Noise & Data Reduction

- Paired Sample t Test
- Data Transformation - Overview
- From Covariance Matrix to PCA and Dimension Reduction
- Fourier Analysis - Spectrum
- Dimension Reduction
Remember: Central Limit Theorem

The sampling distribution of the mean of samples of size N approaches a normal (Gaussian) distribution as N approaches infinity.

If the samples are drawn from a population with mean \(\mu \) and standard deviation \(\sigma \) then the mean of the sampling distribution is \(\mu \) and its standard deviation is \(\sigma \sqrt{\frac{1}{N}} \) as N increases.

These statements hold irrespective of the shape of the original distribution.

Z Test

- \[Z = \frac{\bar{x} - \mu}{\sigma / \sqrt{N}} \]
- \[\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2} \]

\(\bar{x} \) is the sample mean, population mean \(\mu \), standard deviation \(\sigma \)

\(s \) is the sample standard deviation

\[t = \frac{\bar{x} - \mu}{s / \sqrt{N}} \]

\[s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2} \]

- when population standard deviation is unknown, samples are small
- population mean \(\mu \), sample mean \(\bar{x} \)
p Values

- Commonly we reject the H0 when the probability of obtaining a *sample statistic* given the null hypothesis is low, say < .05
- The null hypothesis is rejected but might be true
- We find the probabilities by looking them up in tables, or statistics packages provide them
 - The probability of obtaining a particular sample given the null hypothesis is called the *p* value
 - By convention, one usually does not reject the null hypothesis unless *p* < 0.05 (statistically significant)

Example

- Five cars parked, mean price of the cars is 20.270 € and the standard deviation of the *sample* is 5.811 €
- The mean costs of cars in town is 12.000 € (population)
- H0 hypothesis: parked cars are as expensive as the cars in town
 \[t = \frac{20270 - 12000}{5811/\sqrt{5}} = 3.18 \]
 - For *N-1* (degrees of freedom) *t*=3.18 has a value less than 0.025, reject H0!
Paired Sample t Test

- Given a set of paired observations
- *(from two normal populations)*

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(\delta = A - B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>y1</td>
<td>x1-x2</td>
</tr>
<tr>
<td>x2</td>
<td>y2</td>
<td>x2-y2</td>
</tr>
<tr>
<td>x3</td>
<td>y3</td>
<td>x3-y3</td>
</tr>
<tr>
<td>x4</td>
<td>y4</td>
<td>x4-y4</td>
</tr>
<tr>
<td>x5</td>
<td>y5</td>
<td>x5-y5</td>
</tr>
</tbody>
</table>

- Calculate the mean \(\bar{x}_\delta \) and the standard deviation \(s_\delta \) of the differences \(\delta \)
- H0: \(\mu_\delta = 0 \) *(no difference)*
- H0: \(\mu_\delta = k \) *(difference is a constant)*

\[
t_\delta = \frac{\bar{x}_\delta - \mu_\delta}{\hat{\sigma}_\delta} = \frac{\delta}{\sqrt{N_\delta}}
\]
Confidence Intervals (σ known)

- Standard error from the standard deviation

$$\sigma_{\bar{x}} = \frac{\sigma_{\text{Population}}}{\sqrt{N}}$$

- 95 Percent confidence interval for normal distribution is about the mean

$$\bar{x} \pm 1.96 \cdot \sigma_{\bar{x}}$$

Confidence interval when (σ unknown)

- Standard error from the sample standard deviation

$$\hat{\sigma}_{\bar{x}} = \frac{s}{\sqrt{N}}$$

- 95 Percent confidence interval for t distribution ($t_{0.025}$ from a table) is

$$\bar{x} \pm t_{0.025} \cdot \hat{\sigma}_{\bar{x}}$$

Previous Example:
Overview Data Transformation

- Reduce Noise
- Reduce Data

Data Transformation

- Smoothing: remove noise from data
- Aggregation: summarization, data cube construction
- Generalization: concept hierarchy climbing
- Normalization: scaled to fall within a small, specified range
 - min-max normalization
 - z-score normalization
 - normalization by decimal scaling
- Attribute/feature construction
 - New attributes constructed from the given ones
Data Transformation: Normalization

- Min-max normalization: to \([\text{new}_{\text{min}}, \text{new}_{\text{max}}]\)
 \[v' = \frac{v - \text{min}}{\text{max} - \text{min}} (\text{new}_{\text{max}} - \text{new}_{\text{min}}) + \text{new}_{\text{min}}. \]

 - Ex. Let income range $12,000 to $98,000 normalized to \([0.0, 1.0]\). Then $73,000 is mapped to
 \[\frac{73,000 - 12,000}{98,000 - 12,000} (1.0 - 0) + 0 = 0.716. \]

- Z-score normalization (\(\mu\): mean, \(\sigma\): standard deviation):
 \[v' = \frac{v - \mu}{\sigma}. \]

 - Ex. Let \(\mu = 54,000\), \(\sigma = 16,000\). Then
 \[\frac{73,000 - 54,000}{16,000} = 1.225. \]

- Normalization by decimal scaling

How to Handle Noisy Data? (How to Reduce Features?)

- Binning
 - first sort data and partition into (equal-frequency) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

- Regression
 - smooth by fitting the data into regression functions

- Clustering
 - detect and remove outliers

- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)
Data Reduction Strategies

- A data warehouse may store terabytes of data
 - Complex data analysis/mining may take a very long time to run on the complete data set
- Data reduction
 - Obtain a reduced representation of the data set that is much smaller in volume but yet produce the same (or almost the same) analytical results
- Data reduction strategies
 - Data cube aggregation
 - Dimensionality reduction—remove unimportant attributes
 - Data Compression
 - Numerosity reduction—fit data into models
 - Discretization and concept hierarchy generation

Simple Discretization Methods: Binning

- Equal-width (distance) partitioning:
 - Divides the range into N intervals of equal size: uniform grid
 - if A and B are the lowest and highest values of the attribute, the width of intervals will be: $W = (B - A)/N$.
 - The most straightforward, but outliers may dominate presentation
 - Skewed data is not handled well.
- Equal-depth (frequency) partitioning:
 - Divides the range into N intervals, each containing approximately same number of samples
 - Good data scaling
 - Managing categorical attributes can be tricky.
Binning Methods for Data Smoothing

* Sorted data for price (in dollars): 4, 8, 9, 15, 21, 21, 24, 25, 26, 28, 29, 34
* Partition into (equi-depth) bins:
 - Bin 1: 4, 8, 9, 15
 - Bin 2: 21, 21, 24, 25
 - Bin 3: 26, 28, 29, 34
* Smoothing by bin means:
 - Bin 1: 9, 9, 9, 9
 - Bin 2: 23, 23, 23, 23
 - Bin 3: 29, 29, 29, 29
* Smoothing by bin boundaries (min and max are identified, bin value replaced by the closest boundary value):
 - Bin 1: 4, 4, 4, 15
 - Bin 2: 21, 21, 25, 25
 - Bin 3: 26, 26, 26, 34
Regression

\[y = x + 1 \]

Feature space

- Sample \(\{ \mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(k)}, \ldots, \mathbf{x}^{(n)} \} \)

\[
\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_d \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_d \end{pmatrix}, \quad ||\mathbf{x} - \mathbf{y}|| = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}
\]
Scaling

- A well-known scaling method consists of performing some scaling operations
 - subtracting the mean and dividing the standard deviation
 \[y_i = \frac{(x_i - m_i)}{s_i} \]
 - \(m_i \) sample mean
 - \(s_i \) sample standard deviation

- According to the scaled metric the **scaled** feature vector is expressed as
 \[\| \bar{y} \|_s = \sqrt{\sum_{i=1}^{n} \frac{(x_i - m_i)^2}{s_i^2}} \]
 - shrinking **large** variance values
 - \(s_i > 1 \)
 - stretching **low** variance values
 - \(s_i < 1 \)

- Fails to preserve distances when **general linear transformation** is applied!
- **Covariance**
 - Measuring the tendency two features x_i and x_j varying in the **same direction**
 - The covariance between features x_i and x_j is estimated for n patterns

\[
C_{ij} = \frac{\sum_{k=1}^{n}(x_i^{(k)} - m_i)(x_j^{(k)} - m_j)}{n - 1}
\]

\[
C = \begin{bmatrix}
 c_{11} & c_{12} & \cdots & c_{1d} \\
 c_{21} & c_{22} & \cdots & c_{2d} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{d1} & c_{d2} & \cdots & c_{dd}
\end{bmatrix}
\]
Correlation

- Covariances are symmetric \(c_{ij} = c_{ji} \)
- Covariance is related to correlation

\[
 r_{ij} = \frac{\sum_{k=1}^{n} (x_i^{(k)} - m_i)(x_j^{(k)} - m_j)}{(n-1)s_i s_j} = \frac{c_{ij}}{s_i s_j} \in [-1, 1]
\]

Principal Component Analysis

- Intuition: find the axis that shows the greatest variation, and project all points into this axis
Karhunen-Loève Transformation

- Covariance matrix C of a $d \times d$ matrix
 - Symmetric and positive definite

 $$U^T C U = \Lambda = \text{diag} (\lambda_1, \lambda_2, ..., \lambda_d)$$

 $$(\lambda I - C) u = 0$$

 - There are d eigenvalues and eigenvectors

 $$C \vec{u}_i = \lambda_i \vec{u}_i$$

 - is the λ_i ith eigenvalue of C and u_i the ith column of U, the ith eigenvectors

- Eigenvectors are always **orthogonal**
 - U is an orthonormal matrix $UU^T = U^T U = I$
 - U defines the K-L transformation
 - The transformed features by the K-L transformation are given by

 $$\vec{y} = U^T \vec{x}$$

 (linear Transformation)

 - K-L transformation rotates the feature space into alignment with **uncorrelated** features
Example

\[
C = \begin{bmatrix}
2 & 1 \\
1 & 1
\end{bmatrix}
\quad |\lambda I - C| = 0
\quad \lambda^2 - 3\lambda + 1 = 0
\]

- \(\lambda_1 = 2.618\) \(\lambda_2 = 0.382\)

\[
\begin{bmatrix}
-0.618 & -1 \\
-1 & 1.618
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix} = 0
\]

- \(u^{(1)} = [1 \ 0.618]\) \(u^{(2)} = [-1 \ 1.618]\)

- \(U = [u^{(1)}, u^{(2)}]\)
PCA (Principal Components Analysis)

- New features y are uncorrelated with the covariance Matrix
- Each eigenvector u_i is associated with some variance associated by λ_i
- Uncorrelated features with higher variance (represented by λ_i) contain more information
- Idea:
 - Retain only the significant eigenvectors u_i
 - Example
 - $U=[u^{(1)}, u^{(2)}]$ $\lambda_1=2.618 \ \lambda_2=0.382$
 - $U^*=[u^{(1)}]$ $\bar{y} = U^{*T}\bar{x}$

Dimension Reduction

- How many eigenvectors (and corresponding eigenvector) to retain
- Kaiser criterion
 - Discards eigenvectors whose eigenvalues are below 1
Problems

- Principal components are linear transformation of the original features
- It is difficult to attach any semantic meaning to principal components
- For new data which is added to the dataset, the PCA has to be recomputed

Suppose we have a covariance matrix:

\[C = \begin{pmatrix} 3 & 1 \\ 1 & 21 \end{pmatrix} \]

- What is the matrix of the K-L transformation?
First we have to compute the eigenvalues
The system has to become linear dependent (singular)

\[\det(\lambda I - C) = 0 \]

The determinant has to become zero

\[\lambda^2 - 24\lambda + 62 = 0 \]

Solving it we get

- \(\lambda_1 = 2.94461 \)
- \(\lambda_2 = 21.05538 \)
Now, let's compute the two eigenvectors.

To do it you have to solve two singular, dependent systems.

For the first eigenvalue $\lambda_1 = 2.94461$

$$ (\lambda_1 I - C) \vec{u}_1 = 0 $$

Or if you prefer more ...

$$ \lambda_1 \vec{u}_1 = C \vec{u}_1 $$
$$ C \vec{u}_1 = \lambda_1 \vec{u}_1 $$

And for the second eigenvalue $\lambda_2 = 21.05538$

$$ (\lambda_2 I - C) \vec{u}_2 = 0 $$

Or if you prefer more ...

$$ \lambda_2 \vec{u}_2 = C \vec{u}_2 $$
$$ C \vec{u}_2 = \lambda_2 \vec{u}_2 $$
For $\lambda_1 = 2.94461$

$\mathbf{u}_1 = (u_1, u_2)$

\[
\begin{bmatrix}
2.94461 & 0 \\
0 & 2.94461
\end{bmatrix}
-
\begin{bmatrix}
3 & 1 \\
1 & 21
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}
= 0
\]

- We have to find a nontrivial solution!
 - Trivial solution is $u = [0, 0]$

\[
\begin{bmatrix}
-0.05539 & -1 \\
-1 & -18.055
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix}
= 0
\]

- Because the system is linear dependable, the left column is multiple value of the right column
- There are infinity many solution!!!!

- We have only to determine the direction of the eigenvectors \mathbf{u}_1 and \mathbf{u}_2
- But be careful, the normalized vectors have to be orthogonal to each other
- $\langle \mathbf{u}_1, \mathbf{u}_2 \rangle = 0$
Let be \(u_1=1 \) then we have to determine \(u_2 \)
\[
\begin{bmatrix}
-0.05539 & -1 \\
-1 & -18.055
\end{bmatrix}
\begin{bmatrix}
1 \\
u_2
\end{bmatrix} = 0
\]
\[
\begin{bmatrix}
-0.05539 \\
-1
\end{bmatrix}
\begin{bmatrix}
1 \\
u_2
\end{bmatrix} = \begin{bmatrix}
18.055
\end{bmatrix}
\]

\(u_1=[u_1,u_2]=[1,-0.05539] \)

For \(\lambda_2 = 21.05538 \)

\(u_1=(u_1,u_2) \)
\[
\begin{bmatrix}
21.05538 & 0 \\
0 & 21.05538
\end{bmatrix}
- \begin{bmatrix}
3 & 1 \\
1 & 21
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix} = 0
\]

We have to find a nontrivial solution!

- Trivial solution is \(u=[0,0] \)... D\'\c{e}j\`a vu?

\[
\begin{bmatrix}
18.055 & -1 \\
-1 & 0.05538
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2
\end{bmatrix} = 0
\]
Let be \(u_1 = 1 \) then we have to determine \(u_2 \):

\[
\begin{bmatrix}
18,055 \\
-1
\end{bmatrix} = \begin{bmatrix} 1 \\ -0.05538 \end{bmatrix} u_2
\]

\(u_2 = [u_1, u_2] = [1, 18,055] \)

\(u_1 = [u_1, u_2] = [1, -0.05539] \)

- for \(\lambda_1 = 2,94461 \)

\(u_2 = [u_1, u_2] = [1, 18,055] \)

- \(\lambda_2 = 21,05538 \)

Orthogonal? Yes \(<u_1, u_2> = 0 \)

Which of the two eigenvectors is more significant?

- \(u_2 \), because \(\lambda_1 = 2,94461 < \lambda_2 = 21,05538 \)
Fourier Analysis

- It is always possible to analyze “complex” periodic waveforms into a set of sinusoidal waveforms.
- Any periodic waveform can be approximated by adding together a number of sinusoidal waveforms.
- Fourier analysis tells us what particular set of sinusoids go together to make up a particular complex waveform.

Spectrum

- In the Fourier analysis of a complex waveform the **amplitude** of each sinusoidal component depends on the shape of particular complex wave:
 - Amplitude of a wave: maximum or minimum deviation from zero line
 - T duration of a period
 - $f = \frac{1}{T}$
Noise reduction or Dimension Reduction

- It is difficult to identify the frequency components by looking at the original signal
- Converting to the frequency domain
- If dimension reduction, store only a fraction of frequencies (with high amplitude)
- If noise reduction
 - (remove high frequencies, fast change, smoothing)
 - (remove low frequencies, slow change, remove global trends)
 - Inverse discrete Fourier transform
Automatic Concept Hierarchy Generation

- Some hierarchies can be automatically generated based on the analysis of the number of distinct values per attribute in the data set
- The attribute with the most distinct values is placed at the lowest level of the hierarchy
- Exceptions, e.g., weekday, month, quarter, year

- country: 15 distinct values
- province or state: 365 distinct values
- city: 3567 distinct values
- street: 674,339 distinct values
- Paired Sample t Test
- Data Transformation - Overview
- From Covariance Matrix to PCA and Dimension Reduction
- Fourier Analysis - Spectrum
- Dimension Reduction

- Mining Association rules
- Apriori Algorithm (Chapter 6, Han and Kamber)