All-Pairs Shortest Paths - Floyd’s Algorithm

Parallel and Distributed Computing

Department of Computer Science and Engineering (DEI)
Instituto Superior Técnico

October 31, 2011
Outline

- All-Pairs Shortest Paths, Floyd’s Algorithm
 - Partitioning
 - Input / Output
 - Implementation and Analysis
 - Benchmarking
Shortest Paths

All Pairs Shortest Paths

Given a weighted, directed graph $G(V, E)$, determine the shortest path between any two nodes in the graph.
All Pairs Shortest Paths

Given a weighted, directed graph \(G(V, E) \), determine the shortest path between any two nodes in the graph.
All Pairs Shortest Paths

Given a weighted, directed graph $G(V, E)$, determine the shortest path between any two nodes in the graph.

```
0 | -2 | -5 | 4
7 | 0  | 9  | ∞
8 | ∞  | 0  | -3
6 | 0  | 6  | 0
```

Adjacency Matrix
The Floyd-Warshall Algorithm

Recursive solution based on *intermediate* vertices.

Let p_{ij} be the minimum-weight path from node i to node j among paths that use a subset of intermediate vertices $\{0, \ldots, k - 1\}$.
The Floyd-Warshall Algorithm

Recursive solution based on intermediate vertices.

Let p_{ij} be the minimum-weight path from node i to node j among paths that use a subset of intermediate vertices $\{0, \ldots, k - 1\}$.

Consider an additional node k:

$k \not\in p_{ij}$

then p_{ij} is shortest path considering the subset of intermediate vertices $\{0, \ldots, k\}$.

$k \in p_{ij}$

then we can decompose p_{ij} as $i \xrightarrow{p_{ik}} k \xrightarrow{p_{kj}} j$, where subpaths p_{ik} and p_{kj} have intermediate vertices in the set $\{0, \ldots, k - 1\}$.
The Floyd-Warshall Algorithm

Recursive solution based on *intermediate* vertices.

Let p_{ij} be the minimum-weight path from node i to node j among paths that use a subset of intermediate vertices $\{0, \ldots, k - 1\}$.

Consider an additional node k:

$k \not\in p_{ij}$

then p_{ij} is shortest path considering the subset of intermediate vertices $\{0, \ldots, k\}$.

$k \in p_{ij}$

then we can decompose p_{ij} as $i \xrightarrow{p_{ik}} k \xrightarrow{p_{kj}} j$, where subpaths p_{ik} and p_{kj} have intermediate vertices in the set $\{0, \ldots, k - 1\}$.

\[
d_{ij}^{(k)} = \begin{cases}
 w_{ij} & \text{if } k = -1 \\
 \min \left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right) & \text{if } k \geq 0
\end{cases}
\]
The Floyd-Warshall Algorithm

1. for $k \leftarrow 0$ to $|V| - 1$
2. for $i \leftarrow 0$ to $|V| - 1$
3. for $j \leftarrow 0$ to $|V| - 1$
4. $d[i, j] \leftarrow \min(d[i, j], d[i, k] + d[k, j])$
The Floyd-Warshall Algorithm

1. for $k \leftarrow 0$ to $|V| - 1$
2. for $i \leftarrow 0$ to $|V| - 1$
3. for $j \leftarrow 0$ to $|V| - 1$
4. $d[i, j] \leftarrow \min(d[i, j], d[i, k] + d[k, j])$

Complexity?

$\Theta(|V|^3)$
The Floyd-Warshall Algorithm

1. for $k \leftarrow 0$ to $|V| - 1$
2. for $i \leftarrow 0$ to $|V| - 1$
3. for $j \leftarrow 0$ to $|V| - 1$
4. $d[i, j] \leftarrow \min(d[i, j], d[i, k] + d[k, j])$

Complexity: $\Theta(|V|^3)$
Partitioning

Partitioning:

Domain decomposition: divide adjacency matrix into its $|V|^2$ elements (computation in the inner loop is primitive task).
Partitioning:

Domain decomposition: divide adjacency matrix into its $|V|^2$ elements (computation in the inner loop is primitive task).
Communication:

- Let $k = 1$.

Row sweep, $i = 2$.

CPD (DEI / IST)
Communication:

Let $k = 1$. Row sweep, $i = 2$.
Communication:

Let \(k = 1 \). Row sweep, \(i = 2 \).
Communication:

Let $k = 1$. Row sweep, $i = 2$.
Communication:

Let $k = 1$. Row sweep, $i = 2$.
Communication:

Let $k = 1$. Column sweep, $j = 3$.

\[\begin{array}{cccc}
 _ & _ & _ & _ \\
 _ & _ & _ & _ \\
 _ & _ & _ & _ \\
 _ & _ & _ & _ \\
 _ & _ & _ & _ \\
 _ & _ & _ & _ \\
 _ & _ & _ & _ \\
 _ & _ & _ & _ \\
\end{array} \]
Communication:

Let $k = 1$. Column sweep, $j = 3$.

![Diagram showing column sweep with two nodes highlighted]
Let $k = 1$. Column sweep, $j = 3$.
Communication:

Let $k = 1$. Column sweep, $j = 3$.

\[
\begin{array}{cccc}
\text{Column 1} & \text{Column 2} & \text{Column 3} & \text{Column 4} \\
\text{Row 1} & \text{Row 2} & \text{Row 3} & \text{Row 4} \\
\text{Row 5} & \text{Row 6} & \text{Row 7} & \text{Row 8} \\
\end{array}
\]
Communication:

In iteration k, every task in row/column k broadcasts its value within task row/column.
Agglomeration and Mapping:

create one task per MPI process

agglomerate tasks to minimize communication

Possible decompositions: row-wise vs column-wise block striped ($n = 11, p = 3$).

Relative merit:

Column-wise block striped

Broadcast within columns eliminated

Row-wise block striped

Broadcast within rows eliminated

Reading, writing and printing matrix simpler
Agglomeration and Mapping:

- create one task per MPI process
- agglomerate tasks to minimize communication

Possible decompositions: row-wise vs column-wise block striped ($n = 11$, $p = 3$).

Relative merit?
Agglomeration and Mapping:

- create one task per MPI process
- agglomerate tasks to minimize communication

Possible decompositions: row-wise vs column-wise block striped ($n = 11$, $p = 3$).

Relative merit?

- Column-wise block striped
 - Broadcast within columns eliminated
- Row-wise block striped
 - Broadcast within rows eliminated
 - Reading, writing and printing matrix simpler
Choosing row-wise block striped decomposition.

Some tasks get $\left\lceil \frac{n}{p} \right\rceil$ rows, other get $\left\lfloor \frac{n}{p} \right\rfloor$.

Which task gets which size?
Comparing Decompositions

Choose row-wise block striped decomposition.

Some tasks get \(\left\lceil \frac{n}{p} \right\rceil \) rows, other get \(\left\lfloor \frac{n}{p} \right\rfloor \).

Which task gets which size?

Distributed approach: distribute larger blocks evenly.

First element of task \(i \): \(\left\lfloor \frac{i \cdot n}{p} \right\rfloor \)

Last element of task \(i \): \(\left\lfloor \left(i + 1 \right) \cdot \frac{n}{p} \right\rfloor - 1 \)

Task owner of element \(j \): \(\left\lfloor \frac{(p(j + 1) - 1)}{n} \right\rfloor \)
Dynamic Matrix Allocation

Array allocation:

Matrix allocation:
Dynamic Matrix Allocation

Array allocation:

Matrix allocation:
Dynamic Matrix Allocation

Array allocation:

Matrix allocation:
Why don't we read the whole file and then execute a `MPI Scatter`?
Reading the Graph Matrix

Why don't we read the whole file and then execute a MPI Scatter?
Why don't we read the whole file and then execute a MPI Scatter?
Why don't we read the whole file and then execute a MPI Scatter?
Why don't we read the whole file and then execute a MPI Scatter?
Reading the Graph Matrix

Why don't we read the whole file and then execute a MPI Scatter?
Why don't we read the whole file and then execute a MPI Scatter?
Why don’t we read the whole file and then execute a **MPI_Scatter**?
Point-to-point Communication

- involves a pair of processes
 - one process sends a message
 - other process receives the message
int MPI_Send (
 void *message,
 int count,
 MPI_Datatype datatype,
 int dest,
 int tag,
 MPI_Comm comm
)
int MPI_Recv (
 void *message,
 int count,
 MPI_Datatype datatype,
 int source,
 int tag,
 MPI_Comm comm,
 MPI_Status *status
)
if (id == j) {
 ...
 Receive from i
 ...
}

if (id == i) {
 ...
 Send to j
 ...
}
... if (id == j) {
 ...
 Receive from i
 ...
}
...

if (id == i) {
 ...
 Send to j
 ...
}
...

Receive is before Send! Why does this work?
Internals of Send andReceive

Sending Process

Program Memory

System Buffer

Receiving Process

System Buffer

Program Memory
Internals of Send and Receive

Sending Process
- Program Memory
- System Buffer

System Buffer

Receiving Process
- System Buffer
- Program Memory

MPI_Send
Internals of Send and Receive

Sending Process

- Program Memory
- System Buffer

Receiving Process

- System Buffer
- Program Memory

MPI_Send
Internals of Send and Receive

Sending Process
- Program Memory
- System Buffer

Receiving Process
- System Buffer
- Program Memory

`MPI_Send`
`MPI_Recv`
function blocks until message buffer free
Return from MPI_Send

- function blocks until message buffer free

- message buffer is free when
 - message copied to system buffer, or
 - message transmitted
function blocks until message buffer free

message buffer is free when
 - message copied to system buffer, or
 - message transmitted

typical scenario
 - message copied to system buffer
 - transmission overlaps computation
Return from MPI_Recv

- function blocks until message in buffer
Return from MPI_Recv

- function blocks until message in buffer
- if message never arrives, function never returns!
Deadlock

Process waiting for a condition that will never become true.

Easy to write send/receive code that deadlocks:

- two processes: both receive before send
Deadlock

Process waiting for a condition that will never become true.

Easy to write send/receive code that deadlocks:

- two processes: both receive before send
- send tag doesn’t match receive tag
Deadlock

Process waiting for a condition that will never become true.

Easy to write send/receive code that deadlocks:

- two processes: both receive before send
- send tag doesn’t match receive tag
- process sends message to wrong destination process
void compute_shortest_paths (int id, int p, double **a, int n)
{
 int i, j, k;
 int offset; /* Local index of broadcast row */
 int root; /* Process controlling row to be bcast */
 double* tmp; /* Holds the broadcast row */

 tmp = (double *) malloc (n * sizeof(double));
 for (k = 0; k < n; k++) {
 root = BLOCK_OWNER(k,p,n);
 if (root == id) {
 offset = k - BLOCK_LOW(id,p,n);
 for (j = 0; j < n; j++)
 tmp[j] = a[offset][j];
 }
 MPI_Bcast (tmp, n, MPI_DOUBLE, root, MPI_COMM_WORLD);
 for (i = 0; i < BLOCK_SIZE(id,p,n); i++)
 for (j = 0; j < n; j++)
 a[i][j] = MIN(a[i][j],a[i][k]+tmp[j]);
 }
 free (tmp);
}
Analysis of the Parallel Algorithm

Let α be the time to compute an iteration.
Sequential execution time?
Analysis of the Parallel Algorithm

Let α be the time to compute an iteration.
Sequential execution time: αn^3
Computation time of parallel program?
Analysis of the Parallel Algorithm

Let α be the time to compute an iteration.
Sequential execution time: αn^3

Computation time of parallel program: $\alpha n \left\lceil \frac{n}{p} \right\rceil n$
 - innermost loop executed n times
 - middle loop executed at most $\left\lceil \frac{n}{p} \right\rceil$ times
 - outer loop executed n times

Number of broadcasts?

Number of broadcasts?

Broadcast time:

$$\left\lceil \log p \right\rceil \left(\lambda + 4n \beta \right)$$

- Each broadcast has $\left\lceil \log p \right\rceil$ steps
- λ is the message latency
- β is the bandwidth
- Each broadcast sends $4n$ bytes

Expected parallel execution time:

$$\alpha n^2 \left\lceil \frac{n}{p} \right\rceil + n \left\lceil \log p \right\rceil \left(\lambda + 4n \beta \right)$$
Analysis of the Parallel Algorithm

Let α be the time to compute an iteration.
Sequential execution time: αn^3

Computation time of parallel program: $\alpha n \left\lceil \frac{n}{p} \right\rceil n$

- innermost loop executed n times
- middle loop executed at most $\left\lceil \frac{n}{p} \right\rceil$ times
- outer loop executed n times

Number of broadcasts: n

- one per outer loop iteration

Broadcast time?
Analysis of the Parallel Algorithm

Let α be the time to compute an iteration.
Sequential execution time: αn^3

Computation time of parallel program: $\alpha n \left\lfloor \frac{n}{p} \right\rfloor n$

- innermost loop executed n times
- middle loop executed at most $\left\lfloor \frac{n}{p} \right\rfloor$ times
- outer loop executed n times

Number of broadcasts: n
- one per outer loop iteration

Broadcast time: $\left\lfloor \log p \right\rfloor \left(\lambda + \frac{4n}{\beta} \right)$

- each broadcast has $\left\lfloor \log p \right\rfloor$ steps
- λ is the message latency
- β is the bandwidth
- each broadcast sends $4n$ bytes
Analysis of the Parallel Algorithm

Let α be the time to compute an iteration.

Sequential execution time: αn^3

Computation time of parallel program: $\alpha n \left\lceil \frac{n}{p} \right\rceil n$

- innermost loop executed n times
- middle loop executed at most $\left\lceil \frac{n}{p} \right\rceil$ times
- outer loop executed n times

Number of broadcasts: n
- one per outer loop iteration

Broadcast time: $\left\lceil \log p \right\rceil \left(\lambda + \frac{4n}{\beta} \right)$
- each broadcast has $\left\lceil \log p \right\rceil$ steps
- λ is the message latency
- β is the bandwidth
- each broadcast sends $4n$ bytes

Expected parallel execution time: $\alpha n^2 \left\lceil \frac{n}{p} \right\rceil + n \left\lceil \log p \right\rceil \left(\lambda + \frac{4n}{\beta} \right)$
Analysis of the Parallel Algorithm

Previous expression will overestimate parallel execution time: after the first iteration, broadcast transmission time overlaps with computation of next row.

Expected parallel execution time:

\[\alpha n^2 \left\lfloor \frac{n}{p} \right\rfloor + n\lceil \log p \rceil \lambda + \lceil \log p \rceil \frac{4n}{\beta} \]

Experimental measurements:

\[\alpha = 25, \, 5 \text{ ns} \]
\[\lambda = 250 \text{ \mu s} \]
\[\beta = 10^7 \text{ bytes/s} \]
Experimental Results

<table>
<thead>
<tr>
<th>Procs</th>
<th>Ideal</th>
<th>Predict 1</th>
<th>Predict 2</th>
<th>Actual</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.5</td>
<td>25.5</td>
<td>25.5</td>
<td>25.5</td>
</tr>
<tr>
<td>2</td>
<td>12.8</td>
<td>13.4</td>
<td>13.0</td>
<td>13.9</td>
</tr>
<tr>
<td>3</td>
<td>8.5</td>
<td>9.5</td>
<td>8.9</td>
<td>9.6</td>
</tr>
<tr>
<td>4</td>
<td>6.4</td>
<td>7.7</td>
<td>6.9</td>
<td>7.3</td>
</tr>
<tr>
<td>5</td>
<td>5.1</td>
<td>6.6</td>
<td>5.7</td>
<td>6.0</td>
</tr>
<tr>
<td>6</td>
<td>4.3</td>
<td>5.9</td>
<td>4.9</td>
<td>5.2</td>
</tr>
<tr>
<td>7</td>
<td>3.6</td>
<td>5.5</td>
<td>4.3</td>
<td>4.5</td>
</tr>
<tr>
<td>8</td>
<td>3.2</td>
<td>5.1</td>
<td>3.9</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Review

- All-Pairs Shortest Paths, Floyd’s Algorithm
 - Partitioning
 - Input / Output
 - Implementation and Analysis
 - Benchmarking
Next Class

- Performance metrics