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Abstract

An increase in the use of honeycomb structures has been noted in the aerospace, automotive and pros-

thetic industries due to their low weight and high strength. The dissemination of additive manufacturing

methods allowed the manufacture of more complex shapes, which were impossible with traditional meth-

ods such as die casting or machining. This work aims to study several types of metallic regular honey-

combs and functionally graded honeycombs which were manufactured through Selective Laser Melting,

a type of additive manufacturing, particularly a Laser Powder Bed Fusion Method. Three types of gradi-

ents were studied: regular gradients, radial gradients and linear gradients. These types of honeycombs

have three configurations for the repeating units: regular hexagons, Plateau borders and Lotus. The

compressive in-plane properties of the structures were evaluated using experiments and numerical sim-

ulations. In the experimental testing, the regular specimens with and without annealing were tested, and

the ones with annealing were studied to investigate how the mechanical properties changed with said

treatment. The numerical method resorted to the Finite Element Method to obtain the specific stiffness,

energy absorbed and yield strength. The results indicated that the mechanical properties increased with

an increase in the relative density. The Lotus configuration has the highest specific mechanical prop-

erties and reduces the stress concentrations within the honeycombs. The numerical simulations were

accurate and matched well with the experimental results. The observed discrepancies were attributed

to the limitations of the manufacturing method used.

Keywords
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Selective Laser Melting.
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Resumo

Na industria aeroespacial, automóvel e prostetica, verificou-se um aumento do uso de estruturas de

favo-de-mel, devido ao seu baixo peso e e alta resistência. A disseminação dos métodos de manu-

fatura aditiva permitiu que se produzissem estruturas complexas que não seriam possiveis através dos

métodos de manufatura convencionais como a fundição ou a maquinagem. Este trabalho tem como

por objectivo estudar estruturas metálicas favo-de-mel regulares e com gradiente funcional que foram

fabricadas através de Selective Laser Melting, que é um tipo de manufatura aditiva, nomeadamente

Laser Powder Bed Fusion. Foram estudados três tipos de configurações para as unidades repetitivas:

hexagonos regulares, com limites Plateau e Lotus. As propriedades mecânicas compressivas in-plane

foram estudadas através de ensaios experimentais e numéricos. Na análise experimental foram ensaia-

dos provetes regulares com e sem tratamento térmico sendo que os provetes com o tratamento térmico

serviram para averiguar a sensibilidade das propriedades mecânicas das estruturas a este tratamento.

O método numérico recorreu ao Método dos Elementos Finitos para obter a rigidez, energia absorvida e

tensão de cedência especı́fica. Os resultados indicam que um aumento da densidade relativa traduz-se

num aumento das propriedades mecânicas. Também foi possı́vel averiguar que a configuração Lotus

tem as melhores propriedades mecânicas especı́ficas que as outras configurações e é capaz de dissipar

melhor as concentrações de tensões. Foi possı́vel concluir que os resultados numéricos são precisos

e existe uma boa correlação com os experimentais. As discrepâncias entre os resultados numéricos e

experimentais advêm das limitações do método de manufatura.

Palavras Chave

Manufatura Aditiva; Materiais Celulares; Estruturas com Gradiente Funcional; Estruturas Favo-de-mel;

Selective Laser Melting.
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1.1 Motivation

When looking for solutions to a given problem, engineers often look at nature, as it has the best naturally

occurring solution. Honeycombs were one solution found by observing the way bees build their beehives

and how they store their honey. Gibson and Ashby classified honeycombs as two-dimensional cellular

materials with an arrangement of cells with solid edges that repeat periodically [1].

The structures were first used in the aviation industry due to their high strength-to-weight ratio, as

early as the 1920s [2]. As time moved on, honeycombs found their way into other industries such as the

automotive or the prosthetic sector.

As the honeycombs were exploited by other sectors, their complexity began to increase, the regular

hexagons started to change their dimensions according to their position such that the structure would

sustain higher forces whilst maintaining a low mass. Also, the regular hexagons became rounded or even

changed shape completely to fit other needs. In some cases, the regular honeycombs were replaced by

functionally graded honeycombs. The honeycombs started to be combined with other materials to further

increase their resistance, for instance, the sandwich panels were created, in which the honeycombs were

combined with carbon-fibre reinforced polymer which has an outstanding resistance in the out-of-plane

direction and in-plane resistance.

With the development of the Additive Manufacturing (AM) techniques, such as Fused Filament Fab-

rication (FFF) for polymers - also known as 3D printing - and Laser Powder Bed Fusion for metals, it

became cost-effective to use such methods to produce honeycombs. Moreover, these techniques allow

the manufacture of shapes that were not available through other traditional methods hence, a broader

range of solutions became feasible.

1.2 Objectives

This thesis aims to characterize the in-plane mechanical properties of the regular and functionally graded

honeycomb structures with three configurations: regular hexagons, Lotus and Plateau borders. These

specimens were produced by additive manufacturing, more specifically through Selective Laser Melt-

ing (SLM). The characterization of the mechanical properties was made with experimental in-plane

compression tests on some structures and a Finite Element Analysis (FEA) on all structures. Further-

more, the FEA and the practical tests will be compared to assess the accuracy of said analysis. This

study follows up on the thesis done by Bernardo Coelho [3] for his Master’s thesis in Materials Engineer-

ing.

The main talking points of this work will be the following:

• Assess the influence of the several configurations for the borders of the structure - regular hexag-
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onal, Lotus and Plateau borders - on the compressive properties;

• Compare different types of regular and functionally graded honeycombs resorting to their mechan-

ical properties;

• Evaluate the efficacy of the configuration and the gradient of the structure;

• Evaluate the accuracy of the FEA model when compared to the experimental results.

1.3 Organization of the document

This thesis has an Introduction in Chapter 1, followed by the State of the art in Chapter 2. Afterwards,

the Materials and Methods are presented in Chapter 3, together with the CAD modelling, the numerical

and experimental methodology. Then in Chapter 4 it is presented the Results and discussion, together

with a Performance analysis of the structures. Lastly, the Conclusions are presented in Chapter 5. The

appendices are in Appendix A and Appendix B.
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The state of the art covers the definition of a cellular solid, then moves into a subcategory of cellular

solids: functionally graded cellular materials. Afterwards, it will be looked into manufacturing methods,

more specifically, additive manufacturing, and a heating treatment. Lastly it will be presented the scien-

tific gap that this work fulfills.

2.1 Cellular solids

Cellular solids are structures made up of ”cells with solid edges of faces, packed together so that they

fill space” [1]. These types of structures are naturally occurring materials, such as honeycombs from

beehives, cork, and wood, among others [4]. Some can even be graded, such as the ones of bones [5].

Ashby et al. [1] goes further into the definition of a cellular structure by resorting to the structure’s relative

density (ρ̄). The relative density is defined by the ratio between the density of the cellular material (ρ∗)

and the solid’s density (ρs), i.e. the density of the material. This ratio is shown in Equation 2.1. A cellular

solid is said to be one if the relative density is below 0.3, otherwise, the structure might have isolated

pores.

ρ̄ =
ρ∗

ρs
(2.1)

D. Bhate et al. [6] define that a cellular structure can be classified through three categories (Fig-

ure 2.1). These categories can be seen as the possible way a cellular solid can be built. The first

category that is mentioned is tessellation, which is the most basic form of cellular materials. Tessellation

consists in building a cellular solid by filling the space with cells such that no gap is left to fill, the au-

thors deepen this definition by organizing several sub-categories of tessellation, those being periodical,

stochastic and hierarchical.

Periodical tessellation is made with the propagation of one or several repeating units; Figure 2.2

outlines the types of periodic tessellation.

Stochastic tessellation is built without a repeating unit. D. Bhate et al. [6] and Møller [7] point out sev-

eral types of stochastic tessellation, those being the Point process, Random process, Poisson process,

Germ-grain process and Voronoi and Delaunay tessellations. These processes are mathematically de-

scribed in the work by J. Møller and D. Stoyan [7]. These types of tessellation are not very usual but can

be seen in cracked mud (Figure 2.3) or in grain formation (Figure 2.4).

The last type of tessellation outlined by D. Bhate [6] is the hierarchical tessellation. This type of

tessellation is often seen in nature for the veins on the wings of bugs [8] (Figure 2.5), branches of

trees [9] (Figure 2.6) and the bone structure of humans [10] (Figure 2.7).

Another category in which cellular solids can be built is named Elemental. This one is mostly seen

in sandwich panels where the ”interior” of the sandwich resembles a truss. An example of this kind of
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tessellation can be seen in Figure 2.8.

Figure 2.1: Cellular classification. Adapted from [6].

Figure 2.2: Types of periodic tes-
sellation. Adapted
from [6].

Figure 2.3: Cracked mud. Re-
trieved from [11].

Figure 2.4: 2D and 3D grain-
growth propagation.
Adapted from [12].

Figure 2.5: Tessellation of
a bug’s wing.
Adapted from [8].

Figure 2.6: Tessellation inside
of a femur. Adapted
from [10].

Figure 2.7: Tree branches hi-
erarchical tessella-
tion. Adapted from
[9].

Figure 2.8: Elemental tessella-
tion. Adapted from
[13].

The last category mentioned by D. Bhate [6] is the connectivity, in which the repeating unit is made

by Triply Periodic Minimal Surfaces (TPMS) (Figure 2.9). TPMS are defined by mathematical functions

which in turn produce a non-intersecting, continuous surface. These surfaces have gained a foothold in

the biotechnology and prosthetic industry as they are easily manufactured through additive manufactur-
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ing techniques and their structures provide a high strength resistance [14–16].

Figure 2.9: Several types of TPMS. Adapted from [17].

There are more applications for cellular solids which are outlined by Ashby et al. [18]. Besides the

structural application, these can be used in heat exchangers or used in catalyst carriers (Figure 2.10).

Figure 2.10: Applications of cellular solids. Adapted from [18].

2.2 Functionally Graded Cellular Materials

This section covers what defines a Functionally Graded Material (FGM) and the findings of several

papers on this topic such influence of the geometry on the mechanical properties, the thickness of the

cell walls and the gradient used in the structure. Furthermore, was also looked into the calculations

required for the relative density of several structures.

2.2.1 An overview

A FGM is a material which repeating unit is not constant. Usually, the variation of the repeating unit

follows a specific pattern, depending on the requirements, or loads applied to the structure. These

structures are seldom seen in nature such as the bone structure, the vessels in the bug’s wings or the

honeycombs in beehives, and the tessellation or gradient of the repeating unit is adjusted to the needs.

Within the FGM there are Functionally Graded Cellular Material (FGCM) and in these materials the

dimensions of the unit cells can be changed according to sought in the context of the gradient [19].

A work by Ajdari et al. [20] studied the in-plane dynamic crushing of regular and irregular honeycombs

and honeycombs with a linear density gradient. It was found that at high-velocity crushing, the structures
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with a positive linear density gradient absorbed more energy than those without the gradient.

C. Lira and F. Scarpa [21] studied a similar gradient to the one used by Ajdari et al. [20], which

involved increasing the thickness of the horizontal webs across an auxetic structure - a structure with a

negative Poisson ratio, and a honeycomb structure. In their work, it was concluded that the gradient had

significant improvements in the auxetic structure rather than the honeycomb in terms of the transverse

shear moduli.

X. Zhang et al. [22] studied the in-plane properties of a linear density gradient on honeycomb struc-

tures under dynamic crushing. The gradients used by the authors consist of dividing a honeycomb

structure into four equal horizontal sections. The density of each section is given by the permutation of

four different values for the density, which gives rise to four different structures. In their work, it was found

that an increase in the cell walls will increase the Plateau stress, but it will also shorten it, conversely,

thinner cell walls would decrease the Plateau stress but it would lengthen it. Furthermore, it was found

that placing the ”weakest” layer - which is the layer with thinner cell walls - closest to the fixed plate,

would reduce the stress transmitted. Lastly, when performing a low-velocity test on the structures, it

was found that there is a negligible influence on the crushing and overall stress response between the

several arrangements.

X. Lijun and S. Weidong [23] studied the effect of a gradient on lattice structures manufactured

through AM. The gradient designed by the authors follows a similar train of thought to what X. Zhang et

al. [22] designed. The lattice was divided into horizontal slices with different densities, however, this time

the slices became progressively thinner as in one structure there was a step-wise gradient and in the

other, there was a continuous gradient. Both gradients were able to absorb more energy and were able

to achieve a higher Plateau stress than their regular counterpart. Moreover, the continuous gradient was

able to surpass by little the step-wise gradient in both the Plateau stress and the energy absorbed.

S. Bates et al. [24] studied the compressive behaviour of a Thermoplastic polyurethane (TPU) honey-

comb with a step-wise linear gradient. Similar to the work of X. Lijun and S. Weidong [23], the structures

in this work follow a linear pattern where the unit cell changes its dimension depending on the layer

which is positioned. The layers are ordered with the lower densities on top and the higher densities on

the bottom, and the authors decided to study the influence of the number of layers in the structure. It

was found that the graded structures had, on average, 11% more energy absorption than their regular

counterparts. Also, it was found that a more continuous grading would increase the Plateau stress in the

stress-strain curves.

H. Liu [25] studied a honeycomb structure with a micro-architecture submitted to impact loading. The

cell walls of the structures are either composed of a tessellation of triangles or hexagons. The authors

chose regular structures with the tessellation of hexagons and triangles but also opted to study the

impact of a linear variation of the density of the structure with both the triangles and hexagons. It was also
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chosen to analyse three types of structures: a regular structure with a base unit cell which is propagated

throughout the whole structure; a positive gradient, where a base cell is defined and the remaining

cells have their density increased; a negative gradient where the same base cell is defined and the

remaining ones have a lower density. The authors expected that an increase in strength was associated

with an increase in the refinement of the tessellation i.e. the size of the triangles or hexagons used

would be smaller and ultimately would increase the density. During the compression of the specimens,

the authors found that the weaker sections i.e. the sections with lower density, were the first ones to

collapse, followed by the ones with lower density and so on. Analysing the specific energy absorbed, it

was observed that the hexagons sub-cells absorbed less energy than the triangles. Also the structures

with a positive and negative gradient absorbed more energy than the regular counterpart, for lower

impact velocities (3 ∼ 15 m/s), but for higher impact velocities (40 ∼ 60 m/s) the negative gradient

had lower specific energy absorbed than the regular one, while the positive gradient kept a specific

energy absorbed than the regular structure. Lastly, the authors noted that the deformation modes always

followed an I-shape or a V-shape. This nomenclature will be explained in Section 2.2.3, further on.

Lastly, S. Bagewadi and R. Bhagchandani [26] in a recent work, studied the effect of gradient on

auxetic structures to improve the energy absorption. In their work, it was found the importance of the

filleted corner in the performance of the structures. In the compressive strength and modulus, the filleted

structures had a better performance than the other gradient, while in the energy absorption field were

behind the structures with variable unit cell dimensions, but by a small margin. This result will be relevant

for the results of this work, in Chapter 4.

This work covers the study of several configurations for the repeating units which were the regular

hexagons, hexagons with Plateau borders and Lotus, which were previously covered by A. Miranda et

al. [27], H. Araújo et al. [28] and B. Silva et al. [19]. However, in the present work, covers these repeating

unit, but applied to other gradients.

2.2.2 Relative density

In order to construct a FGCM, there are two lines of thought that can be followed. The first one is: the

geometrical dimensions of the repeating unit are defined. Then, a gradient is defined and applied to the

repeating units afterwards the relative density is calculated. In the second one: the relative density and

gradient are set, and then the required dimensions are calculated according to it.

As it was shown in Section 2.1, the relative density is defined by Equation 2.1. However, if the

structure that is being analysed is Two-dimensional (2D), the equation can be further simplified (Equation

2.2).

ρ̄ =
ρ∗

ρs
⇔ ρ̄ =

m∗

V ∗

ms

Vs

(2.2)
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The m stands for mass, while V stands for Volume. The quantities with ∗ stand for those of the

cellular material, and with the subscript s, stands for the quantities of the solid material. Since m∗ is the

same as ms and since the thickness of the structure is constant Equation 2.3 can be drawn.

ρ̄ =
Vs

V ∗ ⇔ ρ̄ =
As

A∗ (2.3)

Since the area of the cellular material (A∗) is the same as the total area (AT ) occupied by the material,

the equation 2.4 can be written as follows.

ρ̄ =
As

AT
(2.4)

Equation 2.4 is the general equation that can be applied when a CAD file is available however, further

calculations are required to define the relative density when the geometrical dimensions are given and

these are presented further in this work.

2.2.3 Mechanical properties

The in-plane properties are those measured when the structure is compressed or tractioned along the

direction of the blue arrows in the Figure 2.11. The out-of-plane properties are measured when the

structure is compressed or tractioned along the red arrows [1]. This work only focuses on the in-plane

properties, hence these will be the only ones discussed in the coming sections.

The compressive in-plane stress-strain curves are characterised by three zones (Figure 2.12), which

Gibson & Ashby shown in their work [1].

Figure 2.11: In-plane and out-of-plane directions

Figure 2.12: Stress-strain curve for the compres-
sive test for an elastoplastic honey-
comb. Retrieved from [1].

The compressive curve has an initial linear elasticity up to a critical stress at which the repeating

units begin to collapse, then the bent cell walls form plastic hinges which will further bend the cell

walls. After the critical stress, a Plateau zone is reached until the cell completely collapses and the

opposing cell walls come into contact, then a section of high stress is achieved which corresponds to

the densification. Before achieving densification, the honeycombs deforms in several modes which were
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Figure 2.13: Localised deformation modes. [Note: X-, V- and I-shape, from left to right.] Adapted from [20,22].

studied by Ajdari et al. [20] and by Zhang et al. [22]. The authors describe these deformation modes as

”localised deformation modes” and they can take three shapes: X-, V- and I-shape (Figure 2.13.)

With the data obtained from the compression of a honeycomb structure, it is possible to draw a

force-displacement curve similar to the curve found in Figure 2.12. From the data, it is possible to

determine the stiffness (K), the energy absorbed (Ea) and the yield stress (σy). The stiffness is de-

termined by calculating the linear slope of the linear elasticity zone of the force-displacement curve,

the energy absorbed is determined by calculating the area under the force-displacement curve and the

yield stress is determined by dividing the yield force, which is the last point in the linear region of the

force-displacement curve, by the apparent area of the honeycomb, which is the contact area of the hon-

eycomb with the compression plate. To compare the mechanical properties of different structures, it was

used the specific stiffness (Equation 2.5), the specific energy absorbed (Equation 2.6) and the specific

yield strength (Equation 2.7), as this take into account the mechanical properties and relative density of

the structure. Consequently, the comparison between the mechanical properties of different structures

is made under the same conditions.

K̄ =
K

ρ̄
(2.5)

Ēa =
Ea

ρ̄
(2.6)

σ̄y =
σy

ρ̄
(2.7)

2.3 Additive Manufacturing

AM is the process where a part is produced by adding/binding material layer-by-layer, such as FFF or

SLM. Conversely, subtractive manufacturing is the opposite of AM, where the material is removed in

order to produce a part, a few examples of the latter are drilling, machining and milling. This section

focuses mainly on SLM and an overview of AM.

There are seven types of additive manufacturing techniques defined by the International Organiza-

tion for Standarization (ISO)/American Society for Testing and Materials (ASTM) 52900:2021 [29]. The

13



techniques, their appropriate acronym, and a brief description provided below [30].

• Binder Jetting (BJT): AM process in which a liquid bonding agent is selectively deposited to join

powder materials;

• Directed Energy Deposition (DED): AM process in which focused thermal energy is used to fuse

materials by melting as they are being deposited;

• Material Extrusion (MEX): AM process in which material is selectively dispensed through a nozzle

or orifice;

• Material Jetting (MJT): AM process in which droplets of feedstock material are selectively de-

posited;

• Powder Bed Fusion (PBF): AM process in which thermal energy selectively fuses regions of

a powder bed. The PBF methods that resort to lasers are also known as Laser Powder Bed

Fusion (L-PBF);

• Sheet Lamination (SHL): AM process in which sheets of material are bonded to form a part;

• Vat Photopolymerization (VPP): AM process in which liquid photopolymer in a vat is selectively

cured by light-activated polymerization.

From all of the processes described before, MEX is the most prominent since 3D printing falls within

that category and since 2009, it has gained a foothold in the manufacturing market, particularly for

polymers [31–33].

The rapid prototyping speed of these manufacturing methods comes at a cost which may be the

warpage and cracking of the elements at the base of the structures. This comes from the rapid cooling

of the parts, which then in turn produce residual stresses on the surface of the parts [34]. The residual

stresses can be reduced by undergoing a heat treatment, such as annealing.

Since the scope of this work focuses on honeycombs manufactured through SLM, the following

section will look into the SLM manufacturing method, as well as heat treatment annealing since it will be

talked about further on in this work. Also, other conventional ways of manufacturing honeycombs. The

heat treatment is an important part of the AM processes and it will be described further on.

2.3.1 Selective Laser Melting

SLM is an additive manufacturing technique which falls under the category of L-PBF, according to the

standard ISO 52900-2021 [29]. In this process (Figure 2.14), a layer of the powder material is set over

the substrate plate, then a laser beam is shed where it is desired to melt the material. After completing
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this step, the substrate plate is lowered such that a newer layer of powder can be laid again, once again

the laser will melt the areas which are intended to, and this process is repeated until the whole part is

produced.

Figure 2.14: Representation of the SLM process. Retrieved from [35].

The patent for this process was first published in 1998 [36], and its initial steps are similar to those

of Computer Numerical Control (CNC) machining: one must have a Computer Aided Design (CAD) file

which must then be converted into an Standard Triangle Language (STL) file to be later processed by

the appropriate software. The powder layers are usually between 20 to 100 µm as this range allows for

good powder flowability and an adequate resolution [37]. The chamber where the process occurs has

argon or nitrogen as an inert gas to prevent the part’s oxidation.

When compared to Selective Laser Sintering (SLS) - another type of PBF manufacturing -, SLM has

an advantage since it does not need to remove any support from the substrate. Furthermore, Yap et

al. [35] state that SLM does not need post-processing such as heat treatment or material infiltration,

which is required in SLS to improve the quality of the process, however, a heating treatment can be

used to alter the mechanical properties of the material.

As of today, the SLM process is a prototyping manufacturing method, which means it has a short

concept-to-prototype time [37], unlike other conventional manufacturing methods, such as material in-

jection or milling. Moreover, unlike FFF, this process requires little to no support, as the ”unmelted”

powder will work as a support for the part. Thus it is possible to create more complex geometries that

were otherwise impossible in conventional manufacturing and in FFF.

Due to the versatility of the process, its applications range from the aeronautical industry to the

medical industry. In the medical field, Kruth et al. [38] has made a biocompatible metal framework

for dental prostheses, which allows the patient to have a prosthesis specifically designed for them and

not have to resort to a standard prosthesis which may not suit their needs. Also, in the field of heat

exchangers, SLM allows the engineer to create complex cooling channels [39] which increase the heat

exchange of the fluids, and thus increasing its efficacy.
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2.3.2 Heat treatment: annealing

As it was mentioned before, parts made with SLM often need Heat Treatment (HT) to reduce residual

stresses which could lead to the appearance of cracks. Hence it is of the utmost importance to reduce

those in order to prevent fractures. Proaño et al. [40] present an accurate review of the defects of SLM

manufacturing in terms of the material and its consequences in the crack appearance. Furthermore, the

authors investigate the effect on the microstructure, the mechanical properties and the crack propagation

of SLM-manufactured specimens with no heat treatment and two different annealing processes, one at

250 °C for 3h and the other one for 350 °C at 10h (Figure 2.15). Before diving into more specific details

about the effect of the heating treatment, it is important to define what is an annealing heat treatment.

The annealing heating treatment is a process where a structure is heated until a certain temperature

via an oven or an oil bath, then kept at a constant temperature for a given time and then cooled down.

The cooling down can be either forced or natural, whenever it is not mentioned the cooling process, it is

assumed that it was not forced. Figure 2.15 is an example of the variation of the temperature with time

for a heat treatment made in an oven and then cooled naturally outside of the oven.

Figure 2.15: Heat treatment graph. Retrieved from [40].

Regarding the effect of the annealing on the properties of the material, the literature indicates that

the annealing will increase the elongation before the fracture of the material and thereby the energy

absorbed, the Young modulus will decrease and consequently so does the stiffness of the structure, and

both the yield strength and ultimate tensile stress are decreased [41]. Lastly, it was also noted that the

annealing process has no effect on the surface roughness [40].

2.4 Scientific gap

The literature review of this work covered several types of functionally graded structures and structures

with different repeating units. These had a narrow array of structures evaluated or used polymeric

materials for the structure. Hence this work aimed to fill the gap in the study of metallic structures

manufactured through SLM and it also aimed at presenting a comparison between regular hexagonal

honeycombs with different repeating units and different types of gradients.
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This chapter addresses the material used, the manufacturing method of the honeycombs and the

CAD design of the structures.

3.1 Materials and manufacturing

All the structures were manufactured with AlSi7Mg0.6 (also designated as EN AC-42200) [42] through

SLM according to the standard DIN 1706 [43]. The properties of the material are described in Table 3.1

[42]. The standard EN AC-422000 only provides the density, the Young modulus, the Poisson ratio,

the yield strength and the ultimate tensile strength; the remaining amounts were either calculated or

obtained from other works. The yield strain was calculated by applying Hooke’s Law (Equation 3.1)

E =
σ

ϵ
(3.1)

where the E stands for Young’s modulus, the σ stands for the stress and the ϵ for the strain. Since

Young Modulus (59000 MPa) and yield strength (211 MPa) are given, it is clear that the yield strain will

be 0.003576 mm/mm.

For the ultimate tensile strain, it is required to calculate the nominal value, as this is the one to be

used in the FEA. To calculate such value, the true ultimate tensile strain used was the one found in the

literature [3], and then the nominal value is determined by resorting to Equation 3.2.

ϵR = ln(1 + ϵN ) (3.2)

With equation 3.2, the value for the nominal ultimate tensile strain is 0.07251 mm/mm.

Regarding the Poisson ratio, this value is not given by the norm, hence it will be adopted by the same

value used in the literature, which is 0.33 [3,44].

Table 3.1: Material properties

Plastic Strain
[mm\mm]

Density1

[g/cm3]
Young’s Modulus1

[MPa]
Poisson

Ratio
Yield Strength1

[MPa]
Yield Strain1

[mm/mm]
Ultimate Tensile
Strength1 [MPa]

Nominal True1

2.68 59000 0.33 211 0.003576 375 0.07251 0.07
1Values obtained from the data sheet [42]

As for the manufacturing process, the structures were manufactured through SLM, with the ma-

chine SLM Solutions 125HL (Figure 3.1), belonging to the École Nationale Supérieure des Mines d’Albi-

Carmaux, in France [3, 44, 45]. The machine has a chamber with 125 mm x 125 mm x 75 mm which

uses argon as an inert gas for the process. Moreover, said machine has a single Yb laser with a power

of 400 W, a maximum speed of 10 m/s, a width range of 70 µm up to 100 µm and a thickness for the
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fusion of singular material layers going from 20 µm to 75 µm. In order to reduce thermal stresses, the

building platform was kept at a temperature of 150 °C. The hatch spacing was 170 µm and the layer

thickness was 50 µm. For each fabrication, three samples were made on top of each other. At the end

of the process, the samples were separated from the building plate and some samples were grinded

with SiC paper to remove traces of supports.

Figure 3.1: SLM Solutions 125HL. Retrieved from [46].

Regarding the heating treatment, the structures were heated up to 270 °C for 2h in an oven and then

cooled down naturally outside of the oven.

3.2 Choice of structures

This work follows the thesis by B. Coelho [3] and as such one of the main focuses of this work is to

compare the structures developed in the aforementioned work against the new gradients. The work by

B. Coelho studied the in-plane and out-of-plane mechanical properties of structures with different thick-

nesses and with several gradients. All the configurations have as basis the structures regular hexagonal,

Lotus and Plateau.

In order to choose the adequate structures from said work, the specific stiffness and specific energy

absorbed of the structures were compared amongst each other.

3.2.1 Decision criteria and chosen structures

The relative density, specific stiffness and specific energy absorbed of the structures to be chosen are

shown in Table 3.2.

For this work, it was decided that the regular structures should be also analysed in this work as act

as a baseline for the performance of all gradients. Within gradient 1, it was decided to choose variant

1B, as this one has the highest specific stiffness and specific energy absorbed. Within gradient 2, it was
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decided to choose the variants 2C and 2D as these are not the absolute best-performing structures,

thence these will provide a counterpoint against the other gradients. For gradient 3, it was decided to

choose the structures with the highest specific stiffness and highest specific energy absorbed within all

variants, hence it was chosen the variants 3A+, 3B+ and 3C- (Figure 3.2).

Figure 3.2: Chosen structures [Caption: a) 1B, b) 2C, c) 2D, d) 3A+, e) 3B+, f) 3C-]

Table 3.2: Specific stiffness, specific energy absorbed and relative density of the structures to be chosen. Adapted
from [3]

Structure ρ̄ K̄ Ēa

L6 0.334 108.6 63.9
L8 0.269 70.7 50.8
L10 0.228 40.1 27.9
1A 0.322 91.2 63.0
1B 0.420 166.9 101.5
2A 0.443 195.1 114.1
2B 0.466 214.0 121.1
2C 0.426 195.1 123.7
2D 0.410 178.9 116.4
3A+ 0.323 91.4 85.8
3A- 0.240 57.5 42.3
3B+ 0.265 86.3 59.5
3B- 0.298 82.5 55.7
3C+ 0.199 49.2 34.0
3C- 0.335 100.3 65.4

3.3 CAD modelling

There are several structures with different variants and configurations that will be studied in this work. A

variant refers to a type of gradient, i.e. the gradient 4 has the variant 4A, 4B, etc; a configuration refers to

the type of borders used in the cell, for instance, the structure 4A Pt is a configuration with lotus borders

from the variant A of the gradient 4. Within each variant there are three types of configurations for the
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cell borders: hexagonal, hexagonal with Plateau borders, also referred as Plateau (Pt), and hexagonal

with Lotus borders, also referred as Lt. The hexagonal configuration has a repeating cell with a hexagon,

the Plateau configuration has a repeating cell with a hexagon with filleted corners with radius equal to

40% of the length of the inner hexagon (L1) and the Lotus configuration has a circle circumscribed in

the hexagon in its cell. In Figure 3.3 an example of all three configurations can be seen.

Figure 3.3: Regular hexagon, Plateau borders and Lotus border, from left to right, respectively.

All the honeycombs were designed with the CAD software SolidWorks 2022 and later on, exported

to the software Siemans NX for the FEA.

3.3.1 Nomenclature

Throughout this work, a specific nomenclature was used to refer to certain dimensions, below it is

provided a list with all the required geometric parameters needed to fully define a structure. Figure 3.4

shows where those dimensions are set. It should be noted that in all of the structures presented in this

work, the dimension L2 is fixed, otherwise, it would not be possible to construct a honeycomb.

• L1: Length of the inside hexagon;

• L2: Length of the repeating hexagon;

• e: Wall thickness of the repeating unit;

• t: Wall thickness between two inside hexagons;

• r: Plateau border radius in Plateau border configuration;

• R: Circle radius in Lotus configuration;

• AT : Total area;

• As: Surface area;

• l: length of the structure;

• w: width of the structure;

3.3.2 Relative density equations

In this work, the structures were constructed by one of two methods; by defining the geometrical param-

eters presented in Section 3.3.1, and then the relative density is calculated, or by imposing a relative
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Figure 3.4: Definition of parameters

density and then the geometrical parameters are calculated accordingly. In this section, the calculations

for both methods are presented.

Since the structures are based on regular hexagons, it is possible to define all the parameters pre-

sented in Section 3.3.1 in terms of L1 and L2 and the relative density, therefore it is possible to define

the following equations in those terms.

As stated in Section 3.3, the radius of the Plateau borders (r) can be calculated with Equation 3.3.

r = 0.4× L1 (3.3)

The radius R from the Lotus borders can also be calculated with Equation 3.4

R = L1cos
(π
6

)
(3.4)

The wall thickness of a single cell (e) can be calculated with Equation 3.5.

e =
L2 − L1

tanπ
6

(3.5)

The wall thickness of the honeycomb is twice the thickness e, hence t is defined by Equation 3.6.

t = 2e (3.6)

According to what was stated in Subsection 2.2.2, the relative density of a cellular solid can be

calculated with Equation 2.4.

The total area of the solid (AT ) is calculated with Equation 3.7, which is the area of a regular hexagon

with side L2.
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AT =
3
√
3

2
L2 (3.7)

However, the total area (AS) depends on the type of border of the structure, hence the equations for

the regular hexagons, Plateau borders and Lotus borders are presented Equations 3.8, 3.9 and 3.10.

AShex
=

3
√
3

2
(L2

2 − L1
2) (3.8)

ASPt
=

3
√
3

2
(L2

2 − L1
2) + 12

(
(0.4L1)

2

[
tan(30)

2
− π

12

])
(3.9)

ASLt
=

3
√
3

2
L2

2 − π
(
L1cos

(π
6

))2

(3.10)

Combining Equation 2.4 with Equations 3.8, 3.9, 3.10 and 3.7, the following equations can be ob-

tained.

ρ̄hex = 1−
(
L1

L2

)2

(3.11)

ρ̄Pt = 1−
(
L1

L2

)2 (
1− 3.84

3
√
3

(
tan30

2
− π

12

))
(3.12)

ρ̄Lt = 1−
(
L1

L2

)2
π
√
3

6
(3.13)

These equations are applied whenever it is required to define a structure in terms of L1 and L2.

To define a structure with an imposed relative density, it is also required to define the dimension L2,

thus the following equations can be put in terms of the relative density and L2.

L1hex
= L2

√
1− ρ̄ (3.14)

L1Pt
= L2

√
1− ρ̄

3.84
3
√
3

(
tan30

2 − π
12

) (3.15)

L1Lt
= L2

√
(1− ρ̄)

6

π
√
3

(3.16)

It should be noted that despite equations 3.14, 3.16 and 3.15 are said to be only dependent on

the relative density, it is necessary that the parameter L2 to be defined beforehand, otherwise it is not

possible to construct a honeycomb, thence all three equations are dependent of the relative density
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and on the L2. It is possible to further work on these equations to obtain an equation which is able

to determine the relative density of any kind of configuration which falls within the regular hexagons,

hexagons with Plateau borders and Lotus borders. That is because the regular hexagons is a Plateau

borders configuration in which the radius of the corners approaches zero, and the Lotus configuration

has a radius which is equal to the length L1. However, to keep this analysis brief and concise this work

can be made in future analyses.

As it is possible to construct the configurations in a CAD software without resorting to the equations

shown above, a comparison between the results obtained through calculations and through the CAD

was made. As the Equations 3.14, 3.15 and 3.16 are obtained with equations 3.11, 3.12 and 3.13,

respectively, it is not necessary to validate those. The values chosen for this validation are those from

structure 6HPL -0.05 which will be presented in Section 4.3.

From Table 3.3 it can be seen that the equations are correct and they can be used to define the

structures.

Table 3.3: Comparison between the relative density obtained through calculations and through a CAD software.

Configuration L2 (imposed) L1 (imposed) ρcalculations ρCAD

Hexagonal 10 8.06 0.350 0.350
Plateau 10 8.15 0.350 0.349
Lotus 10 8.47 0.350 0.349

3.3.3 Regular structures

These structures were firstly developed by Rua [44], and then used by B. Coelho [3], but only for the reg-

ular hexagons. These structures have a base cell which is propagated throughout the whole structure.

In order to construct this pattern the dimension L1, L2, width, and height must be defined. The values for

r and R must be also defined for the Plateau and Lotus configurations. The thickness of all the regular

structures and the gradient structures shown in this work was 12 mm. The parameters regarding the

unitary cell and the structure are presented in the Table 3.4.

An example of the configurations of hexagonal, Pt and Lt are presented in Figure 3.5 and Figure 3.6,

as well as the structures L6, L8 and L10 to better illustrate the size of all the structures.

3.3.4 Graded structures

Six types of gradients were studied throughout this work. In this section, an explanation of the gradient

is given, as well as the geometric parameters of the variations of the gradient and their configurations.
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Figure 3.5: Regular structures L6, L8 and L10, from left to right, respectively.

Figure 3.6: Regular structures L6, L6 Pt and L6 Lt, from left to right, respectively.

Table 3.4: Geometric characteristics of the regular honeycombs

Base cell [mm]
Structure

L1 L2 r R

Total Area
[mm2]

([mm] × [mm])

Solid Area
[mm2]

ρ̄

L6 - - 1384.77 0.330
L6 Pt 2.4 - 1440.50 0.344
L6 Lt

6 7.33
- 5.20

4190.690
(65.99 × 63.50)

1646.00 0.393
L8 - - 1802.95 0.265

L8 Pt 3.2 - 1902.03 0.280
L8 Lt

8 9.33
- 6.93

7794.23
(84.01 × 80.84)

2267.36 0.334
L10 - - 3352.30 0.221

L10 Pt 4 - 3445.01 0.237
L10 Lt

10 11.33
- 8.66

7996.21
(87.65 × 91.22)

3785.24 0.294

Gradient 1: Defined L1 on certain cells

The gradient 1 is built by defining the L1 in some cells. The pattern can be explained by looking at

Figure 3.7. In the first gradient, the centre cell has an L1 of 10 mm and the remaining cells have an L1

of 8 mm. However, the cells whose centres are coincident with the concentric circle will have an L1 of
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6 mm. This variant is denoted as 1B. The geometrical characteristics of the configurations used with

gradient 1 are shown in Table 3.5.

Figure 3.7: Cell arrangement of gradient 1.

Table 3.5: Characteristics of structures with gradient 1.

Base cell [mm]
Structure

L1 L2 r R

Total Area
[mm2]

([mm] × [mm])

Solid Area
[mm2]

ρ̄

1B - - 3352.30 0.419
1B Pt 4 - 3445.01 0.431
1B Lt

10 10.15
- 8.66

7996.21
(87.65 × 91.22)

3785.24 0.473

Gradient 2: Fixed variation of L1 with different L1 in the corner cell

For the second gradient, the L1 of the centre cell is fixed and then the L1 of the other cells varies

according to the cells in its vicinity. The pattern follows what can be seen in Figure 3.8. In said figure,

the colour of the cells represents a given L1, i.e. all cells with the colour red have the same L1.

Figure 3.8: Cell arrangement of gradient 2 [Caption: 1 - largest L1, 3 - smallest L1; 4 - has an imposed L1].
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The black cell (1) has its L1 defined, the blue cells (2) has an L1 equal to the one of the black cell,

plus a defined increment, and the red cells are the same as the blue cells but the increment is twice

the one given to the blue ones. The green cells have their L1 defined similarly to what was done with

the black cells. The variants used in this work are the 2C and 2D. Both patterns have the same L1 for

the centre cell (9mm), the same increment (-0.5mm), but the 2C pattern has an L1 for the corner cells

of 7.5mm and for the 2D is 8.5mm. Once again, each variant have the three configurations that were

mentioned beforehand and their characteristics are shown in Table 3.6.

Table 3.6: Characteristics of structures with gradient 2.

Base cell [mm]
Structure

Corner Cells
L1

[mm] L1 L2 r R

Total Area
[mm2]

([mm] × [mm])

Solid Area
[mm2]

ρ̄

2C - - 4448.27 0.450
2C Pt 3.6 - 4558.46 0.461
2C Lt

7.5
- 7.79

9880.96
(98.15 × 100.67)

4964.69 0.502
2D - - 4297.40 0.429

2D Pt 3.6 - 4407.07 0.440
2D Lt

8.5

9 11.33

- 7.79

10011.86
(98.51 × 102.00)

4829.42 0.482

Gradient 3: Variation of cell length with R-parameter

The third gradient is a radial gradient where the L1 of a given cell changes according to its distance to

the centre of the structure.

In the structures, it can be drawn several concentric circles where the centre of some cells are

coincident with any concentric circle (Figure 3.9). Figure 3.10 has coloured the cells that have the same

L1 for a better understanding of the concept.

Figure 3.9: Symmetry lines and concentric circles
in a structure with gradient 3.

Figure 3.10: Coloured cells with the same L1.
[Caption: 1 - largest L1, 5 - smallest
L1]
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The gradient varies according to the distance of the centre of the repeating unit to the centre of the

structure. The distance of a repeating unit’s centre to the structure’s centre is denoted as xi and L1i is

the length L1 of the repeating cell i and the variation of L1 follows Equation 3.17.

L1i = L11 +R× xi (3.17)

Where L11 depends on the initial length given to the centre cell. The rate at which the L1 changes is

defined by the R-parameter [3].

Table 3.7 briefly presents all the characteristics of the structures with gradient 3, including the different

configurations that were studied.

Table 3.7: Characteristics of structures with gradient 3.

Base cell [mm]
Structure R-Parameter

L1 L2 r R

Total Area
[mm2]

([mm] × [mm])

Solid Area
[mm2]

ρ̄

3A+ - - 2501.97 0.321
3A+ Pt 3 - 2610.42 0.335
3A+ Lt

0.0217 7.5
- 6.50 2994.68 0.384

3B+ - - 2083.01 0.267
3B+ Pt 3 - 2195.47 0.282
3B+ Lt

0.0310 7.5
- 6.50 2614.72 0.335

3C- - - 2482.77 0.319
3C- Pt 3.8 - 2588.27 0.332
3C- Lt

-0.0371 9.5

10

- 8.23

7794.23
(86.60 × 90)

2977.27 0.382

Gradient 4: Linear gradient along the specimen

Gradient 4 is a structure that uses a linear pattern along the axis of compression. It resorts to Equation

3.17 to define the change of L1 of each cell along the structure. Hence for these structures, the first line

has a set L1 of 7mm and then the increments will be defined by the equation 3.17 and the R-parameter

set.

There will be three variations of the gradient 4 - A, B and C - each one with a different R-parameter.

These structures can be seen in Figure 3.11. All of these variations have their corresponding configura-

tion with regular hexagons, hexagons with Plateau borders and Lotus borders (Figure 3.12).

The characteristics of the gradient 4 structures are presented in Table 3.8.

Gradient 5: Three types of configurations in one structure

For the fifth gradient, it was decided to have the regular hexagons, the hexagons with Plateau borders

and Lotus configurations within the same sample. It was defined that there would be another type of
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Figure 3.11: Structures 4A, 4B, 4C, from left to right, respectively.

Figure 3.12: Structures 4B, 4B Pt, 4B Lt, from left to right, respectively.

Table 3.8: Characteristics of structures with gradient 4.

Base cell [mm]
Structure R-Parameter

L1 L2 r R

Total Area
[mm2]

([mm] × [mm])

Solid Area
[mm2]

ρ̄

4A - - 3150.75 0.404
4A Pt 2.8 - 3242.98 0.416
4A Lt

0.0233
- 6.06 3583.06 0.460

4B - - 2760.46 0.354
4B Pt 2.8 - 2860.43 0.367
4B Lt

0.0333
- 6.06 3229.10 0.414

4C - - 2487.92 0.319
4C Pt 2.8 - 2593.31 0.333
4C Lt

0.0400

7 10

- 6.06

7794.23
(86.60 × 90)

2981.94 0.383

repeating unit, a macro repeating unit. The macro repeating unit is made up of repeating units of the

same configuration - i.e. a macro repeating unit may only have Lotus repeating units, or any other type

of configuration, as it can be seen in Figure 3.13.

In order to keep the structure similar to the structures that were presented so far, it was defined that

each macro repeating unit has two rows of repeating units whilst keeping the same width as previous

structures (Figure 3.13). Furthermore, the relative density of each macro repeating unit was set to be

equal to 0.35.
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Figure 3.13: Macro repeating units. [Caption: Blue - Repeating unit; Red - Macro]

As there are three types of configurations - regular hexagonal, hexagonal with Plateau borders and

Lotus -, three arrangements were chosen: Hexagonal-Plateau-Lotus (HPL), Lotus-Hexagonal-Plateau

(LHP) and Plateau-Lotus-Hexagonal (PLH) (Figure 3.14).

Figure 3.14: Structures 5HPL, 5LHP and 5PLH, from left to right, respectively.

These structures use a notation, where ”H” will stand for regular hexagonal, ”P” for Plateau and ”L”

for Lotus. Hence the structure 5HPL is the structure with the fifth gradient and has a regular hexagonal

macro repeating unit on top, a Plateau in the middle and a Lotus at the bottom. Their characteristics can

be seen in Table 3.9.

Table 3.9: Characteristics of structures with gradient 5.

Base cell [mm]
Structure

L1 L2 r R

Ttotal Area
[mm2]

([mm] × [mm])

Solid Area
[mm2]

ρ̄

5HPL H=8.06 3033.38 0.334
5LHP Pt=8.51 2996.03 0.329
5PLH Lt=8.47

10 3.4 7.34
9093.27

(86.60 × 105) 2996.67 0.329
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Gradient 6: Linear gradient along the specimen

The sixth and final gradient follows the same pattern as the fifth one however, instead of fixing the relative

density of the macro repeating units, their relative density varied linearly.

In order to study the effect of this change, this variation in the relative density was applied to the

structure 5HPL. It was set that the macro repeating unit would have a relative density of 0.35, the Plateau

would have 0.3 and the Lotus would have 0.25. It was decided this way, as the Lotus configuration has a

higher relative density than the Plateau configuration which in turn has a higher relative density than the

regular hexagons. The variation of 0.05 of the relative density was chosen so that each macro repeating

unit would not become isolated pores or that the cell wall would become thin enough to not sustain

higher loads. For this gradient, the nomenclature for the structures was the number of the gradient,

followed by the letters of the arrangement and then the numbers of the relative density of each macro

repeating unit. So the gradient ”6HPL -0.05” was the one that was described previously. The structure

can be seen in Figure 3.15 and its characteristics are in Table 3.10.

Figure 3.15: Structures 6HPL -0.05

Table 3.10: Characteristics of structures with gradient 6.

Base cell [mm]
Structure

L1 L2 r R

Total Area
[mm2]

([mm] × [mm])

Solid Area
[mm2]

ρ̄

H=8.06
Pt=8.836HPL -0.05
Lt=9.09

10 3.5 7.87
9093.27

(86.60 × 105)
2564.41 0.282

3.4 Numerical

It is essential to have an accurate simulation of the compression tests so that the results obtained

correspond to reality. The numerical simulations present results for the perfect case, and as there are
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always imperfections in the real world it is expected that the analysis would always be an overestimation

of the experimental results. In order to predict the stresses and displacements along the structures and

some other mechanical parameters, finite element method software was used. In this work, the software

chosen was the Simcenter Nastran from Siemens NX (NX). All of the FEA presented in this work were

made on an Asus TUF Dash F15 laptop, with an i7-12650H Central Processing Unit (CPU) and 16GB

of Random Access Memory (RAM).

3.4.1 Numerical simulation files

The software Simcenter Nastran requires 3 files to perform the analysis. Those are the .part which

include the CAD of the part, the .fem in which the mesh and material assignment was done and the .sim

where the boundary conditions are set. The simulation is ran and the post-processing of the simulation

is made. In this topic, it is explained what is required in each file.

Part file

In the .part file, it is necessary to either create the CAD part or import the .step file from a previously

made geometry. For this work, the geometry was drawn in SolidWorks 2022 and subsequently imported

to NX as .step file. In NX, the required part is imported and then two rectangular blocks are added to

simulate the compression plates and finally, the whole CAD is split in four through its symmetry planes,

as shown in Figure 3.16.

Figure 3.16: NX .part file. [Note: The pink planes are aligned with the X-Y plane and the Y-Z plane.]

The ”plates” were made with a sketch and then extruded with the command Extrude and the geome-

tries were split using the command Split Body and using the plane in pink in Figure 3.16. It is crucial to

split the bodies in such a way as this simulates the preload given to the part and without it, the simulation

could not provide accurate results.
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Fem file

In the .fem file, the mesh mating was done, as well as the mesh of the geometries and lastly the material

assignment. Firstly, it is needed to make the Mesh Mating. This command allows the split bodies to

have coincident nodes between parts of the bodies and the coincident nodes will always stay together.

This command is needed since the bodies in the simulation was divided into four parts each, then upon

making the mesh, it is necessary that the nodes on the coincident faces are superposed. Thus the mesh

mating option binds the superposed nodes from each part. Therefore, the four parts of each body must

be selected and then select OK in the Mesh Mating window (Figure 3.17). After doing the mesh mating

on both compression plates and the specimen, the mesh has to be created. For so, the 3D Swept Mesh

window is opened (Figure 3.18), and the type of element is chosen, for this work the type of element

chosen was the CHEXA8. Then it is set the mesh size and a ”mesh collector” is created. The mesh size

used was 1.1 mm and in Section 3.4.2 this choice is explained.

Figure 3.17: Mesh Mating window.

Figure 3.18: 3D Swept Mesh window.

To create a new mesh collector, the button with a red box in Figure 3.18 must be pressed and then

the window shown in Figure 3.19 is open. Then, the button with a red box around it in Figure 3.19 must

be pressed to assign a new material. Following these commands, the material list (Figure 3.20) will be

opened. In order to create the material of the specimen, the button with a red box in Figure 3.20 must

be pressed.

Afterwards, the window in Figure 3.21 is opened and it is necessary to input the material density,

Young Modulus, Poisson coefficient and the material engineering curve. For the latter, selecting the

option highlighted by the red box is required and selecting ”Elastoplastic: Stress-strain total strain” is

required. This last option is required since the simulation must include the plastic deformation of the

specimen. For the engineering curve of the material, the button highlighted with a red circle in Fig-

ure 3.21 must be selected, followed by the option ”Table” to insert said properties. On the newly opened

window which will be the one in Figure 3.22, in the highlighted red box, the option ”Strain” must be
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Figure 3.19: Mesh collector window.
Figure 3.20: Material list.

chosen.

Figure 3.21: Material properties.

Figure 3.22: Table field of the engineering curve.

Afterwards, upon selecting the ”Definition” folder on the left menu, the values for the engineering

curve can be put as seen in Figure 3.23. With this, the mesh and material of the specimen were fully

defined.

For the compression plates, the procedure was the same up to the step where a new material was

created. On the ”Material list”, one must select the option to see the materials in the NX library (Fig-

ure 3.24) and choose the appropriate material. In this thesis, the material chosen for the plate was the

AISI Steel Maraging from the Simcenter Nastran library, as this material has a Young Modulus much

higher than the one of AlSi7Mg0.6. This is important to ensure that the compression plates do not de-

form, and thus do not absorb any energy from the compression, this way the energy absorption would

be solely made by the specimen compressed.
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Figure 3.23: Engineering curve definition. Figure 3.24: Material list from NX.

Sim file

The .sim file is the one where the boundary conditions are set, the simulation parameters are set ac-

cording to what was found in Section 3.4.2 and in 3.4.3. Upon finishing the steps detailed in the previous

subsection, a .sim file was created which was based on the .fem file previously made.

Firstly it is needed to set the solver which was used. For this thesis, the solver used was the SOL401

Multi-Step Linear (Figure 3.25) as this one simulates the elastic and plastic compression of a specimen.

Afterwards, it is necessary to define the output of the simulation and some other parameters for the

simulation to provide accurate results.

Figure 3.25: Solver selection

After defining the parameters of the solver, the contact regions of the simulation are set. Those are

the top and bottom surfaces of the compression plates, denoted ”top” and ”bottom” in the simulation, re-

spectively. The top and bottom of the specimen were denoted ”top hc” and ”bottom hc” in the simulation,

respectively. Those regions can be seen in Figure 3.26 and Figure 3.27 highlighted in red.

All of the regions have to be defined as surface type ”FLEX” as the solver SOL401 does not allow for

regions to be defined as perfectly rigid (Figure 3.28).

After selecting the regions it is mandatory to define the type of contact between the plates. For such,

the option Surface-to-surface contact is chosen as it simulates the sliding between the specimen and

the plate and it allows the user to set the friction coefficient desired. Hence, in the window in Figure 3.29

a pair of surfaces in contact have to be chosen - for instance, the surface ”top” and ”top hc” - and then

the friction coefficient is defined in the appropriate box. For this thesis, the friction coefficient used in all
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Figure 3.26: Region selected of the plates [Cap-
tion: 1 - top; 2 - bottom]

Figure 3.27: Region selected of the honeycombs
[Caption: 1 - top hc; 2 - bottom hc]

simulations was 0.2, as a sheet of Teflon was placed between the plate and the specimen to decrease

the coefficient of friction and to avoid damaging the surface of the compression plates.

Figure 3.28: Region definition.
Figure 3.29: Contact type between surfaces.

In the experiment, there was a preload acting upon the specimens to avoid them to slide at the

beginning of the compression. Such preload was simulated in the Finite Element Method (FEM) software

with a restriction in two degrees of freedom of the specimen, those being the translation axes in which

the specimen will not be compressed. For these simulations, it was defined that the compression axis

- the axis in which the specimen will be compressed - would be the y-axis. In the window shown in

Figure 3.30, one must choose the correct face to be constrained and the edge to be excluded to work

as intended. As a representative example of this constraint, in Figure 3.31, the constraint was applied

for the z-axis and the face selected is the one highlighted in red and the edge that must be excluded in

the blue one. The excluded edge must always be the one in the centre of the specimen.

Another constraint which is required for the simulation is the one regarding the movement of the upper

plate. For this work, it was defined that in the simulation the upper plate would have a displacement
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of 4mm. Hence, when applying such constraint, it is necessary to open the Enforced displacement

constraint window, select the top surface of the top plate and then, on the DOF2, which is the y-axis,

type ”-4” to define the compression displacement (Figure 3.32).

Finally, the last constraint required is the fixed constraint for the bottom plate. To apply this constraint,

it is necessary to open the Fixed Constraint window and select the bottom faces of the bottom plate in

the simulation.

Figure 3.30: Preload constraint in
the z-axis window.

Figure 3.31: Preload constraint.
[Caption: Red -
Constrained face;
Blue - Excluded
edge.]

Figure 3.32: Displacement con-
straint.

Lastly, before starting the simulation it is required to select three boxes from the menu ”Edit solution”.

The boxes ”Large Displacements”, ”Large Strains” and ”Material Nonlinearity” shown in Figure 3.33 must

be selected in order for the solution to take into account the nonlinearity of the material’s engineering

curve. Then, right-clicking in the ”sub-case” box, the editing menu must be opened such that the total

time of the compression and the number of increments are indicated (Figure 3.34).

Lastly, what is needed to run the simulation is to click on the button Solve and wait for the machine

to complete the simulation.

The output of every simulation was a spreadsheet which had the force of every node of the compres-

sion plates at any given time step. To obtain the force applied to the structure at a given time step, it was

required to sum the force of every node one on compression plate, and then the value is obtained.

3.4.2 Mesh convergence analysis

A FEA can be as precise as one wishes however, an increase in precision will imply an increase in the

computation time and an in file size. Therefore it is mandatory to define a set of parameters that allow
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Figure 3.33: Solution ”edit” menu. Figure 3.34: Time and increments menu.

the simulation to have a high precision whilst having low computational time [47].

In Simcenter Nastran, the two main parameters that determine the precision and the computational

time of the simulation are the mesh size and the number of increments.

The mesh size determines the size of an element, which in turn, determines the distance between

two connected nodes. The mesh size is defined by a distance which describes the maximum distance

between two nodes. Decreasing the mesh size will increase the number of nodes - and the number

of elements - in the analysis which in turn, will increase the precision of the simulation, however, the

computational time will also increase as well as the file size [48].

For the convergence analysis, ideally one should do a convergence analysis for each structure.

However, for the sake of simplicity and due to time constraints, the convergence analysis was made in

one structure, and then the results were applied to the remaining structures. The structure used for the

convergence analysis was the L6 Lt as it has the fewest stress concentrations. It is important to choose

a structure with few stress concentrations, as these often have high stress variations while making the

analysis which then may skew the results. In order to understand if there is a convergence in the results,

three nodes were selected to assess the convergence (Figure 3.35).

These nodes were chosen as they evaluate the behaviour of the structure on the edge of the re-

peating unit (node 1), in the middle of the strut (node 2) and in the contact between the structure and

the plates (node 3). For each node, its von Mises stress and its displacement was evaluated. The von

Mises stress was chosen as it is the main result to look at in an FEA and the displacement of the nodes

is also used, since they corroborate the results obtained through the von Mises stress and because the

immediate output of an FEA is the displacement of the nodes [48,49].

To choose an appropriate mesh, one must start with a coarse mesh, and then refine the mesh until an

accurate result is obtained whilst maintaining a low computational time. Therefore, the mesh converges

when the variation of the results of a given mesh is less than 5% than the results on the previous mesh.

With these parameters defined the results obtained for the mesh convergence analysis are shown in
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Figure 3.35: Control nodes for the mesh convergence analysis of structure L6 Lt

Table 3.11 and Figure 3.36, shows a graphical representation of the percentual variation

Table 3.11: Mesh convergence analysis values for the von Mises stress. [Note: the green line indicates the chosen
mesh size.]

von Mises stress [MPa] Error [%]Element
size [mm]

Number of
elements

Number
of nodes

Computing
time [s] Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

2.5 2408 4290 259 277.30 252.39 248.72 - - -
2 4536 7476 517 389.12 240.8 241.29 40.325 4.592 2.987

1.5 8744 13419 1223 347.32 238.85 246.92 10.742 0.810 2.333
1.3 14010 20383 1774 292.19 232.09 247.92 15.873 2.830 0.405
1.2 15710 22649 2050 297.19 230.25 256.33 1.711 0.793 3.392
1.1 18950 26653 2795 284.1 228.13 255.53 4.405 0.921 0.312
1 27408 37154 3728 269.75 226.73 248.66 5.051 0.614 2.689

Figure 3.36: von Mises stress percentage variation

As it can be seen, for an element size of 1.2mm, the variation of the von Mises stress is less than

5% however, for an element size of 1.1mm, the variation is also lower than 5% for only an increase

of, approximately, 24% of the simulation time. Hence, it was chosen an element size of 1.1mm as the
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increase in the computing time was counterbalanced by the increase in the precision of the simulation.

To further assess if the mesh size chosen is appropriate, one may look at the displacement of the

selected nodes and, once again, check where the variation is less than 5%. Table 3.12 shows the values

for the displacement with their respective variation, and Figure 3.37 shows a graph of that variation.

Table 3.12: Mesh convergence analysis values for the displacement. [Note: the green line indicates the chosen
mesh size.]

Displacement [mm] Error [%]Element
size [mm]

Number of
elements

Number
of nodes

Computing
time [s] Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

2.5 2408 4290 259 0.42 0.43 0.042 - - -
2 4536 7476 517 0.43 0.41 0.052 2.123 3.472 23.810

1.5 8744 13419 1223 0.44 0.41 0.082 0.462 0.48 57.692
1.3 14010 20383 1774 0.43 0.41 0.081 0.690 1.193 1.220
1.2 15710 22649 2050 0.43 0.42 0.073 0.463 2.415 9.877
1.1 18950 26653 2795 0.44 0.42 0.07 0.230 0.000 1.370
1 27408 37154 3728 0.43 0.424 0.08 0.230 0.000 1.351

Figure 3.37: Displacement percentage variation

As it can be seen, For a mesh size of 1.1mm, the variation of the displacement on all nodes is less

than 5%, hence the choice was an appropriate one.

3.4.3 Increment convergence analysis

The numerical analysis resorts to an implicit analysis and the force-displacement curve, which is ob-

tained with this analysis, is dependent on the number of outputs given by the numerical simulation. The

number of points in the curve is controlled by the number of outputs of the simulation, which in turn is

controlled by the number of increments. A higher number of increments presents a force-displacement

curve with more points, and vice-versa, however, a large number of increments will increase the compu-

tational time of the numerical simulation. Since the plastic deformation of the structures was analysed

in this work, it is important to choose an appropriate number of increments such that the precision of the

41



force-displacement curves is appropriate and the computational time is reduced.

Similarly to what was done in Section 3.4.2, the number of increments is defined as ”converged”

when the percentage variation of one simulation to the previous is less than 5% on all three nodes.

This was assessed for both the von Mises stress and the displacement of the nodes. Table 3.13 and

Table 3.14 display the results for this analysis and it should be noted that for 10 increments the result

is below the 5% threshold, however, this would later produce force-displacement curves with only 10

points, which consequently, would affect the calculations for the relevant mechanical properties. Hence

the three values considered were the 100, 300 and 500 increments.

Table 3.13: Increment convergence analysis values for the von Mises stress. [Note: the green line indicates the
chosen number of increments.]

von Mises stress [MPa] Error [%]Number of
increments

Number of
elements

Number
of nodes

Computing
time [s] Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

5 34 331.07 239.45 257.99 - - -
10 63 331.05 239.51 256.60 0.006 0.025 0.539
50 277 331.47 239.05 250.52 0.127 0.192 2.369
100 563 331.51 238.94 248.78 0.0120 0.046 0.695
300 1120 331.52 238.85 246.92 0.003 0.038 0.748
500

8744 13419

2464 331.52 238.85 246.92 0.000 0.000 0.000

Table 3.14: Increment convergence analysis values for the displacement. [Note: the green line indicates the chosen
number of increments.]

Displacement [mm] Error [%]Number of
increments

Number of
elements

Number
of nodes

Computing
time [s] Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

5 34 0.43 0.42 0.06 - - -
10 63 0.43 0.42 0.07 0.000 0.240 3.125
50 277 0.43 0.42 0.08 0.231 0.240 16.667

100 563 0.44 0.42 0.08 0.23 0.24 2.597
300 1120 0.44 0.42 0.08 0.000 0.000 3.797
500

8744 13419

2464 0.44 0.42 0.08 0.000 0.000 0.000

From the three options for the number of increments mentioned beforehand, the one which was

chosen was the 300 increments, as it has better precision than 100 increments, but it does not increase

the computation time enough to justify a lower number.

3.5 Friction coefficient analysis

The friction coefficient is a crucial parameter in the simulations, thus it must be tuned appropriately. This

parameter affects the stress distribution of the structures and the deformation, thence a brief analysis of

this parameter was made.
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In the experimental testing, a sheet of Teflon was placed between the specimen and the compression

plates, to ensure the friction coefficient is reduced and that the compression plates was not damaged.

Hence, according to what was gathered in the literature [25,50], a coefficient of 0.2 is the most appropri-

ate starting point for this analysis. In order to assess its accuracy, two other coefficients were analysed:

0.11 and 0.29. For this assessment, the structure L6 Lt was used, under the same assumptions referred

to in Section 3.4.2. To determine if the friction coefficient is the most appropriate, the specific stiffness

and the specific energy absorbed for a displacement of 1.5mm were used. The stiffness is calculated

by determining the slope of the linear region, and the energy absorbed is the area under the force-

displacement curve up to a displacement of 1.5mm. To obtain the specific quantities, they were divided

by the relative density of the structure.

The data can be seen in Table 3.15, and it can be noted that the discrepancy between the highest

friction coefficient and the lowest one is 2.1 % for the specific stiffness and 0.8% for the specific energy

absorbed. These discrepancies indicate that the friction coefficient has little influence on the specific

stiffness and specific energy absorbed, for the range presented in this work. Thus it would be correct to

assume a friction coefficient of 0.2 in the FEA of this work since it has little influence on the parameters

evaluated and it maintains a consistency with previous works.

Table 3.15: Specific stiffness and specific energy absorbed for different friction coefficients.

Friction coefficient
K̄

[kN/mm]
Ēa at 1.5 mm

[J]
0.11 83.86 44.22
0.2 85.16 44.50

0.29 85.71 44.59

Comparison with a previous thesis

Since in the previous work [3] the numerical analysis was made with the FEM software Abaqus and in

this work the software Siemens NX is used, it is important to compare the results from one analysis to

ensure that the accuracy and precision are maintained such that there is continuity between both works.

The FEA from both this and the previous work have the same boundary conditions, such as the

lower plate being a fixed element, the friction coefficient being the same, the upper plate moving with

a constant velocity, and the preload being simulated on the specimen. The major differences between

both analyses are the cross-head speed of the upper plate which in this work was 2.5 mm/min, the mesh

size of the specimen and the number of increments, which depend on the convergence analysis made

and the computational power available.

For this comparison, it was chosen to compare the structure L6 under the simulation made for this

work. In both simulations, the structure is the same, the preload of the machine is simulated in both
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simulations, the compression plates had a Young Modulus several orders of magnitude above one of the

materials compressed, the friction coefficient is 0.2 for both simulations and the material properties are

the same. The force-displacement curves obtained from the different analyses are shown in Figure 3.38.

Figure 3.38: Comparison between the results with Abaqus and NX. [Caption: Blue - Abaqus; Brown - NX]

From Figure 3.38, it can be seen that in the linear region, there is a small discrepancy between both

curves and in the plastic region this discrepancy is maintained. Still, there is a good matching between

both curves which indicates that there is continuity between both works.

3.6 Experimental

The experimental methodology is essential in an investigation since it assesses the accuracy of the

numerical analysis and provides insight into whether the numerical analysis might not predict certain

effects. Furthermore, it is presented the methodology of the data processing such that the validity of the

calculations made can be easily verified by anyone else.

This chapter covers the preparation of the samples, followed by the testing that was made on the

specimens, as well as their corresponding standards, and finally looks into the method used for the data

analysis.

3.6.1 Sample manufacturing

The samples come with excesses and burrs that need to be removed in order for the samples to be

eligible for testing. The burrs were removed in an Iciar-DBA FU 1S milling machine Figure 3.39 with a

70mm face mill, wherein each facing 0.2mm was removed in each passage of the tool (Figure 3.40).

This operation is repeated on both sides of the sample in order to keep the samples as close as

possible to each other, and the facing was made until most burrs are removed from the surface and until
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Figure 3.39: Iciar-DBA FU 1S milling machine. Figure 3.40: Facing operation of one sample.

the specimen has a thickness of 12.0mm with symmetric tolerance of 0.2mm. The before and after the

facing operations can be seen in Figure 3.41(a) and Figure 3.41(b)

(a) (b)

Figure 3.41: Sample before and after the facing operation, from left to right, respectively.

3.6.2 Uniaxial compression testing

The test chosen to evaluate the properties of the structures was a compression test; the standard

chosen to follow the guidelines was the ISO 13314:2011 [51] since it is the standard for the mechanical

compression of cellular, porous materials. The testing of a specimen was made with a cross-head speed

of 2.5mm/min and it will compress the specimens until a fracture occurs, or until the maximum force of

the load cell is achieved. Following the standard, three trials were carried out for each variation of the

structure, with and without heating treatment. Also, it should be noted that the testing did not achieve

the densification of the structure due to the mechanical properties of the material used.

The machine used to perform the compression was an Instron 3369 (Figure 3.42(a)) with a maximum

load cell of 50kN and with adequate plates for the compression tests (Figure 3.42(b)). For each sample,
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a sheet of Teflon was placed between the plate and the sample to avoid damaging the plates and

reducing the friction coefficient.

(a) (b)

Figure 3.42: Machine and compression plates. [Caption: (a) Instron 3369 universal mechanical testing machine;
(b) Compression plates mounted on the machine.]

3.6.3 Data processing

The Instron Bluehill Universal software allows for the user to extract a .CVS file after a trial is made, then

one can use the data from the exported file in an Excel spreadsheet.

From the spreadsheet, it is obtained the force-displacement curve of the structure. From this curve

it is possible to determine the stiffness (K), energy absorbed (Ea) and yield strength (σy). The stiffness

of the structure is obtained by calculating the slope of the linear region of the force-displacement graph,

the slope was calculated by doing a linear interpolation of the points in the elastic zone. However, a

major obstacle when calculating the slope with linear interpolation is to define which points should be

used in the interpolation. To overcome this obstacle, the coefficient of determination (R2) of the linear

interpolation was used as a criterion to define which set of points should be used [52]. The criteria to

choose the set of points for the interpolation were the following: more than 2 points must be chosen and

the R2 of the interpolation must be greater than 0.9999, to ensure the interpolation is precise.

As for the energy absorbed, this quantity will be calculated by determining the area under the curve

of the force-displacement graph. For that, the trapezoidal rule [53] was applied between two points, and

then the sum of all the parcels until the fracture point shows the energy absorbed.

The yield strength is calculated by dividing the yield force, which is the last point in the elastic region

of the force-displacement curve, by the projected area of the structure onto the compression plate.

To obtain the specific values, these must be divided by the relative density of each structure.
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In this chapter covers the numerical and experimental data, together with its discussion and a com-

parison between the simulations and the experiments. The validity of the numerical results are also

assessed.

Under this section, the force-displacement curves were presented, and then a table with the specific

stiffness, the specific energy absorbed by the structures, the specific yield strength and the maximum

von Mises stress for a given displacement of the structures are also presented. It should be noted

that the numerical and experimental values are always presented, except for the maximum von Mises

stress, since it is not possible to determine it experimentally. Moreover, the specific energy absorbed was

calculated for a displacement of 1.5mm, in order to compare all structures under the same condition. The

maximum von Mises stress presented was also for a displacement of 1.5mm for the sake of consistency.

For this analysis, the gradients were divided into 3 categories, regular, radial gradients and linear

gradients. The regular ones are the L6, L8 and L10 structures; the radial ones are the gradients 1

to 3; and the linear ones are the gradients 4 to 6. Lastly, a performance analysis of the structures is

presented.

4.1 Regular structures

Three variants of the regular structures were studied - L6, L8 and L10 - where all of them had the same

thickness of 12mm. Besides these variants, the three configurations for the borders of the cells were

also studied - regular hexagons, Plateau and Lotus. It was decided that, in order to assess the validity of

the numerical results, the experimental trials were to be made on regular structures and then compared

with the numerical results.

Addressing the validity of the numerical simulation it can be seen in Table 4.1 the results as discrep-

ancy between the numerical and experimental results. Also, Figure 4.1 compares the numerical and

experimental force-displacement curves. It was decided to compare the specific mechanical properties

of the structures to retain coherence throughout the work.

Table 4.1: Numerical and experimental data.

K̄

[kN/mm]
Ēa at 1.5 mm

[J]
σ̄y

[MPa]Structure ρ̄

Num Exp Num Exp Num Exp
L6 0.334 138.91 65.42 ± 2.77 81.23 55.66 ± 0.91 44.42 36.08 ± 5.34
L8 0.269 90.54 55.59 ± 0.67 65.02 50.48 ± 0.38 30.13 28.83 ± 0.26

L10 0.228 50.43 35.02 ± 0.33 34.91 28.55 ± 0.21 18.71 24.92 ± 0.25

Table 4.1 and Figure 4.1, show some discrepancy between the experimental and the numerical

data, however, this difference decreases as the relative density decreases and as the dimension L1
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(a) (b)

(c)

Figure 4.1: Experimental and numerical force-displacement curves for the structures a) L6, b) L8, and c) L10.
[Caption: FEM - Numerical results; Exp - Experimental results; Avg - Average.]

increases. Moreover, the numerical force-displacement curves are always above the experimental ones,

this is expected as the numerical model assumes the material is homogeneous and isotropic, and the

geometrical imperfections of the manufacturing method are not accounted for [54]. Hence the numerical

simulation would always be an overestimation of the experimental results. Considering this, the discrep-

ancy between the numerical and experimental analysis may come mainly from the anisotropy and the

imperfections of the structure [55,56]. The anisotropy can be explained by the fact that the SLM process

creates pores inside the structure [3] which, at high stresses, could have been the main contributing fac-

tor to the appearance of cracks. These inclusions affect the structure’s mechanical properties, making

the experimental results deviate from the numerical ones. Furthermore, the surface of the structures

was very rough, allowing for the appearance of more stress concentrations on the surface, thus easing

the appearance and propagation of cracks. According to the literature review, it was possible to con-

clude that the numerical results were a good approximation of the experimental ones [23,25,26,57,58].
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Still, the discrepancy between both results can be decreased by including defects of the structure in the

numerical simulation [56].

Table 4.2: Results of the regular structures.

K̄

[kN/mm]
Ēa at 1.5mm

[J]
σ̄y

[MPa]Structure ρ̄

Num Exp Num Exp Num Exp

σmax at 1.5mm
[MPa]

L6 0.334 138.91 65.42 81.23 55.66 44.42 36.08 430.34
L6 Pt 0.344 173.62 - 96.99 - 58.19 - 409.96
L6 Lt 0.393 216.13 - 113.58 - 72.27 - 469.87

L8 0.269 90.54 55.59 65.02 50.48 30.13 28.83 573.15
L8 Pt 0.280 118.80 - 82.85 - 41.02 - 499.59
L8 Lt 0.334 169.41 - 110.59 - 58.36 - 672.07
L10 0.228 50.43 35.02 34.91 28.55 18.71 24.92 579.09

L10 Pt 0.237 68.17 - 45.30 - 27.17 - 565.37
L10 Lt 0.294 107.49 - 64.55 - 42.63 - 644.23

Table 4.2 presents the results of the Numerical (Num) and the Experimental (Exp) data of the given

structures. In Table 4.2 there is a clear trend where the Lotus borders have the highest specific stiffness,

highest specific energy absorbed and the highest specific yielding stress, and the regular hexagonal

borders have the lowest specific stiffness, specific energy absorbed and specific yielding stress. Also,

as the relative density increases, so does the specific stiffness, specific energy absorbed and specific

yielding stress.

For the sake of simplicity and to keep the explanation concise, it was only covered the stress distri-

butions and the force-displacement graphs of variant L6. The graphs and distributions of the variants L8

and L10 were put in Appendix A.

Figure 4.2: Force-displacement numerical curves of the variants of the L6 structure
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Figure 4.2 shows that the Lotus configuration increased the specific stiffness by 55.6% when com-

pared to the regular hexagons and the Plateau configuration showed an increase of 25.0%. In the

specific energy, the Lotus showed an increase of 39.8%, while the Plateau had an increase of 19.4%.

Lastly, the specific yield stress in the Lotus is 62.7% higher than the regular hexagons and the Plateau

is 31.0% greater than the regular hexagons. These trends can be seen for the L8 and L10 variations,

additionally, as the L1 increases, the percentage increase of the Lotus and Plateau configuration when

compared to the regular hexagons, is further increased. Hence for a given displacement, the Lotus

configuration was able to withstand a higher force than the Plateau configuration which in turn was able

to withstand a higher force than the regular hexagons configuration. The force-displacement curves of

the remaining structures are shown in Appendix A.

(a) (b)

(c)

Figure 4.3: von Mises stress of the structures: (a) L6, (b) L6 Pt and (c) L6 Lt, with a red box signalling the triple
junction of the cell walls. [Note: all the figures use the scale in Figure 4.3(a).]

Comparing the stress distribution of the three configurations for a displacement of 1.5mm, it is clear

that all structures have a homogeneous stress distribution (Figures 4.3(a), 4.3(b) and 4.3(c)). However,
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in the junction of three cell walls, the regular hexagons have a higher stress gradient when going across

the cell wall, than the Plateau or Lotus configurations (red box in Figures 4.3(a), 4.3(b) and 4.3(c)). When

the plastic deformation was achieved, a higher the stress gradient across the cell wall, would make it

more prone to fracture. This is effectively seen in the regular hexagon configuration which withstands

less force than the Plateau configuration, which in turn withstands less force than the Lotus configuration.

Comparing the structures L6, L8 and L10, the information in Table 4.2 shows that the structure with

the highest specific stiffness, specific energy absorbed and specific yield stress was the L6 and the one

with the lowest parameters was the L10. The variation L8 showed a decrease of 34.8% in the specific

stiffness, 20.0% in the specific energy absorbed and 32.2% in the specific yield stress, when compared

to the L6. The structure L10 showed a decrease of 63.7% in the specific stiffness, 57.0% in the specific

energy absorbed and 57.9% in the specific yield stress when compared to the L6.

(a) (b)

(c)

Figure 4.4: von Mises stress of the structures L6, L8 and L10.[Note: all the figures use the scale in Figure 4.4(a)]

The graph in Figure 4.1 shows the force-displacement for these structures. The stress distribution of

the three structures (Figure 4.4(a), 4.4(b) and 4.4(c)) shows that the stress distribution is even throughout
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the structure and the fracture occurred where three cell walls meet.

Figure 4.5: Numerical and experimental compression of the L6 specimen with the high-stress regions and fracture
points signalled with a red circle, from left to right, respectively.

From the images obtained in the experiments, it can be seen that the numerical simulation predicted

accurately where the fracture would occur. For instance, in Figure 4.5 there is a comparison between

the stress distribution of the structure and its fracture point during testing. It can be seen that fracture

only occurred in points where three cell walls meet, which are the points where the stress was higher

according to the FEA. The fracture occurred due to the fact that a crack appeared and then it propagated

as the force applied increased.

(a) (b)

Figure 4.6: Fractured L8 (a) and L10 (b) specimen under an imposed displacement of 4 mm.

The fractured points of specimens L8 and L10 were also predicted by the numerical simulations for

the same aforementioned reason. Comparing Figures 4.6(a) and 4.6(b) with Figures 4.4(b) and 4.4(c),

respectively, it can be seen that the numerical simulations can predict the fractures that would occur.

It was also studied in this work the influence of heat treatment on the mechanical properties of the

structures, namely those that are under the scope of this work: the specific stiffness, the specific energy
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(a) (b)

(c)

Figure 4.7: Numerical and experimental force-displacement curves with and without heat treatment for the struc-
tures a) L6, b) L8, and c) L10. [Caption: FEM - Numerical results; Exp - Experimental results; Avg -
Average; HT - Heat treatment.]

absorbed and the specific yield strength.

Three specimens of each structure - L6, L8 and L10 - were subjected to an annealing heat treatment

at 270 °C for 2h and then they were cooled in open air. The average force-displacement curve of the

three trials can be seen in Figure 4.7. From the graph in Figure 4.7 and the data in Table 4.3 it was clear

that the annealing had an influence on the mechanical properties of the structures: the specific stiffness

and specific yield stress were reduced and the specific energy absorbed before fracture was increased.

In other terms, the stiffness was reduced and the ductility was increased. The current FEA model cannot

predict the influence of the heat treatment since it would require changing the material properties and for

that, it would be needed to do further testing on the material which underwent this particular annealing.

Comparing the mechanical properties of the specimens with and without the heat treatment, Ta-

ble 4.3 shows the data for the experimental specimens with and without heat treatment. It can be seen
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Table 4.3: Experimental results with and without heat treatment.

K̄

[kN/mm]
Ēa at 1.5 mm

[J]
σ̄y

[MPa]
Energy absorbed
before fracture [J]Structure ρ̄

No HT HT No HT HT No HT HT No HT NT
L6 0.334 65.42 ± 2.77 61.51 ± 1.14 55.66 ± 2.48 41.36 ± 0.49 18.71 ± 5.34 25.87 ± 0.04 25.88 ± 1.42 38.89 ± 0.67
L8 0.269 55.59 ± 0.67 49.24 ± 3.60 50.48 ± 1.15 36.25 ± 1.46 40.81 ± 0.26 15.41 ± 2.46 27.43 ± 0.87 30.52 ± 1.56

L10 0.228 35.02 ± 0.33 31.21 ± 1.30 28.55 ± 0.64 21.31 ± 0.37 16.06 ± 0.26 16.06 ± 1.00 10.72 ± 0.41 16.81 ± 0.22

that the specific stiffness was reduced by around 6% to 13% when compared with the experimental

with and without the heating treatment. The specific yield strength was also reduced by between 15%

to 25%. Due to these decreases, the specific energy absorbed for a displacement of 1.5mm was de-

creased between 34% to 39%, but the specific energy absorbed before fracture was increased between

16% to 39%. Thereby confirming that the annealing heat treatment does, in fact, decrease the stiffness

of the structure, but increases the ductility.

Lastly, the maximum von Mises stress in the structures, can be seen when comparing the regular

hexagon configuration with the Plateau, the maximum stress is reduced in the Plateau configuration

due to the rounded hexagons edges which reduce the stress concentrations, as it can be seen in Fig-

ure 4.3(a) and 4.3(b). However, the Lotus configuration has a higher maximum von Mises stress than

the regular hexagons configuration (Table 4.2) and that is due to the cell walls on the sides of the struc-

ture which are thinner than the inner cell walls as these repeating units do not have another repeating

unit to double the cell wall thickness. Even so, the inner cell walls have a lower stress than the other

configurations whilst sustaining a higher force. The stress distributions of the remaining structures are

shown in Appendix A.

A final remark regarding the deformation of the specimens. All of the specimens that were com-

pressed in the experiment had a ”localised deformation mode” which falls within the ones shown in

Section 2.2.3. In Figure 4.8 it was drawn a white line in the localised deformations of the specimens,

and it can be seen that the deformations were either tilted I-shaped or V-shaped. These deformation

modes could also be seen in the heat-treated experimental specimens (Figure 4.9).

Figure 4.8: Localized deformation modes in the specimens with a white line indicating the deformation mode. [Cap-
tion: from left to right, L10, L8 and L6]
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Figure 4.9: Localized deformation modes in the specimens with heat treatment with a white line indicating the
deformation mode. [Caption: from left to right, L10 HT, L8 HT and L6 HT]

4.2 Radial gradient structures

Following the regular structures, this section covers the structures with a radial gradient which are the

gradients 1, 2 and 3.

As it was seen with the regular structures when looking at the results of the several configurations

within one variant, there was a trend with the variation of the specific stiffness, specific energy absorbed

and specific yield stress: the Lotus configuration has the highest specific stiffness, specific energy ab-

sorbed and specific yield stress and the regular hexagons has the lowest values. The results are shown

in Table 4.4.

Table 4.4: Results for the gradients 1, 2 and 3.

Structure ρ̄
K̄

[kN/mm]
Ēa at 1.5mm

[J]
σ̄y

[MPa]
σmax at 1.5mm

[MPa]
1B 0.419 162.13 99.70 40.81 418.56

1B Pt 0.431 194.58 115.17 48.99 454.72
1B Lt 0.473 241.00 137.36 60.64 427.81

2C 0.450 199.73 127.66 36.02 519.55
2C Pt 0.461 229.01 143.30 41.34 534.19
2C Lt 0.502 270.65 167.23 48.91 513.04

2D 0.429 181.10 117.81 42.80 443.03
2D Pt 0.440 210.04 133.07 49.63 451.43
2D Lt 0.482 251.53 156.04 49.07 496.01
3A+ 0.321 122.81 86.67 39.11 403.83

3A+ Pt 0.335 155.78 106.74 49.63 414.68
3A+ Lt 0.384 202.63 131.25 64.56 451.82

3B+ 0.267 86.86 59.72 24.38 425.46
3B+ Pt 0.282 117.09 77.61 32.83 442.18
3B+ Lt 0.335 166.38 106.45 46.69 406.84

3C- 0.319 102.00 65.89 24.77 473.74
3C- Pt 0.332 131.78 81.85 32.00 550.46
3C- Lt 0.382 184.17 109.59 44.68 532.34
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Figure 4.10: Force-displacement graph for the structures with gradient 3C-

For this analysis, was used the variation ”C-” from gradient 3 in order to keep this analysis concise.

From Table 4.4, it can be seen that the configuration with the Lotus borders has the highest specific

mechanical properties, while the regular hexagons have the lowest ones when comparing the configu-

ration within a variant. Within variant 3C-, the Lotus configuration has a specific stiffness 80.6% greater

than its regular hexagon counterpart. Also, the specific energy absorbed and the specific yield strength

are 66.3% and 80.3% greater than the regular hexagon configuration. These differences are better

illustrated in the force-displacement graph in Figure 4.10

(a) (b) (c)

Figure 4.11: Stress concentrations in the structure 3C-. [Caption: (a) von Mises stress on the structure 3C- for a
displacement of 1.5mm; (b) Maximum stress area with a red oval signalling the maximum stress; (c)
Central cell of the structure.] [Note: (b) and (c) share the same scale, in order to accentuate the stress
concentrations]

Looking at the stress distribution of the structure 3C- with regular borders, in Figure 4.11(a) the stress

distribution shows that the gradient has an effect since the lower stresses are in sections where the
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thickness of the cell wall is greater and the stress is higher where the thickness is thinner. Also, looking

at the stress distribution, it shows that the maximum stress occurs on the left side of the structure over a

line which is highlighted by a red oval in Figure 4.11(b). This indicates that there is a stress concentration

in those points, which goes with what was said in the previous section: the stress concentrations will

occur at the junction of three cell walls. Moreover, since this concentration occurs near a non-filleted

corner, which can further lead to crack propagation, in structures which have filleted corners such as the

Plateau or Lotus configurations, these stress concentrations were mitigated. Furthermore, the central

cell has sections near its corners with stress in the range of 318 MPa to 434 MPa (Figure 4.11(c)) which

could lead to a crack appearance and then its propagation.

(a) (b)

(c)

Figure 4.12: von Mises stress of the structures (a) 3C-, (b) 3C- Pt and (c) 3C- Lt. [Note: all the figures use the
scale in (a).]

Moving to the Plateau and Lotus configurations of the variant 3C-, Figure 4.12(b) shows that there is a

clear influence of the borders in the stress distribution. In Figure 4.12(a), the stress concentrations have

been reduced to the ones on the central cell, and the whole structure maintains its stress distribution in

the same range as the previous variation. Moreover, as it can be seen from the graph in Figure 4.10,
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the Plateau border variation sustains a higher force than the one with regular hexagonal borders. Then,

looking at the stress distribution of the structure 3C- Lt (Figure 4.12(c)), once again it can be seen that

the stress distribution of the majority of the structure falls, within the range of the 180 ∼ 315 MPa. Like

the 3C- Pt structure, the stress concentrations are localised within the central cell and due to the shape

of the Lotus borders the chance of creating a crack is smaller when compared to the regular hexagons

variant. Also, it can be seen that the stress is lower in cell walls whose thickness is greater and that the

increase in the relative density due to the configuration of the repeating units has an influence on the

stress distribution as the Lotus configuration is able to maintain a stress distribution similar to the regular

hexagons despite withstanding a higher force.

Figure 4.13: Deformation of structures 1B Pt, 2C Pt and 3C- Pt, from left to right, respectively, for 1.5mm of dis-
placement

Also, the gradient has an effect on the deformation of the structure. As it can be seen in Figure 4.13,

the thicker cell walls had lower deformation than those with thinner cell walls. This effect is more clear

in gradient 1B Pt in Figure 4.13.

The remaining structures follow what was described for this particular variant, more specifically: the

high specific stiffness, specific energy absorbed and specific yield stress of the Lotus configuration when

compared to the other configurations; the decrease in the stress distribution of thicker cell walls; and the

mitigation of stress concentrations with filleted corners (Plateau and Lotus configuration). The force-

displacement curves, stress distributions and deformation distributions of the remaining structures can

be seen in Appendix A.

4.3 Linear gradient structures

Moving to the linear gradients, these are the gradients, 4, 5 and 6, the specific mechanical properties

can be seen in Table 4.5.

The data shows that gradient 4 follows the trend that was pointed out in Sections 4.1 and 4.2; the

specific stiffness, specific energy absorbed and specific yield stress decrease as the relative density

60



Table 4.5: Results for the gradients 4, 5 and 6.

Structure ρ̄
K̄

[kN/mm]
Ēa at 1.5mm

[J]
σ̄y

[MPa]
σmax at 1.5 mm

[MPa]
4A 0.404 148.31 86.58 34.02 554.03

4A Pt 0.416 183.34 105.25 42.15 516.68
4A Lt 0.460 232.61 129.97 53.56 437.63

4B 0.354 78.72 40.15 16.04 636.61
4B Pt 0.367 112.40 57.11 22.86 680.91
4B Lt 0.414 169.32 86.17 34.56 598.89
4C1 0.319 33.40 5.46 5.12 466.62

4C Pt 0.333 56.50 23.08 8.66 716.51
4C Lt 0.383 115.43 49.53 17.74 707.04
5HPL 0.334 143.52 108.23 51.27 388.29
5PHL 0.329 147.43 110.55 52.65 407.85
5LPH 0.329 147.11 112.16 52.65 392.91

6HPL -0.05 0.282 109.26 78.09 37.73 435.67
1the FEA could only perform to a displacement of 0.693 mm.

decreases. Furthermore, the Lotus configuration once again excels in all variants when compared with

the regular hexagons and Plateau configuration.

Comparing the structures 4A, 4B and 4C, it can be seen that a decrease in the relative density, also

decreases the specific stiffness, specific energy absorbed and specific yield stress. More specifically,

4B has a specific stiffness 46.9% lower than 4A, and 4C is 77.5% lower than 4A. Looking at the specific

energy, 4B has a specific energy absorbed 53.6% lower than 4A and 4C is 93.6% lower. Lastly, the

specific yield strength in 4B is 52.9% lower than 4A and 4C is 85.0% lower than 4A. The graph in

Figure 4.14 shows these differences.

Figure 4.14: Force-displacement curves for several variants of gradient 4.

Looking at the stress distributions, it can be seen that the stress is levelled depending on the L1 of
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the cell. In Figures 4.15(a) and 4.15(b), it can be seen that the stress along a horizontal line of repeating

cell, the stress is contained within a given range. For instance, in Figure 4.15(a), on the top row of

repeating units, the stress is within the range of 330 MPa to 554 MPa, whilst the middle line row is in the

range of 110 MPa to 385 MPa.

(a)

(b)

Figure 4.15: von Mises stress of the structures with gradient (a) 4A and 4B, from left to right, (b) and 4C. [Note: In
(a) the red rectangles indicate the top row and the middle row of cells and in (b) the red circles and
ovals indicate the high-stress regions.]

As the gradient changes the L1 from each row more drastically, meaning the gradient becomes

steeper, the stress concentrations in the triple junctions become more evident. For instance, in structure

4A (Figure 4.15(a) - left) the stress distribution indicates that the maximum stress was 554.03 MPa in a

stress concentration at a triple cell wall junction. In structure 4B, (Figure 4.15(a) - right) the same stress

concentration was 638.61 MPa and in structure 4C (Figure 4.15(b)), the FEA could not go further than

0.693mm of displacement and the stress concentration hold a value of 466.62 MPa which was higher

than the material’s ultimate tensile strength (375 MPa). Additionally, it can be seen that in structure 4A,

the stress was more evenly spread than in structures 4B and 4C, which further proves the influence
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of the thickness of the cell walls in the stress distribution. Looking at the effect of the repeating cell

configuration, the same pattern that was observed in Section 4.1 and 4.2, was observed once again.

The stress distributions of the different configurations show that the Plateau configuration decreased

the stress concentration and the Lotus configuration further reduced those events. Also, taking the 4A,

4A Pt and 4A Lt into consideration, the Lotus variation showed an average increase of 55% on the three

specific mechanical properties when compared to the regular hexagons counterpart, while the Plateau

configuration only showed an average increase of 21% on the three specific mechanical properties.

Moving into the results of the configurations of a given variant and taking variant 4A as an example

(Table 4.5) it can be seen that within the same pattern that was observed in Section 4.1 and 4.2. The

Lotus configuration has the highest specific stiffness and specific energy absorbed, followed by the

Plateau configuration and lastly by the regular hexagon configuration. Their stress distributions can be

seen in Figure 4.16.

(a) (b)

Figure 4.16: von Mises stress of the structures with gradient (a) 4A Pt and (b) 4A Lt.

Moving into the structures with gradients 5 and 6, these two gradients were compared since it is

relevant to check the variation of the relative density of gradient 6 with the constant relative density of

gradient 5.

From Table 4.5 it can be seen that the three variants of gradient 5 are very similar on all the specific

mechanical properties. The relative density, specific stiffness, specific energy absorbed and specific

yield strength have a variation of 5% among the several variations of gradient 5, which leads to the

conclusion that the permutation of the macro repeating unit within a structure has little effect on the

specific mechanical properties of the structure. Moreover, upon looking at the stress distribution of the

three structures in Figure 4.17 it can be seen that the similarities continue. However, as it was found

by X.Zhang et al. [22], by placing the weakest element in the outcome plate, an improvement in the

specific mechanical properties was found. In this case, by placing the regular hexagons closer to the

fixed compression plate, there is a slight increase in the mechanical properties of the structure. The
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macro repeating unit is the weakest as it has the thinnest cell wall thickness.

Figure 4.17: von Mises stress of the structures 5HPL, 5LHP and 5PLH, from left to right, respectively.

As it can be seen in all images the peak stress occurs near the edges of the cells with the regular

hexagon borders. Yet the most meaningful result that can be taken from these structures is their de-

formation distribution (Figure 4.18). The deformation of the structures shows that the regular hexagons

suffer more deformation, followed by the Plateau cells and then the Lotus ones. This comes from the

fact that the Lotus cell has a higher relative density, thus a higher stiffness and therefore requires more

force to be deformed than the Plateau or the regular hexagons. Knowing this these gradients can be

used to control the deformation of the structure depending on the needs of the application.

Figure 4.18: Deformations of the structures 5HPL, 5LHP and 5PLH, from left to right, respectively.

When comparing the structure 6HPL -0.05 (Figure 4.19) to those with gradient 5, it can be seen

that the 6HPL -0.05 has a specific stiffness 23.9% lower than the gradient 5 structures, a decrease of

27.9% in the specific energy absorbed and a decrease of 26.4% in the specific yield stress. Due to the

nature of the gradient 6, the Lotus repeating unit has thinner cell walls than the Plateau macro repeating

units and the regular hexagon macro repeating units, therefore it is not unexpected that the Lotus macro

repeating units have higher stresses than the rest of the structure and thereby a larger deformation. It

can be seen that the stress concentrations occur near the triple junctions of the cell walls. Lastly, it

can be said that the variation of the relative density in 6HPL -0.05 was steep enough to decrease the

specific mechanical properties. This phenomenon was seen with gradient 4, where a steeper gradient
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(4C) would produce lower specific mechanical properties, while a less steep gradient had higher specific

mechanical properties.

(a) (b)

Figure 4.19: von Mises stress and deformation of structure 6HPL -0.05, from left to right, respectively.

4.4 Performance analysis

Whenever a wide array of solutions is presented, it is necessary to have a method to rank the solutions

from the best to worst such that the most appropriate solution can be found. In this work, the perfor-

mance of the structures studied was evaluated by their specific mechanical properties, and for that an

adimensional index was used to compare all the structures on equal footing.

The index used to compare all solutions was the Geometric Efficiency Index (GEI), an index first

developed by J. Berger et al. [59] and then proposed by D. Bhate et al. [6]. This index is calculated by

dividing the mechanical property of the structure by the same mechanical property of a dense block with

the same functional dimensions of the honeycomb structure. An example of a equation for this index is

the GEI for the stiffness (Equation 4.1).

GEIK =
K∗

Ks

ρ∗

ρs

(4.1)

In Equation 4.1, K∗ is the stiffness of the structure, Ks is the stiffness of a block with the same

functional dimensions to the structure, ρ∗ is the density of the structure and ρs is the density of block

with equal dimensions to the structure. The ratio between ρ∗ and ρs is the relative density which was

introduced in Section 2.1. This index is the most appropriate for this analysis because it takes into

account the relative density and the mechanical properties of the structure and its outcome makes it

possible to rank the efficiency of the structure on a scale of 0 to 1, where 1 is the best-performing

structure and 0 is the worst-performing one. Another advantage of this index is that it can be applied
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to the remaining mechanical properties of the structures - energy absorbed (Equation 4.2) and yield

strength (Equation 4.3).

GEIEa =

Ea
∗

Eas

ρ∗

ρs

(4.2)

GEIσy =

σy
∗

σys

ρ∗

ρs

(4.3)

It should be noted that the GEI for the energy absorbed was one the for the energy absorbed for a

displacement of 1.5mm in order to maintain the consistency in this work.

The Ks, Eas and σys were determined by performing a FEA on blocks with the same fucntional

dimensions as the structures in this work. The parameters of the analysis were the same as described

in Section 3.4 and the data was obtained with the same method described in subsection 3.6.3. The

properties of the blocks will be presented in Appendix B.

The values of the GEIK , GEIEa
and GEIσy

are presented in the Table 4.6 and a chart with the GEI

values of the three properties is presented in Figure 4.20.

Table 4.6: Geometry Efficiency Index for the specific stiffness and specific energy absorbed for all structures.

Structure GEIK GEIEa
GEIσ̄y

Structure GEIK GEIEa
GEIσy

L6 0.196 0.513 0.248 3B+ 0.124 0.302 0.125
L6 Pt 0.245 0.613 0.324 3B+ Pt 0.167 0.393 0.168
L6 Lt 0.305 0.718 0.403 3B+ Lt 0.237 0.538 0.239

L8 0.128 0.344 0.144 3C- 0.145 0.333 0.127
L8 Pt 0.168 0.438 0.197 3C- Pt 0.188 0.413 0.164
L8 Lt 0.240 0.585 0.280 3C- Lt 0.263 0.554 0.229
L10 0.079 0.240 0.096 4A 0.216 0.448 0.178

L10 Pt 0.106 0.311 0.140 4A Pt 0.267 0.544 0.221
L10 Lt 0.168 0.443 0.219 4A Lt 0.339 0.672 0.281

1B 0.228 0.292 0.191 4B 0.115 0.208 0.084
1B Pt 0.273 0.338 0.229 4B Pt 0.164 0.295 0.120
1B Lt 0.339 0.403 0.283 4B Lt 0.247 0.446 0.181

2C 0.284 0.587 0.171 4C 0.049 0.028 0.027
2C Pt 0.326 0.659 0.196 4C Pt 0.082 0.119 0.045
2C Lt 0.386 0.769 0.232 4C Lt 0.168 0.256 0.093

2D 0.258 0.542 0.203 5HPL 0.246 0.601 0.292
2D Pt 0.299 0.612 0.235 5LHP 0.253 0.614 0.300
2D Lt 0.358 0.717 0.280 5PLH 0.252 0.623 0.299
3A+ 0.175 0.438 0.201 6HPL -0.05 0.187 0.433 0.215

3A+ Pt 0.222 0.540 0.254
3A+ Lt 0.289 0.664 0.331
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Figure 4.20: GEI of the stiffness, energy absorbed and yield strength.

As it can be seen in Figure 4.20, the gradient with the highest GEIK was the 2C Lt, the one with

the highest GEIσy is the L6 Lt and the one with the highest GEIEa is the 2C Lt. Within the regular

structures, the variant with the highest GEI values was the L6 Lt; in the radial gradients, the structure

2C Lt has the highest GEIK and GEIEa
, but the structure 3A+ Lt has the highest GEIσy

; in the linear

gradients, the structure 4A Lt has the highest GEIK and GEIEa
, and the structure 5PLH has the highest

GEIσy . Comparing the structures amongst each other, the Lotus configurations obtain the highest

values in the GEI within all gradients, followed by the Plateau and then the regular hexagons. From the

regular structure, L6, L8 and L10, it was seen that a decrease in the L1 increases the GEI on all three

parameters. Looking at gradient 3, it was seen that a less steep gradient produced a higher GEI, as the

variant 3A+ has a less steep gradient and has higher GEI values than the 3B+ variant with a steeper

gradient. This phenomenon was also seen in the linear gradient 5, where variant 4A has higher GEI

values and it has a less steep gradient.

The linear gradient 5 was able to obtain a GEIEa
higher than most of the regular hexagons and

Plateau configurations, but the structure 6HPL -0.05 had lower GEI values than the gradient 5 variant,

this might come from the large variation in the relative density of the macro repeating units.

With this analysis, it can be stated that the gradients of the honeycombs can be modelled to the needs

and requirements of its application. Taking the regular structures as the baseline for the performance

of the honeycombs, it can be seen that the radial gradients had a higher specific stiffness and specific

energy absorption. Still, they lack the specific yield strength, which is where the linear gradients excel.

Furthermore, the gradient can be used to control the deformation which could then be used to control

the fracture of the specimen, as it was seen with the gradients 3 and 5, where the thinner cell walls

would deform first, and hence more likely to fracture first.

Lastly, as the purpose of the honeycombs is to increase the mechanical properties whilst reducing

weight, a graph of the GEI, against the relative density is represented in Figures 4.21, 4.22 and 4.23

to understand the relationship between the performance of the gradient and its relative density, which
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is directly related to the weight of the structure. Despite the dispersion of the results in Figures 4.21,

4.22 and 4.23, a general trend can be seen, as the relative density increases, so does the GEI of the

respective mechanical property. This trend goes in line with the findings of previous papers, where

an increase in the relative density of the structure corresponded into an increase of the mechanical

properties of the structure [20–26]

Figure 4.21: GEI of the stiffness against the relative density.

Figure 4.22: GEI of the yield strength against the relative density.

Figure 4.23: GEI of the energy absorbed against the relative density.
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5.1 Conclusions

In this work it was aimed to assess the influence of several gradients on the mechanical properties of the

structures, and the influence of the variation of the repeating unit on those properties. It was also a goal

to assess the efficacy of the gradients studied, and the accuracy of the FEA in predicting the mechanical

properties of the structures. For the latter, experimental work was carried out to assess the influence of

a heat treatment on the mechanical properties of the structures. The experimental works were made on

the regular structures, and the FEA were made on all the structures.

In this work, three major types of gradients were applied: regular, radial and linear. Besides these

gradients, it was also studied the influence of three types of cell units: regular hexagons, regular

hexagons with Plateau borders, and Lotus borders. All the gradients had these three configurations.

The regular structures had no gradient, hence the L1 was constant on all repeating units. The radial

gradient affected the L1 in a radial direction, and the dimension would vary according to the position of

the unit cell in regard to the central unit cell of the structure. The linear gradient varied the L1 of the

unit cell according to the distance of the unit cell to a row of unit cells. Within the regular structures,

three structures with different L1 were used. Within the radial structures, three types of gradients were

studied: one which the L1 would be imposed according to the distance of the unit cell to the centre of

the structure; another in which the L1 would be added an increment depending on the structures in its

vicinity; and a last one whose L1 would depend linearly on the distance of the unit cell to the centre of

the structure. There was also three types of linear gradients: one which the L1 would depend linearly on

the vertical distance of a unit cell to the bottom row of unit cells; another one which had three clusters of

different type of cell unit, and three permutations of the cells units were studied, also it was studied on

the previous permutation with a linear gradient on the relative density.

All of the structures were subjected to a compression test to evaluate their stiffness, energy absorbed

and yield strength. Through the FEA it was possible to determine these parameters and maximum

stress, together with the distribution of stresses and deformations.

Upon looking at the results obtained with the FEA, it was possible to find that the structures with

higher relative density have higher specific stiffness, specific energy absorbed and specific yield stress.

For instance, in the regular honeycombs the Lotus repeating unit displayed an increase in the specific

stiffness by 55.6% when compared to the regular hexagons and 25.0% when compared to the Plateau

units. In terms of specific energy absorbed, the Lotus had an increase of 39.8% and 19.4% when com-

pared to the regular hexagons and Plateau units, respectively. In terms of the specific yield strength, the

Lotus displayed an increase of 62.7% and 31.0% when compared to the regular hexagons and Platau

units, respectively. This pattern was observed across all the gradients and it happened due to the higher

relative density of the Lotus configuration and from its lack of sharp edges, they are capable of with-

standing higher forces than the other configurations. From the stress distributions, it was possible to
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find out that the regular hexagons structures had more stress concentrations than the other two config-

urations. These stress concentrations would appear in the junction of three cell walls, which is where

the fracture would occur in the experimental testing. The Plateau configuration mitigated these stress

concentrations and would allow the structure to withstand higher forces. For instance, the structure L6

had a maximum stress of 430.34 MPa and the Plateau counterpart, L6 Pt, had a maximum stress of

409.96 MPa, whilst sustaining a force of around 29000N for a displacement of 1.5 mm, while the L6

only sustained 24000 N for the same displacement. The Lotus configuration would further enhance the

mechanical properties when compared to the Plateau configuration, for example, the specific energy

absorbed of the structure L6 Pt is 96.99 J, while L6 Lt was 113.58 J. In terms of the deformation of

the structure, the Lotus configuration had the lowest deformation of the three configurations, while the

regular hexagons had the highest when subjected to an equal force. Looking at the several gradients

analysed, it could be seen that the gradient 2C Lt had the highest specific energy absorbed (167.23

J) and the highest specific stiffness (270.65 kN/mm), while the structure L6 Lt had the highest specific

yield strength (72.27 MPa). In the regular gradients, the structures with the higher relative densities

had the highest specific mechanical properties and the lowest maximum stresses, whilst withstanding

higher forces. In the radian gradient, the same pattern was observed, but it could be further noted that

the structures whose gradient was less steep, meaning the variation of the L1 was relatively small, had

better results than those with steeper gradients, i.e. the structure 3A+ Lt had a less steep gradient than

structure 3B+ Lt and 3C- Lt, and had higher specific mechanical properties. In the linear gradient, the re-

lationship between the relative density and the mechanical properties was, once again, observed. Also,

the structures whose gradient was less steep (4A), had better mechanical properties than those with a

steeper gradient (4C). It was also found with gradient 5, that changing the location of repeating units

has little effect on the mechanical properties, however, the location of the ”weakest” repeating unit in the

fixed-end plate, would increase slightly the mechanical properties. With the fifth gradient, it was also

possible to compare the deformation of the repeating unit, and it was found that the regular hexagons

deform the most while the Lotus deform the least. Lastly, the sixth gradient showed a decrease in all the

mechanical properties, but it paved the way for further improvements with this gradient since it allows

localising the larger deformations.

Regarding the experimental testing, it was found that an increase in the relative density results in

an increase in the specific mechanical properties. Also, it was found that the numerical model matches

the experimental testing, as it can predict the force-displacement curves and the numerical curves are

always above the experimental ones. The latter is a very important point since the numerical model

assumes that the structures are perfect, meaning the material is isotropic, there are no residual stresses

and there are no voids within the structures which may weaken them. As the manufacturing method

creates a very rough surface, it provides an environment that promotes crack propagation, also the
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manufacturing method creates inclusions within the structure which later will further promote the crack

propagation. All of these factors contribute to the disparity between the numerical and experimental

results, yet they can be considered satisfactory for the reasons mentioned above.

Also, with the experimental results it was found that as the relative density decreased, the discrep-

ancy between the numerical and experimental results also decreased. Besides these comparisons, it

was also tested specimens which underwent an annealing. The results showed an increase in the duc-

tility and a decrease in the stiffness of the structures, meaning the specific stiffness and specific yield

stress decreased, but the displacement before fracture and energy absorbed before fracture increased.

In order to compare all the structures on equal footing and assess which structure has the most

efficiency in mechanical terms, the GEI was applied to the stiffness, energy absorbed and yield strength.

It was found that the structure 2C Lt has the highest GEIK and GEIEa
, while the structure L6 Lt has

the highest GEIσy
. In the performance analysis, it was also found a pattern where the GEI for the three

mechanical properties increase as the relative density increases.

To conclude, with this work, it was possible to develop a numerical model that fits the experimental

testing and which produced similar results to the previous thesis, hence the continuity of this work is

assured. It was possible to find that as the relative density increases, so do the specific mechanical

properties of the structure, but it is possible to develop a structure according to the needs of the situa-

tion. Furthermore, it was found that structures with steeper gradients underperform, while less steeper

gradients show a better performance. It was also possible to develop a gradient where it is possible

to localise the major deformations. Lastly, the annealing increases the ductility of the structures while

decreasing the stiffness.

5.2 Future work

No work will ever be truly complete where all possible considerations are taken, hence some suggestions

regarding future investigations and work will be left in this section.

• Derive a single equation that can define the regular hexagons, hexagons with Plateau borders and

Lotus borders, to create structures with variable cell configuration;

• Perform compression trials to the point where the densification of the structure can be achieved,

with a machine which can withstand such forces;

• Perform blast trials to assess the energy absorption;

• Use other materials that rely on the same manufacturing method but maintaining the same struc-

tures;

• Apply the honeycombs from this work to a real-life example and further improve the gradients;
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• Use other numerical methods such as the meshless methods for the numerical analysis, in order

to reduce the computing time whilst maintaining accuracy.

74



Bibliography

[1] L. J. Gibson and M. F. Ashby, Cellular solids: Structure and properties. Cambridge University

Press, 1997.

[2] B. Castanie, C. Bouvet, and M. Ginot, “Review of composite sandwich structure in aeronautic

applications,” Composites Part C: Open Access, vol. 1, p. 100004, 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2666682020300049

[3] B. C. Coelho, “Modeling and Characterization of Honeycomb Structures with Density Gradient

Produced by Additive Manufacturing Technologies,” Master’s thesis, Instituto Superior Técnico,
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A
Force-displacement curves, stress

and deformation distributions
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This appendix presents the force-displacement curves of all the simulations made in this work, and

also with the experimental results obtained. The stress distributions that were not shown in this work

are presented as well.

Figure A.1: Force-displacement curves for the L6, L8 and L10 structures.

Figure A.2: Force-displacement curves for the gradient 1 and 2 structures.
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Figure A.3: Force-displacement curves for the gradient 3 structures.

Figure A.4: Force-displacement curves for the gradient 4 structures.

Figure A.5: Force-displacement curves for the gradient 5 and 6 structures.
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(a) (b)

Figure A.6: von Mises stress of the (a) L8 Pt and (b) L8 Lt.

(a) (b)

Figure A.7: von Mises stress of the (a) L10 Pt and (b) L10 Lt.

(a) (b) (c)

Figure A.8: von Mises stress of the (a) 1B, (b) 1B Pt and (c) 1B Lt.
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(a) (b) (c)

Figure A.9: von Mises stress of the (a) 2C, (b) 2C Pt and (c) 2C Lt.

(a) (b) (c)

Figure A.10: von Mises stress of the (a) 2D, (b) 2D Pt and (c) 2D Lt.

(a) (b) (c)

Figure A.11: von Mises stress of the (a) 3A+, (b) 3A+ Pt and (c) 3A+ Lt.

(a) (b) (c)

Figure A.12: von Mises stress of the (a) 3B+, (b) 3B+ Pt and (c) 3B+ Lt.
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(a) (b)

Figure A.13: von Mises stress of the (a) 4B Pt and (b) 4B Lt.

(a) (b)

Figure A.14: von Mises stress of the (a) 4C Pt and (b) 4C Lt.
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B
Mechanical properties of the blocks

for the performance analysis
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The mechanical properties of the blocks used to determine the GEI in section 4.4 are presented in

table B.1. As the plateau and lotus configuration structures have the same dimensions as the regular

hexagon configuration, the dimensions for the regular hexagons will be presented.

Table B.1: Mechanical properties for the blocks.

Designation
Thickness

[mm]

Height

[mm]

Width

[mm]

K∗

[kN/mm]

Ea
∗

[J]

F y

[N]

σy

[MPa]

L6 12 65.81 66 708.23 158.29 142076.2 179.389

L8 12 83.15 84 705.32 189.05 210254.4 208.586

L10 12 61.2 68 640.38 145.75 158768.7 194.569

1B 12 91.59 91.35 711.5 341.17 234695.165 214.099

2C 12 702.05 217.53 258001.084 210.785

2D 12
100.46 102

702.05 217.53 258001.084 210.785

3A+ 12 701.4 197.7 210636.776 195.034

3B+ 12 701.4 197.7 210636.776 195.034

3C- 12

88.51

701.4 197.7 210636.776 195.034

4A 12 686.76 193.35 206027.92 190.767

4B 12 686.76 193.35 206027.92 190.767

4C 12

90

686.76 193.35 206027.92 190.767

5HPL 12 583.27 180.16 221390.118 175.706

6HPL -0.05 12

86.6

105
583.27 180.16 221390.118 175.706
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