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This paper describes the development of a preliminary aircraft design application 

employing the concepts of Multidisciplinary Optimization (MDO) and evolutionary 

algorithms. Aerodynamics, structural analysis and flight performance are the main 

disciplines considered for preliminary aircraft design. Aerodynamic analysis is performed 

using a 3D panel method with boundary layer correction and the structural analysis is 

performed using a finite element method, both by external software packages handled by the 

developed application. A particle swarm optimizer was developed to handle the MDO 

problem with a large number of design variables, an Artificial Neural Network (ANN) was 

investigated to predict the Pareto Front (in a context of Multiobjective Optimization) and as 

an accelerator for the whole optimization process. The goal of developing an application that 

is fully independent from user input during the optimization process and is able to interact 

with external analysis tools was reached and several simple aircraft design optimization 

problems are solved, in order to demonstrate the advantages of the MDO concept and the 

developed optimization framework. 

I. Introduction 

NE of the biggest challenges that MDO tools have to overcome is flexibility to adapt to different engineering 

scenarios and are usually bound to solving a predetermined set of design variables. Furthermore, the analysis 

fidelity level is typically low, relying on methods that are often too much simplified to deliver the much needed 

accuracy. 

The main objective of this work is therefore to create an MDO tool that moves towards higher fidelity tools, in 

the context of aircraft design and integrating the emerging concept of evolutionary algorithms. In order to fulfill this 

requirement, a suitable optimizer has to be chosen or developed. Analysis tools that meet the desired depth level 

must also be chosen taking in account the balance between accuracy and computational cost. This application must 

be developed to interact with the analysis tools considering them as independent blocks, functioning as external 

modules, so that more accurate tools can be easily used in the future, simply by swapping them. Finally, the 

computational cost of running an optimization problem should be reasonable. 

The developed application should be validated by several optimization problems, both singlediscipline but, most 

importantly, multidisciplinary ones, particularly in the aircraft design field. 

II. Approach to MDO 

Traditionally, engineering design consists of a sequence of steps, beginning with a conceptual solution to a 

certain mission that is to be performed. This conceptual phase continues on to a preliminary stage until a 

configuration can be frozen. Only then are detailed analyses performed, corresponding to each discipline involved in 

the “product” to be developed. 
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However, this design methodology leads to a successive bottlenecking in design freedom as the analyses and 

design detail is increased (Fig. 1), a fact that has been formally demonstrated
1
 and that may lead to a suboptimal 

design, furthermore emphasizing the advantages of an MDO approach. 

For the purpose of this work, the following definition for MDO is considered: “A methodology for the design of 

complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting 

phenomena”
1
. Multiple conflicting requirements have always had to be taken into account and, therefore, it can be 

considered that the multidisciplinary process has always been used. The key word in the definition, however, is 

methodology
2
. MDO provides a collection of tools and methods that permit the trade-off between different 

disciplines involved in the design process. “MDO is not design but enables it” 
1
. 

 Ideally, the MDO environment should be interactive and flexible enough to allow the problem definition, 

constraints to be applied and simulation depth to be fully specified by the design team, rather than the individual 

disciplines’ teams.  

 In order to facilitate information exchange between the various disciplines and respective teams (or for that 

matter, analysis tools), a single global parametric model of the whole system should be used, from which discipline 

specific models can be generated
3-5

. This consistency has been shown to offer advantages, both when it comes to 

communication between disciplines and eventual redefinition of the global parametric model
4,6,7

.  

 This environment should be transparent, in the sense that it should allow the design team to monitor the 

evolution of variables, verifying whether these are dependent or independent with relation to the problem. This 

enforces the notion that the top design team should have full control of the process flow.  

 Taking in account that modern engineering systems are extremely complex, it is only natural to distribute the 

various disciplines over their respective groups, all interconnected by the MDO environment. Although process 

distribution may present some management challenges, it truly allows for the distribution to be a physical a resource 

distribution, more than just a process division. This enables groups to be able to be in different sites, often 

worldwide; it also enables the use of computational resources and data storage spread over a vast number of nodes
8
. 

 
Figure 1. Traditional approach to product development. 



 

 

American Institute of Aeronautics and Astronautics 
 

 

3 

In this work, an intermediate level of optimization is attempted, regarding the methods used for disciplinary 

analysis. The structure of the MDO process is described in Fig. 2: 

 

As seen from Fig. 2, suitable optimization algorithm and aerodynamic and structural analysis tools had to be 

chosen and eventually developed. Regarding the analysis tools, as a higher level of optimization was the goal and as 

computational resources allow, a 3D panel method with boundary layer correction was chosen for the aerodynamic 

analysis and finite element method for the structural analysis. The chosen optimization algorithm was the Particle 

Swarm, a population based algorithm, that research in the optimization field shows this method yields good results, 

when applied to engineering. 

In the following sections of this paper, the optimization algorithm and the chosen analysis tools will be presented 

in further detail. 

III. Particle Swarm Optimization 

Being the topic of this work the development of an MDO application, a suitable optimizer needed to be chosen 

or developed. Taking in account the large number of design variables (DV’s) resultant from the high level of detail 

attempted, gradient based algorithms were set aside, as these could lead to a high computational cost
9
. Using other 

optimization methods was also a decision made early on in this work, as only in the recent past have non gradient 

methods started to be explored. 

As deterministic methods were set aside, the use of Evolutionary Algorithms (EA’s), or for that matter, any 

biologic process inspired algorithms, was the chosen path to follow. Evolutionary algorithms are a set of a larger 

group of algorithms, so called metaheuristic methods.  

In these methods, the goal is to find the extremes (from this point on assumed to be the minima) of a certain 

objective function with the advantage that the exact state function needs not to be known, i.e., the evaluation 

module(s) of a possible solution can be looked at as a “black-box”. This is of extreme advantage in the design of 

complex engineering systems, as it would be difficult to find the function that relates the inputs (the DV’s) to the 

output (the objective function). 

The Particle Swarm Optimization algorithm was chosen, as this is a reasonably recent method and research in 

the optimization field shows this method yields good results, when applied to engineering
10,11

. 

 
Figure 2. MDO process layout. 
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Particle Swarm Optimization is a population-based evolutionary algorithm based on the concept of social 

intelligence. In this algorithm, a group of initial individuals is randomly generated, containing information about 

their position and velocity within a subspace of the DV’s. Each individual is then evaluated by an objective function 

that defines which individual holds the best position in relation to the problem at hand. On the next iteration, 

individuals are attracted to that point as well as to their respective best position ever, by changing their velocity. As 

the optimization process develops, the whole population further explores the subspace and will eventually converge 

to the optimum of the objective function in that subspace. 

This method holds a number of advantages that makes it a suitable optimizer for the problem at hand: it has 

advantages over other EA’s, regarding efficiency (lower number of iterations needed to attain an optimal solution) 

and flexibility (independence from the problem to solve)
10,11

; it is a robust minima finder (for both local and absolute 

minima), as noise insensitivity is well shown
12-14

; it has the ability of finding a minimum outside its initial bounds; 

there is independence between the dimension of the space in which the particles move and the number of particles in 

the swarm, regarding the algorithm’s ability to find a minimum and it is an obvious choice for a distributed 

computation environment. 

Although there are many available software packages with several variations on the basic PSO algorithm, a 

custom version was implemented for this work, as this approach leads to a better control and adaptability to the rest 

of the application. 

According to the heuristics behind PSO, a certain particle is moving in a hyperspace of dimension N, with 

current position given by xi and velocity by vi. Dimension, N corresponds to the number of DV’s in the optimization 

problem and each component of the vector xi would be the corresponding DV’s value. The distance di between any 

two points is simply calculated as the difference in position between them: 
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Parameters CG and CP correspond to group and particle confidence factors, respectively. Typically, these 

parameters are random values that are positive and no greater than a prescribed limit (typically no greater than 3). 

The ratio between the two limits will determine the behavior of the swarm. If the ratio favors particle confidence, 

then it is most likely that an individual particle will move towards its own verified minimum, giving the algorithm 

good local minima search capability. On the other extreme, where higher group confidence is verified, all of the 

particles will tend to the global minimum, giving the algorithm a better global minimum search capability.  

Parameter � is a value comparable to the particles’ inertia. Again, choosing its value should be done taking in 

account what is the desired behavior of the swarm. A lower inertia particle will have a greater sensitivity to local and 

global minima, giving the swarm faster convergence behavior. Naturally, a too low inertia will make the swarm 

potentially chaotic. 

Typical values used throughout the work were CG = 2.5, CP = 1.0 and � = 0.8 . 

For this work, other features were added to the basic algorithm, in order to increase its stability and convergence 

behavior. Limiters were introduced, and greatly improved the algorithm’s stability. This was done by limiting the 

maximum value for the particles’ velocity at vmax = 0.5 for a time step of ∆t = 0.2 . Another feature that contributed 

for faster convergence was to progressively decrease the particles’ inertia. 

The developed algorithm was then tested against some typical benchmark functions
4
, with different dimension 

and population size, and was found to be robust in finding local and global minima and therefore suitable to use as 

an optimizer for the MDO application. 

As often the optimization problem is a multiobjective problem, the concept of Aggregate Objective Function is 

introduced. This concept allows turning a multiobjective problem into a single objective problem through the 

operator: 

 , , 0  AOF n n singleobjective n

n

f a f a= >∑  (2) 

                                                           
4
 Extended Rosenbrock, Beale and Freudenstein & Roth functions.  
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 Prescribing the values an will result in the optimization process finding an optimal point. Naturally, a careful 

dimensional analysis should be performed a priori to find appropriate weights for the various singleobjective 

functions. This will ensure that the contribution of each singleobjective function is comparable and has relevance for 

finding a solution for the problem at hand. 

IV. Analysis Tools 

A. 3D Panel Method 

As stated, a 3D panel method with boundary layer correction was chosen for the aerodynamics analyses.  

Panel methods are techniques for solving potential flow. Therefore, their applicability would be reduced to 

incompressible flow and high Reynolds number and would fail to calculate the viscous component of the flow over 

the 3D body. However, after applying boundary layer corrections, calculated along streamlines of the potential flow 

and compressibility corrections, it is possible to achieve good accuracy outside its original bounds
15

. 

Computationally, its cost is much lower than that of a CFD approach (finite volume based methods), and the time 

per analysis allows this method to be used with the chosen optimization algorithm. Furthermore, it also allows an 

easy way to interact with an FEM application, as both meshes can have a common surface where aerodynamic 

pressure is applied to the FE model. 

More simplified methods are available, such as 2D Panel Method and Lifting Line Theory
9
. However, these 

methods present too much simplification and the associated inaccuracy, particularly when analyzing non-lifting 

surfaces, such as the fuselage, which have a significant contribution to drag. 

In order to use this method, an adequate panel discretization is needed for the surface of the aircraft, 

guaranteeing that the panels are quadrilateral, that adjacent panels share vertices and that the panels form a closed 

shape. 

As for its implementation, the CMARC code was chosen, as it is already developed and validated, derived from 

Ames Research Center’s PMARC code. CMARC conveniently creates an output file containing information on the 

geometry and aerodynamic coefficients at each panel, allowing for simple integration with the FE module. 

B. Finite Element Method 

As for the structural analysis tool, the use finite element method is widespread and allows the creation of models 

with as much fidelity level as wanted, from very simple models, that allow it to compete with other simplified 

methods (such as Equivalent Plate Theory) all the way up to high fidelity models with high geometric complexity. It 

also allows to directly applying the aerodynamic results (panel pressure and friction) to the shell elements on the FE 

model. 

For this work, Ansys® was chosen, as it is a very complete package from mesh generation to element types 

available to a fast matrix solver. Furthermore, it can be fully controlled through the command line with the use of an 

input file declaring all actions to be taken. This is a key feature for both chosen tools, as the application described in 

this work is intended to be fully automatic and independent from external input. 

V. Parametric Model 

Typically, a geometry is first created and only then is the discretization done, defining global and local 

refinements in order to generate the panels and wake lines. A different approach was taken here, being a 

parameterization created for typical aircraft macro-components, such as the wings, stabilizers and fuselage. For a 

certain parameterization, i.e., a certain aircraft shape, all of the panels are then declared in a file format accepted by 

CMARC. Some care had to be taken in the declaration of the input file, as the orientation of the panels defines which 

side of the panel corresponds to the external flow. 

For wing-like elements, parameters span, chord, dihedral, incidence, sweep and thickness are DV’s (see Fig. 3). 

Span is a one-dimensional DV, whereas all the other are given by a function: 

 ( ),
p

i k k

k

s
DV a f s s

Span
= =∑  (3) 
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where fk are polynomial functions of degree k, with p as the maximum polynomial degree, and dependent on the 

nondimensionalized span, s̄ (s is the local span value and Span is the full span that the element will have). The 

higher the degree p, the higher the variation the parametric model can suffer.  

This approach can be extended to any other element of an aircraft, provided that a suitable parameter is chosen 

(in the case of a fuselage, the longitudinal distribution of cabin diameter would be an example of this). This method 

also presents some advantages, as it makes possible for the DV’s to assume different values in any point of the 

element using the same number of parameters ak, regardless of the refinement of the discretization, i.e., number of 

panels, in the case of the aerodynamic solver. 

All the parameters ak for all the DV’s will correspond to the values in the optimization vector xi in Eq. (1). 

For example, regarding the wing (and for that matter, any wing like element, such as stabilizers or winglets), the 

parameterization starts with span and the airfoil, which, in this work, is not a DV, but imposed a priori for each 

lifting surface, for simplicity. The airfoil is read from a file, being this a nondimensionalised airfoil, with unit chord. 

Then, the other DV’s are calculated from Eq. (3): 

 
( ) ( )
( ) ( ) ( )

1

2

2

3 2

3

4 4

16 24 8

f s

f s s

f s s s

=

= − +

= − +
⋮

 (4) 

As can be seen from the above, fk, for k > 1, are polynomials constructed in the interval [0,1], in such a way that 

for s̄ = 0, s̄ = 1, fk = 0. 

Replacing ak with xk in Eq. (3): 

 
Figure 3. Design Variables for wing elements. 
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The values Chord0, Dihedral0, Incidence0, etc., are needed for a correct parameterization, as they define the 

DV’s values at span s̄ = 0 (they correspond to using the polynomial forms above, Eq. (3), starting at k = 0). The 

distribution of the nondimensional span can be done according to the needs, i.e., in the case of wings where a 

fuselage exists, a full cosine distribution was used; if a Blended Wing Body type of aircraft was being modeled, a 

half cosine distribution would be the most adequate. 

In Fig. 4, an example is given for the parameterization, where sweep (corresponding to the coordinates of the 

leading edge) and chord determined in function of span are shown and the result, in terms of panels for the 

aerodynamic solution. A similar process is also done for incidence, dihedral and the airfoil thickness (for a value of 

1.0 the airfoil suffers no modification, other values will thin or thicken the airfoil). 

Naturally, bounds can and should be applied to any of the DV’s, so that any physical imposed constraints are 

transported onto the aerodynamic model. Even if no physical constraints are to be added, it is a good practice to 

apply them, in order to avoid generating a model that would have severe geometric distortion to the point where 

numerical convergence issues of the solution could appear.  

This parameterization philosophy can be extended to the structural elements. For beams, for example, a section 

geometry can be assumed (I-beam, T-beam, etc.) and parameterized to a single parameter. For shell thickness, this 

method was extended to a bidimensional parameterization to allow variations along any direction. 

VI. Results 

In this section, the results obtained with the application are shown. The first two optimization problems are 

simple problems, aimed at observing the behavior of the application, regarding the optimization algorithm’s 

capability of handling a real life problem and guaranteeing that the interaction with the external modules is 

seamless. The two following problems are more complex, with a larger number of DV’s to be optimized and 

integrated in the aircraft design environment. Finally, a true MDO problem is solved, as the previous problems are 

singlediscipline (only aerodynamic or structural). 

A. Simple Aerodynamic Problem 

In this first example, a simple aerodynamic optimization problem is explored. A rectangular wing is to be 

optimized, regarding its spanwise incidence distribution. Span, chord and airfoil are predefined and constant 

 
Figure 4. Example of Parameterization. 
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throughout the optimization process. Wing semispan is 5 m and chord is 1.25 m. The chosen airfoil was a  

NACA 63A612, which has maximum Cl/Cd at an angle of attack of 3º 
5
. Incidence angle at the wing root was set at 

5º on purpose, in order to have convergence to a solution other than a predictable optimal elliptical distribution of CL 

and the analysis made at a null angle of attack. Bounds were imposed on maximum and minimum local incidence 

angle at -6º and +6º, respectively. The objective function for this problem was simply given by the function: 

 /
L

L D

D

C
f

C
= −  (6) 

In this case, the wing was discretized with 40 panels spanwise, with a cosine spacing (greater refinement near the 

wing tip). As the purpose was to test the capabilities of the optimizer, the swarm population was set to 6 individuals 

(due to the small number of parameters to be optimized), 15 iterations were performed and the aerodynamic solution 

was performed without boundary layer correction.  

Table 1 compares a constant incidence wing (5º throughout the whole span), the best initial solution, i.e., the best 

random individual in the initial population and the final best solution in the population; the increase in L/D ratio in 

relation to the constant incidence wing is shown. 

Spanwise distribution of incidence of the best solution obtained is shown in Fig. 5. The evolution of the 

optimization process is shown in Fig. 6, with points representing each individuals score at each time step, as well as 

lines representing the evolution of the average and best value of the objective function. 

 

                                                           
5
 Obtained through XFoil, for Re = 4M, 5M, with Cl/Cd ≈ 170. 

 L/D to Constant Incidence 

Constant Incidence  29.42 - 

Best Initial Solution  40.26 + 36.8%
 

Best Solution 45.10 + 53.3% 

Table 1. Table of Gains from the optimization process. 

 
Figure 5. Spanwise distribution of incidence. 
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From the results above, it can be concluded that the optimizer was capable in the context of this problem. As 

expected, incidence distribution is such that the incidence angle decreases towards the wing tip, down to a negative 

angle. Being the wing’s planform a rectangular one, this is to be expected, as the induced circulation will lead to an 

effective angle of attack at the tip higher than that of the free-stream. The solution also presents a high variation of 

incidence in the root region, also to be expected, as the root incidence was set to 5º, a higher value than the airfoil’s 

optimal Cl/Cd point. 

B. Simple Structural Problem 
In this example, a simple structural optimization problem is explored. An aluminum I-beam is optimized 

regarding its web height along its span. Height is defined in the z direction. The geometry of this beam and its 

loadings is shown in Fig. 7. 

Bounds were imposed on maximum and minimum height of the beam’s web, 5 mm and 70 mm, respectively. 

As for the solution to be achieved, the objectives to be satisfied are low weight and maximum stress lower than a 

prescribed limit. Thus, the objective function was constructed as follows: 

 
maxAveraObjecti ge Stresve m sassf f f fσ= + +  (7) 

where 

 25 ,mass beamf m=  

 
Figure 6. Optimization process evolution. 

 
Figure 7. Beam section and geometry. 
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Regarding the first objective, both mass and average stress are considered: fmass naturally penalizes a solution 

with high mass, whereas fAverage Stress will benefit a solution that has equal stress in the beam’s cap (where this 

function is analyzed, as higher stresses are expected in this region). As for the function regarding maximum stress, 

this highly penalizes solutions with stresses above the prescribed admissible stress, in this case chosen as 100 MPa. 

For this problem, the beam was discretized with 960 shell elements (320 for each of the caps and web), the 

swarm had 8 individuals and 20 iterations were run. Table 2 compares the best initial solution, i.e., the best random 

individual in the initial population and the final best solution in the population regarding their objective function 

value, mass, maximum stress and average stress. 

Fig. 8 shows the web height distribution along the beam span. As expected in a problem of this sort, the solution 

shows an almost linear variation, reaching, at the beam tip, a value that was naturally determined by the lower bound 

imposed on this parameter (5 mm). 

Figures 9 and 10 show the stress distribution on the upper spar cap (subject to tension). It clearly shows the 

effect of having a component in the objective function that benefits solutions where this element is stressed in a 

uniform way. It should also be noted that the maximum stress in the structure is slightly higher than wanted by 2 %. 

This can be explained as the objective function is continuous and reflects the care that must be taken when designing 

“penalty” functions such as this one. 

 

 Objective Function Mass (kg) �max (MPa) �avg (MPa) 

Best Initial Solution  16.34 0.523
 

74.7 42.2 

Best Solution 11.04 0.399 102.1 91.9 

Table 2. Table of Gains from the optimization process. 

 
Figure 8. Height distribution along span, for the final solution. 
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Finally, figures 11 and 12 show the evolution of the objective function and mass for this optimization problem. 

Looking at both graphs, it should be noted that, initially, a large number of individuals have very high objective 

function values, mainly due to maximum stress being higher than the allowed. As the optimization process goes on, 

all of the individuals start approaching the optimum (iterations 8 to 15). Then, higher values start appearing again, 

fact that is explained by the fact that all solutions now have a geometry that leads to low mass but, therefore, also 

high stresses. 

 

 

 
Figure 9. Stress in the upper cap (unit Pa). 

 
Figure 10. Final solution (�yy, unit Pa, scale 2:1). 

 
Figure 11. Optimization process evolution. 
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C. Winglet Optimization 

In this problem, a full aircraft without winglets is modeled and analyzed, in order to establish a baseline solution. 

This aircraft model is inspired in dimensions on a typical two-seater light airplane and was designed in a way that it 

is statically stable and has an approximately elliptical Lift distribution. The results for this baseline configuration are 

shown in Fig. 13. 

Then, the model in Fig. 13 is used, but winglets are added and optimized. These winglets have some constraints 

(maximum span and area) but are otherwise allowed to have any possible shape, within the parameterization’s 

capabilities. The objective to be fulfilled is naturally to increase the baseline model’s L/D ratio, without changing the 

CM of the aircraft. Maintaining CM as close to null as possible guarantees that no extra drag will be generated by the 

 
Figure 12. Beam mass evolution. 

 
Figure 13. CP distribution on the baseline aircraft. 
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horizontal stabilizer, while trying to maintain static stability of the airplane. This results in the following objective 

function (in a way that the baseline model has a null value when evaluated): 

 / MObjective L D C Winglet Areaf f f f= + +  (8) 

where 

 / 25.62 ,L
L D

D

C
f

C

 
= − − 

 
 

 ,  
MC Mf C=  

 
( ) 2

0, 0.17

100 0.17 , 0.
 

17
Winglet Area

Winglet Area
f

Winglet Area Winglet Area

≤= 
− >  

 

In order to have a shorter time for convergence, the number of iterations was limited and no boundary layer 

correction was used, which leads to lower drag than in reality. However, as can be seen from the results in Table 3, 

the greatest verified difference is in Lift, which would not be very affected by this component. 

Furthermore, the improvement in L/D would have been greater if the aircraft was allowed to vary its angle of 

attack in order to maintain constant lift, as this would lead to a lower component of induced drag. However, as the 

purpose was validation of the optimization process, this simpler approach was taken. The fact that the baseline 

model presents an almost elliptical distribution of CL also contributes to the relatively small improvement.  

 Baseline With Winglets Variation 

Lift (N) 4732 5099 +7.8% 

L/D 25.6 27.9 +9.0% 

Cm 0 -6.3x10
-4 

- 

Table 3. Table of Gains from the optimization process. 
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In Fig. 14, the evolution of the optimization process is shown, where the objective function value is shown for 

each of the six individuals in the swarm during the prescribed eight time steps. 

It should be noted that the winglet may appear not to be a truly feasible solution for structural reasons (see  

Fig. 15). But being this an aerodynamic optimization only, a structural analysis was not included, which could 

eventually lead to a more traditional looking winglet, without the accentuated forward sweep. 

D. Skin Thickness and Wing Ribs Optimization 

In this problem, the aerodynamic baseline solution is used and a structural optimization is performed. Skin 

thickness is optimized in the whole aircraft as well as rib parameter.    

As for the aggregate objective function to be minimized, several solution components were analyzed and 

included in it: mass, wing tip rotation, wing tip deflection and maximum verified stress.  

Structural mass is obviously a main factor in aircraft design and must be minimized. Wing tip rotation was 

equally considered in the objective function, as a structural solution that shows significant wing torsion will have its 

aerodynamic solution invalidated (a true fluid-structure interaction was not used in this work). Wing tip deflection 

was included so that the solution is penalized if it is larger than 5 % of the semispan. The same principle applies for 

maximum stress in the structure, if this value is higher than the maximum value for the considered material. 

 
Figure 14. Optimization process evolution.  

 
Figure 15. Resulting winglets. 
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maxObjective mass Wing Tip Rotation Wing Tip Deflectionf f f f fσ= + + +  (9) 

where 
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Some constraints were also applied, regarding the minimum allowed thickness, as very thin shells may be 

unfeasible. Therefore, the minimum bound applied was 0.635 mm.  

The evolution of the objective function value is shown in Fig. 16. The optimization process evolved as expected, 

minimizing mass  (see Fig. 17) – the main contribution to the AOF – while maintaining the optimal solution within 

the applied constraints, as shown in Fig. 18, where wing tip displacement for the best individual in each time step is 

highlighted. 

 
Figure 16. Objective Function value evolution. 
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Figure 17. Mass evolution. 

 
Figure 18. Wing tip deflection evolution. 

 
Figure 19. Stress Intensity obtained through FEM (unit Pa). 
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Stress intensity verified in the wing root vicinity, as shown Fig. 19, is above the prescribed maximum. This is not 

a fault in the optimizer’s capabilities, but serves to show that the construction of objective functions should be done 

carefully. The optimal point for this particular AOF is one that gave too much value to a low mass, therefore partly 

sacrificing other constraints, in this case, maximum structural stress. 

E. Multidisciplinary Optimization 

Finally, a true multidisciplinary optimization problem was solved. For this problem, aerodynamics, structure and 

basic flight performance were analyzed. A simple scenario was created for a small surveillance UAV: a flying wing 

platform, with a central thicker “body”, designed for long range, flying at an altitude of 5000 m and speed of 70 m/s. 

The geometry of this aircraft is presented in Fig. 21. In order to simplify the problem, the aircraft has a fixed span 

and sweep angle, 
�

 = 27º, and the central body has a fixed geometry. Airfoil was also constant throughout the span 

(except for thickness variations) and is a Wortmann FX 69-H-098. This airfoil was chosen for its low Cm0 (zero lift 

pitching moment) as the aircraft is tailless. However, this is not a reflex airfoil and therefore is not a natural choice 

for this planform, regarding the aircraft’s static stability. This choice was made on purpose to see the optimizer’s 

capability to create a stable configuration even with this airfoil. Chosen geometry values are shown in table 4. 

 

 
Figure 20. Wing deflection (unit m, scale 5:1). 

 
Figure 21. MDO problem: aircraft geometry. 



 

 

American Institute of Aeronautics and Astronautics 
 

 

18 

Regarding the aerodynamics, chord and incidence in the “wing” (between stations B and C) were the DV’s to be 

optimized. Dihedral and sweep were left out of this problem, as only a thorough flight stability analysis would be 

able to resolve these parameters. As for the structure, beams were simulated by adding their respective beam web at 

25 % and 75 % of the airfoil, being that the wing skin serves as their caps, which approaches a box-wing like 

construction and aluminum was chosen for material. As in section D of this chapter, skin thickness of the panels was 

the parameter to be optimized. 

Table 5 summarizes the lower and upper bounds that were applied both to aerodynamic and structural DV’s. 

Recalling Eq. 3, and taking in account that p = 2, this represents a total of 13 parameters ak that were optimized. 

The main objective to be fulfilled by this aircraft is long range. This result was calculated by the Breguet range 

equation: 

 ln ,i

f

WL
R

SFC D W

η  
=   

 
 (10) 

where � is propulsive efficiency (a propeller propulsion was assumed, with � = 0.8), SFC is specific fuel 

consumption (here assumed to be 0.35 kg 
.
 kW

-1
 
.
 h

-1
 ), Wf and Wi are the weight of the aircraft at the final and initial 

points of its mission. Wi was calculated from the lift obtained by the aerodynamic solution and Wf was estimated by 

assuming a 20 % fuel fraction of the non-structural weight, derived from the structural solution: 

 , 0.8 0.2i f i fuel i structure

L
W W W m W m

g
= = − = +  (11) 

The objective function was therefore constructed to evaluate each solution primarily for its range, but also 

included penalty functions to guarantee that wing tip displacement and rotation, maximum stress in the structure and 

pitching moment were within limits, in an approach similar to what is expressed in Eq. 9. A penalty is added to the 

objective function if wing tip rotation is not null, if wing tip deflection is greater than 5 % of semispan, if maximum 

stress is greater than 100 MPa and if pitching moment is not null (choosing that the center of gravity of the aircraft is 

at 60 % of root chord). Eq. 12 shows the weights given to each of these functions. 

 
max MObjective Range Wing Tip Rotation Wing Tip Deflectio Cnf f f f f fσ+ + += +  (12) 

 

 

 Chord (m) Incidence (º) Thickness Distance from root (m) 

Station A 1.80 4.0 20 % 0.00 

Station B 0.80 3.0 10 % 0.60 

Station C variable variable
 

10 %
 

2.50 

Table 4. Aircraft geometry dimensions. 

Design Variable Lower bound Upper bound 

Chord 0.10 m 0.80 m 

Incidence - 5.0 º + 5.0 º 

Panel thickness 0.635 mm 20 mm
 

Table 5. Aircraft geometry dimensions. 
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where (Range is in km, wing tip rotation in rad, deflection in m, stresses in MPa and pitching moment in Nm): 
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The evolution of the objective function value is shown in Fig. 22. The optimization process evolved as expected, 

maximizing range (see Fig. 23) – the main contribution to the AOF – while maintaining the optimal solution within 

the applied constraints (these are not shown here as the limits are being respected and such graphs would add little to 

this discussion). 

 

 
Figure 22. Objective Function value evolution. 
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Table 6 compares the best initial solution, i.e., the best random individual in the initial population and the final 

best solution in the population regarding Range, Lift, L/D, structural mass, maximum stress, payload (here defined 

as weight other than structural mass and fuel) and objective function. 

From the analysis of these values, it is clear that there was optimization in both aerodynamic and structural fields 

but most importantly, optimization in a coupled environment. Analyzing only aerodynamic performance in lift and  

L/D ration shows two similar solutions but their differences arise when data on structure is included. The optimized 

solution shows a maximum stress value very close to the allowed maximum, guaranteeing that the structure is 

capable of handling the aerodynamic loads, yet light enough to allow for a long range. 

The other important results of the optimized solution are a wing tip rotation of 0.12º, low enough not to influence 

the aerodynamic solution (as no coupled aero-structural analysis is performed), a wing tip deflection of 31 mm and a 

pitch down moment of 70 Nm (although not null, for an aircraft of these dimensions and mass it is very low, being 

easily compensated by control surfaces or slight shift of the center of gravity). 

Fig. 24 shows the stress intensity on the optimized solution. As expected, the wing root area shows higher 

stresses than the rest of the structure. Fig. 25 shows the thickness distribution from which the FEM solution is 

obtained. 

 

 

 

 

 
Figure 23. Range evolution. 

 Best Random Individual Final Solution Variation 

Range (km) 1613 3537 +119 % 

Lift (N) 3054 2738 -10.3 % 

L/D 21.3 22.9 +7.5 % 

mstructural (kg) 177 44.3 -75 % 

Payload (kg) 108 188 +74 % �max (MPa) 15 103 +587 % 

Ojective Function -76.6 -172.5
 

+125 % 

Table 6. Table of Gains from the optimization process. 
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Figures 26 and 27 show spanwise chord and incidence distribution. As can be seen in the chord distribution 

graph, chord is almost constant throughout the wing. Even though this does not favor the best L/D ratio, it adds area 

to the wing, having a more significant effect on range (by means of a higher fuel mass) than another distribution. 

Regarding incidence, the graph shows a decreasing towards the wing tip, which favors not only the L/D ratio (by 

means of a more favorable lift distribution) but also has significant effects stability wise, as noted before, due to the 

airfoil choice. 

 

 
Figure 24. Stress intensity in the skin panels (top view; unit Pa). 

 
Figure 25. Thickness distribution in the skin panels (top view; unit m). 
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VII. Conclusion 

Aircraft design is an area where MDO can offer clear advantages, by exploring the interactions between all 

involved disciplines and taking those into account from the very beginning of the whole design process. 

In this work, a number of issues were addressed in order to develop an independent MDO application. 

A suitable optimization tool was investigated and developed, being the Particle Swarm Optimization algorithm 

the chosen one. This proved to be a suitable method, particularly for its robustness and noise insensitivity. 

Furthermore, any optimization algorithm that is population based is particularly suited to parallel computation, 

which is becoming a common reality. 

 
Figure 26. Spanwise chord distribution. 

 
Figure 27. Spanwise incidence distribution. 
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Choosing a 3D Panel Method as the aerodynamic solver was based on the compromise between solution quality 

and computational cost, being that it is not the best aerodynamic solver available. However, given that the used code 

has been validated within the domain of applicability of this method, one can assume that the aerodynamic solution 

has enough quality to be used in this work.  

Using Finite Element Method for the structural analysis guaranteed the quality of the obtained solution, in the 

sense that not only is the method widespread and well accepted but this also allowed to represent with good fidelity 

the typical aircraft structural design. Naturally, for simplicity reasons, the structural finite element model was 

reduced to its main components (skin panels and framed reinforcements). This model was generated from the output 

file of the aerodynamic solver, guaranteeing the best possible compatibility between aerodynamic and structural 

models.  

Analyzing the obtained results, one can conclude that the optimizer tool is able to do what it is expected to: find 

the minima of the prescribed objective functions and therefore reach an optimal solution for the problems at hand. 

The developed application proved to be flexible, in the sense that it is not limited only to aircraft design, but, with 

the adequate models and analysis tools, can be applied to any multidisciplinary problem in the engineering field. 

As for future developments, possibly one of the most interesting concepts that can be applied to this type of 

applications is distributed computation. The use of evolutionary algorithms is particularly suited to this strategy that 

can be implemented on any network of computational resources. 

As for using the Artificial Neural Network as a universal approximator, it is not yet integrated in the developed 

application. Using real analysis to train the ANN should provide some advantages. Determining the Pareto Front is 

one, truly enabling the application to be a Multiobjective Multidisciplinary tool and giving designers the ability to 

understand the possible trade-offs that can be done along this surface. Doing this with an ANN allows 

approximating this surface in a very short time, if compared to obtaining the exact Pareto Front. Integrating the 

ANN into these applications should also allow a reduction in the computational cost of the solution, as solutions far 

from optimality would not be fully analyzed, only approximated in a first instance.  

 In order to use applications like the one developed in a real life situation, ideally, aerodynamic analyses should 

be performed by generating a solid model of the solution and, using CFD methods, evaluate the solution in a number 

of situations large enough to cover the whole flight envelope. Along with the aerodynamic solution, a highly 

detailed structural model should be generated, based on the typical aircraft structural elements, and the coupled  

aero-structural analysis performed. Obviously, to be able to do this detailed analysis a preliminary solution should 

be determined and that is where this work aims to be. 

Other disciplines should also be included, outside of the domain of more traditional structures, aerodynamics and 

flight performance analysis that are done in the preliminary stage of aircraft design. Propulsion, aeroelasticity, active 

control of surfaces, environmental performance (fuel consumption and noise, increasingly important aspects) and 

operational cost, just to name a few disciplines that matter in the life cycle analysis of an aircraft, should be modeled 

and included in the MDO process. 
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