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Abstract — The jitter test of analog to digital converters is 

traditionally carried out with one of the methods recommended 
in the IEEE Standard for Digitizing Waveform Recorders, std. 
1057. Here we study the uncertainty of one of those methods and 
point out the bias inherent to the estimator recommended for 
measuring the ADC jitter and suggest an alternate estimator. 
Expressions are also presented for the determination of the 
precision of a given estimate from the number of samples used, 
the standard deviation of the additive noise present in the test 
setup, the jitter standard deviation and the stimulus signal 
parameters. In addition, an expression for the computation of the 
minimum number of samples required to guarantee a given 
bound on the estimation uncertainty is presented which is useful 
in optimizing the test duration. 
 

Index Terms — Analog to Digital Converter, Test, Jitter, 
Phase noise. 

I. INTRODUCTION 
HE jitter, or aperture uncertainty, in analog to digital 
converters (ADCs), is a random variation in the instant of 

sampling. This ADC parameter is of special importance in 
ADCs used in digital communication receivers where the 
decision between which symbols were transmitted is 
intimately related to the instant where the input signal is 
sampled [1-2]. In radio receivers, the noise level, and 
therefore the effective Number of Bits (ENOB) are not only 
dependent on the quantization noise. Jitter present in receiver 
ADC clock is one of the main causes of loss of performance in 
wireless communications [3-4]. The effects of ADC clock 
jitter on the system Signal-to-Noise ratio in waveform 
recorders are discussed in [5] while an improved jitter 
measurement method has been proposed in [6]. Many jitter 
estimators are proposed in prior work [7-10]. This paper, 
however, focuses on the jitter tests methods proposed in IEEE 
standard 1057, both the 1994 version [11] and the 2007 
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version currently in balloting [12]. This IEEE standard 
suggests three different methods for jitter estimation. One of 
those is appropriate for the use in systems where the clock 
signal is available externally (section 4.9.2.3 in [11] and 
12.2.3 in [12]). The other two can be used more generally 
(section 4.9.2.1/4.9.2.2 in [11] and 12.2.1/12.2.2 in [12]). 
These three methods only permit the estimation of an upper 
bound on the amount of jitter present since the result obtained 
also includes other non idealities like ADC pattern errors, 
amplitude noise, quantization noise and harmonic distortion. 
The methods in sections 4.9.2.1 and 4.9.2.2 of [11] (12.2.1 
and 12.2.2 in [12]) were compared by using a low bandwidth 
(100 Hz) seismic data recorder as the measurement system. In 
active marine seismology, the quality of data is directly related 
to the acquisition timing. The results of jitter estimation of this 
system are reported and discussed in [13]. These results have 
shown that the method suggested in section 4.9.2.2 of [11] 
(12.2.2 in [12]) is the only one appropriate when the amount 
of amplitude or quantization noise present is significant since 
it does not include their contribution when estimating jitter. 
This is the method we are going to study here. The analysis 
carried out will focus on the statistical properties of the 
estimated value of jitter standard deviation. We will not 
consider at present the effect that harmonic distortion has on 
the estimator and which can be significant. Work is being 
carried out on this area and will be subject of a future 
publication. 
 
 In section II we describe the test method and in section III 
we start analyzing the estimator statistics by computing its 
bias and concluding that the estimator suggested in [11-12] for 
this test method is biased. As a consequence we propose a 
new estimator in section IV. We then proceed to the precision 
analysis of both estimators in section V. In section VI we 
present the experimental results that validate the theoretical 
study presented. Finally we derive an expression for the 
computation of the minimum number of samples required to 
guarantee a certain bound on the estimation uncertainty 
(section VII). In VIII we sum up the results achieved and 
highlight future work that needs to be done to fully understand 
the uncertainty contributions of the jitter measurement method 
studied. This paper presents the first results obtained to 
achieve that goal. 

II. JITTER TEST 
 Test 4.9.2.2 of [11] (12.2.2 in [12]) is based on the fact that 
the presence of jitter in the sampling instant translates into an 
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increase in the amplitude noise of the sampled voltage which 
depends on the slope of the input signal. The jitter test consists 
in applying a low frequency (fa) sine wave to the ADC input, 

 ( ) ( )cos 2 aya t C A f t= + π + ϕ , (1) 

where C, A and ϕ represent the sine wave offset, amplitude 
and initial phase respectively. After that, a given number of 
samples (M) are acquired whose voltage, after quantization, 
will be: 

( )cos 2 a i i i
i

C A f t n
za Q round

Q

⎧ ⎫+ π + δ + ϕ +⎡ ⎤⎪ ⎪⎣ ⎦= ⋅ ⎨ ⎬
⎪ ⎪⎩ ⎭

, (2) 

where Q represents the ADC quantization step. Inevitably 
those samples will be affected by amplitude noise (n) and 
jitter (δ). Representing the effect of the quantizer by an 
additive term (q) we can write (2) as 

 ( )cos 2i a i i i iza C A f t n q= + π + δ + ϕ + +⎡ ⎤⎣ ⎦ . (3) 

This assumes that the quantization error is independent of the 
stimulus signal. This assumption is valid only if the 
characteristic function of the stimulus signal is 
“band-limited”, that is, if it is null  outside an interval of 
length 2π/Q around 0 [16]. In the case of a sine wave, the 
characteristic function has infinite bandwidth: 

 ( ) 0
2

y
Au J u

Q
⎛ ⎞π

Φ = ⎜ ⎟
⎝ ⎠

. (4) 

The higher is A in relation to Q, the higher will be the 
constant multiplying u and more concentrated around 0 the 
characteristic function will be. As a consequence, if A is high 
enough we can consider the characteristic function as “band-
limited” and consequently consider that the quantization error 
is uniform and independent of the signal.  

The sine wave that best fits the acquired samples, in a least 
squares error sense, is determined [11]. From the fitted sine 

wave parameters ( ),  and a a aC A ϕ  the ideal value of the 

sampled voltage can be computed: 

 ( )cos 2a a a i aiya C A f t= + π + ϕ . (5) 

From here we compute the mean square difference between 
the ideal input voltage and the voltage of the actual sample: 

 ( )2

1

1 M

a i i
i

mse za ya
M =

= −∑ . (6) 

Then, another signal with a higher frequency (fb), is applied to 
the ADC (yb), the same number of samples is acquired (zb) 
and the mean square error between the acquired samples and 
the fitted sine wave ( yb ) is computed: 

 ( )2

1

1 M

b i i
i

mse zb yb
M =

= −∑ . (7) 

Finally the ADC jitter standard deviation is estimated using  

 
2
b a

t

b

mse mse
f A
−

σ =
π

. (8) 

Note that in the published version of the IEEE 1057 standard 
[11] there is a typo in eq. 109. It should read f2 instead of f in 
the denominator. In this paper we use the indexes “a” and “b” 
to represent the two different frequencies, instead of “1” and 
“2”. 

The two frequencies used should be as distinct as allowed 
by the system bandwidth in order to have as distinct values of 
msea and mseb as possible. 

III. BIAS OF THE IEEE JITTER TEST ESTIMATOR 
In this section we are going to compute the bias of 

estimator (8). To achieve this we first determine the bias of 
the computed mean square errors msea and mseb. From (6) we 
can write 

 { } ( ){ }2

1

1 M

a i i
i

E mse E za ya
M =

= −∑ . (9) 

In this paper we will consider that the error in the 
estimation of the sine wave parameters is negligible and thus 
we will substitute ya  by ya which is given by (1). Introducing 

(3) and (5) into (9) and making A A= , C C=  and ϕ = ϕ  
leads to 

 { }
( )

( )

2

1

cos 21
cos 2

M
a i i

a
i i i a i

A f t
E mse E

M n q A f t=

⎧ ⎫⎡ ⎤π + δ + ϕ +⎡ ⎤⎪ ⎪⎣ ⎦= ⎢ ⎥⎨ ⎬
+ + − π + ϕ⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∑ . (10) 

Using the trigonometric relation  

 ( ) ( ) ( ) ( ) ( )cos cos cos sin sina b a b a b+ = − , (11) 

we can write 

 

{ }

( ) ( )
( ) ( )

2

1

1 sin 2 sin 2

1 cos 2 cos 2

a

i iM

a i a i
i

a i a i

E mse

n q
E A f f t

M
A f f t

=

=

⎧ ⎫⎡ ⎤+ −⎪ ⎪⎢ ⎥⎪ ⎪= − π δ π + ϕ −⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪
− − π δ π + ϕ⎡ ⎤⎢ ⎥⎪ ⎪⎣ ⎦⎣ ⎦⎩ ⎭

∑
. (12) 

This expression can be simplified in the situations where the 
amount of jitter is small when compared with the sampling 
period. In those cases we can use the fact that  

 ( ) ( )cos 1   and  sin   for   1a a a a≈ ≈ . (13) 

This assumption is not valid in all situations as is the case, for 
instance, of high frequency sampling oscilloscopes [14]. Here, 
however, we will consider only the situation where (13) is 
valid. From (12) we have 

{ } ( ){ }2

1

1 2 sin 2
M

a i i a i a i
i

E mse E n q f A f t
M =

≈ + − π δ π + ϕ⎡ ⎤⎣ ⎦∑ . (14) 

which can be written also as 
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{ } ( ) ( )
( )( ) ( )

2 2

2 2

1

1 2 sin 2

2 2 sin 2

i i
M

a a i a i
i

i i a i a i

n q

E mse E f A f t
M

n q f A f t
=

⎧ ⎫+ +
⎪ ⎪⎪ ⎪≈ + π δ π + ϕ −⎨ ⎬
⎪ ⎪− + π δ π + ϕ⎪ ⎪⎩ ⎭

∑ (15) 

If we take into account that n, q and δ are independent and 
have zero mean.  

Both additive noise and jitter are considered normally 
distributed random variables in this study with standard 
deviations 2

nσ  and 2
tσ  respectively. The quantization error can 

be considered an uniform random variable in an interval of 
length Q, if the conditions in [16] are satisfied. In that case its 
standard deviation is given by 12Q . We can thus write 
(15) as 

{ } ( ) ( )
2

22 2

1

12 sin 2
12

M

a n a t a i
i

QE mse f A f t
M =

≈ σ + + π σ π + ϕ∑ . (16) 

Again we will make another simplifying assumption. In this 
case we will consider that the acquisition of the input signal is 
carried out during an integer number of periods (J), that is, the 
signal frequency, sampling frequency  (fs) and number of 
samples satisfy 

  ,   and  not multiple of 
2

a

s

f J MJ J
f M

= ∈ . (17) 

In that case the summation in (16) is: 

 ( )2

1
sin 2

2

M

a i
i

Mf t
=

π + ϕ =∑ . (18) 

Note that the sampling instants are given by i st i f= . The 
assumption is reasonable because we can choose whatever 
values we want for those frequencies and the number of 
samples. In practice, however, due to instrument inaccuracies, 
the actual value of those frequencies may not be exactly the 
values chosen and which satisfy (17) but are close enough 
considering typical frequency errors smaller than 100 ppm. If 
a non integer number of periods is acquired a bias will affect 
the estimator. In this work, however, we will not consider this 
scenario. 

Using (18) we can write (16) as 

 { } ( )
2

22 2
12a n a t
QE mse f A≈ σ + + π σ . (19) 

The same reasoning can be applied to the samples acquired 
with the high frequency sine wave: 

 { } ( )
2

22 2
12b n b t
QE mse f A≈ σ + + π σ . (20) 

We are now ready to compute the expected value of the 
estimator (8). To first approximation the expected value of the 
square root of a variable is equal to the square root of its 
expected value [15, pp. 113]. We thus have 

 { } { } { }
2
b a

t

b

E mse E mse
E

f A

−
σ ≈

π
. (21) 

Using (19) and (20) leads to 

 { } ( ) ( )2 22 2

2
b t a t

t

b

f A f A
E

f A

π σ − π σ
σ ≈

π
 (22) 

Which, after further simplification leads to 

 { }
2

21 a
t t

b

f
E

f
σ ≈ σ − . (23) 

By observing equation (23) we conclude that estimator (8) is 

biased since { }t tE σ ≠ σ . To minimize the estimation error 

one should have a low value of fa and a high value of fb as 
possible. 

IV. NEW ESTIMATOR PROPOSED 
As concluded in the previous section, the estimator (8) 

which is the one recommended in method 4.9.2.2 of IEEE 
standard 1057 [11] (12.2.2 of [12]) to estimate jitter in 
Waveform Digitizers and ADCs in general, is biased. The 
expected value of this estimator is given by (23). Using this 
information we suggest a new estimator for that test: 

 
2 22

b a
t

b a

mse mse

A f f

−
σ =

π −
. (24) 

If frequencies fa and fb can be properly chosen, that is, if we 
can have b af f , then, in practice, the difference between 
using (24) instead of (8) is negligible. We maintain however 
that there is no reason to use a biased expression when an 
unbiased one is available which equally easy to use. 

From (24) and using (19) and (20), we have 
 

 { } { } { }
2 22

b a
t t

b a

E mse E mse
E

A f f

−
σ = = σ

π −
. (25) 

which proves that estimator (24) is unbiased. Again note that 
this is so because we are not considering the eventual presence 
of harmonic distortion in the stimulus signal or caused by the 
waveform recorder nor that the samples acquisition may have 
been carried out over a non integer number of periods due to 
mismatch in stimulus signal and sampling clock frequencies. 

 To validate the results obtained so far about the bias of 
the estimator, we used a Monte Carlo procedure.  The test was 
repeated 1000 times on a simulated ADC having jitter and 
amplitude noise. The conditions of the test are presented in 
Tab. 1. 

Tab. 1 – Settings used for the Monte Carlo simulation. 

Setting  Value 
Sine Wave Amplitude (A)  10 V 
Sine Wave Offset (C) 0
Low Sine Wave Frequency (fa)  100 kHz 
High Sine Wave Frequency (fb) 1 MHz
ADC Quantization Step (Q)  1 μV 
Number of Acquired Samples (M) 1000
Sampling Frequency (fs)  100 MHz 
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Injected Additive Noise (σn)  50 mV
Injected Jitter (σt)  0 to 10 ns 
Number of Repetitions (R)  1000
Confidence Level (ν)  99.9 % 

 
The expected value of the jitter estimates obtained was 

computed and its difference to the actual jitter standard 
deviation is represented in Fig. 1. The vertical bars translate 
the uncertainty of the expected value due to a finite number of 
repetitions [15, pp. 248].  
 

 
 

Fig. 1 – Representation of the error of the expected value of the jitter 
estimation as a function of the actual standard deviation of jitter. The solid 
line represents the values given by (25) and the vertical bars represent the 

result of Monte Carlo simulations of the jitter test method. 

It can be clearly seen that for values of jitter standard 
deviation greater than 0.5 ns the result confirm that the 
estimator (24) is unbiased. The divergence observed for 
smaller values of jitter standard deviation are due to the 
simplification that the expected value of the square root of a 
variable is really not exactly the same as the square root of its 
expected value. As a consequence, we should state more 
accurately that the estimator is unbiased as long as the jitter 
present is not such, given the test frequencies used, that it 
leads to a small difference in value between the measured 
mean square errors at the two test frequencies.  

V. UNCERTAINTY OF THE JITTER TESTS 
In this section we will focus on the uncertainty of the 

estimators (8) and (24). The precision of the estimates is 
related to the standard deviation of the random variable tσ . 
To compute it we will start by computing the variance of msea 
and mseb. From (6) and considering the different samples 
uncorrelated, we have: 

 { } ( ){ }2

2
1

1 M

a i i
i

VAR mse VAR za ya
M =

= −∑ . (26) 

Using the same reasoning as in section III we can write 

 

{ }

( ) ( )
( )( ) ( )

2 2

2 2
2

1

1 2 sin 2

2 2 sin 2

a

i i
M

a i a i
i

i i a i a i

VAR mse

n q

VAR f A f t
M

n q f A f t
=

=

⎧ ⎫+ +
⎪ ⎪⎪ ⎪= + π δ π + ϕ −⎨ ⎬
⎪ ⎪− + π δ π + ϕ⎪ ⎪⎩ ⎭

∑
. (27) 

Taking into account that n and δ are normal random 
variables with standard deviations of σn and σt respectively 
and q is uniformly distributed between –Q/2 and Q/2, we have 

{ } { } { }
4

2 4 2 2 42 ,  and 2
180i n i i t
QVAR n VAR q VAR= σ = δ = σ .(28) 

Using (28), we can write (27) as: 

{ }

( ) ( )

( ) ( )

4 4

44 4
2

1

2
22 2 2

2
1

2
180
1     2 2 sin 2

1     4 2 sin 2
12

n
a

M

t a a i
i

M

n t a a i
i

QVAR mse
M M

f A f t
M

Q f A f t
M

=

=

σ
= + +

⋅

+ σ π π + ϕ +

⎛ ⎞
+ σ + σ π π + ϕ⎜ ⎟

⎝ ⎠

∑

∑

.(29) 

Again we will consider that the acquisition of the input 
signal is carried out during an integer number of periods as 
was done in eq. (16). The first summation in (29) is, in those 
conditions (eq. (17)), given by 

 ( )4

1

1 3sin 2
8

M

a i
i

f t
M =

π + ϕ =∑ . (30) 

Introducing (18) and (30) into (29) leads to 

{ } ( )

( )

4 4
44

2
22 2

2 32 2
180 8

1                 4 2
12 2

n
a t a

n t a

QVAR mse f A
M M M

Q f A
M

σ
= + + σ π +

⎛ ⎞
+ σ + σ π⎜ ⎟

⎝ ⎠

. (31) 

The same reasoning can be applied to compute the variance 
of mseb which will lead to an expression similar to (31) with fb 
in place of fa: 

{ } ( )

( )

4 4
44

2
22 2

2 32 2
180 8

1                 4 2
12 2

n
b t b

n t b

QVAR mse f A
M M M

Q f A
M

σ
= + + σ π +

⎛ ⎞
+ σ + σ π⎜ ⎟

⎝ ⎠

. (32) 

The following step is to compute the variance of 
2

tσ  from 
the variances of msea and mseb. Using (24) we can write 

 
( ) ( )

2

2
2 22

b a
t

b a

mse mse

A f f

−
σ =

π −
. (33) 

Since the random variables msea and mseb are independent, 
we can write 

 { } { } { }

( ) ( )
2

4 22 22

b a
t

b a

VAR mse VAR mse
VAR

A f f

+
σ =

π −
. (34) 

Inserting (31) and (32) leads to 

 (ns)tσ

{
}

 (p
s)

t
t

E
σ

−
σ
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{ }
( ) ( )

( ) ( )

( ) ( )

( ) ( )

4
44 4 4 4

2

4 22 2

2
22 2 2 2

4 22 2

34 2
90 4

2

2 2
12

              
2

n t a b

t

b a

n t a b

b a

Q A f f
VAR

A f f M

Q A f f

A f f M

σ + + σ π +
σ = +

π −

⎛ ⎞
σ + σ π +⎜ ⎟

⎝ ⎠+
π −

. (35) 

Finally we are going to compute the variance of tσ  from 

the variance of 
2

tσ  using [15, pp. 113]: 
 ( ) ( )22 2'   where  y x xg y g xσ μ σ = . (36) 

Note that μx and σx are the mean and variance of x 
respectively. In our case y x=  and thus  

 ( ) 1'
2x

x

g μ =
μ

. (37) 

Combining (35) with (36) and (37) where 
2

tx = σ  and ty = σ , 
and using (25), leads to 

{ }
( ) ( )

( ) ( )

( ) ( )

( ) ( )

4
44 4 4 4

4 22 2 2

2
22 2 2 2

4 22 2 2

3 2
90 16

2

1 2
2 12

              
2

n t a b

t

b a t

n t a b

b a t

Q A f f
VAR

A f f M

Q A f f

A f f M

σ + + σ π +
σ +

π − σ

⎛ ⎞
σ + σ π +⎜ ⎟

⎝ ⎠+
π − σ

. (38) 

which can be written as 

{ }
( ) ( )

( )
( )

( )
( )

4
4

4 222 2

4 4
2

22 2

2 2 2
2

2 2 22 2

1 90
2

12             
16

1              
122

n

t

t
b a

a b
t

b a

a b
n

b a

Q

VAR
M A f f

f f

M f f

f f Q
M A f f

σ +
σ +

σπ −

+
+ σ

−

+ ⎛ ⎞
+ σ +⎜ ⎟π ⎝ ⎠−

. (39) 

Equation (38) allows the computation of the variance of the 
estimated jitter standard deviation obtained with the proposed 
estimator (24). In the approximation b af f  the proposes 
estimator is equal to the IEEE 1057 estimator, eq. (8), and its 
variance is, from (38), 

 
{ }

( )

( )

4
4

4 2

2
2 2

2

190
2

1 3             
12 42

b a

n

t
f f

tb

n t

b

Q

VAR
M Af

Q
MM Af

σ +
σ +

σπ

⎛ ⎞
+ σ + + σ⎜ ⎟

⎝ ⎠π

. (40) 

In Fig. 2 the result of Monte Carlo Simulations for the 
determination of the estimator standard deviation is presented. 
Again, 1000 repetitions were used. The result is depicted by 
the vertical bars which represent the confidence intervals [15, 
pp. 253]. It clearly supports the claim that the standard 
deviation of the jitter estimation obtained with (24) can be 
computed using the expression given in (39). 

 
Fig. 2 – Representation of the standard deviation of the jitter estimation as a 

function of the actual standard deviation of the jitter. The solid line represents 
the values given by (39) and the vertical bars represent the result of Monte 

Carlo simulations of the jitter test method. 

The conditions of the test are the same as those used for the 
validation of the estimator expected value (Tab. 1). 

For very low values of jitter standard deviation, the 
approximations made using (36) cease to be valid because the 
jitter is not enough to always make the mean square error 
measured at high frequency (mseb), higher than the its value 
when measured at low frequency (msea). We can empirically 
consider a threshold on the value of jitter for this situation, the 
minimum of the estimator standard deviation. This value can 
be obtained by calculating the derivative of (39) with respect 
to σt and equating it to 0. The result obtained is 

 
( )

4
4

4
min 4 4 4 4

90
3

n

t
b a

Q

A f f

+ σ
σ =

π −
. (41) 

If we encounter an application where mseb is smaller that 
msea, we should increase the frequency difference 4 4

b af f−  
which will increase the value of  mseb in relation to msea. This 
corresponds to pushing the minimum of the estimator standard 
deviation (Fig. 2) to the left (decrease in the value given by 
(41)). 

VI. EXPERIMENTAL VALIDATION 
In order to validate the results obtained so far, namely, that 

the estimator (24) is unbiased and that the standard 
uncertainty of that estimator can be computed using (38), we 
measured jitter in an actual ADC using the method under 
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study.  
Since we are interested in studying the statistical properties 

of the jitter estimator we need a setup where we can control 
the amount of jitter present. ADC jitter is a deterministic or 
random delay between the ideal sampling instants and the 
actual sampling instant (here we are just considering normally 
distributed random jitter). To be able to carry on our study we 
have to be able to accurately control the jitter present. It is not 
practical to have different ADCs with different values of jitter 
to test. We can, however, mimic the effect of jitter in the ADC 
with jitter in the transition time of the clock signal which 
controls the sampling. The two jitters are equivalent and, in 
fact, when we are measuring the ADC jitter with the test 
recommended in the IEEE standard, we are actually 
measuring both jitters (and also the stimulus signal phase 
noise). Here we are going to inject the desired amount of jitter 
in our test setup by controlling the phase noise of the clock 
signal produced by a Tektronix arbitrary function generator. 
The clock signal used was a square wave phase modulated by 
Gaussian noise generated by an Agilent function generator. In 
this way we can inject different amounts of jitter by 
controlling the power of the Gaussian noise produced.  

The ADC under test is one embedded in a National 
Instruments data acquisition board, model NI 6023. This 
board was plugged into a PCI slot of a personal computer 
which is used to program the data acquisition board, store the 
acquired samples, control the 4 instruments used and obtain 
the jitter estimate using eq. (24). The test setup is depicted in 
Fig. 3. This data acquisition board used was chosen because it 
has an external input that can be used to connect a clock signal 
for the timing of the analog to digital conversions. Note that 
this is required because we want to inject jitter in our test 
setup for the purpose of studying the measurement method. 
For those just wanting to measure jitter, that is not necessary. 
That is why this method, although not the best in separating 
the different sources of jitter present in a test setup, is 
appropriate when measuring jitter on waveform recorders and 
oscilloscopes that generally do not have the capability of 
using an external clock. 

 

 
Fig. 3 – Test Bench. The personal computer controls all instruments through 
GPIB or USB interfaces. The combination of the sinusoidal stimulus signal 
and the normally distributed noise is carried out inside the data acquisition 

board through the use of one of its differential inputs. 

A very low distortion sine wave generator from Stanford 
Research Systems was used to generate the signal used to 
stimulate the ADC. We also added a given amount of additive 
noise to the ADC input to mimic the presence of additive 
noise in the ADC. Using another Agilent function generator 
we added Gaussian noise to the sine wave by making use of 
the differential input of the data acquisition board. 

We implemented the IEEE jitter test in National 
Instruments LabView. The application developed completely 
automates the test study, from test parameters calculation, to 
instrument control, data gathering and processing, graphical 
representation of results and Monte Carlo analysis.  

Before carrying out the tests, there were two constants that 
had to be determined: the ratio between generated additive 
noise and the voltage noise present in the ADC (Kv), and the 
ratio between the additive noise generated and the amount of 
jitter present in the clock signal (Kt).  

In the first case we adjusted the function generator to a 
given value of noise rms voltage and measured the standard 
deviation of noise in the ADC using the method described in 
IEEE 1057 for the estimation of random noise using sine 
fitting. Five measurements were made and linear regression 
was used to arrive at Kv = 0.2344 (correlation of 0.9994). This 
test was carried out with the internal clock of the data 
acquisition board set with a frequency of 100 kHz and a sine 
wave stimulus signal frequency of 25 kHz. The test was 
repeated for lower values of sine wave frequency but the 
value obtained for Kv was the same showing that the combined 
values of jitter present in the ADC and phase noise of the 
internal clock were negligible. The value obtained is close to 
the expected one that can be computed if we take into account 
the specification for the bandwidth of the National 
Instruments NI6023 data acquisition board, which is 500 kHz, 
and the Agilent AG33220A function generator specification 
for the bandwidth of noise, which is 9 MHz. These 
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specifications and other relevant ones are presented in Tab. 2. 
By taking the square root of the ratio between these two 
numbers, we get 

 500 0.2357
9000

=  (42) 

which is very close to the measured value of 0.2344. The 
difference can be explained by measurement uncertainty and 
by considering that the noise bandwidth of 9 MHz specified 
by Agilent for the AG3322A is just an approximated value 
and that the 500 kHz bandwidth for the data acquisition board 
is the small signal bandwidth and not the equivalent noise 
bandwidth. 

Tab. 2 – Manufacturer specifications for the instruments and ADC used. 

Specification  Value 
Stimulus Signal Generator (Stanford Research DS 360)    
   Sine Wave Amplitude Accuracy  1 % 
   Sine Wave Offset Accuracy  1% + 25 mV
   Sine Wave Frequency Accuracy  25 ppm+4 mHz 
   Total Harmonic Distortion  ‐93 dB 
Clock Generator (Tektronix AFG 3022)   
   Frequency Accuracy  1 ppm
   Jitter  500 ps 
   External Phase Modulation Bandwidth 25 kHz
   Degrees of Phase Modulation per control voltage 
unit 

Not specified

Additive/Phase Noise Generator (Agilent AG 33220A) 
   Noise Bandwidth  ≈ 9 MHz 
   Amplitude Accuracy  1 % / 1 mVpp
Analog/Digital Converter (National Instruments 6023) 
   Number of Bits   12 
   Number of Most Significant Bits Used 8
   Integral Non Linearity (INL)  1.5 LSB 
   Differential Non Linearity (DNL)  1 LSB
   Gain Error  0.02 % 
   Offset Error  0.5 mV
   Bandwidth (small signal)  500 kHz 
   Additive Noise  0.1 LSB 
   Jitter  Not specified

 
To compute the second constant (Kt), we produced different 

values of additive noise rms voltage (5 points from 100 mV to 
1 V), with the generator connected to the external modulation 
input of the clock generator and used a digital phosphor 
oscilloscope from Tektronix to measure the amount of jitter 
present in the clock (30000 transition measurements carried 
out for each of the 5 points). The linear regression gave a 
value of Kt = 266.82 ns/V (correlation of 1.0000). We can not 
determine an expected value for this constant from the 
instruments specifications because the modulation constant 
(º/V) of the Tektronix is not supplied in the specification 
sheets. 

We also used this oscilloscope to draw the histogram of the 
measured values and by visual inspection concluded that it 
had a good Gaussian distribution. We tried to use the 
Tektronix AFG3022 arbitrary function generator to produce 
the additive noise instead of the Agilent AG33220A but it 
showed a poor statistical distribution of the noise voltages. 

 The statistical properties of the estimator were measured by 
repeating the jitter measurement in the same conditions a 

given number of times (R) and computing the average and 
standard deviation of the different values obtained. The results 
were compared with the theoretical ones given by (25) and 
(39). We carried out this analysis in several different 
conditions by varying the following parameters: 

• Stimulus signal frequency; 
• Stimulus signal amplitude; 
• Sampling frequency; 
• Quantization step; 
• Additive noise standard deviation; 
• Jitter standard deviation; 
• Number of samples acquired. 

In all cases where the jitter standard deviation was not too 
small, the experimental results were in agreement with the 
theoretical ones within confidence intervals obtained for a 
confidence level of 99.9%. Here we present the results for one 
set of those conditions that we judge were the most illustrative 
and representative of actual conditions. The values used can 
be found in Tab. 3. 

Tab. 3 – Experimental Setup Settings. 

Setting  Value 
Sine Wave Amplitude (A)  4 V 
Sine Wave Offset (C) 0
Low Sine Wave Frequency (fa)  2.478 kHz 
High Sine Wave Frequency (fb) 24.9878 kHz
ADC Full Scale (FS)  5 V 
ADC Quantization Step (Q) 39.0625 mV
Number of Acquired Samples (M)  8192 
Sampling Frequency (fs) 100 kHz
Injected Additive Noise (σn)  20 mV
Injected Clock Phase Noise (σt)  0 to 1.72 º
Number of Repetitions (R)  200 
Confidence Level (ν)  99.9 %

 
The results obtained for the error of the estimation 

(difference between expected value and actual value) are 
depicted in Fig. 4 for a range of injected jitter from 0 to 300 ns 
(values of jitter standard deviation). We can see that all 
confidence intervals (vertical bars), with the exception of the 
first one (for the absence of jitter), are around 0 (theoretical 
value) which shows that the estimator is unbiased in those 
conditions. 
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Fig. 4 – Representation of experimental results of the difference between the 
expected value of the jitter estimation and the injected jitter, as a function of 

the actual standard deviation of the jitter. The solid line represents the 
theoretical values, which are 0 in this case (unbiased estimator). The vertical 

bars represent the confidence intervals of the result of the Monte Carlo 
simulations of the jitter test method (99.9 % confidence level). 
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Fig. 5 – Representation of experimental results of the standard deviation of the 
jitter estimation as a function of the actual standard deviation of the jitter. The 
solid line represents the values given by (39). The vertical bars represent the 
confidence intervals of the result of the Monte Carlo simulations of the jitter 

test method (99.9 % confidence level). 

The confidence interval of the first point is not around zero 
because the estimator (24) is biased when the amount of jitter 
is small because in some cases the value of msea will be 
higher that the value of mseb. In those cases we can not take 
the square root. The same happens in Fig. 5 were we depict 
the standard deviation of the estimated jitter. We can see that 
the confidence intervals are all around the theoretical value 
given by (39) and depicted as a solid line. 

These results validate the assumptions made in the 
conditions that were used in this paper (Tab. 3). 

VII. MINIMUM NUMBER OF SAMPLES REQUIRED 
One of the important considerations when performing the 

jitter test is to know how many samples should be acquired. 
There is a compromise to be made between the test time and 
the estimation uncertainty. The higher the number of samples 
acquired (M), the lower will be the test result uncertainty, as 
can be seen in (38), but longer the test will take to complete, 
which, in the case of production line testing of ADCs, is 
critical. 

Using the statistics calculated for the value of the jitter 

estimation we can determine a confidence interval inside 
which the true value of the measured jitter standard deviation 
is with a certain confidence level [17], 

{ } { }t t t ttK VAR K VARν νσ − σ ≤ σ ≤ σ + σ , (43) 

where Kν is the coverage factor corresponding to a certain 
confidence level ν and which depends on the statistical 
distribution of the estimator.  

In the case in study, the square of the estimator
2

tσ has a 
distribution which tends to a normal one as the number of 
samples tends to infinite. This is demonstrated by the Central 
Limit Theorem [15] applied to variables msea and msea which 
are the summation of a large number of random variables (eq. 
(6) and (7)). 

The estimator (24) will thus have a statistical distribution 
that is the distribution of a variable which is the square root of 
a randomly distributed variable. Its probability density 
function can be obtained by [15, pp. 96] 

 ( ) ( ) ( )2
22

t t

f y yf y U y
σ σ

= , (44) 

where U(y) is 1 for positive y and 0 otherwise and 

 ( )

2

2

2
2

2

2

21
2

t

t

t

t

y

f y e

σ

σ

⎛ ⎞−μ⎜ ⎟
⎝ ⎠−

σ

σ
σ

=
πσ

 (45) 

is the Gaussian probability function. The probability density 
function of the jitter estimator is thus 

 ( ) ( )
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. (46) 

To compute the coverage factor we need the cumulative 
distribution function (cdf), F(x), which by definition is 

 ( ) ( )
x

F x f y dy
−∞

= ∫ . (47) 

The cdf of the jitter estimator is thus 

 ( )

2
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2

2
2

2
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x yF x e dy
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σ

σ
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σ

σ

=
πσ∫ . (48) 

Given a desired confidence level, we use (48) to find the 
coverage factor and hence the confidence interval. To simply 
the calculation of this interval we can use the fact that ( )

t
F x

σ
 

is approximately equal to the cdf of a normal distribution with 

mean 2
tσ

μ  and standard deviation 2 22
t tσ σ

⎛ ⎞σ μ⎜ ⎟
⎝ ⎠

. In Fig. 

6 we can see the difference between the two given by 
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. (49) 

In this example, and in general, as long as the mean minus 3 
times the standard deviation is not close to 0,  the difference is 
small which makes the use of normal distribution percentiles 
adequate to determine the coverage factor for this estimator. 
We have, for instance, Kν  = 2.58 for a 99% confidence level. 

 

 
Fig. 6 – Representation of the difference between the cdfs of a normally 
distributed random variable and the cdf of the square root of a normally 

distributed variable. In this example the normal distributed variable has mean 
1 and standard deviation 0.2. 

In Fig. 7 we show the cdf of the estimated jitter computed 
from experimental values. The test conditions were the same 
as those used in section VI and the injected value of jitter was 
200 ns. A good agreement with the cdf of a Gaussian 
distribution with the same mean (199.868 ns) and standard 
deviation (2.236 ns) is observed. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

190 195 200 205 210

σ t  / ns

cd
f

Theoretical
Experimental

 

Fig. 7 – Representation of the cdf of the jitter estimator obtained with 
experimental data. The theoretical cdf of a normal random variable with the 

same mean and variance is depicted for comparison. 

If we wish to have a given desired confidence interval with 
half-length Bt: 

 t tt t tB Bσ − ≤ σ ≤ σ + , (50) 

we need to have 

 { }t tK VAR Bν ⋅ σ ≤ , (51) 

Introducing (38) into (51) we can derive an expression for 
the minimum number of samples required to achieve a certain 
bound on the estimation uncertainty: 
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. (52) 

This expression is useful in avoiding the acquisition of the 
wrong number of samples for the application at hand. The use 
of a value too high will entail longer test duration while the 
use of a value too low will lead to greater uncertainty than 
desired. 

VIII. CONCLUSIONS 
We analyzed one of the test recommended by IEEE in [11-

12] for the estimation of the jitter of waveform digitizers and 
ADCs. We concluded that the estimator suggested is biased if 
the frequencies used in the test do not satisfy b af f  (eq. 
(23)). We propose a new estimator which is unbiased 
whatever the value of the frequencies used: eq. (24). We 
derived an expression for determining the uncertainty of the 
jitter estimates made with the referred method in the presence 
of additive noise: eq. (38). Finally we presented an expression 
(eq. (52)) which is useful for optimizing the test by allowing 
the tester to know the minimum number of samples required 
to achieve a desired confidence interval on the estimates. 

Several simplifying assumptions were made here which 
require further work in the future, namely, the study of what 
happens when: 

• samples are acquired during a non integer number 
of periods of the stimulus signal; 

• the amount of jitter is high when compared to the 
sampling period; 

• quantization can not be treated as an error term 
independent of the stimulus signal.  

As stated in the beginning, this work is just the first step in 
understanding the uncertainty of the jitter measurement 
method 4.9.2.2 (12.2.2 in the 2007 edition) of the IEEE 1057 
standard [11-12]. Further research can be carried out on 
different uncertainty sources, namely: 

• Harmonic distortion; 
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• Sine fitting parameters uncertainty; 
• Stimulus signal and sampling clock frequency error. 
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