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Abstract—In this paper we study the Gaussian jitter 
induced bias on the estimate of sine wave amplitude obtained 
with 3-parameter sine fitting of a set of data points. This is a 
source of uncertainty that is not usually considered because no 
analytical study exists on it. Nowadays it is becoming more 
and more important due to ever increasing sampling rates 
available in analog to digital converters which are used in 
innumerous application like high speed digital oscilloscopes. 

 
Index Terms—Sine wave fit, uncertainty, ADC, jitter, phase 

noise. 

I. INTRODUCTION 
Sine fitting is a technique used in a never ending list of 

applications, from analog to digital converter testing [1]-[5] 
and impedance measurement [6] to particle size and 
velocity determination using laser anemometry [7].  

Algorithms for sine wave fitting have been standardized 
in [4] and [5] and some work has been done on the 
uncertainty of the sine fitting parameters. In [8] and [9] an 
asymptotic Cramér-Rao bound for the variance of three and 
four-parameter sine wave fitting parameters (amplitude, 
offset, initial phase and frequency) for a large number of 
samples is derived taking into account the presence of 
additive noise. In [10] the same bounds are evaluated when 
additive noise is present and data is quantized. It considers 
both the case where quantization error can and cannot be 
considered an additional additive noise term normally 
distributed independent of the signal. In [11], the 
performance of the frequency estimator used in IEEE 1057 
std. 4-parameter sine fitting algorithm is compared to the 
Cramér-Rao bound. 

The presence of jitter in sampling systems as long been 
considered [12][13] and with the advent of high frequency 
digital oscilloscopes it has gained a fundamental 
importance. One of the concerns is the measurement of the 
amount of jitter present in the system has been subject of 
various works ([14][15][16][17]). Another is the 
minimization of the effect of jitter on measurements [18]. 
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One of those measurements, the amplitude of a sine wave, 
which is the focus of this paper, has received little attention 
in the past [19][20]. 

There are different estimators used to determine the 
amplitude of a sine wave given a set of data points. In [19] 
the IEEE 1057 standard method [4], which minimizes the 
square of the residuals, was studied. It is pointed out that a 
bias in the estimated amplitude arises due to jitter in the 
sampling instant. It is also shown how to compute that bias 
in the asymptotic case (infinite number of samples). In [20] 
other estimators, based on least squares and on maximum 
likelihood approaches which minimize the difference 
between actual and the estimated jitter mean and variance, 
are studied. A bias of those estimators is also reported for 
the estimated sine wave amplitude although no expression 
is presented to calculate it. 

Here we present such an expression for the bias of sine 
wave amplitude estimated using the IEEE 1057 standard 
method caused by jitter on the sampling instant when a 
finite number of samples are acquired. The bias that arises, 
and which is always negative, can be seen in the numerical 
simulation example presented in Fig. 1 were data points 
from a sine wave (solid thick line) were corrupted by 
normally distributed jitter with a standard deviation of 
0.8 µs (dots). This is a high value for timing jitter 
considering what is usually encountered in practice, 
however it was chosen to better illustrate the effect it has 
on the amplitude bias of the estimated sine wave (thin solid 
line). 

 
Fig. 1 – Example of simulated sine fitting of jitter corrupted data. The 

sine wave model has 5 V of amplitude and 100 kHz of frequency. The 
normally distributed jitter has 0.8 µs standard deviation. 104 data points 
acquired at a sampling frequency of 1 GHz are shown. The fitted sine 

wave has 4.425 V of amplitude due to jitter induced bias. 

In Fig. 2 an even greater amount of jitter was simulated 
(1.6 µs). As can be seen the amplitude of the fitted sine 
wave is lower than in the case of Fig. 1. As the amount of 
jitter tends to infinity the contribution of the original sine 
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wave to the voltage of each sample becomes negligible and 
we are left with random voltage noise with null mean. The 
sine wave that best fits this noise is a null amplitude one (in 
the case of an infinite number of samples). 

 
Fig. 2 – Example of simulated sine fitting of jitter corrupted data. The 

sine wave model has 5 V of amplitude and 100 kHz of frequency. The 
normally distributed jitter has 1.6 µs standard deviation. 104 data points 
acquired at a sampling frequency of 1 GHz are shown. The fitted sine 

wave has 4.425 V of amplitude due to jitter induced bias. 

In the limit when the number of samples goes to infinity, 
the expression presented here tends to the expression given 
in [19] as we will demonstrate. 

II. SINE WAVE FITTING 

Consider M data points x1, x2, …, xM given by  

 ( )cos    with   1,...,i x ix C A t i Mω ϕ= + + = . (1) 
where C is the offset, A is the amplitude, ϕ is the initial 
phase,  ωx is the angular frequency and ti are the sampling 
instants. Generally the initial phase of the sine wave is not 
controlled and thus varies from acquisition to acquisition 
and from measurement to measurement.  Statistically we 
can consider it to be a random variable uniformly 
distributed in an interval of length 2π. 

In this work we consider only the presence of normally 
distributed jitter in the sampling instants and represent it by 
a null mean random variable δi with standard deviation σt. 
The actual voltage of the samples is thus given by 
 ( )cosi x i iz C A tω δ ϕ⎡ ⎤= + + +⎣ ⎦ .  (2) 

To ease the derivations that follow, we will introduce the 
random variable θi = ωxδi. This variable will be a null mean 
random variable with standard deviation σθ = ωxσt since it 
is just a constant (ωx) times a normally distributed random 
variable (δi) with standard deviation σt. Equation (2) can 
thus be written as 
 ( )cosi x i iz C A tω θ ϕ= + + + .  (3) 

We wish to estimate the sine wave that best fits, in a 
least square error sense, to these M points. The estimates of 
the sine wave are obtained, in a matrix form, with [1] 
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 (4) 

and  

 2 2
I QA A A= +  (5) 

where ωa is the angular frequency of the sinusoid we are 
trying to adjust to the data. Here we will assume that the 

frequency of the signal is exactly know and its value is 
used to fit the sine wave (ωa = ωx). 

We will also assume that the number of samples (M) 
acquired covers exactly an integer number of periods (J) of 
the sine wave we are trying to fit to the data. This means 
that the sine wave frequency (fa), sampling frequency (fs) 
and number of samples satisfy 
  , a

s

f J J
f M
= ∈ . (6) 

Note that J and M should be mutually prime so that the 
M different samples acquired at M different time instants, 
correspond to M different sine wave phases. If not, you will 
have less that M different phases which will increase the 
uncertainty in the estimation of the sine wave parameters. 
In the case that J is a multiple of M/2, the sampling instants 
will correspond to only 2 different sine wave phases and 
matrix DTD will be singular and hence not invertible (you 
can not estimate the 3 sine wave parameters with only two 
data points).  

The assumption is reasonable because we can choose 
whatever values we want for those frequencies and the 
number of samples. In practice, however, due to instrument 
inaccuracies, the actual value of those frequencies may not 
be exactly the values chosen and which satisfy (6) but are 
close enough considering typical frequency errors smaller 
than 100 ppm. If a non integer number of periods is 
acquired a bias will affect the estimator. In this work, 
however, we will not consider this scenario. 

If the samples cover exactly an integer number of sine 
wave periods, we have 
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1 1 1

cos 0 cos sin 0

sin 0 cos 0

M M

a i a i a i
i i
M M M

a i a i a j
i i j

t t t

t t t
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= =

= = =

= =

= − =

∑ ∑

∑ ∑∑
  (7) 

and 

 ( ) ( )2 2

1 1
cos   and sin

2 2

M M

a i a i
i i

M Mt tω ω
= =

= =∑ ∑ .  (8) 

Consequently, from (4) and (5),  

 ( )22 2
2

,

4 cosI Q i j a i j
i j

A A A z z t t
M

ω⎡ ⎤= + = −⎣ ⎦∑ . (9) 

From now on, for the sake of compactness, we will 
eliminate the summation limits and assume that all indices 
go from 1 to M. The summation in (9) is thus a double 
summation on i and j which go from 1 to M. 

III. MEAN OF SQUARE ESTIMATED AMPLITUDE 

The expected value of the square of the estimated sine 
wave amplitude is, from (9), 

 { } { } ( )2
2

,

4 cosi j a i j
i j

E A E z z t t
M

ω⎡ ⎤= −⎣ ⎦∑ . (10) 

Note that the expected value of a sum is equal to the 
sum of the expected values and that the expected value of a 
random variable times a constant is equal to that constant 
times the expected value of the random variable. 
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Using (2) we can write 

{ } ( ) ( ){ }cos cosi j x i i x j jE z z E C A t C A tω θ ϕ ω θ ϕ⎡ ⎤⎡ ⎤= + + + ⋅ + + +⎣ ⎦ ⎣ ⎦ .  (11) 

which can be written as 

{ } ( ) ( ){ }
( ){ } ( ){ }

( ){ }
( ){ }
( ){ }

2 2

2 2

2

cos cos

           cos cos

1           cos 2
2

1           cos
2

           cos cos

i j x i i x j j

x i i x j j

x i x j i j

x i x j i j

x i i x j

E z z C A E t t

CAE t CAE t

C A E t t

A E t t

CAE t CAE t

ω ϕ θ ω ϕ θ

ω ϕ θ ω ϕ θ

ω ω ϕ θ θ

ω ω θ θ

ω ϕ θ ω ϕ

= + + + + + +

+ + + + + + =

= + + + + + +

+ − + − +

+ + + + + +( ){ }jθ
.

  (12) 

Considering that ϕ is a uniformly distributed random 
variable between 0 and 2π we have 

 { } ( ){ }2 21 cos
2i j x i x j i jE z z C A E t tω ω θ θ= + − + − ,  (13) 

since 

 ( ){ } ( )1cos cos 0
2

E a a d
π

π

ϕ ϕ ϕ
π
−

+ = + =∫ .  (14) 

To compute the expected value in (13) we have to consider 
two cases – equal or different values of indices i and j. If 
they are equal then θi and θj cancel each other and we cease 
to have any random variables in the equation. The expected 
value is thus 

 
{ } 2 21

2i j i j
E z z C A

=
= +

.  (15) 
On the other hand, if the indices are different, we have, 
considering that θi and θj are normally distributed random 
variables with standard deviation σθ,  

 { } ( )
22 21 cos

2i j x i x ji j
E z z C A t t e θσω ω −

≠
= + − ,  (16) 

since 

 ( ){ } ( ) ( )

2

2 221cos cos cos
2

E a a e d a eθ θ

θ

σ σ

θ
θ θ ϕ

πσ

−∞
−

−∞

+ = + =∫ .  (17) 

Having determined { }i jE z z we are now ready to address the 

determination of { }2
E A  given by (10). Notice however that 

the expression to use for the argument of the double 
summation is different whether indices i and j are equal or 
not, namely (15)  and (16) respectively. In order to proceed 
with the derivation we need to have complete summations, 
that is, summations whose indices span all possible values, 
and that have in its argument a single expression for all 
cases of the indices. This can be achieved by splitting the 
summation in (10) into three summations as illustrated in 
Fig. 3. 

i
i

b∑
,

, 
, 

ij

ii j

a i j
b i j

≠⎧
⎨ =⎩

∑
,

ij
i j

a∑ ii
i

a∑
 

Fig. 3 – Illustration of a double summation split into three other 
summations (one double and two simple). 

This summation can be divided into two terms: the first one 
a double summation on i and j for i ≠ j using (16) in its 
argument; and the second one, a simple summation on i 
where j = i using (15) in its argument. The new double 
summation, however can be written as a double summation 
for all values of i and j (using (16)) minus a simple 
summation with j = i using (16) in its argument: 

{ } ( ) ( )
2 22 2 2 2

2
,

2 2 2cos cosx i x j a i j
i j

E A A t t t t e A e A
M MM

θ θσ σω ω ω − −⎡ ⎤= − − − +⎣ ⎦∑ .(18) 

Note that, taking into account (7), that the terms in C2 
become null. 

Considering that we know the signal frequency and use 
it for the sine wave we are trying to fit to the data, 
(ωa = ωx), we have  

 { } ( )
2 2 22 2 2 2

2
,

1 2cos 2 2 1x i x j
i j

E A A e A e t t A e
MM

θ θ θσ σ σω ω− − −⎛ ⎞= + − + −⎜ ⎟
⎝ ⎠

∑ ,(19) 

where we used a trigonometric relation to transform the 
product of two cosine function into the sum of two cosine 
function. Since we are considering that the sine wave fit to 
the data covers an integer number of periods, the 
summation in i and j is 0, leading to 

 { } 2 2

2
2 2 22 1

A
E A A e A e

M
θ θσ σμ − −⎛ ⎞= = + −⎜ ⎟

⎝ ⎠
. (20) 

IV. VARIANCE OF ESTIMATED SQUARE AMPLITUDE 
The variance of a random variable can be expressed as 

the difference between the second moment and the square 
of the mean [21]. In the case of the variance of 2

A  this 
leads to 
 { } { }2

4 22 2
A

E A E Aσ = − . (21) 

Using (9) we can write 

 ( ) ( )4
4

, , ,

16 cos cosi j k l a i j a k l
i j k l

A z z z z t t t t
M

ω ω⎡ ⎤ ⎡ ⎤= − −⎣ ⎦⎣ ⎦∑ . (22) 

The expected value of the forth power of the estimated 
amplitude is thus 

 { } { } ( ) ( )4
4

, , ,

16 cos cosi j k l a i j a k l
i j k l

E A E z z z z t t t t
M

ω ω⎡ ⎤ ⎡ ⎤= − −⎣ ⎦⎣ ⎦∑ . (23) 

Inserting (10) and (23) into (21) and making use of 
([21], eq. 7-7) 

 { } { } { } { },Cov x y E xy E x E y= − , (24) 

we have for the variance of the square estimated amplitude 



 { } ( ) ( )2
2

4
, , ,

16 , cos cosi j k l a i j a k lA i j k l
Cov z z z z t t t t

M
σ ω ω⎡ ⎤ ⎡ ⎤= − −⎣ ⎦⎣ ⎦∑ . (25) 

The actual voltage of a sample, z, can be expressed as  
 i iz C w= + , (26) 
where 
 ( )cosi x i iw A tω ϕ θ= + + , (27) 

As seen in Appendix A, the variance of the estimated 
square value of amplitude does not depend on the stimulus 
signal offset. As such (25) can be written as 

 { } ( ) ( )2
2

4
, , ,

16 , cos cosi j k l a i j a k lA i j k l
Cov w w w w t t t t

M
σ ω ω⎡ ⎤ ⎡ ⎤= − −⎣ ⎦⎣ ⎦∑ . (28) 

Since the argument of the two cosine function are not 
random variables we can place them inside the covariance: 

 ( ) ( ){ }2
2

4
, , ,

16 cos , cosi j a i j k l a k lA i j k l
Cov w w t t w w t t

M
σ ω ω⎡ ⎤ ⎡ ⎤= − −⎣ ⎦⎣ ⎦∑ . (29) 

Inserting (27) into (29) leads to 
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2

4
2

4
, , ,

cos cos cos ,16

cos cos cos

x i i x j j a i j

A i j k l x k k x l l a k l

t t t tA Cov
M t t t t

ω θ ϕ ω θ ϕ ω
σ

ω θ ϕ ω θ ϕ ω

⎧ ⎫⎡ ⎤+ + + + −⎪ ⎪⎣ ⎦= ⎨ ⎬
⎡ ⎤+ + + + −⎪ ⎪⎣ ⎦⎩ ⎭

∑  (30) 

Again using  

 ( ) ( ) ( ) ( )1 1cos cos cos cos
2 2

a b a b a b= + + − , (31) 

we can write 
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( ) ( )

2

4
2

4
, , ,

cos cos

cos 2 cos ,4
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cos 2 cos
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σ
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ω ω θ θ ϕ ω

⎧ ⎫⎡ ⎤− + − − +⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤+ + + + + −⎪ ⎪⎣ ⎦= ⎨ ⎬
⎪ ⎪⎡ ⎤− + − − +⎣ ⎦⎪ ⎪
⎪ ⎪⎡ ⎤+ + + + + −⎣ ⎦⎩ ⎭

∑ . (32) 

Now using 

 { } { } { }, , ,Cov a b c d Cov a c Cov b d+ + = + , (33) 

we can write (32) as 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2

4
2

4
, , ,

4

4
, , ,

cos cos ,4

cos cos

cos 2 cos ,4
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x i x j i j a i j

A i j k l x k x l k l a k l

x i x j i j a i j
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M t t t t
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σ
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⎧ ⎫⎡ ⎤− + − −⎪ ⎪⎣ ⎦= +⎨ ⎬
⎡ ⎤− + − −⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤+ + + + −⎪ ⎪⎣ ⎦+ ⎨ ⎬
⎡ ⎤+ + + + −⎪ ⎪⎣ ⎦⎩ ⎭

∑

∑

. (34) 

Using (31) leads to 
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2

4
2

4
, , ,

4

4
, , ,
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A i j k l x k x l k l k l

x i i j x j i j
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σ

ω ω θ θ θ θ
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− + − + −⎪ ⎪⎩ ⎭
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∑

∑
. (35) 

Note that the index of the summations can be 
exchanged. For example i can become j and j can become i 
without changing the result of the summation. Using this 
and (52) allows us to write (35) as 

( ) ( ){ }
( ) ( ){ }

( ) ( ){ }
( )

2

4
2

4
, , ,

, , ,

, , ,
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A
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σ ω ω θ θ ω ω θ θ
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∑

∑

∑
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2k k l
i j k l

t θ θ ϕ+ + +∑

.(36) 

Note that, being ϕ an uniformly distributed random 
variable between −π and π, ( ){ }cos 0E α ϕ+ = . Using this we 
can simplify the 4th term of the second member of (36) 
since 

( ) ( ){ }
( ) ( ){ } ( ){ } ( ){ }

( ){ } ( ){ } ( ){ } ( ){ }

( ){ }

cos 2 ,cos 2

cos 2 cos 2 cos 2 cos 2

1 1cos cos 4 cos 2 cos 2
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2
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α β
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= − + + + − + + =
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We have then 
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4
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σ ω ω θ θ ω ω θ θ
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∑

∑
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Substituting the covariance by expected values 
{ } { } { } { }( ),Cov a b E ab E a E b= − , (38) can be written as 
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4
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M E t t t t
A
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x i k i j k l
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E E

E t t
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⎡ ⎤
⎢ ⎥+ − − − − +
⎢ ⎥⎣ ⎦

+ − + + − −

∑

∑ ∑

∑

.(39) 

Note that the product of cosine function may be written 
as the sum of cosine functions. For instance, looking at the 
5th term in the second member of (39), we have 

( ) ( ){ }

( ) ( )
, , ,

, , , , , ,

cos cos

1 1cos cos
2 2

i j k l
i j k l

i j k l i j k l
i j k l i j k l

E

E E

θ θ θ θ

θ θ θ θ θ θ θ θ

− − =

⎧ ⎫ ⎧ ⎫= − + − + − − +⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

∑

∑ ∑
. (40) 

Since the cosine functions are inside a summation, we can 
swap index k with index l in the last term of (40) without 
altering the summation. Doing this, results in the two terms 



in the second member of (40) to being exactly the same. 
We thus have 
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Applying this reasoning also to the 1st and 3rd terms of the 
second member of (39) leads to 
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The double summation in the 1st and 4th terms of the 
second member is equal to 
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The double summation in the 4th and 6th terms is 
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The other summation are computed in Appendix B, C 
and D. Inserting (43), (44), (73), (76) and (79) into (42) 
leads to 
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V. BIAS OF THE ESTIMATED SINE WAVE AMPLITUDE 

We are going to use the Taylor series to approximate the 
non linear relation between square amplitude and amplitude 
by a polynomial. This allows us to approximately 
determine the expected value of the estimated amplitude 
from the expected value of the square amplitude, given by 
(20),  and the variance of the square amplitude, given by 
(45) as done in [21]: 
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We define now the relative error of the estimation as 
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Inserting (20), (45) into (46) and (46) into (47), leads to 
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   (48) 

which is the relative bias of the sine wave amplitude 
estimation using the IEEE 1057 sine fitting algorithm in the 
presence of jitter. Note that the relative error does not 
depend on the sine wave amplitude, but only on the number 
of samples and the phase noise (or jitter) standard 
deviation). 

In order to validate the approximation made in (46) and 
to check the correctness of the derivations carried out, we 
did a Monte Carlo analysis of the estimator bias by  
simulating on a computer a set of data points from a sine 
wave with sampling instants corrupted by jitter, applying 
the sine fitting to estimate the amplitude and repeated the 
procedure 104 times to compute the expected value of the 
estimated amplitude. In Fig. 4 (markers) the relative error 
obtained is depicted as a function of the phase noise 
standard deviation for 10 and for 1000 samples (M). 

 
Fig. 4 – Relative error of the estimated sine wave amplitude as a 

function of phase noise standard deviation (markers). A 2 V sine wave 
with fs/fx = M was used and 104 repetitions were carried out. The 

confidence intervals for a confidence level of 99.9 % are two small to be 
represented. The solid lines represent the theoretical value given (48). 

It can be seen that the relative error of the expected value 
of the estimated amplitude obtained through numerical 
simulation, is in accordance with the theoretical value 
given by (48). In Fig. 5 the deviation of estimated 
amplitude relative error and theoretical value as a function 
of phase noise standard deviation is shown with confidence 
intervals corresponding to 99.9 % confidence level for a 
normal distribution. All confidence intervals are around 0 
(null deviation from numerical simulation and theoretical 
values) which shows that the approximation made in (46) is 
valid for the conditions simulated. 
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Fig. 5 – Deviation of estimated amplitude relative error and theoretical 

value given by (46) as a function of phase noise standard deviation for a 
2 V sine wave with fs/fx = M = 100. 2×105 repetitions were carried out to 
determine the mean estimated amplitude. The vertical bars represent the 
confidence interval for a 99.9 % confidence level assuming a normal 
distribution. 

In Fig. 6, the dependence of the relative estimation error 
on the number of samples can more easily be observed. 
Again we see that as the number of samples increase, the 
relative error gets bigger. 

 
Fig. 6 – Estimated amplitude relative error and theoretical value given 

by (48) as a function of the number of samples for a 2 V sine wave with 
fs/fx = M  and a phase noise standard deviation of 0.1 rad (top) and 0.2 rad 
(bottom). 105 repetitions were carried out to determine the mean estimated 
amplitude. The vertical bars represent the confidence interval for a 99.9 % 
confidence level assuming a normal distribution. 

From (48) we can compute the limit when the number of 
samples goes to infinity: 

 
21

2lim 1AM
e θσε
−

→∞
= − . (49) 

This, which is the result obtained in [19], shows that the 
estimator is asymptotically biased in the presence of jitter 
since the relative error does not go to 0 when the number of 
samples tends to infinity. 

The theoretical results presented here we also subject of 
experimental validation. Preliminary results show a good 
agreement between theory and practice. We will dedicate a 
future publication to the presentation of the full 
experimental results as well as a detailed description of the 
test setup created to inject jitter into the ADC in a 
controllable manner including its calibration. 

VI. CONCLUSIONS 
The expression derived here for the bias of the fitted sine 

wave amplitude obtained with the 3-parameter sine 
algorithm, given in (48), shows that the estimator is biased 
when the acquired samples are affected by jitter which can 
be due to the analog converter itself or to phase noise in the 

sampling clock. The existence of this bias was previously 
mentioned in [19] but only the case of an infinite number of 
samples was considered. Here we presented an expression 
that allows the computation of the estimator relative bias 
given the number of acquired samples and the standard 
deviation of the jitter or phase noise. 

Expression (48) can be used to correct the bias of the 
estimator if the amount of jitter present is known which can 
be accomplished using, for instance, the methods 
recommended in [4]. 

We limited here our study to the effect of jitter on the 
estimation of the sine wave amplitude, however we proceed 
doing work on the effect of jitter on other estimator related 
to the sine fitting, namely the sine wave offset, initial phase 
and frequency as well as other parameters derived from 
them like the module and argument of impedances 
determined with the help of sine fitting, or signal to noise 
and distortion ratio (SINAD) of analog to digital 
converters. 

The influence of other non ideal factors, like harmonic 
distortion, additive noise and frequency error, on the bias 
and on the variance of the estimators has also to be studied 
in the future to achieve a full understanding of the 
performance of sine fitting algorithms in real conditions. 

APPENDIX A 
Here we show that the variance of the estimated square 

amplitude does, given by (25),  

 
{ } ( ) ( )2

2
4

, , ,

16 , cos cosi j k l a i j a k lA i j k l
Cov z z z z t t t t

M
σ ω ω⎡ ⎤ ⎡ ⎤= − −⎣ ⎦⎣ ⎦∑  (50) 

does not depend on the stimulus signal offset, C. 

We can write the covariance of zizj with zkzl as 
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where we have made use of (26). The covariance of the 
sum of random variables can be expressed as the sum of the 
covariance between the different summation terms: 

 { }, ,i j i j
i j i j

Cov x y Cov x y
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This allows (51) to be written as 
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Using the covariance property 
 { } { } { } { } { } { }, 0Cov a x E ax E a E x aE x aE x= − = − = , (54) 
where a is a constant and x is a random variable, we can 
write (51) as 
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Using another covariance property, specifically 
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where a and b are constants and x and y are random 
variables, we have 
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Using (52) leads to 
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Making use of the definition of covariance we have 
 { } { } { } { },i j k i j k i j kCov w w w E w w w E w E w w= − . (59) 

The expected value of wi is 
 { } ( ){ }cos 0i x i iE w E A tω ϕ θ= + + = . (60) 
considering ϕ a uniform random variable distributed 
between 0 and 2π. The same can be said of the product 
wiwjwk: 
{ } ( ) ( ) ( ){ }3cos cos cos 0i j k x i i x j j x k kE w w w E A t t tω ϕ θ ω ϕ θ ω ϕ θ= + + + + + + = .(61) 

Inserting (60) and (61) into (59) leads to 
 { }, 0i j kCov w w w = . (62) 
Equation (58) than becomes 
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We can insert this into (50) and write 
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By exchanging the indexed of the summations we realize 
that all summations that are multiplied by C2 are the same. 
We thus have 
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Looking at the second summation in (65) we see that the 
summation in l can be separated from the other 
summations: 
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The same could be done for the summation in j. 
Considering that we are fitting an integer number of 
periods of a sine wave to the data, the summations in l of 
the sine and the cosine are null which makes (66) null. 
Equation (65) then becomes 
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APPENDIX B 
In this appendix we compute the first term in second 

member of (42). To determine an expression for the 
expected value we have to consider whether some of the 
indices are equal because is such cases the random 
variables θ will cancel each other out. There are 14 
different cases where one or more of the 4 indices i, j, k and 
l are equal. Those cases are illustrated in (68). To make it 
easier to read the expressions that follow, we have chosen 
to attribute different symbols ( )•× ∗  to the indices. For 
example, the first case in (68) is identified by the symbols
( )•••• . This means that all the 4 indices are the same. Note 
that this case encompasses many different possible value of 
the indices (they can be all equal to 1 or 2, or 3,  etc…). In 
the second case in (68), for example, we indexes i, j and k 
are the same and index l is different ( )•••× . In the last case 
in (68) all the 4 indices are different. 
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Each of the 15 cases in the curly bracket corresponds to a 
different set of values of i, j, k and l. Since all those cases 
are mutually exclusive the quadruple summation of the 



bracket in (68) can be expressed as the sum of 15 
summations with different arguments (the ones in the curly 
bracket). The value of those summations, not considering 
the exponential term, is indicated in the right most column 
of (68).  

We will look now at how the value of some of those 
summations was obtained. 

The first summation in the curly brackets is the number 
of elements which in this case is M. 

The second summation can be seen as a complete double 
summation minus the cases where k = l: 
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 The complete summation has a null value since we have an 
integer number of periods of the cosine function and there 
are M cases where k = l. The summation will thus be –M. 

The sixth summation is 
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The ninth summation is 
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j k l k l
t t M t t M Mω ω ω ω
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The argument of this summation does not depend on j and 
there are M 2 values of j which are different from k and l. 
This term thus has M 2 times the summation on k and l 
which, as was seen in (69), equals –M. 

The 13th summation is a triple summation which can be 
split into a complete triple summation minus the cases 
where two or three indices are the same. The complete 
summation is null so we have:  
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The first 3 summations in the second member of (72) are 
equal to – M. The argument of the cosine in last summation 
is null since all the indices are the same. As the indices go 
from 1 to M, there are M terms equal to 1 (cos(0)). The last 
term in (72) is thus M. The 13th summation in (68) is thus 
equal to 2M. 

The last summation in (68) has a quadruple summation 
where all the indices have different values. This partial 
summation can be seen as a complete quadruple summation 
minus the cases where some or all the indices are equal. 
The complete summation has a null value since we have an 
integer number of periods of the cosine function and there 
are 26 2M M−  cases where some or all the indices are equal. 
This is just the sum of the cases in all the other terms. 

Putting all the terms together leads to 
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. (73) 

APPENDIX C 
In this appendix we compute the third term in second 

member of (42). Here we proceed as we did in Appendix B. 
All the 15 cases where the 4 indices can be equal to each 
other are enumerated and the expected value is computed 
individually for each of those cases. 
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. (74) 

Again, in the right most column of (74) we indicate the 
value of the summations without considering the 
exponential terms. Equation (74) thus becomes 
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  (75) 
This can be further simplified to 
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APPENDIX D 
In this appendix we compute the fifth term in second 

member of (42) as was done in Appendix B and C. The 15 
different cases are: 
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This summation thus becomes 
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Simplifying leads to 
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