
con dvs . append ( [ dv num−1, dv num ] )
con a l low . append ( d e l t a t )

i f j < nspars−1:
con va ls . append ( [ 1 . 0 , −1.0])
con dvs . append ( [ dv num , dv num + nr ibs −1])
con a l low . append ( d e l t a t )

# Increment the design v a r i a b l e number
dv num += 1

# Create new c o n s t i t u t i v e c lasses f o r the spars
t spa r = 0.01
for i in xrange ( nspars ) :

for j in xrange ( nr ibs −1):
spar con [ i , j ] = c r e a t e i s o s t i f f n e s s ( t = tspar ,

dvnum=dv num ,
t m in =0.005 , ys=ys )

spar con [ i , j ] . setRefAxis ( z a x i s t o p )
d v d i c t [ ’ Spar th ickness (%d,%d ) ’%( i , j ) ] = dv num
# Set the c o n s t r a i n t up
i f j > 0:

con va ls . append ( [ 1 . 0 , −1.0])
con dvs . append ( [ dv num−1, dv num ] )
con a l low . append ( d e l t a t )

# Increment the design v a r i a b l e number
dv num += 1

# Set the r i b s t i f n e s s e s
t r i b =0.008
for i in xrange (1 , n r i bs ) :

r i b s t i f f = c r e a t e i s o s t i f f n e s s ( t = t r i b ,
dvnum=dv num ,
t m in =0.005 , ys=ys )

r i b s t i f f . setRefAxis ( y ax i s )
r i b c on [ i , : ] = r i b s t i f f
d v d i c t [ ’ Rib th ickness %d ’%( i ) ] = dv num
dv num += 1
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ks domains = [ ]
for k in xrange ( 4 ) :

ks domains . append ( [ ] )
for k in xrange (mesh . getNumComponents ( ) ) :

e lem descr ip t = mesh . getElementDescr ip t ( k )
comp descr ipt = mesh . getComponentDescript ( k )
m = re . match ( r ’ .∗\ ( ( [0−9]+) , ( [0−9]+)\ ) ’ , comp descr ipt )
i f m:

i = s t r i n g . a t o i (m. group ( 1 ) )
j = s t r i n g . a t o i (m. group ( 2 ) )

else :
pr in t ’ Component d e s c r i p t i o n not understood ’

con = None
i f comp descr ipt [ 0 : 3 ] == ’ Top ’ :

e lem id = 0
con = top sk in con [ i , j ]
ks domains [ 0 ] . append ( k )

e l i f comp descr ipt [ 0 : 3 ] == ’ Bot ’ :
e lem id = 1
con = bo t sk in con [ i , j ]
ks domains [ 1 ] . append ( k )

e l i f comp descr ipt [ 0 : 4 ] == ’ Spar ’ :
e lem id = 2
con = spar con [ i , j ]
ks domains [ 2 ] . append ( k )

else :
e lem id = 3
con = r i b c on [ i , j ]
ks domains [ 3 ] . append ( k )

i f e lem descr ip t == ’CQUAD4 ’ :
elem = elements . MITCShell2 ( con , elements . MITCShell2 . LINEAR , e lem id )

mesh . setElement ( k , elem )
vars per node = 6
num load cases = 2
tacs = mesh . createTACS ( vars per node , nload cases )
# Create the KS f u nc t i o ns and set the domains
k s l i s t = [ ]
for load case in xrange ( nload cases ) :

k s l i s t . append ( [ ] )
for domain in ks domains :

d = numpy . ar ray ( domain , dtype=numpy . i n t c )
ks weight = 30.0
ks = f u n c t i o n s . SimpleKSFai lure ( tacs , ks weight , load case )
l o a d f a c t o r = 1.0 #1.5
ks . setLoadFactor ( l o a d f a c t o r )
mesh . setFunctionDomain ( ks , domain )
k s l i s t [ load case ] . append ( ks )

# Create the h5 viewer
h5 = TACS.TACSToHDF5( tacs )
z o n e t i t l e = [ ’ top sk in ’ , ’ bottom sk in ’ , ’ spars ’ , ’ r i b s ’ ]
for i in xrange ( len ( z o n e t i t l e ) ) :

h5 . addGroup ( z o n e t i t l e [ i ] , i , elements .SHELL,
h5 .WRITE CON |
h5 .WRITE NODES |
h5 .WRITE DISPLACEMENTS |
h5 .WRITE STRESSES |
h5 . WRITE STRAINS |
h5 .WRITE EXTRAS)

return tacs , h5 , k s l i s t , dv num , \
con vals , con dvs , con a l low

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 2 . 5 : De f in ing The classes f o r the a e r o s t r u c t u r a l−o p t i m i z a t i o n
class :
class aeros t ruc tu re case :

dv num = 0
d v d i c t = {}
aero member = False
structure member = False
so l ve r = None
tacs = None
t r i P a n = None
h5 viewer = None
k s l i s t = None
n f l i g h t c o n s = 1
f l i g h t c o n s = [ ]
n t con = 0
con va ls = None
con dvs = None
con al low = None
tacsMap = None
t r iMap = None
Qinf = 0.0
return

class a e r o s t r u c t u r e o p t :
def i n i t ( s e l f , as case , f ixed mass , nks ) :
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s e l f . as case = as case
s e l f . f ixed mass = f ixed mass
s e l f . num design vars = as case . dv num
s e l f . nks = nks
s e l f . o u t p u t f r e q = 5
# Set up the f u nc t i o ns
s e l f . mass func = None
s e l f . mass func = f u n c t i o n s . St ruc tura lMass ( s e l f . as case . tacs )
# Set up the TriPan f u n c t i o n s
s e l f . k s l i s t = s e l f . as case . k s l i s t
i f s e l f . k s l i s t == None :

s e l f . k s l i s t = [ None]∗ s e l f . nks # Create a dummy l i s t
s e l f . l i f t f u n c = t r i p a n . T r i P a n L i f t ( )
s e l f . d rag func = t r i p a n . TriPanDrag ( )
# 1 l i f t , 1 mass and nks s t ress KS f u n c t i o n s cons t ra i n t s ,
# nt con s t r u c t u r a l th ickness c o n s t r a i n t s
s e l f . ncon = 2 + s e l f . nks + as case . n t con
s e l f . fc num = 0
s e l f . g = 9.81 # m/ s ˆ2
s e l f . l o a d f a c t o r = 1.0
s e l f . con mat = None
# Assemble the c o n s t r a i n t mat r i x
s e l f . con mat = numpy . zeros ( ( as case . nt con , s e l f . num design vars ) )
# Go through and set the values
for k in xrange ( as case . n t con ) :

for j in xrange ( len ( as case . con dvs [ k ] ) ) :
s e l f . con mat [ k , as case . con dvs [ k ] [ j ] ] = \
as case . con va ls [ k ] [ j ]

s roo t = s e l f . as case . s t r u c t u r e r o o t
s e l f . con mat = s e l f . as case . global comm . bcast ( s e l f . con mat , roo t =s roo t )
s e l f . w r i t e i n i t f i l e s ( )
s e l f . i t e r a t i o n c o u n t = 0
return

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 2 . 6 : De f in ing The f u n c t i o n to w r i t e the i n i t i a l geometry f i l e

def w r i t e i n i t f i l e s ( s e l f ) :
f i l e name = p r e f i x + ’ o b j a e r o i n i t . dat ’
s e l f . as case . so l ve r . w r i t e A e r o F i l e ( f i l e name )
f i l e name = p r e f i x + ’ o b j t a c s i n i t . h5 ’
s e l f . as case . h5 viewer . w r i t e T o F i l e (0 , f i le name ,

’ o b j e c t i v e case ’ )
return

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 2 . 7 : De f in ing The f u n c t i o n to compute the o b j e c t i v e and c o n s t r a i n t s

def obj con ( s e l f , x ) :
ob j = 0.0
con = numpy . zeros ( s e l f . ncon )
so l ve r = s e l f . as case . so l ve r
so l ve r . setDesignVars ( x )
so l ve r . ze roF l i g h tCo nd i t i o n ( s e l f . fc num )
so l ve r . s e t F l i g h t C o n d i t i o n ( s e l f . fc num )
so l ve r . so lveKry lov ( )
ob j = so l ve r . evalAeroFunc ( s e l f . d rag func )
# Evaluate the l i f t c o n s t r a i n t
l i f t = 2.0∗ so l ve r . evalAeroFunc ( s e l f . l i f t f u n c )
wing mass = 2.0∗ so l ve r . eva lSt ruc tureFunc ( s e l f . mass func )
mass = s e l f . f ixed mass + \

2.0∗ so l ve r . eva lSt ruc tureFunc ( s e l f . mass func )
con [ 0 ] = l i f t − \

s e l f . l o a d f a c t o r ∗ ( ( s e l f . g∗mass ) / s e l f . as case . Qinf )
con [ 1 ] = mass
# Evaluate the ks c o n s t r a i n t s
for k in xrange ( s e l f . nks ) :

con [ k +2] = \
so l ve r . eva lSt ruc tureFunc ( s e l f . k s l i s t [ k ] )

con [2+ s e l f . nks : ] = numpy . dot ( s e l f . con mat , x )
i f s e l f . i t e r a t i o n c o u n t % s e l f . o u t p u t f r e q == 0:

i t = s e l f . i t e r a t i o n c o u n t
f i l e name = p r e f i x + ’ ob j aero%03d . dat ’%( i t )
so l ve r . w r i t e A e r o F i l e ( f i l e name )
f i l e name = p r e f i x + ’ o b j l i f t d i s t %03d . dat ’%( i t )
Zloc = numpy . l i nspace (0 .01 , 8 .0 )
s e l f . as case . t r i P a n . w r i t e L i f t D i s t r i b u t i o n ( f i le name ,

Zloc )
f i l e name = p r e f i x + ’ o b j t a c s%03d . h5 ’%( i t )
s e l f . as case . h5 viewer . w r i t e T o F i l e (0 , f i le name ,

’ o b j e c t i v e case ’ )
# Wri te the design v a r i a b l e s to a f i l e
fp = open ( p r e f i x + ’ des ign vars . dat ’ , ’w ’ )
for xva l in x :

fp . w r i t e ( ’ %18.10e\n ’%(xva l ) )
fp . c lose ( )

s e l f . i t e r a t i o n c o u n t += 1
itnum = s e l f . i t e r a t i o n c o u n t
pr in t ’ I t e r a t i o n Number = ’ , i tnum
pr in t ’ ’
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pr in t ’ Design v a r i ab l e s ’ , x
pr in t ’ ’
pr in t ’ To ta l Mass ’ , mass
pr in t ’ Wing Mass ’ , wing mass
pr in t ’ Ob jec t i ve ( Drag ) ’ , ob j
pr in t ’ V e r t i c a l R Cons t ra in t ’ , con [ 0 ]
pr in t ’KS Cons t ra in t ’ , con [ 1 : 5 ]
pr in t ’ ’
d e l t a t i m e = datet ime . datet ime . now ( ) − t0
pr in t ’ Time spent s ince s t a r t : ’ , d e l t a t i m e
pr in t ’ Eva lua t ion o f o b j e c t i v e and c o n s t r a i n t : Done ! ’
f a i l = 0
return obj , con , f a i l

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 2 . 8 : De f in ing The f u n c t i o n to compute the grad ien ts o f the o b j e c t i v e and c o n s t r a i n t s

def gobj con ( s e l f , x , obj , con ) :
gobj = numpy . zeros ( s e l f . num design vars )
gcon = numpy . zeros ( ( s e l f . ncon , s e l f . num design vars ) )
so l ve r = s e l f . as case . so l ve r
so l ve r . s e t F l i g h t C o n d i t i o n ( s e l f . fc num )
so l ve r . se tUpAdjo in t ( )
so l ve r . solveAKAeroFunc ( s e l f . drag func , gobj )
# Evaluate the g rad ien t o f the l i f t
g l i f t = numpy . zeros ( s e l f . num design vars )
so l ve r . solveAKAeroFunc ( s e l f . l i f t f u n c , g l i f t )
g l i f t ∗= 2.0
# Evaluate the g rad ien t o f the s t r u c t u r a l mass
gmass = numpy . zeros ( s e l f . num design vars )
so l ve r . eva lPa r t i a lS t r uc tu reFunc ( s e l f . mass func , gmass )
gmass ∗= 2.0
gcon [ 0 , : ] = g l i f t − \

s e l f . l o a d f a c t o r ∗( s e l f . g / s e l f . as case . Qinf )∗gmass
gcon [ 1 , : ] = gmass
# Evaluate the ks c o n s t r a i n t s
for k in xrange ( s e l f . nks ) :

so l ve r . solveAKStructureFunc ( s e l f . k s l i s t [ k ] , gcon [2+k , : ] )
gcon [2+ s e l f . nks : , : ] = s e l f . con mat
gobj = numpy . mat ( gobj )
d e l t a t i m e = datet ime . datet ime . now ( ) − t0
pr in t ’ Time spent s ince s t a r t : ’ , d e l t a t i m e
pr in t ’ Eva lua t ion o f o b j e c t i v e and c o n s t r a i n t g rad ien ts : Done ! ’
f a i l = 0
return gobj , gcon , f a i l

# =============================================================================
# Par t 3 : Core o f the S c r i p t f o r Opt im iza t ion
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 1 : De f in ing The Design Parameters f o r the Atmosphere p r o p e r t i e s ( Soaring C i r c u i t S i t u a t i o n )
# An a u x i l i a r y geometr ic parameter f o r the outputs c a l c u l a t i o n
Semi Span = 15/2
MTOW = 430.0 #kg
# Atmosphere p r o p e r t i e s ca l cu la ted wi th r e l a t i o n to the 1976 standard atmosphere up to 230 ,000 f t .
# Generic atmospheric cond i t i ons f o r 1000m , 25m/ s wi th MAC as re ference lengh t
# Set the aerodynamic load case in fo rma t i on
load case = 0
Minf = 0.0743 # Imcompressible Mach number
rho = 1.1117 # A i r dens i t y kg /mˆ3
a i n f = 336.4346 # Speed of sound m/ s
alpha = (3 .0 /180 .0 )∗numpy . p i # Small G l i d i ng Angle
V in f = Minf∗a i n f # A i r Speed
Qinf = 0.5∗ rho∗V in f∗∗2 # Dynamic Pressure

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 2 : Create the aeros t ruc tu re case ob jec t
as case = aeros t ruc tu re case (MPI .COMMWORLD)
as case . Qinf = Qinf

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 3 : Set the aerodynamic load case in fo rma t i on
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
load case = 0
alpha = 3.0 /180 .0 ∗ numpy . p i
fcon = t r i p a n . F l i g h t C o n d i t i o n ( rho , Minf , V in f , alpha ,

as case . dv num , load case )
a lpha low = −4.0/180.0 ∗ numpy . p i
a lpha h igh = 7.0 /180 .0 ∗ numpy . p i
fcon . setAlphaBounds ( alpha low , a lpha h igh )
as case . d v d i c t [ ’ Angle o f a t t ack ’ ] = as case . dv num
as case . dv num += 1
as case . f l i g h t c o n s . append ( fcon )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 4 : Set up the FFD volume wi th t w i s t
n r e f = 4 # Number o f t w i s t−v a r i a b l e re f−ax is po in t s
as case . d v d i c t [ ’ Twis t angles ’ ] = range ( as case . dv num ,

as case . dv num+ n r e f )
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as case . dv num += n r e f
as case . d v d i c t [ ’ Scale Factor ’ ] = range ( as case . dv num ,

as case . dv num+ n r e f )
f fd vo lumes = s e t u p w i n g r e f a x i s ( n r e f =n re f ,

d v s t a r t =as case . dv num−n re f ,
p chord =0.25)

as case . dv num += n r e f
for f f d in f fd vo lumes :

f f d . p r i n t T e c p l o t F i l e ( ’ f f d v o l . dat ’ )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 5 : Set up the s t r u c t u r e
bdf name = ’mesh / wing . bdf ’
tacs , h5 viewer , k s l i s t o f l i s t s , dv num , \

con vals , con dvs , con a l low = \
s e t u p w i n g t a c s i s o ( as case . local comm , bdf name ,

dv num=as case . dv num ,
d v d i c t =as case . dv d i c t , ys=434e6 ,
nload cases =1)

tacsMap = TACS. TACSParametricNodeMap ( len ( f fd vo lumes ) )
for k in xrange ( len ( f fd vo lumes ) ) :

tacsMap . addMap( k , f fd vo lumes [ k ] )
# Assign the appropr ia te values to the as case
as case . dv num = dv num
as case . tacs = tacs
as case . h5 viewer = h5 viewer
as case . k s l i s t = k s l i s t o f l i s t s [ 0 ]
as case . nt con = len ( con dvs )
as case . tacsMap = tacsMap
as case . con va ls = con va ls
as case . con dvs = con dvs
as case . con a l low = con al low
for ks in as case . k s l i s t :

ks . setLoadFactor ( 1 . 0 )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 6 : Set up the aerodynamic problem
t r i p a n f i l e = ’ geo / wing 35x60 . t r i p a n ’
w a k e f i l e = ’ geo / wing 35x60 . wake ’
# Set up TriPan using the f i l e s
ndownstream = 60
sym d i rec t i on = 2 # Use symmetry about the z−ax is
down dist = 150.0
t ime dependent = 0
a wake di r = numpy . zeros ( 3 )
b wake di r = numpy . zeros ( 3 )
a wake di r [ 1 ] = 1.0
b wake di r [ 2 ] = 1.0
# St re tch the wake downstream
wake h is to ry = t r i p a n . WakeHistory ( ndownstream , down dist ,

t r i p a n . WakeHistory .STRETCHED)
t r i P a n = t r i p a n . Tr iPane l ( as case . local comm ,

t r i p a n f i l e , wake f i l e , wake his tory ,
t ime dependent , ndownstream ,
a wake dir , b wake dir , sym d i rec t i on )

npanels = t r i P a n . getNumPanels ( )
t r i P a n . setPCSizes ( 1 . 5 , 150∗npanels )
as case . t r i P a n = t r i P a n

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 7 : Set up the aero−s t r u c t u r a l so l ve r
rank = as case . global comm . rank
t r a n s f e r = t r i p a n . setUpLDTransfer ( as case . global comm ,

as case . s t r u c t u r e r o o t ,
as case . aero roo t ,
as case . local comm ,
as case . t r iPan , as case . tacs ,
p r e f i x + ’ r i g i d l i n k s%d . dat ’%(rank ) )

# Create the aero−s t r u c t u r a l ob jec t
so l ve r = t r i p a n . TACSTriPan ( as case . global comm ,

as case . t r iPan , as case . tacs , t r a n s f e r ,
as case . n f l i g h t c o n s )

for k in xrange ( as case . n f l i g h t c o n s ) :
so l ve r . addF l igh tCond i t i on ( k , as case . f l i g h t c o n s [ k ] )

t r iMap = t r i p a n . TriPanMap ( as case . t r iPan , len ( f fd vo lumes ) )
for k in xrange ( len ( f fd vo lumes ) ) :

t r iMap . addMap( k , f fd vo lumes [ k ] )
t r iMap . p r o j e c t P o i n t s ( )
for k in xrange ( as case . n f l i g h t c o n s ) :

so l ve r . setTriPanMap ( k , t r iMap )
as case . t r iMap = t r iMap
for k in xrange ( as case . n f l i g h t c o n s ) :
so l ve r . setTACSMap( k , as case . tacsMap )
as case . so l ve r = so l ve r

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 8 : Data f o r s e t t i n g up the so l ve r op t ions
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# Moni tor the r e s i d ua l s and the Kry lov r e s i d u a l s
resmoni tor = 1
kmoni tor = 0
nkmonitor = 0
so l ve r . se tMon i to r ( resmoni tor , kmonitor , nkmonitor )
tmon i to r = 1
so l ve r . setTimeMonitor ( tmon i to r )
l e v F i l l = 25
f i l l = 15.0
so l ve r . s e t S t r u c t u r e P c F i l l ( l e v F i l l , f i l l )
# Set the s t r u c t u r e opt ions
i t e r s = 50
inner = 5
r e s t a r t = 0
so l ve r . setStructureGMRESIters ( i t e r s , inner , 0)
max i te rs = 16
so l ve r . setMaxGSIters ( max i te rs )
# Approximate the d e r i v a t i v e o f the r e s i d u a l w. r . t . the nodal l o c a t i o n s
use pc approx = 1
so l ve r . setNKUsePCApproximation ( use pc approx )
# Set the aerodynamic parameters
max i te rs = 15
so l ve r . setAeroGMRESIters ( max i te rs )
# Set the Newton−Kry lov parameters
formXptMat = 1
xptMatFreq = 8 # Recalcu la te the XptMat every n i t e r a t i o n s
aeropconly = 0
tacspcon ly = 0
so l ve r . setNKOptions ( formXptMat , xptMatFreq , aeropconly , tacspcon ly )
i t e r s = 60
n r e s t a r t = 0
so l ve r . setNKGMRESIters ( i t e r s , n r e s t a r t )
r t o l = 1e−4
a t o l = 1e−30
so l ve r . setNKGMRESTol ( r t o l , a t o l )
nks = 0
i f as case . k s l i s t != None :

nks = len ( as case . k s l i s t )
nks = as case . global comm . bcast ( nks , roo t =0)

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 . 9 : Set up the o p t i m i z a t i o n problem
# Create the o p t i m i z a t i o n ob jec t
f ixed mass = 0.50∗MTOW
as opt = a e r o s t r u c t u r e o p t ( as case , f ixed mass , nks )
ndvs = as case . dv num
xva ls = numpy . zeros ( ndvs )
xlower = numpy . zeros ( ndvs )
xupper = numpy . zeros ( ndvs )
xlower [ : ] = −1e20
xupper [ : ] = 1e20
# Get the v a r i a b l e values
# Need to do something to u n i q u i f y the design v a r i a b l e s
as case . so l ve r . getDesignVars ( xva ls )
as case . so l ve r . getDesignVarRange ( xlower , xupper )
# Set up the o p t i m i z a t i o n problem
opt prob = Opt im iza t ion ( ’ Drag min im iza t ion ’ , as opt . ob j con )
# Add the o b j e c t i v e
opt prob . addObj ( ’ Drag ’ )
# Add the c o n s t r a i n t s
opt prob . addCon ( ’ L i f t con ’ , lower =0.0 , upper =0.0)
opt prob . addCon ( ’Mass con ’ , lower =0.0 , upper =525.0)
for i in xrange ( nks ) :

opt prob . addCon ( ’KS %d ’%( i ) , lower =0.5 , upper =1.0)
# Add the th ickness c o n s t r a i n t s
for k in xrange ( as case . n t con ) :

opt prob . addCon ( ’ t con %d ’%(k ) , lower=−as case . con a l low [ k ] ,
upper=as case . con a l low [ k ] )

keys = as case . d v d i c t . keys ( )
dvcmp = compare design vars ( as case . d v d i c t )
keys . s o r t (cmp=dvcmp . compare )
# Add the v a r i a b l e s
for key in keys :

a = numpy . a t l e a s t 1 d ( as case . d v d i c t [ key ] )
i f l en ( a ) == 1:

opt prob . addVar ( key , ’ c ’ , value=xva ls [ a [ 0 ] ] ,
lower=xlower [ a [ 0 ] ] , upper=xupper [ a [ 0 ] ] )

else :
for i in xrange ( len ( a ) ) :

opt prob . addVar ( key + ’ %3d ’%( i +1) , ’ c ’ , value=xva ls [ a [ i ] ] ,
lower=xlower [ a [ i ] ] , upper=xupper [ a [ i ] ] )

# Set up the op t im ize r
opt = SNOPT( )
o p t t o l = 5e−5
c o n t o l = 5e−5
opt . setOpt ion ( ’ Nonder iva t i ve l i nesearch ’ )
opt . setOpt ion ( ’ Major o p t i m a l i t y to le rance ’ , o p t t o l )
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opt . setOpt ion ( ’ Major f e a s i b i l i t y to le rance ’ , c o n t o l )
opt . setOpt ion ( ’ Major step l i m i t ’ , 0 .1 )
opt . setOpt ion ( ’ I t e r a t i o n s l i m i t ’ , 100000)
opt . setOpt ion ( ’ Major i t e r a t i o n s l i m i t ’ , 10000)
opt . setOpt ion ( ’ Minor i t e r a t i o n s l i m i t ’ , 10000)
opt . setOpt ion ( ’ P r i n t f i l e ’ , p r e f i x + ’ SNOPT print . out ’ )
opt . setOpt ion ( ’Summary f i l e ’ , p r e f i x + ’SNOPT summary . out ’ )
pr in t opt prob
opt ( opt prob , as opt . gobj con )

# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
# Par t 3 .10 : Se t t i ng Up the So lu t i on Output F i l e s
# Se t t i ng the names f o r the Output F i l e s
l i f t d i s t n a m e = p r e f i x + ’ w i n g o p t l i f t d i s t . dat ’
opt sol name = p r e f i x + ’ Wing Opt Solut ion . out ’
tacs sol name = p r e f i x + ’ w i n g o p t t a c s s o l u t i o n . h5 ’
# Generat ing Surface s o l u t i o n output
opt prob . w r i t e 2 f i l e ( o u t f i l e =opt sol name , d i s p s o l s = ’ True ’ )
# Generat ing . dat Tacp lo t V i s u a l i z a t i o n f i l e s
ou t t ype = 1
t r i P a n . wr i t eSeqTecp lo tF i l e ( tecp lo t so l name , −1.0, ou t t ype )
# Generat ing l i f t d i s t r i b u t i o n graph
Zloc = numpy . l i nspace (0 .01 , Semi span )
t r i P a n . w r i t e L i f t D i s t r i b u t i o n ( l i f t d i s t n a m e , Zloc )
as case . h5 viewer . w r i t e T o F i l e (0 , tacs sol name , ’ o b j e c t i v e case ’ )
f i n a l t i m e = datet ime . datet ime . now ( ) − t0
pr in t ’ To ta l t ime spent i n the aerodynamic o p t i m i z a t i o n : ’ , f i n a l t i m e
# =============================================================================
� �
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