Unitary Operators

By using a quantum circuit, any problem in \textbf{NP} can be solved with a nonvanishing correctness probability in time

\[O\left(\sqrt{2^n} p(n)\right) \]

Where \(p \) is polynomial depending on the particular problem.
Question

- Why can a quantum algorithm improve on NP problems in $O\left(\sqrt{2^n p(n)}\right)$ and not $O(np(n))$?
 - We have Quantum Parallelism and the results...
 - But we can not obtain the results

- Why is it so difficult to obtain the results?
- Lets look into the evolution of our system..

Unitary Evolution

- If the Hamiltonian is time independent, and the computer is started off with memory register in the state $|\Psi(0)\rangle$, then we can write the general solution of the Schrödinger equation as
 \[
 |\Psi(t)\rangle = e^{-i\hat{H}t/\hbar} |\Psi(0)\rangle = \hat{U}(t) |\Psi(0)\rangle
 \]

- Where $\hat{U}(t) = e^{i\hat{H}t/\hbar}$ is called the evolution operator
The operator $U(t)$ is always a **unitary matrix**

- The conjugate transpose is equal to its inverse

Important implication
- It means that the evolution operator of an ideal quantum computer, isolated from environment, is **reversible**
- Any ideal quantum computer must be also reversible

Hamilton operator is known (represents the total energy of the system)
- Schrodinger equation is used to determine the energy eigenstates, which form the basis states of a quantum system
 - Time evolution which is described by U_i is continuous
 - We interested in the state of the system a discrete time points t_1, t_2, t_3,
- Therefore we will regard the evolution as a sequence of init-length vectors x, $U_1 x$, $U_2 U_1 x$, $U_3 U_2 U_1 x$, U_i is unitary
Description of quantum circuit everything to simulate a quantum computer
- Description tells us what transformation will be effected on any given input state
- It does not embody any dynamics
- Quantum computer is a physical system whose evolution over time can be interpreted
- Circuit level tells us what the evolution has look like
- Embody the computation in dynamical process, Schrodinger equation

Composed of quantum circuits, they describe the computation
- The overall unitary transformation achieved by the circuits can be written as
 \(A_k A_{k-1} \cdots A_1 \) where \(A_i \) is the operator describing the \(i \)th gate
- Notice: \(A_2 A_1 \neq A_1 A_2 \)
Compound systems

- Suppose we have \(n \) and \(m \)-states
 \[
 \{|x_i\}, |x_2\}, \ldots, |x_n\}\rangle \quad \text{of} \quad H_n
 \]
 \[
 \{|y_i\}, |y_2\}, \ldots, |y_m\rangle \quad \text{of} \quad H_m
 \]
 - The compound system is described as a tensor product
 \[
 H_n \otimes H_m \cong H_{nm}
 \]
 - With the basis states
 \[
 |x_i\rangle \otimes |y_j\rangle = |x_i, y_j\rangle \quad i \in \{1, \ldots, n\} \quad j \in \{1, \ldots, m\}
 \]
New Basis

A general state of a 2-bit memory register is

\[
\begin{align*}
|00\rangle &= \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},
|01\rangle &= \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},
|10\rangle &= \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix},
|11\rangle &= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
\end{align*}
\]

Generalization is straightforward

Measurement

The initial state of the system is projected to the subspace that corresponds to the observed state (highest amplitude) and renormalized to the unit length.

Projection is **not consistent with the unitary time evolution**

- Since unitary evolution is always reversible, but there is now way to recover from a projection
- No explanation exists
 - (Measurement paradox)
After the projection, information about all other states is lost

In the Deutsch-Jozsa problem, we are given a black box quantum computer known as an oracle that implements the function. We are promised that the function \(f : \{0,1\} \rightarrow \{0,1\} \) is either constant (0 on all inputs or 1 on all inputs) or balanced (returns 1 for half of the input domain and 0 for the other half); the task then is to determine if \(f \) is constant or balanced by utilizing the oracle.
Evaluation of oracle f. Is it balanced?

$$H_n|0\rangle|0\rangle \rightarrow \frac{1}{\sqrt{2^n}} \sum_{x \in \mathbb{F}_2^n} |x\rangle|0\rangle$$

- How can we obtain the values of $f(x)$?

$$\frac{1}{\sqrt{2^n}} \sum_{x \in \mathbb{F}_2^n} |x\rangle|0 \oplus f(x)\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \mathbb{F}_2^n} |x\rangle|f(x)\rangle$$

⊕ means addition modulo 2, exclusive or operation

- We do not need the target bit anymore!

$$\frac{1}{\sqrt{2^n}} \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x)} |x\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \mathbb{F}_2^n} (-1)^{\langle y \mid x \rangle} |x\rangle \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$
Finally we examine the probability of measuring

\[\frac{1}{2^n} \sum_{x=0}^{2^n-1} (-1)^{f(x)} \sum_{y=0}^{2^n-1} (-1)^{x\cdot y} |y\rangle = \frac{1}{2^n} \sum_{y=0}^{2^n-1} \left[\sum_{x=0}^{2^n-1} (-1)^{f(x)}(-1)^{x\cdot y} \right] |y\rangle \]

which evaluates to 1 if \(f(x) \) is constant and 0 if \(f(x) \) is balanced

- We used the Hadamard matrix
- We mapped the \(f \) values into the amplitude
- Value of each \(f \) contributed to the amplitude
 - “Same” idea for Shor’s factorization algorithm
Why:

- Quantum Fourier Transform corresponds to a Hadamard matrix!
- QFT is also called a Hadamard-Walsh transform, where each element (of the group \mathbb{Z}_n) after QFT is represented as

$$N_j(x) = e^{\frac{2\pi i j x}{n}}$$

and

$$|x\rangle \rightarrow \sum_{y=0}^{n-1} e^{\frac{2\pi i n y}{n}} |y\rangle$$

\H_2

$W_2 = H_2 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

$H_2 |0\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$

$H_2 |1\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$

W_2, H_2 is called Walsh matrix, Hadamard matrix or Hamarad-Walsh matrix

$$W_2 \left(\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \right) = \frac{1}{\sqrt{2}} W_2 |0\rangle + \frac{1}{\sqrt{2}} W_2 |1\rangle = \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) + \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = |0\rangle$$
Hadamard matrix

- $H_n = H_2 \otimes H_2 \otimes \ldots \otimes H_2$ n times

$$H_n |z\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in F_2^n} (-1)^{z \cdot x} |x\rangle$$

$z \cdot x = z_1 x_1 + \cdots + z_n x_n$

- H_n is called Hadamard matrix

$$H_2 = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

$$H_4 = \begin{bmatrix} H_2 & H_2 \\ -H_2 & H_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & -1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$$
http://www.iasri.res.in/webhadamard/

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1-1 & 1-1 \\
1 & 1-1-1 \\
1-1-1 & 1 \\
\end{array}
\]

- Is \(f_y(x) = 1 \) for any of the elements?
Another idea

Suppose we “just” want to test if a $f_y(x) = 1$ exists or not

If it does not exist than $f_y(x) = 0$ for all x

$$
\sum_{x \in \mathbb{F}_2^n} (-1)^{f_y(x)}|x\rangle
= \frac{1}{\sqrt{2^n}} H_n \left(\sum_{x \in \mathbb{F}_2^n} |x\rangle \right)
= |0\rangle
$$

And we are sure!

But....
We separate $|0\rangle$ from all other state by designing a function $f_0 : F_2^n \rightarrow F_2$.

- It gets a 1 for 0 and 0 for all other values.
- Such a function is possible to construct

$$\left(1 - \frac{2}{2^n}\right)|0\rangle - \frac{2}{2^n} \sum_{x \neq 0} (-1)^x |x\rangle |0\rangle$$

The observation of the last qubit results in $|0\rangle|1\rangle$.

With a probability

$$\left(1 - \frac{2}{2^n}\right)^2 = 1 - \frac{4}{2^n} + \frac{4}{2^{2n}}$$
\[
\left(1 - \frac{2}{2^n}\right)\lvert \theta \rangle \lvert 0 \rangle - \frac{2}{2^n} \sum_{x=0}^{2^n-1} (-1)^x \lvert x \rangle \lvert 0 \rangle
\]

- And the observation of the last qubit results in

\[
\frac{1}{\sqrt{2^n - 1}} \sum_{x=0}^{2^n-1} (-1)^x \langle x | \langle 0 | = \frac{1}{\sqrt{2^n - 1}} \left(\sum_{x \in \mathbb{F}_2} (-1)^x \langle x | - \langle \theta | \right) \langle 0 |
\]

- With a probability
 - (both probabilities are 1)

\[
1 - \left(1 - \frac{2}{2^n}\right)^2 = \frac{4}{2^n} - \frac{4}{2^{2n}}
\]

- What is the problem?

 - There is still a higher probability to measuring the state \(\lvert 0 \rangle\)
 - Why, because one dimension has not a big impact on changing the amplitude
 - \(H_n\) is “just” a linear mapping!
 - Can we amplify this linear mapping?
 - Yes, but only a little....
Orthogonal Subspace

- Let be W a subspace of H, then we have as well an orthogonal subspace, which is called the orthogonal complement of W

$$W^\perp = \{ y \in H | \langle y | x \rangle = 0 \}$$

$$H = W \oplus W^\perp$$

- If v is given as a column unit vector
- I is the identity matrix

$$Q = I - 2vv^*.$$

- The linear transformation described above is given by the Householder matrix
- Q is unitary
The mapping Qx

$$Qx = x - 2vv^*x = x - 2\langle v, x \rangle v,$$

- Reflects x on the hyperplane which is defined by a unit vector v that is orthogonal to the hyperplane.
- $\langle v, x \rangle$ is equal to the distance from x to the hyperplane.
Grover’s Amplification

- Operators which we will use:
 - We need a query operator which calls for value \(f_y \) uses \(n \) qubits for the source register and one target bit \(y \in F_2^n \)
 \[
 V_f |x\rangle = (-1)^{f(x)} |x\rangle
 \]
 \[
 f_y(x) = \begin{cases}
 1, & \text{if } x = y \\
 0, & \text{otherwise}
 \end{cases}
 \]
 - We need a quantum operator \(R_n \) defined on \(n \) qubits and operating as
 \[
 R_n |0\rangle = -|0\rangle \quad \text{and} \quad R_n |x\rangle = |x\rangle, x \neq 0
 \]

Amplitude Amplification

- Finding \(y \) by the quantum operator
 - \(G_n = H_n R_n H_n V_f \)
 - Working on \(n \) qubits representing elements \(x \)
 - \(H_n R_n H_n \) can be written as a \(2^n \times 2^n \) matrix
 \[
 H_n R_n H_n = \begin{pmatrix}
 1 & -2^n & 2^n & -2^n & \cdots & -2^n \\
 -2^n & 2^n & -2^n & 2^n & \cdots & -2^n \\
 2^n & -2^n & 2^n & -2^n & \cdots & -2^n \\
 \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
 -2^n & 2^n & -2^n & 2^n & \cdots & 1-2^n \\
 -2^n & 2^n & -2^n & 2^n & \cdots & 1-2^n \\
 \end{pmatrix}
 \]
\(H_n R_n H_n \) can be also expressed as

\[H_n R_n H_n = I - 2P \]

Where \(I \) is a \(2^n \times 2^n \) identity matrix and \(P \) is a \(2^n \times 2^n \) projection matrix whose every entry is \(1/2^n \).

\(P \) represents a projection into a one dimensional subspace generated by

\[
\psi = \frac{1}{\sqrt{2^n}} \sum_{x \in F_2^n} |x\rangle
\]

\[
P = |\psi\rangle\langle\psi|\]
Therefore

\[P \sum_{x \in F_2^n} c_x |x\rangle = A \sum_{x \in F_2^n} |x\rangle \]

and

\[-H \cdot R \cdot H \sum_{x \in F_2^n} c_x |x\rangle = (2P - I) \sum_{x \in F_2^n} c_x |x\rangle \]

\[(2P - I) \sum_{x \in F_2^n} c_x |x\rangle = 2A \sum_{x \in F_2^n} |x\rangle - \sum_{x \in F_2^n} c_x |x\rangle \]

\[2A \sum_{x \in F_2^n} |x\rangle - \sum_{x \in F_2^n} c_x |x\rangle = \sum_{x \in F_2^n} (2A - c_x) |x\rangle \]

\[
\begin{align*}
\frac{1}{\sqrt{2^n}} \mapsto 2A - \frac{1}{\sqrt{2^n}} = \frac{1}{\sqrt{2^n}} \\
\frac{-1}{\sqrt{2^n}} \mapsto 2A + \frac{1}{\sqrt{2^n}} = 3 \cdot \frac{1}{\sqrt{2^n}}
\end{align*}
\]
- We get an amplification, but only in a linear way
- We indicate, which part to amplify by a minus sign
- But the amplification is related to the number of state in which we search
- With to many states it is minimal

\[\text{amplification} + \frac{1}{{\sqrt{2}^n}} \text{, versus } - \frac{1}{{\sqrt{2}^n}} \]

- Can we do it better?
- Until now, we can’t :-(

- To find following mapping corresponds to the statement, that we can solve \textbf{NP} problems in \textbf{P} on a quantum computer
Remember?

- Another quantum gate

\[
\sqrt{M} = \begin{pmatrix}
\frac{1+i}{2} & \frac{1-i}{2} \\
\frac{1-i}{2} & \frac{1+i}{2}
\end{pmatrix}
\]

\[
\sqrt{M} |0\rangle = \frac{1+i}{2} |0\rangle + \frac{1-i}{2} |1\rangle
\]

- 0 and 1 with a probability $1/2$, because

\[
\left| \frac{1+i}{2} \right|^2 = \left| \frac{1-i}{2} \right|^2 = \frac{1}{2}
\]

- Is called square root of the not-gate

\[
\sqrt{M} \cdot \sqrt{M} = M
\]

Can this matrixes help?

Can we decompose it?

\[
S_1 = \begin{pmatrix}
\frac{1+i}{2} & \frac{1-i}{2} \\
\frac{1-i}{2} & \frac{1+i}{2}
\end{pmatrix}
\]

\[
S_n = \begin{pmatrix}
\frac{1+i}{2^n} & \frac{1-i}{2^n} & \cdots & \frac{1-i}{2^n} \\
\frac{1-i}{2^n} & \frac{1+i}{2^n} & \cdots & \frac{1-i}{2^n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1-i}{2^n} & \frac{1+i}{2^n} & \cdots & \frac{1+i}{2^n}
\end{pmatrix}
\]
We interested

- Unitary (symmetric) operators:

 \[\text{Sharp} \xrightarrow{U} \text{Superposition} \]

 \[|x\rangle \xrightarrow{U} \sum_{z \in F^*_2} N(x) |z\rangle \]

 - \(N(x) \) codes \(x \) in the superposition

- Is there a \(N(x) \) that represents \(x \) only in one dimension

 \[|x\rangle \xrightarrow{U} \sum_{z \in F^*_2} N(x) |z\rangle \]

 \[N(x) = \begin{cases} 1 & \text{if } x = z \\ -1 & \text{else} \end{cases} \]
Exists any spy system?

- A spy system is composed of a unitary operator which does not map the information about the dimension in which the answer is present into the amplitude.
- It maps it in all registers.

Spy system, does it exist?
- It seems there is no unitary operator which can do it.....

\[
\begin{align*}
\{000\}, \{001\}, \{010\}, \{011\}, \{100\}, \{101\}, \{110\}, \{111\} \\
\downarrow \\
\{000\} \{010\}, \{001\} \{010\}, \{010\} \{010\}, \{010\} \{101\}, \{100\} \{010\}, \{100\} \{111\}, \{101\} \{010\}, \{110\} \{010\}
\end{align*}
\]
Example of a non unitary projection P

$$P = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$

$$P \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \\ 2 \end{pmatrix}$$

Is there some-thing which is “related” to this trivial P, which is unitary?