RTCP Sender Report

- **SR**
 - Header Info
 - Sender Info
 - Receiver report blocks
 - Option
 - Profile-specific extension

<table>
<thead>
<tr>
<th>Header Info</th>
<th>Sender Info</th>
<th>Receiver report blocks</th>
<th>Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>V=2</td>
<td>P</td>
<td>PT=SR=200</td>
<td>Length</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>header</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSRC of sender</td>
<td>NTP Timestamp (most significant word)</td>
<td>RTP Timestamp</td>
<td>sender's packet count</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSRC_1 (SSRC of first source)</td>
<td>fraction lost</td>
<td>cumulative number of packets lost</td>
<td>interarrival jitter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSRC_2 (SSRC of second source)</td>
<td>delay since last SR (DLSR)</td>
<td>profile-specific extensions</td>
<td></td>
</tr>
</tbody>
</table>

VoIP 2-39
Resemble to a RTP packet

- Version
 - 2
- Padding bit
 - Padding octets?
- RC, report count
 - The number of reception report blocks
 - 5-bit
 - If more than 31 reports, an RR is added
- PT, payload type
- SSRC of sender
- **NTP Timestamp**
 - Network Time Protocol Timestamp
 - The time elapsed in seconds since 00:00, 1/1/1900 (GMT)
 - 64-bit
 - 32 MSB: the number of seconds
 - 32 LSB: the fraction of a seconds (200 ps)
 - A primary time server
 - NTP, RFC 1305
 - Station WWV, Fort Collins, Colorado, by NIST
 - Station WWVB, Boulder, Colorado, by NIST
- RTP Timestamp
 - Corresponding to the NTP timestamp
 - Use the same units and has the same offset as used for RTP timestamps
 - For better synchronization
- Sender’s packet count
 -Cumulative within a session
- Sender’s octet count
 -Cumulative
RR blocks

- SSRC_n
 - The source identifier

- Fraction lost
 - Fraction of packets lost since the last report issued by this participant
 - By examining the sequence numbers in the RTP header

- Cumulative number of packets lost
 - Since the beginning of the RTP session

- Extended highest sequence number received
 - The sequence number of the last RTP packet received
 - 16 lsb, the last sequence number
 - 16 msb, the number of sequence number cycles
- Interarrival jitter
 - An estimate of the variance in RTP packet arrival

- Last SR Timestamp (LSR)
 - The middle 32 bits of the NTP timestamp used in the last SR received from the source in question
 - Used to check if the last SR has been received

- Delay Since Last SR (DLSR)
 - The duration in units of 1/65,536 seconds
RTCP Receiver Report

- RR
 - Issued by a participant who receives RTP packets but does not send, or has not yet sent
 - Is almost identical to a SR
 - PT = 201
 - No sender information
RTCP Source Description Packet

- Provides identification and information regarding session participants
 - Must exist in every RTCP compound packet

- Header
 - V, P, SC, PT=202, Length

- Zero or more chunks of information
 - An SSRC or CSRC value
 - One or more identifiers and pieces of information
 - Email address, phone number, name
 - Defined in RFC 1889
 - A unique CNAME
 - E.g., user@host
- **RTCP BYE Packet**
 - Indicate one or more media sources are no longer active

- **Application-Defined RTCP Packet**
 - For application-specific data
 - For non-standardized application
Calculating Round-Trip Time

- Use SRs and RRs
- E.g.
 - Report A: A, T1 → B, T2
 - Report B: B, T3 → A, T4
 - RTT = T4-T3+T2-T1
 - RTT = T4-(T3-T2)-T1
 - Report B
 - LSR = T1
 - DLSR = T3-T2
Calculation Jitter

- The mean deviation of the difference in packet spacing at the receiver
 - $S_i =$ the RTP timestamp for packet i
 - $R_i =$ the time of arrival
 - $D(i,j) = (R_j - S_j) - (R_i - S_i)$
- The Jitter is calculated continuously
 - $J(i) = J(i-1) + (|D(i-1,i)| - J(i-1))/16$
Timing of RTCP Packets

- RTCP provides useful feedback
 - Regarding the quality of an RTP session
 - Delay, jitter, packet loss
 - Be sent as often as possible
 - Consume the bandwidth
 - Should be fixed at 5%

- An algorithm, RFC 1889
 - Senders are collectively allowed at least 25% of the control traffic bandwidth
 - The interval > 5 seconds
 - 0.5 – 1.5 times the calculated interval
 - A dynamic estimate the avg RTCP packet size