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Abstract

Optical networks constitute essential infrastructures for telecommunication operators. Given the impor-

tance of network capacity in their design, it is paramount to determine it effectively, a process that can

involve long computation times. To face this challenge, this thesis proposes a machine learning solution

to determine the network capacity of transparent optical backbone networks. This solution is based on

a Deep Neural Network (DNN) model, and it aims to provide a fast and reliable way of determining the

capacity considering as inputs parameters of the physical topology of the networks. Furthermore, as

a way of overcoming the bandwidth limitations of C-band transmission, a solution where optical fibers

are added to the network is also implemented. This solution allows for the elimination of the blocking of

traffic, effectively leading to the achievement of large network capacities. This second approach led to

the development of a second DNN model that predicts the cost in kilometers of fiber deployed, alongside

the network capacity. The training of DNN models requires the use of a considerable amount of data,

and so a generative graph model that generates networks with a similar topology to optical backbone

networks was implemented. A heuristic routing algorithm, also developed in this thesis, is then used to

determine the network parameters and capacities. It was shown that the DNN models tend to provide

accurate predictions in just a few milliseconds, making the developed models useful tools in the design

of optical backbone networks.
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assignment, deep neural networks
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Resumo

As redes óticas são infraestruturas essenciais para os operadores de telecomunicações. Dada a im-

portância da capacidade da rede no seu desenho, é fundamental determiná-la de forma eficaz, um pro-

cesso que pode envolver tempos de computação longos. Para enfrentar este desafio, esta tese propõe

uma solução de aprendizagem automática para determinar a capacidade da rede em redes óticas de

backbone transparentes. Esta solução é baseada num modelo de rede neuronal profunda (DNN) e

tem o objetivo de determinar a capacidade de forma rápida e fiável, tendo como inputs parâmetros da

topologia fı́sica das redes. Além disso, de forma a ultrapassar as limitações de largura de banda da

transmissão na banda C, uma solução onde fibras óticas são acrescentadas à rede foi também imple-

mentada. Esta solução permite a eliminação do bloqueio de tráfego, levando a capacidades de rede

elevadas. Esta segunda abordagem levou ao desenvolvimento de um segundo modelo DNN capaz de

prever, para além da capacidade, o custo em quilómetros de fibra. O treino de modelos DNN requer

uma quantidade de dados elevada, por isso foi implementado um modelo de geração de grafos que gera

redes semelhantes a redes óticas de backbone. Um algoritmo de routing, desenvolvido também nesta

tese, é então usado para obter os parâmetros das redes e as respetivas capacidades. Foi demonstrado

que os modelos DNN são capazes de fazer previsões de forma precisa em apenas alguns milissegun-

dos, o que faz destes modelos ferramentas úteis no desenho de redes óticas de backbone.

Palavras Chave

Rede ótica de backbone, capacidade da rede, grafos aleatórios, routing, atribuição de comprimento de

onda e fibras, redes neuronais
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Chapter 1

Introduction

1.1 Motivation

Optical networks are telecommunication infrastructures in which data is transmitted using light, typi-

cally in the infrared region of the spectrum, through optical fiber links. Since optical networks offer

very high bandwidths and allow for transmission over great distances, they have become increasingly

more ubiquitous over the last decades due to the rapid pace at which telecommunications traffic has

been growing [1]. Predictions indicate that this trend is expected to continue for the next years as ap-

plications and services that generate large amounts of data become more widespread. This makes

optical networks indispensable in the evolving telecommunications landscape, making the development

of solutions related to this type of networks particularly relevant.

Optical networks can be divided into three different tiers depending on their geographic extension and

capacity [2]: (a) backbone networks, which cover the largest distances, spanning hundreds to thousands

of kilometers, and carry traffic from millions of users, offering very high capacities (in the order of dozens

of Tbit/s); (b) metro networks, which cover cities and metropolitan areas, spanning tens to hundreds of

kilometers, and offer capacities in the order of the hundreds of Gbit/s; and (c) access networks, which

encompass smaller areas (few kilometers), connecting end-users to the network providers and delivering

data rates on the order of a few Gbit/s.

Optical networks can also be classified as opaque, transparent or translucent. In opaque networks,

the node functions (such as multiplexing, switching, routing, etc.) take place in the electrical domain,

while in transparent networks this is done in the optical domain. In translucent networks there are nodes

operating in the electrical domain and others operating in the optical domain.

The work developed in this dissertation project focuses on transparent optical backbone networks.

A fundamental technology in the field of optical networking is Wavelength Division Multiplexing

(WDM). WDM enables the simultaneous transmission of multiple optical signals (also designated as

1



optical channels) on the same optical fiber, with each channel using a different wavelength. The num-

ber of optical channels being transmitted in a fiber depends on the spacing between the channels as

well as the bandwidth of the WDM signal. Optical backbone networks typically operate in the C-band,

which has a bandwidth of approximately 4800 GHz. This bandwidth corresponds to the bandwidth of the

Erbium-Doped Fiber Amplifier (EDFA), which is the most commonly used optical amplifier, being used

to compensate for the fiber losses [3].

In order to significantly increase the number of optical channels in a network, one can utilize Band

Division Multiplexing (BDM) or Space Division Multiplexing (SDM). The first technique explores the use

of bands other than C-band, while the second one relies, for example, on adding more optical fibers to

the network’s links, while still operating in the C-band.

The capacity of an optical channel is the maximum amount of data per unit time at which the informa-

tion can be transmitted through a noisy medium without errors. The capacity of an optical network is the

maximum data rate of the entire network, that is, it is the sum of the capacity of all of the optical chan-

nels. These two concepts are crucial when it comes to the analysis and design of optical networks, as

the capacity can be an essential way of assessing a network’s performance, allowing for the optimization

of network parameters and resources.

The determination of the optical channel capacity is, however, a somewhat complex problem, due to

the presence of non-linear effects in optical fiber transmission. There are mathematical and analytical

models which aim to accurately estimate the channel capacity, but these can be complex, often involving

long computation times. Besides the physical layer characteristics, the determination of the capacity of

an optical network also needs to take into account aspects related to the network layer, such as the

network topology, the traffic demands and routing, making it an even more complex procedure.

The problem of evaluating the capacity of optical networks has received some attention recently

(see [4] and references therein) using either Integer Linear Programming (ILP) or appropriate heuristics.

But even when using heuristics the computation time required to calculate the capacity of large networks

remains very high.

To address these limitations, it is worthwhile to consider using machine learning techniques, such

as Deep Neural Networks (DNNs) for computing the capacity of optical networks. Although machine

learning techniques have been used widely in the field of optical networks [5, 6], to the best of the

author’s knowledge, there are no reported applications in the context of network capacity evaluation.

1.2 Objectives

The main objective of this dissertation is to develop a machine learning model, a DNN, able to deter-

mine the network capacity and the average channel capacity of transparent optical backbone networks

operating in the C-band, accounting for the aspects related to both the physical and the network layer.
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Specifically, this model should be able to predict these outputs based on input parameters related to the

network’s physical topology in a fast and accurate manner.

Training a DNN requires a large amount of data. For that reason, the use of a generative graph model

is essential, as it provides a way of obtaining thousands of artificial networks from which that data can

be obtained. Therefore, another important objective of this dissertation project is the implementation of

a generative model capable of generating graphs whose topology is similar to that of optical backbone

networks.

The DNN’s training dataset is composed of features and labels. The features are the inputs of the

model, the parameters related to the physical topology of the network, and the labels are the outputs of

the model, that is, the total network capacity and the average channel capacity. The determination of

features and labels is a process that involves the consideration of the physical layer aspects (which were

accounted for through the optical reach), and the network layer aspects, for which a routing algorithm

needs to be used. For that reason, the development of a program capable of determining the various

network parameters as well as find the average channel capacity and network capacity through the

implementation of a routing algorithm is also one of the main goals of this dissertation project.

Although one of the initial objectives of this thesis was to explore the use of BDM (multi-band trans-

mission on the S+C+L bands) as a way to overcome the saturation of the C-band and achieve ultra-high

bandwidth transmission, the complexity of the physical modeling of these networks motivated the author

to instead explore the use of SDM to overcome that limitation.

Consequently, two types of routing algorithms were developed: (a) a constrained routing algorithm

that takes into account the limitations in the number of optical channels in the optical fibers; and (b) an

unconstrained routing algorithm with fiber assignment, a routing solution where the limitation in the

number of optical channels was overcome through the introduction of additional optical fibers to the

network’s links. From this second case, it was possible to develop a DNN model where the outputs are

the (unconstrained) network capacity and the total cost in kilometers of fiber deployed.

1.3 Tools

The development of the models, algorithms and auxiliary code was done in Python, as this language

provides various libraries that offer very useful features when it comes to network analysis, implementa-

tion of DNNs, as well as general mathematical and graph plotting tools. The main libraries used were:

(a) NetworkX, a package for network analysis and exploration which provides data structures to rep-

resent many types of networks, many tools and algorithms for calculating network properties, as well

as the drawing and visualization of the graphs [7]; (b) Pytorch, a library for machine learning applica-

tions that makes use of tensor computation and allows for an efficient implementation and training of

DNNs [8]; (c) Numpy, a library for mathematical operations on multi-dimensional arrays and matrices;
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(d) MatPlotlib, a plotting library used for the creation of static and dynamic visualizations; and (e) shap,

a library used to analyze the importance of the features (inputs) on the predictions of a DNN.

1.4 Contributions

The work developed in this thesis resulted in the development of DNN models whose main goal is to

assist in the analysis and design of optical networks, allowing for the determination of the network’s

capacity in a fast and reliable way. Furthermore, as a result of the development of the DNN models,

other software tools were also developed. These tools also proved to be useful in the analysis of optical

backbone networks.

A generative graph model that is capable of generating graphs with topologies similar to those of

optical backbone networks was implemented. This model was based on the model described in [9], but

some changes were made to assure that the generated topologies more closely resemble their real-

world counterparts, to improve the overall functioning of the model given the specificities of this work,

and also when the described implementation was lacking in detail. The developed model is able to

generate a large number of artificial random networks in short computation times, making this a useful

tool for applications that require the use of a large amount of network topologies.

A program to determine various parameters of a network, as well as the total network capacity,

average channel capacity, and the cost in kilometers of fiber, was developed as a way of obtaining

the data to train the DNN models. This program implements the routing algorithms, allowing for the

specification of the maximum number of optical channels per fiber, as well as the possibility of adding

optical fibers to the network (SDM solution) as a way to overcome this limitation. For the SDM solution,

two fiber assignment algorithms were developed, one focused on computational performance (which

is essential when determining the parameters of thousands of networks), and the other where a more

comprehensive analysis on the placement of fibers is made, leading to less fibers being introduced in

the networks (at the expense of longer computation times). The development of this routing program has

resulted in a comprehensive tool for network analysis that serves as a platform for facilitating a deeper

understanding of optical networking.

Through the use of both of these programs, it was possible to produce an article focused on the

topic of capacity in optical backbone networks, analyzing how the different network and physical layer

parameters influence this value. This article was published on the journal “Photonics”:

A. Freitas and J. Pires, “Investigating the Impact of Topology and Physical Impairments on the

Capacity of an Optical Backbone Network,” Photonics, vol. 11, no. 4, 2024. [4]
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1.5 Organization of this Document

The remainder of this thesis is organized as follows:

• Chapter 2 (Fundamental Concepts and State of the Art): This chapter lays the theoretical

groundwork that serves as a basis for the work presented in this thesis. It delves into network

characterization, discussing various network parameters relevant to this work, as well as spe-

cific concepts of optical networks and the determination of network and channel capacity. It also

explores the theoretical aspects of DNN models and the state of the art of machine learning appli-

cations in the context of optical networking, with a particular focus on DNN models.

• Chapter 3 (Generation of Random Networks): In this chapter the concept of random network is

explained and the generative model implemented in this thesis is detailed, the key attributes of the

generated random networks are compared to their real-world equivalents.

• Chapter 4 (Routing, Wavelength Assignment and Fiber Assignment): This chapter provides

an explanation of the routing algorithms employed in this thesis, including the scenario where the

SDM solution is considered. It presents and discusses the results of their application on both

reference and artificial random networks, including the analysis of the routing solutions in relation

to different network parameters.

• Chapter 5 (Implementation of the DNN Models): This chapter describes the process of training

the two DNN models and presents the tests performed to both models on sets of random networks

as well as reference networks. It also includes an analysis of the importance of the DNN model’s

features.

• Chapter 6 (Conclusion): The final chapter summarizes the conclusions drawn from the work

conducted in this thesis and discusses potential areas for future development.
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Chapter 2

Fundamental Concepts and State of the

Art

This chapter aims to provide a comprehensive overview of the essential principles that underpin the work

developed in this thesis, as well as review the current state of the art of machine learning applications

in the context of optical networking, highlighting recent advancements. In this chapter, topics related to

the representation of networks, routing, the characteristics of optical networks, determination of network

and channel capacity, and the theoretical aspects of neural networks are addressed.

2.1 Network Characterization

A network can be defined, in a general way, as a group of elements that are interconnected or interre-

lated. Networks can be represented by graphs, which are sets of connected elements called nodes (or

vertices) that are usually represented by points. The connections between the nodes are called edges

(or links) and they are usually represented by lines that connect the nodes.

In telecommunication networks, the network nodes correspond to electronic or optical devices (such

as computers, routers, switches, multiplexers, etc.) that are responsible for sending, receiving or routing

the information. The network links, used to connect the nodes, can be based on cable media (twisted

pair, coaxial cable, optical fiber, etc.) or can be wireless (radio waves) [10]. In transparent optical

backbone networks, the networks considered in this thesis, the links are implemented with optical fiber

cables and the nodes with Reconfigurable Optical Add-Drop Multiplexers (ROADMs), which are optical

devices that allow for the switching of traffic at the wavelength level without opto-electric conversion.
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2.1.1 Representation of Telecommunication Networks

A telecommunication network can be represented by its physical topology and its logical topology.

Physical Topology

The physical topology of a network describes the physical layout of the various elements of the network

and it can be represented as a graph, G = (V,E), with V = {v1, ..., vN} being the set of vertices and

E = {e1, ..., eK} the set of edges, where N is the number of vertices and K is the number of edges.

In a network, the links can have attributes associated to them, such as length, capacity, cost and

others. When a graph has links with such attributes (also called weights) it is called a weighted graph,

otherwise it is called an unweighted graph. Figure 2.1 represents a weighted graph where the weights

are the lengths (in kilometers) between the nodes.

Figure 2.1: Example of a Weighted Graph. (From [2])

Graphs can be directed or undirected depending on whether their links are unidirectional or bidirec-

tional. A unidirectional link is one in which communications are only done one-way, so the order of the

nodes in the link matters (for example, communication is done from node v1 to v2, but not the other way

around). Unidirectional links are also called arcs. In a bidirectional link, the communications are done in

both ways. Consequently, a bidirectional link can be seen as a pair of arcs with opposite directions but

equal weights. In the case of optical networks, the bidirectional links have a given number of fibers in

one communication direction and (typically) the same number in the opposite direction.

In the work developed on this thesis, the graphs considered are weighted and undirected graphs

where each weight represents the physical distance between the nodes, being designated as link length.

Accordingly, one can also define the concept of average link length, which is calculated as the mean

length across all the links in a network.

The physical topology of a network can also be described through an adjacency matrix. The adja-

cency matrix of a network with N nodes, A, is a square (N × N ) matrix that represents a graph. For

unweighted graphs, the element aij of the matrix is 1 if there is a link between the nodes vi and vj . For

weighted graphs, the element aij will have the value of the weight itself. In either case, if there is no link

between the nodes, the value of the element aij is zero. Since links from a node to itself are not allowed
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in simple graphs, the diagonal elements of the adjacency matrix (the elements aij with i = j) will also

be zero. If a graph is undirected, its adjacency matrix will be symmetric. Nodes are considered adjacent

if there is a link connecting them directly. Links are adjacent if they share a common node.

Logical Topology

The logical topology of a network describes how the transmission of data (the flow of traffic) occurs. This

flow is described by the number of traffic demands (or logical links). The logical links can be unidirec-

tional or bidirectional and can exist between adjacent or non adjacent nodes. Figure 2.2 represents the

physical and logical topologies of a network, with the logical links marked in red.

Figure 2.2: Example of Logical Topology. (From [10])

Another way of representing a logical topology of a network is with a demand matrix. A demand

matrix, D, is a square (N × N ) matrix where the element dij is equal to 1 if there is a traffic demand

between nodes vi and vj , or zero if that demand doesn’t exist. When there is a demand from each node

to every other node, it is said to be a logical full-mesh topology, and there are N(N − 1) unidirectional

traffic demands.

Related to the logical topology is the concept of network traffic. Network traffic represents the amount

of data flowing through a network in a given instant or period of time. The traffic can be classified as

static (when the traffic demands are known a priori and remain constant in time) or dynamic (when traffic

demands arrive randomly and are released after some time, being that the instantaneous traffic between

a pair of nodes randomly fluctuates around an average value).

In the case of static traffic, the case considered in this work, the traffic demands can be described

through a traffic matrix. A traffic matrix, T , is a square (N ×N ) matrix where the element tsd represents

the traffic intensity from node s (source) to node d (destination). The traffic intensity is the volume of

traffic over a period of time (in, for example, bit/s or packets/s).

2.1.2 Network Parameters

Having in consideration both the physical and logical topology, there are several parameters that are

relevant when analyzing a network. The definition of these parameters is essential in the context of this
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thesis, as they are utilized throughout various parts of this work, including the routing, the generation of

random networks, and the implementation of the DNN models.

In a graph, a path πsd is a sequence of adjacent links and nodes that begins in a source s and ends

in a destination d. It can be described by either the sequence of its nodes or links, and it can be directed

or undirected depending on whether its components are arcs or bidirectional links. In the context of

optical networks, a path represents the physical route of an optical channel, defining the sequence of

links/nodes from s to d.

The length of a path, l(πs,d), in a weighted graph is the sum of the lengths of all the links in that path.

If the graph is unweighted the weight of each link is one and so the length of the path is the number

of links in the path. The distance between two nodes is the length of the shortest path between them.

This concept is very important when it comes to routing, as routing is usually done across the shortest

paths. One of the most relevant algorithms to compute shortest paths is Dijkstra’s algorithm (that finds

the distance from a source node to all other nodes).

The diameter of a network is the maximum number of links between any pair of nodes considering

shortest-path routing, i.e., the number of links in the longest shortest path.

The node degree, δi, is the number of links incident on node vi, and the average node degree of a

network, ⟨δ⟩, can be obtained by computing the average of the node degree across all the nodes in the

network according to the following expression:

⟨δ⟩ = 1

N

N∑
i=1

δi . (2.1)

The number of hops per demand is the number of links that are traversed by a demand (as estab-

lished according to a given routing strategy). Usually, the number of hops per demand is defined by the

shortest path between the source and destination nodes of a given traffic demand. The hop matrix H

is a square (N ×N ) matrix where the element hij is the number of hops traversed by a traffic demand

between nodes vi and vj . The average number of hops per demand can be computed from the hop

matrix through the following expression (where nD is the number of bidirectional demands):

⟨h⟩ = 1

nD

N−1∑
i=1

N∑
j=i+1

hij . (2.2)

A relevant statistical measurement that is used as a way to analyze network parameters is the vari-

ance. The variance is used to indicate the dispersion of data points in a dataset around the mean. It

quantifies the degree of variation or diversity present in a given network parameter. It is given by:

Var(X) =
1

n

n∑
i=1

(xi − µ)2 . (2.3)
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where xi represents the parameter value, µ is the mean of the parameter values and n is the total

number of observations. The variance of the link length and the variance of the node degree were two

parameters considered in this thesis.

The traffic load in a given link is the average value of traffic flowing through that link over a certain

period of time. In static traffic situations, the value of the load will simply be the sum of all the traffic in

that link (since the traffic does not vary over time). The average load per link is the average of the traffic

loads in every link of the network. These parameters can only be computed after having previously

defined the paths for all traffic demands in the network through some routing strategy.

The capacity of a link is the maximum amount of traffic that link can transport. It is related to the

channel capacity (Cch), as the channel capacity is limited by the smallest link capacity in the path of that

optical channel (as this link’s capacity will impose a limit on the maximum traffic of the channel).

The connectivity of a network is a way of measuring the network’s fault tolerance or resilience. The

node connectivity (κ-connectivity), κ(G), is the minimum number of nodes that have to be removed from

a graph to disconnect it, that is, separate it into two or more subgraphs with no links between them

(resulting in at least two nodes that can’t be connected through a path). Similarly, the edge connec-

tivity (λ-connectivity), λ(G), is the minimum number of edges that have to be removed from a graph to

disconnect it.

The algebraic connectivity is the second smallest eigenvalue of the graphs’s Laplacian matrix. The

Laplacian matrix is defined as L = Dδ − A, where A is the graph’s adjacency matrix and Dδ is the

degree matrix (a diagonal matrix that contains the node degree for each node) [11,12]. This parameter

is related to the robustness of a network: larger algebraic connectivity values are associated to more

robust networks, meaning that these networks are better connected and thus removing a node or a link

is less likely to disconnect the network [11].

2.1.3 Routing

Routing is the process which is responsible for mapping the logical topology on the physical topology;

that is, it’s the selection of the path (πs,d) to be followed by a traffic flow associated with a specific traffic

demand. There are two types of routing problems: the capacitated routing problem (also referred to as

constrained routing) and the uncapacitated routing problem (or unconstrained routing).

In the capacitated routing problem, the objective is to maximize the allocated traffic for a given phys-

ical topology, a given link capacity, and a given traffic matrix, with the requirement that the traffic in each

link cannot exceed its capacity. During the capacitated routing, if there are no links with enough residual

capacity (the difference between the link capacity and its load) for a given traffic demand to be routed,

then that traffic demand is blocked. In this case, the blocking probability can be determined by dividing

the number of blocked traffic demands by the total number of traffic demands.
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In the uncapacitated routing problem, the objective is to find, for a given physical topology and traffic

matrix, the set of paths that support all the traffic demands and to determine the capacities needed for

each of the links in the network.

Given that there are different possible paths from a source to a destination, most routing strategies

involve some sort of shortest path algorithm, trying to minimize a particular metric (like number of hops,

total path length, etc.).

In either case, there is a general strategy for routing that can be followed for static traffic problems.

Given as input parameters the physical topology described as a graph G(V,E) and a traffic matrix T ,

one should perform the following steps to route the traffic through the network:

• Find the shortest paths for all traffic demands using a heuristic algorithm (like Dijkstra’s).

• Order the demands according to a sorting strategy.

• Route the demands according to the previous ordering. To break a tie, choose the path that

minimizes the load in the most loaded link.

To order the traffic demands there are the following strategies:

• Shortest-First: The demands with the lowest number of hops/shortest path length come first;

• Longest-First: The demands with the highest number of hops/longest path length come first;

• Largest-First: The demands with the highest number of traffic units come first.

The specific implementations of the routing algorithms developed in this dissertation project are

detailed in Chapter 4.

2.2 Optical Networks

2.2.1 Optical Bands and WDM

Optical networks are telecommunication networks in which the information is transmitted using electro-

magnetic signals through optical fiber links. These networks operate in the electromagnetic spectrum

mainly in the optical bands between 800 nm and 1600 nm. This choice of bands ensures that the at-

tenuation the signal suffers while traveling through the fiber is minimized, as defined by the attenuation

coefficient. The attenuation coefficient, α (in dB/km), is the rate at which the signal’s power decreases

per unit distance, being caused by factors such as absorption, scattering, and bending losses. Figure 2.3

shows the attenuation coefficient in relation to the wavelength usually observed in legacy optical fibers

(like the ITU-T G.652.A) as well as the different optical bands.
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Figure 2.3: Typical Fiber Attenuation (dB/km) relative to the wavelength (nm). (From [13])

The first transmission window (in the 800 to 900 nm range) is typically used in multi-mode fibers,

designed for short distance. The main benefit of using such systems is their lower cost. Single-mode

optical fibers, nowadays more commonly used in long distance telecommunications, operate in the O,

E, S, C and L bands.

More specifically, backbone networks, which cover the greatest distances, typically operate in the

C-band, the band where attenuation is lowest, and for which amplification technology is more mature,

with EDFAs being commercially available for some decades (although L-band EDFAs have also been

available for some time).

As previously mentioned, optical backbone networks make use of WDM so that different signals

(optical channels) can share the same optical fiber, each signal operating with a different wavelength.

There are two types of WDM: Coarse Wavelength Division Multiplexing (CWDM) and Dense Wavelength

Division Multiplexing (DWDM). CWDM systems are WDM systems with few active wavelengths per fiber.

It employs wide-range channels with wavelengths that are spread apart, allowing for wavelength drift.

In DWDM systems, there are more active wavelengths per fiber as the spacing between channels is

smaller. While these systems are more expensive to implement and operate, a more efficient use of the

spectrum is made, being possible to fit dozens of wavelengths of fixed spacing into the C-band [14,15].

Figure 2.4 shows a representation of WDM.

Figure 2.4: Wavelength Division Multiplexing (From [15])
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Each individual signal represented in Fig. 2.4 represents an optical channel. An optical channel can

be defined as the communication pathway through which data is transmitted, in the optical domain, from

a sender (s) to a destination (d), being characterized by its carrier wavelength λc (or carrier frequency

νc), bandwidth Bch (in Hz), and bit rate Rb (in bit/s). Note that the bit rate can be related to the symbol

rate Rs (in baud) through Rb = Rs · log2(M), where M is the number of symbols of the modulation

scheme used. Figure 2.5 shows a representation of the optical channels in a WDM system.

Figure 2.5: Optical channels in a WDM system (in the frequency domain).

In Fig. 2.5 there are three optical channels, whose carriers have the frequencies νk−1, νk and νk+1.

The bandwidth of the channel (Bch) as well as the channel spacing (∆νch) are also represented. Con-

sidering transmission in the C-band (with bandwidth of approximately 4800 GHz), for a typical channel

spacing of 50 GHz, an optical fiber can support up to 96 channels [3]. The minimum bandwidth that

guarantees a signal transmission over the fiber without inter-symbol interference is equal to the symbol

rate Rs, as defined by the Nyquist criterion [16]. So, in that case, for transmission at 64 Gbaud (a typical

value), the bandwidth Bch should be 64 GHz, as well as the channel spacing ∆νch. This allows for the

co-existence of 75 optical channels in the same optical fiber.

Besides the transmission in the C-band, it is possible to use other optical bands in the low-loss optical

spectrum of single mode fiber, allowing for a much wider bandwidth and, as a consequence, for the ability

to transmit more optical channels per optical fiber. This is called multi-band optical transmission, being

based on BDM. It was shown in [17] that multi-band transmission in the S+C+L-bands allowed for a five

times increase in the number of optical channels over C-band only transmission, going from 80 optical

channels in the C-band to 400 in the S+C+L-bands. This resulted in an increase of the network capacity

of ∼ 320% [17].

Currently, transmission in the extended C+L-band is already being used in submarine cable appli-

cations. The move towards other optical bands will be done gradually, as the need for more bandwidth

appears, with the next stage likely being transmission in the S+C+L-bands. This type of transmission

still has, however, its technological challenges, with different network components and technologies

that need to be adapted for multi-band, such as, coherent transceiver front-ends, optical amplifiers and

wavelength selective switches [18].
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2.2.2 Capacity in Optical Networks and Optical Reach

In the context of this dissertation project, two of the most fundamental concepts are the optical channel

capacity and the network capacity.

The capacity of an optical channel (Cch) is the maximum data rate at which information can be

transmitted through the physical medium (optical fiber), being usually expressed in bit/s. The network-

wide average channel capacity is defined in [19] by the following expression:

C̄ch =

∑
k

Cch,k∑
k

γk
, (2.4)

where γk is the expected utilization ratio of a channel k. Usually, for simplicity, γk is considered to be

1, and so, the sum in the numerator of Eq. (2.4) is equal to the total capacity of the network and the

sum in the denominator is the total number of channels in the network (excluding the optical channels

associated to blocked traffic demands).

The capacity of a channel (Cch) can be determined through the Shannon capacity theorem [20],

under the assumption that the noise sources are modeled as additive, white and gaussian noise sources

and considering the channel bandwidth (Bch) equal to the symbol rate (Rs), being given by [21]:

Cch = 2 ·Rs · log2(1 + SNR), (2.5)

where we have the Signal-to-Noise Ratio (SNR) at the receiver end, given by [21]:

SNR =
Pch

N0 ·Rs
, (2.6)

with Pch being the received average optical power per channel (in W), and N0 the noise power spectral

density (in W/Hz). In Eq. (2.5) the factor 2 results from the fact that in optical transmission it is possible for

two optical channels to be transmitted in the same fiber, at the same frequency, by using two orthogonal

polarization states, being referred to as Polarization Multiplexed (PM) optical channels.

It is through the SNR that various physical aspects of the transmission of an optical channel are taken

into account and so, the determination of the SNR involves the consideration of the Amplified Sponta-

neous Emission (ASE) noise (NASE), which is a result of optical amplification, as well as the noise

resultant from Non-linear Interference (NLI) (NNLI ). The work developed in [4] presents a characteri-

zation of the NASE and NNLI , and reaches expressions to determine the SNR and the optical channel

capacity that depend on various parameters related to the physical aspects of optical transmission.

In this thesis, as a way to simplify the determination of the channel capacity and reduce computation

time, as well as streamline the analysis of the results, the computation of the optical channel capacity

will be done through the optical reach.
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The optical reach (or transmission reach) can be defined as the maximum transmission distance

over which the optical channel can maintain a data rate close to its Shannon capacity. In the context

of this work, it is used to account for the impact of the physical layer on the performance of the optical

channels. Table 2.1, from [4], shows the optical reach for different values of Shannon channel capacities

(referred to as such because they are obtained using the Shannon theory) for transmission at 64 Gbaud

and 128 Gbaud.

Table 2.1: Optical Reach and Shannon Capacity. (From [4])

64 Gbaud 128 Gbaud

Reach (km) Capacity (Gbit/s) Reach (km) Capacity (Gbit/s)

23120 200 20808 400
11120 300 10008 600
5840 400 5256 800
3280 500 2952 1000
1760 600 1584 1200
1040 700 936 1400
560 800 504 1600
320 900 288 1800
160 1000 144 2000
80 1100 72 2200

Knowing the length of the optical channels (which are determined in the routing process), it is possible

to approximate the capacity of the optical channel through Table 2.1. For example, for transmission at

64 Gbaud, if the length of a given optical channel l(πk) is 400 km, then the largest capacity value in

Table 2.1 that is able to accommodate the 400 km requirement is chosen. In this case, that capacity

corresponds to 800 Gbit/s (and it allows for transmission up to 560 km).

Having the capacity of all the optical channels allows for the determination of the average channel

capacity C̄ch with Eq. (2.4). The total network capacity can then be determined with:

Cnet = C̄ch × (Nch − Nblocked), (2.7)

where Nch is the total number of traffic demands and Nblocked the number of blocked traffic demands (in

the cases of constrained routing). In the case of a full-mesh logical topology, there will be N(N − 1)

unidirectional optical channels. In that case we have:

Cnet = C̄ch ×N(N − 1)× (1− B̄), (2.8)

where B̄ is the average blocking ratio, given by:

B̄ =
Nblocked

N(N − 1)
. (2.9)
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2.2.3 Quality of Transmission

In optical communications the optical signals are susceptible to degradation resultant from physical

effects of the transmission. These phenomenons result in the decrease of the signal quality, which can

be assessed through different Quality of Transmission (QoT) metrics. These metrics allow for a rigorous

quantification of the signal quality, being useful to evaluate the performance of the optical communication

system, optimize its design, and ensure reliable data transmission over long distances. The Shannon

Capacity and the SNR, already described in previous sections, are QoT metrics used in this work, but

other QoT metrics that are also widely used include, for example, the Bit Error Rate (BER) and the

Q-factor.

The BER is the ratio between the number of bits received in error and the total number of bits

received, in a given period. It can be related to the Q-factor by the following expression [22]:

BER =
1

2
erfc

(
Q√
2

)
, (2.10)

where Q is the Q-factor and erfc is the complementary error function. Assuming that the bandwidth of

the electrical receiver is equal to the symbol rate, the Q-factor in dB is given as:

Q[dB] = 20 log(
√

SNR), (2.11)

where SNR is given by Eq. (2.6).

2.3 Machine Learning Applications in Optical Networks

Machine Learning (ML) is the a field of study that deals with the development and study of algorithms

that can learn from data and generalize to unseen data, being able to accomplish tasks without direct in-

structions. ML algorithms can be grouped into four main categories: supervised learning, unsupervised

learning, reinforcement learning and semi-supervised learning. While all of these types of ML methods

have their applications in the context of optical networks, supervised methods are the most common [5].

In supervised learning, the goal is to predict the value of one or more output variables, given a set

of input values (typically a vector of input variables x). When the output variables are continuous, that

ML problem is called a regression problem. When the output variables are discreet, it is a classifica-

tion problem. In this thesis, since the values being predicted (average channel capacity, total network

capacity and total fiber cost) are continuous, the problem at hand is a regression problem.

Neural networks, also called Artificial Neural Networks (ANNs), are a particularly relevant example of

a supervised learning model. In ANN models, functional transformations are applied to the set of inputs

with the goal of predicting outputs or discovering patterns in the data. These networks are constituted
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of neurons (or units) that apply a non-linear function to the combination of the inputs and are separated

into different types of layers: input, hidden, and output layers. Deep Neural Networks (DNNs) are neural

networks with multiple hidden layers. These additional layers enable DNNs to model more complex,

non-linear relationships in the data, enhancing their predictive capabilities. In fact, it was proved that

DNNs with at least one hidden layer can be used to approximate any continuous function arbitrarily well,

as long as there is a sufficient number of neurons [23].

Given their universal approximation characteristic, along with their proven efficacy in numerous op-

tical networking problems (detailed in Section 2.3.1), offering high accuracy and short prediction times,

the DNN algorithms stand out among other supervised learning algorithms. Therefore, for the purposes

of this thesis, DNNs were the preferred choice.

2.3.1 State of the Art of Machine Learning Applications in Optical Networks

The applications of ML techniques in the context of optical networking are very extensive. In [5] an

overview of this type of applications is presented. According to this analysis, the growing trend of

applying ML techniques in the context of optical communications and networking are explained by two

factors: increased system complexity and increased data availability.

The increased system complexity is the result of the adoption of advanced transmission techniques

with a large number of adjustable parameters (such as modulation formats, symbol rates, adaptive cod-

ing rates, adaptive channel bandwidth, etc.), which makes the modelling of the system through closed-

form formulas very difficult. Analytical models that introduce error margins are commonly adopted in

these cases, but this leads to resource under-utilization. ML methods are a good solution for this prob-

lem, as they can capture complex non-linear system behavior by exploiting the network data. The in-

creased availability of data results from the prevalent data monitoring in modern optical networks. Data

such as traffic patterns, signal quality indicators, failure detection, user’s behavior, etc., provide a large

amount of data that can be used to train ML algorithms.

In [5] various ML applications are looked at, according to two domains: the physical layer domain

and the network layer domain.

When considering the physical layer applications, ML is used mainly due to the presence of non-

linear effects in the optical fiber transmission, that make the analytical models either too complex (and,

as a consequence, having high computation times) or too inaccurate. In this context, ML is mainly

used to estimate the QoT (through metrics such as the SNR, BER and Q-factor), but other applications

include: control of optical amplifiers, modulation format recognition, non-linearity mitigation or optical

performance monitoring [5].

In the network layer domain, ML is mainly used in network design and management. Given the

growing increase of both traffic and the traffic requirements (in terms of, for example, capacity, latency or
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quality of service), optimization techniques and traffic engineering methods have become increasingly

complex, often involving high computational times. ML techniques allow for the automation of network

configuration, ideal for real-time network adjustments. Use cases related to the network layer include:

traffic prediction, virtual topology design and reconfiguration, failure management, traffic flow classifica-

tion or path computation [5].

In [24], an analysis is made on various ML applications for the estimation of QoT, with a strong focus

on neural networks, highlighting the low prediction errors and short computation times these models

offer in both classification and regression problems. The applications presented in this article include

the estimation of BER, SNR or Q-factor based on transmission line parameters (transmission power,

number of spans, inter-channel spacing, etc.) or network related parameters (number of links, average

link length, number of nodes, etc.).

Some relevant examples of regression models presented in [24] include: (a) an ANN model used to

estimate the SNR based on the inputs channel power and frequency, number of spans and ASE and

nonlinear noises, which resulted in predictions with a maximum error < 0.5 dB; (b) a DNN model used to

predict the Q-factor based on launch power, laser bias and EDFA input/output powers, which allowed for

estimations with root mean squared errors < 0.02 dB; and (c) an ANN model to estimate the SNR with

a set of inputs that includes parameters such as fiber attenuation, dispersion coefficient, span length,

number of active channels, launch power, channel bandwidth and frequency, etc., which resulted in over

99.9% of the estimates having an error within 0.5 dB, with computation times < 10 ms .

In [25], various ML models are used to estimate the QoT, specifically the SNR and Optical Signal to

Noise Ratio (OSNR) in the context of WDM optical transmission (being regression problems). The ML

techniques considered were: polynomial regression, random forest regression, and ANNs. The outputs

were treated separately, so different models of each ML technique were developed to predict each out-

put. The input parameters of all these supervised methods were 11 features related to transmission and

network characteristics: transmission power at the beginning of the optical line (dBm), total chromatic

dispersion (ps/nm.km), total polarization mode dispersion (ps), total polarization dependent loss (dB),

number of channels, number of fiber spans, longest link length (km), total network length (km), symbol

rate (Gbaud), bitrate (Gb/s), and OSNR at transceiver output (dB).

It was concluded that the ANN models outperformed the other ML techniques in the estimation

of both outputs, offering a good compromise between model complexity and performance. The ANN

models were able to achieve these results even with a single hidden layer and a relatively low number

of neurons (7 and 5 neurons for the SNR and the OSNR prediction models, respectively).

In [26], the effectiveness of four types of ML models is evaluated in the context of predicting the QoT

of optical channels (referred to as lightpaths) in DWDM networks working on the C-band. The QoT is

assessed through the residual margin, defined here as the difference between the OSNR of a lightpath
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at the end of the path and the required OSNR in back-to-back operation to achieve acceptable system

performance (with the OSNR being determined, in this context, according to Eq. (16) and Eq. (17)

of [26]). If the residual margin is ≥ 0, it means that the lightpath has a higher OSNR than required (or just

what is required, if equal to 0), indicating that the lightpath is feasible and can support data transmission

with acceptable performance. On the other hand, if the residual margin is negative, it means that the

lightpath’s OSNR is lower than what is required for acceptable performance. This indicates that the

lightpath is not feasible as it may not support data transmission with acceptable performance.

The models considered were: K-nearest neighbors, logistic regression, support vector machines,

and two ANN models. These models were used to solve a classification problem where the output was

1 if the residual margin is ≥ 0, and 0 otherwise. But one of the ANN models was a regression model

that predicts the residual margin value in dB. In both ANN models the neural networks were comprised

of one hidden layer with 12 neurons. All the ML models used as input the same set of features: the

number of hops, number of spans, total path length (km), average link length (km), maximum link length

(km), average span attenuation (dB), average dispersion (ps/nm/km) and type of modulation format.

It was concluded that, when predicting the lightpath feasibility, all the ML models had a good accuracy,

above 90% in all cases (with the accuracy being defined as the ratio between the correctly predicted

examples and the total number of examples). The ANN regression model did, however, present the

best generalization capabilities, with accuracies above 99% even when training the model with smaller

training sets. Furthermore, the ANN regression model was able to estimate the residual margin with an

average error smaller than 0.4 dB.

In [27], the case of a multi-domain optical network, where multiple operators co-exist and the traffic

can flow transparently through the different operator’s domains, is considered. When a given optical

channel traverses a domain which is not controlled by the operator which originated it, it is referred to as

an alien wavelength. This paper proposes a solution based on a DNN which assesses the BER of an

alien wavelength, assisting in the end-to-end multi-domain Routing, Modulation format, and Spectrum

Allocation (RMSA) process.

This DNN model takes as inputs the source and destination nodes, data rate, physical length, modu-

lation format and link occupation of an inter-domain optical channel, and outputs a flag indicating whether

the BER of the lightpath satisfies the QoT requirement (it is a classification model). If it does satisfy the

requirement then that connection is validated and set-up, otherwise, changes in the RMSA are made

to guarantee the necessary QoT. The DNN model has 3 hidden layers with 10, 20 and 10 neurons

respectively. The results showed that this DNN model achieves a prediction accuracy of 95.33%.

In [28], an ML solution is proposed to solve the Routing and Wavelength Assignment (RWA) prob-

lem in transparent optical backbone networks using WDM transmission. RWA consists in assigning a

physical-path on the network and attributing wavelengths to all the optical channels associated to each
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of the traffic demands in a given traffic matrix. The resolution of this problem can be done through ILP

formulations that lead to optimal solutions. ILPs, however, suffer from high computational complexity, of-

ten requiring hours to solve medium-size network topologies. To alleviate this computational complexity,

various heuristic algorithms have been proposed, offering faster computation times (typically separating

this problem into a routing step and then a wavelength assignment step), but these lead to sub-optimal

solutions.

Given the problems present in these types of solutions, the authors of [28] chose to represent the

RWA problem as a supervised classification problem. The input of a RWA problem is a serialized

traffic matrix with all the source-destination traffic demands. The output is the Routing and Wavelength

Configuration (RWC), a list in which, for each traffic demand (input), there is a sequence of links (the

route chosen for that given traffic demand) and the wavelength assigned. This problem was transformed

into a multi-class classification problem, where the outputs are predicted from a given set of RWC

classes. Two ML algorithms were implemented: logistic regression and a DNN. Both ML algorithms

output an array of values between 0 and 1 that can be interpreted as the probability for an RWC to be

the correct solution for a given input. The RWC with the highest probability is then tested to see if it

meets all the requirements of the source-destination RWA demands. If it doesn’t, the RWC with the next

highest probability is tested. This process is repeated for the top 10 RWCs.

It was concluded that the DNN model performs significantly better than the logistic regression model

when it comes to predicting the correct class, especially in tests with a larger number of RWC classes.

The DNN was also shown to be very good at replicating the results obtained by the ILP solution, resulting

in a very high feasibility score, achieving almost complete feasibility (always above 95% in all the tests),

while also reducing computation time by more than 93% with respect to classic ILP approaches.

The various articles analyzed in the context of the state of the art of machine learning techniques

applied to optical networks underscores the prominence of neural networks models, showing that this

type of models have consistently emerged as superior solutions in various applications within the field,

providing high accuracy rates and fast computation times, reaffirming them as an optimal choice in the

context of this thesis.

2.3.2 Theoretical Principles of Neural Networks

In this section, we delve into the theoretical principles that explain the operation of neural networks.

Figure 2.6 provides a visual representation of a neural network, with Fig. 2.6(a) detailing the operations

of a generic neuron m, and Fig. 2.6(b) illustrating the overall structure of a neural network with one hidden

layer. Within each neuron, two key processes take place: the computation of the input activation (also

known as pre-activation), and the subsequent generation of the neuron’s output through an activation

function.
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(a) Detail of a generic neuron m. (b) Neural Network.

Figure 2.6: Neural network with one hidden layer and detail of neuron operations. (Adapted from [5])

The input activation (pre-activation), represented by z(x), is described by:

z(x) =

n∑
i=1

wmixi + x0, (2.12)

where xi are the input variables, wmi are each of the connection weights and x0 is the bias term.

The activation of the neuron is given by:

hm(x) = g(z(x)), (2.13)

where g is the activation function. Typical activation functions include: linear, sigmoid, hyperbolic tan-

gent, rectified linear unit or softmax. In regression problems the Rectified Linear Unit (ReLU) (g(z) =

max(0, z)) is commonly chosen as the activation function [29].

Figure 2.6(b) is a generic representation of a neural network with a single hidden layer, n inputs, m

hidden units (the number of neurons on the hidden layer) and k outputs. Considering now the operation

across the hidden layer (designated as layer 1), the hidden layer pre-activation is thus:

z(1)(x) = W (1)x+ x0, (2.14)

with W (1) being a matrix (of size m× n) containing the values of the connection weights between each

of the inputs and each of the hidden units, x the vector of inputs and x0 ∈ Rm the bias term (a vector of

size m). Note also that z(1)(x) is a vector of size m.

The activation of the hidden layer is given by:

h(1)(x) = g(z(1)(x)), (2.15)

with g being the activation function to be applied to each of the elements of vector z(1)(x). The vector
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h(1)(x) is the output of hidden layer 1 and it will be fed into the next layer, which can be another hidden

layer, or, in the case of Fig. 2.6, the output layer.

When it comes to the output layer, the same process as before is done, with a pre-activation, whose

output can be designated zout(x) and an activation:

zout(x) = W outh(1)(x) + h
(1)
0 , (2.16)

y(x) = o(zout(x)), (2.17)

where o is the output layer activation function. This function is typically the linear function (o(z) = z) in

regression problems [5].

If more hidden layers were to be used (as in the case of DNNs), the expression that represents the

hidden layer pre-activation for layer ℓ is:

z(ℓ)(x) = W (ℓ)h(ℓ−1)(x) + h
(ℓ)
0 , (2.18)

with W (ℓ) being a matrix (of size mℓ × mℓ−1, mℓ being the number of hidden units of hidden layer ℓ)

containing the values of the connection weights and h
(ℓ)
0 ∈ Rmℓ the bias vector.

The activation of hidden layer ℓ is given by:

h(ℓ)(x) = g(z(ℓ)(x)) . (2.19)

2.3.3 Training Neural Networks

The training of neural networks consists of determining the value for all of the neuron’s weights (the

values of the W matrices) and the bias values that minimize a given loss (or error) function with a given

iterative method (optimizer algorithm).

In the training process, a dataset with features (inputs) and labels (outputs) is used, being split into

a training set (the data used to determine the model’s parameters), a validation set (used to make an

unbiased evaluation of the model’s performance during training) and a test set (used to assess the

model’s performance after the training is complete). Before the data is split into these three sets, the

data needs to be pre-processed and shuffled. Data pre-processing consists in preparing the data to

make it more suitable for the training process. This can be done by applying transformations to the data

(to assure that all inputs are on the same scale through the standardization or normalization of the data,

or to fix a skew in the distribution of a given feature or label), by filtering out given parts of the data (such

as outliers, duplicates or invalid data), by aggregating features or creating new features from the existing

ones [30].
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The loss function is used to measure the difference between the value predicted by the Neural

Network and the real value. That is, it measures the error associated to the model’s predictions. In the

case of regression problems the Mean Squared Error (MSE) is used [29]. The MSE is given by:

MSE =
1

N

N∑
i=1

(ŷi − yi)
2, (2.20)

where N is the number of data values being considered, ŷi are the estimated values and yi are the real

values.

The optimizer algorithm is the method that determines how the weights and biases (the network pa-

rameters) are updated during the training process. Common optimizers include the Stochastic Gradient

Descent (SGD) or the Adaptive Momentum Estimation (Adam). The update of the network parameters

requires the computation of the gradient of the loss function, a task performed by the backpropagation

algorithm [31]. The backpropagation algorithm is used in ANNs to calculate the gradient of the loss

function with respect to the network’s weights and biases. It does this by applying the chain rule of

calculus and propagating the loss backward from the output layer to the input layer. The resulting gradi-

ents, which indicate the direction and rate of change of the loss function, guide the optimizer algorithm

in iteratively adjusting the weights and biases.

An important parameter related to the optimizer is the learning rate. The learning rate determines

the magnitude of the updates applied to the weights and biases during each iteration. A smaller learning

rate implies smaller updates, requiring more iterations and thus a longer time for the model to converge.

Conversely, a learning rate that is too large can lead to larger updates, which might cause the model to

overshoot the global minimum of the loss function and fail to converge [29].

An epoch corresponds to a single iteration over the training data that results in an update of the

neural network’s parameters. In each epoch the training data is randomly divided into batches (that have

a specific pre-defined size), meaning that between any two epochs, while the training data itself remains

the same, the order in which the data is presented to the network changes. This is done to prevent the

model from learning the order of the training examples and to ensure that the model generalizes well to

unseen data. The following procedures occur in an epoch: the data is used to predict a set of outputs ŷi

(forward pass), the value of the loss between the predictions (ŷi) and the actual values (yi) is computed

both for the training set and the validation set, the backpropagation algorithm is done to compute the

gradients, and, knowing the gradient values, the weights and biases of the model are updated. The

training process will continue until a specified number of epochs is reached, unless Early Stopping is

implemented.

Early Stopping is a technique used to prevent overfitting (a regularization technique) that consists in

stopping the training process when the parameter updates no longer yield improvements on the valida-

tion set loss. Overfitting occurs when the model fits the training data too closely, including both real and
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noisy data, which makes the model unable to generalize to new unseen data. By interrupting the train-

ing process before the validation loss starts increasing, overfitting can be avoided. The Early Stopping

regularization can be adjusted by changing the patience parameter, which is a parameter that defines

the number of epochs to wait for before interrupting the training. For example, if the patience parameter

is set to 20, the model will only stop after 20 consecutive epochs with no improvement in the validation

loss. This serves as a tolerance to the inherent fluctuations in model performance during training.

Another technique that is used to prevent overfitting is dropout regularization [32]. Dropout regular-

ization consists in temporarily deactivating (dropping) random neurons from the neural network during

the training process. This means that their contribution to the activation of downstream neurons is tem-

porally removed on the forward pass and any weight updates are not applied to that neuron on the

backward pass. The tuning of the dropout regularization can be done through the dropout probability,

which defines the probability that a given neuron is dropped. The application of dropout regularization

is done on a per batch basis, meaning that, for each batch of data being considered in a given epoch

there is a new choice of neurons to drop. It was shown in [32] that dropout regularization can have a

significant impact in reducing overfitting.

An important aspect of training a Neural Network is optimizing the hyperparameters. Hyperparame-

ters are the variables that configure how the model learns from the data. This includes variables like the

number of hidden layers, the number of hidden units, the learning rate, the batch size, the dropout prob-

ability, and others. During the training, different combinations of hyperparameters are tested to find the

one that results in the best performance on the validation set. In this work, the performance of the model

on the validation set is assessed using two metrics: the R2 score and the Average Relative Error (ARE).

The R2 score (R-squared), also known as coefficient of determination, is a statistical evaluation

metric that indicates how well a model fits the data. In this context, it is used to compare the predictions

made by the DNN model and the real values (determined through the routing process), being defined

as [33]:

R2 = 1−
∑N

i=0(yi − ŷi)
2∑N

i=0(yi − ȳ)2
, (2.21)

where yi represents the actual value, ŷi represents the predicted value, ȳ is the mean of the actual

values, and N is the number of data values being considered. The R2 score will take values between

0 and 1, where a value of 1 indicates that the model fits the data perfectly and 0 that it does not fit the

data at all. That means that the closer the values are to 1, the better the model is performing [33].

The ARE is the average of the relative errors between the predicted and actual values. A lower ARE

indicates a better performance of the model on average [34]. It is defined as follows:
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ARE =
1

N

N∑
i=0

∣∣∣∣yi − ŷi
yi

∣∣∣∣ . (2.22)

The relative error for each data point is calculated as:

Relative Error =
yi − ŷi

yi
. (2.23)

While tuning a DNN model’s architecture, another significant factor is the number of parameters.

The number of parameters refers to the total count of the model’s weights and biases. It is important

to monitor this number because an overly large number of parameters can lead to overfitting. The

determination of this value is influenced by the number of inputs, outputs, hidden units, and hidden

layers, being given by:

Number of Parameters =
L∑

ℓ=1

[(nℓ−1 + 1)× nℓ] , (2.24)

where L is the total number of layers in the network (including input and output layers), nℓ−1 is the

number of neurons in the (ℓ − 1)-th layer (or number of inputs), and nℓ is the number of neurons in the

ℓ-th layer (or number of outputs). The term (nℓ−1 + 1) accounts for the weights connecting the neurons

from the (ℓ − 1)-th layer to the ℓ-th layer and the additional “+1” accounts for the bias term for each

neuron in the ℓ-th layer. The product (nℓ−1 + 1) × nℓ gives the total number of parameters between

the (ℓ − 1)-th and ℓ-th layer. The summation over all layers gives the total number of parameters in the

network. So, for example, considering a model with no hidden layers, having 12 inputs and 2 outputs,

the total number of parameters would be: (12+1)× 2 = 26. If there were 2 hidden layers with 50 hidden

units each, then we would have: (12 + 1)× 50 + (50 + 1)× 50 + (50 + 1)× 2 = 3302.

2.4 Chapter Conclusions

In this chapter, an overview of the fundamental concepts that serve as a basis for the work developed

throughout this thesis was presented.

It was shown that telecommunication networks can be represented by their physical and logical

topologies. The physical topology depicts the networks’ physical layout and it can be represented as a

graph or an adjacency matrix. The logical topology describes how the data is transmitted in the network,

being represented by a demand matrix and traffic matrix. Various parameters related to both the physical

and logical topology were detailed. Furthermore, the concept of routing, which is the process that defines

the physical paths on the network through which the traffic will flow, was introduced, and a general

strategy that can be applied to constrained and unconstrained routing problems was presented.

The concept of WDM transmission was explained, and it was shown that it allows for the concurrent
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existence of multiple optical channels in the same optical fiber, operating in different wavelengths. How-

ever, given the bandwidth limitations inherent to fiber transmission, the number of optical channels that

can simultaneously exist in an optical fiber link is limited. A way to determine the optical channel capac-

ity, through the relation between optical reach and the Shannon channel capacity, was also presented.

This strategy makes the process of determining the average channel capacity and total network capacity

more straightforward and computationally less complex.

Various applications of ML techniques in the context of optical networks were analyzed and it was

seen that the applications cover both physical-layer aspects (with the determination of QoT being a

prevalent example) and network-layer aspects. Through the analysis of these applications it was con-

cluded that ANN/DNN models tend to offer the best performances while also having very fast prediction

times. For that reason, and given their universal approximation characteristic, the implementation of a

DNN model was chosen for this thesis.
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Chapter 3

Generation of Random Networks

In this chapter, the concept of random networks is introduced and the implementation of the generative

graph model is detailed. The characteristics of the networks generated with this model are then analyzed

to assure their similarity with real-world optical backbone networks.

3.1 Random Networks and Generative Models

The generation of random networks is a necessary step for the dissertation project, as reference net-

works (real-world networks often used in the context of scientific investigation) are not sufficient in num-

ber for the training and testing of the DNN models. These models will require large datasets which will

be obtained from thousands of random networks. In that context, it is necessary that the generated

networks have similar topologies to real-world optical backbone networks.

Random networks are networks whose edges (and in some cases the spatial position of the nodes)

are random variables, that is, their physical topology is generated according to a given probability distri-

bution, being represented by random graphs. This type of graphs was first studied by Paul Erdós and Al-

fred Rényi, who proposed a simple model for generating random networks, the Erdós-Rényi model [35].

In the Erdós-Rényi model, designated as G(n, p), a graph is created by the random addition of

links [35]. It takes as inputs the number of nodes (n) and the linking probability (p), which is the probability

(with uniform distribution) that a link will be added between any pair of nodes, independently of other

links. The resulting graph has a node degree with a Poisson distribution. Figure 3.1 shows a random

network generated using the Erdós-Rényi model with n = 15 and p = 0.5.

This model is the simplest way of generating truly random networks, but, if the goal is to generate

networks akin to real ones, total randomness is not always the best option, as real network’s topologies

have certain characteristics that are not taken into account in this model.
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Figure 3.1: Random Graph generated with the G(n, p) model with n = 15 and p = 0.5.

The Waxman model is another widely used generative graph model. This model considers the

physical distance between nodes in the probability of node attachment, being thus designated as a

geometric model [9]. This contrasts with the Erdós-Rényi model, which is a non-geometric model (where

node positions and distances are not considered). In the Waxman model the nodes are placed uniformly

at random in a two dimensional plane and the links are formed with a higher probability between nodes

that are closer to one another. The probability that a node i establishes a link to node j is described by:

P (i, j) = β exp
−d(i, j)
Lwα

, (3.1)

where d(i, j) is the Euclidean distance between nodes i and j, Lw is the maximum distance between

any two nodes, and α and β are parameters in the range of 0 to 1. Increasing β leads to an overall larger

probability of links between any two nodes, while increasing α leads to a larger ratio of larger links to

shorter links.

Assigning the nodes’ positions in space makes the Waxman model better suited for describing real-

istic optical networks. However, this model still has some drawbacks, specifically, there is no guarantee

that the generated topologies are connected, and that they are resilient to single link failures, both fun-

damental characteristics of optical backbone networks [9]. This type of resilience is defined by the edge

connectivity λ(G). A network being resilient to single link failures means that λ(G) ≥ 2, meaning that

between any pair of nodes there is always an alternative path in case there is a link failure.

Furthermore, the Waxman model brings other problems: connections between distant nodes are

too common (even with smaller values of α and β) and the network’s average node degree tends to

excessive values when the number of nodes grows larger (which leads to networks with too many con-

nections) [9].

3.2 Generating Realistic Optical Backbone Networks

To tackle these issues inherent to the Waxman model, a generative model with the specific goal of

obtaining networks with topologies similar to real-world optical backbone networks was implemented.
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This model is described in [9], but the implementation made in this dissertation project has some slight

modifications (detailed in Section 3.2.1). This model, as the Waxman model, is also a geometric model

where the nodes are randomly placed in a 2D plane and the Waxman connection probability, described

by Eq. (3.1), is also used. The way the nodes are placed in the plane and the rules for establishing the

connections between nodes are key differences between this model and the regular Waxman model.

In [9], an analysis of real-world optical backbone networks is made, where their most relevant char-

acteristics are identified. It was observed that nodes are distributed based on the expected traffic in

each geographic region (referring to any specified geographic area, which could be a city or a country),

with some regions having more nodes than others and some having a single node or no nodes at all. In

cases where a node is unique in a region, it tends to be connected to at least two nodes in neighbor re-

gions, thus forming a cycle (which are important, as they provide survivability, giving each pair of nodes

two disjoint interconnecting paths). In the case of two nodes in a region, a link usually exists between

the two nodes and each of them is directly connected to at least another node in a neighbor region.

Besides these general topology characteristics, a few other variables that characterize optical backbone

networks were studied. The most relevant conclusions relative to these parameters were: when it comes

to node degree, optical backbone networks tend to follow a Poisson distribution; the minimum node de-

gree is 2 (a necessary, although not sufficient, condition for survivability) and all networks have at least

two link-disjoint paths between each pair of nodes, λ ≥ 2 (which indicates that the network is resilient to

single link failures).

3.2.1 Description of the Implemented Model

The model implemented in this thesis was built on a software tool named random network, which was

developed by the author, making extensive use of the Python library NetworkX. The networks are created

as NetworkX graph objects, which allows for a simpler manipulation of the networks (easily adding

edges and giving them weights) as well as determining relevant network parameters (like the average

node degree) and visualizing the graphs directly with the default NetworkX functions. At the end of the

execution of random network the generated networks are saved as NetworkX graphs into a single file.

This model has the following inputs: the number of nodes, N ; minimum and maximum average node

degrees (⟨δmin⟩ and ⟨δmax⟩); the area of the plane A, through the specification of the side length L (the

plane is a square, so A = L2); the number of regions, R; the minimum distance between nodes, d; the

α and β parameters of the Waxman link probability (in Eq. (3.1)); and the number of simulations (φ).

The model has the following general functioning: (1) dividing the plane into R regions; (2) placing

a random number of nodes inside each region; (3) adding links between nodes inside each region;

(4) adding links between nodes of different regions; (5) adding links with Waxman probability until ⟨δmin⟩

is reached; and (6) adding links with Waxman probability until ⟨δmax⟩ is reached, saving new networks
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as the links are added. Every time a link is made a weight is assigned to it, corresponding to the distance

between the nodes in the plane. Figure 3.2 is the flow diagram from [9] that describes this model.

Figure 3.2: Flow diagram of the generative model. (From [9])

After step 4, the network (defined as a graph G) should have a connected topology that is survivable

to single link failures. For that reason, the connections established between the nodes, either nodes

inside the same region or nodes of different regions, needs to be done according to specific rules.

When connecting nodes inside a given region (step 3), if a region has two nodes, they are directly

connected; if there are three nodes or more, they are connected as a cycle according to their relative

angular positions with respect to the centroid of their locations. The nodes are sorted based on the

angles they make with the centroid, and each node is then connected to its next and previous node in

this sorted list, forming a cycle.

The implementation of this type of connection is a key difference as to what was described in [9].

In [9] when there are three nodes in a region, these nodes are connected in a cycle, but for regions with

more than three nodes, the connections are made following the Waxman link probability. The application

of the Waxman probability in the intra-region connections in these situations tends to lead, however, to

the establishment of more connections than necessary (given the random nature of these connections

and the fact that enough connections need to be added until the minimum node degree of 2 is reached),

making it so that the specified ⟨δmin⟩ was often exceeded by a significant margin before the additional

links were added in step 5. Furthermore, the topologies tended to have a less realistic appearance

as these connections gave the intra-region connections a more random topology (where, for example,

distant nodes in the region had links while closer ones did not).

Connecting the regions with 3 nodes or more based on their relative positions to the centroid of their
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locations proved to be a better solution, that guarantees the minimum node degree of 2 to all nodes

while also providing a good structure over which more connections can be added.

After having all the nodes inside the regions connected, the inter-region connections are made (step

4). In [9] these connections are established according to the Waxman link probability between links of

different regions. However, this type of solution had the tendency of establishing links between very

distant nodes (even after adjusting the α and β parameters) resulting in unrealistic topologies. Instead,

in the algorithm implemented by the author, the inter-region connections are established by creating

an auxiliary graph G2 where each node represents a region in the original graph G, and the weight of

an edge between two nodes is the distance between the corresponding regions. A Minimum Spanning

Tree (MST) algorithm is applied to G2 to connect all the nodes (regions) with the minimum total edge

weight. An MST is a subset of the edges of a graph that connects all the nodes together, without any

cycles and with the minimum possible total edge weight. Using an MST in this context ensures that

all regions are connected while minimizing the total distance between them, ensuring that the closest

regions are the ones where the connections are established.

The edges of the MST are then used to connect the regions in G, with each edge in the MST corre-

sponding to two links between each of the considered regions in G. For each pair of regions connected

by an edge in the MST, the closest pair of nodes, one from each region, are connected. If a region has

more than one node, a different node from the region is used for the second link. This ensures that there

are at least two link-disjoint paths between any two regions, enhancing the resilience of the network.

After this point, all the nodes have a minimum degree of 2 and the topology is connected. Also, the

network does not have any bridge (or cut-edge), that is, edges whose removal would disconnect the

graph, making the topology resilient against single link failures, with λ ≥ 2, as intended. Note that this

strategy also tends to generate networks with at least two node-disjoint paths (resilient to single node

failures) very frequently, but this is not guaranteed, as regions with just one node exist and this node

can be critical in the paths between other neighbor regions. While this type of resilience is an advantage

for optical backbone networks, resilience to node failures is not a characteristic that all real-world optical

backbone networks have (as was concluded in [9]) and so this requirement was not considered as

essential in this implementation.

In the next steps, all the links added to the network are established between any pair of nodes in the

network according to the Waxman probability. In a first phase this is done until the ⟨δmin⟩ is reached

(step 5) and then until ⟨δmax⟩ (step 6). In step 6, as new links are added between ⟨δmin⟩ and ⟨δmax⟩,

multiple network topologies are saved. This allows for the obtainment of several network topologies

with the same node distribution, but with different average nodal degrees. In [9] it is proposed that

the saving of a new network occurs for every new link that is added. However, to guarantee that the

datasets obtained are comprised of a more varied set of networks, the saving of a new network in the
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implemented model is done based on the variation of the average node degree instead. To do that a

parameter, ∆δ, can be defined. This parameter makes the saving of a new network occur only after the

average node degree changes by at least that value, assuring that the difference between each saved

topology can be adjusted according to what is needed.

3.2.2 Results of the Implemented Model

Figure 3.3 shows some examples of networks generated with random network. The networks in Fig. 3.3(c)

and Fig. 3.3(d) were generated from the same node distribution.

(a) N = 6, ⟨δ⟩ = 2.67 (b) N = 17, ⟨δ⟩ = 2.94

(c) N = 23, ⟨δ⟩ = 2.52 (d) N = 23, ⟨δ⟩ = 3.57

Figure 3.3: Examples of networks obtained with random network.

The examples in Fig. 3.3 make it evident that the generated networks have connected topologies

with an edge connectivity of at least 2 (resilient to single link failures) and that the connections are more

prevalent among nodes that are closer together. The existence of separate regions can also be noticed,

particularly in Fig. 3.3(a) and Fig. 3.3(b). For example, in Fig. 3.3(b) two regions can be seen: one on

the bottom left (with nodes 0 through 8), and other on the top right (with nodes 9 through 16).
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To ensure that the generated networks are similar to real optical backbone networks, it is important

to compare certain statistics. In [9] it was concluded that the node degree of such networks follows a

Poisson distribution. The following expression is the probability mass function of the Poisson distribution:

p(k) =
µk

k!
e−µ,with k = 1, 2, ... , (3.2)

where k is the number of events and µ is the average number of events. Saying that the the node degree

of a network follows a Poisson distribution means that µ is the average node degree (µ = ⟨δ⟩) and that

Eq. (3.2) describes the probability of a given node having exactly k link connections.

The node degree distribution of 6 random networks obtained with random network (with a varying

number of nodes and average node degree) was determined and the results are depicted in Fig. 3.4.

(a) N = 25 , ⟨δ⟩ = 3.2 (b) N = 40 , ⟨δ⟩ = 5 (c) N = 50 , ⟨δ⟩ = 6.52

(d) N = 75 , ⟨δ⟩ = 5.01 (e) N = 100 , ⟨δ⟩ = 3.42 (f) N = 100 , ⟨δ⟩ = 6

Figure 3.4: Node degree distribution for 6 random networks compared with the Poisson distribution with µ = ⟨δ⟩.

Figure 3.4 shows that the generated networks tend to follow a Poisson distribution, especially when

the average node degree is higher. It can also be seen that the minimum node degree is 2 in all cases,

which is an intended characteristic, as it is a necessary condition to guarantee networks with topologies

survivable to single link failures.

In [9], a similar analysis was made for the USA 100 network, which is a real-world network with

N = 100 and ⟨δ⟩ = 3.42. The obtained plot for that network is very similar to the one in Fig. 3.4(e), which

has the same number of nodes and average node degree (despite the topology being different). This

similarity further confirms the correct node degree distribution of the generated networks.
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When it comes to link length, optical backbone networks tend follow the Waxman link probability

with α = β = 0.4 [9]. Figure 3.5 has the plots for the link length distribution of 6 networks, generated

considering these Waxman parameters and a varying number of nodes and node degree.

(a) N = 40 , ⟨δ⟩ = 5 (b) N = 75 , ⟨δ⟩ = 10 (c) N = 100 , ⟨δ⟩ = 10

(d) N = 50 , ⟨δ⟩ = 5 (e) N = 100 , ⟨δ⟩ = 6.5 (f) N = 200 , ⟨δ⟩ = 6.5

Figure 3.5: Link Length distribution for 6 random networks and the Waxman probability with α = β = 0.4.

From Fig. 3.5, it can be seen that the link length tends to follow the Waxman probability distribution,

with shorter link lengths being more common than longer ones in all cases.

3.3 Chapter Conclusions

This chapter introduced the concept of random networks and presented two generative models: Erdós-

Rényi and Waxman. Despite the Waxman model’s potential for creating networks akin to optical back-

bone networks (given that it is a geometric model), its lack of guaranteed minimum edge connectivity of

2 and connected topologies limit its suitability, given these are key features of such networks.

The model developed by the author of this work (based on [9]), which makes use of the Waxman

link probability, was designed to ensure these features. It was concluded that the characteristics of the

generated networks have a close resemblance to real-world optical backbone networks, both in terms

of node degree distribution, link length distribution, as well as the resilience to single link failures.
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Chapter 4

Routing, Wavelength Assignment and

Fiber Assignment

In this chapter, the implementation of the routing algorithms is detailed and the results of their application

to reference networks and artificially generated networks are presented. Two routing algorithms are

presented: a constrained routing algorithm, where the limitation in the number of optical channels per

fiber in DWDM transmission is considered and there is the possibility of traffic demands being blocked;

and an unconstrained routing algorithm with fiber assignment, where the limitation in the number of

optical channels per fiber is overcome through the addition of optical fibers to the network’s links, which

corresponds to an SDM solution.

4.1 Constrained Routing

As defined in Section 2.1.3, routing is the process of determining the path (πs,d) in the physical topology

of a network for each traffic demand (ts,d) between the respective source node (s) and destination node

(d). As there are various possible paths between the various nodes, the objective is to find the shortest

path, that is, the path that minimizes the total path length l(πs,d). This can be achieved using an heuristic

algorithm such as Dijkstra’s algorithm.

In the case of constrained routing, this process also needs to account for the links’ capacity, that is,

the limitation on the number of optical channels that can traverse a given link at the same time, assuming

DWDM transmission. Considering that each link only has a single optical fiber per communication

direction, the link capacity is based on the transmission bandwidth and the channel spacing, as explained

in Section 2.2.1. The goal of the constrained routing algorithm is to maximize the number of allocated

traffic demands (minimizing the blocking ratio) given the restricted link capacity.
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During the routing process, each path πs,d is physically established with an optical channel and so,

it is also during this process that the wavelength for each optical channel is attributed. This is called

wavelength assignment. For that reason, the implemented routing algorithm is an heuristic algorithm

used to solve the RWA problem, with the main objective being, for each optical channel k (corresponding

to each traffic demand), the definition of a given path πk and wavelength λk.

The process of wavelength assignment was done according to the first-fit strategy [36], being subject

to the following constraints: (a) wavelength continuity, meaning that all the links in the path of an optical

channel must use the same wavelength (and therefore each optical channel is associated to a single

wavelength); and (b) each link must carry unique wavelengths, that is, if multiple optical channels pass

through the same link, they must each have a different wavelength to avoid interference.

Besides the RWA solution, through which the network capacity and average channel capacity are

determined (the labels of the DNN model), the implemented algorithm is also used to determine the

set of network parameters used as the DNN’s inputs. Therefore, this algorithm also outputs various

parameters related to a network’s physical topology.

4.1.1 Inputs and Outputs of the Program

The program developed to implement the constrained routing algorithm was named routing nx. This

program takes the following inputs: a gpickle file containing a list of NetworkX Graphs [7] (which is a

serialized byte stream of the Graph objects that preserves the graph’s node positions and link lengths),

the value of the maximum number of optical channels per link (link capacity), and the sorting strategy

used to define the order the traffic demands will be routed (shortest-first, longest-first or largest-first).

Optionally, the user can input a traffic matrix T = [ts,d]. If it is not specified, a matrix for a full-mesh

logical topology with one unit of traffic is assumed by default. This traffic matrix can be defined as:

ts,d =

{
1, if s ̸= d

0, if s = d.
(4.1)

Note that the input gpickle file is the same type of file output by the program random network (in

Section 3.2.1), as the idea is to load the randomly generated networks directly into routing nx. However,

this file does not necessarily need to be originated from random network. As long as the correct format

is input, this program accepts any gpickle file with a list of NetworkX graphs, including lists with a single

graph. This flexibility allows the use of routing nx on a variety of networks, including reference networks.

Note also that the ability of defining the link capacity allows for the specification of different transmis-

sion scenarios (with different WDM bandwidths and channel spacings). By setting the link capacity to a

very high value (e.g. 99999), this program can be used to solve unconstrained routing problems.

At the end of its execution, routing nx outputs a .npy file that contains a 2D numpy array (matrix) with
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the determined data. This output array can then be directly loaded into the code that implements the

DNN algorithm’s training (see Chapter 5). Each of the output matrix’s rows has the data relative to an

analyzed network (each row is an example from the perspective of the DNN training) and each column

has a different network parameter (feature), except the last two columns which contain the total network

capacity and the average channel capacity (the labels in the first DNN model). When training the DNN,

the labels should be considered in a separate vector, but for saving purposes, all this data is considered

as a single matrix.

This program is capable of determining a total of 23 network parameters, although only 12 parame-

ters are saved to be used in the DNN. The parameters which are saved are: number of nodes, number

of links, minimum, maximum and average link length, variance of link length, minimum, maximum and

average node degree, variance of node degree, network diameter, and algebraic connectivity. Since

there is a total of 12 parameters saved, together with the labels, each row of the output matrix has 14

elements. The output matrix’s dimensions are then (Nnets × 14), where Nnets is the number of networks

analyzed. The remaining parameters were not included in the DNN’s inputs as the goal is to have a

DNN model which is able to make predictions based solely on the network’s physical characteristics and

these remaining parameters require the routing solution to be determined. These are: average number

of hops per demand, number of paths, minimum, maximum and average path length, average number

of hops per path, minimum, maximum and average link load, number of blocked traffic demands, and

blocking probability.

Besides these parameters routing nx also outputs: the load in each link; the wavelengths of the

optical channels present in each link; the paths chosen for each traffic demand, πk, and their lengths,

l(πk); the wavelengths associated to each traffic demand, λk; and a list of the blocked traffic demands

and the amount of blocked traffic.

4.1.2 General Functioning of the Program

The general workings of routing nx, defined by its main function, can be explained by Algorithm 1. Here,

after the parsing of the command-line arguments (used as described in Appendix A.1) and the loading

of the file with the list of NetworkX graphs, the main loop is started. In this loop one network is analyzed

at a time (each network being a NetworkX graph, G, which is a weighted graph with the link lengths,

as described in Section 2.1.1) and the network’s parameters and routing solution are determined. The

results are appended to a matrix, dnn data, which after all the iterations of the main loop will have the

shape Nnets × 14. The results can also be printed in the terminal, as shown in Appendix A.2.

The main steps of routing nx, as described in Algorithm 1, are: (a) the determination of the shortest-

paths between all pairs of nodes (Line 8); (b) the ordering of the traffic demands according to a specified

sorting strategy (Line 10); (c) the routing of the traffic demands following the specified order, including
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the determination of the paths πk and the wavelengths λk (Line 11); and (d) the calculation of the

average channel capacity and total network capacity (Line 13) according to Eq. (2.4) and Eq. (2.7),

with the capacity of each optical channel being determined through the optical reach, as explained in

Section 2.2.2.

Algorithm 1: Main Function (General functioning of routing nx)
Input: A .gpickle file with a list of NetworkX Graphs, the sorting strategy, sorting order, and the maxi-
mum link load, MAX LINK CAP.
Output: A file with a 2D numpy array with the determined parameters, dnn data.npy.

1: Parse the input-line arguments
2: Load the data from the file
3: for each network G in loaded networks do
4: if G is not connected OR number of nodes is less than 3 then
5: Skip to the next iteration of the loop
6: if traffic matrix not defined OR traffic matrix has wrong dimensions then
7: Create a traffic matrix for a logical full-mesh topology
8: Call function to determine shortest-paths between all pairs of nodes (See Alg. 4 in App. A.3.1)
9: Calculate the parameters related to physical and logical topology and the hop matrix

10: Call orderPaths to sort the traffic demands according to sorting order (See Alg. 5 in App. A.3.2)
11: Call function to route the traffic and assign wavelengths (See Algorithm 2)
12: Calculate the network parameters based on the routing solution
13: Determine the average channel capacity and total network capacity
14: if PRINT MODE is True then
15: Print the results in the terminal (Example in Appendix A.2)
16: else
17: Append all the determined parameters to dnn data
18: if PRINT MODE is False AND dnn data is not empty then
19: Convert dnn data to a 2D numpy array and assign it to dnn data np
20: Call function to save dnn data np as a .npy file

The function for finding the shortest paths between each pair of nodes (Alg. 4) is described in

Appendix A.3.1. This process makes use of the NetworkX function all shortest paths, a function that

implements Dijkstra’s shortest-paths algorithm in an efficient way, having the advantage of returning all

shortest paths if multiple paths of the same length exist between a pair of nodes, which is a desired

characteristic for this algorithm, as these multiple paths are accounted for in the routing.

After having the list of the shortest paths, the traffic demands are ordered according to the specified

sorting order, as described in Section 2.1.3, with the shortest-first and longest-first strategies being

based on path length. The algorithm that explains this process (Alg. 5) is presented in Appendix A.3.2.

The output of this process will be a list with the ordered traffic demands, each traffic demand being

represented by a dictionary that contains the keys: (a) ’source’: the source node; (b) ’destination’: the

target node; (c) ’distance’: the total length of the path; (d) ’path’: a list of all shortest paths between the

source and target node; (e) ’traffic’: the traffic between the source and target nodes, as given by the

traffic matrix; (f) ’hops’: the number of hops between the source and target nodes; and (g) ’routed’: a

boolean value indicating whether the traffic demand has been routed (set to False in this function).
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4.1.3 Routing and Wavelength Assignment Process

The function route is used to determine the routing solution. This function takes as input the list of

ordered traffic demands and a copy of G (the current graph being analyzed), Gcopy, to which changes

can be made in case of link saturation (removing links). The route function is detailed in Algorithm 2:

Algorithm 2: Route Function (Routing and Wavelength Assignment)
Input: The list of ordered traffic demands, ordered traffic demands, and a copy of G (the current net-
work’s graph), named Gcopy.
Output: Matrices and variables that define the RWA solution: load matrix, path matrix, distance matrix,
blocked traffic, blocked paths, path wavelength matrix, and link wavelength matrix.

1: Initialize matrices and variables
2: new paths flag ← False ▷ Is set to True when network is updated
3: for each p in ordered traffic demands do ▷ Each p is the dictionary output in orderPaths. Key ’path’

has a list of all possible paths. If more than one is present, a tie occurs.
4: if p is already routed then
5: Continue to next path
6: if new paths flag is True then
7: p← new shortest path ▷ If at any point the network is ever updated, the possible paths are

now considered from the new shortest-paths
8: if p has no available paths to destination (is blocked) then
9: Update blocked traffic and blocked paths

10: Continue to next traffic demand
11: if there is only a possible path then
12: chosen path← that path’s index in p[’path’] list
13: else
14: chosen path← breakTie (see Algorithm 6)
15: Call assign wavelengths and then route path (See Algorithms 7 and 8)
16: if there are no available wavelengths OR blocked flag is TRUE then
17: Update blocked traffic and blocked paths
18: Continue to next traffic demand
19: for each path p2 in ordered traffic demands with p2[’source’] = p[’destination’] AND

p2[’destination’] = p[’source’] AND p aux[’traffic’] = p2[’traffic’] do
20: Choose the same path index as p ▷ Ensure connection d-s is done the same as s-d
21: Call assign wavelengths and then route path (See Algorithms 7 and 8)
22: if network needs to be updated then ▷ Set in route path when a link reaches residual capacity 0
23: new shortest paths ← Call update network (see Algorithm 9)
24: new paths flag ← True
25: return load matrix, path matrix, distance matrix, blocked traffic, blocked paths,

path wavelength matrix, link wavelength matrix

The route function has seven outputs: load matrix, path matrix, distance matrix, blocked traffic,

blocked paths, path wavelength matrix, and link wavelength matrix. These outputs structures represent

the RWA solution: (a) the load matrix is a matrix of size N ×N (N being the number of nodes) that con-

tains, in position (i, j), the total load in the link between nodes i and j (as defined in Section 2.1.2); (b) the

path matrix (N × N ) which has, in position (i, j), the path chosen to route the traffic demand between

node i and node j (represented as a sequence of nodes); (c) the distance matrix (N ×N ) that contains,
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in position (i, j), the length of that given path between nodes i and j (this length will not necessarily be the

same as the original shortest-path distance used to sort the traffic demands, since, in the case of con-

strained routing, the chosen path may not be the original shortest path); (d) the variable blocked traffic

that represents the amount of blocked traffic demands; (e) the list blocked paths that contains the paths

corresponding to the traffic demands which were blocked; (f) the matrix path wavelength matrix (N×N )

that has, in position (i, j), the wavelength attributed to the optical channel between nodes i and j; and

(g) the matrix link wavelength matrix that has, in position (i, j), a list of all the wavelengths present in

the link between nodes i and j.

The routing process, as explained in Algorithm 2, consists of a main loop which iterates over each

traffic demand in the ordered list of traffic demands. When there are multiple shortest paths with the

same length for a given traffic demand, the first step in the routing process is the decision of the path

to route the traffic through. This choice is done in the breakTie function (described in Appendix A.3.3).

This function returns the chosen path based on the principle of minimizing the load in the most loaded

link, considering all the possible shortest paths.

After having chosen a path, the next process is the wavelength assignment, in the function as-

sign wavelengths (described in Appendix A.3.4). This function implements the first-fit wavelength as-

signment strategy [36], subject to the constraints described in Section 4.1 (wavelength continuity and

the impossibility of equal wavelengths existing on the same link). In this process, the wavelengths being

assigned are simply represented as integers starting in 1 and up to the maximum number of optical

channels per fiber. After the execution of this function, if the process was successful (able to assign

a wavelength to the optical channel, given the aforementioned constraints) this function returns the

boolean value True to the route function and the path wavelength matrix and link wavelength matrix

are updated accordingly. If it was not possible to find a wavelength that satisfies the necessary require-

ments, the boolean value False is returned to the route function, indicating that traffic demand needs to

be blocked (due to wavelength unavailability).

If the wavelength assignment process was successful, then the load matrix and path matrix need to

be updated accordingly. This is done in the route path function (described in Appendix A.3.5). Besides

updating these matrices, this function also verifies if any of the links has reached residual capacity

zero. If that is the case, a flag variable update net flag is set to True to indicate that the network needs

updating, and the saturated links are added to a list of links to be removed.

At the end of the main loop of the route function, in case the update net flag is set to True, the

update network function (described in Appendix A.3.6) is called. This function updates the auxiliary

graph Gcopy, by removing the congested links, and then it recalculates the shortest paths through the

same method as used before. From this point on, and every time the network is updated and new

shortest paths calculated, the routing of the remaining traffic demands considers only the new set of
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paths. This type of behavior allows for the routing algorithm to explore all the possible paths between

any pair of nodes. So, as the links in the network start getting saturated and the original paths start

becoming unavailable, new alternative paths are found until no more alternative paths exist.

Note also that, by design, the routing of “symmetric” traffic demands is done contiguously and through

the corresponding reverse path whenever the input traffic matrix is symmetric. That means that the

demand from node j to node i is routed immediately after the demand from node i to node j, and that if

the path from i to j was [i, a, b, j], the path from j to i will be [j, b, a, i].

In Appendix A.4, a simplified example of the application of the constrained routing algorithm to a

small test network is presented, with the objective of illustrating the process of defining a path πk in a

constrained routing scenario.

4.2 Unconstrained Routing with Fiber Assignment

In the constrained routing scenario, described in Section 4.1, there was a possibility of traffic demands

being blocked due to the limited number of optical channels per link and the restrictions in the process of

wavelength assignment. In networks with a large amount of traffic (in full-mesh logical topologies being

the ones with more nodes) this approach can lead to a large number of blocked traffic demands.

Optical backbone networks are typically designed to avoid the blocking of traffic demands. This can

be achieved, for example, through the use of SDM, that is to say, through the deployment of additional

optical fibers to the network’s links. The addition of enough fibers to the network allows for the reduction

and eventual elimination of the blocking, as each fiber added to a link increases that link’s capacity.

The process of determining which links should receive additional fibers, and how many fibers to add,

is referred to as fiber assignment. The determination of a fiber assignment solution that results in a

minimization (or elimination) of the blocking while also minimizing the amount of deployed fiber can be,

however, a complex procedure that requires long computation times [37].

For that reason, the fiber assignment solution proposed in this work has the goal of completely

eliminating the traffic demand blockages while also prioritizing reduced computation times, even if it

means somewhat sacrificing the efficiency of fiber placement. The necessity for low computation times

is critical, as the goal of this routing algorithm is to determine routing solutions for thousands of networks,

with the determined results being subsequently used to train a DNN model. This second DNN model

has the objective of predicting the unconstrained network capacity (as given by Eq. (2.7) where Nblocked

is zero) and the total cost in kilometers of deployed fiber.

As the goal is to completely avoid the blocking of traffic demands, a strategy of adding fibers to

the links “as needed” was followed. That is, every time a given link cannot accommodate a given

traffic demand, an additional fiber is activated. To achieve this strategy, the routing can be done in an

unconstrained manner, letting the traffic demands follow their originally determined shortest paths and
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not imposing a limit on the number of optical channels per link. After the routing, knowing the maximum

number of optical channels than can exist in a fiber (as defined for the link capacity) and the wavelengths

in each link, the number of optical fibers that need to be added to each link is then determined.

This strategy led to the development of an alternative version of the program routing nx which was

named routing nx no blocking. This new version of the program is identical in almost all aspects to

the previous version (being also generally described by the same algorithms explained in Section 4.1)

with the only differences being that now there is no limit to the number of optical channels per link

(MAX LINK CAP is set to 99999), and after the route function (Line 11 in Algorithm 1) the number of

fibers per link is determined, as well as the cost in kilometers of fiber.

Since there is no blocking of traffic demands when using this approach, the blocking related out-

puts (blocked traffic and blocked paths) are no longer present. Instead there are now new outputs:

(a) fiber link matrix, a matrix of size N ×N , where the element in position (i, j) has the number of fibers

used in the link between nodes i and j; and (b) total cost, the total number of kilometers of fiber in the

network. This last output is given by:

Λnet =
∑
i,j

li,j × nfi,j , (4.2)

where li,j is the length of the link between the nodes i and j (in km), and nfi,j is the number of optical

fibers in the link between nodes i and j, as represented in the respective position of the fiber link matrix.

Other parameters such as the minimum, maximum and average number of fibers per link, as well as

the average cost per link (in km of fiber) can also be determined using this program.

The function used to determine the number of optical fibers in each link, which is used after the pro-

cess of unconstrained routing (route function), is called assign fibers, and it is described by Algorithm 3.

Algorithm 3: Fiber Assignment
Input: the maximum number of wavelengths per fiber (max wavelengths), the matrix with a list of the
wavelengths in each link (link wavelength matrix), and the NetworkX graph, G.
Output: a 2D numpy array that represents the number of fibers in each link fiber link matrix.

1: Initialize empty numpy array fiber link matrix.
2: for i in lines of link wavelength matrix do
3: for j in columns of link wavelength matrix do ▷ Iterate over the link wavelength matrix.
4: if G has an edge i, j then
5: if there are no wavelengths in link wavelength matrix[i][j] then
6: fiber link matrix[i][j] ← 1 ▷ Even with no traffic, there is a link with one fiber
7: else
8: normalized wavelengths ← link wavelength matrix[i][j] mapped in the range 1 to

max wavelengths
9: num fibers ← maximum number of wavelength repetitions in normalized wavelengths

10: fiber link matrix[i][j] ← num fibers
11: else ▷ Case there is no edge i,j
12: fiber link matrix[i][j] ← 0

return fiber link matrix
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The inputs of this function are: the maximum number of wavelengths per fiber (max wavelengths),

the link wavelength matrix (output of the route function), and the NetworkX graph, G. It outputs the

fiber link matrix. Note that in this matrix the number of fibers is presented by direction, that is, the

number of fibers in the link from i to j separately from the number of fibers in the link from j to i (each

in the respective positions of the matrix). Given the way the routing is done, this matrix (as well as the

link wavelength matrix) is symmetric when the traffic matrix is symmetric.

In the assign fibers function, each link is analyzed individually in a loop. The number of fibers is then

determined based on the list of wavelengths associated to that link. If the link does not exist (determined

through the graph G), the number of fibers is set to zero; if the link exists but there are no wavelengths

(meaning there is no traffic in that link), the number of fibers is set to one (despite there not being any

traffic, the link still physically exists in the network, so a fiber needs to be assigned); if a link exists and

has traffic (the list of wavelengths is not empty), then the number of fibers is determined in lines 8 to 10

of Algorithm 3. In this part of the algorithm two steps are made: the normalization of the wavelengths

of that link, and then the counting of the number of repeated wavelengths and finding of the maximum,

which will determine the number of fibers needed for that link.

When the routing is made in an unconstrained manner, the number of wavelengths in a link will not

have a limit. There is not, however, an unlimited number of wavelengths to assign to the traffic demands;

that limit is defined by max wavelengths, which corresponds to the maximum number of optical channels

in an optical fiber. That means that the list of wavelengths in a link, which is a list of integers without

repetitions ranging from 1 to +∞ (resulting from the first-fit strategy done in the route function, and being

represented in the respective position of the link wavelength matrix), has in fact repeated wavelengths,

which exist in the same link, but in different fibers (as two same wavelength signals cannot exist in the

same fiber).

So, for example, if the list of wavelengths in a given link is [1,2,3,51,52,101] and max wavelengths

is 50, then the wavelengths 1, 51 and 101 are in fact the same wavelength, but in different fibers. The

same is true for wavelengths 2 and 52. In the normalization step, the wavelengths are all mapped to a

value between 1 and max wavelengths. This is achieved through the modulo operation (the remainder

of a division) between that wavelength’s number and max wavelengths. So in this example the normal-

ized wavelengths list would be [1,2,3,1,2,1]. Next, the maximum number of repetitions of wavelengths is

determined based on the normalized wavelengths list. In this case, wavelength 1 occurs 3 times, wave-

length 2 occurs twice, and wavelength 3 only once. The maximum number of repeated wavelengths is

thus 3, and so the number of fibers assigned to that link will be 3, as that is the number of fibers needed

to accommodate all the wavelengths. If the list of wavelengths in a link is instead [1,52,103], a single

fiber would be sufficient (the normalized wavelengths list would be [1,2,3] and so the maximum number

of repeated wavelengths would be 1).

43



This strategy guarantees that each “repeated” wavelength has its own fiber, ensuring that there are

enough fibers to accommodate all the wavelengths, meaning that there are no optical channels with the

same wavelength on the same fiber.

As previously mentioned, this strategy does not guarantee that the number of fibers is minimized

when considering a network in its entirety. This is because, in certain situations, simply adding a fiber to

a specific link can resolve blockages that occur in other links, as the traffic that would have been blocked

in those links can be re-routed to the new alternative path, thus avoiding the addition of unnecessary

fibers. However, an algorithm that exploits this type of solution could not be applied in the context of this

work due to the high computational complexity inherent to this type of solution.

Nevertheless, in an attempt to improve the efficiency of the fiber assignment process and better

optimize the addition of fibers, an alternative fiber assignment solution was also developed. This strategy

does not consider the possibility of re-routing, as an ideal strategy would, but it tries to offer a middle-

ground solution in terms of efficiency.

In this alternative strategy, the fiber assignment is made together with the wavelength assignment

during the routing process (and not afterwards, as in the previous strategy). This results in a different ap-

proach, where instead of counting the number of fibers that need to be attributed given the wavelengths

present in each link, the fibers are added during the routing and the wavelengths are attributed so as to

minimize the addition of new fibers. The description of this solution is made in Appendix A.5.

While this method was shown to improve on the results of Algorithm 3, reducing the number of fibers

introduced, the computation times ended up being very high, taking, for example, almost 28 hours to

compute the routing solution in a single randomly generated network with 60 nodes considering a full-

mesh logical topology. Computation times such as this make this solution inviable in the context of this

thesis. For that reason, the method in Algorithm 3 was chosen as the one to use, as it ends up providing

the best balance between efficiency in number of fibers added and fast computation.

4.3 Application of the Routing Algorithms

This section presents the results derived from the application of the routing algorithms previously de-

scribed to both reference networks and randomly generated networks. The aim of this analysis is to

understand the outputs of the RWA solution in different scenarios, establishing also a relationship be-

tween the different network’s parameters and its capacity.

4.3.1 Routing on Reference Networks

In this subsection, the constrained routing algorithm is applied to several reference networks: the

DTAG/T-Systems National Core, the COST239, the UBN, the NSFNET and CESNET. The primary ob-
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jective of this analysis is to present the network parameters for each of these reference networks and

understand the impact of the link capacity limitations on the blocking of traffic demands. Additionally, this

analysis seeks to comprehend how different sorting strategies - shortest-first, longest-first, and largest-

first - influence the routing solution. The topological representations of these networks can be found in

Appendix B.1.

The parameters related to the physical topology of the reference networks, the same parameters

considered as inputs to the DNN models, are presented in Table 4.1. These parameters are determined

through routing nx and are independent of the applied routing strategy.

Table 4.1: Physical Topology Parameters for Five Reference Networks

DTAG COST239 UBN NSFNET CESNET
Number of

Nodes
14 11 24 14 7

Number of
Links

23 26 43 21 9

Min. Link
Length (km)

80 171 250 246 173.75

Max. Link
Length (km)

480 953 2600 2828 425.25

Avg. Link
Length (km)

236.52 462.62 993.23 1080.62 296.84

Var. of Link
Length (km2)

13622.68 42522.39 133074.69 485574.9 5980.67

Minimum
Node Degree

2 4 2 2 2

Maximum
Node Degree

6 6 5 4 3

Average
Node Degree

3.29 4.72 3.58 3 2.57

Variance of
Node Degree

1.204 0.3801 0.909 0.2857 0.24

Network
Diameter

6 4 8 5 4

Algebraic
Connectivity

88.6 943.1 290.47 732.66 268.85

Table 4.1 provides a detailed comparison of the characteristics of each network, highlighting the

diverse features inherent to these networks. A common feature across all networks is the minimum

node degree of at least 2, which is consistent with the conclusions of [9], underscoring the robustness

of these networks. Note that the units km2 in the link length variance stem from Eq. (2.3).

In order to examine the impact of the link capacity and the influence of various sorting orders on

the routing solutions, constrained routing was applied to three reference networks: CESNET, NSFNET,

and UBN. These networks were chosen so as to represent differently sized networks. In these tests

the routing was done considering a full-mesh logical topology (described by Eq. (4.1)). The sorting
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strategies shortest-first and longest-first (described in Section 2.1.3) are done according to path length.

The largest-first strategy is done according to the traffic value (defined in the traffic matrix), but since

in this case the traffic matrix’s values are all unitary (Eq. (4.1)), this sorting order ends up following the

node numbering (routing first the demands to and from node 1, then to and from node 2, etc.). The

link capacities were set to 75 (corresponding to 64 Gbaud transmission in the C-band, as explained in

Section 2.2.1), and to a stricter limit (depending on the network) meant to purposefully cause blocking.

The results for the routing analysis on the CESNET, NSFNET and UBN are presented in Table 4.2 to

Table 4.4. Note that the blocking probability presented in the tables is determined as the division of

the number of blocked traffic demands by N(N − 1). The ‘Sho’, ‘Lon’ and ‘Lar’ columns refer to the

shortest-first, longest-first and largest-first sorting strategies, respectively.

Table 4.2: Capacitated Routing results on the CESNET

CESNET Link Capacity = 75 Link Capacity = 3
Sho Lon Lar Sho Lon Lar

Blocked Traffic Demands 0 0 0 12 18 16
Blocking Probability 0 0 0 0.286 0.429 0.38

Min. Path Length (km) 173.75 173.75 173.75 173.75 173.75 173.75
Max. Path Length (km) 1043.66 1043.66 1043.66 1350.94 1043.66 817.59
Avg. Path Length (km) 525.18 525.18 525.18 451.87 553.19 443.74

Avg. Hops per Path 1.76 1.76 1.76 1.53 1.83 1.46
Avg. Load per Link 4.11 4.11 4.11 2.55 2.44 2.11

Table 4.3: Capacitated Routing results on the NSFNET

NSFNET Link Capacity = 75 Link Capacity = 15
Sho Lon Lar Sho Lon Lar

Blocked Traffic Demands 0 0 0 4 14 6
Blocking Probability 0 0 0 0.021 0.077 0.033

Min. Path Length (km) 246 246 246 246 246 246
Max. Path Length (km) 4444 4444 4444 5973 9508 8801
Avg. Path Length (km) 2268.32 2268.32 2268.32 2358.9 2900.7 2849

Avg. Hops per Path 2.41 2.41 2.41 2.42 2.71 2.55
Avg. Load per Link 10.47 10.47 10.47 10.24 10.86 10.67

Table 4.4: Capacitated Routing results on the UBN

UBN Link Capacity = 75 Link Capacity = 30
Sho Lon Lar Sho Lon Lar

Blocked Traffic Demands 0 0 0 40 68 40
Blocking Probability 0 0 0 0.072 0.123 0.072

Min. Path Length (km) 250 250 250 250 250 250
Max. Path Length (km) 6959 6959 6959 9650 6959 7700
Avg. Path Length (km) 2995.13 2995.13 2995.13 2890.6 3407.3 3187.1

Avg. Hops per Path 3.17 3.17 3.17 3.02 3.51 3.25
Avg. Load per Link 20.35 20.35 20.35 17.98 19.77 19.33
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Several observations can be made from the results above: (1) when considering a link capacity of

75 there is no blocking in any of the networks. This indicates that, for networks of this size (with this

number of nodes) and pattern of traffic, transmission on the C-band and through links with a single fiber

pair (one fiber in each communication direction) is sufficient and there is no need to consider an SDM

solution; (2) when there is no blocking (in the case of link capacity equal to 75), the results are equal

for every sorting strategy (shortest-first, longest-first, and largest-first). This uniformity in results occurs

because, at the end of the process, since every traffic demand is routed, the results end up being the

same, independently of the order used to route them; and (3) when blocking occurs (i.e., when the link

capacity is reduced), the shortest-first strategy consistently performs the best in all three networks. This

suggests that the shortest-first strategy is the most efficient in terms of minimizing blocking when the

network capacity is constrained.

Relative to this routing analysis, bar charts with the number of optical channels in each link (link

loads) were obtained for the three reference networks. These bar charts are presented in Appendix B.2.

4.3.2 Network Capacity According to the Number of Nodes and Symbol Rate

In this subsection, the total network capacity is analyzed according to the network size in number of

nodes. Transmission at 64 Gbaud and 128 Gbaud is compared, as well as the results of the two routing

strategies. Throughout this analysis the routing was done considering a full-mesh logical topology, as

described by Eq. (4.1), with the shortest-first sorting order. The maximum number of optical channels

per fiber was set at 75 for 64 Gbaud transmission, and 37 for 128 Gbaud transmission. These values

result from the fixed bandwidth of 4800 GHz in C-band transmission and by considering a channel

spacing of 64 GHz and 128 GHz for 64 Gbaud and 128 Gbaud transmission, respectively, as explained

in Section 2.2.1. The capacities of the optical channels were determined based on the optical reach

in Table 2.1, using the respective values for 64 Gbaud and 128 Gbaud transmission accordingly. The

results presented in this subsection were published on the article [4].

This analysis was conducted on five sets of networks, each set containing 200 random networks.

These networks were generated using the random network program, detailed in Chapter 3. The net-

works, varying in node count from 20 to 60 in increments of 10, were generated within a plane of 1000

km side length, using Waxman parameters α = β = 0.4, and with an average node degree varying

between 2 and 4.

Constrained Routing Scenario

Figure 4.1 represents the box-plots of the total network capacity according to the number of nodes

determined for a constrained routing scenario. Each box-plot refers to a given set with 200 networks.
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(a) Transmission at 64 GBaud (b) Transmission at 128 GBaud

Figure 4.1: Total Network Capacity (Tb/s) according to the number of nodes.

From Fig. 4.1, it can be inferred that as the number of nodes increases, so does the network capacity,

albeit at a decreasing rate for higher node counts. This trend is in line with the relationship between

the number of nodes and the network capacity as described in Eq. (2.8). The slower growth in network

capacity with an increase in the number of nodes suggests an increase in the blocking of traffic demands.

As illustrated in Fig. 4.2, both the number of blocked traffic demands and the blocking probability

(calculated by dividing the number of blocked traffic demands by N(N − 1)) confirm this trend. The rise

in blocking is due to the fact that networks with a larger number of nodes handle a greater amount of

traffic demands, given the full-mesh logical topology under consideration (described by Eq. (4.1)). As

a result, the conditions that lead to blocking (as detailed in Section 4.1) become more prevalent as the

links become more saturated with traffic demands.

(a) Transmission at 64 GBaud (b) Transmission at 128 GBaud

Figure 4.2: Average number of blocked traffic demands and average blocking probability as a function of the number
of nodes (average across each set).

48



When examining the transmission at 64 Gbaud (Fig. 4.1(a)) and at 128 Gbaud (Fig. 4.1(b)), it’s

evident that a symbol rate of 128 Gbaud allows for a greater total network capacity compared to the

64 Gbaud scenario. When going from 64 Gbaud to 128 Gbaud, the enhancement in network capacity

across all sets of networks is on average 22%. However, the degree of this enhancement tends to

diminish as the number of nodes increases. Comparing the median capacity values across the sets, the

transition from 64 Gbaud to 128 Gbaud transmission results in an approximate improvement of: 34%,

24%, 19%, 17%, and 16%, for the respective sets of graphs, ordered by increasing number of nodes.

The observed reduction in performance improvement can be attributed to an increase in the blocking

probability in the larger networks. For instance, for a network of 60 nodes, the blocking probability

increases from 0.6 to 0.7 when the symbol rate goes from 64 Gbaud to 128 Gbaud, as illustrated in

Fig. 4.2. Nevertheless, the increase in network capacity, along with the decrease in the number of

wavelengths, underscores the significant benefit of using 128 Gbaud over 64 Gbaud.

Unconstrained Routing with Fiber Assignment Scenario

To address the blocking problem, the SDM solution, described in Section 4.2, can be implemented. In

this scenario, since the blocking is eliminated by the addition of fibers, the total length of deployed fiber

becomes a relevant metric.

Figure 4.3 represents the box-plots for the unconstrained network capacity determined in this sce-

nario.

(a) Transmission at 64 GBaud (b) Transmission at 128 GBaud

Figure 4.3: Unconstrained Total Network Capacity (Tb/s) according to the number of nodes.

From the analysis of Fig. 4.3, it is noticeable that the total network capacity tends to exhibit a quadratic

growth pattern with respect to the number of nodes (∼ N2). This scenario also demonstrates the

achievement of substantial capacities, with networks with 60 nodes reaching approximately 2.5 Pbit/s

at a symbol rate of 64 Gbaud, as depicted in Fig. 4.3(a). Furthermore, the median values of the total

network capacity for a 30 node network, approximately 660 Tbit/s, align with the values delineated in

Fig. 9 of [38] for a 30 node CONUS topology, which was generated using the Erdós-Rényi model. As
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anticipated, a twofold increase in the total capacity is observed when the symbol rate is augmented to

128 Gbaud, as illustrated in Fig. 4.3(b).

However, this significant enhancement in capacity is accompanied by a considerable increase in the

network cost, manifested as an escalation in the length of the optical fiber required for deployment. This

correlation is demonstrated in Fig. 4.4, which presents the total fiber cost (quantified in terms of the total

fiber length in thousands of kilometers) as a function of the number of nodes.

(a) Transmission at 64 GBaud (b) Transmission at 128 GBaud

Figure 4.4: Average Fiber Cost in thousands of km (average across each set).

This figure presents a relationship between the fiber cost and the number of nodes which, as with the

unconstrained capacity, shows an approximately quadratic variation. A key insight from Fig. 4.4 is that

an increase in the symbol rate from 64 Gbaud to 128 Gbaud results in an approximate 51% increase

in the total fiber cost. However, this increase in cost is accompanied by a doubling of the total network

capacity, as previously observed.

4.3.3 Capacity According to Average Link Length

To understand how the generated networks’ capacity and average channel capacity varies relative to the

network’s physical size, an analysis on the average link length was made. With that purpose, a set of

3000 networks with 20 nodes was generated considering α = β = 0.4, and a square plane varying from

1000 km to 10000 km in side length (500 networks generated in a plane with side length of 1000 km, 500

in a plane with 2000 km length, 500 in a plane with 3000 km length, 500 in a plane with 5000 km length,

500 in a plane with 7000 km length, and 500 networks in a plane with 10000 km length). This plane size

variation as well as the lower number of nodes were considered so as to assure a larger variability in

average link length. The constrained routing was done with the shortest-first sorting strategy and with a

limit of 75 optical channels per link considering also a full-mesh logical topology.
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Figure 4.5 depicts two scatter plots with the average channel capacity and the total network capacity

according to the average link length. Each point in the scatter plot represents a single network, indicating

the relation between that network’s capacity and average link length. It can be seen that both the average

channel capacity and the total network capacity tend to decrease (approximately) logarithmically with the

average link length. This behavior is consistent with what was concluded in [39], where it was shown

that both of these capacities decrease logarithmically with the increase of average link length.

Figure 4.5: Average channel capacity (left) and total network capacity (right) according to the average link length.

4.4 Chapter Conclusions

This chapter details the implementation of the routing algorithms and their application to both reference

and randomly generated networks. The development of these two routing solutions led to the creation of

a routing heuristic, as well as fiber assignment heuristics that permit a complete analysis of the networks,

allowing for an efficient determination of their parameters and capacities, to be used for the training and

testing of the DNN models.

It was shown that, for constrained routing with a full-mesh logical topology and a limit of 75 optical

channels per link (equivalent to 64 Gbaud transmission in the C-band), there is typically sufficient link

capacity to prevent traffic demand blocking in smaller networks. However, as the networks increase in

number of nodes (and traffic demands increase as well), blocking begins to grow, becoming a key factor

limiting network capacity growth. When the link capacity limitation is overcome through the solution of

routing with fiber assignment, the unconstrained network capacity can reach significant values, exhibiting

an approximately quadratic growth. On the other hand, the cost in kilometers of deployed fiber also tends

to grow in a similar way.
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Chapter 5

Implementation of the DNN Models

In this chapter, the training and testing procedures for two developed DNN regression models are dis-

cussed. The first model aims to predict the total network capacity and the average channel capacity

subject to the restriction imposed by the limited number of optical channels in the network’s links. The

second model aims to predict the total network capacity and the total cost in kilometers of fiber for the

case where that limitation is overcome through the addition of optical fibers to the network (SDM so-

lution). Both models consider the same inputs, which are parameters related to a network’s physical

topology (the 12 parameters listed in Section 4.1.1). The main objective of using the DNN models is to

obtain the capacity values in a quick and reliable way, avoiding the longer computation times inherent

to the routing process. For that reason, throughout this chapter the computation times from the routing

algorithms and the DNN models are compared alongside the results and predictions.

5.1 Training the DNN Models

The training of the DNN models, as detailed in Section 2.3.3, requires the use of a large set of fea-

tures (inputs) and labels (outputs) from which the model’s parameters can be determined. This data

was obtained from the application of the routing strategies described in Chapter 4, to sets of random

networks generated with the model described in Chapter 3. Therefore, the software tools developed

throughout this dissertation project are all used for the development of the DNN models: the program

random network is used to generate large sets of random networks and then routing nx (or the alter-

native version which implements the SDM solution, routing nx no blocking) is used to determine the

network’s physical topology parameters (corresponding to the features) as well as the capacities and

fiber cost (the labels) determined from the routing solution.
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5.1.1 First DNN Model: Total Network Capacity and Average Channel Capacity

in a Constrained Routing Scenario

A set with 15245 networks was used to train the first DNN model. These networks were generated

considering 2D planes with side lengths varying from 1000 km to 5000 km in increments of 1000 km,

number of regions in the plane set to 4, number of nodes varying from 5 to 55, and an average node

degree varying from 2 to around 5. The Waxman parameters chosen were α = β = 0.4. This range of

number of nodes was chosen as it covers the values typically found in reference networks [9] while also

allowing for a short computation time per network with the routing nx tool. This allows for the use of a

larger dataset (with more examples), which can be beneficial to the training process.

The determination of the constrained routing solution was done considering a full-mesh logical topol-

ogy, the shortest-first sorting strategy, and transmission at 64 Gbaud in the C-band, resulting in a limit

of 75 optical channels per link. The computation of this solution with routing nx took around 3 hours 42

minutes for the entire set of networks. Table 5.1 shows the statistical analysis of the data obtained.

Table 5.1: Statistics of the features and labels for the first DNN model

Parameter Minimum 1st Quartile Median Mean 3rd Quartile Maximum
Number of Nodes 5 22 36 33.787 46 55
Number of Links 5 37 59 60.330 82 138

Minimum Link
Length (km)

75 79 90 109.794 112 692

Maximum Link
Length (km)

204 880 1497 1604.580 2191 5042

Average Link
Length (km)

119.542 326.459 534.583 550.304 748.869 2260

Variance of Link
Length (km2)

968 34685.73 100575.99 141063.71 208868.31 1953209

Minimum Node
Degree

2 2 2 2.039 2 5

Maximum Node
Degree

2 5 6 6.364 8 14

Average Node
Degree

2 2.824 3.579 3.574 4.308 5.143

Variance of Node
Degree

0 0.667 1.391 1.582 2.321 6.678

Diameter 1 7 9 9.325 11 27
Algebraic

Connectivity
1.933 38.889 99.140 217.339 222.909 8351.290

Total Network
Capacity (Tb/s)

11.8 254.077 446.96 514.873 733.899 1934.960

Avg. Channel
Capacity (Gb/s)

211.919 439.517 533.001 538.792 632.738 970

Table 5.1 shows that there is a great variability in the network parameters. This is meant to reflect

53



the variability in real-world optical backbone networks, training the model for a wide range of possible

networks.

Data Pre-Processing

As explained in Section 2.3.3, an important initial phase in the training of neural networks is the pre-

processing of the data. As such, the correction of skewness and the standardization of the features

were performed.

Skewness is a measure of the asymmetry in the statistical distribution of the data. The data can be

right-skewed (or with positive skewness) when the tail of the distribution extends towards higher values,

on the right side of the peak, or it can be left-skewed (with negative skewness) when the tail of the

distribution stretches towards lower values, on the left side of the peak [40].

To address this, either the square root or the square function are applied to the features, depending

on the direction of the skew. The square root function (
√
x) is used for right-skewed data and the square

function (x2) is used for left-skewed data [40].

By individually visualizing the distribution of each feature, these transformations can be applied ac-

cordingly, if deemed necessary. The fixing of the features’ skew is essential for the performance of the

DNN models, as it ensures that the models are not biased towards particular ranges of feature values,

while also reducing the impact of potential outliers [40].

Following the correction of skewness, standardization was performed. Standardization is a common

pre-processing step in machine learning that involves rescaling the features to have a mean of 0 and a

standard deviation of 1 [30]. This is done to ensure that all features are on the same scale, contributing

equally to the model, regardless of their original scale. The standardization of a feature (x) is calculated

as follows:

z =
x− µ

σ
, (5.1)

where x is the original feature vector, µ is the mean of the feature vector, and σ is its standard deviation.

This process was applied to all features in the dataset prior to training the DNN models.

After the correction of skewness and standardization, the next step was the shuffling and splitting of

the dataset. Shuffling the data serves to remove any inherent order in the data that might bias the training

of the DNN models. The shuffled data was then split into three subsets: a training set, a validation set,

and a test set. The training set, which comprised 70% of the total data, was used to train the DNN model.

The validation set, comprising 15% of the total data, was used to fine-tune the model’s hyperparameters

and prevent overfitting. Finally, the test set, also comprising 15% of the total data, was used to evaluate

the performance of the trained models on unseen data.
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Hyperparameter Tuning

In the training of the DNN model some configurations were predefined before the training process itself,

while others, the hyperparameters, were set to be tuned during the training process.

The predefined configurations were: (a) the activation function, set as the ReLU for all layers except

the output layer, where a linear activation function was used, as is typical in regression problems; (b) the

iterative optimization method, set as the SGD, due to its simplicity and fewer parameters that might

need tuning when compared with the Adam; (c) the loss function, set as the MSE, a common choice in

regression problems; and (d) the maximum number of epochs, set to 2000, with early stopping occurring

after 20 epochs without validation loss improvement (patience parameter of 20).

The hyperparameters are: (i) the number of hidden layers; (ii) the number of hidden units (defining

the number of neurons in each hidden layer, the same number on every hidden layer); (iii) the dropout

probability, relative to the dropout regularization method; (iv) the learning rate; and (v) the batch size.

The hyperparameter tuning process is conducted by evaluating the model’s performance on the

validation set for each unique combination of hyperparameter values. The combination that yields the

best performance is then selected. The strategy employed for this hyperparameter tuning process is the

Grid Search method [41]. In this method, each hyperparameter is assigned a predefined list of discrete

values and every possible combination of these values is evaluated. This process was conducted in two

stages. In the first stage, the number of hidden layers, the number of hidden units, and the learning rate

are optimized. Following the selection of the best-performing hyperparameters from the first stage, the

second stage involves tuning the batch size and the dropout probability. The specific values tested for

each hyperparameter, also known as the search space, are presented in Table 5.2.

Table 5.2: Hyperparameter Search Space

Hyperparameter Search Space
Number of Hidden Layers 0, 1, 2, 3
Number of Hidden Units 10, 50, 100

Learning Rate 0.1, 0.01, 0.001
Batch Size 32, 64, 128

Dropout Probability 0, 0.1, 0.2

The search spaces in Table 5.2 were chosen to ensure a sufficiently diverse exploration of model

configurations. During the first stage of hyperparameter tuning, when the first three hyperparameters

are tested, the batch size was set to 64 and the dropout probability was set to 0.

Table 5.3 shows the results of the first stage of hyperparameter tuning, presenting the performance

of the DNN model on the validation set measured with the R2 score (Eq. (2.21)) and the ARE (Eq. (2.22))

for each combination of the hyperparameters’ search space values. The table also includes the number

of model parameters (Eq. (2.24)). In this table y1 refers to the output total network capacity and y2 to

the average channel capacity.
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Table 5.3: Results on the validation set of the first stage of hyperparameter optimization for the first DNN model.
y1: Total Network Capacity; y2: Avg. Channel Capacity

Hidden
Layers

Hidden
Units

Learning
Rate (η)

R2 score
y1

R2 score
y2

ARE y1 ARE y2 DNN Pa-
rameters

0 - 0.1 0.9556 0.9560 0.1302 0.0461 26
0 - 0.01 0.9564 0.9562 0.1300 0.0455 26
0 - 0.001 0.9533 0.9559 0.1284 0.0458 26
1 10 0.1 0.9754 0.9774 0.0682 0.0308 152
1 10 0.01 0.9749 0.9776 0.0677 0.0310 152
1 10 0.001 0.9716 0.9746 0.0782 0.0335 152
1 50 0.1 0.9783 0.9801 0.0622 0.0292 752
1 50 0.01 0.9768 0.9795 0.0643 0.0295 752
1 50 0.001 0.9752 0.9781 0.0692 0.0303 752
1 100 0.1 0.9763 0.9789 0.0657 0.0297 1502
1 100 0.01 0.9777 0.9797 0.0654 0.0293 1502
1 100 0.001 0.9765 0.9786 0.0685 0.0302 1502
2 10 0.1 0.9766 0.9784 0.0647 0.0305 262
2 10 0.01 0.9773 0.9792 0.0598 0.0294 262
2 10 0.001 0.9741 0.9770 0.0685 0.0308 262
2 50 0.1 0.9777 0.9803 0.0641 0.0294 3302
2 50 0.01 0.9782 0.9802 0.0609 0.0290 3302
2 50 0.001 0.9769 0.9790 0.0659 0.0298 3302
2 100 0.1 0.9795 0.9813 0.0590 0.0282 11602
2 100 0.01 0.9785 0.9803 0.0614 0.0288 11602
2 100 0.001 0.9776 0.9796 0.0644 0.0294 11602
3 10 0.1 0.9753 0.9780 0.0801 0.0311 372
3 10 0.01 0.9755 0.9777 0.0703 0.0307 372
3 10 0.001 0.9731 0.9760 0.0744 0.0325 372
3 50 0.1 0.9785 0.9805 0.0599 0.0289 5852
3 50 0.01 0.9782 0.9801 0.0616 0.0290 5852
3 50 0.001 0.9770 0.9791 0.0654 0.0297 5852
3 100 0.1 0.9785 0.9810 0.0622 0.0284 21702
3 100 0.01 0.9788 0.9806 0.0606 0.0287 21702
3 100 0.001 0.9779 0.9800 0.0635 0.0291 21702

As seen in Table 5.3, apart from the models with no hidden layers (linear models), most of the

considered models tend to provide good performances, with R2 scores in the range of 0.96 to 0.98 and

average relative errors below 7%. Considering the goal of choosing the model with the best performance

while also preferring fewer parameters, the model with 2 hidden layers with 10 hidden units each and the

learning rate of 0.01 was selected. This model has relatively high R2 scores (0.9773 for y1 and 0.9792 for

y2) and low average relative errors (0.0598 for y1 and 0.0294 for y2). Additionally, it has a relatively low

number of trained parameters (262), which represents a good balance between model complexity and

performance. Figure 5.1 shows the training and validation loss against the number of epochs, depicting

the model’s smooth convergence to the minimum of the loss function in 990 epochs.

Table 5.4 shows the results of the second stage of the hyperparameter optimization, now considering
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Figure 5.1: Training and Validation Loss (logarithmic scale) against number of epochs for the first DNN model.

the previously chosen parameters (2 hidden layers, 10 hidden units and learning rate of 0.01).

Table 5.4: Results on the validation set of the second stage of hyperparameter optimization for the first DNN model.
y1: Total Network Capacity; y2: Avg. Channel Capacity

Batch Size Dropout Prob. R2 score y1 R2 score y2 ARE y1 ARE y2
32 0 0.9770 0.9788 0.0616 0.0297
32 0.1 0.9547 0.9568 0.1874 0.0461
32 0.2 0.9083 0.9112 0.3311 0.0673
64 0 0.9773 0.9792 0.0598 0.0294
64 0.1 0.9522 0.9537 0.1855 0.0479
64 0.2 0.9027 0.9073 0.3426 0.0684

128 0 0.9764 0.9787 0.0606 0.0299
128 0.1 0.9539 0.9536 0.1886 0.0477
128 0.2 0.9001 0.9074 0.3013 0.0663

From the results in Table 5.4, it can be observed that the model performs worse with higher dropout

probabilities, especially when it comes to the total network capacity, as is clear when comparing the

average relative errors, which increase significantly as the dropout probability increases. This indicates

that the model may be underfitting the data when dropout is applied, meaning that the model is losing

too much information during training, possibly due to the increased sparsity induced by dropout. Re-

garding the batch size, it can be seen that it does not affect the model’s performance as much as the

dropout does, which suggests that the model is relatively robust to changes in batch size within the

range considered. Considering the best results in the table, the batch size of 64 was chosen.

The chosen hyperparameters for the first DNN model are then: 2 hidden layers, 10 hidden units, a

learning rate of 0.01, a batch size of 64 and no dropout regularization. Figure B.12, in Appendix B.3,

shows the structure of the DNN model chosen.

The results on the test set were the following: R2 score for y1 was 0.9763 and for y2 it was 0.9785.

The AREs were 0.0618 for y1 and 0.0301 for y2. Additional test to this model are presented in Section 5.2.
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5.1.2 Second DNN Model: Total Network Capacity and Total Fiber Cost in a

Scenario of Unconstrained Routing with Fiber Assignment

To train the second DNN model, a set with 8480 networks was generated with the random network

program. This set of random networks was generated under the same conditions as the set used for the

first DNN model, but now with the number of nodes varying from 5 to 100. Since this model is used to

predict the unconstrained network capacity and the total cost in kilometers of fiber in the case where the

SDM solution is applied, the computation of the network parameters and the routing solution was done

using routing nx no blocking. As in the previous scenario, a logical full-mesh topology was considered,

the shortest-first sorting strategy was used, and transmission was done at 64 Gbaud on the C-band (and

so a limit of 75 wavelengths per fiber was set).

The larger range in number of nodes allows for this model to be used in a wider range of networks.

However, the trade-off is that the number of examples used to train the model must be reduced due

to the increased computational time associated to the routing process in larger networks. The compu-

tation time of routing nx no blocking in the set of 8480 networks was 7 hours 51 minutes. Table 5.5

summarizes the characteristics of the obtained data.

Table 5.5: Statistics of the features and labels for the second DNN Model

Parameter Minimum 1st Quartile Median Mean 3rd Quartile Maximum
Number of Nodes 5 29 53 53.163 77 100
Number of Links 5 49 86 91.470 128 231

Minimum Link
Length (km)

75 77 82 100.375 100 710

Maximum Link
Length (km)

204 850.750 1550.500 1667.304 2316 6022

Average Link
Length (km)

110.429 294.943 484.328 505.646 686.716 2591.722

Variance of Link
Length (km2)

1063.389 27867.126 91157.512 134928.28 203413.2 1841013

Minimum Node
Degree

2 2 2 2.025 2 5

Maximum Node
Degree

2 5 6 6.423 8 14

Average Node
Degree

2 2.667 3.524 3.470 4.205 5.143

Variance of Node
Degree

0 0.614 1.355 1.493 2.247 6.188

Diameter 1 8 11 12.477 15 45
Algebraic

Connectivity
0.535 20.448 62.505 162.833 156.658 7536.313

Total Network
Capacity (Tb/s)

12 492.550 1551.400 1976.071 3180.850 7277.800

Total Fiber Cost
(km)

2044 63901 177013 265338.9 385248.5 1452770
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As in the previous model, the dataset was pre-processed, shuffled and split into training, validation

and test sets (as described in Section 5.1.1). The training process followed the same strategy of the first

model, with the hyperparameter tuning being done according to the Grid Search method in two stages,

considering the search spaces in Table 5.2. The results of the first stage of hyperparameter tuning are

presented in Table 5.6, where y1 is the total network capacity and y2 is the total fiber cost.

Table 5.6: Results on the validation set of the first stage of hyperparameter optimization for the second DNN model.
y1: Total Network Capacity; y2: Total Fiber Cost

Hidden
Layers

Hidden
Units

Learning
Rate (η)

R2 score
y1

R2 score
y2

ARE y1 ARE y2 DNN Pa-
rameters

0 - 0.1 0.9907 0.9487 0.1149 0.2495 26
0 - 0.01 0.9897 0.9420 0.1132 0.2404 26
0 - 0.001 0.9898 0.9385 0.1124 0.2401 26
1 10 0.1 0.9991 0.9948 0.0247 0.0572 152
1 10 0.01 0.9992 0.9929 0.0296 0.0752 152
1 10 0.001 0.9965 0.9845 0.0707 0.1138 152
1 50 0.1 0.9994 0.9959 0.0239 0.0509 752
1 50 0.01 0.9991 0.9948 0.0297 0.0629 752
1 50 0.001 0.9980 0.9901 0.0561 0.0899 752
1 100 0.1 0.9993 0.9956 0.0246 0.0549 1502
1 100 0.01 0.9991 0.9951 0.0304 0.0598 1502
1 100 0.001 0.9980 0.9916 0.0532 0.0785 1502
2 10 0.1 0.9993 0.9947 0.0221 0.0564 262
2 10 0.01 0.9993 0.9950 0.0215 0.0625 262
2 10 0.001 0.9985 0.9898 0.0443 0.0917 262
2 50 0.1 0.9993 0.9955 0.0239 0.0539 3302
2 50 0.01 0.9992 0.9960 0.0257 0.0538 3302
2 50 0.001 0.9982 0.9930 0.0490 0.0762 3302
2 100 0.1 0.9993 0.9959 0.0246 0.0508 11602
2 100 0.01 0.9993 0.9957 0.0275 0.0549 11602
2 100 0.001 0.9986 0.9939 0.0423 0.0701 11602
3 10 0.1 0.9991 0.9935 0.0260 0.0747 372
3 10 0.01 0.9992 0.9951 0.0249 0.0621 372
3 10 0.001 0.9978 0.9888 0.0502 0.0872 372
3 50 0.1 0.9993 0.9945 0.0226 0.0545 5852
3 50 0.01 0.9993 0.9957 0.0238 0.0488 5852
3 50 0.001 0.9981 0.9921 0.0454 0.0662 5852
3 100 0.1 0.9994 0.9959 0.0239 0.0508 21702
3 100 0.01 0.9993 0.9956 0.0282 0.0541 21702
3 100 0.001 0.9985 0.9938 0.0456 0.0694 21702

Based on the results presented on Table 5.6, the set of hyperparameters chosen was: 1 hidden layer,

50 hidden units and a learning rate of 0.1. This configuration gives high R2 scores (0.9994 for y1 and

0.9959 for y2), low average relative errors (0.0239 for y1 and 0.0509 for y2), and a relatively low number

of trained parameters (752). This provides a good balance between model complexity and performance.

In Figure 5.2 the training and validation loss is plotted against the number of epochs showing the
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model’s convergence to the minimum of the loss function in 534 epochs.
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Figure 5.2: Training and Validation Loss (logarithmic scale) against number of epochs for the second DNN model.

In the second stage of the hyperparameter optimization, the batch size and the dropout probability

are tested. Table 5.7 shows the results of that process.

Table 5.7: Results on the validation set of the second stage of hyperparameter optimization for the second DNN
model. y1: Total Network Capacity; y2: Total Fiber Cost

Batch Size Dropout Prob. R2 score y1 R2 score y2 ARE y1 ARE y2
32 0 0.9994 0.9959 0.0245 0.0518
32 0.1 0.9985 0.9933 0.0588 0.0848
32 0.2 0.9982 0.9859 0.0628 0.0898
64 0 0.9994 0.9959 0.0239 0.0509
64 0.1 0.9989 0.9945 0.0346 0.0774
64 0.2 0.9985 0.9929 0.0453 0.0847

128 0 0.9992 0.9955 0.0269 0.0560
128 0.1 0.9988 0.9938 0.0394 0.0792
128 0.2 0.9982 0.9918 0.0762 0.0913

From the results presented in Table 5.7, similarly to the first model, we can see that the best perfor-

mance is for a dropout probability of 0 (no dropout regularization applied) and for a batch size of 64, as

these are the hyperparameters that result in lower ARE values.

So, the hyperparameters chosen for the second DNN model after the two stages of the optimization

process are: 1 hidden layer, 50 hidden units, learning rate 0.1, batch size of 64 and no dropout regular-

ization. The architecture of the chosen DNN model is represented in Figure B.13, in Appendix B.3.

The results on the test set were the following: R2 score of 0.9994 for y1 and 0.9962 for y2; average

relative error of 0.0243 for y1 and 0.0512 for y2. Additional tests were performed on this model, being

presented in the next section.

60



5.2 Testing the DNN Models

In order to evaluate the predictive performance of the DNN models, tests were conducted on both ran-

domly generated networks and reference networks. The main objective of this analysis is to compare

the predictions and prediction times of the DNN models with the outcomes and computation times of the

routing solutions implemented using the routing nx and routing nx no blocking tools.

5.2.1 Tests on the First DNN Model

To evaluate the first DNN model, an additional test set with 750 random networks was generated. These

networks were generated with the same parameters of node count, 2D plane length, and average node

degree as the dataset used for training this model. The routing process was also conducted under the

same conditions as those used for the training set. The total computation time with routing nx on this

set of networks was approximately 7 minutes and 10 seconds. In contrast, the DNN model was able to

make the predictions for the entire set of 750 networks in just 22 milliseconds.

The average relative errors for this test set, calculated with Eq. (2.22), were: 6.17% for the total net-

work capacity predictions and 2.84% for the average channel capacity predictions. While these average

values provide an overview of the model’s performance across the set, it is equally important to examine

the error values for individual examples.

Figure 5.3 shows the scatter plot of the relative errors against the number of nodes for both outputs.

Each dot represents the relative error (given by Eq. (2.23)) between the value determined from the

routing solution (yi) and the prediction made with the DNN model (ŷi) for an individual network.

(a) Total Network Capacity (b) Average Channel Capacity

Figure 5.3: Relative error against number of nodes for both outputs of the first DNN model.

As depicted in Fig. 5.3(a), for the total network capacity output, the majority of relative errors are un-

der 10%. Specifically, 79.23% of the examples exhibit a relative error below 10%, and 90.81% of exam-
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ples have a relative error below 15%. The average channel capacity output, as illustrated in Fig. 5.3(b),

generally presents even smaller relative errors: 83.36% of examples have a relative error below 5%, and

a significant 97.60% of the examples have a relative error below 10%.

These results show that, despite providing a good performance in both outputs, this is not uniform

across the two outputs, as the model exhibits a superior performance for the average channel capacity,

having smaller relative errors (Fig. 5.3(b)). The observed disparity in performance between the two

outputs could be indicative of the model’s ability to learn and generalize from the training data, with

the superior performance on the average channel capacity suggesting that the features present in the

training data could be more predictive for this output, allowing the DNN model to learn more accurately.

To test the model’s performance on larger networks, a test set with 1440 networks was generated in

the same conditions as the previous sets, but now with a number of nodes varying from 5 to 100. The

runtime of routing nx for this set was 2 hours 53 minutes. The predictions with the DNN model took only

63 milliseconds for the entire set. The scatter plot of the relative errors against the number of nodes for

this set of networks is shown on Figure 5.4.

(a) Total Network Capacity (b) Average Channel Capacity

Figure 5.4: Relative error against number of nodes for both outputs of the first DNN model (N in [5,100]).

From the plots in Figure 5.4, it is easy to understand that the model’s performance in networks with

a larger number of nodes is significantly more irregular, becoming worse as the number of nodes grows.

This behavior is expected as the model has been trained on a specific range of data (networks with a

number of nodes from 5 to 55), and extrapolating beyond this range can lead to less reliable predic-

tions. This is called Out-of-Distribution (OOD) generalization [42], and it is a problem that conventional

supervised learning methods (such as DNNs) cannot effectively solve (in these types of models it is a

fundamental assumption that the training and test datasets originate from the same distribution). Note

also that, as the number of nodes increases, parameters such as the number of links and even the

outputs will also tend to be OOD, further affecting the generalization capabilities of the model.

The inaccurate performance is particularly evident in the total network capacity (Fig. 5.4(a)). In this

62



case the predictions tend to stay inside the range of 20% relative error when the number of nodes is

lower than 55, but for higher numbers of nodes the relative errors start progressively becoming higher

(in absolute value). However, in the case of the average channel capacity (Fig. 5.4(b)), while there is still

a degradation in the model’s performance, this effect is much less pronounced than in the case of the

total network capacity, with the relative errors staying inside the 20% range even for larger node values.

This may indicate that the prediction of this output may be more dependent on other features that do not

vary (much) outside their original distribution range or that the output itself does not vary (as much) to

OOD values as the total network capacity does.

Nevertheless, it is important to note that, when dealing with OOD generalization, the model’s behav-

ior can be very unpredictable and erratic, and so an evaluation on the model’s performance poses a

significant challenge [42]. Addressing OOD generalization is a current topic of research in the field of

ML [42].

Table 5.8 shows the results of the DNN model’s predictions and the routing solution values for specific

random networks with a varying number of nodes. The time needed to determine the capacity values

with routing nx is compared with the time taken for the DNN model to make the predictions.

Table 5.8: First model’s predictions in random networks. y1: Total Network Capacity; y2: Avg. Channel Capacity

Number
of

Nodes

y1
(Tb/s)

Pred.
y1

(Tb/s)

Relative
Error y1

(%)

y2
(Gb/s)

Pred.
y2

(Gb/s)

Relative
Error y2

(%)

Routing
time (s)

Pred.
time
(ms)

10 48.0 48.67 1.40 533.33 547.08 2.58 0.19 51.67
20 303.2 303.75 0.18 797.89 801.63 0.47 0.20 60.32
30 708.0 663.32 6.31 813.79 787.77 3.19 0.38 24.70
40 292.67 268.64 8.21 333.33 332.92 0.12 0.43 10.02
50 627.98 530.97 15.45 376.49 342.26 9.09 1.97 8.56
60 600.271 718.48 19.69 315.93 331.48 4.92 2.49 22.86
70 1080.11 1141.53 5.69 412.26 386.95 6.14 5.97 13.59
80 1293.15 1476.62 14.18 334.49 353.83 5.78 21.38 16.89
90 2204.88 1964.20 10.92 463.80 387.0 16.56 38.43 12.31
100 1641.51 1786.44 8.82 314.46 294.91 6.22 56.93 21.60

As a first conclusion, we can see that the difference in computation times between the routing nx

calculations and the DNN model’s predictions is very evident, with the DNN model never taking more

than a few tens of milliseconds, while routing nx can take up to tens of seconds in larger networks.

Furthermore, when it comes to the capacity values, the same trends identified before can be noticed

here as well: the errors tend to be smaller for y2 and for networks with a number of nodes inside the

training range. Nevertheless, it is important to note that there is inherent variability in the data that can

lead to exceptions to the overall trends. This is evidenced, for example, by the network with 100 nodes,

which achieves better results than some networks with fewer nodes. This does not necessarily contradict

the overall trend, but rather highlights the stochastic nature of the data and the model’s predictions.
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To assess the performance of the DNN model in real-world networks, five reference networks (whose

topologies are represented in Appendix B.1) were considered. Table 5.9 compares the capacity values

determined with routing nx with the DNN model’s predictions and the computation times.

Table 5.9: First model’s predictions in reference networks. y1: Total Network Capacity; y2: Avg. Channel Capacity

Network
Name

y1
(Tb/s)

Pred.
y1

(Tb/s)

Relative
Error y1

(%)

y2
(Gb/s)

Pred.
y2

(Gb/s)

Relative
Error y2

(%)

Routing
time
(ms)

Pred.
time
(ms)

CESNET 32.6 35.75 9.65 776.19 792.29 2.07 260.55 20.84
COST239 81.2 80.05 1.42 738.18 730.69 1.02 224.98 10.01
DTAG 147.4 141.64 3.91 809.89 783.61 3.24 174.35 23.01

NSFNET 98.0 96.85 1.17 538.46 543.50 0.94 168.70 22.39
UBN 272.8 262.85 3.65 494.20 472.54 4.39 263.46 22.72

The results show that the DNN model predicts both outputs with low relative errors. This indicates

that the model is able to make accurate predictions in real-world optical backbone networks, which

further confirms that the topologies of the generated networks (used in the training of the model) are

close to their real-world counterparts. It is worth noting, none the less, that the y1 prediction for the

CESNET shows a higher relative error compared to the other networks. This could be attributed to that

network’s specific characteristics which fall in a range where the model’s performance is less consistent.

5.2.2 Tests on the Second DNN Model

To test the performance of the second DNN model, the same set of 1440 networks (with a number of

nodes ranging from 5 to 100) used to test the previous model was considered. The unconstrained routing

with fiber assignment was done with the routing nx no blocking program under the same assumptions

as the pervious tests and the runtime was 1 hour 16 minutes. The prediction time with the DNN model

was 11 milliseconds for the entire set. Figure 5.5 plots the relative errors against the number of nodes.

(a) Total Network Capacity (b) Total Fiber Cost

Figure 5.5: Relative error against number of nodes for both outputs of the second DNN model (N in [5,100]).
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From Figure 5.5 it was concluded that the average relative error is 2.47% for the total network capacity

and 5.29% for the total fiber cost. It was also shown that for the total network capacity (Fig. 5.5(a))

89.45% of the examples have a relative error below 5%, and 96.67% of the examples have a relative

error below 10%. In the case of the total fiber cost (Fig. 5.5(b)) 87.02% of the examples have a relative

error below 10%, and 94.24% of the examples have a relative error below 15%.

It can be seen that the model tends to have better performance for networks with a higher number of

nodes, having a more irregular performance on networks with very few nodes. A possible explanation

for this behavior is that smaller networks might exhibit more variability in their features and in the rela-

tionships between features and labels that make it more challenging for the model to predict accurately.

On the other hand, larger networks could be more homogeneous, exhibiting more consistent patterns

that the model can learn and predict more effectively.

An additional test set with 3920 networks was generated to evaluate the second model’s performance

on networks with a number of nodes outside the training range. This set was generated under the same

conditions as the previous sets, but now with the number of nodes varying from 5 to 200. The runtime of

routing nx no blocking for this set was 55 hours 31 minutes. The predictions with the DNN model took

only 79 milliseconds for the entire set. The scatter plot for this set of networks comparing the relative

errors against the number of nodes is shown on Figure 5.6.

(a) Total Network Capacity (b) Total Fiber Cost

Figure 5.6: Relative error against number of nodes for both outputs of the second DNN model (N in [5,200]).

The plots of Figure 5.6 show that the DNN tends to perform in a similar manner as in Fig. 5.5 when

the nodes range between 5 and 100. For nodes outside this range, the performance becomes more

inconsistent as the number of nodes grows. As in the first model, this is a case of OOD generalization

[42], as the test data in the range of 101 to 200 nodes would be considered out-of-distribution, which

justifies the model’s unreliable performance. Nevertheless, based on the plots, we can see that the

model still performs well up until networks with 115 to 120 nodes.

Table 5.10 shows the results of the application of the second DNN model and the routing with the
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SDM solution to different random networks, comparing also the times taken to reach the results.

Table 5.10: Second model’s predictions in random networks. y1: Total Network Capacity; y2: Total Fiber Cost

Number
of

Nodes

y1
(Tb/s)

Pred.
y1

(Tb/s)

Relative
Error y1

(%)

y2 (103

km)
Pred.
y2 (103

km)

Relative
Error y2

(%)

Routing
time (s)

Pred.
time
(ms)

10 48.0 45.39 5.44 24.466 24.077 1.59 0.23 58.87
20 303.2 317.92 4.86 14.714 14.000 4.85 0.24 4.00
30 708.0 705.22 0.39 27.048 26.622 1.57 0.39 3.04
40 803.0 820.11 2.13 122.270 123.209 0.77 0.70 8.02
50 1244.2 1214.39 2.40 231.634 257.360 11.11 1.23 16.46
60 1837.2 1937.3 5.45 267.024 247.967 7.14 2.20 16.66
70 3432.8 3393.9 1.13 128.438 131.789 2.61 3.61 10.29
80 3185.0 3197.8 0.40 625.998 596.997 4.63 5.94 22.92
90 5898.6 5864.0 0.59 189.506 194.540 2.66 9.04 22.59
100 5394.6 5376.5 0.34 718.090 690.019 3.91 13.48 17.13

The results above show that the model tends to have a good performance in generated networks

in this range of nodes, with the relative errors being generally low. The prediction times with the DNN

model are always significantly faster than the computation with routing nx no blocking (that difference

being more obvious in networks with more nodes).

Table 5.11 shows the second DNN model’s predictions and the SDM routing solution’s results in the

same real-world reference networks considered before.

Table 5.11: Second model’s predictions in reference networks. y1: Total Network Capacity; y2: Total Fiber Cost

Network
Name

y1
(Tb/s)

Pred.
y1

(Tb/s)

Relative
Error y1

(%)

y2 (103

km)
Pred.
y2 (103

km)

Relative
Error y2

(%)

Routing
time
(ms)

Pred.
time
(ms)

CESNET 32.6 37.22 14.16 5.343 5.167 3.29 186.91 68.87
COST239 81.2 82.83 2.01 24.06 23.07 4.11 170.72 17.93
DTAG 147.4 145.91 1.01 10.88 10.95 0.69 199.14 14.71

NSFNET 98.0 104.06 6.18 45.39 38.63 14.87 203.16 61.34
UBN 272.8 269.78 1.10 85.418 101.42 18.73 269.167 10.58

The evaluation on the reference networks reveals that the model delivers accurate predictions in the

majority of cases. However, there are instances where higher relative errors have been observed, with

three instances exceeding a 10% error rate. These discrepancies can likely be attributed to specific

characteristics of these networks, which the model may not have effectively learned during its training

phase. For example, the CESNET prediction is in the range where the model has a less consistent

performance, being a network with 7 nodes. It’s worth noting that, despite these occasional prediction

inaccuracies, the model significantly reduces computation times when compared to the heuristic routing

method, being always able to consistently predict in just a few milliseconds.
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5.3 Importance of the Features to the Model’s Predictions

In order to comprehend the behavior of the DNN models, it is important to understand the impact of each

feature on the model’s decision. To achieve this, an analysis of feature importance was conducted using

the SHapley Additive exPlanations (SHAP) method [43]. This method assigns an importance value to

each feature, with features that have a greater influence on a model’s output being attributed higher

SHAP values.

The SHAP method uses a game theory approach to determine feature importance, with each fea-

ture being considered a player, and the predictions being the payout. The SHAP value for a feature,

representing its importance, is computed as its average contribution to the prediction across all possible

combinations of features. These combinations are formed by keeping some features constant while ran-

domizing others. This approach allows SHAP to accurately identify the features that most significantly

influence the model’s output, although it can be computationally expensive due to the need to evaluate

all possible feature combinations [44].

The SHAP analysis was implemented using the Python library, shap, which provides an efficient and

streamlined method for conducting the analysis and offers clear visualizations of the results. For the

computation of the SHAP values, a random subset of 1000 instances was selected from the original

set from which the training, validation and test data were obtained, for each respective model. The use

of these smaller subsets allows for the computation times to be kept low, while still being ideal for this

analysis, as they have the same data distribution that the model was trained on. Note that other data

sets with the same data distribution of the training sets could also have been used (with the SHAP results

being identical). The SHAP values for both outputs of the first DNN model are presented in Fig. 5.7.

(a) Total Network Capacity (b) Average Channel Capacity

Figure 5.7: SHAP analysis for the first DNN model.
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From these results we can conclude that the number of links and the algebraic connectivity are the

two most important parameters in the prediction of the total network capacity (Fig. 5.7(a)). Both of these

parameters are indicative of the network’s overall connectivity, as networks with a higher number of links

and higher algebraic connectivity can be considered as being more connected and thus having more

paths for the data to flow through. The fact that these parameters are more important than the number

of nodes may be due to the fact that this output is being calculated in a capacitated routing setting,

where blocking of traffic demands occurs. This indicates that the connectivity of the network, that is, the

existence or not of many alternative paths, which in turn impacts directly the number of traffic demands

being blocked, are the most important factors on the determination of the total network capacity in the

first DNN model.

When it comes to the second output, the average channel capacity (Fig. 5.7(b)), the average link

length is the most important parameter. Since the capacity of the optical channels was determined

through the optical reach, this result is somewhat expected (as the length of the optical channels is

necessarily related to the average link length of the network). Although we can also see that the number

of nodes and the algebraic connectivity have a large impact on this output’s prediction as well.

Figure 5.8 shows the SHAP results for the second DNN model.

(a) Total Network Capacity (b) Total Fiber Cost

Figure 5.8: SHAP analysis for the second DNN model.

In this case we can see that the parameter with more influence on the prediction of the total network

capacity (Fig. 5.8(a)) is now the number of nodes (followed by the number of links and the average

link length). Since we are now in a setting of unconstrained routing (there is no blocking), it is normal

that the overall size of the network (reflected on the number of nodes and links) has a large impact on

this output (as a full-mesh logical topology is being considered). When it comes to the total fiber cost

(Fig. 5.8(b)) the number of nodes, the average link length and the number of links are the features with
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more importance. These results are expected given that the cost in km of fiber is heavily dependent on

the network’s size and the average length of it’s links.

5.4 Chapter Conclusions

In this chapter, the training and testing of the two DNN regression models was detailed. It was shown

that both models have generally strong performances, predicting total network capacity, average channel

capacity, and total fiber cost with typically low relative errors. Furthermore, the time required for these

predictions was significantly less than that needed to compute the routing solutions. The DNN models

were able to make predictions in mere milliseconds, while routing could take several seconds for a

single network. Even when analyzing large sets of networks, where routing algorithms could take hours

to find a solution, the DNN models maintained their millisecond prediction times. This underscores the

advantage of applying these ML techniques in the context of network capacity prediction.

The SHAP analysis revealed that the number of links and algebraic connectivity are the most impor-

tant features when predicting the total network capacity in the first DNN model. These parameters reflect

the network’s overall connectivity, with more connected networks offering more alternative paths, which

is particularly relevant in a capacitated routing setting. For the second output, average channel capacity,

the average link length emerges as the most influential parameter, which is an expected result as the

channel capacity was determined through the optical reach. In the second DNN model, where an un-

constrained routing setting is considered, the overall network size, reflected by the number of nodes and

links, greatly impacts the total network capacity. For the total fiber cost, the number of nodes, average

link length, and number of links are the most important features. These results align with expectations,

as the fiber cost in kilometers is heavily dependent on network size and average link length.

In certain instances, the DNN models showed a less consistent prediction capability. The first model’s

total network capacity predictions were generally less accurate compared to its average channel capac-

ity output. The second model’s predictions were less reliable for networks with fewer nodes. These

issues could potentially be mitigated through a more comprehensive hyperparameter tuning process, in-

cluding larger search spaces and the testing of alternative hyperparameters, such as different optimizer

algorithms or loss functions.

Additionally, developing models with a more specific focus, that is, focused on predicting a single

output or based on inputs that vary within a smaller range of values, could also bring better performances

in these cases. By focusing on a single output (for example, a model with the only output being the total

network capacity in a constrained routing scenario), the DNN model can optimize its weights and biases

specifically for that output. This targeted optimization allows the model to learn the unique patterns

and relationships associated with the output more effectively, potentially leading to more accurate and

reliable predictions, and also simplifying the model’s training process. On the other hand, by considering
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inputs that vary within a smaller range of values (for example, a model focused on making predictions

only for networks with a low number of nodes in the SDM scenario), the model can focus on the most

relevant data patterns in that range, potentially improving its predictive performance.
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Chapter 6

Conclusion

In this chapter, the conclusions of this thesis are presented, with the main accomplishments of this work

being summarized. Suggestions for future developments are also stated.

6.1 Conclusions

In this thesis, two Deep Neural Network (DNN) models were successfully developed with the purpose of

determining the capacity of optical backbone networks. The first model was designed to predict the total

network capacity and average channel capacity considering a constrained number of optical channels

per link due to the bandwidth limitations of fiber transmission. The second model was developed to

estimate the unconstrained total network capacity and the total cost in kilometers of fiber deployed,

under a scenario where an SDM solution is implemented to overcome said limitations. In both models

a full-mesh logical topology was assumed, and the predictions were done based on input parameters

related to the physical topology of the networks. These models were created with the objective of

delivering accurate estimations with short computation times.

In Chapter 2, an overview of the fundamental concepts that underpin the work developed in this

thesis is presented. It was shown that the physical topology of a telecommunications network can be

represented by a graph and the flow of traffic in the network (the logical topology) can be represented

by a traffic matrix. Various network parameters, relevant for the development of the DNN models, are

defined and the concept of routing introduced, as well as a general strategy for solving routing prob-

lems. The definition of an optical channel is given and it is shown that, given the limitations in the WDM

transmission bandwidth, there is a limit in the number of optical channels that can simultaneously be

transmitted in an optical fiber. It was also seen that the channel capacity can be determined through the

relation between optical reach and the Shannon channel capacity. This makes the process of determin-

ing the network capacity and average channel capacity more straightforward and computationally less
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complex.

Also in Chapter 2, various state of the art applications of machine learning techniques in the context

of optical networking are presented. These techniques cover applications related to the physical and

network layers, including ones focused on the determination of the QoT and others focused on the

routing and wavelength assignment process. In these various applications, neural network models have

consistently shown to have the best generalization capabilities and reduced computation times.

In Chapter 3, the model for the generation of random networks implemented in this dissertation

project is detailed. This model makes use of the same functioning principles as the Waxman model

(including the spatial disposition of the nodes in a 2D plane and the probability of link establishment

based on their relative distance), but changes were made to guarantee that the generated topologies

more closely resemble real-world optical backbone networks. It was shown that the networks generated

with the developed model follow the same essential characteristics of real-world networks: the networks

have connected topologies which are resilient to single link failures (having an edge connectivity of

at least 2), the node degree follows a Poisson distribution, and the link length distribution follows the

Waxman link probability.

In Chapter 4, the two routing solutions developed in this work are presented: a constrained routing

algorithm, where the limitation in the number of optical channels per fiber is assumed; and an uncon-

strained routing algorithm with fiber assignment, where that limitation is overcome through the addition

of optical fibers to the network’s links. These algorithms, which determine the RWA solution, are applied

to the networks to determine the features and labels for the training and testing of the respective DNN

model. In the case of unconstrained routing with the SDM solution, two fiber assignment algorithms

were developed, one that focuses on providing fast computation times, and the other that focuses on

making a more efficient fiber allocation. It was concluded that, despite the second algorithm’s advantage

in terms of efficient fiber placement, the faster first algorithm provides a better solution, given the need

to apply it to a large number of networks. The application of these routing tools to random networks

and reference networks allowed for the development of an analysis where it was shown that the network

capacity growth is limited by the blocking of traffic demands, which increases as the networks grow

larger in number of nodes (in full-mesh logical topologies). Through the SDM solution it was possible to

achieve significantly higher network capacities, but at the cost of more fiber being used in the network.

Finally, in Chapter 5, the training and testing of the DNN models is presented. It was shown that these

models tend to provide accurate results on both random networks as well as reference networks. When

testing on a set of random networks, the first model’s predictions for the total network capacity showed

an average relative error of 6.17%, with 79.23% of the examples having a relative error below 10% and

90.81% of examples below 15%. The prediction of the average channel capacity showed an average

relative error of 2.84%, with 83.36% of examples having a relative error below 5% and 97.6% below 10%.
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In the second DNN model, the total network capacity predictions showed an average relative error of

2.47%, with 89.45% of the predictions having errors below 5% and 96.67% with errors below 10%. The

total fiber cost was predicted with an average relative error of 5.29%, with 87.02% of the examples having

errors below 10% and 94.24% below 15%. When testing on reference networks low relative errors

were also achieved in most cases, further confirming the generated networks’ similarities to real-world

networks. Furthermore, it was seen that the DNN models were able to make the predictions in just a

few milliseconds, even when considering sets with thousands of networks. This is a very significant

advantage over the heuristic routing algorithm’s computation times, which can take many hours in larger

sets of networks.

Given the DNN models’ overall accurate predictions and quick prediction times, and given that the

model’s inputs are physical topology characteristics of the networks, these DNN models could prove to

be useful tools in the design of optical backbone networks, allowing for an immediate determination of

the network capacity, average channel capacity or total fiber cost as the networks’ physical topology is

delineated.

6.2 Future Work

As mentioned on the Introduction, an alternative approach to achieve ultra-high bandwidth transmission

was the consideration of BDM (specifically, multi-band transmission on the S+C+L bands). As a sugges-

tion of possible future work, this solution could be explored. If the optical reach values for transmission

in these optical bands are determined, the average channel capacity and total network capacity can be

calculated with minimal modifications to the routing code developed in this thesis.

Investigating an alternative SDM solution is also a potential area for further research. In this work,

the computation time was a restricting factor in the choice of the fiber assignment algorithm. If, instead of

a complete elimination of the blocking of traffic, only a reduction was set as a goal, a more efficient fiber

assignment algorithm could be employed, maintaining low computation times due to a less exhaustive

fiber addition process. This approach would lead to a different type of network analysis, where both the

blocking effect and fiber cost would need to be considered.

Another possibility for future developments based on this work is the exploration of other DNN models

(or even other ML techniques). Through the generative graph model and the routing algorithms devel-

oped in this thesis it is easy to obtain a large amount of data to train and test ML models. This opens up

the range of ML applications related to this type of optical networks, including, for example, techniques

focused on improving OOD generalization performance, or models that make predictions based on the

RWA solution (including parameters related to the link loads, path lengths, etc.), which may prove to be

useful in the determination of the network capacity or other network parameters.
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[3] N. Deng, L. Zong, H. Jiang, Y. Duan, and K. Zhang, “Challenges and Enabling Technologies for

Multi-Band WDM Optical Networks,” Journal of Ligthwave Technology, vol. 40, no. 11, pp. 3385–

3394, 2022.

[4] A. Freitas and J. Pires, “Investigating the Impact of Topology and Physical Impairments on the

Capacity of an Optical Backbone Network,” Photonics, vol. 11, no. 4, 2024. [Online]. Available:

https://www.mdpi.com/2304-6732/11/4/342

[5] F. Musumeci, C. Rottondi, A. Nag, I. Macaluso, D. Zibar, M. Ruffini, and M. Tornatore, “An Overview

on Application of Machine Learning Techniques in Optical Networks,” IEEE Communications Sur-

veys and Tutorials, vol. 21, no. 2, pp. 1383–1408, 2019.

[6] R. Gu, Z. Yang, and Y. Ji, “Machine learning for intelligent optical networks: A comprehensive

survey,” Journal of Network and Computer Applications, vol. 157, no. 102576, 2020.

[7] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network Structure, Dynamics, and Function

using NetworkX,” Proceedings of the 7th Python in Science Conference (SciPy 2008), 2008.

[8] pytorch.org, “PyTorch - About,” Available from online archive: https://web.archive.org/web/

20180615190804/https://pytorch.org/about/, 2017, accessed on 20.04.2024.

[9] C. Pavan, R. M. Morais, J. R. F. da Rocha, and A. N. Pinto, “Generating Realistic Optical Transport

Network Topologies,” Journal of Optical Communication Networks, vol. 2, no. 1, pp. 80–90, 2010.

[10] J. Pires, “Chapter 2 - Fundamentals of Networks,” High Speed Networks, Instituto Superior Técnico,
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Appendix A

Additional Information About the Code

A.1 Executing the program routing nx

Without command-line arguments

To run routing nx without command-line arguments, the input file with the networks must be named

”graphs.gpickle” and it must be in the working directory. When running the program this way, the fol-

lowing behavior will occur: the routing will be done in an uncapacitated way, the sorting order will be

shortest-first, and the average channel capacity value will be determined considering the optical reach

table for 64 Gbaud transmission (Table 2.1). The results will be output in the ”dnn data.npy” file and not

printed in the terminal.

With command-line arguments

With command-line arguments the user can control how the program execution will be done. The possi-

ble arguments are:

-f, --file name: The name of the file to load. Default is ’graphs.gpickle’.

-d, --directory: The directory of the file. Default is the current working directory.

-p, --print mode: Can be either True or False. Set to True by adding ’-p’ to command-line inputs. In

that case the results will be printed in the terminal and not saved in a file. Not putting -p defaults

to False.

-m, --max link cap: Link capacity, an integer between 0 and 999999 that limits the number of

optical channels per link. Default is 999999 (Uncap. Routing).

-s, --sorting order: Sorting order. Can be “shortest”, “longest” or “largest”. Default is “shortest”.

-b, –baud rate: Baud Rate. Can be 64 or 128. Used to define the optical reach table to be used

from Table 2.1. Default is 64.
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So, for example, if the user wants to run a file named my graph.gpickle that is in the working directory,

do the capacitated routing with a link capacity of 75 and longest-first sorting, print the results in the

terminal, and consider the optical-reach table for 128 Gbaud transmission, the code can be run with:

python routing nx.py -f my graph.gpickle -m 75 -s longest -p -b 128

A.2 Example of the results of routing nx printed in the terminal

(a) Physical Topology Results

(b) Load and Wavelengths in the Links
(c) Routing Results

(d) Traffic Demands’ Paths and Wavelengths (truncated results)

Figure A.1: Example of routing nx results printed in the terminal.
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A.3 Additional Algorithms of routing nx

A.3.1 Shortest-Paths Function

The function shortest paths is the function that determines all the shortest-paths between every pair of

nodes. It receives as input a NetworkX Graph and outputs a list of lists, where each inner list contains

dictionaries. Each dictionary represents a traffic demand between two nodes in the graph G. Note that

G is a weighted graph where the weights are the link lengths. The dictionary contains the following keys:

• ’source’: the source node;

• ’destination’: the target node;

• ’distance’: the total length of the path;

• ’path’: a list of all shortest-paths between the source and target node.

To index this structure its possible to do shortest paths list[i][j], where i is the index of the source

node and j is the index of the target node in the nodes of G. This will give a dictionary representing the

shortest-paths from the i-th node to the j-th node in the graph, along with their total length. If i and j are

the same, the distance will be 0 and the path will be a list containing a single list with the node itself.

The pseudo-code for the shortest paths function is presented below:

Algorithm 4: Shortest-Paths
Input: A NetworkX Graph, G.
Output: A list of the shortest-paths between all pairs of nodes, all paths.

1: Initialize an empty list all paths
2: for each node in G do ▷ Considered as source node
3: Initialize an empty list source paths
4: for each node in G do ▷ Considered as target node
5: if source is not equal to target then
6: paths ← nx.all shortest paths(G, source, target, weight = link length) ▷ Compute all

shortest paths from source to target and store them in a list
7: Compute the length of the paths (sum of the link lengths) and store it in total length
8: Append to source paths a dictionary with ’source’, ’destination’, ’distance’, and ’path’
9: else

10: Append to source paths a dictionary with ’source’, ’destination’, ’distance’ as 0, and ’path’
as a list with only the source node

11: Append source paths to all paths
12: return all paths
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A.3.2 Order Paths Function

The function orderPaths sorts the traffic demands according to the sorting order. It takes as input the

output of shortest paths (list of lists, where each inner list contains dictionaries) and the sorting order

(’shortest’, ’longest’ or ’largest’). It outputs a list of dictionaries, where each dictionary represents a traffic

demand between two nodes in the graph. The dictionaries contain the following keys:

• ’source’: the source node;

• ’destination’: the target node;

• ’distance’: the total length of the path;

• ’path’: a list of all shortest-paths between the source and target node;

• ’traffic’: the traffic between the source and target nodes, as given by the traffic matrix ;

• ’hops’: the number of hops between the source and target nodes, as given by the hop matrix ;

• ’routed’: a boolean value indicating whether the traffic demand has been routed (set to False in

this function).

The traffic demands are ordered according to the order parameter. If order is “shortest”, the paths

are sorted by distance in ascending order. If order is “longest”, the paths are sorted by distance in

descending order. If order is “largest”, the paths are sorted by traffic in descending order. Paths with the

same source and destination or with no traffic are excluded from the output.

Algorithm 5: Order Paths
Input: the list of lists with the shortest-paths (paths); the traffic matrix (traffic matrix); the hop matrix
(hop matrix) and a string with the sorting order (order ).
Output: a list with the ordered traffic demands, ordered paths.

1: Initialize an empty list: path list
2: for each path in paths do
3: for each p in path do ▷ Iterate over all shortest-paths in the list of lists structure
4: Assign traffic and hops values from the matrices to p
5: p[”routed”] ← False
6: if p[”source”] is the same as p[”destination”] OR p[”traffic”] is 0 then
7: Skip this path
8: Get the possible paths from p
9: if there are multiple possible paths then

10: Find the path with lowest number of hops and remove paths that have more hops than
that path ▷ Between multiple shortest-paths, exclude the ones with more hops

11: Append p to path list
12: if order is ”shortest” then
13: Sort path list by distance in ascending order
14: else if order is ”longest” then
15: Sort path list by distance in descending order
16: else if order is ”largest” then
17: Sort path list by traffic in descending order
18: return ordered paths
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A.3.3 Breaking a Path Tie

The breakTie function is called when there are two or more possible shortest paths between a pair of

nodes. This situation happens when the shortest paths function returns various same length shortest-

paths between a given source and destination. This function receives as input p the current traffic

demand and the load matrix and it will return the path’s index in p[’path’] for which routing the traffic to

minimizes the load in the most loaded link. So, this function’s goal is to find, between all possible paths,

the one with the minimum most loaded link, which corresponds to the path where the load in the most

loaded link is minimized. If there is a tie between all the most loaded links (a minimum can’t be found),

the function goes on to the second most loaded link, and so on. If by the end, a minimum most loaded

link can’t be found, that means that, between all paths considered, the link loads are the same, and so

it is indifferent which path is chosen, and the first one in the list is picked. This function is implemented

as follows:

Algorithm 6: BreakTie
Input: The currently considered traffic demand, p, and the load matrix.
Output: The index in p[’path’] of the chosen path, chosen path.

1: for each path in p[’path’] do ▷ Get a list of lists where each inner list has all loads of a path
2: for each edge in the path do
3: Append the load of the edge to loads of path.
4: Copy loads of path to the corresponding index in all loads.
5: Clear loads of path.
6: Initialize an empty list maximum list.
7: while True do ▷ Find the path with the minimum maximum load
8: for each path load in all loads do ▷ Find the maximum load in each path
9: if path load is empty then

10: Set chosen path to 0.
11: return chosen path. ▷ If, by the end, the list is empty, that means that all maximum loads

are the same, just select path 0
12: Append the maximum load in path load to maximum list.
13: Remove the maximum load from path load.
14: if all elements in maximum list are equal then
15: Clear maximum list.
16: Continue to the next iteration of the while loop.
17: else ▷ If all elements are not the same then there’s a minimum
18: Set min val to the minimum value in maximum list.
19: if min val occurs only once in maximum list then
20: Set chosen path to the index of min val in maximum list.
21: return chosen path. ▷ Found the path with link with minimum maximum load
22: else ▷ Minimum not unique
23: Clear maximum list.
24: Continue to the next iteration of the while loop.
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A.3.4 Wavelength Assignment

The assign wavelengths function implements the first-fit wavelength assignment strategy. By the end of

this process, each wavelength is represented as a different integer starting in 1 and up to a given limit,

corresponding to the maximum number of optical channels per fiber. As the wavelength assignment

process is done during the routing (in the route function), the order in which the wavelength assignment

process is done will always correspond to the routing order. The limitation on the maximum number of

wavelengths will also affect the routing process, as it can lead to the blocking of traffic demands due to

wavelength unavailability.

The assign wavelengths function has as inputs: the current traffic demand (p), the index in p[’path]

of the path chosen to route through (chosen path), and the matrices to be updated (path wavelength

matrix and link wavelength matrix). It outputs a boolean value that indicates if the wavelength assign-

ment was successful (True) or not (False). If False is returned, that means that a wavelength unavail-

ability situation has occurred, and so that traffic demand is then blocked in the route function. The

assign wavelengths function is implemented as follows:

Algorithm 7: Assign Wavelengths
Input: The current traffic demand (p), the index in p[’path] of the path chosen (chosen path), and the
matrices path wavelength matrix and link wavelength matrix.
Output: Boolean value that indicates if the wavelength assignment was successful (True) or not (False).

1: Define all link wavelengths as empty set
2: for each link (between nodes x, y) of the path do ▷ Iterate over all links of the path and save all the

wavelengths already present
3: Update all link wavelengths with value in link wavelength matrix[x][y]
4: w ← 1
5: while w in all link wavelengths do
6: w ← w + 1 ▷ Increment until it’s found a number not in the set, to get the lowest possible wave-

length not used in any link of the path
7: if w > MAX WAVELENGTHS then
8: return False
9: for each link (between nodes x, y) of the path do ▷ Iterate over all links of the path and add the new

wavelength
10: append w to link wavelength matrix[x][y]
11: path wavelength matrix[p[’source’]][p[’destination’]] ← w
12: return True

A.3.5 Routing a single Traffic Demand

The route path function implements the routing of a traffic demand, given a chosen path. It does so by

updating the load matrix and path matrix accordingly (updates all the links in the load matrix according

to the path and saves the path in the respective position of the path matrix). This function also checks,

during the process of updating the load matrix, if the load in a given link has reached the defined link
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capacity (MAX LINK CAP). If that is the case, the flag variable update net flag is set to True to indicate

that the network needs updating and the saturated links are added to a list of links to be removed. Later

on in the route function, the update network function will remove the links and determine new shortest

paths.

In the case where a traffic demand has traffic greater than one unit of traffic, it is necessary to see

if the traffic can be accommodated by all the links of the chosen path (defined by the link’s residual

capacity) before updating the load matrix and path matrix. If it cannot be accommodated, that traffic

demand will be blocked, and so the assigned wavelengths are removed from the respective links in

link wavelength matrix and from path wavelength matrix and the variable blocked flag is set to True,

to indicate that traffic demand needs to be blocked in the route function. Note that this process is not

necessary when one unit of traffic is considered, as in the way the routing is made, at this point of the

routing, the residual capacity in all links of a chosen path is at least one.

The route path function takes as input the current traffic demand to route (p), the load matrix, the

path matrix, the path wavelength matrix, the link wavelength matrix, the index in p[’path] of the path

chosen (chosen path) and an auxiliary variable (p aux) that always refers to the original traffic de-

mand (even after p is set to the one returned by update network) to keep track of the original traffic

value. It outputs a flag to set the network to be updated (update network flag), the links to be removed

(links to remove), and a flag to set the traffic demand to be blocked (blocked flag). The pseudo-code for

this function is presented below:

Algorithm 8: Route Path
Input: The traffic demand (p), the load matrix, path matrix, path wavelength matrix,
link wavelength matrix, the index in p[’path] of the chosen path (chosen path), and p aux.
Output: update network flag, links to remove and blocked flag

1: update net flag, blocked flag set to False and links to remove initialized as empty list
2: if p aux[’traffic’] > 1 then
3: for each link (between nodes x, y) of the path do
4: if load matrix[x][y] + p aux[’traffic’] > MAX LINK CAP then ▷ not enough capacity
5: blocked flag = True
6: if blocked flag is True then
7: Remove wavelength from path wavelength matrix and link wavelength matrix
8: path matrix[p[’source’]][p[’destination’]] ← 0
9: return update net flag, links to remove, blocked flag

10: path matrix[p[’source’]][p[’destination’]] ← p[’path’][chosen path]
11: for each link (between nodes x, y) of the path do
12: load matrix[x][y] ← load matrix[x][y] + p aux[’traffic’]
13: if load matrix[x][y] = MAX LINK CAP then
14: update net flag ← True
15: append link (x, y) to links to remove
16: return update net flag, links to remove, blocked flag
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A.3.6 Updating the Network

The update network function is called whenever a link has become congested and needs to be re-

moved (signaled in the route function by the update net flag). It receives as inputs a list of links to

remove (links to remove) and the graph, Gcopy. This function will recalculate the shortest-paths (by call-

ing function shortest paths, in Algorithm 4) and output the list of new shortest-paths. From that point on,

in the route function, the new shortest-paths will be the ones considered in the routing process (signaled

by new paths flag). This function is implemented as follows:

Algorithm 9: Update Network
Input: links to remove and the graph of the network, Gcopy.
Output: recalculated shortest-paths in list of lists with dictionaries structure (same as in section A.3.1),
new shortest paths.

1: for each link in links to remove do
2: Gcopy[link[0]][link[1]][’length’] ← 99999 ▷ Virtually remove the link from Gcopy
3: new shortest paths← shortest paths (see Algorithm 4)
4: for each path in new shortest paths do
5: for each p in path do ▷ Iterate over list of lists (same as described in section A.3.1)
6: if there are multiple possible paths then
7: Find the shortest path in number of hops and remove paths that are longer than the

shortest path
8: return new shortest paths
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A.4 Example of Capacitated Routing Application

Figure A.2 depicts a test network used to exemplify the use of the constrained routing algorithm, as

implemented in the routing nx program. A logical full-mesh topology was considered and the sorting

strategy used was the shortest-first. The link capacity considered was 5 units of traffic. The process

of wavelength assignment as well as the possibility of blocking due to wavelength unavailability was

ignored in this example, for the sake of simplicity. So this example focuses only on the assignment of

the paths (πk) associated to the traffic demands.

Figure A.2: Test Network - Physical Topology with the link lengths.

The first 46 traffic demands (the ones with distances 10, 20, 30 and four with distance 40) are routed

through the following paths: [1, 2], [2, 1], [1, 3], [3, 1], [2, 3], [3, 2], [3, 4], [4, 3], [3, 5], [5, 3], [6, 7], [7, 6],

[7, 8], [8, 7], [1, 3, 4], [4, 3, 1], [1, 3, 5], [5, 3, 1], [2, 3, 4], [4, 3, 2], [2, 3, 5], [5, 3, 2], [2, 7], [7, 2], [4, 3,

5], [5, 3, 4], [5, 8], [8, 5], [6, 7, 8], [8, 7, 6], [1, 2, 7], [7, 2, 1], [2, 6], [6, 2], [2, 7, 8], [8, 7, 2], [3, 2, 7], [7,

2, 3], [3, 5, 8], [8, 5, 3], [5, 8, 7], [7, 8, 5], [1, 2, 6], [6, 2, 1], [3, 2, 6] and [6, 2, 3].

The residual capacity of the network after the routing of these demands is represented in figure A.3.

Figure A.3: Test Network - Residual Capacity represented bidirectionally (1).

The next traffic demand to route is t(4,7) with the path [4,3,2,7], but since the link (3,2) has a residual

capacity of zero, an alternative routing path is determined: [4,3,7]. The computation of this path now
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excludes the saturated link (3,2). The same process is done for the traffic demand t(7,4).

Afterwards the traffic demand t(4,8) is routed. Normally this would be done through the shortest path

[4,3,5,8], but since the link (4,3) has now (after routing t(4,7)) residual capacity zero, an alternative path

is computed: [4,1,2,7,8]. The same occurs for the symmetric demand t(8,4).

After the routing of these paths, the residual capacity of the network is now represented in figure A.4.

Figure A.4: Test Network - Residual Capacity represented bidirectionally (2).

The next traffic demand to route is t(5,6). This would normally be routed through the path [5, 8, 7, 6],

but since the residual capacity of link (8,7) is zero, an alternative path needs to be determined. However,

since any alternative path to this one would necessarily include link (5,3) and this link’s residual capacity

is also zero, it is impossible to route the traffic demand t(5,6). This traffic is then blocked. The same

thing happens to the symmetric demand t(6,5).

The next traffic demands to route are t(1,8) and t(8,1). Given the residual capacities of the network,

it is also impossible to establish a path between these nodes, and so this traffic is also blocked.

Finally, the last traffic demands t(4,6) and t(6,4) are routed through paths [4, 1, 2, 6] and [6, 2, 1, 4].

The loads in each of the links at the end of the routing process are represented in figure A.5. The total

amount of blocked traffic is 4.

Figure A.5: Test Network - Loads in each link.
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A.5 Alternative Strategy for Wavelength and Fiber Assignment

With the goal of better optimizing the addition of fibers over the one described in Algorithm 3, an al-

ternative fiber assignment strategy was implemented and tested. In this alternative strategy, fiber and

wavelength assignment are made simultaneously during the routing process (and not afterwards, as in

the previous strategy) and so the function assign wavelengths and fibers replaces assign wavelengths

in the route function. This results in a different approach, where instead of counting the number of fibers

that need to be attributed given the traffic demands present in each link, the fibers are added during

the routing and the wavelengths are assigned so as to minimize the need for adding more fibers. The

pseudo-code for this strategy is presented below:

Algorithm 10: Wavelength and Fiber Assignment (Alternative Strategy)
Input: p, chosen path, path wavelength matrix, link wavelength matrix and max wl per fiber.
Output: Updated path wavelength matrix and link wavelength matrix.

1: Initialize tested combinations as empty list
2: for r in range {1, . . . , len(p[’path’][chosen path])} do ▷ Consider all possible combinations of

adding fibers to links, starting with 0 fibers added until a fiber is added to all links of a path.
3: link combinations ← all combinations of r links
4: for links in link combinations do
5: Add (in the link wavelength matrix) a fiber to the link or links in links
6: fiber combinations ← all combinations of fibers from all existing fibers of each link using the

values in link wavelength matrix (fibers that have no space for additional wavelengths are
excluded from the combinations)

7: Filter out tested combinations from fiber combinations ▷ Avoid repeated computations.
8: for fibers in fiber combinations do ▷ Consider each combination of fibers from different links

to check if there is a wavelength that fits.
9: w ← CHECK WAVELENGTHS(fibers)

10: if w is not None then ▷ If a w that fits a given set of fibers is found
11: path wavelength matrix[p[’source’]][p[’destination’]] ← w
12: return True
13: Append fibers to tested combinations
14: Remove the fibers added to the links to test next combination of fiber addition
15:
16: ▷ Function to find the wavelength that fits in a given combination of fibers. ◁
17: function CHECK WAVELENGTHS(fibers,w range = {1, . . . ,max wl per fiber})
18: all wavelengths ← set of all the wavelengths in all links of a path
19: possible wavelengths ← set of all possible wavelengths in w range
20: available wavelengths ← possible wavelengths − all wavelengths
21: if available wavelengths is empty then
22: return None
23: w ← min(available wavelengths)
24: for fiber in fibers do ▷ Add wavelength to all fibers in the path.
25: Append w to fiber
26: return w

In this strategy, for each traffic demand being routed, all combinations of addition of a fiber to each

link of that traffic demand’s path are tested. So this process is done on a per traffic demand basis (as
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the function assign wavelengths and fibers is called inside the main loop of route). It starts with the

case of adding no new fiber to any link, then moving on to the case with the combinations of adding a

single fiber to a link, then to the case with the combinations of adding two fibers to two links, etc., until

the limit case where a fiber is added to every single link of a path. For each case of fiber addition, the

combinations of fibers from the different links (including the already existing fibers and the added fibers)

are generated. For each one of these combinations the check wavelenghs function is called to check if it

is possible to find a wavelength (w) that fits the fibers being considered (assuring wavelength continuity).

If a wavelength is found then the process stops and the wavelength is added in the respective positions

of the path wavelength matrix and link wavelength matrix. If not, then the next combination of fibers is

tested, and then the next combination of fiber addition. In the limit case of no wavelength being found

after various fibers being added, in the last case, a fiber is added to each link of the path, and so a

wavelength is then guaranteed to be found, being thus impossible to have blocked traffic demands.

In this strategy, the fibers in each link as well as the wavelengths in each fiber are represented in the

link wavelength matrix, which has a different structure than in Algorithm 3. The link wavelength matrix

is now a matrix where each position has a list of lists, each inner list representing a different fiber, and

each fiber has multiple integers (from 1 to max wl per fiber ) representing the different wavelengths. So,

the list in position (i, j) of the link wavelength matrix represents the various wavelengths across different

fibers in the link between nodes i and j. After the routing process, a fiber link matrix equivalent to the

one used in Algorithm 3 is determined from the link wavelength matrix, being then used to determine

the metrics related to the fibers (total number of fibers in the network, total fiber cost in km, etc.).

This method assures that the number of additional fibers is minimized on each path, as before the

addition of any new fiber, each combination of existing fibers is considered. And when new fibers are

added, all possibilities of addition between all links are considered, before moving on to adding more

fibers. While this does not guarantee that the number of fibers is minimized network wide (as that

would require an even more complex algorithm that requires the repetition of the routing with each fiber

combination), tests show that it improves on the results of Algorithm 3. However, the computation times

became very long, especially in larger networks.

A.5.1 Application Example

To better understand the functioning of Algorithm 10 and see its advantage in terms of efficiency, a

simple example is presented. Figure A.6 represents part of a network, with the only nodes represented

being A, B, C and D, as well as the respective links, with a single fiber each. In this example each line

between the nodes represents a fiber, but note that each communication direction should have its own

fiber. For simplicity, the process described here considers the transmission in a single direction, but the

process is the exact same in the other communication direction.

89



Figure A.6: Algorithm 10 Example - Starting Point.

Assuming that, after a certain point in the routing process, the wavelengths present in each fiber

are the ones represented (as integers) above the links (resultant from the routing of traffic demands

between other nodes in the network that are not represented and whose paths make use of these

links). Considering also that the maximum number of optical channels per fiber (max wl per fiber ) is 5;

if the next traffic demand to be routed is the one between nodes A and D (tA,D) and the shortest path

associated to this traffic demand is [A,B,C,D], the process of wavelength and fiber assignment described

in Algorithm 10 will proceed as follows:

(1) Try to find a wavelength (integer between 1 and max wl per fiber ) that fits on the already existing

fibers (respecting wavelength continuity and the principle that two optical channels with the same

wavelength cannot co-exist on the same fiber). In this case the fiber combination tried is [lA,Bf1;

lB,Cf1; lC,Df1] (with lX,Y fn representing the fiber being considered, that is, in link between nodes

X and Y , fiber n). It is found that there is no wavelength that fits these fibers (as all wavelengths

between 1 and 5 are used across the links of the path between A and D).

(2) All combinations of addition of a single fiber to the path’s links are tested. That process starts with

the addition of a fiber to the link(A,B): lA,Bf2. The combination [lA,Bf2; lB,Cf1; lC,Df1] is tested.

Again, despite the newly added fiber, lA,Bf2, it is still not possible to find a wavelength that fits (as

wavelengths 1 through 5 are used in lB,Cf1; lC,Df1).

(3) The next fiber combination is tested. That is, a fiber is added to link(B,C), lB,Cf2 (note that lA,Bf2

is now removed, as the combinations being tested are of adding a single fiber). The test is made

with the fiber combination [lA,Bf1; lB,Cf2; lC,Df1]. With this new fiber it is now possible to find a

wavelength that fits: wavelength 4. Since a solution was found, the process is complete and the

next traffic demand will be routed (the main loop of Algorithm 2 continues on). The results of this

process are presented in Fig. A.7.

Figure A.7: Algorithm 10 Example - End Result.

This type of behavior can only happen if the fiber assignment is done together with the wavelength

assignment. If this example were to be done with Alg. 3, two additional fibers would have been added to

two links (A-B and C-D), instead of just one. However, it is important to note that, as the routing process

advances, the paths being considered get longer (more links), the links tend to have more fibers, and

each fiber more wavelengths. This makes the procedure of examining all combinations very slow.
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Appendix B

Additional Figures

B.1 Topology of Reference Networks

Figure B.1: NSFNET.
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Figure B.2: CESNET.

Figure B.3: COST239.

92



Figure B.4: DTAG.

Figure B.5: UBN.
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B.2 Bar Charts with the Link Loads for Constrained Routing Test

Figure B.6: Bidirectional Link loads of the CESNET for link capacity of 75.

Figure B.7: Bidirectional Link loads of the CESNET for link capacity of 3.

Figure B.8: Link loads of the NSFNET for link capacity of 75.
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Figure B.9: Link loads of the NSFNET for link capacity of 15.

Figure B.10: Link loads of the UBN for link capacity of 75.

Figure B.11: Link loads of the UBN for link capacity of 30.
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B.3 Structure of the DNN Models

Figure B.12: Structure of the First DNN Model (including the bias terms).
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Figure B.13: Structure of the Second DNN Model (including the bias terms).
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