
PIDs and UFDs

Abstract

Support notes for the Algebra course of LMAC, on the relations be-
tween principal ideal domains and unique factorization domains.
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0 Introduction

In what follows, R will always be assumed to be a fixed but arbitrary integral
domain. We introduce the following notation:

R̃ = R× ∪ {0}.

1 PIDs are Noetherian rings

This short section is only meant to establish a simple property of PIDs which
will be needed below.

§1. Definition. R is Noetherian if for all ideals I1 ⊂ I2 ⊂ I3 ⊂ · · · there
is n ∈ Z≥1 such that In = Ik for all k ≥ n (we say that every ascending
sequence of ideals eventually stabilizes).
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§2. Remark. The general definition of Noetherian ring, for noncommuta-
tive rings, applies both to left ideals and to right ideals, but in these notes
we are assuming that R is an integral domain, so we are only concerned with
commutative Noetherian rings.

§3. Lemma. Every PID is Noetherian.

Proof. Assume that R is a PID, and let I1 ⊂ I2 ⊂ I3 ⊂ · · · be an ascending
sequence of ideals. The union

I =
∞⋃
i1

Ui

is itself an ideal (exercise: verify this), so there is a ∈ R such that I = (a).
Then a ∈ I, so there is n such that a ∈ In, but then (a) ⊂ In, and thus
(a) = In = In+1 = · · · = I.

2 Irreducible elements

Let R be an integral domain.

§4. Definition. An element r ∈ R \ R̃ is irreducible if for all a, b ∈ R the
condition r = ab implies that either a ∈ R× or b ∈ R×.

§5. Definition. An element p ∈ R \ R̃ is prime if (p) is a prime ideal;
that is, if for all a, b ∈ R the condition p | ab implies either p | a or p | b.

§6. Definition. Elements a, b ∈ R are associated if there is u ∈ R× such
that a = ub.

§7. Example. In Z the irreducible elements are of the form p or −p for a
prime p. Two primes p and q are associated if and only if q = ±p.

§8. Lemma. Any prime element is irreducible. If R is a PID the converse
is true: any irreducible element is prime.
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Proof. Let p ∈ R be prime, and let p = ab for a, b ∈ R. Then p | ab, so
either p | a or p | b. Suppose p | a, and let r ∈ R be such that a = pr. Then
p = prb, so 1 = rb (because R is an integral domain), and thus b ∈ R×.
Similarly, if p | b we conclude that a ∈ R×, so p is irreducible.

Now assume that R is a PID, and assume that p is irreducible. In order
to prove that p is prime we show that (p) is a prime ideal, for which it suffices
to prove that (p) is a maximal ideal (indeed, (p) is prime if and only if (p)
is maximal because R is a PID). Let I be an ideal such that (p) ⊂ I. Since
R is a PID, let I = (m) for some m ∈ R. Then m | p, so p = mr for some
r ∈ R, and thus either m ∈ R× or r ∈ R× because we are assuming that p is
irreducible. If m ∈ R× then (m) = R, and if r ∈ R× then (p) = (m), so (p)
is indeed maximal.

§9. Example. In Z[
√
−5] there are irreducible elements which are not

prime. For instance, 9 = (2 +
√
−5)(2 −

√
−5), so 3 divides the product

(2 +
√
−5)(2 −

√
−5). But 3 does not divide either of the factors, so it is

not prime. However, it is irreducible. In order to verify the latter assertion,
let α, β ∈ Z[

√
−5] and assume that 3 is factored as 3 = αβ. Then, for the

usual norm on Z[
√
−5], we have 9 = N(α)N(β). Let β = a + b

√
−5. Then

N(β) = a2 + 5b2, so we obtain

9 = N(α)(a2 + 5b2)

and there are only three possibilities compatible with the factorization of 9
into primes:

1. a2 + 5b2 = 1, in which case a = ±1 and b = 0, so β ∈ R×;

2. a2 + 5b2 = 3, which is impossible;

3. a2 + 5b2 = 9, in which case N(α) = 1, so α = ±1 ∈ R×.

This shows that 3 is irreducible, despite not being prime. In particular, this
implies that Z[

√
−5] is not a PID.

§10. Exercise. Can there be an irreducible element which is not prime in
Z[
√
−1]?

3 Reducible elements

Let again R be an integral domain.
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§11. Definition. An element r ∈ R\ R̃ is reducible if it is not irreducible.
Let us also say that the reducible element r is finitely reducible if r has
a factorization p1 · · · pn for irreducible elements p1, . . . , pn, and that it is
infinitely reducible otherwise.

§12. Note. Note that an element r is reducible if and only if r = r1r2 for
some r1, r2 ∈ R \ R̃.

§13. Lemma. The set of finitely reducible elements of R is closed under
multiplication.

Proof. If both r and s are finitely reducible there are factorizations into
irreducibles r = r1 · · · rn and s = s1 · · · sm, and thus rs has the factorization
r1 · · · rns1 · · · sm, so it is finitely reducible.

§14. Lemma. If r ∈ R\ R̃ is infinitely reducible there is another infinitely

reducible element s ∈ R \ R̃ such that (r) ( (s).

Proof. Let r be infinitely reducible. Since r is reducible, it is a product
r = ss′ with both s, s′ ∈ R\ R̃. By the previous lemma, one of s and s′ needs
to be infinitely reducible, so we may assume that s is infinitely reducible.
Since s | r, we have (r) ⊂ (s). If we had (r) = (s) the elements r and
s would be associated, i.e., there would be an element u ∈ R× such that
r = su, and therefore r = ss′ = su, which in turn implies s′ = u because R
is an integral domain. But this is a contradiction because s′ ∈ R \ R̃ and
u ∈ R×, so we must have (r) 6= (s).

§15. Theorem. If R is Noetherian then its reducible elements are finitely
reducible.

Proof. We shall prove that if R has an infinitely reducible element then
it cannot be Noetherian. Let r1 is an infinitely reducible element. By the
previous lemma there is another infinitely reducible element r2 such that
(r1) ( (r2). In turn, again by the lemma, there is another infinitely reducible
element r3 such that (r2) ( (r3), etc. We thus obtain a sequence (rn)n∈Z≥1

of elements of R such that
(ri) ( (ri+1)

for all i ∈ Z≥1. This is a sequence of ideals that never stabilizes, and thus R
is not Noetherian.
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§16. Corollary. If R is a PID then its reducible elements are finitely
reducible.

4 Unique factorization domains

§17. Definition. R is said to be a unique factorization domain (UFD) if

for all r ∈ R \ R̃ the following conditions hold:

1. There are irreducible elements p1, . . . , pn such that r = p1 · · · pn;

2. This factorization is unique up to multiplication by invertibles; that is,
if r = q1 · · · qm for irreducible elements q1, . . . , qm then m = n and there
is a permutation σ ∈ Sn such that for all i = 1, . . . , n the irreducibles
pi and qσ(i) are associated.

§18. Example. Any field is a UFD.

§19. Example. It can be proved (but we will not see it here) that if R is
a UFD then so is R[x]. In particular, as is well known, Z[x] is a UFD.

§20. Theorem. Any PID is a UFD.

Proof. Assume that R is a PID, and let us prove that it is a UFD. Let
r ∈ R \ R̃. By the previous corollary, r is either irreducible or finitely
reducible, so r can be factored as a product of irreducibles

r = p1 · · · pn

with n ≥ 1. Now let us prove the uniqueness of this factorization. Let there
be another factorization into irreducibles

r = q1 · · · qm.

Now we use the fact that in a PID the irreducibles are primes (cf. §8). Each
pi divides r, so it must divide some qj because pi is prime. This means that
qj = pia for some a ∈ R, but the fact that qj is irreducible forces a to be
invertible (pi cannot be invertible because it is irreducible), so qj and pi are
associated. So for each i the irreducible pi is associated to some qj. Similarly,
for each j the irreducible qj is associated to some pi.

Let us now finish the proof by induction on n.
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The induction base is the case n = 1, in which r = p1. Then m ≥ 1
because p1 must be associated to at least one qj, but m > 1 is impossible
because then p1 would not be irreducible, a contradiction. Hence, m = 1 and
q1 is associated to p1, which finishes the induction base.

Now the induction step. As induction hypothesis let n ∈ Z≥1 and assume
that if r has a factorization into irreducibles r = p1 · · · pn then for any other
factorization into irreducibles r = q1 · · · qm we have m = n and there is a
permutation υ ∈ Sn such that for all i the irreducible pi is associated to qυ(i).
Let there be two factorizations into irreducibles

r = p1 · · · pn+1 = q1 · · · qm.

There is j such that pn+1 and qj are associated. Let τ = (j m) ∈ Sm, and
for each k = 1, . . . ,m define sk = qτ(k). So we have

r = p1 · · · pn+1 = s1 · · · sm,

and pn+1 and sm are associated, so there is u ∈ R× such that sm = upn+1,
and thus

p1 · · · pn+1 = us1 · · · sm−1pn+1.

Since R is an integral domain it follows that

p1 · · · pn = us1 · · · sm−1,

and thus, using the induction hypothesis, we obtain m− 1 = n and there is
a permutation υ ∈ Sn such that pi is associated to sυ(i) for each i = 1, . . . , n.
Finally, define σ ∈ Sn+1 as follows:

σ(i) =

{
τ(υ(i)) if i ≤ n,
j if i = n+ 1.

So for each i = 1, . . . , n + 1 the irreducibles pi and qσ(i) are associated, thus
ending the proof.

Since Z is a PID, its primes coincide with its irreducibles, and the conclu-
sion that Z is also a UFD shows that every integer has a unique factorization
into primes (up to signs). In other words, the fundamental theorem of arith-
metic is a corollary of the above theorem.

§21. Example. Since Z[x] is a UFD but not a PID (because (2, x) is not
principal), we conclude that the class of UFDs is strictly larger than that of
PIDs.
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Notice that in the proof of the above theorem we needed to use the fact
that in a PID the irreducibles are prime, but it turns out that UFDs have
the same property:

§22. Lemma. Assume that R is a UFD and let p ∈ R \ R̃. Then p is
prime if and only if p is irreducible.

Proof. Since in an integral domain any prime is irreducible, we only need to
prove the converse. So assume that p is irreducible, and let us prove that it is
prime. Let p | ab, and let r ∈ R be such that ab = pr. Let the factorizations
of a and b into irreducibles be given by

a = a1 · · · an and b = b1 · · · bm.

Then, since R is a UFD, there is either i such that p and ai and associated
or there is j such that p and bj are associated. Therefore we either have p | a
or p | b, which proves that p is prime.

§23. Warning! We have proved that every PID is a UFD and that in
every UFD the primes coincide with the irreducibles, from which it seems to
logically follow that in every PID the primes coincide with the irreducibles.
Therefore the independent proof of the latter fact that we gave earlier might
appear to be redundant. However, it is not redundant because we needed to
use it in order to prove that PIDs are UFDs.

§24. Example. We have seen above that 3 is irreducible in the ring
Z[
√
−5] but it is not prime, and noted that, due to this, Z[

√
−5] is not a PID.

But the previous lemma also shows that Z[
√
−5] is not a UFD, thus showing

that the class of integral domains is strictly larger than that of UFDs.
It could also be seen directly from the definition of UFD that Z[

√
−5] is

not a UFD, by noting that 6 has two distinct factorizations into irreducibles:

6 = 2× 3 = (1 +
√
−5)(1−

√
−5).

§25. Example. Z[2i] is not a UFD because 4 has two distinct factoriza-
tions:

4 = 2× 2 = 2i× (−2i).

Notice that the factorizations really are distinct because the invertible ele-
ment that would make 2 and 2i associated exists in Z[i] but not in Z[2i].
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5 Complements

We have seen that there are the following inclusions of classes:

fields ⊂ EDs ⊂ PIDs ⊂ UFDs ⊂ integral domains.

All the inclusions are strict, and examples that prove the strictness of the
inclusions are:

• fields 6= EDs — Z is an ED but not a field; similarly for F [x] with F a
field.

• PIDs 6= UFDs — Z[x] is a UFD but not a PID (not even a Bezout
domain, because the ideal (2, x) is not principal).

• UFDs 6= integral domains — Z[
√
−4] is an integral domain (because it

is contained in the field Q(
√
−4)) but it is not a UFD (this was seen

in one of the above examples); similarly for Z[
√
−5].

• EDs 6= PIDs — a separating example is the ring of quadratic integers

OQ(
√
−19) = Z

[
1 +
√
−19

2

]
,

which is a PID but not a euclidean domain. The proof of this was
omitted in these notes, but it can be found in Dummit&Foote’s book
on pages 276 (last two lines) and 277, which prove that OQ(

√
−19) is not

a euclidean domain, and on pages 281 and 282, which prove that it is
a PID.
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