Content-based Recommender Systems
Recuperação de Informação
Doutoramento em Engenharia Informática e Computadores

Paula Cristina Vaz – 60620/D

Instituto Superior Técnico
Universidade Técnica de Lisboa
The large amounts of information available in the Internet.
Introduction

The large amounts of information available in the Internet.

The information in the Internet is dynamic and heterogeneous.
The large amounts of information available in the Internet.

The information in the Internet is dynamic and heterogeneous.

Personalizing the access to the available information is important.
Introduction

The large amounts of information available in the Internet.

The information in the Internet is dynamic and heterogeneous.

Personalizing the access to the available information is important.

Recommendation systems

Research in recommendation emerged from the information retrieval research in the mid-90s.
Collaborative filters
Collaborative filters identify users with similar preferences and use this information to generate recommendations.

Content-based filters
Content-based filters try to recommend items similar to those a given user has liked in the past.
Collaborative filters

User-based collaborative filtering

![User-based collaborative filtering diagram]

Item-based collaborative filtering

![Item-based collaborative filtering diagram]
Introduction

2 Content-based Recommendation System
- High Level Architecture
- Content analyzer
- Profile learner
 - Probabilistic models and Naïve Bayes
 - Relevance feedback and Rocchio’s algorithm
- Filtering component
- User Feedback

3 Advantages and drawbacks

4 Over-specialization
High Level Architecture

Content-based Recommender Systems
Content-analyzer

High Level Architecture
- Content analyzer
- Profile learner
- Filtering component
- User Feedback

Outline
- Introduction
- Content-based Recommendation System
 - Advantages and drawbacks
 - Over-specialization
- Conclusion

Content-based Recommender Systems
The content analyzer generates structured representations of the original items, e.g., documents, web pages, news articles, product descriptions, etc.

Item representation have two types:
- the keyword vector space model
- representations that include semantic knowledge
Item representation: Keyword-based vector space model

Documents are represented by a n-dimensional vector, where each dimension corresponds to a term.

- Let
 - \(D = \{d_1, d_2, \ldots, d_N\} \) the document set
 - \(T = \{t_1, t_2, \ldots, t_n\} \) the term set
- document \(d_j \) is represented by \(d_j = \{w_{1,j}, w_{2,j}, \ldots, w_{n,j}\} \)
 where, \(w_{k,j} \) is the weight of term \(k \) in document \(j \)
- typically, the weight is
 \[
 TF - IDF(t_k, d_j) = \frac{f_{k,j}}{\max_z f_{z,j}} \cdot \log \frac{N}{n_k}
 \]
- typically, similarity is measured using the cosine
 \[
 sim(d_i, d_j) = \frac{\sum_k w_{k,i} \cdot w_{k,j}}{\sqrt{\sum_{k,i} w_{k,i}^2} \sqrt{\sum_{k,j} w_{k,j}^2}}
 \]
Document representation using semantic analysis

Documents are represented as,

- Wordnet synset networks that are matched to user profile, also a synset network

- Wordnet synset vector space model using the concept of bag-of-synsets (BOS)

- high-dimensional space of concepts derived from Wikipedia
Profile learner

High Level Architecture
- Content analyzer
- Profile learner
- Filtering component
- User Feedback

Outline
- Introduction
- Content-based Recommendation System
- Advantages and drawbacks
- Over-specialization
- Conclusion

Profile learner

![Diagram of Profile Learner]

- Represented Items
- Structured Item Representation
- Item Descriptions
- Information Source
- New Items
- User Profile
- User feedback
- Active user u_a
- List of recommendations
Profile learner

Collects user documents, from “Represented items” repository, and user feedback. Then tries to generalize the collected data in order to build a profile.

Methods for learning user profile:

- probabilistic methods, e.g., Naïve Bayes
- relevance feedback, Rocchio’s algorithm
- decision trees
- nearest neighbor
- clustering
Probabilistic models

Generates a probabilistic model based on previously observed data.

Naïve Bayes

- observes the documents preferred by the user and calculates the parameters of the observed data, typically using
 - multivariate Bernoulli event model
 - multinomial event model
- estimates the a posteriori probability, \(P(c|d) \) using
 \[
 P(c|d) = \frac{P(c)P(c|d)}{P(d)}
 \]
- empirical results have shown that the multinomial event model outperforms the multivariate Bernoulli
Relevance feedback is a technique that consists of users feeding back into the system on the relevance of retrieved documents with respect to their information needs.

Rocchio’s algorithm

- the algorithm calculates the class vector
 \[\vec{c}_i = \langle \omega_{1,i}, \omega_{2,i}, \ldots, \omega_{|T|,i} \rangle, \]
 where
 - \(\omega_{k,i} \) is the weight of term \(k \) in class \(i \)
 - \(T \) is the vocabulary

- weights are calculated using

 \[
 \omega_{k,i} = \beta \cdot \sum_{d_j \in \text{POS}_i} \frac{\omega_{k,j}}{|\text{POS}_i|} - \gamma \cdot \sum_{d_j \in \text{NEG}_i} \frac{\omega_{k,j}}{|\text{NEG}_i|}
 \]
Filtering component

High Level Architecture
- Content analyzer
- Profile learner
- Filtering component
- User Feedback

Outline
- Introduction
- Content-based Recommendation System
 - Advantages and drawbacks
 - Over-specialization
- Conclusion
The filtering component matches user profile against document representation to generate a recommendation list of items for the active user.

To find new documents, the filtering component

- searches for the documents that maximize
 \[d = \arg \max_{d_j} \frac{P(c)P(c|d_j)}{P(d_j)} \] when using Naïve Bayes classification

- compares documents that are similar to
 \[\tilde{c}_i = \langle \omega_1, i, \omega_2, i, \ldots, \omega_{|T|}, i \rangle \] when using Rocchio’s algorithm

and generates the list of recommendations.
User feedback

The active user looks at the recommendation list and gives feedback to recommendation system.

Implicit feedback

- preferences are collected without user explicit intervention
- user activities monitorized and analyzed
 - documents bought/downloaded
 - documents visualized
 - documents bookmarked

Explicit feedback

- user explicit feeds the systems with ratings
- three main approaches
 - binary: like/deslike
 - numeric ratings: 0-5 or totally dislike, moderate dislike, neutral, moderate like, totally like
 - text comments
1 Introduction

2 Content-based Recommendation System

3 Advantages and drawbacks
 - Advantages
 - Drawbacks

4 Over-specialization

5 Conclusion
Advantages

- User independence
 Content-based recommenders do not use ratings from other users.

- Transparency
 Explanations can be provided based on features.

- New Item
 New items do not need ratings to be recommended.
Drawbacks

- Limited content analysis
 If documents are extremely short, e.g., jokes, content many not be enough to classify items.

- New user problem
 In order to get accurate recommendations, the user must have a enough ratings.

- Over-specialization
 The user is going to be recommended documents similar to those already rated by the user.
1. Introduction

2. Content-based Recommendation System

3. Advantages and drawbacks

4. Over-specialization
 - Novelty vs Serendipity
 - Beyond over-specialization

5. Conclusion
Novelty vs Serendipity

Novelty

Novelty occurs when the system suggests to the user an unknown item that he might have autonomously discovered.

Serendipity

Serendipitous recommendation helps the user to find a surprisingly interesting item that the user might not have otherwise discovered.
Beyond over-specialization

Solutions to surpass over-specialization

- Introduction of some randomness with randomness measures
- Genetic algorithms
- Elimination of items to similar
Conclusion

A high-level architecture content-based recommendation was presented.

Content-based recommenders are not effectively used in real case scenarios due to the over-specialization problem.

Further research in generating serendipitous recommendation is needed.

Content-based recommenders can benefit from further research in NLP, e.g., the use of semantic analysis.