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Preface

There is no shortage of books on Commutative Algebra, but the present book is
different. Most books are monographs, with extensive coverage. But there is one
notable exception: Atiyah and Macdonald’s 1969 classic [4]. It is a clear, concise,
and efficient textbook, aimed at beginners, with a good selection of topics. So it
has remained popular. However, its age and flaws do show. So there is need for an
updated and improved version, which the present book aims to be.

Atiyah and Macdonald explain their philosophy in their introduction. They say
their book “has the modest aim of providing a rapid introduction to the subject.
It is designed to be read by students who have had a first elementary course in
general algebra. On the other hand, it is not intended as a substitute for the more
voluminous tracts on Commutative Algebra. . . . The lecture-note origin of this book
accounts for the rather terse style, with little general padding, and for the condensed
account of many proofs.” They “resisted the temptation to expand it in the hope
that the brevity of [the] presentation will make clearer the mathematical structure
of what is by now an elegant and attractive theory.” They endeavor “to build up to
the main theorems in a succession of simple steps and to omit routine verifications.”

Atiyah and Macdonald’s successful philosophy is wholeheartedly embraced below
(it is a feature, not a flaw!), and also refined a bit. The present book also “grew out
of a course of lectures.” That course was based primarily on their book, but has
been offered a number of times, and has evolved over the years, influenced by other
publications, especially [16], and the reactions of the students. That course had
as prerequisite a “first elementary course in general algebra” based on [3]. Below,
to further clarify and streamline the “mathematical structure” of the theory, the
theory is usually developed in its natural generality, where the settings are just
what is appropriate for the arguments.

Atiyah and Macdonald’s book comprises eleven chapters, split into forty-two
sections. The present book comprises twenty-six chapters; each chapter represents
a single lecture, and is self-contained. Lecturers are encouraged to emphasize the
meaning of statements and the ideas of proofs, especially those in the longer and
richer chapters, “waving their hands” and leaving the details for students to read
on their own and to discuss with others.

Atiyah and Macdonald “provided . . . exercises at the end of each chapter,” as well
as some exercises within the text. They “provided hints, and sometimes complete
solutions, to the hard” exercises. Furthermore, they developed a significant amount
of new material in the exercises. By contrast, in the present book, the exercises are
more closely tied in to the text, and complete solutions are given in the second part
of the book. Doing so lengthened the book considerably. The solutions fill nearly as
much space as the text. Moreover, seven chapters have appendices; they elaborate
on important issues, most stemming from Atiyah and Macdonald’s exercises.

There are 585 exercises below, including all of Atiyah and Macdonald’s. The
disposition of the latter is indicated in a special index. The 578 also include many
exercises that come from other publications and many that originate here. Here
the exercises are tailored to provide a means for students to check, to solidify, and
to expand their understanding. The 578 are intentionally not difficult, tricky, or
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involved. Rarely do they introduce new techniques, although some introduce new
concepts, and many are used later. All the exercises within the text are used right
away. Another special index indicates all the exercises that are used, and where.

Students are encouraged to try to solve lots of exercises, without first reading
the solutions. If they become stuck on an exercise, then they should review the
relevant material; if they remain stuck, then they should change tack by studying
the solution, possibly discussing it with others, but always making sure they can,
eventually, solve the whole exercise entirely on their own. In any event, students
should always read the given solutions, just to make sure they haven’t missed any
details; also, some solutions provide enlightening alternative arguments.

As to prioritizing the exercises, here is one reasonable order: first, those that
appear within the text; second, those that are used more often, as indicated in the
index, “Use of the Exercises . . . ”; third, those whose solutions are less involved, as
indicated by their length; fourth, those whose statements sound interesting; fifth,
those stemming from the exercises in Atiyah and Macdonald’s book, as indicated in
the index, “Disposition . . . .” Of course, no one should exhaust all the exercises of
one level of priority before considering exercises of lower level; rather, if there’s no
other good reason to choose one exercise over another, then the order of priorities
could serve as the deciding factor.

Instructors are encouraged to assign six exercises with short solutions, say a
paragraph or two long, per lecture, and to ask students to write up solutions in
their own words. Instructors are encouraged to examine students, possibly orally
at a blackboard, possibly via written tests, on a small, randomly chosen subset of
the assigned exercises. For use during each exam, instructors are urged to provide
each student with a copy of the book that omits the solutions. A reasonable way
to grade is to count the exerecises as 30%, a midterm as 30%, and a final as 40%.

Atiyah and Macdonald explain that “a proper treatment of Homological Algebra
is impossible within the confines of a small book; on the other hand, it is hardly
sensible to ignore it completely.” So they “use elementary homological methods—
exact sequence, diagrams, etc.—but . . . stop short of any results requiring a deep
study of homology.” Again, their philosophy is embraced and refined in the present
book. Notably, below, elementary methods are used, not Tor’s as they do, to prove
the Ideal Criterion for flatness, and to prove that, over local rings, flat modules are
free. Also, projective modules are treated below, but not in their book.

In the present book, Category Theory is a basic tool; in Atiyah and Macdonald’s,
it seems like a foreign language. Thus they discuss the universal (mapping) property
(UMP) of localization of a ring, but provide an ad hoc characterization. They also
prove the UMP of tensor product of modules, but do not name it this time. Below,
the UMP is fundamental: there are many standard constructions; each has a UMP,
which serves to characterize the resulting object up to unique isomorphism owing
to one general observation of Category Theory. For example, the Left Exactness of
Hom is viewed simply as expressing in other words that the kernel and the cokernel
of a map are characterized by their UMPs; by contrast, Atiyah and Macdonald
prove the Left Exactness via a tedious elementary argument.

Atiyah and Macdonald prove the Adjoint-Associativity Formula. They note it
says that Tensor Product is the left adjoint of Hom. From it and the Left Exactness
of Hom, they deduce the Right Exactness of Tensor Product. They note that this
derivation shows that any “left adjoint is right exact.” More generally, as explained
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below, this derivation shows that any left adjoint preserves arbitrary direct limits,
ones indexed by any small category. Atiyah and Macdonald consider only direct
limits indexed by a directed set, and sketch an ad hoc argument showing that tensor
product preserves direct limit. Also, arbitrary direct sums are direct limits indexed
by a discrete category (it is not a directed set); hence, the general result yields that
Tensor Product and other left adjoints preserve arbitrary Direct Sum.

Below, left adjoints are proved unique up to unique isomorphism. Therefore,
the functor of localization of a module is canonically isomorphic to the functor of
tensor product with the localized base ring, as both are left adjoints of the same
functor, Restriction of Scalars from the localized ring to the base ring. There is an
alternative argument: since Localization is a left adjoint, it preserves Direct Sum
and Cokernel; whence, it is isomorphic to that tensor-product functor by Watts
Theorem, which characterizes all tensor-product functors as those linear functors
that preserve Direct Sum and Cokernel. Atiyah and Macdonald’s treatment is ad
hoc. However, they do use the proof of Watts Theorem directly to show that,
under the appropriate conditions, Completion of a module is Tensor Product with
the completed base ring.

Below, Direct Limit is also considered as a functor, defined on the appropriate
category of functors. As such, Direct Limit is a left adjoint. Hence, direct limits
preserve other direct limits. Here the theory briefly climbs to a higher level of
abstraction. The discussion is completely elementary, but by far the most abstract
in the book. The extra abstraction can be difficult, especially for beginners.

Below, filtered direct limits are treated too. They are closer to the kind of limits
treated by Atiyah and Macdonald. In particular, filtered direct limits preserve
exactness and flatness. Further, they appear in the following lovely form of Lazard’s
Theorem: in a canonical way, every module is the direct limit of free modules of
finite rank; moreover, the module is flat if and only if that direct limit is filtered.

Atiyah and Macdonald treat primary decomposition in a somewhat dated way.
First, they study primary decompositions of ideals. Then, in the exercises, they
indicate how to translate the theory to modules. Associated primes play a secondary
role: they are defined as the radicals of the primary components, then characterized
as the primes that are the radicals of annihilators of elements. Finally, when the
rings and modules are Noetherian, primary decompositions are proved to exist, and
associated primes to be annihilators themselves.

Below, as is standard nowadays, associated primes of modules are studied right
from the start; they are defined as the primes that are annihilators of elements.
Submodules are called primary if the quotient modules have only one associated
prime. Below, Atiyah and Macdonald’s primary submodules are called old-primary
submodules, and they are studied too, mostly in an appendix. In the Noetherian
case, the two notions agree; so the two studies provide alternative proofs.

Below, general dimension theory is developed for Noetherian modules; whereas,
Atiyah and Macdonald treat only Noetherian rings. Moreover, the modules below
are often assumed to be semilocal— that is, their annihilator lies in only finitely
many maximal ideals—correspondingly, Atiyah and Macdonald’s rings are local.

There are several other significant differences between Atiyah and Macdonald’s
treatment and the one below. First, the Noether Normalization Lemma is proved
below in a stronger form for nested sequences of ideals; consequently, for algebras
that are finitely generated over a field, dimension theory can be developed directly
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and more extensively, without treating Noetherian local rings first (see (21.24) for
the latter approach). Second, in a number of results below, the modules are assumed
to be finitely presented over an arbitrary ring, rather than finitely generated over a
Noetherian ring. Third, there is an elementary treatment of regular sequences below
and a proof of Serre’s Criterion for Normality; this important topic is developed
further in an appendix. Fourth, below, the Adjoint-Associativity Formula is proved
over a pair of base rings; hence, it yields both a left and a right adjoint to the functor
of restriction of scalars.

Many people have contributed to the quality of the present book. Pavel Etingof
and Bjorn Poonen lectured from an earlier edition, and Dan Grayson and Amnon
Yekutieli read parts of it; all four have made a number of good comments and
suggestions, which were incorporated. Many people have pointed out typos, which
were corrected. For this service to the community, the authors are grateful, and
they welcome any future such remarks from anyone.

It is rarely easy to learn anything new of substance, value, and beauty, like
Commutative Algebra, but it is always satisfying, enjoyable, and worthwhile to do
so. The authors bid their readers much success in learning Commutative Algebra.

Allen B. Altman and Steven L. Kleiman
July 2017
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Part I

Subject Matter



1. Rings and Ideals

We begin by reviewing and developing basic notions and conventions to set the
stage. Throughout this book, we emphasize universal mapping properties (UMPs);
they are used to characterize notions and to make constructions. So, although
polynomial rings and residue rings should already be familiar in other ways, we
present their UMPs immediately, and use them extensively. We also discuss Boolean
rings, idempotents, and the Chinese Remainder Theorem.

A. Text

(1.1) (Rings). — Recall that a ring R is an abelian group, written additively, with
an associative multiplication that is distributive over the addition.

Throughout this book, every ring has a multiplicative identity, denoted by 1.
Further, every ring is commutative (that is, xy = yx in it), with an occasional
exception, which is always marked (normally, it’s a ring of matrices).

As usual, the additive identity is denoted by 0. Note that, for any x in R,

x · 0 = 0;

indeed, x · 0 = x(0 + 0) = x · 0 + x · 0, and x · 0 can be canceled by adding −(x · 0).
We allow 1 = 0. If 1 = 0, then R = 0; indeed, x = x · 1 = x · 0 = 0 for any x.
A unit is an element u with a reciprocal 1/u such that u·1/u = 1. Alternatively,

1/u is denoted u−1 and is called the multiplicative inverse of u. The units form
a multiplicative group, denoted R×.

For example, the ordinary integers form a ring Z, and its units are 1 and −1.
A ring homomorphism, or simply a ring map, ϕ : R→ R′ is a map preserving

sums, products, and 1. Clearly, ϕ(R×) ⊂ R′×. We call ϕ an isomorphism if it is
bijective, and then we write ϕ : R ∼−→ R′. We call ϕ an endomorphism if R′ = R.
We call ϕ an automorphism if it is bijective and if R′ = R.
If there is an unnamed isomorphism between rings R and R′, then we write

R = R′ when it is canonical; that is, it does not depend on any artificial choices,
so that for all practical purposes, R and R′ are the same—they are just copies of
each other. For example, the polynomial rings R[X] and R[Y ] in variables X and
Y are canonically isomorphic when X and Y are identified. (Recognizing that an
isomorphism is canonical can provide insight and obviate verifications. The notion
is psychological, and depends on the context.) Otherwise, we write R % R′.

A subset R′′ ⊂ R is a subring if R′′ is a ring and the inclusion R′′ ↪→ R a ring
map. In this case, we call R a extension (ring) of R′, and the inclusion R′′ ↪→ R
an extension (of rings) or a (ring) extension. For example, given a ring map
ϕ : R → R′, its image Im(ϕ) := ϕ(R) is a subring of R′. We call ϕ : R → R′ an
extension of ϕ′′ : R′′ → R′, and we say that ϕ′′ extends to ϕ if ϕ|R′′ = ϕ′′.
An R-algebra is a ring R′ that comes equipped with a ring map ϕ : R → R′,

called the structure map. To indicate that R′ is an R-algebra without referring
to ϕ, we write R′/R. For example, every ring is canonically a Z-algebra. An R-
algebra homomorphism, or R-map, R′ → R′′ is a ring map between R-algebras
compatible with their structure maps.
A group G is said to act on R if there is a homomorphism given from G into the

2



Rings and Ideals (1.2)
/
(1.4) Text

group of automorphisms of R. Normally, we identify each g ∈ G with its associated
automorphism. The ring of invariants RG is the subring defined by

RG := {x ∈ R | gx = g for all g ∈ G}.
Similarly, a group G is said to act on R′/R if G acts on R′ and each g ∈ G is an

R-map. Note that R′G is an R-subalgebra.

(1.2) (Boolean rings). — The simplest nonzero ring has two elements, 0 and 1. It
is unique, and denoted F2.

Given any ring R and any set X, let RX denote the set of functions f : X → R.
Then RX is, clearly, a ring under valuewise addition and multiplication.
For example, take R := F2. Given f : X → R, put S := f−1{1}. Then f(x) = 1

if x ∈ S, and f(x) = 0 if x /∈ S; in other words, f is the characteristic function
χS . Thus the characteristic functions form a ring, namely, FX

2 .
Given T ⊂ X, clearly χS · χT = χS∩T . Further, χS + χT = χS&T , where S'T

is the symmetric difference:

S'T := (S ∪ T )− (S ∩ T ) = (S − T ) ∪ (T − S);

here S − T denotes, as usual, the set of elements of S not in T . Thus the subsets
of X form a ring: sum is symmetric difference, and product is intersection. This
ring is canonically isomorphic to FX

2 .
A ring B is called Boolean if f2 = f for all f ∈ B. If so, then 2f = 0 as

2f = (f + f)2 = f2 + 2f + f2 = 4f . For example, FX
2 is, plainly, Boolean.

Suppose X is a topological space, and give F2 the discrete topology; that is,
every subset is both open and closed. Consider the continuous functions f : X → F2.
Clearly, they are just the χS where S is both open and closed. Clearly, they form
a Boolean subring of FX

2 . Conversely, Stone’s Theorem (13.44) asserts that every
Boolean ring is canonically isomorphic to the ring of continuous functions from a
compact Hausdorff topological space X to F2, or equivalently, isomorphic to the ring
of open and closed subsets of X.

(1.3) (Polynomial rings). — Let R be a ring, P := R[X1, . . . , Xn] the polynomial
ring in n variables (see [3, pp. 352–3] or [11, p. 268]). Recall that P has this
Universal Mapping Property (UMP): given a ring map ϕ : R → R′ and given
an element xi of R′ for each i, there is a unique ring map π : P → R′ with π|R = ϕ
and π(Xi) = xi. In fact, since π is a ring map, necessarily π is given by the formula:

π
(∑

a(i1,...,in)X
i1
1 · · ·Xin

n

)
=

∑
ϕ(a(i1,...,in))x

i1
1 · · ·xin

n . (1.3.1)

In other words, P is universal among R-algebras equipped with a list of n elements:
P is one, and P maps uniquely to any other with the lists are respected.

Similarly, let X := {Xλ}λ∈Λ be any set of variables. Set P ′ := R[X]; the elements
of P ′ are the polynomials in any finitely many of the Xλ; sum and product are
defined as in P . Thus P ′ contains as a subring the polynomial ring in any finitely
many Xλ, and P ′ is the union of these subrings. Clearly, P ′ has essentially the
same UMP as P : given ϕ : R→ R′ and given xλ ∈ R′ for each λ, there is a unique
π : P ′ → R′ with π|R = ϕ and π(Xλ) = xλ.

(1.4) (Ideals). — Let R be a ring. Recall that a subset a is called an ideal if

(1) 0 ∈ a,
(2) whenever a, b ∈ a, also a+ b ∈ a, and

3



Rings and Ideals (1.5)
/
(1.5) Text

(3) whenever x ∈ R and a ∈ a, also xa ∈ a.

Given a subset a ⊂ R, by the ideal 〈a〉 that a generates, we mean the smallest
ideal containing a. Given elements aλ ∈ R for λ ∈ Λ, by the ideal they generate,
we mean the ideal generated by the set {aλ}. If Λ = ∅, then this ideal consists just
of 0. If Λ = {1, . . . , n}, then the ideal is usually denoted by 〈a1, . . . , an〉.

Any ideal containing all the aλ contains any (finite) linear combination
∑

xλaλ
with xλ ∈ R and almost all 0. Form the set a, or

∑
Raλ, of all such linear

combinations. Plainly, a is an ideal containing all aλ, so is the ideal they generate.

Given an ideal a and elements aλ that generate it, we call the aλ generators.

Given a single element a, we say that the ideal 〈a〉 is principal. By the preceding
observation, 〈a〉 is equal to the set of all multiples xa with x ∈ R.

Given a number of ideals aλ, by their sum
∑

aλ, we mean the set of all finite
linear combinations

∑
xλaλ with xλ ∈ R and aλ ∈ aλ. Plainly,

∑
aλ is equal to

the ideal the aλ generate, namely, the smallest ideal that contains all aλ.

By the intersection
⋂

aλ, we mean the intersection as sets. It is plainly an ideal.

If the aλ are finite in number, by their product
∏

aλ, we mean the ideal gener-
ated by all products

∏
aλ with aλ ∈ aλ.

Given two ideals a and b, by the transporter of b into a, we mean the set

(a : b) := {x ∈ R | xb ⊂ a}.

Plainly, (a : b) is an ideal. Plainly,

ab ⊂ a ∩ b ⊂ a+ b, a, b ⊂ a+ b, and a ⊂ (a : b).

Further, for any ideal c, the distributive law holds: a(b+ c) = ab+ ac.

Given an ideal a, notice a = R if and only if 1 ∈ a. Indeed, if 1 ∈ a, then
x = x · 1 ∈ a for every x ∈ R. It follows that a = R if and only if a contains a
unit. Further, if 〈x〉 = R, then x is a unit, since then there is an element y such
that xy = 1. If a -= R, then a is said to be proper.

Given a ring map ϕ : R → R′, denote by aR′ or ae the ideal of R′ generated by
the set ϕ(a). We call it the extension of a.

Given an ideal a′ of R′, its preimage ϕ−1(a′) is, plainly, an ideal of R. We call
ϕ−1(a′) the contraction of a′ and sometimes denote it by a′c.

(1.5) (Residue rings). — Let ϕ : R→ R′ be a ring map. Recall its kernel Ker(ϕ)
is defined to be the ideal ϕ−1(0) of R. Recall Ker(ϕ) = 0 if and only if ϕ is injective.

Conversely, let a be an ideal of R. Form the set of cosets of a:

R/a := {x+ a | x ∈ R}.

Recall that R/a inherits a ring structure, and is called the residue ring or quo-
tient ring or factor ring of R modulo a. Form the quotient map

κ : R→ R/a by κx := x+ a.

The element κx ∈ R/a is called the residue of x. Clearly, κ is surjective, κ is a
ring map, and κ has kernel a. Thus every ideal is a kernel!

Note that Ker(ϕ) ⊃ a if and only if ϕa = 0.

Recall that, if Ker(ϕ) ⊃ a, then there is a ring map ψ : R/a→ R′ with ψκ = ϕ;

4
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/
(1.6) Text

that is, the following diagram is commutative:

R R/a

R′

!!κ

""
ϕ

##
ψ

Conversely, if ψ exists, then Ker(ϕ) ⊃ a, or ϕa = 0, or aR′ = 0, since κa = 0.
Further, if ψ exists, then ψ is unique as κ is surjective.
Finally, as κ is surjective, if ψ exists, then ψ is surjective if and only if ϕ is so.

In addition, then ψ is injective if and only if a = Ker(ϕ). Hence then ψ is an
isomorphism if and only if ϕ is surjective and a = Ker(ϕ). Therefore, always

R/Ker(ϕ) ∼−→ Im(ϕ). (1.5.1)

In practice, it is usually more productive to view R/a not as a set of cosets,
but simply as another ring R′ that comes equipped with a surjective ring map
ϕ : R→ R′ whose kernel is the given ideal a.

Finally, R/a has, as we saw, this UMP: κ(a) = 0, and given ϕ : R→ R′ such that
ϕ(a) = 0, there is a unique ring map ψ : R/a → R′ such that ψκ = ϕ. In other
words, R/a is universal among R-algebras R′ such that aR′ = 0.

Above, if a is the ideal generated by elements aλ, then the UMP can be usefully
rephrased as follows: κ(aλ) = 0 for all λ, and given ϕ : R→ R′ such that ϕ(aλ) = 0
for all λ, there is a unique ring map ψ : R/a→ R′ such that ψκ = ϕ.

The UMP serves to determine R/a up to unique isomorphism. Indeed, say R′,
equipped with ϕ : R → R′, has the UMP too. Then ϕ(a) = 0; so there is a unique
ψ : R/a→ R′ with ψκ = ϕ. And κ(a) = 0; so there is a unique ψ′ : R′ → R/a with
ψ′ϕ = κ. Then, as shown, (ψ′ψ)κ = κ, but 1 ◦ κ = κ where 1

R/a

R R′

R/a
##

1

$$ ψ

!!
ϕ

%%

κ

&&
κ

''

ψ′

is the identity map of R/a; hence, ψ′ψ = 1 by uniqueness. Similarly, ψψ′ = 1 where
1 now stands for the identity map of R′. Thus ψ and ψ′ are inverse isomorphisms.

The preceding proof is completely formal, and so works widely. There are many
more constructions to come, and each one has an associated UMP, which therefore
serves to determine the construction up to unique isomorphism.

Proposition (1.6). — Let R be a ring, P := R[X] the polynomial ring in one
variable, a ∈ R, and π : P → R the R-algebra map defined by π(X) := a. Then

(1) Ker(π) = {F (X) ∈ P | F (a) = 0} = 〈X − a〉 and (2) P/〈X − a〉 ∼−→ R.

Proof: Set G := X − a. Given F ∈ P , let’s show F = GH + r with H ∈ P and
r ∈ R. By linearity, we may assume F := Xn. If n ≥ 1, then F = (G+ a)Xn−1, so
F = GH + aXn−1 with H := Xn−1. If n− 1 ≥ 1, repeat with F := Xn−1. Etc.

Then π(F ) = π(G)π(H) + π(r) = r. Hence F ∈ Ker(π) if and only if F = GH.
But π(F ) = F (a) by (1.3.1). Thus (1) holds. So (1.5.1) yields (2). !
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(1.7) (Degree of a polynomial). — Let R be a ring, P the polynomial ring in
any number of variables. Given a nonzero F ∈ P , recall that its (total) degree,
deg(F ), is defined as follows: if F is a monomial M, then its degree deg(M) is the
sum of its exponents; in general, deg(F ) is the largest deg(M) of all monomials M
in F .

Given any G ∈ P with FG nonzero, notice that

deg(FG) ≤ deg(F ) + deg(G). (1.7.1)

Indeed, any monomial in FG is the product MN of a monomial M in F and a
monomial N in G. Further, deg(MN) = deg(M) + deg(N) ≤ deg(F ) + deg(G).

However, equality need not hold. For example, suppose that there is only one
variable X, that F = aXm + · · · and G = bXn + · · · with m = deg(F ) and
n = deg(G), and that ab = 0. Then deg(FG) < mn.
Note also that, if a -= b, then the polynomial X2 − (a+ b)X has degree 2, but at

least three distinct zeros: 0, a, b.

(1.8) (Order of a polynomial). — Let R be a ring, P the polynomial ring in
variables Xλ for λ ∈ Λ, and (xλ) ∈ RΛ a vector. Let ϕ(xλ) : P → P denote the
R-algebra map defined by ϕ(xλ)Xµ := Xµ + xµ for all µ ∈ Λ. Plainly ϕ(xλ) is an
automorphism with inverse ϕ(−xλ). Fix a nonzero F ∈ P .

The order of F at the zero vector (0), denoted ord(0)F , is defined as the smallest
deg(M) of all the monomials M in F . In general, the order of F at the vector
(xλ), denoted ord(xλ)F , is defined by the formula: ord(xλ)F := ord(0)(ϕ(xλ)F ).

Notice that ord(xλ)F = 0 if and only if F (xλ) -= 0. Indeed, the equivalence is
obvious if (xλ) = (0). Thus it always holds, as (ϕ(xλ)F )(0) = F (xλ).

Given µ and x ∈ R, form Fµ,x by substituting x for Xµ in F . If Fµ,xµ -= 0, then

ord(xλ)F ≤ ord(xλ)Fµ,xµ . (1.8.1)

Indeed, if xµ = 0, then Fµ,xµ is the sum of the terms without Xµ in F . Hence,
if (xλ) = (0), then (1.8.1) holds. But substituting 0 for Xµ in ϕ(xλ)F is the
same as substituting xµ for Xµ in F and then applying ϕ(xλ) to the result; that is,
(ϕ(xλ)F )µ,0 = ϕ(xλ)Fµ,xµ . Thus (1.8.1) always holds.

Of course, Fµ,x lies in the polynomial subring in the variables Xλ for all λ -= µ.
Let (x̌µ) be the vector of xλ for all λ -= µ. If Fµ,xµ -= 0, then

ord(xλ)Fµ,xµ = ord(x̌µ)Fµ,xµ . (1.8.2)

Plainly, (1.8.2) holds if (xλ) = (0). So it always holds, as ϕ(xλ)Fµ,xµ = ϕ(x̌µ)Fµ,xµ .
Given any G ∈ P with FG nonzero, notice that

ord(xλ)FG ≥ ord(xλ)F + ord(xλ)G, (1.8.3)

Indeed, if (xλ) = (0), then the proof of (1.8.3) is similar to that of (1.7.1). But
ϕ(xλ)FG = ϕ(xλ)F ϕ(xλ)G. Thus (1.8.3) always holds.

(1.9) (Nested ideals). — Let R be a ring, a an ideal, and κ : R→ R/a the quotient
map. Given an ideal b ⊃ a, form the corresponding set of cosets of a:

b/a := {b+ a | b ∈ b} = κ(b).

Clearly, b/a is an ideal of R/a. Also b/a = b(R/a).
Clearly, the operations b 2→ b/a and b′ 2→ κ−1(b′) are inverse to each other, and

establish a bijective correspondence between the set of ideals b of R containing a and
the set of all ideals b′ of R/a. Moreover, this correspondence preserves inclusions.
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Given an ideal b ⊃ a, form the composition of the quotient maps

ϕ : R→ R/a→ (R/a)
/
(b/a).

Clearly, ϕ is surjective, and Ker(ϕ) = b. Hence, owing to (1.5), ϕ factors through
the canonical isomorphism ψ in this commutative diagram:

R −−−−−→ R/b) ψ

)(

R/a −→ (R/a)
/
(b/a)

(1.10) (Idempotents). — Let R be a ring. Let e ∈ R be an idempotent; that is,
e2 = e. Then Re is a ring with e as 1, because (xe)e = xe. But Re is not a subring
of R unless e = 1, although Re is an ideal.

Set e′ := 1− e. Then e′ is idempotent and e · e′ = 0. We call e and e′ comple-
mentary idempotents. Conversely, if two elements e1, e2 ∈ R satisfy e1 + e2 = 1
and e1e2 = 0, then they are complementary idempotents, as for each i,

ei = ei · 1 = ei(e1 + e2) = e2i .

We denote the set of all idempotents by Idem(R). Let ϕ : R→ R′ be a ring map.
Then ϕ(e) is idempotent. So the restriction of ϕ to Idem(R) is a map

Idem(ϕ) : Idem(R)→ Idem(R′).

Example (1.11). — Let R := R′ × R′′ be a product of two rings: its operations
are performed componentwise. The additive identity is (0, 0); the multiplicative
identity is (1, 1). Set e′ := (1, 0) and e′′ := (0, 1). Then e′ and e′′ are complementary
idempotents. The next proposition shows this example is the only one possible.

Proposition (1.12). — Let R be a ring, and e′, e′′ complementary idempotents. Set
R′ := Re′ and R′′ := Re′′. Define ϕ : R→ R′ ×R′′ by ϕ(x) := (xe′, xe′′). Then ϕ
is a ring isomorphism. Moreover, R′ = R/Re′′ and R′′ = R/Re′.

Proof: Define a surjection ϕ′ : R → R′ by ϕ′(x) := xe′. Then ϕ′ is a ring map,
since xye′ = xye′2 = (xe′)(ye′). Moreover, Ker(ϕ′) = Re′′, since if xe′ = 0, then
x = x · 1 = xe+ xe′′ = xe′′. Thus (1.5.1) yields R′ = R/Re′′.

Similarly, define a surjection ϕ′′ : R → R′′ by ϕ′′(x) := xe′′. Then ϕ′′ is a ring
map, and Ker(ϕ′′) = Re′. Thus R′′ = R/Re′.

So ϕ is a ring map. It’s surjective, since (xe′, x′e′′) = ϕ(xe′+x′e′′). It’s injective,
since if xe′ = 0 and xe′′ = 0, then x = xe′+xe′′ = 0. Thus ϕ is an isomorphism. !

B. Exercises

Exercise (1.13) . — Let ϕ : R → R′ be a map of rings, a, a1, a2 ideals of R, and
b, b1, b2 ideals of R′. Prove the following statements:

(1a) (a1 + a2)e = ae1 + ae2. (1b) (b1 + b2)c ⊃ bc1 + bc2.
(2a) (a1 ∩ a2)e ⊂ ae ∩ ae2. (2b) (b1 ∩ b2)c = bc1 ∩ bc2.
(3a) (a1a2)e = ae1a

e
2. (3b) (b1b2)c ⊃ bc1b

c
2.

(4a) (a1 : a2)e ⊂ (ae1 : ae2). (4b) (b1 : b2)c ⊂ (bc1 : bc2).
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/
(1.21) Exercises

Exercise (1.14) . — Let ϕ : R → R′ be a map of rings, a an ideal of R, and b an
ideal of R′. Prove the following statements:
(1) Then aec ⊃ a and bce ⊂ b. (2) Then aece = ae and bcec = bc.
(3) If b is an extension, then bc is the largest ideal of R with extension b.
(4) If two extensions have the same contraction, then they are equal.

Exercise (1.15) . — Let R be a ring, a an ideal, X a set of variables. Prove:
(1) The extension a

(
R[X]

)
is the set a[X] of polynomials with coefficients in a.

(2) a
(
R[X]

)
∩R = a.

Exercise (1.16) . — Let R be a ring, a an ideal, and X a set of variables. Set
P := R[X]. Prove P/aP = (R/a)[X].

Exercise (1.17) . — Let R be a ring, P := R[{Xλ}] the polynomial ring in variables
Xλ for λ ∈ Λ, and (xλ) ∈ RΛ a vector. Let π(xλ) : P → R denote the R-algebra
map defined by π(xλ)Xµ := xµ for all µ ∈ Λ. Show:

(1) Any F ∈ P has the form F =
∑

a(i1,...,in)(Xλ1 − xλ1)
i1 · · · (Xλn − xλn)

in for
unique a(i1,...,in) ∈ R..

(2) Then Ker(π(xλ)) = {F ∈ P | F
(
(xλ)

)
= 0} = 〈{Xλ − xλ}〉.

(3) Then π induces an isomorphism P/〈{Xλ − xλ}〉 ∼−→ R.
(4) Given F ∈ P , its residue in P/〈{Xλ − xλ}〉 is equal to F

(
(xλ)

)
.

(5) Let Y be a second set of variables. Then P [Y]
/
〈{Xλ − xλ}〉 ∼−→ R[Y].

Exercise (1.18) . — Let R be a ring, P := R[X1, . . . , Xn] the polynomial ring in
variables Xi. Given F =

∑
a(i1,...,in)X

i1
1 · · ·Xin

n ∈ P , formally set

∂F/∂Xj :=
∑

ija(i1,...,in)X
i1
1 · · ·Xin

n /Xj ∈ P for j = 1, . . . , n. (1.18.1)

Given (x1, . . . , xn) ∈ Rn, set x := (x1, . . . , xn), set aj := (∂F/∂Xj)(x), and set
M := 〈X1− x1, . . . , Xn− xn〉. Show F = F (x)+

∑
aj(Xj − xj)+G with G ∈M2.

First show that, if F = (X1−x1)i1 · · · (Xn−xn)in , then ∂F/∂Xj = ijF/(Xj −xj).

Exercise (1.19) . — Let R be a ring, X a variable, F ∈ P := R[X], and a ∈ R.
Set F ′ := ∂F/∂X; see (1.18.1). We call a a root of F if F (a) = 0, a simple root
if also F ′(a) -= 0, and a supersimple root if also F ′(a) is a unit.

Show that a is a root of F if and only if F = (X − a)G for some G ∈ P , and if
so, then G is unique: that a is a simple root if and only if also G(a) -= 0; and that
a is a supersimple root if and only if also G(a) is a unit.

Exercise (1.20) . — Let R be a ring, P := R[X1, . . . , Xn] the polynomial ring,
F ∈ P of degree d, and Fi := Xdi

i + a1X
di−1
i + · · · a monic polynomial in Xi

alone for all i. Find G, Gi ∈ P such that F =
∑n

i=1 FiGi + G where Gi = 0 or
deg(Gi) ≤ d− di and where the highest power of Xi in G is less than di.

Exercise (1.21) (Chinese Remainder Theorem) . — Let R be a ring.

(1) Let a and b be comaximal ideals; that is, a+ b = R. Show

(a) ab = a ∩ b and (b) R/ab = (R/a)× (R/b).

(2) Let a be comaximal to both b and b′. Show a is also comaximal to bb′.
(3) Given m,n ≥ 1, show a and b are comaximal if and only if am and bn are.
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/
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(4) Let a1, . . . , an be pairwise comaximal. Show:

(a) a1 and a2 · · · an are comaximal;
(b) a1 ∩ · · · ∩ an = a1 · · · an;
(c) R/(a1 · · · an) ∼−→

∏
(R/ai).

(5) Find an example where a and b satisfy (1)(a), but aren’t comaximal.

Exercise (1.22) . — First, given a prime number p and a k ≥ 1, find the idempo-
tents in Z/〈pk〉. Second, find the idempotents in Z/〈12〉. Third, find the number

of idempotents in Z/〈n〉 where n =
∏N

i=1 p
ni
i with pi distinct prime numbers.

Exercise (1.23) . — Let R := R′×R′′ be a product of rings, a ⊂ R an ideal. Show
a = a′ × a′′ with a′ ⊂ R′ and a′′ ⊂ R′′ ideals. Show R/a = (R′/a′)× (R′′/a′′).

Exercise (1.24) . — Let R be a ring; e, e′ idempotents (see (10.23) also). Show:

(1) Set a := 〈e〉. Then a is idempotent; that is, a2 = a.
(2) Let a be a principal idempotent ideal. Then a = 〈f〉 with f idempotent.
(3) Set e′′ := e+ e′ − ee′. Then 〈e, e′〉 = 〈e′′〉, and e′′ is idempotent.
(4) Let e1, . . . , er be idempotents. Then 〈e1, . . . , er〉 = 〈f〉 with f idempotent.
(5) Assume R is Boolean. Then every finitely generated ideal is principal.

Exercise (1.25) . — Let L be a lattice, that is, a partially ordered set in which
every pair x, y ∈ L has a sup x∨y and an inf x∧y. Assume L is Boolean; that is:

(1) L has a least element 0 and a greatest element 1.
(2) The operations ∧ and ∨ distribute over each other; that is,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

(3) Each x ∈ L has a unique complement x′; that is, x∧ x′ = 0 and x∨ x′ = 1.

Show that the following six laws are obeyed:

x ∧ x = x and x ∨ x = x. (idempotent)

x ∧ 0 = 0, x ∧ 1 = x and x ∨ 1 = 1, x ∨ 0 = x. (unitary)

x ∧ y = y ∧ x and x ∨ y = y ∨ x. (commutative)

x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z. (associative)

x′′ = x and 0′ = 1, 1′ = 0. (involutory)

(x ∧ y)′ = x′ ∨ y′ and (x ∨ y)′ = x′ ∧ y′. (De Morgan’s)

Moreover, show that x ≤ y if and only if x = x ∧ y.

Exercise (1.26) . — Let L be a Boolean lattice; see (1.25). For all x, y ∈ L, set

x+ y := (x ∧ y′) ∨ (x′ ∧ y) and xy := x ∧ y.

Show: (1) x + y = (x ∨ y)(x′ ∨ y′) and (2) (x + y)′ = (x′y′) ∨ (xy). Furthermore,
show L is a Boolean ring.

Exercise (1.27) . — Given a Boolean ring R, order R by x ≤ y if x = xy. Show
R is thus a Boolean lattice. Viewing this construction as a map ρ from the set of
Boolean-ring structures on the set R to the set of Boolean-lattice structures on R,
show ρ is bijective with inverse the map λ associated to the construction in (1.26).
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Exercise (1.28) . — Let X be a set, and L the set of all subsets of X, partially
ordered by inclusion. Show that L is a Boolean lattice and that the ring structure
on L constructed in (1.2) coincides with that constructed in (1.26).

Assume X is a topological space, and let M be the set of all its open and closed
subsets. Show that M is a sublattice of L, and that the subring structure on M of
(1.2) coincides with the ring structure of (1.26) with M for L.

Exercise (1.29) . — Let R be a ring, P := R[X1, . . . , Xm] the polynomial ring in
variables Xi, and V ⊂ Rm the set of common zeros of a set of polynomials Fλ ∈ P .

(1) Let I(V ) be the ideal of all F ∈ P vanishing on V , and P (V ) the R-algebra of
all functions γ : V → R given by evaluating some G ∈ P . Show I(V ) is the largest
set of polynomials with V as set of common zeros. Show P/I(V ) = P (V ). And
show 1 ∈ I(V ) (or P (V ) = 0) if and only if V = ∅.

(2) Let W ⊂ Rn be like V , and ρ : V → W any map. Call ρ regular if there
are Gi ∈ P with ρ(v) = (G1(v), . . . , Gn(v)) for all v ∈ V . If ρ is regular, define
ρ∗ : P (W )→ P (V ) by ρ∗(δ) := δ ◦ ρ, and show ρ∗ is a well-defined algebra map.
(3) Let Q := R[Y1, . . . , Yn] be the polynomial ring, and ζi ∈ P (W ) the function

given by evaluating the variable Yi. Let ϕ : P (W ) → P (V ) be an algebra map.
Define ϕ∗ : V →W by ϕ∗(v) := (w1, . . . , wn) where wi := (ϕζi)(v), and show ϕ∗ is
a well-defined regular map..

(4) Show ρ 2→ ρ∗ and ϕ 2→ ϕ∗ define inverse bijective correspondences between
the regular maps ρ : V →W and the algebra maps ϕ : P (W )→ P (V ).
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2. Prime Ideals

Prime ideals are the key to the structure of commutative rings. So we review the
basic theory. Specifically, we define prime ideals, and show their residue rings are
domains. We show maximal ideals are prime, and discuss examples. Finally, we
use Zorn’s Lemma to prove the existence of maximal ideals in every nonzero ring.

A. Text

(2.1) (Zerodivisors). — Let R be a ring. An element x is called a zerodivisor if
there is a nonzero y with xy = 0; otherwise, x is called a nonzerodivisor. Denote
the set of zerodivisors by z.div(R) and the set of nonzerodivisors by S0.

(2.2) (Multiplicative subsets, prime ideals). — Let R be a ring. A subset S is
called multiplicative if 1 ∈ S and if x, y ∈ S implies xy ∈ S.

For example, the subset of nonzerodivisors S0 is multiplicative.
An ideal p is called prime if its complement R − p is multiplicative, or equiva-

lently, if 1 /∈ p and if xy ∈ p implies x ∈ p or y ∈ p.

(2.3) (Fields, domains). — A ring is called a field if 1 -= 0 and if every nonzero
element is a unit. Standard examples include the rational numbers Q, the real
numbers R, the complex numbers C, and the finite field Fq with q elements.

A ring is called an integral domain, or simply a domain, if 〈0〉 is prime, or
equivalently, if R is nonzero and has no nonzero zerodivisors.

Every domain R is a subring of its fraction field Frac(R), which consists of the
fractions x/y with x, y ∈ R and y -= 0. Conversely, any subring R of a field K,
including K itself, is a domain; indeed, any nonzero x ∈ R cannot be a zerodivisor,
because, if xy = 0, then (1/x)(xy) = 0, so y = 0. Further, Frac(R) has this UMP:
the inclusion of R into any field L extends uniquely to an inclusion of Frac(R) into
L. For example, the ring of integers Z is a domain, and Frac(Z) = Q ⊂ R ⊂ C.

(2.4) (Polynomials over a domain). — Let R be a domain, X := {Xλ}λ∈Λ a set
of variables. Set P := R[X]. Then P is a domain too. In fact, given nonzero
F,G ∈ P , not only is their product FG nonzero, but also, as explained next, given
a well ordering of the variables, the grlex leading term of FG is the product of the
grlex leading terms of F and G, and

deg(FG) = deg(F ) + deg(G). (2.4.1)

Using the given ordering of the variables, well order all the monomials M of the
same degree via the lexicographic order on exponents. Among the M in F with
deg(M) = deg(F ), the largest is called the grlex leading monomial of F . Its
grlex leading term is the product aM where a ∈ R is the coefficient of M in F ,
and a is called the grlex leading coefficient.

The grlex leading term of FG is the product of those aM and bN of F and G, and
(2.4.1) holds, for the following reasons. First, ab -= 0 as R is a domain. Second,

deg(MN) = deg(M) + deg(N) = deg(F ) + deg(G).

Third, deg(MN) ≥ deg(M′N′) for every pair of monomials M′ and N′ in F and
G. Equality holds if and only if deg(M′) = deg(F ) and deg(N′) = deg(G). If so

11



Prime Ideals (2.5)
/
(2.8) Text

and if either M′ -= M or N′ -= N, then M′N′ is strictly smaller than MN. Thus
abMN is the grlex leading term of FG, and (2.4.1) holds.
Similarly, as explained next, the grlex hind term of FG is the product of the grlex

hind terms of F and G. Further, given a vector (xλ) ∈ RΛ, then

ord(xλ)FG = ord(xλ)F + ord(xλ)G, (2.4.2)

Among the monomials M in F with ord(M) = ord(F ), the smallest is called the
grlex hind monomial of F . The grlex hind term of F is the product aM where
a ∈ R is the coefficient of M in F .

It is easy to prove that the grlex hind term of FG is the product of the grlex
hind terms of F and G by adapting the reasoning with grlex leading terms given
above. Hence, if (xλ) = (0), then (2.4.2) holds. Thus it holds in general, because
ϕ(xλ)FG = ϕ(xλ)F ϕ(xλ)G; see (1.8).

If FG = 1, note F,G ∈ R owing to (2.4.1). This observation can fail if R is not
a domain. For example, if a2 = 0 in R, then (1 + aX)(1− aX) = 1 in R[X].

The fraction field Frac(P ) is called the field of rational functions, and is also
denoted by K(X) where K := Frac(R).

(2.5) (Unique factorization). — Let R be a domain, p a nonzero nonunit. We call
p prime if, whenever p | xy (that is, there exists z ∈ R such that pz = xy), either
p | x or p | y. Clearly, p is prime if and only if the ideal 〈p〉 is prime.
Given x, y ∈ R, we call any d ∈ R their greatest common divisor and write

d = gcd(x, y) if d|x and d|y and if c|x and c|y implies c|d. As R is a domain, it’s
easy to see that gcd(x, y) is unique up to unit factor.
We call p irreducible if, whenever p = yz, either y or z is a unit. We call R a

Unique Factorization Domain (UFD) if (1) every nonzero nonunit factors into
a product of irreducibles and (2) the factorization is unique up to order and units.

Recall that (1) holds if and only if every ascending chain of principal ideals
〈x1〉 ⊂ 〈x2〉 ⊂ · · · stabilizes; see [3, (2.3), p. 393]. Moreover, if (1) holds, then (2)
holds if and only if every irreducible is prime; see [3, (2.8), p. 395]. Conversely,
primes are, plainly, always irreducible.

Plainly, if R is a UFD, then gcd(x, y) always exists.
Standard examples of UFDs include any field, the integers Z, and a polynomial

ring in n variables over a UFD; see [3, p. 398, p. 401], [11, Cor. 18.23, p. 297].

Lemma (2.6). — Let ϕ : R → R′ be a ring map, and T ⊂ R′ a subset. If T is
multiplicative, then ϕ−1T is multiplicative; the converse holds if ϕ is surjective.

Proof: Set S := ϕ−1T . If T is multiplicative, then 1 ∈ S as ϕ(1) = 1 ∈ T , and
x, y ∈ S implies xy ∈ S as ϕ(xy) = ϕ(x)ϕ(y) ∈ T ; thus S is multiplicative.

If S is multiplicative, then 1 ∈ T as 1 ∈ S and ϕ(1) = 1; further, x, y ∈ S implies
ϕ(x), ϕ(y), ϕ(xy) ∈ T . If ϕ is surjective, then every x′ ∈ T is of the form x′ = ϕ(x)
for some x ∈ S. Thus if ϕ is surjective, then T is multiplicative if ϕ−1T is. !
Proposition (2.7). — Let ϕ : R → R′ be a ring map, and q ⊂ R′ an ideal. Set
p := ϕ−1q. If q is prime, then p is prime; the converse holds if ϕ is surjective.

Proof: By (2.6), R− p is multiplicative if and only if R′− q is. So the assertion
results from the definition (2.2). !
Corollary (2.8). — Let R be a ring, p an ideal. Then p is prime if and only if R/p
is a domain.
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Prime Ideals (2.9)
/
(2.18) Text

Proof: By (2.7), p is prime if and only if 〈0〉 ⊂ R/p is. So the assertion results
from the definition of domain in (2.3). !
Exercise (2.9) . — Let R be a ring, P := R[X,Y] the polynomial ring in two sets
of variables X and Y. Set p := 〈X〉. Show p is prime if and only if R is a domain.

Definition (2.10). — Let R be a ring. An ideal m is said to be maximal if m is
proper and if there is no proper ideal a with m ! a.

Example (2.11). — Let R be a domain, R[X,Y ] the polynomial ring. Then 〈X〉
is prime by (2.9). However, 〈X〉 is not maximal since 〈X〉 ! 〈X,Y 〉. Moreover,
〈X,Y 〉 is maximal if and only if R is a field by (1.17)(3) and by (2.14) below.

Proposition (2.12). — A ring R is a field if and only if 〈0〉 is a maximal ideal.

Proof: Suppose R is a field. Let a be a nonzero ideal, and a a nonzero element
of a. Since R is a field, a ∈ R×. So (1.4) yields a = R.
Conversely, suppose 〈0〉 is maximal. Take x -= 0. Then 〈x〉 -= 〈0〉. So 〈x〉 = R.

So x is a unit by (1.4). Thus R is a field. !
Corollary (2.13). — Let R be a ring, m an ideal. Then m is maximal if and only
if R/m is a field.

Proof: Clearly, m is maximal in R if and only if 〈0〉 is maximal in R/m by (1.9).
Hence the assertion results from (2.12). !
Example (2.14). — Let R be a ring, P the polynomial ring in variables Xλ, and
xλ ∈ R for all λ. Set m := 〈{Xλ − xλ}〉. Then P/m = R by (1.17)(3). Thus m is
maximal if and only if R is a field by (2.13).

Corollary (2.15). — In a ring, every maximal ideal is prime.

Proof: A field is a domain by (2.3). So (2.8) and (2.13) yield the result. !
(2.16) (Coprime elements). — Let R be a ring, and x, y ∈ R. We say x and y are
(strictly) coprime if their ideals 〈x〉 and 〈y〉 are comaximal.

Plainly, x and y are coprime if and only if there are a, b ∈ R such that ax+by = 1,
if and only if, given any z ∈ R, there are a, b ∈ R such that ax+ by = z.
Plainly, x and y are coprime if and only if there is b ∈ R with by ≡ 1 (mod 〈x〉),

if and only if the residue of y is a unit in R/〈x〉.
Fix m,n ≥ 1. By (1.21)(3), x and y are coprime if and only if xm and yn are.
If x and y are coprime, then their images in any algebra R′ are too.

(2.17) (PIDs). — A domain R is called a Principal Ideal Domain (PID) if
every ideal is principal. Examples include a field k, the polynomial ring k[X] in
one variable, and the ring Z of integers. A PID is a UFD; see [3, (2.12), p. 396],
[11, Thm. 18.11, p. 291].

Let R be a PID, p a nonzero prime ideal. Say p = 〈p〉. Then p is prime by (2.5),
so irreducible. Now, let q ∈ R be irreducible. Then 〈q〉 is maximal for this reason:
if 〈q〉 ! 〈x〉, then q = xy for some nonunit y; so x must be a unit as q is irreducible.
So R/〈q〉 is a field by (2.13). Also 〈q〉 is prime by (2.15); so q is prime by (2.5).
Thus every irreducible element is prime, and every nonzero prime ideal is maximal.

Exercise (2.18) . — Show that, in a PID, nonzero elements x and y are relatively
prime (share no prime factor) if and only if they’re coprime.
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Prime Ideals (2.19)
/
(2.22) Text

Example (2.19). — Let R be a PID, and p ∈ R a prime. Set k := R/〈p〉. Let X
be a variable, and set P := R[X]. Take G ∈ P ; let G′ be its image in k[X]; assume
G′ is irreducible. Set m := 〈p,G〉. Then P/m ∼−→ k[X]/〈G′〉 by (1.16) and (1.9),
and k[X]/〈G′〉 is a field by (2.17); hence, m is maximal by (2.13).

Theorem (2.20). — Let R be a PID. Let P := R[X] be the polynomial ring in one
variable X, and p a nonzero prime ideal of P .

(1) Then p = 〈F 〉 with F prime, or p is maximal.

(2) Assume p is maximal. Then either p = 〈F 〉 with F prime, or p = 〈p, G〉 with
p ∈ R prime, pR = p ∩R, and G ∈ P prime with image G′ ∈ (R/pR)[X] prime.

Proof: Recall that R is a UFD, and so P is one too; see (2.17) and (2.5).

If p = 〈F 〉 for some F ∈ P , then F is prime as p is. So assume p isn’t principal.

Take a nonzero F1 ∈ p. Since p is prime, p contains a prime factor F ′
1 of F1.

Replace F1 by F ′
1. As p isn’t principal, p -= 〈F1〉. So there is a prime F2 ∈ p−〈F1〉.

Set K := Frac(R). Gauss’s Lemma implies that F1 and F2 are also prime in K[X];
see [3, p. 401], [11, Thm. 18.15, p. 295]. So F1 and F2 are relatively prime in K[X].
So (2.17) and (2.18) yield G1, G2 ∈ P and c ∈ R with (G1/c)F1 + (G2/c)F2 = 1.
So c = G1F1 + G2F2 ∈ R ∩ p. Hence R ∩ p -= 0. But R ∩ p is prime, and R is a
PID; so R ∩ p = pR where p is prime. Also pR is maximal by (2.17).

Set k := R/pR. Then k is a field by (2.13). Set q := p/pR ⊂ k[X]. Then
k[X]/q = P/p by (1.16) and (1.9). But p is prime; so P/p is a domain by (2.8).
So k[X]/q is a domain too. So q is prime also by (2.8). So q is maximal by (2.17).
So p is maximal by (1.9). In particular, (1) holds.

Since k[X] is a PID and q is prime, q = 〈G′〉 where G′ is prime in k[X]. Take
G ∈ p with image G′. Then p = 〈p, G〉 as p/〈p〉 = 〈G′〉. Say G =

∏
Gi with

Gi ∈ P prime. So G′ =
∏

G′
i with G′

i the image of Gi in k[X]. But G′ is prime.
So 〈G′〉 = 〈G′

j〉 for some j. So replace G′ by G′
j and G by Gj . Then G is prime.

Finally, p = 〈F 〉 and p = 〈p, G〉 can’t both hold. Else, F | p. So deg(F ) = 0 by
(2.4.1). So 〈F 〉 = 〈p〉. So p = 〈p〉. So G′ = 0, a contradiction. Thus (2) holds. !

Theorem (2.21). — Every proper ideal a is contained in some maximal ideal.

Proof: Set S := {ideals b | b ⊃ a and b -7 1}. Then a ∈ S, and S is partially
ordered by inclusion. Given a totally ordered subset {bλ} of S, set b :=

⋃
bλ. Then

b is clearly an ideal, and 1 /∈ b; so b is an upper bound of {bλ} in S. Hence by
Zorn’s Lemma [16, pp. 25, 26], [14, p. 880, p. 884], S has a maximal element, and it
is the desired maximal ideal. !

Corollary (2.22). — Let R be a ring, x ∈ R. Then x is a unit if and only if x
belongs to no maximal ideal.

Proof: By (1.4), x is a unit if and only if 〈x〉 is not proper. Apply (2.21). !
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Prime Ideals (2.23)
/
(2.36) Exercises

B. Exercises

Exercise (2.23) . — Let a and b be ideals, and p a prime ideal. Prove that these
conditions are equivalent: (1) a ⊂ p or b ⊂ p; and (2) a ∩ b ⊂ p; and (3) ab ⊂ p.

Exercise (2.24) . — Let R be a ring, p a prime ideal, and m1, . . . ,mn maximal
ideals. Assume m1 · · ·mn = 0. Show p = mi for some i.

Exercise (2.25) . — Let R be a ring, and p, a1, . . . , an ideals with p prime.
(1) Assume p ⊃

⋂n
i=1 ai. Show p ⊃ aj for some j,

(2) Assume p =
⋂n

i=1 ai. Show p = aj for some j,

Exercise (2.26) . — Let R be a ring, S the set of all ideals that consist entirely of
zerodivisors. Show that S has maximal elements and they’re prime. Conclude that
z.div(R) is a union of primes.

Exercise (2.27) . — Given a prime number p and an integer n ≥ 2, prove that the
residue ring Z/〈pn〉 does not contain a domain as a subring.

Exercise (2.28) . — Let R := R′ × R′′ be a product of two rings. Show that R is
a domain if and only if either R′ or R′′ is a domain and the other is 0.

Exercise (2.29) . — Let R := R′×R′′ be a product of rings, p ⊂ R an ideal. Show
p is prime if and only if either p = p′ ×R′′ with p′ ⊂ R′ prime or p = R′ × p′′ with
p′′ ⊂ R′′ prime.

Exercise (2.30) . — Let R be a domain, and x, y ∈ R. Assume 〈x〉 = 〈y〉. Show
x = uy for some unit u.

Exercise (2.31) . — Let k be a field, R a nonzero ring, ϕ : k → R a ring map.
Prove ϕ is injective.

Exercise (2.32) . — Let R be a ring, p a prime, X a set of variables. Let p[X]
denote the set of polynomials with coefficients in p. Prove these statements:

(1) pR[X] and p[X] and pR[X] + 〈X〉 are primes of R[X], which contract to p.
(2) Assume p is maximal. Then pR[X] + 〈X〉 is maximal.

Exercise (2.33) . — Let R be a ring, X a variable, H ∈ P := R[X], and a ∈ R.
Given n ≥ 1, show (X − a)n and H are coprime if and only if H(a) is a unit.

Exercise (2.34) . — Let R be a ring, X a variable, F ∈ P := R[X], and a ∈ R.
Set F ′ := ∂F/∂X; see (1.18.1). Show the following statements are equivalent:

(1) a is a supersimple root of F .
(2) a is a root of F , and X − a and F ′ are coprime.
(3) F = (X − a)G for some G in P coprime to X − a.

Show that, if (3) holds, then G is unique.

Exercise (2.35) . — Let R be a ring, p a prime; X a set of variables; F, G ∈ R[X].
Let c(F ), c(G), c(FG) be the ideals of R generated by the coefficients of F, G, FG.

(1) Assume p doesn’t contain either c(F ) or c(G). Show p doesn’t contain c(FG).
(2) Assume c(F ) = R and c(G) = R. Show c(FG) = R.

Exercise (2.36) . — Let B be a Boolean ring. Show that every prime p is maximal,
and that B/p = F2.
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Prime Ideals (2.37)
/
(2.45) Exercises

Exercise (2.37) . — Let R be a ring. Assume that, given any x ∈ R, there is an
n ≥ 2 with xn = x. Show that every prime p is maximal.

Exercise (2.38) . — Prove the following statements or give a counterexample.

(1) The complement of a multiplicative subset is a prime ideal.
(2) Given two prime ideals, their intersection is prime.
(3) Given two prime ideals, their sum is prime.
(4) Given a ring map ϕ : R→ R′, the operation ϕ−1 carries maximal ideals of R′

to maximal ideals of R.
(5) In (1.9), an ideal n′ ⊂ R/a is maximal if and only if κ−1n′ ⊂ R is maximal.

Exercise (2.39) . — Preserve the setup of (2.20). Let F := a0Xn + · · ·+ an be a
polynomial of positive degree n. Assume that R has infinitely many prime elements
p, or simply that there is a p such that p " a0. Show that 〈F 〉 is not maximal.

Exercise (2.40) . — Preserve the setup of (2.20). Let 〈0〉 ! p1 ! · · · ! pn be
a chain of primes in P . Show n ≤ 2, with equality if the chain is maximal—
or, not a proper subchain of a longer chain—and if R has infinitely many primes.

Exercise (2.41) (Schwartz–Zippel Theorem with multiplicities) . — Let R be a
domain, T ⊂ R a subset of q elements, P := R[X1, . . . , Xn] the polynomial ring in
n variables, and F ∈ P a nonzero polynomial of degree d.

(1) Show by induction on n that
∑

xi∈T ord(x1,...,xn)F ≤ dqn−1.
(2) Show that at most dqn−1 points (x1, . . . , xn) ∈ Tn satisfy F (x1, . . . , xn) = 0.
(3) Assume d < q. Show that F (x1, . . . , xn) -= 0 for some xi ∈ Ti.

Exercise (2.42) . — Let R be a domain, P := R[X1, . . . , Xn] the polynomial ring,
F ∈ P nonzero, and Ti ⊂ R subsets with ti elements for i = 1, . . . , n. For all i,
assume that the highest power of Xi in F is at most ti − 1. Show by induction on
n that F (x1, . . . , xn) -= 0 for some xi ∈ Ti.

Exercise (2.43) (Alon’s Combinatorial Nullstellensatz [1]) . — Let R be a domain,
P := R[X1, . . . , Xn] the polynomial ring, F ∈ P nonzero of degree d, and Ti ⊂ R a
subset with ti elements for i = 1, . . . , n. Let M :=

∏n
i=1 X

mi
i be a monomial with

mi < ti for all i. Assume F vanishes on T1× · · ·×Tn. Set Fi(Xi) :=
∏

x∈Ti
(Xi−x).

(1) Find Gi ∈ P with deg(Gi) ≤ d− ti such that F =
∑n

i=1 FiGi.
(2) Assume M appears in F . Show deg(M) < d.
(3) Assume R is a field K. Set a := 〈F1, . . . , Fn〉 and t :=

∏n
i=1 ti. Define the

evaluation map ev : P → Kt by ev(G) :=
(
G(x1, . . . , xn)

)
where (x1, . . . , xn) runs

over T1× · · ·×Tn. Show that ev induces a K-algebra isomorphism ϕ : P/a ∼−→ Kt.

Exercise (2.44) (Cauchy–Davenport Theorem) . — Let A,B ⊂ Fp be nonempty
subsets. Set C := {a+ b | a ∈ A and b ∈ B}. Say A, B, C have α, β, γ elements.

(1) Assume C ! Fp. Use F (X,Y ) :=
∏

c∈C(X + Y − c) to show γ ≥ α+ β − 1.
(2) Show γ ≥ min{α+ β − 1, p}.

Exercise (2.45) (Chevalley–Warning Theorem) . — Let P := Fq[X1, . . . , Xn] be
the polynomial ring, F1, . . . , Fm ∈ P , and (c1, . . . , cn) ∈ Fn

q a common zero of the
Fj . Assume n >

∑m
i=1 deg(Fi). Set

G1 :=
m∏

i=1

(1− F q−1
i ), G2 := δ

n∏

j=1

∏

c∈Fq, c *=cj

(Xj − c), and F := G1 −G2,
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Prime Ideals (2.45)
/
(2.45) Exercises

and choose δ so that F (c1, . . . , cn) = 0.
(1) Show that Xq−1

1 · · ·Xq−1
n has coefficient −δ in F and δ -= 0.

(2) Use F and (2.43)(4) to show that the Fj have another common zero.

17



3. Radicals

Two radicals of a ring are commonly used in Commutative Algebra: the Jacobson
radical, which is the intersection of all maximal ideals, and the nilradical, which is
the set of all nilpotent elements. Closely related to the nilradical is the radical of
a subset. We define these three radicals, and discuss examples. In particular, we
study local rings; a local ring has only one maximal ideal, which is then its Jacobson
radical. We prove two important general results: Prime Avoidance, which states
that, if an ideal lies in a finite union of primes, then it lies in one of them, and
the Scheinnullstellensatz, which states that the nilradical of an ideal is equal to the
intersection of all the prime ideals containing it.

A. Text

Definition (3.1). — Let R be a ring. Its (Jacobson) radical rad(R) is defined to
be the intersection of all its maximal ideals.

Proposition (3.2). — Let R be a ring, a an ideal, x ∈ R, and u ∈ R×. Then
x ∈ rad(R) if and only if u− xy ∈ R× for all y ∈ R. In particular, the sum of an
element of rad(R) and a unit is a unit, and a ⊂ rad(R) if 1− a ∈ R×.

Proof: Assume x ∈ rad(R). Given a maximal ideal m, suppose u − xy ∈ m.
Since x ∈ m too, also u ∈ m, a contradiction. Thus u− xy is a unit by (2.22). In
particular, taking y := −1 yields u+ x ∈ R×.

Conversely, assume x /∈ rad(R). Then there is a maximal ideal m with x /∈ m.
So 〈x〉+m = R. Hence there exist y ∈ R and m ∈ m such that xy +m = u. Then
u− xy = m ∈ m. So u− xy is not a unit by (2.22), or directly by (1.4).

In particular, given y ∈ R, set a := u−1xy. Then u − xy = u(1 − a) ∈ R× if
1− a ∈ R×. Also a ∈ a if x ∈ a. Thus the first assertion implies the last. !
Corollary (3.3). — Let R be a ring, a an ideal, κ : R → R/a the quotient map.
Assume a ⊂ rad(R). Then Idem(κ) is injective.

Proof: Given e, e′ ∈ Idem(R) with κ(e) = κ(e′), set x := e− e′. Then

x3 = e3 − 3e2e′ + 3ee′2 − e′3 = e− e′ = x.

Hence x(1 − x2) = 0. But κ(x) = 0; so x ∈ a. But a ⊂ rad(R). Hence 1 − x2 is a
unit by (3.2). Thus x = 0. Thus Idem(κ) is injective. !
Definition (3.4). — A ring is called local if it has exactly one maximal ideal, and
semilocal if it has at least one and at most finitely many.

By the residue field of a local ring A, we mean the field A/m where m is the
(unique) maximal ideal of A.

Lemma (3.5) (Nonunit Criterion). — Let A be a ring, n the set of nonunits. Then
A is local if and only if n is an ideal; if so, then n is the maximal ideal.

Proof: Every proper ideal a lies in n as a contains no unit. So, if n is an ideal,
then it is a maximal ideal, and the only one. Thus A is local.

Conversely, assume A is local with maximal ideal m. Then A − n = A − m by
(2.22). So n = m. Thus n is an ideal. !
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/
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Example (3.6). — The product ring R′ × R′′ is not local by (3.5) if both R′ and
R′′ are nonzero. Indeed, (1, 0) and (0, 1) are nonunits, but their sum is a unit.

Example (3.7). — Let R be a ring. A formal power series in the n variables
X1, . . . , Xn is a formal infinite sum of the form

∑
a(i)X

i1
1 · · ·Xin

n where a(i) ∈ R and
where (i) := (i1, . . . , in) with each ij ≥ 0. The term a(0) where (0) := (0, . . . , 0)
is called the constant term. Addition and multiplication are performed as for
polynomials; with these operations, these series form a ring R[[X1, . . . , Xn]].

Set P := R[[X1, . . . , Xn]] and a := 〈X1, . . . , Xn〉. Then
∑

a(i)X
i1
1 · · ·Xin

n 2→ a(0)
is a canonical surjective ring map P → R with kernel a; hence, P/a = R.

Given an ideal m ⊂ R, set n := a+mP . Then (1.9) yields P/n = R/m.
A power series F is a unit if and only if its constant term a(0) is a unit. Indeed,

if FF ′ = 1, then a(0)a
′
(0) = 1 where a′(0) is the constant term of F ′. Conversely, if

a(0) is a unit, then F = a(0)(1−G) with G ∈ a. Set F ′ := a−1
(0)(1 +G+G2 + · · · );

this sum makes sense as the component of degree d involves only the first d + 1
summands. Clearly F · F ′ = 1.

Suppose R is a local ring with maximal ideal m. Given a power series F /∈ n, its
constant term lies outside m, so is a unit by (2.22). So F itself is a unit. Hence
the nonunits constitute n. Thus (3.5) implies P is local with maximal ideal n.

Example (3.8). — Let k be a ring, and A := k[[X]] the formal power series ring in
one variable. A formal Laurent series is a formal sum of the form

∑∞
i=−m aiXi

with ai ∈ k and m ∈ Z. Plainly, these series form a ring k{{X}}. Set K := k{{X}}.
Set F :=

∑∞
i=−m aiXi. If a−m ∈ k×, then F ∈ K×; indeed, F = a−mX−m(1−G)

where G ∈ A, and F · a−1
−mXm(1 +G+G2 + · · · ) = 1.

Assume k is a field. If F -= 0, then F = X−mH with H := a−m(1 − G) ∈ A×.
Let a ⊂ A be a nonzero ideal. Suppose F ∈ a. Then X−m ∈ a. Let n be the
smallest integer such that Xn ∈ a. Then −m ≥ n. Set E := X−m−nH. Then
E ∈ A and F = XnE. Hence a = 〈Xn〉. Thus A is a PID.

Further, K is a field. In fact, K = Frac(A) because any nonzero F ∈ K is of the
form F = H/Xm where H, Xm ∈ A.

Let A[Y ] be the polynomial ring in one variable, and ι : A ↪→ K the inclusion.
Define ϕ : A[Y ] → K by ϕ|A = ι and ϕ(Y ) := X−1. Then ϕ is surjective. Set
m := Ker(ϕ). Then m is maximal by (2.13) and (1.5). So by (2.20), m has
the form 〈F 〉 with F irreducible, or the form 〈p,G〉 with p ∈ A irreducible and
G ∈ A[Y ]. But m ∩ A = 〈0〉 as ι is injective. So m = 〈F 〉. But XY − 1 belongs to
m, and is clearly irreducible; hence, XY − 1 = FH with H a unit. Thus 〈XY − 1〉
is maximal.

In addition, 〈X,Y 〉 is maximal. Indeed, A[Y ]
/
〈Y 〉 = A by (1.6)(2), and so (3.7)

yields A[Y ]
/
〈X,Y 〉 = A

/
〈X〉 = k. However, 〈X,Y 〉 is not principal, as no nonunit

of A[Y ] divides both X and Y . Thus A[Y ] has both principal and nonprincipal
maximal ideals, the two types allowed by (2.20).

Proposition (3.9). — Let R be a ring, S a multiplicative subset, and a an ideal
with a ∩ S = ∅. Set S := {ideals b | b ⊃ a and b ∩ S = ∅}. Then S has a maximal
element p, and every such p is prime.

Proof: Clearly, a ∈ S, and S is partially ordered by inclusion. Given a totally
ordered subset {bλ} of S, set b :=

⋃
bλ. Then b is an upper bound for {bλ} in S.

So by Zorn’s Lemma, S has a maximal element p. Let’s show p is prime.
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Take x, y ∈ R − p. Then p+ 〈x〉 and p+ 〈y〉 are strictly larger than p. So there
are p, q ∈ p and a, b ∈ R with p+ ax ∈ S and q+ by ∈ S. Since S is multiplicative,
pq+ pby+ qax+abxy ∈ S. But pq+ pby+ qax ∈ p, so xy /∈ p. Thus p is prime. !

Exercise (3.10) . — Let ϕ : R→ R′ be a ring map, p an ideal of R. Show:

(1) there is an ideal q of R′ with ϕ−1(q) = p if and only if ϕ−1(pR′) = p.
(2) if p is prime with ϕ−1(pR′) = p, then there’s a prime q of R′ with ϕ−1(q) = p.

(3.11) (Saturated multiplicative subsets). — Let R be a ring, and S a multiplica-
tive subset. We say S is saturated if, given x, y ∈ R with xy ∈ S, necessarily
x, y ∈ S.

For example, the following statements are easy to check. The group of units R×

and the subset of nonzerodivisors S0 are saturated multiplicative subsets. Further,
let ϕ : R → R′ be a ring map, T ⊂ R′ a subset. If T is saturated multiplicative,
then so is ϕ−1T . The converse holds if ϕ is surjective.

Lemma (3.12) (Prime Avoidance). — Let R be a ring, a a subset of R that is
stable under addition and multiplication, and p1, . . . , pn ideals such that p3, . . . , pn
are prime. If a -⊂ pj for all j, then there is an x ∈ a such that x /∈ pj for all j; or
equivalently, if a ⊂

⋃n
i=1 pi, then a ⊂ pi for some i.

Proof: Proceed by induction on n. If n = 1, the assertion is trivial. Assume that
n ≥ 2 and by induction that, for every i, there is an xi ∈ a such that xi /∈ pj for all
j -= i. We may assume xi ∈ pi for every i, else we’re done. If n = 2, then clearly
x1+x2 /∈ pj for j = 1, 2. If n ≥ 3, then (x1 · · ·xn−1)+xn /∈ pj for all j as, if j = n,
then xn ∈ pn and pn is prime, and if j < n, then xn /∈ pj and xj ∈ pj . !

(3.13) (Other radicals). — Let R be a ring, a a subset. Its radical
√
a is the set

√
a := {x ∈ R | xn ∈ a for some n = n(x) ≥ 1}.

Notice a ⊂
√
a and

√√
a =
√
a. Given a subset b ⊂ a, notice

√
b ⊂
√
a.

If a is an ideal and a =
√
a, then a is said to be radical. For example, suppose

a =
⋂

pλ with all pλ prime. If xn ∈ a for some n ≥ 1, then x ∈ pλ for all λ. So√
a ⊂ a. Thus a is radical. This example is the only one by (3.14) below.

We call
√
〈0〉 the nilradical, and sometimes denote it by nil(R). We call an

element x ∈ R nilpotent if x belongs to
√
〈0〉, that is, if xn = 0 for some n ≥ 1.

We call an ideal a nilpotent if an = 0 for some n ≥ 1.
Recall that every maximal ideal is prime by (2.15) and that rad(R) is defined

to be the intersection of all the maximal ideals. Thus
√

rad(R) = rad(R).

However, 〈0〉 ⊂ rad(R). So
√
〈0〉 ⊂

√
rad(R). Thus

nil(R) ⊂ rad(R) (3.13.1)

We call R reduced if nil(R) = 〈0〉, that is, if R has no nonzero nilpotents.

Theorem (3.14) (Scheinnullstellensatz). — Let R be a ring, a an ideal. Then
√
a =

⋂
p⊃a p

where p runs through all the prime ideals containing a. (By convention, the empty
intersection is equal to R.)
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Proof: Take x /∈
√
a. Set S := {1, x, x2, . . .}. Then S is multiplicative, and

a ∩ S = ∅. By (3.9), there is a p ⊃ a, but x /∈ p. So x /∈
⋂

p⊃a p. Thus√
a ⊃

⋂
p⊃a p.

Conversely, take x ∈
√
a. Say xn ∈ a ⊂ p. Then x ∈ p. Thus

√
a =

⋂
p⊃a p. !

Proposition (3.15). — Let R be a ring, a an ideal. Then
√
a is an ideal.

Proof: Take x, y ∈
√
a; say xn ∈ a and ym ∈ a. Then

(x+ y)n+m−1 =
∑

i+j=m+n−1

(n+m−1
j

)
xiyj .

This sum belongs to a as, in each summand, either xi or yj does, since, if i ≤ n− 1
and j ≤ m− 1, then i+ j ≤ m+n− 2. Thus x+ y ∈

√
a. So clearly

√
a is an ideal.

Alternatively, given any collection of ideals aλ, note that
⋂
aλ is also an ideal.

So
√
a is an ideal owing to (3.14). !

Exercise (3.16) . — Use Zorn’s lemma to prove that any prime ideal p contains a
prime ideal q that is minimal containing any given subset s ⊂ p.

(3.17) (Minimal primes). — Let R be a ring, a an ideal, p a prime. We call p a
minimal prime of a, or over a, if p is minimal in the set of primes containing a.
We call p a minimal prime of R if p is a minimal prime of 〈0〉.
Owing to (3.16), every prime of R containing a contains a minimal prime of a.

So owing to the Scheinnullstellensatz (3.14), the radical
√
a is the intersection of

all the minimal primes of a. In particular, every prime of R contains a minimal
prime of R, and nil(R) is the intersection of all the minimal primes of R.

Proposition (3.18). — A ring R is reduced and has only one minimal prime if and
only if R is a domain.

Proof: Suppose R is reduced, or 〈0〉 =
√
〈0〉, and has only one minimal prime q.

Then (3.17) implies 〈0〉 = q. Thus R is a domain. The converse is obvious. !

Exercise (3.19) . — Let R be a ring, a an ideal, X a variable, R[[X]] the formal
power series ring, M ⊂ R[[X]] an ideal, F :=

∑
anXn ∈ R[[X]]. Set m := M ∩ R

and A :=
{∑

bnXn | bn ∈ a
}
. Prove the following statements:

(1) If F is nilpotent, then an is nilpotent for all n. The converse is false.
(2) Then F ∈ rad(R[[X]]) if and only if a0 ∈ rad(R).
(3) Assume X ∈M. Then X and m generate M.
(4) Assume M is maximal. Then X ∈M and m is maximal.
(5) If a is finitely generated, then aR[[X]] = A. However, there’s an example of

an R with a prime ideal a such that aR[[X]] -= A.

Example (3.20). — Let R be a ring, R[[X]] the formal power series ring. Then
every prime p of R is the contraction of a prime of R[[X]]. Indeed, pR[[X]]∩R = p.
So by (3.10)(2), there’s a prime q of R[[X]] with q∩R = p. In fact, a specific choice
for q is the set of series

∑
anXn with an ∈ p. Indeed, the canonical map R→ R/p

induces a surjection R[[X]] → (R/p)[[X]] with kernel q; so R[[X]]/q = (R/p)[[X]].
Plainly (R/p)[[X]] is a domain. But (3.19)(5) shows q may not be equal to pR[[X]].
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B. Exercises

Exercise (3.21) . — Let R be a ring, a ⊂ rad(R) an ideal, w ∈ R, and w′ ∈ R/a
its residue. Prove that w ∈ R× if and only if w′ ∈ (R/a)×. What if a -⊂ rad(R)?

Exercise (3.22) . — Let A be a local ring, e an idempotent. Show e = 1 or e = 0.

Exercise (3.23) . — Let A be a ring, m a maximal ideal such that 1 +m is a unit
for every m ∈ m. Prove A is local. Is this assertion still true if m is not maximal?

Exercise (3.24) . — Let R be a ring, S a subset. Show that S is saturated multi-
plicative if and only if R− S is a union of primes.

Exercise (3.25) . — Let R be a ring, and S a multiplicative subset. Define its
saturation to be the subset

S := {x ∈ R | there is y ∈ R with xy ∈ S }.
(1) Show (a) that S ⊃ S, and (b) that S is saturated multiplicative, and (c) that

any saturated multiplicative subset T containing S also contains S.
(2) Set U :=

⋃
p∩S=∅ p. Show that R− S = U .

(3) Let a be an ideal; assume S = 1 + a; set W :=
⋃

p⊃a p. Show R− S = W .

(4) Given f, g ∈ R, show that Sf ⊂ Sg if and only if
√
〈f〉 ⊃

√
〈g〉.

Exercise (3.26) . — Let R be a nonzero ring, S a subset. Show S is maximal in
the set S of multiplicative subsets T of R with 0 /∈ T if and only if R − S is a
minimal prime of R.

Exercise (3.27) . — Let k be a field, Xλ for λ ∈ Λ variables, and Λπ for π ∈ Π
disjoint subsets of Λ. Set P := k[{Xλ}λ∈Λ] and pπ := 〈{Xλ}λ∈Λπ 〉 for all π ∈ Π.
Let F, G ∈ P be nonzero, and a ⊂ P a nonzero ideal. Set U :=

⋃
π∈Π pπ. Show:

(1) Assume F ∈ pπ for some π ∈ Π, Then every monomial of F is in pπ.
(2) Assume there are π, ρ ∈ Π such that F +G ∈ pπ and G ∈ pρ but pρ contains

no monomial of F . Then pπ contains every monomial of F and of G.
(3) Assume a ⊂ U . Then a ⊂ pπ for some π ∈ Π.

Exercise (3.28) . — Let k be a field, S ⊂ k a subset of cardinality d at least 2.
(1) Let P := k[X1, . . . , Xn] be the polynomial ring, F ∈ P nonzero. Assume the

highest power of any Xi in F is less than d. Proceeding by induction on n, show
there are a1, . . . , an ∈ S with F (a1, . . . , an) -= 0.

(2) Let V be a k-vector space, and W1, . . . ,Wr proper subspaces. Assume r < d.
Show

⋃
i Wi -= V .

(3) In (2), let W ⊂
⋃

i Wi be a subspace. Show W ⊂Wi for some i.
(4) Let R a k-algebra, a, a1, . . . , ar ideals with a ⊂

⋃
i ai. Show a ⊂ ai for some i.

Exercise (3.29) . — Let k be a field, R := k[X,Y ] the polynomial ring in two
variables, m := 〈X,Y 〉. Show m is a union of strictly smaller primes.

Exercise (3.30) . — Find the nilpotents in Z/〈n〉. In particular, take n = 12.

Exercise (3.31) (Nakayama’s Lemma for nilpotent ideals) . — Let R be a ring, a
an ideal, M a module. Assume aM = M and a is nilpotent. Show M = 0.

Exercise (3.32) . — Let R be a ring; a, b ideals; p a prime. Prove the following:

(1)
√
ab =

√
a ∩ b =

√
a ∩
√
b. (2)

√
a = R if and only if a = R.

(3)
√
a+ b =

√√
a+
√
b. (4)

√
pn = p for all n > 0.
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Exercise (3.33) . — Let R be a ring. Prove these statements: (1) Assume every
ideal not contained in nil(R) contains a nonzero idempotent. Then nil(R) = rad(R).

(2) Assume R is Boolean. Then nil(R) = rad(R) = 〈0〉.

Exercise (3.34) . — Let e, e′ ∈ Idem(R). Assume
√
〈e〉 =

√
〈e′〉. Show e = e′.

Exercise (3.35) . — Let R be a ring, a1, a2 comaximal ideals with a1a2 ⊂ nil(R).
Show there are complementary idempotents e1 and e2 with ei ∈ ai.

Exercise (3.36) . — Let R be a ring, a an ideal, κ : R → R/a the quotient map.
Assume a ⊂ nil(R). Show Idem(κ) is bijective.

Exercise (3.37) . — Let R be a ring. Prove the following statements equivalent:

(1) R has exactly one prime p;
(2) every element of R is either nilpotent or a unit;
(3) R/ nil(R) is a field.

Exercise (3.38) . — Let R be a ring, a and b ideals. Assume that b is finitely
generated modulo a and that b ⊂

√
a. Show there’s n ≥ 1 with bn ⊂ a.

Exercise (3.39) . — Let ϕ : R → R′ be a ring map, a ⊂ R and b ⊂ R′ subsets.
Prove these two relations: (1) (ϕ

√
a)R′ ⊂

√
(ϕa)R′ and (2) ϕ−1

√
b =

√
ϕ−1b.

Exercise (3.40) . — Let R be a ring, q an ideal, p a prime. Assume p is finitely
generated modulo q. Show p =

√
q if and only if there’s n ≥ 1 with p ⊃ q ⊃ pn.

Exercise (3.41) . — Let R be a ring. Assume R is reduced and has finitely many
minimal prime ideals p1, . . . , pn. Prove ϕ : R →

∏
(R/pi) is injective, and for each

i, there is some (x1, . . . , xn) ∈ Im(ϕ) with xi -= 0 but xj = 0 for j -= i.

Exercise (3.42) . — Let R be a ring, X a variable, F := a0 + a1X + · · ·+ anXn.
(1) Prove F is nilpotent if and only if a0, . . . , an are nilpotent.
(2) Prove F is a unit if and only if a0 is a unit and a1, . . . , an are nilpotent.

Exercise (3.43) . — Generalize (3.42) to the polynomial ring P := R[X1, . . . , Xr].

Exercise (3.44) . — Let R be a ring, R′ an algebra, X a variable. Show:

(1) nil(R)R′ ⊂ nil(R′) and (2) rad(R[X]) = nil(R[X]) = nil(R)R[X].
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4. Modules

In Commutative Algebra, it has proven advantageous to expand the study of rings
to include modules. Thus we obtain a richer theory, which is more flexible and more
useful. We begin the expansion here by discussing residue modules, kernels, and
images. In particular, we identify the UMP of the residue module, and use it to
construct the Noether isomorphisms. We also construct free modules, direct sums,
and direct products, and we describe their UMPs.

A. Text

(4.1) (Modules). — Let R be a ring. Recall that an R-module M is an abelian
group, written additively, with a scalar multiplication, R ×M → M , written
(x,m) 2→ xm, which is

(1) distributive, x(m+ n) = xm+ xn and (x+ y)m = xm+ ym,
(2) associative, x(ym) = (xy)m, and
(3) unitary, 1 ·m = m.

For example, if R is a field, then an R-module is a vector space. Moreover, a
Z-module is just an abelian group; multiplication is repeated addition.

As in (1.1), for any x ∈ R and m ∈M , we have x · 0 = 0 and 0 ·m = 0.
A submodule N of M is a subgroup that is closed under multiplication; that

is, xn ∈ N for all x ∈ R and n ∈ N . For example, the ring R is itself an R-module,
and the submodules are just the ideals. Given an ideal a, let aN denote the smallest
submodule containing all products an with a ∈ a and n ∈ N . Similar to (1.4),
clearly aN is equal to the set of finite sums

∑
aini with ai ∈ a and ni ∈ N .

Given m ∈M , define its annihilator, denoted Ann(m) or AnnR(m), by

Ann(m) := {x ∈ R | xm = 0}.
Furthermore, define the annihilator of M , denoted Ann(M) or AnnR(M), by

Ann(M) := {x ∈ R | xm = 0 for all m ∈M}.
Plainly, Ann(m) and Ann(M) are ideals.

We call the intersection of all maximal ideals containing Ann(M) the radical of
M , and denote it by rad(M) or radR(M). Note that, owing to (1.9) and (2.7),
reduction sets up a bijective correspondence between the maximal ideals containing
Ann(M) and the maximal ideals of R/Ann(M); hence,

rad(R/Ann(M)) = rad(M)/Ann(M). (4.1.1)

If R is local with maximal ideal m and if M -= 0, notice m = rad(M).
Given a submodule N of M , note Ann(M) ⊂ Ann(N). Thus rad(M) ⊂ rad(N).

Similarly, Ann(M) ⊂ Ann(M/N). Thus rad(M) ⊂ rad(M/N).
We call M semilocal if there are only finitely many maximal ideals containing

Ann(M). Trivially, if R is semilocal, then so is M . Moreover, owing to the bijective
correspondence between maximal ideals noted above, M is semilocal if and only if
R/Ann(M) is a semilocal ring.

Given a set X := {Xλ}λ∈Λ of variables, form the set of “polynomials”:

M [X] :=
{∑n

i=0 miMi | mi ∈M and the Mi monomials in the Xλ

}
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Canonically, M [X] is an R[X]-module.

(4.2) (Homomorphisms). — Let R be a ring, M and N modules. Recall that a
homomorphism, or R-linear map, or simply R-map, is a map α : M → N with

α(xm+ yn) = x(αm) + y(αn).

Associated to a homomorphism α : M → N are its kernel and its image

Ker(α) := α−1(0) ⊂M and Im(α) := α(M) ⊂ N.

They are defined as subsets, but are obviously submodules.
Let ι : Ker(α) → M be the inclusion. Then Ker(α) has this UMP: αι = 0, and

given a homomorphism β : K →M with αβ = 0, there is a unique homomorphism
γ : K → Ker(α) with ιγ = β as shown below

Ker(α) M N

K

!!ι !!α

((

γ

))

β

**

0

A homomorphism α is called an isomorphism if it is bijective. If so, then we
write α : M ∼−→ N . Then the set-theoretic inverse α−1 : N → M is a homomor-
phism too. So α is an isomorphism if and only if there is a set map β : N → M
such that βα = 1M and αβ = 1N , where 1M and 1N are the identity maps, and
then β = α−1. If there is an unnamed isomorphism between M and N , then we
write M = N when it is canonical (that is, it does not depend on any artificial
choices), and we write M % N otherwise.

The set of homomorphisms α is denoted by HomR(M,N) or simply Hom(M,N).
It is an R-module with addition and scalar multiplication defined by

(α+ β)m := αm+ βm and (xα)m := x(αm) = α(xm).

Homomorphisms α : L→M and β : N → P induce, via composition, a map

Hom(α,β) : Hom(M,N)→ Hom(L,P ),

which is obviously a homomorphism. When α is the identity map 1M , we write
Hom(M,β) for Hom(1M ,β); similarly, we write Hom(α, N) for Hom(α, 1N ).

Exercise (4.3) . — Let R be a ring, M a module. Consider the set map

ρ : Hom(R,M)→M defined by ρ(θ) := θ(1).

Show that ρ is an isomorphism, and describe its inverse.

(4.4) (Endomorphisms). — Let R be a ring, M a module. An endomorphism of
M is a homomorphism α : M →M . The module of endomorphisms Hom(M,M) is
also denoted EndR(M). It is a ring, usually noncommutative, with multiplication
given by composition. Further, EndR(M) is a subring of EndZ(M).

Given x ∈ R, let µx : M →M denote the map of multiplication by x, defined by
µx(m) := xm. It is an endomorphism. Further, x 2→ µx is a ring map

µR : R→ EndR(M) ⊂ EndZ(M).

(Thus we may view µR as representing R as a ring of operators on the abelian
group M .) Note that Ker(µR) = Ann(M).

Conversely, given an abelian group N and a ring map

ν : R→ EndZ(N),
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we obtain a module structure on N by setting xn := (νx)(n). Then µR = ν.
We call M faithful if µR : R → EndR(M) is injective, or Ann(M) = 0. For

example, R is a faithful R-module, as x · 1 = 0 implies x = 0.

(4.5) (Algebras). — Fix two rings R and R′.
Suppose R′ is an R-algebra with structure map ϕ. Let M ′ be an R′-module.

Then M ′ is also an R-module by restriction of scalars: xm := ϕ(x)m. In other
words, the R-module structure on M ′ corresponds to the composition

R
ϕ−→ R′ µR′−−→ EndZ(M

′).

In particular, R′ is an R′-module, so R′ is an R-module; further,

(xy)z = x(yz) for all x ∈ R and y, z ∈ R′. (4.5.1)

Indeed, R′ is an R′-module, so an R-module by restriction of scalars; further,
(xy)z = x(yz) since (ϕ(x)y)z = ϕ(x)(yz) by associativity in R′.
Conversely, suppose R′ is an R-module satisfying (4.5.1). Then R′ has an R-

algebra structure that is compatible with the given R-module structure. Indeed,
define ϕ : R → R′ by ϕ(x) := x · 1. Then ϕ(x)z = xz as (x · 1)z = x(1 · z). So the
composition µR′ϕ : R → R′ → EndZ(R′) is equal to µR. Hence ϕ is a ring map,
because µR is one and µR′ is injective by (4.4). Thus R′ is an R-algebra, and
restriction of scalars recovers its given R-module structure.

Suppose that R′ = R/a for some ideal a. Then an R-module M has a compatible
R′-module structure if and only if aM = 0; if so, then the R′-structure is unique.
Indeed, the ring map µR : R→ EndZ(M) factors through R′ if and only if µR(a) = 0
by (1.5), so if and only if aM = 0; as EndZ(M) may be noncommutative, we must
apply (1.5) to µR(R), which is commutative.

For a second example, suppose R′ is the polynomial ring in one variable R[X].
Fix an R-module M . Then to give a compatible R[X]-module structure is the
same as to give an endomorphism χ : M → M , because to give a factorization
µR : R→ R[X]→ EndR(M) is the same as to give an χ ∈ EndR(M).
Again suppose R′ is an arbitrary R-algebra with structure map ϕ. A subalgebra

R′′ of R′ is a subring such that ϕ maps into R′′. The subalgebra generated by
xλ ∈ R′ for λ ∈ Λ is the smallest R-subalgebra that contains all xλ. We denote it
by R[{xλ}], or simply by R[x1, . . . , xn] if Λ = {1, . . . , n}, and call the xλ algebra
generators. This subalgebra plainly contains all polynomial combinations of the
xλ with coefficients in R. In fact, the set R′′ of these polynomial combinations is
itself, plainly, an R-subalgebra; hence, R′′ = R[{xλ}].
We say R′ is a finitely generated R-algebra or is algebra finite over R if

there exist x1, . . . , xn ∈ R′ such that R′ = R[x1, . . . , xn].

(4.6) (Residue modules). — Let R be a ring, M a module, M ′ ⊂M a submodule.
Form the set of cosets, or set of residues,

M/M ′ := {m+M ′ | m ∈M}.
Recall that M/M ′ inherits a module structure, and is called the residue module,
or quotient, of M modulo M ′. Form the quotient map

κ : M →M/M ′ by κ(m) := m+M ′.

Clearly κ is surjective, κ is linear, and κ has kernel M ′.
Let α : M → N be linear. Note that Ker(α) ⊃M ′ if and only if α(M ′) = 0.
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Recall that, if Ker(α) ⊃ M ′, then there exists a homomorphism β : M/M ′ → N
such that βκ = α; that is, the following diagram is commutative:

M M/M ′

N

!!κ

""
α ##

β

Conversely, if β exists, then Ker(α) ⊃M ′, or α(M ′) = 0, as κ(M ′) = 0.
Further, if β exists, then β is unique as κ is surjective.
Thus, as κ is surjective, if β exists, then β is surjective if and only if α is so.

In addition, then β is injective if and only if M ′ = Ker(α). Therefore, β is an
isomorphism if and only if α is surjective and M ′ = Ker(α). In particular, always

M/Ker(α) ∼−→ Im(α). (4.6.1)

In practice, it is usually more productive to view M/M ′ not as a set of cosets, but
simply another module M ′′ that comes equipped with a surjective homomorphism
α : M →M ′′ whose kernel is the given submodule M ′.
Finally, as we have seen, M/M ′ has the following UMP: κ(M ′) = 0, and given

α : M → N such that α(M ′) = 0, there is a unique homomorphism β : M/M ′ → N
such that βκ = α. Formally, the UMP determinesM/M ′ up to unique isomorphism.

(4.7) (Cyclic modules). — Let R be a ring. A module M is said to be cyclic if
there exists m ∈ M such that M = Rm. If so, form α : R → M by x 2→ xm; then
α induces an isomorphism R/Ann(m) ∼−→ M as Ker(α) = Ann(m); see (4.6.1).
Note that Ann(m) = Ann(M). Conversely, given any ideal a, the R-module R/a is
cyclic, generated by the coset of 1, and Ann(R/a) = a.

(4.8) (Noether Isomorphisms). — Let R be a ring, N a module, and L and M
submodules.

First, assume L ⊂M . Form the following composition of quotient maps:

α : N → N/L→ (N/L)
/
(M/L).

Clearly α is surjective, and Ker(α) = M . Hence owing to (4.6), α factors through
the isomorphism β in this commutative diagram:

N −−−−−→ N/M) β

)(

N/L −→ (N/L)
/
(M/L)

(4.8.1)

Second, no longer assuming L ⊂M , set

L+M := { 2+m | 2 ∈ L, m ∈M } ⊂ N.

Plainly L+M is a submodule. It is called the sum of L and M .
Form the composition α′ of the inclusion map L→ L+M and the quotient map

L+M → (L+M)/M . Clearly α′ is surjective and Ker(α′) = L∩M . Hence owing
to (4.6), α′ factors through the isomorphism β′ in this commutative diagram:

L −−−→ L/(L ∩M)) β′
)(

L+M −→ (L+M)/M

(4.8.2)
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The isomorphisms of (4.6.1) and (4.8.1) and (4.8.2) are called Noether’s
First, Second, and Third Isomorphisms.

(4.9) (Cokernels, coimages). — Let R be a ring, α : M → N a linear map. Asso-
ciated to α are its cokernel and its coimage,

Coker(α) := N/ Im(α) and Coim(α) := M/Ker(α);

they are quotient modules, and their quotient maps are both denoted by κ.
Note (4.6) yields the UMP of the cokernel: κα = 0, and given a map β : N → P

with βα = 0, there is a unique map γ : Coker(α)→ P with γκ = β as shown below

M N Coker(α)

P

!!α

""
0 ##

β

!!κ

++
γ

Further, (4.6.1) becomes Coim(α) ∼−→ Im(α). Moreover, Im(α) = Ker(κ).

(4.10) (Generators, free modules). — Let R be a ring, M a module. Given a
subset N ⊂ M , by the submodule 〈N〉 that N generates, we mean the smallest
submodule containing N .

Given elements mλ ∈ M for λ ∈ Λ, by the submodule they generate, we mean
the submodule generated by the set {mλ}. If Λ = ∅, then this submodule consists
just of 0. If Λ = {1, . . . , n}, then the submodule is usually denoted by 〈m1, . . . ,mn〉.

Any submodule containing all the mλ contains any (finite) linear combination∑
xλmλ with xλ ∈ R and almost all 0. Form the setN , or

∑
Rmλ, of all such linear

combinations. Plainly, N is a submodule containing all mλ, so is the submodule
they generate.
Given a submodule N and elements mλ ∈ N that generate N , we refer to the

mλ as generators of N .
Given a number of submodules Nλ, by their sum

∑
Nλ, we mean the set of all

finite linear combinations
∑

xλmλ with xλ ∈ R and mλ ∈ Nλ. Plainly,
∑

Nλ is
equal to the submodule the Nλ generate, namely, the smallest submodule that
contains all Nλ.

By the intersection
⋂
Nλ, we mean the intersection as sets. It is, plainly, a

submodule.
Elements mλ ∈ M are said to be free or linearly independent if, whenever∑
xλmλ = 0, also xλ = 0 for all λ. The mλ are said to form a (free) basis of M

if they are free and generate M ; if so, then we say M is free on the mλ.
We say M is finitely generated if it has a finite set of generators.
We say M is free if it has a free basis. If so, then by either (5.32)(2) or (10.5)

below, any two free bases have the same number 2 of elements, and we say M is
free of rank 2, and we set rank(M) := 2.

For example, form the set of restricted vectors

R⊕Λ := {(xλ) | xλ ∈ R with xλ = 0 for almost all λ}.
It is a module under componentwise addition and scalar multiplication. It has a
standard basis, which consists of the vectors eµ whose λth component is the value
of the Kronecker delta function; that is,

eµ := (δµλ) where δµλ :=

{
1, if λ = µ;

0, if λ -= µ.
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Clearly the standard basis is free. If Λ has a finite number 2 of elements, then R⊕Λ

is often written R+ and called the direct sum of 2 copies of R.
For instance, Z⊕Λ is just the free Abelian group on Λ.
The free module R⊕Λ has the following UMP: given a module M and elements

mλ ∈M for λ ∈ Λ, there is a unique R-map

α : R⊕Λ →M with α(eλ) = mλ for each λ ∈ Λ;

namely, α
(
(xλ)

)
= α

(∑
xλeλ

)
=

∑
xλmλ. Note the following obvious statements:

(1) α is surjective if and only if the mλ generate M .
(2) α is injective if and only if the mλ are linearly independent.
(3) α is an isomorphism if and only if the mλ form a free basis.

Thus M is free of rank 2 if and only if M % R+.

Example (4.11). — Take R := Z and M := Q. Then any two x, y in M are not
free; indeed, if x = a/b and y = −c/d, then bcx+ ady = 0. So M is not free.
Also M is not finitely generated. Indeed, given any m1/n1, . . . ,mr/nr ∈M , let d

be a common multiple of n1, . . . , nr. Then (1/d)Z contains every linear combination
x1(m1/n1) + · · ·+ x+(m+/n+), but (1/d)Z -= M .

Moreover, Q is not algebra finite over Z. Indeed, let p ∈ Z be any prime not
dividing n1 · · ·nr. Then 1/p /∈ Z[m1/n1, . . . ,mr/nr].

Theorem (4.12). — Let R be a PID, E a free module, {eλ}λ∈Λ a (free) basis, and
F a submodule. Then F is free, and has a basis indexed by a subset of Λ.

Proof: Well order Λ. For all λ, let πλ : E → R be the λth projection. For all µ,
set Eµ :=

⊕
λ≤µ Reλ and Fµ := F ∩ Eµ. Then πµ(Fµ) = 〈aµ〉 for some aµ ∈ R as

R is a PID. Choose fµ ∈ Fµ with πµ(fµ) = aµ. Set Λ0 := {µ ∈ Λ | aµ -= 0}.
Say

∑
µ∈Λ0

cµfµ = 0 for some cµ ∈ R. Set Λ1 := {µ ∈ Λ0 | cµ -= 0}. Suppose
Λ1 -= ∅. Note Λ1 is finite. Let µ1 be the greatest element of Λ1. Then πµ1(fµ) = 0
for µ < µ1 as fµ ∈ Eµ. So πµ1(

∑
cµfµ) = cµ1aµ1 . So cµ1aµ1 = 0. But cµ1 -= 0 and

aµ1 -= 0, a contradiction. Thus {fµ}µ∈Λ0 is linearly independent.
Note F =

⋃
λ∈Λ0

Fλ. Given λ ∈ Λ0, set Λλ := {µ ∈ Λ0 | µ ≤ λ}. Suppose λ is
least such that {fµ}µ∈Λλ does not generate Fλ. Given f ∈ Fλ, say f =

∑
µ≤λ cµeµ

with cµ ∈ R. Then πλ(f) = cλ. But πλ(Fλ) = 〈aλ〉. So cλ = bλaλ for some bλ ∈ R.
Set g := f − bλfλ. Then g ∈ Fλ, and πλ(g) = 0. So g ∈ Fν for some ν ∈ Λ0

with ν < λ. Hence g =
∑

µ∈Λν
bµfµ for some bµ ∈ R. So f =

∑
µ∈Λλ

bµfµ, a
contradiction. Hence {fµ}µ∈Λλ generates Fλ. Thus {fµ}µ∈Λ0 is a basis of F . !

(4.13) (Direct Products, Direct Sums). — Let R be a ring, Λ a set, Mλ a module
for λ ∈ Λ. The direct product of the Mλ is the set of arbitrary vectors:

∏
Mλ := {(mλ) | mλ ∈Mλ}.

Clearly,
∏

Mλ is a module under componentwise addition and scalar multiplication.
The direct sum of the Mλ is the subset of restricted vectors:

⊕
Mλ := {(mλ) | mλ = 0 for almost all λ} ⊂

∏
Mλ.

Clearly,
⊕

Mλ is a submodule of
∏

Mλ. Clearly,
⊕

Mλ =
∏

Mλ if Λ is finite.
If Λ = {λ1, . . . ,λn}, then

⊕
Mλ is also denoted by Mλ1 ⊕ · · · ⊕Mλn . Further, if

Mλ = M for all λ, then
⊕

Mλ is also denoted by MΛ, or by Mn if Λ has just n
elements.
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The direct product comes equipped with projections

πκ :
∏

Mλ →Mκ given by πκ
(
(mλ)

)
:= mκ.

It is easy to see that
∏

Mλ has this UMP: given R-maps ακ : L → Mκ, there’s a
unique R-map α : L→

∏
Mλ with πκα = ακ for all κ ∈ Λ; namely, α(n) =

(
αλ(n)

)
.

Often, α is denoted (αλ). In other words, the πλ induce a bijection of sets,

Hom
(
L,

∏
Mλ

)
∼−→

∏
Hom(L, Mλ). (4.13.1)

Clearly, this bijection is an isomorphism of modules.
Similarly, the direct sum comes equipped with injections

ικ : Mκ →
⊕

Mλ given by ικ(m) := (mλ) where mλ :=

{
m, if λ = κ;

0, if λ -= κ.

It’s easy to see it has this UMP: given R-maps βκ : Mκ → N , there’s a unique
R-map β :

⊕
Mλ → N with βικ = βκ for all κ ∈ Λ; namely, β

(
(mλ)

)
=

∑
βλ(mλ).

Often, β is denoted
∑
βλ; often, (βλ). In other words, the ικ induce this bijection:

Hom
(⊕

Mλ, N
)

∼−→
∏

Hom(Mλ, N). (4.13.2)

Clearly, this bijection of sets is an isomorphism of modules.
For example, if Mλ = R for all λ, then

⊕
Mλ = R⊕Λ by construction. Further,

if Nλ := N for all λ, then Hom(R⊕Λ, N) =
∏

Nλ by (4.13.2) and (4.3).

B. Exercises

Exercise (4.14) . — Let R be a ring, a and b ideals, M and N modules. Set

Γa(M) :=
{
m ∈M

∣∣∣ a ⊂
√

Ann(m)
}
.

Show: (1) Assume a ⊃ b. Then Γa(M) ⊂ Γb(M).
(2) Assume M ⊂ N . Then Γa(M) = Γa(N) ∩M .
(3) Then Γa(Γb(M)) = Γa+b(M) = Γa(M) ∩ Γb(M).
(4) Then Γa(M) = Γ√

a(M).
(5) Assume a is finitely generated. Then Γa(M) =

⋃
n≥1{m ∈M | anm = 0 }.

Exercise (4.15) . — Let R be a ring, M a module, x ∈ rad(M), and m ∈ M .
Assume (1 + x)m = 0. Show m = 0.

Exercise (4.16) . — Let R be a ring, M a module, N and Nλ submodules for
λ ∈ Λ, and a, aλ, b ideals for λ ∈ Λ. Set (N : a) := {m ∈M | am ⊂ N}. Show:

(1) (N : a) is a submodule. (2) N ⊂ (N : a).
(3) (N : a)a ⊂ N . (4) ((N : a) : b) = (N : ab) = ((N : b) : a).
(5)

(⋂
Nλ : a

)
=

⋂
(Nλ : a). (6)

(
N :

∑
aλ

)
=

⋂
(N : aλ).

Exercise (4.17) . — Let R be a ring, M a module, N, Nλ, L, Lλ submodules for
λ ∈ Λ. Set (N : L) := {x ∈ R | xL ⊂ N}. Show:

(1) (N : L) is an ideal. (2) (N : L) = Ann((L+N)/N).
(3) (0 : L) = Ann(L). (4) (N : L) = R if L ⊂ N
(5) (

⋂
Nλ : L) =

⋂
(Nλ : L). (6)

(
N :

∑
Lλ

)
=

⋂
(N : Lλ).
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Exercise (4.18) . — Let R be a ring, X := {Xλ} a set of variables, M a module,
N a submodule. Set P := R[X]. Prove these statements:

(1) M [X] is universal among P -modules Q with a given R-map α : M → Q;
namely, there’s a unique P -map β : M [X]→ Q with β|M = α.

(2) M [X] has this UMP: given a P -module Q and R-maps α : M → Q and
χλ : Q → Q for all λ, there’s a unique R-map β : M [X] → Q with β|M = α and
βµXλ = χλβ for all λ.

(3) M [X]
/
N [X] = (M/N)[X].

Exercise (4.19) . — Let R be a ring, X a set of variables, M a module, and
N1, . . . , Nr submodules. Set N =

⋂
Ni. Prove the following equations:

(1) Ann
(
M [X]

)
= Ann(M)[X]. (2) N [X] =

⋂
Ni[X].

Exercise (4.20) . — Let R be a ring, M a module, X a variable, F ∈ R[X]. Assume
there’s a nonzero G ∈ M [X] with FG = 0. Show there’s a nonzero m ∈ M with
Fm = 0. Proceed as follows. Say G = m0 + m1X + · · · + msXs with ms -= 0.
Assume s is minimal among all possible G. Show Fms = 0 (so s = 0).

Exercise (4.21) . — Let R be a ring, a and b ideals, and M a module. Set
N := M/aM . Show that M/(a+ b)M ∼−→ N/bN .

Exercise (4.22) . — Show that a finitely generated free module F has finite rank.

Exercise (4.23) . — Let R be a domain, and x ∈ R nonzero. Let M be the
submodule of Frac(R) generated by 1, x−1, x−2, . . . . Suppose that M is finitely
generated. Prove that x−1 ∈ R, and conclude that M = R.

Exercise (4.24) . — Let Λ be an infinite set, Rλ a nonzero ring for λ ∈ Λ. Endow∏
Rλ and

⊕
Rλ with componentwise addition and multiplication. Show that

∏
Rλ

has a multiplicative identity (so is a ring), but that
⊕

Rλ does not (so is not a ring).

Exercise (4.25) . — Let R be a ring, M a module, and M ′, M ′′ submodules. Show
that M = M ′ ⊕M ′′ if and only if M = M ′ +M ′′ and M ′ ∩M ′′ = 0.

Exercise (4.26) . — Let L, M , and N be modules. Consider a diagram

L
α−→←−
ρ
M

β−→←−
σ

N

where α, β, ρ, and σ are homomorphisms. Prove that

M = L⊕N and α = ιL, β = πN , σ = ιN , ρ = πL

if and only if the following relations hold:

βα = 0, βσ = 1, ρσ = 0, ρα1, and αρ+ σβ = 1.

Exercise (4.27) . — Let L be a module, Λ a nonempty set, Mλ a module for λ ∈ Λ.
Prove that the injections ικ : Mκ →

⊕
Mλ induce an injection

⊕
Hom(L, Mλ) ↪→ Hom(L,

⊕
Mλ),

and that it is an isomorphism if L is finitely generated.

Exercise (4.28) . — Let a be an ideal, Λ a nonempty set, Mλ a module for λ ∈ Λ.
Prove a

(⊕
Mλ

)
=

⊕
aMλ. Prove a(

∏
Mλ) =

∏
aMλ if a is finitely generated.

Exercise (4.29) . — Let R be a ring, Λ a set, Mλ a module for λ ∈ Λ, and Nλ ⊂Mλ

a submodule. Set M :=
⊕

Mλ and N :=
⊕

Nλ and Q :=
⊕

Mλ/Nλ. Show
M/N = Q.
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5. Exact Sequences

In the study of modules, the exact sequence plays a central role. We relate it to
the kernel and image, the direct sum and direct product. We introduce diagram
chasing, and prove the Snake Lemma, which is a fundamental result in homological
algebra. We define projective modules, and characterize them in four ways. Finally,
we prove Schanuel’s Lemma, which relates two arbitrary presentations of a module.

In an appendix, we use determinants to study Fitting ideals and free modules. In
particular, we prove that the rank of a free module is invariant under isomorphism;
more proofs are given in (8.25)(2) and (10.5). We also prove the Elementary
Divisors Theorem for a nested pair N ⊂M of free modules with N of rank n over a
PID; it asserts that M has a (free) basis containing elements x1, . . . , xn with unique
multiples d1x1, . . . , dnxn that form a basis of N ; also, di | di+1 for i < n.

A. Text

Definition (5.1). — A (finite or infinite) sequence of module homomorphisms

· · ·→Mi−1
αi−1−−−→Mi

αi−→Mi+1 → · · ·
is said to be exact at Mi if Ker(αi) = Im(αi−1). The sequence is said to be exact
if it is exact at every Mi, except an initial source or final target.

Example (5.2). — (1) A sequence 0→ L
α−→M is exact if and only if α is injective.

If so, then we often identify L with its image α(L).
Dually—that is, in the analogous situation with all arrows reversed—a se-

quence M
β−→ N → 0 is exact if and only if β is surjective.

(2) A sequence 0→ L
α−→ M

β−→ N is exact if and only if L = Ker(β), where ‘=’

means “canonically isomorphic.” Dually, a sequence L
α−→M

β−→ N → 0 is exact if
and only if N = Coker(α) owing to (1) and (4.6.1).

(5.3) (Short exact sequences). — A sequence 0→ L
α−→ M

β−→ N → 0 is exact if
and only if α is injective and N = Coker(α), or dually, if and only if β is surjective
and L = Ker(β). If so, then the sequence is called short exact, and often we
regard L as a submodule of M , and N as the quotient M/L.

For example, the following sequence is clearly short exact:

0→ L
ιL−→ L⊕N

πN−−→ N → 0 where

ιL(l) := (l, 0) and πN (l, n) := n.

Proposition (5.4). — For λ ∈ Λ, let M ′
λ → Mλ → M ′′

λ be a sequence of module
homomorphisms. If every sequence is exact, then so are the two induced sequences

⊕
M ′
λ →

⊕
Mλ →

⊕
M ′′
λ and

∏
M ′
λ →

∏
Mλ →

∏
M ′′
λ .

Conversely, if either induced sequence is exact then so is every original one.

Proof: The assertions are immediate from (5.1) and (4.13). !
Exercise (5.5) . — Let 0→M ′ →M →M ′′ → 0 be a short exact sequence. Prove
that, if M ′ and M ′′ are finitely generated, then so is M .
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Proposition (5.6). — Let 0 → M ′ α−→ M
β−→ M ′′ → 0 be a short exact sequence,

and N ⊂ M a submodule. Set N ′ := α−1(N) and N ′′ := β(N). Then the induced
sequence 0→ N ′ → N → N ′′ → 0 is short exact.

Proof: It is simple and straightforward to verify the asserted exactness. !
(5.7) (Retraction, section, splits). — We call a linear map ρ : M →M ′ a retrac-
tion of another α : M ′ →M if ρα = 1M ′ . Then α is injective and ρ is surjective.
Dually, we call a linear map σ : M ′′ → M a section of another β : M → M ′′ if

βσ = 1M ′′ . Then β is surjective and σ is injective..
We say that a 3-term exact sequence M ′ α−→M

β−→M ′′ splits if there is an iso-
morphism ϕ : M ∼−→M ′ ⊕M ′′ with ϕα = ιM ′ and β = πM ′′ϕ.

Proposition (5.8). — Let M ′ α−→M
β−→M ′′ be a 3-term exact sequence. Then the

following conditions are equivalent:

(1) The sequence splits.
(2) There exists a retraction ρ : M →M ′ of α, and β is surjective.
(3) There exists a section σ : M ′′ →M of β, and α is injective.

Proof: Assume (1). Then there exists ϕ : M ∼−→ M ′ ⊕M ′′ such that ϕα = ιM ′

and β = πM ′′ϕ. Set ρ := πM ′ϕ and σ := ϕ−1ιM ′′ . Then plainly (2) and (3) hold.
Assume (2). Set σ′ := 1M − αρ. Then σ′α = α − αρα. But ρα = 1M ′ as ρ is a

retraction. So σ′α = 0. Hence there exists σ : M ′′ → M with σβ = σ′ by (5.2)(2)
and the UMP of (4.9). Thus 1M = αρ+ σβ.

Hence β = βαρ+ βσβ. But βα = 0 as the sequence is exact. So β = βσβ. But
β is surjective. Thus 1M ′′ = βσ; that is, (3) holds.
Similarly, σ = αρσ + σβσ. But βσ = 1M ′′ as (3) holds. So 0 = αρσ. But α is

injective, as ρ is a retraction of it. Thus ρσ = 0. Thus (4.26) yields (1).
Assume (3). Then similarly (1) and (2) hold. !

Example (5.9). — Let R be a ring, R′ an R-algebra, and M an R′-module. Set
H := HomR(R′,M). Define α : M → H by α(m)(x) := xm, and ρ : H → M by
ρ(θ) := θ(1). Then ρ is a retraction of α, as ρ(α(m)) = 1 ·m. Let β : M → Coker(α)
be the quotient map. Then (5.8) implies that M is a direct summand of H with
α = ιM and ρ = πM .

Lemma (5.10) (Snake). — Consider this commutative diagram with exact rows:

M ′ α−→ M
β−→ M ′′ −→ 0

γ′
) γ

) γ′′
)

0 −→ N ′ α′
−→ N

β′

−→ N ′′

It yields the following exact sequence:

Ker(γ′)
ϕ−→ Ker(γ)

ψ−→ Ker(γ′′)
∂−→ Coker(γ′)

ϕ′
−→ Coker(γ)

ψ′
−→ Coker(γ′′). (5.10.1)

Moreover, if α is injective, then so is ϕ; dually, if β′ is surjective, then so is ψ′.

Proof: Clearly α restricts to a map ϕ, because α
(
Ker(γ′)

)
⊂ Ker(γ) since

α′γ′
(
Ker(γ′)

)
= 0. By the UMP discussed in (4.9), α′ factors through a unique

map ϕ′ because M ′ goes to 0 in Coker(γ). Similarly, β and β′ induce corresponding
maps ψ and ψ′. Thus all the maps in (5.10.1) are defined except for ∂.

To define ∂, chase an m′′ ∈ Ker(γ′′) through the diagram. Since β is surjective,
there is m ∈ M such that β(m) = m′′. By commutativity, γ′′β(m) = β′γ(m). So
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β′γ(m) = 0. By exactness of the bottom row, there is a unique n′ ∈ N ′ such that
α′(n′) = γ(m). Define ∂(m′′) to be the image of n′ in Coker(γ′).

To see ∂ is well defined, choose another m1 ∈M with β(m1) = m′′. Let n′
1 ∈ N ′

be the unique element with α′(n′
1) = γ(m1) as above. Since β(m−m1) = 0, there

is an m′ ∈ M ′ with α(m′) = m −m1. But α′γ′ = γα. So α′γ′(m′) = α′(n′ − n′
1).

Hence γ′(m′) = n′ − n′
1 since α′ is injective. So n′ and n′

1 have the same image in
Coker(γ′). Thus ∂ is well defined.

Let’s show that (5.10.1) is exact at Ker(γ′′). Take m′′ ∈ Ker(γ′′). As in the
construction of ∂, take m ∈ M such that β(m) = m′′ and take n′ ∈ N ′ such that
α′(n′) = γ(m). Suppose m′′ ∈ Ker(∂). Then the image of n′ in Coker(γ′) is equal
to 0; so there is m′ ∈ M ′ such that γ′(m′) = n′. Clearly γα(m′) = α′γ′(m′). So
γα(m′) = α′(n′) = γ(m). Hence m− α(m′) ∈ Ker(γ). Since β

(
m− α(m′)

)
= m′′,

clearly m′′ = ψ(m− α(m′)); so m′′ ∈ Im(ψ). Hence Ker(∂) ⊂ Im(ψ).
Conversely, suppose m′′ ∈ Im(ψ). We may assume m ∈ Ker(γ). So γ(m) = 0 and

α′(n′) = 0. Since α′ is injective, n′ = 0. Thus ∂(m′′) = 0, and so Im(ψ) ⊂ Ker(∂).
Thus Ker(∂) is equal to Im(ψ); that is, (5.10.1) is exact at Ker(γ′′).

The other verifications of exactness are similar or easier.
The last two assertions are clearly true. !

Theorem (5.11) (Left exactness of Hom). — (1) Let M ′ → M → M ′′ → 0 be a
sequence of linear maps. Then it is exact if and only if, for all modules N , the
following induced sequence is exact:

0→ Hom(M ′′, N)→ Hom(M,N)→ Hom(M ′, N). (5.11.1)

(2) Let 0→ N ′ → N → N ′′ be a sequence of linear maps. Then it is exact if and
only if, for all modules M , the following induced sequence is exact:

0→ Hom(M,N ′)→ Hom(M,N)→ Hom(M,N ′′).

Proof: By (5.2)(2), the exactness of M ′ α−→ M
β−→ M ′′ → 0 means simply that

M ′′ = Coker(α). On the other hand, the exactness of (5.11.1) means that a
ϕ ∈ Hom(M,N) maps to 0, or equivalently ϕα = 0, if and only if there is a unique
γ : M ′′ → N such that γβ = ϕ. So (5.11.1) is exact if and only if M ′′ has the
UMP of Coker(α), discussed in (4.9); that is, M ′′ = Coker(α). Thus (1) holds.

The proof of (2) is similar— in fact, dual. !

Definition (5.12). — A (free) presentation of a module M is an exact sequence

G→ F →M → 0

with G and F free. If G and F are free of finite rank, then the presentation is called
finite. If M has a finite presentation, then M is said to be finitely presented.

Proposition (5.13). — Let R be a ring, M a module, mλ for λ ∈ Λ generators.
Then there is an exact sequence 0→ K → R⊕Λ α−→M → 0 with α(eλ) = mλ, where
{eλ} is the standard basis, and there is a presentation R⊕Σ → R⊕Λ α−→M → 0.

Proof: By (4.10)(1), there is a surjection α : R⊕Λ →→ M with α(eλ) = mλ. Set
K := Ker(α). Then 0 → K → R⊕Λ → M → 0 is exact by (5.3). Take a set of
generators {kσ}σ∈Σ of K, and repeat the process to obtain a surjection R⊕Σ →→ K.
Then R⊕Σ → R⊕Λ →M → 0 is a presentation. !
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Definition (5.14). — A module P is called projective if, given any surjective
linear map β : M →→ N , every linear map α : P → N lifts to one γ : P → M ;
namely, α = βγ.

Exercise (5.15) . — Show that a free module R⊕Λ is projective.

Theorem (5.16). — The following conditions on an R-module P are equivalent:

(1) The module P is projective.
(2) Every short exact sequence 0→ K →M → P → 0 splits.
(3) There is a module K such that K ⊕ P is free.
(4) Every exact sequence N ′ → N → N ′′ induces an exact sequence

Hom(P, N ′)→ Hom(P, N)→ Hom(P, N ′′). (5.16.1)

(5) Every surjective homomorphism β : M →→ N induces a surjection

Hom(P,β) : Hom(P, M)→ Hom(P, N).

Proof: Assume (1). In (2), the surjection M →→ P and the identity P → P yield
a section P →M . So the sequence splits by (5.8). Thus (2) holds.

Assume (2). By (5.13), there is an exact sequence 0 → K → R⊕Λ → P → 0.
Then (2) implies K ⊕ P % R⊕Λ. Thus (3) holds.

Assume (3); say K ⊕ P % R⊕Λ. For each λ ∈ Λ, take a copy N ′
λ → Nλ → N ′

λ of
the exact sequence N ′ → N → N ′′ of (4). Then the induced sequence

∏
N ′
λ →

∏
Nλ →

∏
N ′′
λ .

is exact by (5.4). But by the end of (4.13), that sequence is equal to this one:

Hom(R⊕Λ, N ′)→ Hom(R⊕Λ, N)→ Hom(R⊕Λ, N ′′).

But K ⊕ P % R⊕Λ. So owing to (4.13.2), the latter sequence is also equal to

Hom(K,N ′)⊕Hom(P,N ′) → Hom(K,N)⊕Hom(P,N) → Hom(K,N ′′)⊕Hom(P,N ′′).

Hence (5.16.1) is exact by (5.4). Thus (4) holds.

Assume (4). Then every exact sequence M
β−→ N → 0 induces an exact sequence

Hom(P, M)
Hom(P,β)−−−−−−→ Hom(P, N)→ 0.

In other words, (5) holds.
Assume (5). Then every α ∈ Hom(P, N) is the image under Hom(P,β) of some

γ ∈ Hom(P, M). But, by definition, Hom(P,β)(γ) = βγ. Thus (1) holds. !

Lemma (5.17) (Schanuel’s). — Any two short exact sequences

0→ L
i−→ P

α−→M → 0 and 0→ L′ i′−→ P ′ α′
−→M → 0

with P and P ′ projective are essentially isomorphic; namely, there’s a commutative
diagram with vertical isomorphisms:

0 −→ L⊕ P ′ i⊕1P ′−−−−→ P ⊕ P ′ (α 0)−−−−→ M −→ 0

(
)β (

)γ =

)1M

0 −→ P ⊕ L′ 1P⊕i′−−−−→ P ⊕ P ′ (0 α′)−−−−→ M −→ 0
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Proof: First, let’s construct an intermediate isomorphism of exact sequences:

0 −→ L⊕ P ′ i⊕1P ′−−−−→ P ⊕ P ′ (α 0)−−−−→ M −→ 0

(
8λ (

8θ =

81M

0 −−−→ K −−−−−−→ P ⊕ P ′ (α α′)−−−−→ M −→ 0

Take K := Ker(αα′). To form θ, recall that P ′ is projective and α is surjective. So
there is a map π : P ′ → P such that α′ = απ. Take θ :=

(
1 π
0 1

)
.

Then θ has
(
1 −π
0 1

)
as inverse. Further, the right-hand square is commutative:

(α 0)θ = (α 0)
(
1 π
0 1

)
= (α απ) = (α α′).

So θ induces the desired isomorphism λ : K ∼−→ L⊕ P ′.
Symmetrically, form an isomorphism θ′ : P ⊕ P ′ ∼−→ P ⊕ P , which induces an

isomorphism λ′ : K ∼−→ P ⊕ L′. Finally, take γ := θ′θ−1 and β := λ′λ−1. !
Exercise (5.18) . — Let R be a ring, and 0 → L → Rn → M → 0 an exact
sequence. Prove M is finitely presented if and only if L is finitely generated.

Proposition (5.19). — Let 0→ L
α−→M

β−→ N → 0 be a short exact sequence with
L finitely generated and M finitely presented. Then N is finitely presented.

Proof: Let R be the ground ring, µ : Rm → M any surjection. Set ν := βµ, set
K := Ker ν, and set λ := µ|K. Then the following diagram is commutative:

0 −→ K −→ Rm ν−→ N −→ 0

λ

) µ

) 1N

)
0 −→ L

α−→ M
β−→ N −→ 0

The Snake Lemma (5.10) yields an isomorphism Kerλ ∼−→ Kerµ. But Kerµ is
finitely generated by (5.18). So Kerλ is finitely generated. Also, the Snake Lemma
implies Cokerλ = 0 as Cokerµ = 0; so 0 → Kerλ → K

λ−→ L → 0 is exact. Hence
K is finitely generated by (5.5). Thus N is finitely presented by (5.18). !

Proposition (5.20). — Let 0→ L
α−→M

β−→ N → 0 be a short exact sequence with
L and N finitely presented. Then M is finitely presented too.

Proof: Let R be the ground ring, λ : R+ → L and ν : Rn →→ N any surjections.
Define γ : R+ → M by γ := αλ. Note Rn is projective by (5.15), and define
δ : Rn →M by lifting ν along β. Define µ : R+⊕Rn →M by µ := γ + δ. Then the
following diagram is, plainly, commutative, where ι := ιR$ and π := πRn :

0 −→ R+
ι−→ R+ ⊕Rn π−→ Rn −→ 0

λ

) µ

) ν

)
0 −→ L

α−−−−→ M
β−−−−→ N −→ 0

Since λ and ν are surjective, the Snake Lemma (5.10) yields an exact sequence

0→ Kerλ→ Kerµ→ Ker ν → 0,

and implies Cokerµ = 0. Also, Kerλ and Ker ν are finitely generated by (5.18).
So Kerµ is finitely generated by (5.5). Thus M is finitely presented by (5.18). !
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B. Exercises

Exercise (5.21) . — Let M ′ and M ′′ be modules, N ⊂ M ′ a submodule. Set
M := M ′ ⊕M ′′. Using (5.2)(1) and (5.3) and (5.4), prove M/N = M ′/N ⊕M ′′.

Exercise (5.22) . — Let M ′, M ′′ be modules, and set M := M ′ ⊕M ′′. Let N be
a submodule of M containing M ′, and set N ′′ := N ∩M ′′. Prove N = M ′ ⊕N ′′.

Exercise (5.23) (Five Lemma) . — Consider this commutative diagram:

M4
α4−−→ M3

α3−−→ M2
α2−−→ M1

α1−−→ M0

γ4

) γ3

) γ2

) γ1

) γ0

)
N4

β4−−→ N3
β3−−→ N2

β2−−→ N1
β1−−→ N0

Assume it has exact rows. Via a chase, prove these two statements:

(1) If γ3 and γ1 are surjective and if γ0 is injective, then γ2 is surjective.
(2) If γ3 and γ1 are injective and if γ4 is surjective, then γ2 is injective.

Exercise (5.24) (Nine Lemma) . — Consider this commutative diagram:

0 0 0)
)

)
0 −→ L′ −−→ L −−→ L′′ −→ 0)

)
)

0 −→ M ′ −→ M −→ M ′′ −→ 0)
)

)
0 −→ N ′ −→ N −→ N ′′ −→ 0)

)
)

0 0 0

(5.24.1)

Assume all the columns are exact and the middle row is exact. Applying the Snake
Lemma, prove that the first row is exact if and only if the third is.

Exercise (5.25) . — Referring to (4.8), give an alternative proof that β is an
isomorphism by applying the Snake Lemma to the diagram

0 −−→ M −−−→ N −−−−−→ N/M −−−−→ 0) κ

) β

)

0 −→ M/L −→ N/L
λ−→ (N/L)

/
(M/L) −→ 0

Exercise (5.26) . — Consider this commutative diagram with exact rows:

M ′ β−→ M
γ−→ M ′′

α′

) α

) α′′

)
N ′ β′

−→ N
γ′

−→ N ′′

Assume α′ and γ are surjective. Given n ∈ N and m′′ ∈M ′′ with α′′(m′′) = γ′(n),
show that there is m ∈M such that α(m) = n and γ(m) = m′′.

Exercise (5.27) . — Let R be a ring. Show that a module P is finitely generated
and projective if and only if it’s a direct summand of a free module of finite rank.
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Exercise (5.28) . — Let R be a ring, P and N finitely generated modules with P
projective. Prove Hom(P, N) is finitely generated, and is finitely presented if N is.

Exercise (5.29) . — Let R be a ring, X1, X2, . . . infinitely many variables. Set
P := R[X1, X2, . . . ] and M := P/〈X1, X2, . . . 〉. Is M finitely presented? Explain.

Exercise (5.30) . — Let 0 → L
α−→ M

β−→ N → 0 be a short exact sequence with
M finitely generated and N finitely presented. Prove L is finitely generated.

C. Appendix: Fitting Ideals

(5.31) (The Ideals of Minors). — Let R be a ring, A := (aij) an m × n matrix
with aij ∈ R. Given r ∈ Z, let Ir(A) denote the ideal generated by the r×r minors
of A; by convention, we have

Ir(A) =

{
〈0〉, if r > min{m,n};
R, if r ≤ 0.

(5.31.1)

Let B := (bij) be an r × r submatrix of A. Let Bij be the (r − 1) × (r − 1)
submatrix obtained from B by deleting the ith row and the jth column. For any
i, expansion yields det(B) =

∑r
j=1(−1)i+jbij det(Bij). So Ir(A) ⊂ Ir−1(A). Thus

R = I0(A) ⊃ I1(A) ⊃ · · · . (5.31.2)

Let U be an invertible m×m matrix. Then det(U) is a unit, as UV = I yields
det(U) det(V ) = 1. So Im(U) = R. Thus Ir(U) = R for all r ≤ m.

Proposition (5.32). — Let R be a nonzero ring, and α : Rn → Rm a linear map.
(1) If α is injective, then n ≤ m. (2) If α is an isomorphism, then n = m.

Proof: For (1), assume n > m, and let’s show α is not injective.
Let A be the matrix of α. Note (5.31.1) yields Ip(A) = 〈0〉 for p > m and

I0(A) = R. Let r be the largest integer with Ann(Ir(A)) = 〈0〉. Then 0 ≤ r ≤ m.
Take any nonzero x ∈ Ann(Ir+1(A)). If r = 0, set z := (x, 0, . . . , 0). Then z -= 0

and α(z) = 0; so α is not injective. So assume r > 0.
As x -= 0, also x /∈ Ann(Ir(A)). So there’s an r × r submatrix B of A with

x det(B) -= 0. By renumbering, we may assume that B is the upper left r × r
submatrix of A. Let C be the upper left (r + 1) × (r + 1) submatrix if r ≤ m; if
r = m, let C be the left r × (r + 1) submatrix augmented at the bottom by a row
of r + 1 zeros.

Let ci be the cofactor of a(r+1)i in det(C); so det(C) =
∑r+1

i=1 a(r+1)ici. Then
cr+1 = det(B). So xcr+1 -= 0. Set z := x(c1, . . . , cr+1, 0, . . . , 0). Then z -= 0.
Let’s show α(z) = 0. Given 1 ≤ k ≤ m, denote by Ak the kth row of A, by D

the matrix obtained by replacing the (r+1)st row of C with the first (r+1) entries
of Ak, and by z ·Ak the dot product. Then z ·Ak = x det(D). If k ≤ r, then D has
two equal rows; so z ·Ak = 0. If k ≥ r+1, then D is an (r+1)× (r+1) submatrix
of A; so z ·Ak = 0 as xIr+1(A) = 0. Thus α(z) = 0. Thus α is not injective. Thus
(1) holds.

For (2), apply (1) to α−1 too; thus also m ≤ n. Thus (2) holds. !
Lemma (5.33). — Let R be a ring, A an m× n matrix, B an n× p matrix, U be
an invertible m×m matrix, and V an invertible n× n matrix. Then for all r,

(1) Ir(AB) ⊂ Ir(A)Ir(B) and (2) Ir(UAV) = Ir(A).
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Proof: As a matter of notation, given a p× q matrix X := (xij), denote its jth
column by Xj . Given sequences I := (i1, . . . , ir) with 1 ≤ i1 < · · · < ir ≤ p and
J := (j1, . . . , jr) with 1 ≤ j1 < · · · < jr ≤ q, set

XIJ :=




xi1j1 . . . xi1jr
...

...
xirj1 . . . xirjr



 and XI :=




xi11 . . . xi1n
...

...
xir1 . . . xirn



 .

For (1), say A = (aij) and B = (bij). Set C := AB. Given I := (i1, . . . , ir) with
1 ≤ i1 < · · · < ir ≤ m and K := (k1, . . . , kr) with 1 ≤ k1 < · · · < kr ≤ p, note

det(CIK) = det
(
C1

IK , . . . , Cr
IK

)

= det

( n∑

j1=1

Aj1
I bj1k1 , . . . ,

n∑

jr=1

Ajr
I bjrkr

)

=
n∑

j1,...,jr=1

det
(
Aj1

I , . . . ,Ajr
I

)
· bj1k1 · · · bjrkr .

In the last sum, each term corresponds to a sequence J := (j1, . . . , jr) with
1 ≤ ji ≤ n. If two ji are equal, then det

(
Aj1

I , . . . ,Ajr
I

)
= 0 as two columns are

equal. Suppose no two ji are equal. Then J is a permutation σ of H := (h1, . . . , hr)
with 1 ≤ h1 < · · · < hr ≤ q; so ji = σ(hi). Denote the sign of σ by (−1)σ. Then

det
(
Aj1

I , . . . ,Ajr
I

)
= (−1)σ det(AIH).

But det(BHK) =
∑
σ(−1)σbσ(h1)k1

· · · bσ(hr)kr
. Hence

det(CIK) =
∑

H det(AIH) det(BHK).

Thus (1) holds.
For (2), note that Ir(W ) = R for W = U, U−1, V, V −1 by (5.31). So (1) yields

Ir(A) = Ir(U
−1UAVV−1) ⊂ Ir(UAV) ⊂ Ir(A).

Thus (2) holds. !

Lemma (5.34) (Fitting). — Let R be a ring, M a module, r an integer, and

Rn α−→ Rm µ−→M → 0 and Rq β−→ Rp π−→M → 0

presentations. Represent α, β by matrices A, B. Then Im−r(A) = Ip−r(B).

Proof: First, assume m = p and µ = π. Set K := Ker(µ). Then Im(α) = K
and Im(β) = K by exactness; so Im(α) = Im(β). But Im(α) is generated by the
columns of A. Hence each column of B is a linear combination of the columns of
A. So there’s a matrix C with AC = B. Set s := m− r. Then (5.33)(1) yields

Is(B) = Is(AC) ⊂ Is(A)Is(C) ⊂ Is(A).

Symmetrically, Is(A) ⊂ Is(B). Thus Is(A) = Is(B), as desired.
Second, assume m = p and that there’s an isomorphism γ : Rm → Rp with

πγ = µ. Represent γ by a matrix G. Then Rn γα−−→ Rp π−→M → 0 is a presentation,
and GA represents γα. So, by the first paragraph, Is(B) = Is(GA). But G is
invertible. So Is(GA) = Is(A) by (5.33)(2). Thus Is(A) = Is(B), as desired.

Third, assume that q = n+ t and p = m+ t for some t ≥ 1 and that β = α⊕ 1Rt

and π = µ+ 0. Then B =
(

A 0mt
0tn It

)
.
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Given an s×s submatrix C of A, set D :=
(

C 0st
0ts It

)
. Then D is an (s+t)×(s+t)

submatrix of B, and det(D) = det(C). Thus Is(A) ⊂ Is+t(B).
For the opposite inclusion, given an (s+ t)× (s+ t) submatrix D of B, assume

det(D) -= 0. If D includes part of the (m+ i)th row of B, then D must also include
part of the (n + i)th column, or D would have an all zero row. Similarly, if D
includes part of the (n + i)th column, then D must include part of the (m + i)th
row. So D

(
C 0hk

0k h Ik

)
where h := s + t − k for some k ≤ t and for some h × h

submatrix C of A. But det(D) = det(C). So det(D) ∈ Ih(A). But Ih(A) ⊂ Is(A)
by (5.31.2). So det(D) ∈ Is(A). Thus Is+t(B) ⊂ Is(A). Thus Is+t(B)Is(A), or
Im−r(A) = Ip−r(B), as desired.

Finally, in general, Schanuel’s Lemma (5.17) yields the commutative diagram

Rn ⊕Rp α⊕1Rp−−−−−→ Rm ⊕Rp µ+0−−−→ M −→ 0

(
)γ =

)1M

Rm ⊕Rq 1Rm⊕β−−−−−→ Rm ⊕Rp 0+π−−−→ M −→ 0

Thus, by the last two paragraphs, Im−r(A) = Ip−r(B), as desired. !
(5.35) (Fitting Ideals). — Let R be a ring, M a finitely presented module, r an
integer. Take any presentation Rn α−→ Rm → M → 0, let A be the matrix of α,
and define the rth Fitting ideal of M by

Fr(M) := Im−r(A).

It is independent of the choice of presentation by (5.34).
By definition, Fr(M) is finitely generated. Moreover, (5.31.2) yields

〈0〉 = F−1(M) ⊂ F0(M) ⊂ · · · ⊂ Fm(M) = R. (5.35.1)

Exercise (5.36) . — Let R be a ring, and a1, . . . , am ∈ R with 〈a1〉 ⊃ · · · ⊃ 〈am〉.
Set M := R

/
〈a1〉 ⊕ · · ·⊕R

/
〈am〉. Show that Fr(M) = 〈a1 · · · am−r〉.

Exercise (5.37) . — In the setup of (5.36), assume a1 is a nonunit. Show:
(1) Then m is the smallest integer such that Fm(M) = R.
(2) Let n be the largest integer with Fn(M) = 〈0〉; set k := m − n. Assume R

is a domain. Then (a) ai -= 0 for i < k and ai = 0 for i ≥ k, and (b) each ai is
unique up to unit multiple.

Theorem (5.38) (Elementary Divisors). — Let R be a PID, M a free module, N
a free submodule of rank n < ∞. Then there’s a decomposition M = M ′ ⊕M ′′, a
basis x1, . . . , xn of M ′, and d1, . . . , dn ∈ R, unique up to unit multiple, with

M ′ = Rx1 ⊕ · · ·⊕Rxn, N = Rd1x1 ⊕ · · ·⊕Rdnxn, d1 | · · · | dn -= 0.

Moreover, set Q := {m ∈M | xm ∈ N for some nonzero x ∈ R}. Then M ′ = Q.

Proof: Let’s prove existence by induction on n. For n = 0, take M ′ := 0; no di
or xi are needed. So M ′′ = M , and the displayed conditions are trivially satisfied.

Let {eλ} be a basis of M , and πλ : M → R the λth projection.
Assume n > 0. Given any nonzero z ∈ N , write z =

∑
cλeλ for some cλ ∈ R.

Then some cλ0 -= 0. But cλ0 = πλ0(z). Thus πλ0(N) -= 0.
Consider the set S of nonzero ideals of the form α(N) where α : M → R is a linear

map. Partially order S by inclusion. Given a totally ordered subset {αν(N)}, set
b :=

⋃
αν(N). Then b is an ideal. So b = 〈b〉 for some b ∈ R as R is a PID. Then
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b ∈ αν(N) for some ν. So αν(N) = b. By Zorn’s Lemma, S has a maximal element,
say α1(N). Fix d1 ∈ R with α1(N) = 〈d1〉, and fix y1 ∈ N with α1(y1) = d1.
Given any linear map β : M → R, set b := β(y1). Then 〈d1〉+ 〈b〉 = 〈c〉 for some

c ∈ R, as R is a PID. Write c = dd1 + eb for d, e ∈ R, and set γ := dα1 + eβ.
Then γ(N) ⊃ 〈γ(y1)〉. But γ(y1) = c. So 〈c〉 ⊂ γ(N). But 〈d1〉 ⊂ 〈c〉. Hence, by
maximality, 〈d1〉 = γ(N). But 〈b〉 ⊂ 〈c〉. Thus β(y1) = b ∈ 〈d1〉.

Write y1 =
∑

cλeλ for some cλ ∈ R. Then πλ(y1) = cλ. But cλ = d1dλ for some
dλ ∈ R by the above paragraph with β := πλ. Set x1 :=

∑
dλeλ. Then y1 = d1x1.

So α1(y1) = d1α1(x1). But α1(y1) = d1. So d1α1(x1) = d1. But R is a domain
and d1 -= 0. Thus α1(x1) = 1.
Set M1 := Ker(α1). As α1(x1) = 1, clearly Rx1 ∩M1 = 0. Also, given x ∈ M ,

write x = α1(x)x1 + (x − α1(x)x1); thus x ∈ Rx1 + M1. Hence (4.25) implies
M = Rx1 ⊕M1. Further, Rx1 and M1 are free by (4.12). Set N1 := M1 ∩N .

Recall d1x1 = y1 ∈ N . So N ⊃ Rd1x1 ⊕ N1. Conversely, given y ∈ N , write
y = bx1 + m1 with b ∈ R and m1 ∈ M1. Then α1(y) = b, so b ∈ 〈d1〉. Hence
y ∈ Rd1x1 +N1. Thus N = Rd1x1 ⊕N1.

Define ϕ : R→ Rd1x1 by ϕ(a) = ad1x1. If ϕ(a) = 0, then ad1 = 0 as α1(x1) = 1,
and so a = 0 as d1 -= 0. Thus ϕ is injective, so a isomorphism.

Note N1 % Rm with m ≤ n owing to (4.12) with N for E. Hence N % Rm+1.
But N % Rn. So (5.32)(2) yields m+ 1 = n.

By induction on n, there exist a decomposition M1 = M ′
1⊕M ′′, a basis x2, . . . , xn

of M ′
1 and d2, . . . , dn ∈ R with

M ′
1 = Rx2 ⊕ · · ·⊕Rxn, N1 = Rd2x2 ⊕ · · ·⊕Rdnxn, d2 | · · · | dn -= 0.

Then M = M ′ ⊕M ′′ and M ′ = Rx1 ⊕ · · · ⊕ Rxn and N = Rd1x1 ⊕ · · · ⊕ Rdnxn.
Now, Rx1 is free, and x2, . . . , xn form a basis of M ′

1, and M ′ = Rx1 ⊕M ′
1; thus,

x1, . . . , xn form a basis of M1.
Next, consider the projection π : M1 → R with π(xj) = δ2j for j ≤ 2 ≤ n and

π|M ′′ = 0. Define ρ : M → R by ρ(ax1+m1) := a+π(m1). Then ρ(d1x1) = d1. So
ρ(N) ⊃ 〈d1〉 = α1(N). By maximality, ρ(N) = α1(N). But d2 = ρ(d2x2) ∈ ρ(N).
Thus d2 ∈ 〈d1〉; that is, d1 | d2. Thus d1 | · · · | dn -= 0.

Moreover, given m ∈ M ′, note xm ∈ N where x := d1 · · · dn; so M ′ ⊂ Q.
Conversely, given m ∈ Q, say xm ∈ N with x ∈ R nonzero. Say m = m′ + m′′

with m′ ∈ M ′ and m′′ ∈ M ′′. Then xm′′ = xm − xm′ ∈ M ′ as N ⊂ M ′. But
M ′ ∩M ′′ = 0. So xm′′ = 0. But M is free, x is nonzero, and R is a domain. So
m′′ = 0. So m = m′ ∈M ′. Thus M ′ ⊃ Q. Thus M ′′ = Q.
Finally, note M ′/N = R

/
〈d1〉 ⊕ · · · ⊕ R

/
〈dm〉 by (5.3) and (5.4). Thus, by

(5.37)(2), each di is unique up to unit multiple. !
Theorem (5.39). — Let A be a local ring, M a finitely presented module.

(1) Then M can be generated by m elements if and only if Fm(M) = A.
(2) Then M is free of rank m if and only if Fm(M) = A and Fm−1(M) = 〈0〉.

Proof: For (1), assume M can be generated by m elements. Then (5.13) yields
a presentation An α−→ Am →M → 0 for some n. So Fm(M) = A by (5.34).

For the converse, assume also Fk(M) = A with k < m. Then Fm−1(M) = A by
(5.35.1). Hence one entry of the matrix (aij) of α does not belong to the maximal
ideal, so is a unit by (3.5). By (5.33)(2), we may assume a11 = 1 and the other
entries in the first row and first column of A are 0. Thus A =

(
1 0
0 B

)
where B is an

(m− 1)× (s− 1) matrix. Then B defines a presentation As−1 → Am−1 →M → 0.
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So M can be generated by m − 1 elements. Repeating, we see that M can be
generated by k elements, as desired. Thus (1) holds.

In (2), if M is free of rank m, then there’s a presentation 0 → Am → M → 0;
so Fm(M) = A and Fm−1(M) = 〈0〉 by (5.35). Conversely, if Fm(M) = A, then
(1) and (5.13) yield a presentation As α−→ Am → M → 0 for some s. If also
Fm−1(M) = 〈0〉, then α = 0 by (5.35). Thus M is free of rank m; so (2) holds. !

Proposition (5.40). — Let R be a ring, and M a finitely presented module. Say
M can be generated by m elements. Set a := Ann(M). Then

(1) aFr(M) ⊂ Fr−1(M) for all r > 0 and (2) am ⊂ F0(M) ⊂ a.

Proof: As M can be generated by m elements, (5.13) yields a presentation
An α−→ Am µ−→M → 0 for some n. Say α has matrix A.

In (1), if r > m, then trivially aFr(M) ⊂ Fr−1(M) owing to (5.35.1). So assume
r ≤ m and set s := m− r + 1. Given x ∈ a, form the sequence

Rn+m β−→ Rm µ−→M → 0 with β := α+ x1Rm .

Note that this sequence is a presentation. Also, the matrix of β is (A|xIm), obtained
by juxtaposition, where Im is the m×m identity matrix.

Given an (s− 1)× (s− 1) submatrix B of A, enlarge it to an s× s submatrix B′

of (A|xIm) as follows: say the ith row of A is not involved in B; form the m × s
submatrix B′′ of (A|xIm) with the same columns as B plus the ith column of xIm
at the end; finally, form B′ as the s× s submatrix of B′′ with the same rows as B
plus the ith row in the appropriate position.

Expanding along the last column yields det(B′) = ±x det(B). By constuction,
det(B′) ∈ Is(A|xIm). But Is(A|xIm) = Is(A) by (5.34). Furthermore, x ∈ a is
arbitrary, and Im(A) is generated by all possible det(B). Thus (1) holds.

For (2), apply (1) repeatedly to get akFr(M) ⊂ Fr−k(M) for all r and k. But
Fm(M) = R by (5.35.1). So am ⊂ F0(M).

For the second inclusion, given any m×m submatrix B of A, say B = (bij). Let
ei be the ith standard basis vector of Rm. Set mi := µ(ei). Then

∑
bijmj = 0

for all i. Let C be the matrix of cofactors of B: the (i, j)th entry of C is (−1)i+j

times the determinant of the matrix obtained by deleting the jth row and the ith
column of B. Then CB = det(B)Im. Hence det(B)mi = 0 for all i. So det(B) ∈ a.
But Im(A) is generated by all such det(B). Thus F0(M) ⊂ a. Thus (2) holds. !

D. Appendix: Exercises

Exercise (5.41) (Structure Theorem) . — Let R be a PID, M a finitely generated
module. Set T := {m ∈M | xm = 0 for some nonzero x ∈ R}. Show:

(1) Then M has a free submodule F of finite rank with M = T ⊕ F .
(2) Then T %

⊕n
j=1 R

/
〈dj〉 with the dj nonzero nonunits in R, unique up to unit

multiple, and dj | dj+1 for 1 ≤ j < n.

(3) Then T %
⊕m

i=1 M(pi) with M(pi) :=
⊕n

j=1 R
/
〈peiji 〉, the pi primes in R,

unique up to unit multiple, and the eij unique with 0 ≤ eij ≤ ei j+1 and 1 ≤ ein.
(4) If M isn’t finitely generated, there may be no free F with M = T ⊕ F .
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Exercise (5.42) . — Criticize the following misstatement of (5.8): given a 3-term
exact sequence M ′ α−→ M

β−→ M ′′, there is an isomorphism M % M ′ ⊕M ′′ if and
only if there is a section σ : M ′′ →M of β and α is injective.

Moreover, show that this construction (due to B. Noohi) yields a counterexample:
For each integer n ≥ 2, let Mn be the direct sum of countably many copies of
Z/〈n〉. Set M :=

⊕
Mn. Then let p be a prime number, and take M ′ to be a cyclic

subgroup of order p of one of the components of M isomorphic to Z/〈p2〉.
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6. Direct Limits

Category theory provides the right abstract setting for certain common concepts,
constructions, and proofs. Here we treat adjoints and direct limits. We elaborate
on two key special cases of direct limits: coproducts (direct sums) and coequalizers
(cokernels). From them, we construct arbitrary direct limits of sets and of modules.
Further, we prove direct limits are preserved by left adjoints; hence, direct limits
commute with each other, and in particular, with coproducts and coequalizers.

Although this chapter is the most abstract of the entire book, all the material
here is elementary, and none of it is very deep. In fact, the abstract statements here
are, largely, just concise restatements, in more expressive language, of the essence
of some mundane statements in Commutative Algebra. Experience shows that it
pays to learn this more abstract language, but that doing so requires determined,
yet modest effort.

A. Text

(6.1) (Categories). — A category C is a collection of elements, called objects.
Each pair of objects A, B is equipped with a set HomC(A,B) of elements, called
maps or morphisms. We write α : A→ B or A

α−→ B to mean α ∈ HomC(A,B).
Further, given objects A, B, C, there is a composition law

HomC(A,B)×HomC(B,C)→ HomC(A,C), written (α,β) 2→ βα,

and there is a distinguished map 1B ∈ HomC(B,B), called the identity such that

(1) composition is associative, or γ(βα) = (γβ)α for γ : C → D, and
(2) 1B is unitary, or 1Bα = α and β1B = β.

We say α is an isomorphism with inverse β : B → A if αβ = 1B and βα = 1A.
For example, four common categories are those of sets ((Sets)), of rings ((Rings)),

of R-modules ((R-mod)), and of R-algebras ((R-alg)); the corresponding maps are
the set maps, and the ring, R-module, and R-algebra homomorphisms.

Given categories C and C′, their product C × C′ is the category whose objects
are the pairs (A,A′) with A an object of C and A′ an object of C′ and whose maps
are the pairs (α,α′) of maps α in C and α′ in C′.

(6.2) (Functors). — A map of categories is known as a functor. Namely, given
categories C and C′, a (covariant) functor F : C → C′ is a rule that assigns to
each object A of C an object F (A) of C′ and to each map α : A → B of C a map
F (α) : F (A)→ F (B) of C′ preserving composition and identity; that is,

(1) F (βα) = F (β)F (α) for maps α : A→ B and β : B → C of C, and
(2) F (1A) = 1F (A) for any object A of C.

We also denote a functor F by F (•), by A 2→ F (A), or by A 2→ FA.
Note that a functor F preserves isomorphisms. Indeed, if αβ = 1B and βα = 1A,

then F (α)F (β) = F (1B) = 1F (B) and F (β)F (α) = 1F (A).
For example, let R be a ring, M a module. Then clearly HomR(M, •) is a functor

from ((R-mod)) to ((R-mod)). A second example is the forgetful functor from
((R-mod)) to ((Sets)); it sends a module to its underlying set and a homomorphism
to its underlying set map.
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A map of functors is known as a natural transformation. Namely, given two func-
tors F, F ′ : C ⇒ C′, a natural transformation θ : F → F ′ is a collection of maps
θ(A) : F (A)→ F ′(A), one for each object A of C, such that θ(B)F (α) = F ′(α)θ(A)
for every map α : A→ B of C; that is, the following diagram is commutative:

F (A)
F (α)−−−−→ F (B)

θ(A)

) θ(B)

)
F ′(A)

F ′(α)−−−−→ F ′(B)

For example, the identity maps 1F (A) trivially form a natural transformation 1F
from any functor F to itself. We call F and F ′ isomorphic if there are natural
transformations θ : F → F ′ and θ′ : F ′ → F with θ′θ = 1F and θθ′ = 1F ′ .

A contravariant functor G from C to C′ is a rule similar to F , but G reverses the
direction of maps; that is, G(α) carries G(B) to G(A), and G satisfies the analogues
of (1) and (2). For example, fix a module N ; then Hom(•, N) is a contravariant
functor from ((R-mod)) to ((R-mod)).

(6.3) (Adjoints). — Let F : C → C′ and F ′ : C′ → C be functors. We call (F, F ′)
an adjoint pair, F the left adjoint of F ′, and F ′ the right adjoint of F if, for
every pair of objects A ∈ C and A′ ∈ C′, there is given a natural bijection

HomC′(F (A), A′) % HomC(A, F
′(A′)). (6.3.1)

Here natural means that maps B → A and A′ → B′ induce a commutative
diagram:

HomC′(F (A), A′) % HomC(A, F ′(A′)))
)

HomC′(F (B), B′) % HomC(B, F ′(B′))

Naturality serves to determine an adjoint up to canonical isomorphism. Indeed,
let F and G be two left adjoints of F ′. Given A ∈ C, define θ(A) : G(A) → F (A)
to be the image of 1F (A) under the adjoint bijections

HomC′(F (A), F (A)) % HomC(A, F ′F (A)) % HomC′(G(A), F (A)).

To see that θ(A) is natural in A, take a map α : A→ B. It induces the following
diagram, which is commutative owing to the naturality of the adjoint bijections:

HomC′(F (A), F (A)) % HomC(A, F ′F (A)) % HomC′(G(A), F (A)))
)

)
HomC′(F (A), F (B)) % HomC(A, F ′F (B)) % HomC′(G(A), F (B))8

8
8

HomC′(F (B), F (B)) % HomC(B, F ′F (B)) % HomC′(G(B), F (B))

Chase after 1F (A) and 1F (B). Both map to F (α) ∈ HomC′(F (A), F (B)). So
both map to the same image in HomC′(G(A), F (B)). But clockwise, 1F (A) maps to
F (α)θ(A); counterclockwise, 1F (B) maps to θ(B)G(α). So θ(B)G(α) = F (α)θ(A).
Thus the θ(A) form a natural transformation θ : G→ F .

Similarly, there is a natural transformation θ′ : F → G. It remains to show
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θ′θ = 1G and θθ′ = 1F . But, by naturality, the following diagram is commutative:

HomC′(F (A), F (A)) % HomC(A, F ′F (A)) % HomC(G(A), F (A)))
)

)
HomC′(F (A), G(A)) % HomC(A, F ′G(A)) % HomC(G(A), G(A))

Chase after 1F (A). Clockwise, its image is θ′(A)θ(A) in the lower right corner.
Counterclockwise, its image is 1G(A), owing to the definition of θ′. Thus θ′θ = 1G.
Similarly, θθ′ = 1F , as required.

For example, the “free module” functor is the left adjoint of the forgetful functor
from ((R-mod)) to ((Sets)), since owing to (4.10),

Hom((R-mod))(R
⊕Λ, M) = Hom((Sets))(Λ, M).

Similarly, the “polynomial ring” functor is the left adjoint of the forgetful functor
from ((R-alg)) to ((Sets)), since owing to (1.3),

Hom((R-alg))

(
R[X1, . . . , Xn], R

′) = Hom((Sets))

(
{X1, . . . , Xn}, R′).

(6.4) (Direct limits). — Let Λ, C be categories. Assume Λ is small; that is, its
objects form a set. Given a functor λ 2→ Mλ from Λ to C, its direct limit or
colimit, denoted lim−→Mλ or lim−→λ∈Λ

Mλ, is defined to be the object of C universal
among objects P equipped with maps βµ : Mµ → P , called insertions, that are
compatible with the transition maps ακµ : Mκ →Mµ, which are the images of the
maps of Λ. (Note: given κ and µ, there may be more than one map κ→ µ, and so
more than one transition map ακµ.) In other words, there is a unique map β such
that all of the following diagrams commute:

Mκ
ακ

µ−−→ Mµ
αµ−−→ lim−→Mλ)βκ

)βµ

)β
P

1P−−−→ P
1P−−−−→ P

To indicate this context, the functor λ 2→Mλ is often called a direct system.

As usual, universality implies that, once equipped with its insertions αµ, the limit
lim−→Mλ is determined up to unique isomorphism, assuming it exists. In practice,
there is usually a canonical choice for lim−→Mλ, given by a construction. In any case,
let us use lim−→Mλ to denote a particular choice.

We say that C has direct limits indexed by Λ if, for every functor λ 2→ Mλ

from Λ to C, the direct limit lim−→Mλ exists. We say that C has direct limits if it
has direct limits indexed by every small category Λ.

Given a functor F : C → C′, note that a functor λ 2→ Mλ from Λ to C yields a
functor λ 2→ F (Mλ) from Λ to C′. Furthermore, whenever the corresponding two
direct limits exist, the maps F (αµ) : F (Mµ)→ F (lim−→Mλ) induce a canonical map

ϕF : lim−→F (Mλ)→ F (lim−→Mλ). (6.4.1)

If ϕF is always an isomorphism, we say F preserves direct limits. At times, given
lim−→Mλ, we construct lim−→F (Mλ) by showing F (lim−→Mλ) has the requisite UMP.

Assume C has direct limits indexed by Λ. Then, given a natural transformation
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from λ 2→Mλ to λ 2→ Nλ, universality yields unique commutative diagrams

Mµ −→ lim−→Mλ)
)

Nµ −→ lim−→Nλ

To put it in another way, form the functor category CΛ: its objects are the
functors λ 2→Mλ from Λ to C; its maps are the natural transformations (they form
a set as Λ is one). Then taking direct limits yields a functor lim−→ from CΛ to C.

In fact, it is just a restatement of the definitions that the “direct limit” functor
lim−→ is the left adjoint of the diagonal functor

∆ : C→ CΛ.

By definition, ∆ sends each object M to the constant functor ∆M , which has the
same value M at every λ ∈ Λ and has the same value 1M at every map of Λ; further,
∆ carries a map γ : M → N to the natural transformation ∆γ : ∆M → ∆N , which
has the same value γ at every λ ∈ Λ.

(6.5) (Coproducts). — Let C be a category, Λ a set, and Mλ an object of C for
each λ ∈ Λ. The coproduct

∐
λ∈Λ Mλ, or simply

∐
Mλ, is defined as the object

of C universal among objects P equipped with a map βµ : Mµ → P for each µ ∈ Λ.
The maps ιµ : Mµ →

∐
Mλ are called the inclusions. Thus, given such a P , there

exists a unique map β :
∐

Mλ → P with βιµ = βµ for all µ ∈ Λ.
If Λ = ∅, then the coproduct is an object B with a unique map β to every other

object P . There are no µ in Λ, so no inclusions ιµ : Mµ → B, so no equations
βιµ = βµ to restrict β. Such a B is called an initial object.

For instance, suppose C = ((R-mod)). Then the zero module is an initial object.
For any Λ, the coproduct

∐
Mλ is just the direct sum

⊕
Mλ (a convention if

Λ = ∅). Next, suppose C = ((Sets)). Then the empty set is an initial object. For
any Λ, the coproduct

∐
Mλ is the disjoint union

⊔
Mλ (a convention if Λ = ∅).

Note that the coproduct is a special case of the direct limit. Indeed, regard Λ as
a discrete category: its objects are the λ ∈ Λ, and it has just the required maps,
namely, the 1λ. Then lim−→Mλ =

∐
Mλ with the insertions equal to the inclusions.

(6.6) (Coequalizers). — Let α, α′ : M ⇒ N be two maps in a category C. Their
coequalizer is defined as the object of C universal among objects P equipped with
a map η : N → P such that ηα = ηα′.

For instance, if C = ((R-mod)), then the coequalizer is Coker(α− α′). In partic-
ular, the coequalizer of α and 0 is just Coker(α).

Suppose C = ((Sets)). Take the smallest equivalence relation ∼ on N with
α(m) ∼ α′(m) for all m ∈ M ; explicitly, n ∼ n′ if there are elements m1, . . . ,mr

with α(m1) = n, with α′(mr) = n′, and with α(mi) = α′(mi+1) for 1 ≤ i < r.
Clearly, the coequalizer is the quotient N/∼ equipped with the quotient map.
Note that the coequalizer is a special case of the direct limit. Indeed, let Λ be

the category consisting of two objects κ, µ and two nontrivial maps ϕ, ϕ′ : κ ⇒ µ.
Define λ 2→ Mλ in the obvious way: set Mκ := M and Mµ := N ; send ϕ to α and
ϕ′ to α′. Then the coequalizer is lim−→Mλ.

Lemma (6.7). — A category C has direct limits if and only if C has coproducts and
coequalizers. If a category C has direct limits, then a functor F : C → C′ preserves
them if and only if F preserves coproducts and coequalizers.
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Proof: If C has direct limits, then C has coproducts and coequalizers because they
are special cases by (6.5) and (6.6). By the same token, if F : C → C′ preserves
direct limits, then F preserves coproducts and coequalizers.

Conversely, assume that C has coproducts and coequalizers. Let Λ be a small
category, and λ 2→Mλ a functor from Λ to C. Let Σ be the set of all transition maps
αλµ : Mλ → Mµ. For each σ := αλµ ∈ Σ, set Mσ := Mλ. Set M :=

∐
σ∈Σ Mσ and

N :=
∐
λ∈Λ Mλ. For each σ, there are two maps Mσ := Mλ → N : the inclusion

ιλ and the composition ιµαλµ. Correspondingly, there are two maps α,α′ : M → N .
Let C be their coequalizer, and η : N → C the insertion.

Given maps βλ : Mλ → P with βµαλµ = βλ, there is a unique map β : N → P with
βιλ = βλ by the UMP of the coproduct. Clearly βα = βα′; so β factors uniquely
through C by the UMP of the coequalizer. Thus C = lim−→Mλ, as desired.

Finally, if F : C → C′ preserves coproducts and coequalizers, then F preserves
arbitrary direct limits as F preserves the above construction. !
Theorem (6.8). — The categories ((R-mod)) and ((Sets)) have direct limits.

Proof: The assertion follows from (6.7) because ((R-mod)) and ((Sets)) have
coproducts by (6.5) and have coequalizers by (6.6). !
Theorem (6.9). — Every left adjoint F : C→ C′ preserves direct limits.

Proof: Let Λ be a small category, λ 2→Mλ a functor from Λ to C such that lim−→Mλ

exists. Given an object P ′ of C′, consider all possible commutative diagrams

F (Mκ)
F (ακ

µ)−−−−→ F (Mµ)
F (αµ)−−−−→ F (lim−→Mλ))β′

κ

)β′
µ

)β′

P ′ 1−−−−−−−−→ P ′ 1−−−−−−−−−→ P ′

(6.9.1)

where ακµ is any transition map and αµ is the corresponding insertion. Given the
β′
κ, we must show there is a unique β′.
Say F is the left adjoint of F ′ : C′ → C. Then giving (6.9.1) is equivalent to

giving this corresponding commutative diagram:

Mκ
ακ

µ−−−→ Mµ
αµ−−→ lim−→Mλ)βκ

)βµ

)β

F ′(P ′)
1−→ F ′(P ′)

1−→ F ′(P ′)

However, given the βκ, there is a unique β by the UMP of lim−→Mλ. !

Proposition (6.10). — Let C be a category, Λ and Σ small categories. Assume C
has direct limits indexed by Σ. Then the functor category CΛ does too.

Proof: Let σ 2→ (λ 2→ Mσλ) be a functor from Σ to CΛ. Then a map σ → τ in
Σ yields a natural transformation from λ 2→Mσλ to λ 2→Mτλ. So a map λ→ µ in
Λ yields a commutative square

Mσλ −→ Mσµ)
)

Mτλ −→ Mτµ

(6.10.1)
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in a manner compatible with composition in Σ. Hence, with λ fixed, the rule
σ 2→Mσλ is a functor from Σ to C.

By hypothesis, lim−→σ∈Σ
Mσλ exists. So λ 2→ lim−→σ∈Σ

Mσλ is a functor from Λ to
C. Further, as τ ∈ Σ varies, there are compatible natural transformations from the
λ 2→ Mτλ to λ 2→ lim−→σ∈Σ

Mσλ. Finally, the latter is the direct limit of the functor

τ 2→ (λ 2→ Mτλ) from Σ to CΛ, because, given any functor λ 2→ Pλ from Λ to C
equipped with, for τ ∈ Σ, compatible natural transformations from the λ 2→ Mτλ

to λ 2→ Pλ, there are, for λ ∈ Λ, compatible unique maps lim−→σ∈Σ
Mσλ → Pλ. !

Theorem (6.11) (Direct limits commute). — Let C be a category with direct limits
indexed by small categories Σ and Λ. Let σ 2→ (λ 2→ Mσλ) be a functor from Σ to
CΛ. Then

lim−→σ∈Σ
lim−→λ∈Λ

Mσ,λ = lim−→λ∈Λ
lim−→σ∈Σ

Mσ,λ.

Proof: By (6.4), the functor lim−→λ∈Λ
: CΛ → C is a left adjoint. By (6.10), the

category CΛ has direct limits indexed by Σ. So (6.9) yields the assertion. !
Corollary (6.12). — Let Λ be a small category, R a ring, and C either ((Sets)) or
((R-mod)). Then functor lim−→ : CΛ → C preserves coproducts and coequalizers.

Proof: By (6.5) and (6.6), both coproducts and coequalizers are special cases
of direct limits, and C has them. So (6.11) yields the assertion. !

B. Exercises

Exercise (6.13) . — (1) Show that the condition (6.2)(1) is equivalent to the
commutativity of the corresponding diagram:

HomC(B,C) −→ HomC′
(
F (B), F (C)

)
)

)

HomC(A,C) −→ HomC′
(
F (A), F (C)

)
(6.13.1)

(2) Given γ : C → D, show (6.2)(1) yields the commutativity of this diagram:

HomC(B,C) −→ HomC′
(
F (B), F (C)

)
)

)

HomC(A,D) −→ HomC′
(
F (A), F (D)

)

Exercise (6.14) . — Let C and C′ be categories, F : C → C′ and F ′ : C′ → C an
adjoint pair. Let ϕA,A′ : HomC′(FA, A′) ∼−→ HomC(A, F ′A′) denote the natural
bijection, and set ηA := ϕA,FA(1FA). Do the following:

(1) Prove ηA is natural in A; that is, given g : A→ B, the induced square

A
ηA−−→ F ′FA

g

)
)F ′Fg

B
ηB−−→ F ′FB

is commutative. We call the natural transformation A 2→ ηA the unit of (F, F ′).
(2) Given f ′ : FA→ A′, prove ϕA,A′(f ′) = F ′f ′ ◦ ηA.
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(3) Prove the canonical map ηA : A→ F ′FA is universal from A to F ′; that is,
given f : A→ F ′A′, there is a unique map f ′ : FA→ A′ with F ′f ′ ◦ ηA = f .

(4) Conversely, instead of assuming (F, F ′) is an adjoint pair, assume given a
natural transformation η : 1C → F ′F satisfying (1) and (3). Prove the equation in
(2) defines a natural bijection making (F, F ′) an adjoint pair, whose unit is η.

(5) Identify the units in the two examples in (6.3): the “free module” functor
and the “polynomial ring” functor.

(Dually, we can define a counit ε : FF ′ → 1C′ , and prove analogous statements.)

Exercise (6.15) . — Let Λ, C, C′ be categories with Λ small. Let F, F ′ : C ⇒ C′ be
functors, and θ : F → F ′ a natural transformation. Let λ 2→Mλ be a functor from
Λ to C; assume lim−→Mλ, lim−→F (Mλ), and lim−→F ′(Mλ) exist; and form this diagram:

lim−→F (Mλ)
ϕF−−−→ F (lim−→Mλ)

lim−→ θ(Mλ)

) θ(lim−→Mλ)

)
lim−→F ′(Mλ)

ϕF ′−−→ F ′(lim−→Mλ)

Assuming ϕF ′ is an isomorphism, show the diagram is commutative.

Exercise (6.16) . — Let α : L → M and β : L → N be two maps in a category C.
Their pushout is defined as the object of C universal among objects P equipped
with a pair of maps γ : M → P and δ : N → P such that γα = δβ. Express the
pushout as a direct limit. Show that, in ((Sets)), the pushout is the disjoint union
M = N modulo the smallest equivalence relation ∼ with m ∼ n if there is 2 ∈ L
with α(2) = m and β(2) = n. Show that, in ((R-mod)), the pushout is equal to the
direct sum M ⊕N modulo the image of L under the map (α,−β).

Exercise (6.17) . — Let R be a ring, M a module, N a submodule, X a set of
variable. Prove M 2→ M [X] is the left adjoint of the restriction of scalars from
R[X] to R. As a consequence, reprove the equation (M/N)[X] = M [X]

/
N [X].

Exercise (6.18) . — Let C be a category, Σ and Λ small categories. Prove:

(1) Then CΣ×Λ = (CΛ)Σ with (σ,λ) 2→Mσ,λ corresponding to σ 2→ (λ 2→Mσλ).

(2) Assume C has direct limits indexed by Σ and by Λ. Then C has direct limits
indexed by Σ× Λ, and lim−→λ∈Λ

lim−→σ∈Σ
= lim−→(σ,λ)∈Σ×Λ

.

Exercise (6.19) . — Let λ 2→ Mλ and λ 2→ Nλ be two functors from a small
category Λ to ((R-mod)), and {θλ : Mλ → Nλ} a natural transformation. Show

lim−→Coker(θλ) = Coker(lim−→Mλ → lim−→Nλ).

Show that the analogous statement for kernels can be false by constructing a
counterexample using the following commutative diagram with exact rows:

Z µ2−−→ Z −→ Z/〈2〉 −→ 0)µ2

)µ2

)µ2

Z µ2−−→ Z −→ Z/〈2〉 −→ 0
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Exercise (6.20) . — Let R be a ring, M a module. Define the map

D(M) : M → Hom
(
Hom(M, R), R

)
by

(
D(M)(m)

)
(α) := α(m).

If D(M) is an isomorphism, call M reflexive. Show:

(1) D : 1((R-mod)) → Hom
(
Hom(•, R), R

)
is a natural transformation.

(2) Let Mi for 1 ≤ i ≤ n be modules. Then D(
⊕n

i=1 Mi) =
⊕n

i=1 D(Mi).
(3) Assume M is finitely generated and projective. Then M is reflexive.
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7. Filtered Direct Limits

Filtered direct limits are direct limits indexed by a filtered category, which is
a more traditional sort of index set. After making the definitions, we study an
instructive example where the limit is Q. Then we develop an alternative construc-
tion of filtered direct limits for modules. We conclude that forming them preserves
exact sequences, and so commutes with forming the module of homomorphisms out
of a fixed finitely presented source.

A. Text

(7.1) (Filtered categories). — We call a small category Λ filtered if

(1) given objects κ and λ, for some µ there are maps κ→ µ and λ→ µ,
(2) given two maps σ, τ : η ⇒ κ with the same source and the same target, for

some µ there is a map ϕ : κ→ µ such that ϕσ = ϕτ .

Given a category C, we say a functor λ 2→ Mλ from Λ to C is filtered if Λ is
filtered. If so, then we say the direct limit lim−→Mλ is filtered if it exists.

For example, let Λ be a partially ordered set. Suppose Λ is directed; that is,
given κ,λ ∈ Λ, there is a µ with κ ≤ µ and λ ≤ µ. Regard Λ as a category whose
objects are its elements and whose sets Hom(κ,λ) consist of a single element if
κ ≤ λ, and are empty if not; morphisms can be composed, because the ordering is
transitive. Clearly, the category Λ is filtered.

Exercise (7.2) . — Let R be a ring, M a module, Λ a set, Mλ a submodule for
each λ ∈ Λ. Assume

⋃
Mλ = M . Assume, given λ, µ ∈ Λ, there is ν ∈ Λ such that

Mλ, Mµ ⊂Mν . Order Λ by inclusion: λ ≤ µ if Mλ ⊂Mµ. Prove M = lim−→Mλ.

Example (7.3). — Let Λ be the set of all positive integers, and for each n ∈ Λ, set
Mn := {r/n | r ∈ Z} ⊂ Q. Then

⋃
Mn = Q and Mm, Mn ⊂ Mmn. Then (7.2)

yields Q = lim−→Mn where Λ is ordered by inclusion of the Mn.
However, Mm ⊂ Mn if and only if 1/m = s/n for some s, if and only if m | n.

Thus we may view Λ as ordered by divisibility of the n ∈ Λ.
For each n ∈ Λ, set Rn := Z, and define βn : Rn →Mn by βn(r) := r/n. Clearly,

βn is a Z-module isomorphism. And if n = ms, then this diagram is commutative:

Rm
µs−−→ Rn

βm

)( βn

)(

Mm
ιmn
↪−→ Mn

(7.3.1)

where µs is the map of multiplication by s and ιmn is the inclusion. Thus Q = lim−→Rn

where the transition maps are the µs.

Theorem (7.4). — Let Λ be a filtered category, R a ring, and C either ((Sets)) or
((R-mod)) or ((R-alg)). Let λ 2→ Mλ be a functor from Λ to C. Define a relation
∼ on the set-theoretic disjoint union

⊔
Mλ as follows: m1 ∼ m2 for mi ∈ Mλi if

there are transition maps αλi
µ : Mλi → Mµ such that αλ1

µ m1 = αλ2
µ m2. Then ∼ is

an equivalence relation. Set M :=
(⊔

Mλ

)/
∼. Then M = lim−→Mλ, and for each µ,

the canonical map αµ : Mµ →M is equal to the insertion map Mµ → lim−→Mλ.
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Proof: Clearly ∼ is reflexive and symmetric. Let’s show it is transitive. Given
mi ∈ Mλi for i = 1, 2, 3 with m1 ∼ m2 and m2 ∼ m3, there are αλi

µ for i = 1, 2

and αλi
ν for i = 2, 3 with αλ1

µ m1 = αλ2
µ m2 and αλ2

ν m2 = αλ3
ν m3. Then (7.1)(1)

yields αµ
ρ and ανρ . Possibly, αµ

ρα
λ2
µ -= ανρα

λ2
ν , but in any case, (7.1)(2) yields αρσ

with αρσ(α
µ
ρα

λ2
µ ) = αρσ(α

ν
ρα

λ2
ν ). In sum, we have this diagram of indices:

λ1
µ

λ2 ρ σ
ν

λ3

,,

,,

--

,,

!!--

--

Hence, (αρσα
µ
ρ )α

λ1
µ m1 = (αρσα

ν
ρ)α

λ3
ν m3. Thus m1 ∼ m3.

If C = ((R-mod)), define addition in M as follows. Given mi ∈Mλi for i = 1, 2,
there are αλi

µ by (7.1)(1). Set

αλ1m1 + αλ2m2 := αµ(α
λ1
µ m1 + αλ2

µ m2).

We must check that this addition is well defined.
First, consider µ. Suppose there are αλi

ν too. Then (7.1)(1) yields αµ
ρ and ανρ .

Possibly, αµ
ρα

λi
µ -= ανρα

λi
ν , but (7.1)(2) yields αρσ with αρσ(α

µ
ρα

λ1
µ ) = αρσ(α

ν
ρα

λ1
ν ) and

then αστ with αστ (α
ρ
σα

µ
ρα

λ2
µ ) = αστ (α

ρ
σα

ν
ρα

λ2
ν ). In sum, we have this diagram:

λ1 µ
ρ σ τ

λ2 ν

!!

..

,, !! !!

!!

//

--

Therefore, (αστα
ρ
σα

µ
ρ )(α

λ1
µ m1+αλ2

µ m2) = (αστα
ρ
σα

ν
ρ)(α

λ1
ν m1+αλ2

ν m2). Thus both µ
and ν yield the same value for αλ1m1 + αλ2m2.
Second, suppose m1 ∼ m′

1 ∈ Mλ′
1
. Then a similar, but easier, argument yields

αλ1m1 + αλ2m2αλ′
1
= m′

1 + αλ2m2. Thus addition is well defined on M .
Define scalar multiplication on M similarly. Then clearly M is an R-module.
If C = ((R-alg)), then we can see similarly that M is canonically an R-algebra.
Finally, let βλ : Mλ → N be maps with βλακλ = βκ for all ακλ. The βλ induce

a map
⊔

Mλ → N . Suppose m1 ∼ m2 for mi ∈ Mλi ; that is, αλ1
µ m1 = αλ2

µ m2

for some αλi
µ . Then βλ1m1 = βλ2m2 as βµαλi

µ = βλi . So there is a unique map
β : M → N with βαλ = βλ for all λ. Further, if C = ((R-mod)) or C = ((R-alg)),
then clearly β is a homomorphism. The proof is now complete. !

Corollary (7.5). — Preserve the conditions of (7.4).
(1) Given m ∈ lim−→Mλ, there are λ and mλ ∈Mλ such that m = αλmλ.

(2) Given mi ∈ Mλi for i = 1, 2 such that αλ1m1 = αλ2m2, there are αλi
µ such

that αλ1
µ m1 = αλ2

µ m2.
(3) Suppose C = ((R−mod)) or C = ((R−alg)). Then given λ and mλ ∈ Mλ

such that αλmλ = 0, there is αλµ such that αλµmλ = 0.

Proof: The assertions follow directly from (7.4). Specifically, (1) holds, since
lim−→Mλ is a quotient of the disjoint union

⊔
Mλ. Further, (2) holds owing to the

definition of the equivalence relation involved. Finally, (3) is the special case of (2)
where m1 := mλ and m2 = 0. !
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Definition (7.6). — Let R be a ring. We say an algebra R′ is finitely presented
if R′ % R[X1, . . . , Xr]/a for some variables Xi and finitely generated ideal a.

Proposition (7.7). — Let Λ be a filtered category, R a ring, C either ((R-mod)) or
((R-alg)), λ 2→Mλ a functor from Λ to C. Given N ∈ C, form the map (6.4.1),

θ : lim−→Hom(N, Mλ)→ Hom(N, lim−→Mλ).

(1) If N is finitely generated, then θ is injective.
(2) The following conditions are equivalent:

(a) N is finitely presented;
(b) θ is bijective for all filtered categories Λ and all functors λ 2→Mλ;
(c) θ is surjective for all directed sets Λ and all λ 2→Mλ.

Proof: Given a transition map αλµ : Mλ →Mµ, set βλµ := Hom(N, αλµ). Then the

βλµ are the transition maps of lim−→Hom(N, Mλ). Denote by αλ and βλ the insertions
of lim−→Mλ and lim−→Hom(N, Mλ).

For (1), let n1, . . . , nr generate N . Given ϕ and ϕ′ in lim−→Hom(N,Mλ) with
θ(ϕ) = θ(ϕ′), note that (7.5)(1) yields λ and ϕλ : N →Mλ and µ and ϕ′

µ : N →Mµ

with βλ(ϕλ) = ϕ and βµ(ϕ′
µ) = ϕ′. Then θ(ϕ) = αλϕλ and θ(ϕ′) = αµϕ′

µ by
construction of θ. Hence αλϕλ = αµϕ′

µ. So αλϕλ(ni) = αµϕ′
µ(ni) for all i. So

(7.5)(2) yields λi and αλλi
and αµ

λi
such that αλλi

ϕλ(ni) = αµ
λi
ϕ′
µ(ni) for all i.

Consider this commutative diagram, in which ν and the αλi
ν are to be constructed:

N Mλ lim−→Mλ

Mµ Mλi Mν

!!
ϕλ

''

ϕ′
µ

!!
αλ

''

αλ
λi

%%

αµ

!!

αµ
λi

!!

α
λi
ν

00

αλi

))

αν

Let’s prove, by induction on i, that there are νi and maps αλνi and αµ
νi such that

αλνiϕλ(nj) = αµ
νiϕ

′
µ(nj) for 1 ≤ j ≤ i. Indeed, given νi−1 and αλνi−1

and αµ
νi−1

, by

(7.1)(1), there are ρi and α
νi−1
ρi and αλi

ρi . By (7.1)(2), there are νi and αρiνi such that

αρiνiα
νi−1
ρi αλνi−1

= αρiνiα
λi
ρiα

λ
λi

and αρiνiα
νi−1
ρi αµ

νi−1
= αρiνiα

λi
ρiα

µ
λi
. Set αλνi := αρiνiα

λi
ρiα

λ
λi

and αµ
νi := αρiνiα

λi
ρiα

µ
λi
. Then αλνiϕλ(nj) = αµ

νiϕ
′
µ(nj) for 1 ≤ j ≤ i, as desired.

Set ν := νr. Then αλνϕλ(ni) = αµ
νϕ

′
µ(ni) for all i. Hence αλνϕλ = αµ

νϕ
′
µ. But

ϕ = βλ(ϕλ) = βνβ
λ
ν (ϕλ) = βν(α

λ
νϕλ).

Similarly, ϕ′ = βν(αµ
νϕ

′
µ). Hence ϕ = ϕ′. Thus θ is injective. Notice that this proof

works equally well for ((R-mod)) and ((R-alg)). Thus (1) holds.
For (2), let’s treat the case C = ((R-mod)) first. Assume (a). Say N % F/N ′

where F := Rr and N ′ is finitely generated, say by n′
1, . . . , n

′
s. Let ni be the image

in N of the ith standard basis vector ei of F . For all j, there’s a linear polynomial
Lj with Lj(0, . . . , 0) = 0 and Lj(e1, . . . , er) = n′

j . So Lj(n1, . . . , nr) = 0.
Given ϕ : N → lim−→Mλ, set mi := ϕ(ni) for 1 ≤ i ≤ r. Repeated use of (7.5)(1)

and (7.1)(1) yields λ and mλi ∈Mλ with αλmλi = mi for all i. So for all j,

αλ(Lj(mλ1, . . . ,mλr)) = Lj(m1, . . . ,mr) = ϕ(Lj(n1, . . . , nr)) = 0.

Hence repeated use of (7.5)(2) and (7.1)(1), (2) yields µ and αλµ with, for all j,

αλµ(Lj(mλ1, . . . ,mλr)) = 0.
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Therefore, there is ϕµ : N → Mµ with ϕµ(ni) : αλµ(mλi) by (4.10) and (4.6). Set
ψ := βµ(ϕµ). Then θ(ψ) = αµϕµ. Hence θ(ψ)(ni) = mi := ϕ(ni) for all i. So
θ(ψ) = ϕ. Thus θ is surjective. So (1) implies θ is bijective. Thus (b) holds.

Trivially (b) implies (c).
Finally, assume (c). Take Λ to be the directed set of finitely generated submodules

Nλ of N . Then N = lim−→Nλ by (7.2). However, θ is surjective. So there is
ψ ∈ lim−→Hom(N,Nλ) with θ(ψ) = 1N . So (7.5)(1) yields λ and ψλ ∈ Hom(N, Nλ)
with βλ(ψλ) = ψ. Hence αλψλ = θ(ψ). So αλψλ = 1N . So αλ is surjective. But
αλ : Nλ → N is the inclusion. So Nλ = N . Thus N is finitely generated. Say
n1, . . . , nr generate N . Set F := Rr and let ei be the ith standard basis vector.
Define κ : F → N by κ(ei) := ni for all i. Set N ′ := Ker(κ). Then F/N ′ ∼−→ N .

Let’s show N ′ is finitely generated.
Take Λ to be the directed set of finitely generated submodules N ′

λ of N ′. Then
N ′ = lim−→N ′

λ by (7.2). Set Nλ := F/N ′
λ. Then N = lim−→Nλ by (6.19). Here the αλµ

and the αλ are the quotient maps. Since θ is surjective, there is ψ ∈ Hom(N,Nλ)
with θ(ψ) = 1N . So (7.5)(1) yields λ and ψλ ∈ Hom(N, Nλ) with βλ(ψλ) = ψ.
Hence αλψλ = θ(ψ). So αλψλ = 1N . Set ψµ := αλµψλ for all µ; note ψµ is well
defined as Λ is directed. Then αµψµ = αλψλ = 1N for all µ. Let’s show there is µ
with ψµαµ = 1Nµ .

For all µ and i, let nµi be the image in Nµ of ei. Then αλnλi = αλ(ψλαλnλi)
as αλψλ = 1N . Hence repeated use of (7.5)(2) and (7.1)(1) yields µ such that
αλµnλi = αλµ(ψλαλnλi) for all i. Hence Mµi = (ψµαµ)nµi. But the nµi generate Nµ

for all i. So 1Nµ = ψµαµ, as desired.
So αµ : Nµ → N is an isomorphism. So N ′

µ = N ′. Thus N ′ is finitely generated.
Thus (a) holds for ((R-mod)).

In the case C = ((R-alg)), replace F by a polynomial ring R[X1, . . . , Xr], the
submodule N ′ by the appropriate ideal a, and the fj by polynomials that generate
a. With these replacements, the above proof shows (a) implies (b). As to (c) implies
(a), first take the Nλ to be the finitely generated subalgebras; then the above proof
of finite generation works equally well as is. The rest of the proof works after we
replace F by a polynomial ring, the ei by the variables, N ′ by the appropriate ideal,
and the N ′

λ by the finitely generated subideals. !

(7.8) (Finite presentations). — Let R be a ring, R′ a finitely presented algebra.
The proof of (7.7)(2) shows that, for any presentation R[X1, . . . , Xr]/a of R′,
where R[X1, . . . , Xr] is a polynomial ring and a is an ideal, necessarily a is finitely
generated. Similarly, for a finitely presented module M , that proof gives another
solution to (5.18), one not requiring Schanuel’s Lemma.

Theorem (7.9) (Exactness of Filtered Direct Limits). — Let R be a ring, Λ a
filtered category. Let C be the category of 3-term exact sequences of R-modules: its
objects are the 3-term exact sequences, and its maps are the commutative diagrams

L −→ M −→ N)
)

)
L′ −→ M ′ −→ N ′

Then, for any functor λ 2→ (Lλ
βλ−−→Mλ

γλ−→ Nλ) from Λ to C, the induced sequence

lim−→Lλ
β−→ lim−→Mλ

γ−→ lim−→Nλ is exact.

55



Filtered Direct Limits (7.10)
/
(7.10) Text

Proof: Abusing notation, in all three cases denote by ακλ the transition maps
and by αλ the insertions. Then given 2 ∈ lim−→Lλ, there is 2λ ∈ Lλ with αλ2λ = 2
by (7.5)(1). By hypothesis, γλβλ2λ = 0; so γβ2 = 0. In sum, we have the figure
below. Thus Im(β) ⊂ Ker(γ).

2λ 0
• • • λ

• • • lim−→
2 0

! !!

"

##

"

##

!!

##

!!

## ##
!! !!

! !!

For the opposite inclusion, take m ∈ lim−→Mλ with γm = 0. By (7.5)(1), there is
mλ ∈ Mλ with αλmλ = m. Now, αλγλmλ = 0 by commutativity. So by (7.5)(3),
there is αλµ with αλµγλmλ = 0. So γµαλµmλ = 0 by commutativity. Hence there is

2µ ∈ Lµ with βµ2µ = αλµmλ by exactness. Apply αµ to get

βαµ2µ = αµβµ2µ = αµα
λ
µmλ = m.

In sum, we have this figure:
mλ Mλ

• • • λ

2µ mµ 0

• • • µ

2 m 0

• • • lim−→

! !!

#

11

"

##

#

11

"

##

!!

11

!!

11 11$

22

! !! ! !!
$

22

$

22

!!

22

!!

22 22

! !! ! !!

!! !!

Thus Ker(γ) ⊂ Im(β). So Ker(γ) = Im(β) as asserted. !

(7.10) (Hom and direct limits again). — Let Λ a filtered category, R a ring, N a
module, and λ 2→Mλ a functor from Λ to ((R-mod)). Here is an alternative proof
that the map θ(N) of (6.4.1) is injective if N is finitely generated and bijective if
N is finitely presented.

If N := R, then θ(N) is bijective by (4.3). Assume N is finitely generated, and
take a presentation R⊕Σ → Rn → N → 0 with Σ finite if N is finitely presented.
It induces the following commutative diagram:

0 −→ lim−→Hom(N, Mλ) −→ lim−→Hom(Rn, Mλ) −→ lim−→Hom(R⊕Σ, Mλ)

θ(N)

) θ(Rn)

)( θ(R⊕Σ)

)

0 −→ Hom(N, lim−→Mλ) −→ Hom(Rn, lim−→Mλ) −→ Hom(R⊕Σ, lim−→Mλ)

The rows are exact owing to (5.11), the left exactness of Hom, and to (7.9), the
exactness of filtered direct limits. Now, Hom preserves finite direct sums by (4.13),
and direct limit does so by (6.12) and (6.5); hence, θ(Rn) is bijective, and θ(R⊕Σ)
is bijective if Σ is finite. A diagram chase yields the assertion.
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B. Exercises

Exercise (7.11) . — Show that every module M is the filtered direct limit of its
finitely generated submodules.

Exercise (7.12) . — Show that every direct sum of modules is the filtered direct
limit of its finite direct subsums.

Exercise (7.13) . — Keep the setup of (7.3). For each n ∈ Λ, set Nn := Z/〈n〉; if
n = ms, define αm

n : Nm → Nn by αm
n (x) := xs (mod n). Show lim−→Nn = Q/Z.

Exercise (7.14) . — Let M := lim−→Mλ be a filtered direct limit of modules, with

transition maps αλµ : Mλ →Mµ and insertions αλ : Mλ →M .

(1) Prove that all αλ are injective if and only if all αλµ are. What if lim−→Mλ isn’t
filtered?

(2) Assume that all αλ are injective. Prove M =
⋃
αλMλ.

Exercise (7.15) . — Let R be a ring, a a finitely generated ideal, M a module.
Show Γa(M) = lim−→Hom(R/an, M).

Exercise (7.16) . — Let R := lim−→Rλ be a filtered direct limit of rings. Show:

(1) Then R = 0 if and only if Rλ = 0 for some λ.
(2) Assune each Rλ is a domain. Then R is a domain.
(3) Assume each Rλ is a field. Then each insertion αλ : Rλ → R is injective,

R =
⋃
αλRλ, and R is a field.

Exercise (7.17) . — Let M := lim−→Mλ be a filtered direct limit of modules, with

transition maps αλµ : Mλ → Mµ and insertions αλ : Mλ → M . For each λ, let

Nλ ⊂Mλ be a submodule, and let N ⊂M be a submodule. Prove that Nλ = α−1
λ N

for all λ if and only if (a) Nλ = (αλµ)
−1Nµ for all αλµ and (b)

⋃
αλNλ = N .

Exercise (7.18) . — Let R := lim−→Rλ be a filtered direct limit of rings, aλ ⊂ Rλ an
ideal for each λ. Assume αλµaλ ⊂ aµ for each transition map αλµ. Set a := lim−→ aλ.
If each aλ is prime, show a is prime. If each aλ is maximal, show a is maximal.

Exercise (7.19) . — Let M := lim−→Mλ be a filtered direct limit of modules, with

transition maps αλµ : Mλ → Mµ and insertions αλ : Mλ → M . Let Nλ ⊂ Mλ be a

be a submodule for all λ. Assume αλµNλ ⊂ Nµ for all αλµ. Prove lim−→Nλ =
⋃
αλNλ.

Exercise (7.20) . — Let R := lim−→Rλ be a filtered direct limit of rings. Prove that

lim−→nil(Rλ) = nil(R).

Exercise (7.21) . — Let R := lim−→Rλ be a filtered direct limit of rings. Assume
each ring Rλ is local, say with maximal ideal mλ, and assume each transition map
αλµ : Rλ → Rµ is local. Set m := lim−→mλ. Prove that R is local with maximal ideal
m and that each insertion αλ : Rλ → R is local.

Exercise (7.22) . — Let Λ and Λ′ be small categories, C : Λ′ → Λ a functor.
Assume Λ′ is filtered. Assume C is cofinal; that is,

(1) given λ ∈ Λ, there is a map λ→ Cλ′ for some λ′ ∈ Λ′, and
(2) given ψ, ϕ : λ⇒ Cλ′, there is χ : λ′ → λ′1 with (Cχ)ψ = (Cχ)ϕ.
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Let λ 2→Mλ be a functor from Λ to C whose direct limit exists. Show that

lim−→λ′∈Λ′ MCλ′ = lim−→λ∈Λ
Mλ;

more precisely, show that the right side has the UMP characterizing the left.

Exercise (7.23) . — Show that every R-module M is the filtered direct limit over
a directed set of finitely presented modules.
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8. Tensor Products

Given two modules, their tensor product is the target of the universal bilinear
map. We construct the product, and establish various properties: bifunctoriality,
commutativity, associativity, cancellation, and most importantly, adjoint associa-
tivity; the latter relates the product to the module of homomorphisms. With one
factor fixed, tensor product becomes a linear functor. We prove Watt’s Theorem;
it characterizes “tensor-product” functors as those linear functors that commute
with direct sums and cokernels. Lastly, we discuss the tensor product of algebras.

A. Text

(8.1) (Bilinear maps). — Let R a ring, and M , N , P modules. We call a map

α : M ×N → P

bilinear if it is linear in each variable; that is, given m ∈M and n ∈ N , the maps

m′ 2→ α(m′, n) and n′ 2→ α(m,n′)

are R-linear. Denote the set of all these maps by BilR(M,N ;P ). It is clearly an
R-module, with sum and scalar multiplication performed valuewise.

(8.2) (Tensor product). — Let R be a ring, and M , N modules. Their tensor
product, denoted M ⊗RN or simply M ⊗N , is constructed as the quotient of the
free module R⊕(M×N) modulo the submodule generated by the following elements,
where (m,n) stands for the standard basis element e(m,n):

(m+m′, n)− (m, n)− (m′, n) and (m, n+ n′)− (m,n)− (m,n′),

(xm, n)− x(m,n) and (m, xn)− x(m,n)
(8.2.1)

for all m,m′ ∈M and n, n′ ∈ N and x ∈ R.

The above construction yields a canonical bilinear map

β : M ×N →M ⊗N.

Set m⊗ n := β(m,n).

Theorem (8.3) (UMP of tensor product). — Let R be a ring, M , N modules.
Then β : M × N → M ⊗ N is the universal bilinear map with source M × N ; in
fact, β induces, not simply a bijection, but a module isomorphism,

θ : HomR(M ⊗R N,P ) ∼−→ BilR(M,N ;P ). (8.3.1)

Proof: Note that, if we follow any bilinear map with any linear map, then the
result is bilinear; hence, θ is well defined. Clearly, θ is a module homomorphism.
Further, θ is injective since M ⊗R N is generated by the image of β. Finally, given
any bilinear map α : M×N → P , by (4.10) it extends to a map α′ : R⊕(M×N) → P ,
and α′ carries all the elements in (8.2.1) to 0; hence, α′ factors through β. Thus
θ is also surjective, so an isomorphism, as asserted. !
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(8.4) (Bifunctoriality). — Let R be a ring, α : M →M ′ and α′ : N → N ′ module
homomorphisms. Then there is a canonical commutative diagram:

M ×N
α×α′
−−−→ M ′ ×N ′

)β
)β′

M ⊗N
α⊗α′
−−−→ M ′ ⊗N ′

Indeed, β′ ◦ (α×α′) is clearly bilinear; so the UMP (8.3) yields α⊗α′. Thus •⊗N
and M ⊗ • are commuting linear functors— that is, linear on maps, see (8.12).

Proposition (8.5). — Let R be a ring, M and N modules.
(1) Then the switch map (m,n) 2→ (n,m) induces an isomorphism

M ⊗R N = N ⊗R M. (commutative law)

(2) Then multiplication of R on M induces an isomorphism

R⊗R M = M. (unitary law)

Proof: The switch map induces an isomorphism R⊕(M×N) ∼−→ R⊕(N×M), and
it preserves the elements of (8.2.1). Thus (1) holds.

Define β : R ×M → M by β(x,m) := xm. Clearly β is bilinear. Let’s check β
has the requisite UMP. Given a bilinear map α : R×M → P , define γ : M → P by
γ(m) := α(1,m). Then γ is linear as α is bilinear. Also, α = γβ as

α(x,m) = xα(1,m) = α(1, xm) = γ(xm) = γβ(x,m).

Further, γ is unique as β is surjective. Thus β has the UMP, so (2) holds. !
(8.6) (Bimodules). — Let R and R′ be rings. An abelian group N is an (R,R′)-
bimodule if it is both an R-module and an R′-module and if x(x′n) = x′(xn)
for all x ∈ R, all x′ ∈ R′, and all n ∈ N . At times, we think of N as a left R-
module, with multiplication xn, and as a right R′-module, with multiplication nx′.
Then the compatibility condition becomes the associative law: x(nx′) = (xn)x′. A
(R,R′)-homomorphism of bimodules is a map that is both R-linear and R′-linear.
Let M be an R-module, and let N be an (R,R′)-bimodule. Then M ⊗R N

is an (R,R′)-bimodule with R-structure as usual and with R′-structure defined
by x′(m ⊗ n) := m ⊗ (x′n) for all x′ ∈ R′, all m ∈ M , and all n ∈ N . The
latter multiplication is well defined and the two multiplications commute because
of bifunctoriality (8.4) with α := µx and α′ := µx′ .

For instance, suppose R′ is an R-algebra. Then R′ is an (R,R′)-bimodule. So
M ⊗R R′ is an R′-module. It is said to be obtained by extension of scalars.
In full generality, it is easy to check that HomR(M,N) is an (R,R′)-bimodule

under valuewise multiplication by elements of R′. Further, given an R′-module
P , it is easy to check that HomR′(N,P ) is an (R,R′)-bimodule under sourcewise
multiplication by elements of R.

Exercise (8.7) . — Let R be a ring, R′ an R-algebra, and M, N two R′-modules.
(1) Show that there is a canonical R-linear map τ : M ⊗R N →M ⊗R′ N .
(2) Let K ⊂ M ⊗R N denote the R-submodule generated by all the differences

(x′m)⊗ n−m⊗ (x′n) for x′ ∈ R′ and m ∈M and n ∈ N . Show that K = Ker(τ)
and that τ is surjective.

(3) Suppose that R′ is a quotient of R. Show that τ is an isomorphism.
(4) Let {tτ} be a set of algebra generators of R′ over R. Let {mµ} and {nν}
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be sets of generators of M and N over R′. Regard M ⊗R N as an (R′ ⊗R R′)-
module. Let K ′ denote the (R′ ⊗R R′)-submodule generated by all differences
(tτmµ)⊗ nν −mµ ⊗ (tτnν). Show that K ′ = K.

Theorem (8.8). — Let R and R′ be rings, M an R-module, P an R′-module, N
an (R,R′)-bimodule. Then there are two canonical (R,R′)-isomorphisms:

M ⊗R (N ⊗R′ P ) = (M ⊗R N)⊗R′ P, (associative law)

HomR′(M ⊗R N, P ) = HomR

(
M, HomR′(N, P )

)
. (adjoint associativity)

Proof: Note that M ⊗R (N ⊗R′ P ) and (M ⊗R N)⊗R′ P are (R,R′)-bimodules.
For each (R,R′)-bimodule Q, call a map τ : M × N × P → Q trilinear if it is
R-bilinear in M × N and R′-bilinear in N × P . Denote the set of all these τ by
Tril(R,R′)(M,N,P ; Q). It is, clearly, an (R,R′)-bimodule.

A trilinear map τ yields an R-bilinear map M × (N ⊗R′ P )→ Q, whence a map
M ⊗R (N ⊗R′ P )→ Q, which is both R-linear and R′-linear, and vice versa. Thus

Tril(R,R′)(M,N,P ; Q) = Hom
(
M ⊗R (N ⊗R′ P ), Q

)
.

Similarly, there is a canonical isomorphism of (R,R′)-bimodules

Tril(R,R′)(M,N,P ; Q) = Hom
(
(M ⊗R N)⊗R′ P, Q

)
.

Hence each of M ⊗R (N ⊗R′ P ) and (M ⊗R N) ⊗R′ P is the universal target of a
trilinear map with source M ×N × P . Thus they are equal, as asserted.
To establish the isomorphism of adjoint associativity, define a map

α : HomR′(M ⊗R N,P )→ HomR

(
M, HomR′(N,P )

)
by

(
α(γ)(m)

)
(n) := γ(m⊗ n).

Let’s check α is well defined. First, α(γ)(m) is R′-linear, because given x′ ∈ R′,

γ(m⊗ (x′n)) = γ(x′(m⊗ n)) = x′γ(m⊗ n)

since γ is R′-linear. Further, α(γ) is R-linear, because given x ∈ R,

(xm)⊗ n = m⊗ (xn) and so
(
α(γ)(xm)

)
(n) =

(
α(γ)(m)

)
(xn).

Thus α(γ) ∈ HomR

(
M, HomR′(N,P )

)
. Clearly, α is an (R,R′)-homomorphism.

To obtain an inverse to α, given η ∈ HomR

(
M, HomR′(N,P )

)
, define a map

ζ : M × N → P by ζ(m,n) := (η(m))(n). Clearly, ζ is Z-bilinear, so ζ induces a
Z-linear map δ : M ⊗Z N → P . Given x ∈ R, clearly (η(xm))(n) = (η(m))(xn); so
δ((xm)⊗ n) = δ(m⊗ (xn)). Hence, δ induces a Z-linear map β(η) : M ⊗R N → P
owing to (8.7) with Z for R and with R for R′. Clearly, β(η) is R′-linear as η(m)
is so. Finally, it is easy to verify that α(β(η)) = η and β(α(γ)) = γ, as desired. !
Corollary (8.9). — Let R be a ring, and R′ an algebra. First, let M be an R-module,
and P an R′-module. Then there are two canonical R′-isomorphisms:

(M ⊗R R′)⊗R′ P = M ⊗R P, (cancellation law)

HomR′(M ⊗R R′, P ) = HomR(M, P ). (left adjoint)

Instead, let M be an R′-module, and P an R-module. Then there is a canonical
R′-isomorphism:

HomR(M, P ) = HomR′(M, HomR(R
′, P )). (right adjoint)

In other words, • ⊗R R′ is the left adjoint of restriction of scalars from R′ to R,
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and HomR(R′, •) is its right adjoint.

Proof: The cancellation law results from the associative and unitary laws; the
adjoint isomorphisms, from adjoint associativity, (4.3) and the unitary law. !

Corollary (8.10). — Let R, R′ be rings, N a bimodule. Then the functor • ⊗R N
preserves direct limits, or equivalently, direct sums and cokernels.

Proof: By adjoint associativity, •⊗R N is the left adjoint of HomR′(N, •). Thus
the assertion results from (6.9) and (6.7). !

Example (8.11). — Tensor product does not preserve kernels, nor even injections.
Indeed, consider the injection µ2 : Z → Z. Tensor it with N := Z/〈2〉, obtaining
µ2 : N → N . This map is zero, but not injective as N -= 0.

(8.12) (Linear Functors). — Let R be a ring, R′ an algebra, F a functor from
((R-mod)) to ((R′-mod)). Call F R-linear if the associated map is linear:

HomR(M,N)→ HomR′(FM, FN).

Assume so. If a map α : M → N is 0, then Fα : FM → FN is too. But M = 0
if and only if 1M = 0. Further, F (1M ) = 1FM . Thus if M = 0, then FM = 0.

Theorem (8.13) (Watts’). — Let F : ((R-mod))→ ((R-mod)) be a linear functor.
Then there is a natural transformation θ(•) : •⊗F (R)→ F (•) with θ(R) = 1, and
θ(•) is an isomorphism if and only if F preserves direct sums and cokernels.

Proof: As F is a linear functor, there is, by definition, a natural R-linear map
θ(M) : Hom(R,M)→ Hom(F (R), F (M)). But Hom(R,M) = M by (4.3). Hence
adjoint associativity (8.8) yields the desired map

θ(M) ∈ Hom
(
M, Hom(F (R), F (M))

)
= Hom(M ⊗ F (R), F (M)).

Explicitly, θ(M)(m ⊗ n) = F (ρ)(n) where ρ : R → M is defined by ρ(1) = m.
Alternatively, this formula can be used to construct θ(M), as (m,n) 2→ F (ρ)(n) is
clearly bilinear. Either way, it’s not hard to see θ(M) is natural in M and θ(R) = 1.

If θ(•) is an isomorphism, then F preserves direct sums and cokernels by (8.10).

To prove the converse, take a presentation R⊕Σ β−→ R⊕Λ α−→ M → 0; one exists
by (5.13). Set N := F (R). Applying θ, we get this commutative diagram:

R⊕Σ ⊗N −→ R⊕Λ ⊗N −→ M ⊗N −→ 0)θ(R⊕Σ)

)θ(R⊕Λ)

)θ(M)

F (R⊕Σ) −−→ F (R⊕Λ) −−→ F (M) −→ 0

(8.13.1)

By construction, θ(R) = 1N . Suppose that F preserves direct sums. Then
θ(R⊕Λ) = 1N⊕Λ and θ(R⊕Σ) = 1N⊕Σ by (6.15), as direct sum is a special case of
direct limit by (6.5). Suppose also that F preserves cokernels. As •⊗N does too,
the rows of (8.13.1) are exact by (5.2). Therefore, θ(M) is an isomorphism. !

Exercise (8.14) . — Let F : ((R-mod))→ ((R-mod)) be a linear functor, and C the
category of finitely generated modules. Show that F always preserves finite direct
sums. Show that θ(M) : M ⊗F (R)→ F (M) is surjective if F preserves surjections
in C and M is finitely generated, and that θ(M) is an isomorphism if F preserves
cokernels in C and M is finitely presented.
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(8.15) (Additive functors). — Let R be a ring, M a module, and form the diagram

M
δM−−→M ⊕M

σM−−→M

where δM := (1M , 1M ) and σM := 1M + 1M .
Let α,β : M → N be two maps of modules. Then

σN (α⊕ β)δM = α+ β, (8.15.1)

because, for any m ∈M , we have

(σN (α⊕ β)δM )(m) = σN (α⊕ β)(m,m) = σN (α(m), β(m)) = α(m) + β(m).

Let F : ((R-mod)) → ((R-mod)) be a functor that preserves finite direct sums.
Then F (α ⊕ β) = F (α) ⊕ F (β). Also, F (δM ) = δF (M) and F (σM ) = σF (M)

as F (1M ) = 1F (M). Hence F (α + β) = F (α) + F (β) by (8.15.1). Thus F is
additive, that is, Z-linear.

Conversely, every additive functor preserves finite direct sums owing to (8.14).
However, not every additive functor is R-linear. For example, take R := C.

Define F (M) to be M , but with the scalar product of x ∈ C and m ∈M to be xm
where x is the conjugate. Define F (α) to be α. Then F is additive, but not linear.

Lemma (8.16) (Equational Criterion for Vanishing). — Let R be a ring, M and
N modules, and {nλ}λ∈Λ a set of generators of N . Then any t ∈ M ⊗ N can be
written as a finite sum t =

∑
mλ ⊗ nλ with mλ ∈M . Further, t = 0 if and only if

there are mσ ∈M and xλσ ∈ R for σ ∈ Σ for some Σ such that
∑
σ xλσmσ = mλ for all λ and

∑
λ xλσnλ = 0 for all σ.

Proof: Owing to (8.2), M ⊗N is generated by all the m⊗ n with m ∈ M and
n ∈ N , and if n =

∑
xλnλ with xλ ∈ R, then m ⊗ n =

∑
(xλm) ⊗ nλ. It follows

that t can be written as a finite sum t =
∑

mλ ⊗ nλ with mλ ∈M .
Assume the mσ and the xλσ exist. Then

∑
mλ ⊗ nλ =

∑
λ

(∑
σ xλσmσ

)
⊗ nλ =

∑
σ

(
mσ ⊗

∑
λ xλσnλ

)
= 0.

Conversely, by (5.13), there is a presentation R⊕Σ β−→ R⊕Λ α−→ N → 0 with
α(eλ) = nλ for all λ where {eλ} is the standard basis of R⊕Λ. Then by (8.10) the
following sequence is exact:

M ⊗R⊕Σ 1⊗β−−−→M ⊗R⊕Λ 1⊗α−−−→M ⊗N → 0.

Further, (1 ⊗ α)
(∑

mλ ⊗ eλ
)
= 0. So the exactness implies there is an element

s ∈ M ⊗ R⊕Σ such that (1 ⊗ β)(s) =
∑

mλ ⊗ eλ. Let {eσ} be the standard basis
of R⊕Σ, and write s =

∑
mσ ⊗ eσ with mσ ∈M . Write β(eσ) =

∑
λ xλσeλ. Then

clearly 0 = αβ(eσ) =
∑
λ xλσnλ, and

0 =
∑
λmλ ⊗ eλ −

∑
σmσ ⊗

(∑
λ xλσeλ

)
=

∑
λ

(
mλ −

∑
σ xλσmσ

)
⊗ eλ.

Since the eλ are independent, mλ =
∑
σ xλσmσ, as asserted. !

(8.17) (Algebras). — Let R be a ring, R1 and R2 algebras with structure maps
σ : R→ R1 and τ : R→ R2. Set

R′ := R1 ⊗R R2.

It is an R-module. Now, define R1 ×R2 ×R1 ×R2 → R′ by (s, t, s′, t′) 2→ ss′ ⊗ tt′.
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This map is clearly linear in each factor. So it induces a bilinear map

µ : R′ ×R′ → R′ with µ(s⊗ t, s′ ⊗ t′) = (ss′ ⊗ tt′).

It is easy to check that R′ is a ring with µ as product. In fact, R′ is an R-algebra
with structure map ω given by ω(r) := σ(r) ⊗ 1 = 1 ⊗ τ(r), called the tensor
product of R1 and R2 over R.

Define ι1 : R1 → R′ by ιR1(s) := s⊗1. Clearly ι1 is an R-algebra homomorphism.
Define ι2 : R2 → R1 ⊗R2 similarly. Given an R-algebra R′′, define a map

γ : Hom((R-alg))(R
′, R′′)→ Hom((R-alg))(R1, R

′′)×Hom((R-alg))(R2, R
′′).

by γ(ψ) := (ψι1, ψι2). Conversely, given R-algebra homomorphisms θ : R1 → R′′

and ζ : R2 → R′′, define η : R1×R2 → R′′ by η(s, t) := θ(s) · ζ(t). Then η is clearly
bilinear, so it defines a linear map ψ : R′ → R′′. It is easy to see that the map
(θ, ζ) 2→ ψ is an inverse to γ. Thus γ is bijective.
In other words, R′ := R1 ⊗R R2 is the coproduct R1

∐
R2 in ((R-alg)):

R1

R R1 ⊗R2 R′′

R2

""ι1
33

θ
**

σ

""

τ

!!ψ

**
ι2

44

ζ

Example (8.18). — Let R be a ring, R′ an algebra, and X := {Xλ} a set of
variables. Let’s see that there is a canonical R′-algebra isomorphism

R′ ⊗R R[X] = R′[X].

Given an R′-algebra homomorphism R′ → R′′ and elements xλ of R′′, there is
an R-algebra homomorphism R[X]→ R′′ by (1.3). So by (8.17), there is a unique
R′-algebra homomorphism R′ ⊗R R[X] → R′′. Thus both R′ ⊗R R[X] → R′′ and
R′[X] have the same UMP. In particular, for another set of variables Y, we obtain

R[X]⊗R R[Y] = R[X][Y] = R[X,Y].

However, for formal power series rings, the corresponding statements may fail.
For example, let k be a field, andX, Y variables. Then the image T of k[[X]]⊗k[[Y ]]
in k[[X,Y ]] consists of the H of the form

∑n
i=1 FiGi for some n and Fi ∈ k[[X]]

and Gi ∈ k[[Y ]]. Say Gi =
∑∞

j=0 gijY
j with gij ∈ k. Then FiGi =

∑∞
j=0 FigijY j .

Say H =
∑∞

j=0 HjY j with Hj ∈ k[[X]]. Then Hj =
∑n

i=1 Figij . So all the Hj lie

in the vector subspace of k[[X]] spanned by F1, . . . , Fn. Now, 1, X, X2, . . . lie in
no finite-dimensional subspace. Thus

∑
XiY j /∈ T .

(8.19) (Diagonal Ideal). — Let R be a ring, R′ an algebra, µ : R′ ⊗R R′ → R′ the
multiplication map. Call Ker(µ) the diagonal ideal of R′, and denote it by dR′ .
For example, take R′ to be the polynomial ring in a set of variables X := {Xλ}.

Then (8.18) yields R′ ⊗R R′ = R[T ∪ U] where T := {Tλ} with Tλ := Xλ ⊗ 1 and
U := {Uλ} with Uλ := 1⊗Xλ for all λ. Plainly µ(Uλ−Tλ) = 0. Further, (1.17)(3)
with R[T] for R yields R[T][U]

/
〈{Uλ − Tλ}〉 = R[T]. Thus dR′ = 〈{Uλ − Tλ}〉.

More generally, let G be a set of generators of R′ as an R-algebra, and d the ideal
of R′ ⊗R R′ generated by the elements g ⊗ 1 − 1 ⊗ g for g ∈ G. Then d = dR′ by
(8.7)(4) with M := N := R′ := R′, because R⊗R R = R by (8.5)(2).
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B. Exercises

Exercise (8.20) . — Let R be a ring, R′ and R′′ algebras, M ′ an R′-module and
M ′′ an R′′-module. Say {m′

λ} generates M ′ over R′ and {m′′
µ} generates M ′′ over

R′′. Show {m′
λ ⊗m′′

µ} generates M ′ ⊗R M ′′ over R′ ⊗R R′′.

Exercise (8.21) . — Let R be a ring, R′ an R- algebra, and M an R′-module.
Set M ′ := R′ ⊗R M . Define α : M → M ′ by αm := 1 ⊗m, and ρ : M ′ → M by
ρ(x⊗m) := xm. Prove M is a direct summand of M ′ with α = ιM and ρ = πM .

Exercise (8.22) . — Let R be a domain, a a nonzero ideal. Set K := Frac(R).
Show that a⊗R K = K.

Exercise (8.23) . — In the setup of (8.9), find the unit ηM of each adjunction.

Exercise (8.24) . — Let M and N be nonzero k-vector spaces. Prove M ⊗N -= 0.

Exercise (8.25) . — Let R be a nonzero ring. Show
(1) Assume there is a surjective map α : Rn →→ Rm. Then n ≥ m.
(2) Assume Rn % Rm. Then n = m.

Exercise (8.26) . — Under the conditions of (5.41)(1), setK := Frac(R). Show

rank(F ) = dimK(M ⊗K).

Exercise (8.27) . — Let R be a ring, a and b ideals, and M a module.
(1) Use (8.10) to show that (R/a)⊗M = M/aM .
(2) Use (1) and (4.21) to show that (R/a)⊗ (M/bM) = M/(a+ b)M .

Exercise (8.28) . — Let R be a ring, B an algebra, B′ and B′′ algebras over B.
Regard B as an (B⊗R B)-algebra via the multiplication map. Set C := B′⊗R B′′.
Prove these formulas: (1) B′ ⊗B B′′ = C/dBC and (2) B′ ⊗B B′′ = B ⊗B⊗RB C.

Exercise (8.29) . — Show Z/〈m〉 ⊗Z Z/〈n〉 = 0 if m and n are relatively prime.

Exercise (8.30) . — Let R be a ring, R′ and R′′ algebras, a′ ⊂ R′ and a′′ ⊂ R′′

ideals. Let b ⊂ R′ ⊗R R′′ denote the ideal generated by a′ and a′′. Show that

(R′ ⊗R R′′)/b = (R′/a′)⊗R (R′′/a′′).

Exercise (8.31) . — Let R be a ring, M a module, X a set of variables. Prove the
equation M ⊗R R[X] = M [X].

Exercise (8.32) . — Generalize (4.20) to several variables X1, . . . , Xr via this
standard device: reduce to the case of one variable Y by taking a suitably large d
and defining ϕ : R[X1, . . . , Xr]→ R[Y ] by ϕ(Xi) := Y di

and setting α := 1M ⊗ ϕ.

Exercise (8.33) . — Let R be a ring, Rσ for σ ∈ Σ algebras. For each finite
subset J of Σ, let RJ be the tensor product of the Rσ for σ ∈ J . Prove that the
assignment J 2→ RJ extends to a filtered direct system and that lim−→RJ exists and
is the coproduct

∐
Rσ.

Exercise (8.34) . — Let X be a variable, ω a complex cube root of 1, and 3
√
2 the

real cube root of 2. Set k := Q(ω) and K := k[ 3
√
2]. Show K = k[X]/〈X3 − 2〉 and

then K ⊗k K = K ×K ×K.
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9. Flatness

A module is called flat if tensor product with it is an exact functor, faithfully
flat if this functor is also faithful—that is, carries nonzero maps to nonzero maps.
First, we study exact functors, then flat and faithfully flat modules. Notably,
we prove Lazard’s Theorem, which characterizes flat modules as filtered direct
limits of free modules of finite rank. Lazard’s Theorem yields the Ideal Criterion,
which characterizes the flat modules as those whose tensor product with any finitely
generated ideal is equal to the ordinary product.

A. Text

Lemma (9.1). — Let R be a ring, α : M → N a homomorphism of modules. Then
there is a commutative diagram with two short exact sequences involving N ′

0 M ′ M N N ′′ 0

0 N ′ 0

!! !! !!α

""

α′
!! !!

!!

**α′′

!!

(9.1.1)

if and only if M ′ = Ker(α) and N ′ = Im(α) and N ′′ = Coker(α).

Proof: If the equations hold, then the second short sequence is exact owing to
the definitions, and the first is exact since Coim(α) ∼−→ Im(α) by (4.9).

Conversely, given the commutative diagram with two short exact sequences, α′′

is injective. So Ker(α) = Ker(α′). So M ′ = Ker(α). So N ′ = Coim(α) as α′ is
surjective. So N ′ = Im(α). Hence N ′′ = Coker(α). Thus the equations hold. !

(9.2) (Exact Functors). — Let R be a ring, R′ an algebra, F a linear functor from
((R-mod)) to ((R′-mod)). Call F faithful if the associated map

HomR(M,N)→ HomR′(FM, FN).

is injective, or equivalently, if Fα = 0 implies α = 0.

Call F exact if it preserves exact sequences. For example, Hom(P, •) is exact if
and only if P is projective by (5.16).

Call F left exact if it preserves kernels. When F is contravariant, call F left
exact if it takes cokernels to kernels. For example, Hom(N, •) and Hom(•, N) are
left exact covariant and contravariant functors.

Call F right exact if it preserves cokernels. Thus M⊗• is right exact by (8.10).

Proposition (9.3). — Let R be a ring, R′ an algebra, F an R-linear functor from
((R-mod)) to ((R′-mod)). Then the following conditions are equivalent:

(1) F preserves exact sequences; that is, F is exact.
(2) F preserves short exact sequences.
(3) F preserves kernels and surjections.
(4) F preserves cokernels and injections.
(5) F preserves kernels and images.
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Proof: Trivially, (1) implies (2). In view of (5.2), clearly (1) yields (3) and (4).

Assume (3). Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence. Since F
preserves kernels, 0→ FM ′ → FM → FM ′′ is exact; since F preserves surjections,
FM → FM ′′ → 0 is also exact. Thus (2) holds. Similarly, (4) implies (2).

Assume (2). Given α : M → N , form the diagram (9.1.1). Applying F to it and
using (2), we obtain a similar diagram for F (α). Hence (9.1) yields (5).

Finally, assume (5). Let M ′ α−→ M
β−→ M ′′ be exact; that is, Ker(β) = Im(α).

Now, (5) yields Ker(F (β)) = F (Ker(β)) and Im(F (α)) = F (Im(α)). Therefore,
Ker(F (β)) = Im(F (α)). Thus (1) holds. !

(9.4) (Flatness). — We say an R-module M is flat over R or is R-flat if the
functor M ⊗R • is exact. It is equivalent by (9.3) that M ⊗R • preserve injections
since it preserves cokernels by (8.10).

We say M is faithfully flat if M ⊗R • is exact and faithful.

We say an R-algebra is flat or faithfully flat if it is so as an R-module.

Lemma (9.5). — A direct sum M :=
⊕

Mλ is flat if and only if every Mλ is flat.
Further, M is faithfully flat if every Mλ is flat and at least one is faithfully flat.

Proof: Let β : N ′ → N be an injective map. Then (8.10) yields
(⊕

Mλ

)
⊗ β =

⊕
(Mλ ⊗ β);

see the end of the proof of (8.13), taking T (M) := M ⊗N ′ and U(M) := M ⊗N .
But the map

⊕
(Mλ⊗β) is injective if and only if each summand Mλ⊗β is injective

by (5.4). The first assertion follows.

Further, M ⊗N =
⊕

(Mλ ⊗N) by (8.10). So if M ⊗N = 0, then Mλ ⊗N = 0
for all λ. If also at least one Mλ is faithfully flat, then N = 0, as desired. !

Proposition (9.6). — A nonzero free module is faithfully flat. Every projective
module is flat.

Proof: It’s easy to extend the unitary law to maps; in other words, R ⊗ • = 1.
So R is faithfully flat over R. Thus a nonzero free module is faithfully flat by (9.5).

Every projective module is a direct summand of a free module by (5.16), and so
is flat by (9.5). !

Example (9.7). — In (9.5), consider the second assertion. Its converse needn’t
hold. For example, take a product ring R := R1 ×R2 with Ri -= 0. By (9.6), R is
faithfully flat over R. But neither Ri is so, as R1⊗R2 = R1⊗(R/R1) = R1/R2

1 = 0.

Proposition (9.8). — Let R be a ring, 0→M ′ →M →M ′′ → 0 an exact sequence
of modules. Assume M ′′ is flat.

(1) Then 0→M ′ ⊗N →M ⊗N →M ′′ ⊗N → 0 is exact for any module N .

(2) Then M is flat if and only if M ′ is flat.

Proof: By (5.13), there is an exact sequence 0→ K → R⊕Λ → N → 0. Tensor
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it with the given sequence to obtain the following commutative diagram:

0)
M ′ ⊗K −−−→ M ⊗K −−−→ M ′′ ⊗K −→ 0)

)
)α

0 −→ M ′ ⊗R⊕Λ β−→ M ⊗R⊕Λ −→ M ′′ ⊗R⊕Λ
)

)
M ′ ⊗N

γ−−−→ M ⊗N)
)

0 0

Here α and β are injective by Definition (9.4), asM ′′ andR⊕Λ are flat by hypothesis
and by (9.6). So the rows and columns are exact, as tensor product is right exact.
Finally, the Snake Lemma, (5.10), implies γ is injective. Thus (1) holds.

To prove (2), take an injection N ′ → N , and form this commutative diagram:

0 −→ M ′ ⊗N ′ −→ M ⊗N ′ −→ M ′′ ⊗N ′ −→ 0

α′

) α

) α′′

)
0 −→ M ′ ⊗N −→ M ⊗N −→ M ′′ ⊗N −→ 0

Its rows are exact by (1).
Assume M is flat. Then α is injective. Hence α′ is too. Thus M ′ is flat.
Conversely, assume M ′ is flat. Then α′ is injective. But α′′ is injective as M ′′ is

flat. Hence α is injective by the Snake lemma. Thus M is flat. Thus (2) holds. !
Proposition (9.9). — A filtered direct limit of flat modules lim−→Mλ is flat.

Proof: Let β : N ′ → N be injective. Then Mλ ⊗ β is injective for each λ since
Mλ is flat. So lim−→(Mλ ⊗ β) is injective by the exactness of filtered direct limits,
(7.9). So (lim−→Mλ)⊗ β is injective by (8.10). Thus lim−→Mλ is flat. !
Proposition (9.10). — Let R and R′ be rings, M an R-module, N an (R,R′)-
bimodule, and P an R′-module. Then there is a canonical R′-homomorphism

θ : HomR(M, N)⊗R′ P → HomR(M, N ⊗R′ P ). (9.10.1)

Assume P is flat. If M is finitely generated, then θ is injective; if M is finitely
presented, then θ is an isomorphism.

Proof: The map θ exists by Watts’s Theorem, (8.13), with R′ for R, applied to
HomR(M,N ⊗R′ •). Explicitly, θ(ϕ⊗ p)(m) = ϕ(m)⊗ p.

Clearly, θ is bijective if M = R. So θ is bijective if M = Rn for any n, as
HomR(•, Q) preserves finite direct sums for any Q by (4.13).

Assume that M is finitely generated. Then from (5.13), we obtain a presentation
R⊕Σ → Rn → M → 0, with Σ finite if M is finitely presented. Since θ is natural,
it yields this commutative diagram:

0 −→ HomR(M,N)⊗R′ P −→ HomR(R
n, N)⊗R′ P −→ HomR(R

⊕Σ, N)⊗R′ P

θ

" #
"

"

0 −→ HomR(M,N ⊗R′ P ) −→ HomR(R
n, N ⊗R′ P ) −→ HomR(R

⊕Σ, N ⊗R′ P )
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Its rows are exact owing to the left exactness of Hom and to the flatness of P . The
right-hand vertical map is bijective if Σ is finite. The assertions follow. !
Definition (9.11). — Let R be a ring, M a module. Let ΛM be the category whose
objects are the pairs (Rm,α) where α : Rm → M is a homomorphism, and whose
maps (Rm,α)→ (Rn,β) are the homomorphisms ϕ : Rm → Rn with βϕ = α.

Proposition (9.12). — Let R be a ring, M a module, and (Rm,α) 2→ Rm the
forgetful functor from ΛM to ((R-mod)). Then M = lim−→(Rm,α)∈ΛM

Rm.

Proof: By the UMP, the α : Rm → M induce a map ζ : lim−→Rm → M . Let’s
show ζ is bijective. First, ζ is surjective, because each x ∈ M is in the image of
(R, αx) where αx(r) := rx.

For injectivity, let y ∈ Ker(ζ). By construction,
⊕

(Rm,α) R
m → lim−→Rm is surjec-

tive; see the proof of (6.7). So y is in the image of some finite sum
⊕

(Rmi ,αi)
Rmi .

Set m :=
∑

mi. Then
⊕

Rmi = Rm. Set α :=
∑
αi. Then y is the image of some

y′ ∈ Rm under the insertion ιm : Rm → lim−→Rm. But y ∈ Ker(ζ). So α(y′) = 0.
Let θ,ϕ : R ⇒ Rm be the homomorphisms with θ(1) := y′ and ϕ(1) := 0. They

yield maps in ΛM . So, by definition of direct limit, they have the same compositions
with the insertion ιm. Hence y = ιm(y′) = 0. Thus zeta is injective, so bijective. !
Theorem (9.13) (Lazard). — Let R be a ring, M a module. Then the following
conditions are equivalent:

(1) M is flat.
(2) Given a finitely presented module P , this version of (9.10.1) is surjective:

HomR(P,R)⊗R M → HomR(P,M).

(3) Given a finitely presented module P and a map β : P → M , there exists a

factorization β : P
γ−→ Rn α−→M ;

(4) Given an α : Rm → M and a k ∈ Ker(α), there exists a factorization

α : Rm ϕ−→ Rn →M such that ϕ(k) = 0.
(5) Given an α : Rm → M and k1, . . . , kr ∈ Ker(α) there exists a factorization

α : Rm ϕ−→ Rn →M such that ϕ(ki) = 0 for i = 1, . . . , r.

(6) Given Rr ρ−→ Rm α−→ M such that αρ = 0, there exists a factorization

α : Rm ϕ−→ Rn →M such that ϕρ = 0.
(7) ΛM is filtered.
(8) M is a filtered direct limit of free modules of finite rank.

Proof: Assume (1). Then (9.10) yields (2).
Assume (2). Consider (3). There are γ1, . . . , γn ∈ Hom(P,R) and x1, . . . , xn ∈M

with β(p) =
∑
γi(p)xi by (2). Let γ : P → Rn be (γ1, . . . , γn), and let α : Rn →M

be given by α(r1, . . . , rn) =
∑

rixi. Then β = αγ, just as (3) requires.
Assume (3), and consider (4). Set P := Rm/Rk, and let κ : Rm → P denote

the quotient map. Then P is finitely presented, and there is β : P → M such that
βκ = α. By (3), there is a factorization β : P

γ−→ Rn → M . Set ϕ := γκ. Then

α : Rm ϕ−→ Rn →M is a factorization, and ϕ(k) = 0, just as (4) requires.
Assume (4), and consider (5). Set m0 := m and α0 = α. Inductively, (4) yields

αi−1 : R
mi−1

ϕi−→ Rmi αi−→M for i = 1, . . . , r

such that ϕi · · ·ϕ1(ki) = 0. Set ϕ := ϕr · · ·ϕ1 and n := mr. Then (5) holds.
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Assume (5), and consider (6). Let e1, . . . , er be the standard basis of Rr, and set

ki := ρ(ei). Then α(ki) = 0. So (5) yields a factorization α : Rm ϕ−→ Rn →M such
that ϕ(ki) = 0. Then ϕρ = 0, as required by (6).

Assume (6). Given (Rm1 ,α1) and (Rm2 ,α2) in ΛM , set m := m1 + m2 and
α := α1 + α2. Then the inclusions Rmi → Rm induce maps in ΛM . Thus the first
condition of (7.1) is satisfied.

Given σ, τ : (Rr,ω) ⇒ (Rm,α) in ΛM , set ρ := σ − τ . Then αρ = 0. So (6)

yields a factorization α : Rm ϕ−→ Rn → M with ϕρ = 0. Then ϕ is a map of ΛM ,
and ϕσ = ϕτ . Hence the second condition of (7.1) is satisfied. Thus (7) holds.
If (7) holds, then (8) does too, since M = lim−→(Rm,α)∈ΛM

Rm by (9.12).

Assume (8). Say M = lim−→Mλ with the Mλ free. Each Mλ is flat by (9.6), and a
filtered direct limit of flat modules is flat by (9.9). Thus M is flat, or (1) holds. !
Exercise (9.14) (Equational Criterion for Flatness) . — Prove that Condition
(9.13)(4) can be reformulated as follows: Given any relation

∑
i ximi = 0 with

xi ∈ R and mi ∈M , there are xij ∈ R and m′
j ∈M such that

∑
j xijm′

j = mi for all i and
∑

i xijxi = 0 for all j. (9.14.1)

Lemma (9.15) (Ideal Criterion for Flatness). — A module M is flat if and only
if, given any finitely generated ideal a, the inclusion a ↪→ R induces an injection
a⊗M ↪→M , or equivalently, an isomorphism a⊗M ∼−→ aM .

Proof: In any case, (8.5)(2) implies R ⊗ M ∼−→ M with a ⊗ m 2→ am. So
the inclusion induces a map α : a ⊗M → M , with Im(α) = aM . Thus the two
conditions are equivalent, and they hold if M is flat, as then α is injective.

To prove the converse, let’s check (9.14). Given
∑n

i=1 ximi = 0 with xi ∈ R and
mi ∈M , set a := 〈x1, . . . , xn〉. If a⊗M ∼−→ aM , then

∑
i xi⊗mi = 0; so (8.5)(1)

and the Equational Criterion for Vanishing (8.16) yield (9.14.1). !
Example (9.16). — Let R be a domain, and set K := Frac(R). Then K is flat,
but K is not projective unless R = K. Indeed, (8.22) says a ⊗R K = K, with
a⊗ x = ax, for any ideal a of R. So K is flat by (9.15).

Suppose K is projective. Then K ↪→ RΛ for some Λ by (5.16). So there is a
nonzero map α : K → R. So there is an x ∈ K with α(x) -= 0. Set a := α(x).
Take any nonzero b ∈ R. Then ab · α(x/ab) = α(x) = a. Since R is a domain,
b · α(x/ab) = 1. Hence b ∈ R×. Thus R is a field. So (2.3) yields R = K.

B. Exercises

Exercise (9.17) . — Let R be a ring, a an ideal. Show Γa(•) is a left exact functor.

Exercise (9.18) . — Let R be a ring, N a module, N1 and N2 submodules, R′ an
algebra, F an exact R-linear functor from ((R-mod)) to ((R′-mod)). Prove:

F (N1 ∩N2) = F (N1) ∩ F (N2) and F (N1 +N2) = F (N1) + F (N2).

Exercise (9.19) . — Let R be a ring, R′ an algebra, F an R-linear functor from
((R-mod)) to ((R′-mod)). Assume F is exact. Prove the following equivalent:

(1) F is faithful.
(2) An R-module M vanishes if FM does.
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(3) F (R/m) -= 0 for every maximal ideal m of R.
(4) A sequence M ′ α−→M

β−→M ′′ is exact if FM ′ Fα−−→ FM
Fβ−−→ FM ′′ is.

Exercise (9.20) . — Show that a ring of polynomials P is faithfully flat.

Exercise (9.21) . — Let R be a ring, M and N flat modules. Show that M ⊗R N
is flat. What if “flat” is replaced everywhere by “faithfully flat”?

Exercise (9.22) . — Let R be a ring, M a flat module, R′ an algebra. Show that
M ⊗R R′ is flat over R′. What if “flat” is replaced everywhere by “faithfully flat”?

Exercise (9.23) . — Let R be a ring, R′ a flat algebra, M a flat R′-module. Show
that M is flat over R. What if “flat” is replaced everywhere by “faithfully flat”?

Exercise (9.24) . — Let R be a ring, R′ and R′′ algebras, M ′ a flat R′-module, and
M ′′ a flat R′′-module. Show that M ′ ⊗R M ′′ is a flat (R′ ⊗R R′′)-module. What if
“flat” is replaced everywhere by “faithfully flat”?

Exercise (9.25) . — Let R be a ring, R′ an algebra, and M an R′-module. Assume
that M is flat over R and faithfully flat over R′. Show that R′ is flat over R.

Exercise (9.26) . — Let R be a ring, R′ an algebra, R′′ an R′-algebra, and M an
R′-module. Assume that R′′ is flat over R′ and that M is flat over R. Show that
R′′ ⊗R′ M is flat over R. Conversely, assume that R′′ is faithfully flat over R′ and
that R′′ ⊗R′ M is flat over R. Show that M is flat over R.

Exercise (9.27) . — Let R be a ring, a an ideal. Assume R/a is flat. Show a = a2.

Exercise (9.28) . — Let R be a ring, R′ a flat algebra. Prove equivalent:

(1) R′ is faithfully flat over R.
(2) For every R-module M , the map M

α−→M ⊗R R′ by αm = m⊗ 1 is injective.
(3) Every ideal a of R is the contraction of its extension, or a = (aR′)c.
(4) Every prime p of R is the contraction of some prime q of R′, or p = qc .
(5) Every maximal ideal m of R extends to a proper ideal, or mR′ -= R′.
(6) Every nonzero R-module M extends to a nonzero module, or M ⊗R R′ -= 0.

Exercise (9.29) . — Let R be a ring, R′ a faithfully flat algebra. Assume R′ is
local. Prove R is local too.

Exercise (9.30) . — Let R be a ring, 0→M ′ α−→M →M ′′ → 0 an exact sequence

with M flat. Assume N ⊗M ′ N⊗α−−−→ N ⊗M is injective for all N . Prove M ′′ is flat.

Exercise (9.31) . — Prove that an R-algebra R′ is faithfully flat if and only if the
structure map ϕ : R→ R′ is injective and the quotient R′/ϕR is flat over R.

Exercise (9.32) . — Let R be a ring, 0→Mn → · · ·→M1 → 0 an exact sequence
of flat modules, and N any module. Then the following sequence is exact:

0→Mn ⊗N → · · ·− →M1 ⊗N → 0. (9.32.1)

Exercise (9.33) . — Let R be a ring, R′ an algebra, M and N modules.
(1) Show that there is a canonical R′-homomorphism

σ : HomR(M, N)⊗R R′ → HomR′(M ⊗R R′, N ⊗R R′).

(2) Assume M is finitely generated and projective. Show that σ is bijective.
(3) Assume R′ is flat over R. Show that if M is finitely generated, then σ is

injective, and that if M is finitely presented, then σ is bijective.
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Exercise (9.34) . — Let R be a ring, M a module, and R′ an algebra. Prove
Ann(M)R′ ⊂ Ann(M⊗RR′), with equality if M is finitely generated and R′ is flat.

Exercise (9.35) . — Let R be a ring, M a module. Prove (1) if M is flat, then for
x ∈ R and m ∈ M with xm = 0, necessarily m ∈ Ann(x)M , and (2) the converse
holds if R is a Principal Ideal Ring (PIR); that is, every ideal a is principal.
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10. Cayley–Hamilton Theorem

The Cayley–Hamilton Theorem says that a matrix satisfies its own characteristic
polynomial. We prove it via a useful equivalent form, known as the “Determinant
Trick.” Using the Trick, we obtain various results, including the uniqueness of the
rank of a finitely generated free module. We also obtain and apply Nakayama’s
Lemma, which asserts that a finitely generated module must vanish if it is equal to
its product with any ideal lying in every maximal ideal containing its annihilator.

Then we turn to two important notions for an algebra: integral dependence,
where every element of the algebra satisfies a monic polynomial equation, and
module finiteness, where the algebra is a finitely generated module. Using the
Trick, we relate these notions to each other, and study their properties. We end
with a discussion of normal domains; they contain every element of their fraction
field satisfying a monic polynomial equation.

A. Text

(10.1) (Cayley–Hamilton Theorem). — Let R be a ring, and M := (aij) an n×n
matrix with aij ∈ R. Let In be the n × n identity matrix, and T a variable. The
characteristic polynomial of M is the following polynomial:

PM(T ) := Tn + a1T
n−1 + · · ·+ an := det(T In −M).

Let a be an ideal. If aij ∈ a for all i, j, then clearly ak ∈ ak for all k.
The Cayley–Hamilton Theorem asserts that, in the ring of matrices,

PM(M) = 0.

It is a special case of (10.2) below; indeed, take M := Rn, take m1, . . . ,mn to be
the standard basis, and take ϕ to be the endomorphism defined by M.

Conversely, given the setup of (10.2), form the surjection α : Rn →→ M taking
the ith standard basis element ei to mi, and form the map Φ : Rn → Rn associated
to the matrix M. Then ϕα = αΦ. Hence, given any polynomial F (T ), we have
F (ϕ)α = αF (Φ). Hence, if F (Φ) = 0, then F (ϕ) = 0 as α is surjective. Thus the
Cayley–Hamilton Theorem and the Determinant Trick (10.2) are equivalent.

Theorem (10.2) (Determinant Trick). — Let M be an R-module generated by
m1, . . . ,mn, and ϕ : M → M an endomorphism. Say ϕ(mi) =:

∑n
j=1 aijmj with

aij ∈ R, and form the matrix M := (aij). Then PM(ϕ) = 0 in End(M).

Proof: Let δij be the Kronecker delta function, µaij the multiplication map. Let
∆ stand for the matrix (δijϕ− µaij ) with entries in the commutative subring R[ϕ]
of End(M), and X for the column vector (mj). Clearly ∆X = 0. Multiply on the
left by the matrix of cofactors Γ of ∆: the (i, j)th entry of Γ is (−1)i+j times
the determinant of the matrix obtained by deleting the jth row and the ith column
of ∆. Then Γ∆X = 0. But Γ∆ = det(∆)In. So det(∆)mj = 0 for all j. Hence
det(∆) = 0. But det(∆) = PM(ϕ). Thus PM(ϕ) = 0. !

Proposition (10.3). — Let M be a finitely generated module, a an ideal. Then
M = aM if and only if there exists a ∈ a such that (1 + a)M = 0.
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/
(10.8) Text

Proof: Assume M = aM . Say m1, . . . ,mn generate M , and mi =
∑n

j=1 aijmj

with aij ∈ a. Set M := (aij). Say PM(T ) = Tn + a1Tn−1 + · · · + an. Set
a := a1 + · · ·+ an ∈ a. Then (1 + a)M = 0 by (10.2) with ϕ := 1M .

Conversely, if there exists a ∈ a such that (1 + a)M = 0, then m = −am for all
m ∈M . So M ⊂ aM ⊂M . Thus M = aM . !
Corollary (10.4). — Let R be a ring, M a finitely generated module, and ϕ an
endomorphism of M . If ϕ is surjective, then ϕ is an isomorphism.

Proof: Let P := R[X] be the polynomial ring in one variable. By the UMP of P ,
there is an R-algebra homomorphism µ : P → End(M) with µ(X) = ϕ. So M is a
P -module such that F (X)M = F (ϕ)M for any F (X) ∈ P by (4.4). Set a := 〈X〉.
Since ϕ is surjective, M = aM . By (10.3), there is a ∈ a with (1 + a)M = 0. Say
a = XG(X) for some polynomial G(X). Then 1M + ϕG(ϕ) = 0. Set ψ = −G(ϕ).
Then ϕψ = 1M and ψϕ = 1M . Thus ϕ is an isomorphism. !
Corollary (10.5). — Let R be a nonzero ring, m and n positive integers.

(1) Then any n generators v1, . . . , vn of the free module Rn form a free basis.
(2) If Rm % Rn, then m = n.

Proof: Form the surjection ϕ : Rn →→ Rn taking the ith standard basis element
to vi. Then ϕ is an isomorphism by (10.4). So the vi form a free basis by (4.10)(3).

To prove (2), say m ≤ n. Then Rn has m generators. Add to them n−m zeros.
The result is a free basis by (1); so it can contain no zeros. Thus n−m = 0. !
Lemma (10.6) (Nakayama’s). — Let R be a ring, M a module, m ⊂ rad(M) an
ideal. Assume M is finitely generated and M = mM . Then M = 0.

Proof: By (10.3), there’s a ∈ m with (1 + a)M = 0. But m ⊂ rad(M). Thus
(4.15) implies M = 0.

Alternatively, suppose M -= 0. Say m1, . . . ,mn generate M with n minimal.
Then n ≥ 1 andm1 = a1m1+· · ·+anmn with ai ∈ m. SetM ′ := M

/
〈a2, . . . , an〉M ,

and let m′
1 ∈ M ′ be the residue of m1. Then m′

1 -= 0 as n is minimal. But
(1− a1)m′

1 = 0 and a1 ∈ rad(M) ⊂ rad(M ′), contradicting (4.15). !
Example (10.7). — Nakayama’s Lemma (10.6) may fail if the module is not
finitely generated. For example, let A be a local domain, m the maximal ideal,
and K the fraction field. Assume A is not a field, so that there’s a nonzero x ∈ m.
Then any z ∈ K can be written in the form z = x(z/x). Thus K = mK, but
K -= 0.

However, there are important cases where it does hold even if the module is not,
a priori, finitely generated. See (3.31), (20.29), and (22.69).

Proposition (10.8). — Let R be a ring, N ⊂M modules, m ⊂ rad(M) an ideal.
(1) If M/N is finitely generated and if N +mM = M , then N = M .
(2) Assume M is finitely generated. Then m1, . . . ,mn ∈ M generate M if and

only if their images m′
1, . . . ,m

′
n generate M ′ := M/mM .

Proof: For (1), note N + mM = M if and only if m(M/N) = M/N . Also
Ann(M/N) ⊃ Ann(M); so rad(M/N) ⊃ rad(M). But rad(M) ⊃ m. Apply (10.6)
with M/N for M to conclude M/N = 0. Thus (1) holds.

For (2), let N be the submodule generated by m1, . . . ,mn. Since M is finitely
generated, so is M/N . Thus N = M if the m′

i generate M/mM by (1). The
converse is obvious. Thus (2) holds. !
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/
(10.14) Text

Exercise (10.9) . — Let A be a local ring, m the maximal ideal, M a finitely
generated A-module, and m1, . . . ,mn ∈M . Set k := A/m and M ′ := M/mM , and
write m′

i for the image of mi in M ′. Prove that m′
1, . . . ,m

′
n ∈ M ′ form a basis

of the k-vector space M ′ if and only if m1, . . . ,mn form a minimal generating
set of M (that is, no proper subset generates M), and prove that every minimal
generating set of M has the same number of elements.

Exercise (10.10) . — Let A be a local ring, k its residue field, M and N finitely
generated modules. (1) Show that M = 0 if and only if M ⊗A k = 0. (2) Show
that M ⊗A N -= 0 if M -= 0 and N -= 0.

(10.11) (Local Homomorphisms). — Let ϕ : A → B be a map of local rings, m
and n their maximal ideals. Then the following three conditions are equivalent:

(1) ϕ−1n = m; (2) 1 /∈ mB; (3) mB ⊂ n. (10.11.1)

Indeed, if (1) holds, then mB = (ϕ−1n)B ⊂ n; so (2) holds. If (2) holds, then mB
lies is some maximal ideal, but n is the only one; thus (3) holds. If (3) holds, then
m ⊂ ϕ−1(mB) ⊂ ϕ−1n; whence, (1) holds as m is maximal.

If the above conditions hold, then ϕ : A→ B is called a local homomorphism.

Proposition (10.12). — Consider these conditions on an R-module P :

(1) P is free and of finite rank;
(2) P is projective and finitely generated;
(3) P is flat and finitely presented.

Then (1) implies (2), and (2) implies (3); all three are equivalent if R is local.

Proof: A free module is always projective by (5.15), and a projective module is
always flat by (9.6). Further, all of (1)–(3) require P to be finitely generated; so
assume it is. Thus (1) implies (2).

Let p1, . . . , pn ∈ P generate, and let 0 → L → Rn → P → 0 be the short exact
sequence defined by sending the ith standard basis element to pi. Set F := Rn.

Assume P is projective. Then the sequence splits by (5.16). So (5.8) yields a
surjection ρ : F → L. Hence L is finitely generated. Thus (2) implies (3).

Assume P is flat and R is local. Denote the residue field of R by k. Then,
by (9.8)(1), the sequence 0 → L ⊗ k → F ⊗ k → P ⊗ k → 0 is exact. Now,
F ⊗ k = (R⊗ k)n = kn by (8.10) and the unitary law; so dimk F ⊗ k = n. Finally,
rechoose the pi so that n is minimal. Then dimk P ⊗k = n, because the pi⊗1 form
a basis by (10.9). Therefore, dimk L⊗ k = 0; so L⊗ k = 0.

Assume P is finitely presented. Then L is finitely generated by (5.18). Hence
L = 0 by (10.10)(1). So F = P . Thus (3) implies (1). !
Definition (10.13). — Let R be a ring, R′ an R-algebra. Then R′ is said to be
module finite over R if R′ is a finitely generated R-module.
An element x ∈ R′ is said to be integral over R or integrally dependent on

R if there exist a positive integer n and elements ai ∈ R such that

xn + a1x
n−1 + · · ·+ an = 0. (10.13.1)

Such an equation is called an equation of integral dependence of degree n.
If every x ∈ R′ is integral over R, then R′ is said to be integral over R.

Proposition (10.14). — Let R be a ring, R′ an R-algebra, n a positive integer, and
x ∈ R′. Then the following conditions are equivalent:
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/
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(1) x satisfies an equation of integral dependence of degree n.
(2) R[x] is generated as an R-module by 1, x, . . . , xn−1.
(3) x lies in a subalgebra R′′ generated as an R-module by n elements.
(4) There is a faithful R[x]-module M generated over R by n elements.

Proof: Assume (1) holds. Say F (X) is a monic polynomial of degree n with
F (x) = 0. For any m, let Mm ⊂ R[x] be the R-submodule generated by 1, . . . , xm.
Form ≥ n, clearly xm−xm−nF (x) is inMm−1. But F (x) = 0. So also xm ∈Mm−1.
So by induction, Mm = Mn−1. Hence Mn−1 = R[x]. Thus (2) holds.
If (2) holds, then trivially (3) holds with R′′ := R[x].
If (3) holds, then (4) holds with M := R′′, as xM = 0 implies x = x · 1 = 0.
Assume (4) holds. In (10.2), take ϕ := µx. We obtain a monic polynomial F of

degree n with F (x)M = 0. Since M is faithful, F (x) = 0. Thus (1) holds. !

Corollary (10.15). — Let R be a ring, P := R[X] the polynomial ring in one
variable X, and A ⊂ P an ideal. Set R′ := P/A, let κ : P →→ R′ be the canonical
map, and set x := κ(X). Fix n ≥ 1. Then these conditions are equivalent:

(1) A = 〈F 〉 where F is a monic polynomial of degree n;.
(2) Set M :=

∑n−1
i=0 RXi ⊂ P and ϕ := κ|M . Then ϕ : M → R′ is bijective.

(3) 1, x, . . . , xn−1 form a free basis of R′ over R.
(4) R′ is a free R-module of rank n.

Proof: Assume (1) holds. Then F (x) = 0 is an equation of integral dependence of
degree n. So 1, . . . , xn−1 generate R′ by (1)⇒(2) of (10.14). Thus ϕ is surjective.

Given G ∈ Kerϕ, note G ∈ A. So G = HF for some H ∈ P . But F is monic of
degree n, whereas G is of degree less than n. So G = 0. Thus (2) holds.

In (2), note 1, . . . , Xn−1 form a free basis of M . Thus (2) implies (3).
Trivially, (3) implies (4).
Finally, assume (4) holds. Then (4)⇒(1) of (10.14) yields a monic polynomial

F ∈ A of degree n. Form the induced homomorphism ψ : P/〈F 〉 → R′. It is
obviously surjective. Since (1) implies (4), the quotient P/〈F 〉 is free of rank n. So
ψ is an isomorphism by (10.4). Hence 〈F 〉 = A. Thus (1) holds. !

Lemma (10.16). — Let R be a ring, R′ a module-finite R-algebra, and M a finitely
generated R′-module. Then M is a finitely generated R-module. If M is free of rank
r over R′ and if R′ is free of rank r′ over R, then M is free of rank rr′ over R.

Proof: Say elements xi generate R′ as a module over R, and mj generate M
over R′. Given m ∈M , say m =

∑
ajmj with aj ∈ R′, and say aj =

∑
bi,jxi with

bi,j ∈ R. Then m =
∑

bi,jximj . Thus the ximj generate M over R.
If m = 0, then

∑
j

(∑
i bi,jxi

)
mj = 0. So if also the mj are free over R′, then∑

i bi,jxi = 0 for all j. If in addition the xi are free over R, then bi,j = 0 for all i, j.
Thus the ximj are free over R. !

Theorem (10.17) (Tower Laws). — Let R be a ring, R′ an algebra, R′′ an R′-
algebra, and x ∈ R′′.

(1) If x is integral over R′, and R′ is integral over R, then x is integral over R.
(2) If R′′ is integral over R′, and R′ is so over R, then R” is so over R.
(3) If R” is module finite over R′, and R′ is so over R, then R” is so over R.

76



Cayley–Hamilton Theorem (10.18)
/
(10.22) Text

Proof: For (1), say xn + a1xn−1 + · · ·+ an = 0 with ai ∈ R′. For m = 1, . . . , n,
set Rm := R[a1, . . . , am] ⊂ R′′. Then Rm is module finite over Rm−1 by (1)⇒(2)
of (10.14). So Rm is module finite over R by (10.16) and induction on m.

Moreover, x is integral over Rn. So Rn[x] is module finite over Rn by (1)⇒(2)
of (10.14). Hence Rn[x] is module finite over R by (10.16). So x is integral over
R by (3)⇒(1) of (10.14). Thus (1) holds.

Notice (2) is an immediate consequence of (1).
Notice (3) is a special case of (10.16). !

Theorem (10.18). — Let R be a ring, and R′ an R-algebra. Then the following
conditions are equivalent:

(1) R′ is algebra finite and integral over R.
(2) R′ = R[x1, . . . , xn] with all xi integral over R.
(3) R′ is module finite over R.

Proof: Trivially, (1) implies (2).
Assume (2) holds. To prove (3), set R′′ := R[x1] ⊂ R′. Then R′′ is module finite

over R by (1)⇒(2) of (10.14). We may assume R′ is module finite over R′′ by
induction on n. So (10.16) yields (3).

If (3) holds, then R′ is integral over R by (3)⇒(1) of (10.14); so (1) holds. !
Definition (10.19). — Let R be a ring, R′ an algebra. The integral closure or
normalization of R in R′ is the subset R of elements that are integral over R. If
R ⊂ R′ and R = R, then R is said to be integrally closed in R′.

If R is a domain, then its integral closure R in its fraction field Frac(R) is called
simply its normalization, and R is said to be normal if R = R.

Theorem (10.20). — Let R be a ring, R′ an R-algebra, R the integral closure of
R in R′. Then R is an R-algebra, and is integrally closed in R′.

Proof: Take a ∈ R and x, y ∈ R. Then the ring R[x, y] is integral over R by
(2)⇒(1) of (10.18). So ax and x + y and xy are integral over R. Thus R is an
R-algebra. Finally, R is integrally closed in R′ owing to (10.17). !
Theorem (10.21) (Gauss). — A UFD is normal.

Proof: Let R be the UFD. Given x ∈ Frac(R), say x = r/s with r, s ∈ R
relatively prime. Suppose x satisfies (10.13.1). Then

rn = −(a1rn−1 + · · ·+ ans
n−1)s.

So any prime element dividing s also divides r. Hence s is a unit. Thus x ∈ R. !
Example (10.22). — (1) A polynomial ring in n variables over a field is a UFD, so
normal by (10.21).

(2) The ring R := Z[
√
5] is not a UFD, since

(1 +
√
5)(1−

√
5) = −4 = −2 · 2,

and 1 +
√
5, and 1 −

√
5 and 2 are irreducible, but not associates. However, set

τ := (1 +
√
5)/2, the “golden ratio.” The ring Z[τ ] is known to be a PID; see

[17, p. 292]. Hence, Z[τ ] is a UFD, so normal by (10.21); hence, Z[τ ] contains the
normalization R of R. On the other hand, τ2 − τ − 1 = 0; hence, Z[τ ] ⊂ R. Thus
Z[τ ] = R.
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(3) Let d ∈ Z be square-free. In the field K := Q(
√
d), form R := Z+ Zδ where

δ :=

{
(1 +

√
d)/2, if d ≡ 1 (mod 4);√

d, if not.

Then R is the normalization Z of Z in K; see [3, pp. 412–3].
(4) Let k be a field, k[T ] the polynomial ring in one variable. Set R := k[T 2, T 3].

Then Frac(R) = k(T ). Further, T is integral over R as T satisfies X2 − T 2 = 0;
hence, k[T ] ⊂ R. However, k[T ] is normal by (1); hence, k[T ] ⊃ R. Thus k[T ] = R.

Let k[X,Y ] be the polynomial ring in two variables, and ϕ : k[X,Y ] → R the
k-algebra homomorphism defined by ϕ(X) := T 2 and ϕ(Y ) := T 3. Clearly ϕ is
surjective. Set p := Kerϕ. Since R is a domain, but not a field, p is prime by (2.8),
but not maximal by (2.13). Clearly p ⊃ 〈Y 2 −X3〉. Since Y 2 −X3 is irreducible,
(2.20) implies that p = 〈Y 2 −X3〉. So k[X,Y ]/〈Y 2 −X3〉 ∼−→ R, which provides
us with another description of R.

B. Exercises

Exercise (10.23) . — Let R be a ring, a an ideal. Assume a is finitely generated
and idempotent (or a = a2). Prove there is a unique idempotent e with 〈e〉 = a.

Exercise (10.24) . — Let R be a ring, a an ideal. Prove the following conditions
are equivalent:

(1) R/a is projective over R.
(2) R/a is flat over R, and a is finitely generated.
(3) a is finitely generated and idempotent.
(4) a is generated by an idempotent.
(5) a is a direct summand of R.

Exercise (10.25) . — Prove the following conditions on a ring R are equivalent:

(1) R is absolutely flat; that is, every module is flat.
(2) Every finitely generated ideal is a direct summand of R.
(3) Every finitely generated ideal is idempotent.
(4) Every principal ideal is idempotent.

Exercise (10.26) . — Let R be a ring. Prove the following statements:

(1) Assume R is Boolean. Then R is absolutely flat.
(2) Assume R is absolutely flat. Then any quotient ring R′ is absolutely flat.
(3) Assume R is absolutely flat. Then every nonunit x is a zerodivisor.
(4) Assume R is absolutely flat and local. Then R is a field.

Exercise (10.27) . — Let R be a ring, α : M → N a map of modules, m an ideal.
Assume that m ⊂ rad(N), that N is finitely generated, and that the induced map
α : M/mM → N/mN is surjective. Show that α is surjective too.

Exercise (10.28) . — Let R be a ring, m an ideal, E a module, M , N submodules.
Assume N is finitely generated, m ⊂ rad(N), and N ⊂M +mN . Show N ⊂M .

Exercise (10.29) . — Let R be a ring, m an ideal, and α,β : M ⇒ N two maps
of finitely generated modules. Assume α is an isomorphism, m ⊂ rad(N), and
β(M) ⊂ mN . Set γ := α+ β. Show γ is an isomorphism.
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Exercise (10.30) . — Let A→ B be a local homomorphism, M a finitely generated
B-module. Prove that M is faithfully flat over A if and only if M is flat over A
and nonzero. Conclude that, if B is flat over A, then B is faithfully flat over A.

Exercise (10.31) . — Let A → B be a flat local homomorphism, M a finitely
generated A-module. Set N := M ⊗B. Assume N is cyclic. Show M is cyclic too.
Conclude that an ideal a of A is principal if its extension aB is so.

Exercise (10.32) . — Let R be a ring, X a variable, R′ an algebra, n ≥ 0. Assume
R′ is a free R-module of rank n. Set m := rad(R) and k := R/m. Given a k-
isomorphism ϕ̃ : k[X]/〈F̃ 〉 ∼−→ R′/mR′ with F̃ monic, show we can lift ϕ̃ to an
R-isomorphism ϕ : R[X]/〈F 〉 ∼−→ R′ with F monic. Show F must then lift F̃ .

Exercise (10.33) . — Let R be a ring, a an ideal, P := R[X] the polynomial ring
in one variable X, and G1, G2, H ∈ P with G1 monic of degree n. Show:

(1) Assume G1 and G2 are coprime. Then there are unique H1, H2 ∈ P with
H = H1G1 +H2G2 and deg(H2) < n.

(2) Assume the images of G1 and G2 are coprime in (R/a)[X] and a ⊂ rad(R).
Then G1 and G2 are coprime.

Exercise (10.34) . — Let R be a ring, a ⊂ rad(R) an ideal, P := R[X] the
polynomial ring in one variable X, and F,G,H ∈ P . Assume that F ≡ GH
(mod aP ), that G and H are coprime, and that G is monic, say of degree n. Show
that there are coprime polynomials G′, H ′ ∈ P with G′ monic of degree n, with
deg(H ′) ≤ max{deg(H), deg(F )− n}, and with

G ≡ G′ and H ≡ H ′ (mod aP ) and F ≡ G′H ′ (mod a2P ).

Exercise (10.35) . — Let G be a finite group acting on a ring R. Show that every
x ∈ R is integral over RG, in fact, over its subring R′ generated by the elementary
symmetric functions in the conjugates gx for g ∈ G.

Exercise (10.36) . — Let R be a ring, R′ an algebra, G a group that acts on R′/R,
and R the integral closure of R in R′. Show that G acts canonically on R/R.

Exercise (10.37) . — Let R be a normal domain, K its fraction field, L/K aGalois
extension with group G, and R the integral closure of R in L. (By definition, G
is the group of automorphisms of L/K and K = LG.) Show R = R

G
.

Exercise (10.38) . — Let R′/R be an extension of rings. Assume R′ −R is closed
under multiplication. Show that R is integrally closed in R′.

Exercise (10.39) . — Let R be a ring; C, R′ two R-algebras; R′′ an R′-algebra. If
R′′ is either (1) integral over R′, or (2) module finite over R′, or (3) algebra finite
over R′, show R′′ ⊗R C is so over R′ ⊗R C.

Exercise (10.40) . — Let k be a field, P := k[X] the polynomial ring in one
variable, F ∈ P . Set R := k[X2] ⊂ P . Using the free basis 1, X of P over R, find
an explicit equation of integral dependence of degree 2 on R for F .

Exercise (10.41) . — Let R1, . . . , Rn be R-algebras, integral over R. Show that
their product

∏
Ri is integral over R.
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Exercise (10.42) . — For 1 ≤ i ≤ r, let Ri be a ring, R′
i an extension of Ri, and

xi ∈ R′
i. Set R :=

∏
Ri, set R′ :=

∏
R′

i, and set x := (x1, . . . , xr). Prove
(1) x is integral over R if and only if xi is integral over Ri for each i;
(2) R is integrally closed in R′ if and only if each Ri is integrally closed in R′

i.

Exercise (10.43) . — Let k be a field, X and Y variables. Set

R := k[X,Y ]/〈Y 2 −X2 −X3〉,
and let x, y ∈ R be the residues of X,Y . Prove that R is a domain, but not a field.
Set t := y/x ∈ Frac(R). Prove that k[t] is the integral closure of R in Frac(R).
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11. Localization of Rings

Localization generalizes construction of the fraction field of a domain. We localize
an arbitrary ring using as denominators the elements of any given multiplicative
subset. The result is universal among algebras rendering all these elements units.
When the multiplicative subset is the complement of a prime ideal, we obtain a local
ring. We relate the ideals in the original ring to those in the localized ring. Lastly,
we localize algebras, vary the set of denominators, and discuss decomposable
rings, which are the finite products of local rings.

A. Text

(11.1) (Localization). — Let R be a ring, and S a multiplicative subset. Define a
relation on R× S by (x, s) ∼ (y, t) if there is u ∈ S such that xtu = ysu.

This relation is an equivalence relation. Indeed, it is reflexive as 1 ∈ S and is
trivially symmetric. As to transitivity, let (y, t) ∼ (z, r). Say yrv = ztv with v ∈ S.
Then xturv = ysurv = ztvsu. Thus (x, s) ∼ (z, r).

Denote by S−1R the set of equivalence classes, and by x/s the class of (x, s).
Define x/s · y/t := xy/st. This product is well defined. Indeed, say y/t = z/r.

Then there is v ∈ S such that yrv = ztv. So xsyrv = xsztv. Thus xy/st = xz/sr.
Define x/s+ y/t := (tx+ sy)/(st). Then, similarly, this sum is well defined.
It is easy to check that S−1R is a ring, with 0/1 for 0 and 1/1 for 1. It is called

the ring of fractions with respect to S or the localization at S.
Let ϕS : R→ S−1R be the map given by ϕS(x) := x/1. Then ϕS is a ring map,

and it carries elements of S to units in S−1R as s/1 · 1/s = 1.

(11.2) (Total quotient rings). — Let R be a ring. The set of nonzerodivisors S0

is a saturated multiplicative subset, as noted in (3.11). The map ϕS0 : R→ S−1
0 R

is injective, because if ϕS0x = 0, then sx = 0 for some s ∈ S, and so x = 0. We
call S−1

0 R the total quotient ring of R, and view R as a subring.
Let S ⊂ S0 be a multiplicative subset. Clearly, R ⊂ S−1R ⊂ S−1

0 R.
Suppose R is a domain. Then S0 = R − {0}; so the total quotient ring is just

the fraction field Frac(R), and ϕS0 is just the natural inclusion of R into Frac(R).
Further, S−1R is a domain by (2.3) as S−1R ⊂ S−1

0 R = Frac(R).

Theorem (11.3) (UMP). — Let R be a ring, S a multiplicative subset. Then S−1R
is the R-algebra universal among algebras rendering all the s ∈ S units. In fact,
given a ring map ψ : R → R′, then ψ(S) ⊂ R′× if and only if there exists a ring
map ρ : S−1R→ R′ with ρϕS = ψ; that is, this diagram commutes:

R S−1R

R′

!!
ϕS

""ψ ##
ρ

If so, ρ is unique, and Ker(ρ) = Ker(ψ)S−1R. Finally, R′ can be noncommutative.

Proof: First, suppose that ρ exists. Let s ∈ S. Then ψ(s) = ρ(s/1). Hence
ψ(s)ρ(1/s) = ρ(s/1 · 1/s) = 1. Thus ψ(S) ⊂ R′×.
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Next, note that ρ is determined by ψ as follows:

ρ(x/s) = ρ(x/1)ρ(1/s) = ψ(x)ψ(s)−1.

Conversely, suppose ψ(S) ⊂ R′×. Set ρ(x/s) := ψ(s)−1ψ(x). Let’s check that ρ
is well defined. Say x/s = y/t. Then there is u ∈ S such that xtu = ysu. Hence

ψ(x)ψ(t)ψ(u) = ψ(y)ψ(s)ψ(u).

Since ψ(u) is a unit, ψ(x)ψ(t) = ψ(y)ψ(s). But st = ts; so

ψ(t)−1ψ(s)−1 = ψ(s)−1ψ(t)−1,

even if R′ is noncommutative. Hence ψ(x)ψ(s)−1 = ψ(y)ψ(t)−1. Thus ρ is well
defined. Plainly, ρ is a ring map. Plainly, ψ = ρϕS .

Plainly, Ker(ρ) ⊃ Ker(ψ)S−1R. Conversely, given x/s ∈ Ker(ρ), note that
ψ(x)ψ(s)−1 = 0. So ψ(x) = 0. So x ∈ Ker(ψ). Thus x/s ∈ Ker(ψ)S−1R, !

Corollary (11.4). — Let R be a ring, and S a multiplicative subset. Then the
canonical map ϕS : R→ S−1R is an isomorphism if and only if S consists of units.

Proof: If ϕS is an isomorphism, then S consists of units, because ϕS(S) does so.
Conversely, if S consists of units, then the identity map R→ R has the UMP that
characterizes ϕS ; whence, ϕS is an isomorphism. !

Exercise (11.5) . — Let R′ and R′′ be rings. Consider R := R′ × R′′ and set
S := { (1, 1), (1, 0) }. Prove R′ = S−1R.

Definition (11.6). — Let R be a ring, f ∈ R. Set Sf := {fn | n ≥ 0}. We call the
ring S−1

f R the localization of R at f , and set Rf := S−1R and ϕf := ϕSf .

Proposition (11.7). — Let R be a ring, f ∈ R, and X a variable. Then

Rf = R[X]
/
〈1− fX〉.

Proof: Set R′ := R[X]
/
〈1−fX〉, and let ϕ : R→ R′ be the canonical map. Let’s

show that R′ has the UMP characterizing localization (11.3).
First, let x ∈ R′ be the residue of X. Then 1− xϕ(f) = 0. So ϕ(f) is a unit. So

ϕ(fn) is a unit for n ≥ 0.
Second, let ψ : R → R′′ be a homomorphism carrying f to a unit. Define

θ : R[X] → R′′ by θ|R = ψ and θX = ψ(f)−1. Then θ(1 − fX) = 0. So θ factors
via a homomorphism ρ : R′ → R′′, and ψ = ρϕ. Further, ρ is unique, since every
element of R′ is a polynomial in x and since ρx = ψ(f)−1 as 1− (ρx)(ρϕf) = 0. !

Proposition (11.8). — Let R be a ring, S a multiplicative subset, a an ideal.
(1) Then aS−1R = {a/s ∈ S−1R | a ∈ a and s ∈ S}.
(2) Then a∩S -= ∅ if and only if aS−1R = S−1R if and only if ϕ−1

S (aS−1R) = R.

Proof: Let a, b ∈ a and x/s, y/t ∈ S−1R. Then ax/s + by/t = (axt + bys)/st;
further, axt + bys ∈ a and st ∈ S. So aS−1R ⊂ {a/s | a ∈ a and s ∈ S}. But the
opposite inclusion is trivial. Thus (1) holds.

As to (2), if a ∩ S 7 s, then aS−1R 7 s/s = 1, so aS−1R = S−1R; whence,
ϕ−1
S (aS−1R) = R. Finally, suppose ϕ−1

S (aS−1R) = R. Then aS−1R 7 1. So (1)
yields a ∈ a and s ∈ S such that a/s = 1. So there exists a t ∈ S such that at = st.
But at ∈ a and st ∈ S. So a ∩ S -= ∅. Thus (2) holds. !
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Definition (11.9). — Let R be a ring, S a multiplicative subset, a a subset of R.
The saturation of a with respect to S is the set denoted by aS and defined by

aS := {a ∈ R | there is s ∈ S with as ∈ a}.
If a = aS , then we say a is saturated.

Proposition (11.10). — Let R be a ring, S a multiplicative subset, a an ideal.
(1) Then Ker(ϕS) = 〈0〉S. (2) Then a ⊂ aS. (3) Then aS is an ideal.

Proof: Clearly, (1) holds, for a/1 = 0 if and only if there is s ∈ S with as = 0.
Clearly, (2) holds as 1 ∈ S. Clearly, (3) holds, for if as, bt ∈ a, then (a+ b)st ∈ a,
and if x ∈ R, then xas ∈ a. !
Proposition (11.11). — Let R be a ring, S a multiplicative subset.

(1) Let b be an ideal of S−1R. Then

(a) ϕ−1
S b = (ϕ−1

S b)S and (b) b = (ϕ−1
S b)(S−1R).

(2) Let a be an ideal of R. Then

(a) aS−1R = aSS−1R and (b) ϕ−1
S (aS−1R) = aS .

(3) Let p be a prime ideal of R, and assume p ∩ S = ∅. Then

(a) p = pS and (b) pS−1R is prime.

Proof: To prove (1)(a), take a ∈ R and s ∈ S with as ∈ ϕ−1
S b. Then as/1 ∈ b;

so a/1 ∈ b because 1/s ∈ S−1R. Hence a ∈ ϕ−1
S b. Therefore, (ϕ−1

S b)S ⊂ ϕ−1
S b.

The opposite inclusion holds as 1 ∈ S. Thus (1)(a) holds.
To prove (1)(b), take a/s ∈ b. Then a/1 ∈ b. So a ∈ ϕ−1

S b. Hence a/1 · 1/s is in
(ϕ−1

S b)(S−1R). Thus b ⊂ (ϕ−1
S b)(S−1R). Now, take a ∈ ϕ−1

S b. Then a/1 ∈ b. So
b ⊃ (ϕ−1

S b)(S−1R). Thus (1)(b) holds too.
To prove (2), take a ∈ aS . Then there is s ∈ S with as ∈ a. But a/1 = as/1 ·1/s.

So a/1 ∈ aS−1R. Thus aS−1R ⊃ aSS−1R and ϕ−1
S (aS−1R) ⊃ aS .

Conversely, trivially aS−1R ⊂ aSS−1R. Thus (2)(a) holds.
Take x ∈ ϕ−1

S (aS−1R). Then x/1 = a/s with a ∈ a and s ∈ S by (11.8)(1). So
there’s t ∈ S with xst = at ∈ a. So x ∈ aS . So ϕ−1

S (aS−1R) ⊂ aS . Thus (2) holds.
To prove (3), note p ⊂ pS as 1 ∈ S. Conversely, if sa ∈ p with s ∈ S ⊂ R − p,

then a ∈ p as p is prime. Thus (a) holds.
As for (b), first note pS−1R -= S−1R as ϕ−1

S (pS−1R) = pS = p by (2) and (3)(a)
and as 1 /∈ p. Second, say a/s · b/t ∈ pS−1R. Then ab ∈ ϕ−1

S (pS−1R), and the
latter is equal to pS by (2), so to p by (a). Hence ab ∈ p, so either a ∈ p or b ∈ p.
So either a/s ∈ pS−1R or b/t ∈ pS−1R. Thus pS−1R is prime. Thus (3) holds. !
Corollary (11.12). — Let R be a ring, S a multiplicative subset.

(1) Then a 2→ aS−1R is an inclusion-preserving bijection from the (set of all)
ideals a of R with a = aS to the ideals b of S−1R. The inverse is b 2→ ϕ−1

S b.
(2) Then p 2→ pS−1R is an inclusion-preserving bijection from the primes p of R

with p ∩ S = ∅ to the primes q of S−1R. The inverse is q 2→ ϕ−1
S q.

Proof: In (1), the maps are inverses by (11.11)(1), (2); clearly, they preserve
inclusions. Further, (1) implies (2) by (11.11)(3), by (2.7), and by (11.8)(2). !
Definition (11.13). — Let R be a ring, p a prime. Set Sp := R − p. We call the
ring S−1

p R the localization of R at p, and set Rp := S−1
p R and ϕp := ϕSp .
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Proposition (11.14). — Let R be a ring, p a prime ideal. Then Rp is local with
maximal ideal pRp.

Proof: Let b be a proper ideal of Rp. Then ϕ
−1
p b ⊂ p owing to (11.8)(2). Hence

(11.12)(1) yields b ⊂ pRp. Thus pRp is a maximal ideal, and the only one.
Alternatively, let x/s ∈ Rp. Suppose x/s is a unit. Then there is a y/t with

xy/st = 1. So there is a u /∈ p with xyu = stu. But stu /∈ p. Hence x /∈ p.
Conversely, let x /∈ p. Then s/x ∈ Rp. So x/s is a unit in Rp if and only if

x /∈ p, so if and only if x/s /∈ pRp. Thus by (11.8)(1), the nonunits of Rp form
pRp, which is an ideal. Hence (3.5) yields the assertion. !
(11.15) (Algebras). — Let R be a ring, S a multiplicative subset, R′ an R-algebra.
It is easy to generalize (11.1) as follows. Define a relation on R′×S by (x, s) ∼ (y, t)
if there is u ∈ S with xtu = ysu. It is easy to check, as in (11.1), that this relation
is an equivalence relation.

Denote by S−1R′ the set of equivalence classes, and by x/s the class of (x, s).
Clearly, S−1R′ is an S−1R-algebra with addition and multiplication given by

x/s+ y/t := (xt+ ys)/(st) and x/s · y/t := xy/st.

We call S−1R′ the localization of R′ with respect to S.
Let ϕ′

S : R
′ → S−1R′ be the map given by ϕ′

S(x) := x/1. Then ϕ′
S makes S−1R′

into an R′-algebra, so also into an R-algebra, and ϕ′
S is an R-algebra map.

Note that elements of S become units in S−1R′. Moreover, it is easy to check, as
in (11.3), that S−1R′ has the following UMP: ϕ′

S is an algebra map, and elements
of S become units in S−1R′; further, given an algebra map ψ : R′ → R′′ such that
elements of S become units in R′′, there is a unique R-algebra map ρ : S−1R′ → R′′

such that ρϕ′
S = ψ; that is, the following diagram is commutative:

R′ S−1R′

R′′

!!
ϕ′

S

""ψ ##
ρ

In other words, S−1R′ is universal among R′-algebras rendering the s ∈ S units.
Let τ : R′ → R′′ be an R-algebra map. Then there is a commutative diagram of

R-algebra maps
R′ τ−−−−−−−→ R′′

ϕ′
S

)
)ϕ′′

S

S−1R′ S−1τ−−−→ S−1R′′

Further, S−1τ is an S−1R-algebra map.
Let T ⊂ R′ be the image of S ⊂ R. Then T is multiplicative. Further,

S−1R′ = T−1R′, (11.15.1)

even though R′×S and R′×T are rarely equal, because the two UMPs are essentially
the same; indeed, any ring map R′ → R′′ may be viewed as an R-algebra map, and
trivially the elements of S become units in R′′ if and only if the elements of T do.

Proposition (11.16). — Let R be a ring, S a multiplicative subset. Let T ′ be a
multiplicative subset of S−1R, and set T := ϕ−1

S (T ′). Assume S ⊂ T . Then

(T ′)−1(S−1R) = T−1R.
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Proof: Let’s check (T ′)−1(S−1R) has the UMP characterizing T−1R. Clearly

ϕT ′ϕS carries T into
(
(T ′)−1(S−1R)

)×
. Next, let ψ : R→ R′ be a map carrying T

into R′×. We must show ψ factors uniquely through (T ′)−1(S−1R).
First, ψ carries S into R′× since S ⊂ T . So ψ factors through a unique map

ρ : S−1R → R′. Now, given r ∈ T ′, write r = x/s. Then x/1 = s/1 · r ∈ T ′ since
S ⊂ T . So x ∈ T . Hence ρ(r) = ψ(x) · ρ(1/s) ∈ (R′)×. So ρ factors through a
unique map ρ′ : (T ′)−1(S−1R)→ R′. Hence ψ = ρ′ϕT ′ϕS , and ρ′ is clearly unique,
as required. !
Definition (11.17). — We call a ring decomposable if it’s a finite product of local
rings.

Proposition (11.18). — Let R be a ring, {mλ} its set of maximal ideals. Assume
R is decomposable; say R =

∏n
i=1 Ri with all Ri local. Then R is semilocal with n

maximal ideals, and after reindexing, Ri = Rmi for all i.

Proof: Set ei := (δij) ∈
∏

Rj where δij is the Kronecker delta. Then Ri = Rei.
Let ni be the maximal ideal of Ri. Set m′

i := ni ×
∏

j *=i Rj . Then m′
i is maximal,

and every maximal ideal of R has this form owing to (1.23). Thus R is semilocal
with n maximal ideals.

Reindex the mλ so that mi = m′
i. Set Si := {1, ei}. Then S−1

i R = Ri by (11.5).
Also, the localization map ϕSi : R→ Ri is the projection. So ϕ

−1
Si

(Ri−ni) = R−mi.
So Rmi = (Ri)ni by (11.16). But (Ri)ni = Ri by (11.4). !

B. Exercises

Exercise (11.19) . — Let R be a ring, S a multiplicative subset. Prove S−1R = 0
if and only if S contains a nilpotent element.

Exercise (11.20) . — Find all intermediate rings Z ⊂ R ⊂ Q, and describe each R
as a localization of Z. As a starter, prove Z[2/3] = S−1

3 Z where S3 := {3i | i ≥ 0}.

Exercise (11.21) . — Take R and S as in (11.5). On R× S, impose this relation:

(x, s) ∼ (y, t) if xt = ys.

Show that it is not an equivalence relation.

Exercise (11.22) . — Let R be a ring, S a multiplicative subset, G be a group
acting on R, Assume g(S) ⊂ S for all g ∈ G. Set SG := S ∩RG. Show:

(1) The group G acts canonically on S−1R.

(2) If G is finite, there’s a canonical isomorphism ρ : (SG)−1RG ∼−→ (S−1R)G.

Exercise (11.23) . — Let R be a ring, S ⊂ T a multiplicative subsets, S and T
their saturations; see (3.25). Set U := (S−1R)×. Show the following:

(1) U = {x/s | x ∈ S and s ∈ S }. (2) ϕ−1
S U = S.

(3) S−1R = T−1R if and only if S = T . (4) S
−1

R = S−1R.

Exercise (11.24) . — Let R be a ring, S ⊂ T ⊂ U and W multiplicative subsets.
(1) Show there’s a unique R-algebra map ϕS

T : S−1R→ T−1R and ϕT
Uϕ

S
T = ϕS

U .
(2) Given a map ϕ : S−1R→W−1R, show S ⊂ S ⊂W and ϕ = ϕS

W
.
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Exercise (11.25) . — Let R = lim−→Rλ be a filtered direct limit of rings with tran-

sitions maps ϕλµ : Rλ → Rµ and insertions ϕµ : Rµ → R. For all λ, let Sλ ⊂ Rλ be

a multiplicative subset. For all ϕλµ, assume ϕλµ(Sλ) ⊂ Sµ. Set S :=
⋃
ϕλSλ. Then

lim−→S−1
λ Rλ = S−1R.

Exercise (11.26) . — Let R be a ring, S0 the set of nonzerodivisors. Show:
(1) Then S0 is the largest multiplicative subset S with ϕS : R→ S−1R injective.
(2) Every element x/s of S−1

0 R is either a zerodivisor or a unit.
(3) Suppose every element of R is either a zerodivisor or a unit. Then R = S−1

0 R.

Exercise (11.27) . — Let R be a ring, S a multiplicative subset, a and b ideals.
Show: (1) if a ⊂ b, then aS ⊂ bS ; (2) (aS)S = aS ; and (3) (aSbS)S = (ab)S .

Exercise (11.28) . — Let R be a ring, S a multiplicative subset. Prove that

nil(R)(S−1R) = nil(S−1R).

Exercise (11.29) . — Let R be a ring, S a multiplicative subset, R′ an algebra.
Assume R′ is integral over R. Show S−1R′ is integral over S−1R.

Exercise (11.30) . — Let R be a domain, K its fraction field, L a finite extension
field, and R the integral closure of R in L. Show L = Frac(R). Show every element
of L can, in fact, be expressed as a fraction b/a with b ∈ R and a ∈ R.

Exercise (11.31) . — Let R ⊂ R′ be domains, K and L their fraction fields.
Assume that R′ is a finitely generated R-algebra, and that L is a finite dimensional
K-vector space. Find an f ∈ R such that R′

f is module finite over Rf .

Exercise (11.32) (Localization and normalization commute) . — Given a domain
R and a multiplicative subset S with 0 /∈ S. Show that the localization of the
normalization S−1R is equal to the normalization of the localization S−1R.

Exercise (11.33) . — Let k be a field, A a local k-algebra with maximal ideal
m. Assume that A is a localization of a k-algebra R and that A/m = k. Find a
maximal ideal n of R with Rn = A.

Exercise (11.34) . — Let R be a ring, p ⊂ q primes, S a multiplicative subset with
S ∩ p = ∅. Show that Rp is the localization of S−1R at the prime pS−1R, and that
in particular, Rp is the localization of Rq at pRq.

Exercise (11.35) . — Let R be a ring, S a multiplicative subset, X := {Xλ} a set
of variables. Show (S−1R)[X] = S−1

(
R[X]

)
.

Exercise (11.36) . — Let R be a ring, S a multiplicative subset, X a set of variables,
p an ideal of R[X]. Set R′ := S−1R, and let ϕ : R[X]→ R′[X] be the canonical map.
Show p is prime and p ∩ S = ∅ if and only if pR′[X] is prime and p = ϕ−1

(
pR′[X]

)
.
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12. Localization of Modules

Formally, we localize a module just as we do a ring. The result is a module
over the localized ring, and comes equipped with a linear map from the original
module; in fact, the result is universal among modules with those two properties.
Consequently, Localization is a functor; in fact, it is the left adjoint of Restriction
of Scalars from the localized ring to the base ring. So Localization preserves direct
limits, or equivalently, direct sums and cokernels. Further, by uniqueness of left
adjoints or by Watts’s Theorem, Localization is naturally isomorphic to Tensor
Product with the localized ring. Moreover, Localization is exact; so the localized
ring is flat. We end the chapter by discussing various compatibilities and examples.

A. Text

Proposition (12.1). — Let R be a ring, S a multiplicative subset. Then a module
M has a compatible S−1R-module structure if and only if, for all s ∈ S, the multi-
plication map µs : M →M is bijective; if so, then the S−1R-structure is unique.

Proof: Assume M has a compatible S−1R-structure, and take s ∈ S. Then
µs = µs/1. So µs ·µ1/s = µ(s/1)(1/s) = 1. Similarly, µ1/s ·µs = 1. So µs is bijective.

Conversely, assume µs is bijective for all s ∈ S. Then µR : R → EndZ(M)
sends S into the units of EndZ(M). Hence µR factors through a unique ring map
µS−1R : S−1R → EndZ(M) by (11.3). Thus M has a unique compatible S−1R-
structure by (4.5). !
(12.2) (Localization of modules). — Let R be a ring, S a multiplicative subset,
M a module. Define a relation on M × S by (m, s) ∼ (n, t) if there is u ∈ S such
that utm = usn. As in (11.1), this relation is an equivalence relation.
Denote by S−1M the set of equivalence classes, and by m/s the class of (m, s).

Then S−1M is an S−1R-module with addition given by m/s+n/t := (tm+ sn)/st
and scalar multiplication by a/s ·m/t := am/st similar to (11.1). We call S−1M
the localization of M at S.

For example, let a be an ideal. Then S−1a = aS−1R by (11.8)(1). Similarly,
S−1(aM) = S−1aS−1M = aS−1M . Further, given an R-algebra R′, the S−1R-
module S−1R′ constructed here underlies the S−1R-algebra S−1R′ of (11.15).

Define ϕS : M → S−1M by ϕS(m) := m/1. Clearly, ϕS is R-linear.
Note that µs : S−1M → S−1M is bijective for all s ∈ S by (12.1).
Given f ∈ R, we call S−1

f M the localization of M at f , and set Mf := S−1
f M

and ϕf := ϕS .
Similarly, given a prime p, we call S−1

p M the localization of M at p, and set
Mp := S−1

p M and ϕp := ϕS .

Theorem (12.3) (UMP). — Let R be a ring, S a multiplicative subset, and M a
module. Then S−1M is universal among S−1R-modules equipped with an R-linear
map from M .

Proof: The proof is like that of (11.3): given an R-linear map ψ : M → N
where N is an S−1R-module, it is easy to prove that ψ factors uniquely via the
S−1R-linear map ρ : S−1M → N well defined by ρ(m/s) := 1/s · ψ(m). !
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Localization of Modules (12.4)
/
(12.10) Text

Exercise (12.4) . — Let R be a ring, S a multiplicative subset, and M a module.
Show that M = S−1M if and only if M is an S−1R-module.

Exercise (12.5) . — Let R be a ring, S ⊂ T multiplicative subsets, M a module.
Set T1 := ϕS(T ) ⊂ S−1R. Show T−1M = T−1(S−1M) = T−1

1 (S−1M).

Exercise (12.6) . — Let R be a ring, S a multiplicative subset. Show that S
becomes a filtered category when equipped as follows: given s, t ∈ S, set

Hom(s, t) := {x ∈ R | xs = t}.

Given a module M , define a functor S → ((R-mod)) as follows: for s ∈ S, set
Ms := M ; to each x ∈ Hom(s, t), associate µx : Ms →Mt. Define βs : Ms → S−1M
by βs(m) := m/s. Show the βs induce an isomorphism lim−→Ms

∼−→ S−1M .

(12.7) (Functoriality). — Let R be a ring, S a multiplicative subset, α : M → N an
R-linear map. Then ϕSα carries M to the S−1R-module S−1N . So (12.3) yields
a unique S−1R-linear map S−1α making the following diagram commutative:

M
ϕS−−→ S−1M)α

)S−1α

N
ϕS−−→ S−1N

The construction in the proof of (12.3) yields

(S−1α)(m/s) = α(m)/s. (12.7.1)

Thus, canonically, we obtain the following map, and clearly, it is R-linear:

HomR(M, N)→ HomS−1R(S
−1M, S−1N). (12.7.2)

Any R-linear map β : N → P yields S−1(βα) = (S−1β)(S−1α) owing to uniqueness
or to (12.7.1). Thus S−1(•) is a linear functor from ((R-mod)) to ((S−1R-mod)).

Theorem (12.8). — Let R be a ring, S a multiplicative subset. Then the functor
S−1(•) is the left adjoint of the functor of restriction of scalars.

Proof: Let N be an S−1R-module. Then N = S−1N by (12.4), and the map
(12.7.2) is bijective with inverse taking β : S−1M → N to βϕS : M → N . And
(12.7.2) is natural in M and N by (6.13). Thus the assertion holds. !

Corollary (12.9). — Let R be a ring, S a multiplicative subset. Then the functor
S−1(•) preserves direct limits, or equivalently, direct sums and cokernels.

Proof: By (12.8), the functor is a left adjoint. Hence it preserves direct limits
by (6.9); equivalently, it preserves direct sums and cokernels by (6.7). !

Corollary (12.10). — Let R be a ring, S a multiplicative subset. Then the functors
S−1(•) and S−1R⊗R • are canonically isomorphic.

Proof: As S−1(•) preserves direct sums and cokernels by (12.9), the assertion
is an immediate consequence of Watts Theorem (8.13).

Alternatively, both functors are left adjoints of the same functor by (12.8) and
by (8.9). So they are canonically isomorphic by (6.3). !
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Localization of Modules (12.11)
/
(12.13) Text

(12.11) (Saturation). — Let R be a ring, S a multiplicative subset, M a module.
Given a submodule N , its saturation NS is defined by

NS := {m ∈M | there is s ∈ S with sm ∈ N}.
Note N ⊂ NS as 1 ∈ S. If N = NS , then we say N is saturated.

Proposition (12.12). — Let R be a ring, M a module, N and P submodules. Let
S, and T be multiplicative subsets, and K an S−1R-submodule of S−1M .

(1) Then (a) NS is a submodule of M , and (b) S−1N is a submodule of S−1M .
(2) Then (a) ϕ−1

S K = (ϕ−1
S K)S and (b) K = S−1(ϕ−1

S K).
(3) Then (a) ϕ−1

S (S−1N) = NS; so Ker(ϕS) = 0S. And (b) S−1N = S−1NS.
(4) Then (a) (NS)T = NST and (b) S−1(S−1N) = S−1N .
(5) Assume N ⊂ P . Then (a) NS ⊂ PS and (b) S−1N ⊂ S−1P .
(6) Then (a) (N ∩ P )S = NS ∩ PS and (b) S−1(N ∩ P ) = S−1N ∩ S−1P .
(7) Then (a) (N + P )S ⊃ NS + PS and (b) S−1(N + P ) = S−1N + S−1P .
(8) Assume S ⊂ T . Then NS ⊂ NT .

Proof: For (1)(a), (2), (3), argue much as for (11.10)(3) and (11.11)(1), (2).
For (1)(b), note N × S lies in M × S and has the induced equivalence relation.
For (4)(a), note n ∈ (NS)T if and only if there exist t ∈ T and s ∈ S with

s(tn) = (st)n ∈ N , so if and only if n ∈ NST .
For (4)(b), take M := S−1N in (12.4).
For (5)(a), given n ∈ NS , there’s s ∈ S with sn ∈ N . So sn ∈ P . Thus n ∈ PS .
For (5)(b), take M := P in (1)(b).
For (6)(a), note (N ∩P )S ⊂ NS ∩PS . Conversely, given n ∈ NS ∩PS , there are

s, t ∈ S with sn ∈ N and tn ∈ P . So stn ∈ N ∩P and st ∈ S. Thus n ∈ (N ∩P )S .
Alternatively, (6)(a) follows from (6)(b) and (3).

For (6)(b), note N ∩ P ⊂ N, P . So (1) yields S−1(N ∩ P ) ⊂ S−1N ∩ S−1P .
Conversely, given n/s = p/t ∈ S−1N∩S−1P , there’s u ∈ S with utn = usp ∈ N∩P .
Thus utn/uts = usp/uts ∈ S−1(N ∩ P ). Thus (6)(b) holds.

For (7)(a), given n ∈ NS and p ∈ PS , there are s, t ∈ S with sn ∈ N and tp ∈ P .
Then st ∈ S and st(n+ p) ∈ N + P . Thus (7)(a) holds.

For (7)(b), note N, P ⊂ N + P . So (1)(b) yields S−1(N + P ) ⊃ S−1N + S−1P .
But the opposite inclusion holds as (n+ p)/s = n/s+ p/s. Thus (7)(b) holds.

For (8), given n ∈ NS , there’s s ∈ S with sn ∈ N . But s ∈ T . Thus n ∈ NT . !
Theorem (12.13) (Exactness of Localization). — Let R be a ring, and S a multi-
plicative subset. Then the functor S−1(•) is exact.

Proof: As S−1(•) preserves injections by (12.12)(1) and cokernels by (12.9), it
is exact by (9.3).

Alternatively, given an exact sequence M ′ α−→M
β−→M ′′, for each s ∈ S, take a

copy M ′
s → Ms → M ′′

s . Using (12.6), make S into a filtered category, and make
these copies into a functor from S to the category of 3-term exact sequences; its
limit is the following sequence, which is exact by (7.9), as desired:

S−1M ′ S−1α−−−→ S−1M
S−1β−−−→ S−1M ′′.

The latter argument can be made more direct as follows. Since βα = 0, we
have (S−1β)(S−1α) = S−1(βα) = 0. Hence Ker(S−1β) ⊃ Im(S−1α). Conversely,
given m/s ∈ Ker(S−1β), there is t ∈ S with tβ(m) = 0. So β(tm) = 0. So
exactness yields m′ ∈ M ′ with α(m′) = tm. So (S−1α)(m′/ts) = m/s. Hence
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Localization of Modules (12.14)
/
(12.18) Text

Ker(S−1β) ⊂ Im(S−1α). Thus Ker(S−1β) = Im(S−1α), as desired. !

Corollary (12.14). — Let R be a ring, S a subset multiplicative. Then S−1R is flat
over R.

Proof: The functor S−1(•) is exact by (12.13), and is isomorphic to S−1R⊗R •
by (12.10). Thus S−1R is flat.

Alternatively, using (12.6), write S−1R as a filtered direct limit of copies of R.
But R is flat by (9.6). Thus S−1R is flat by (9.9). !

Corollary (12.15). — Let R be a ring, S a multiplicative subset, a an ideal, and M
a module. Then S−1(M/aM) = S−1M

/
S−1(aM) = S−1M

/
aS−1M .

Proof: The assertion results from (12.13) and (12.2). !

Corollary (12.16). — Let R be a ring, p a prime. Then Frac(R/p) = Rp/pRp.

Proof: We have Frac(R/p) = (R/p)p = Rp/pRp by (11.15) and (12.15). !

Exercise (12.17) . — Let R be a ring, S a multiplicative subset, M a module.
Show: (1) S−1 Ann(M) ⊂ Ann(S−1M), with equality if M is finitely generated;

(2) S−1M = 0 if Ann(M) ∩ S -= ∅, and conversely if M is finitely generated.

Proposition (12.18). — Let R be a ring, M a module, S a multiplicative subset.
(1) Let m1, . . . ,mn ∈ M . If M is finitely generated and if the mi/1 ∈ S−1M

generate over S−1R, then there’s f ∈ S so that the mi/1 ∈Mf generate over Rf .
(2) Assume M is finitely presented and S−1M is a free S−1R-module of rank n.

Then there is h ∈ S such that Mh is a free Rh-module of rank n.

Proof: To prove (1), define α : Rn →M by α(ei) := mi with ei the ith standard
basis vector. Set C := Coker(α). Then S−1C = Coker(S−1α) by (12.9). Assume
the mi/1 ∈ S−1M generate over S−1R. Then S−1α is surjective by (4.10)(1) as
S−1(Rn) = (S−1R)n by (12.9). Hence S−1C = 0.

In addition, assume M is finitely generated. Then so is C. Hence, (12.17)(2)
yields f ∈ S such that Cf = 0. Hence αf is surjective. So the mi/1 generate Mf

over Rf again by (4.10)(1). Thus (1) holds.
For (2), let m1/s1, . . . ,mn/sn be a free basis of S−1M over S−1R. Then so is

m1/1, . . . ,mn/1 as the 1/si are units. Form α and C as above, and setK := Ker(α).
Then (12.13) yields S−1K = Ker(S−1α) and S−1C = Coker(S−1α). But S−1α is
bijective. Hence S−1K = 0 and S−1C = 0.

Since M is finitely generated, C is too. Hence, as above, there is f ∈ S such

that Cf = 0. Then 0 → Kf → Rn
f

αf−−→ Mf → 0 is exact by (12.13). Take a
finite presentation Rp → Rq →M → 0. By (12.13), it yields a finite presentation
Rp

f → Rq
f →Mf → 0. Hence Kf is a finitely generated Rf -module by (5.18).

Let S1 ⊂ Rf be the image of S. Then (12.5) yields S−1
1 (Kf ) = S−1K. But

S−1K = 0. Hence there is g/1 ∈ S1 such that (Kf )g/1 = 0. Set h := fg. Let’s
show Kh = 0. Let x ∈ K. Then there is a such that (gax)/1 = 0 in Kf . Hence
there is b such that f bgax = 0 in K. Take c ≥ a, b. Then hcx = 0. Thus Kh = 0.
But Cf = 0 implies Ch = 0. Hence αh : Rn

h → nh is an isomorphism, as desired. !
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Localization of Modules (12.19)
/
(12.28) Exercises

Proposition (12.19). — Let R be a ring, S a multiplicative subset, M and N
modules. Then there is a canonical homomorphism

σ : S−1 HomR(M,N)→ HomS−1R(S
−1M,S−1N).

Further, σ is injective if M is finitely generated, and σ is an isomorphism if M is
finitely presented.

Proof: The assertions result from (9.33) with R′ := S−1R, since S−1R is flat
by (12.14) and since S−1R⊗ P = S−1P for every R-module P by (12.10). !
Example (12.20). — Set R := Z and M := Q/Z, and recall S0 := Z − 〈0〉. Then
M is faithful, as z ∈ S0 implies z · (1/2z) = 1/2 -= 0; thus, µR : R→ HomR(M,M)
is injective. But S−1

0 R = Q. So (12.13) yields S−1
0 HomR(M,M) -= 0. On the

other hand, S−1
0 M = 0 as s · r/s = 0 for any r/s ∈ M . So the map σ(M,M) of

(12.19) is not injective. Thus (12.19)(2) can fail if M is not finitely generated.

Example (12.21). — Set R := Z, recall S0 := Z − 〈0〉, and set Mn := Z/〈n〉 for
n ≥ 2. Then S−1

0 Mn = 0 for all n as nm ≡ 0 (mod n) for all m. On the other
hand, (1, 1, . . . )/1 is nonzero in S−1

0

(∏
Mn

)
as the kth component of m · (1, 1, . . . )

is nonzero in
∏

Mn for k > |m| if m is nonzero. Thus S−1
0

(∏
Mn

)
-=

∏
(S−1

0 Mn).

Also S−1
0 Z = Q. So (12.10) yields Q⊗

(∏
Mn

)
-=

∏
(Q⊗Mn), whereas (8.10)

yields Q⊗
(⊕

Mn

)
=

⊕
(Q⊗Mn).

(12.22) (Nilpotents). — Let R be a ring, x ∈ R. We say x is nilpotent on a
module M if there is n ≥ 1 with xnm = 0 for all m ∈ M ; that is, x ∈

√
Ann(M).

We denote the set of nilpotents on M by nil(M); that is, nil(M) :=
√

Ann(M).
Notice that, if M = R, then we recover the notions of nilpotent element and of

nil(R) of (3.13). Moreover, given an ideal a ⊂ R, we have nil(R/a) =
√
a.

Proposition (12.23). — Let S be a multiplicatively closed subset, and Q ⊂ M
modules. Set p := nil(M/Q); assume S∩p -= ∅. Then QS = M and S−1Q = S−1M .

Proof: Say s ∈ S ∩ p. Then there’s n ≥ 0 with snM ⊂ Q. But sn ∈ S. Thus
QS = M . Now, S−1Q = S−1QS by (12.12)(3)(b). Thus S−1Q = S−1M . !

B. Exercises

Exercise (12.24) . — Let R be a ring, M a finitely generated module, a an ideal.
(1) Set S := 1 + a. Show that S−1a lies in the radical of S−1R.
(2) Use (1), Nakayama’s Lemma (10.6) and (12.17)(2), but not the determinant

trick (10.2), to prove this part of (10.3): if M = aM , then sM = 0 for an s ∈ S.

Exercise (12.25) . — Let R be a ring, S a multiplicative subset, a an ideal, M a
module, N a submodule. Prove (aN)S = (aSNS)S .

Exercise (12.26) . — Let R be a ring, S a multiplicative subset, P a projective
module. Then S−1P is a projective S−1R-module.

Exercise (12.27) . — Let R be a ring, S a multiplicative subset, M , N modules.
Show S−1(M ⊗R N) = S−1M ⊗R N = S−1M ⊗S−1R S−1N = S−1M ⊗R S−1N.

Exercise (12.28) . — Let R be a ring, S a multiplicative subset, X a set of variables,
and M a module. Prove (S−1M)[X] = S−1(M [X]).
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Localization of Modules (12.29)
/
(12.38) Exercises

Exercise (12.29) . — Let R be a ring, M a module, S, T multiplicative subsets.
(1) Set T ′ := ϕS(T ) and assume S ⊂ T . Prove

T ′−1(S−1M) = T−1M. (12.29.1)

(2) Set U := ST := {st ∈ R | s ∈ S and t ∈ T}. Prove
(ST )−1M = T−1(S−1M) = S−1(T−1M). (12.29.2)

(3) Let ϕ : R→ R′ be a map of rings, M ′ an R′-module. Prove

(ϕS)−1M ′ = S−1M ′. (12.29.3)

Exercise (12.30) . — Let R be a ring, S a multiplicative subset. For i = 1, 2, let
ϕi : R→ Ri be a ring map, Si ⊂ Ri a multiplicative subset with ϕiS ⊂ Si, and Mi

an Ri-module. Set T := {s1 ⊗ s2 | si ∈ Si} ⊂ R1 ⊗R R2. Prove

S−1
1 M1 ⊗S−1R S−1

2 M2 = S−1
1 M1 ⊗R S−1

2 M2 = T−1(M1 ⊗R M2).

Exercise (12.31) . — Let R be a ring, m a maximal ideal, n ≥ 1, and M a module.
Show M/mnM = Mm/mnMm.

Exercise (12.32) . — Let k be a field. For i = 1, 2, let Ri be an algebra, and
ni ⊂ Ri a maximal ideal with Ri/ni = k. Let n ⊂ R1 ⊗k R2 denote the ideal
generated by n1 and n2. Set Ai := (Ri)ni and m := n(A1 ⊗k A2). Prove that both
n and m are maximal with k as residue field and that (A1 ⊗k A2)m = (R1 ⊗k R2)n.

Exercise (12.33) . — Let R be a ring, R′ an algebra, S a multiplicative subset, M
a finitely presented module. Prove these properties of the rth Fitting ideal:

Fr(M ⊗R R′) = Fr(M)R′ and Fr(S
−1M) = Fr(M)S−1R = S−1Fr(M).

Exercise (12.34) . — Let R be a ring, S a multiplicative subset. Prove this:

(1) Let M1
α−→ M2 be a map of modules, which restricts to a map N1 → N2 of

submodules. Then α(NS
1 ) ⊂ NS

2 ; that is, there is an induced map NS
1 → NS

2 .

(2) Let 0 → M1
α−→ M2

β−→ M3 be a left exact sequence, which restricts to a left
exact sequence 0→ N1 → N2 → N3 of submodules. Then there is an induced
left exact sequence of saturations: 0→ NS

1 → NS
2 → NS

3 .

Exercise (12.35) . — Let R be a ring, M a module, and S a multiplicative subset.
Set TSM := 〈0〉S . We call it the S-torsion submodule of M . Prove the following:

(1) TS(M/TSM) = 0. (2) TSM = Ker(ϕS).
(3) Let α : M → N be a map. Then α(TSM) ⊂ TSN .
(4) Let 0→M ′ →M →M ′′ be exact. Then so is 0→ TSM ′ → TSM → TSM ′′.
(5) Let S1 ⊂ S be a multiplicative subset. Then TS(S−1

1 M) = S−1
1 (TSM).

Exercise (12.36) . — Set R := Z and S := S0 := Z − 〈0〉. Set M :=
⊕

n≥2 Z/〈n〉
and N := M . Show that the map σ of (12.19) is not injective.

Exercise (12.37) . — Let R be a ring, S a multiplicative subset, M a module.
Show that S−1 nil(M) ⊂ nil(S−1M), with equality if M is finitely generated.

Exercise (12.38) . — Let R be a ring, S a multiplicative subset, a an ideal, M a
module, and N a submodule. Set n := nil(M/N). Show:

(1) Then n ∩ S -= ∅ if and only if nS = R.
(2) Assume n ∩ S -= ∅. Then S−1N = S−1M and NS = M .
(3) Then nS ⊂ nil(M/NS), with equality if M is finitely generated.
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Localization of Modules (12.39)
/
(12.39) Exercises

Exercise (12.39) . — Let R be a ring, M a module, N, N ′ submodules. Show:

(1)
√

nil(M) = nil(M).
(2) nil(M/(N ∩N ′)) = nil(M/N)

⋂
nil(M/N ′).

(3) nil(M/N) = R if and only if N = M .
(4) nil(M/(N +N ′)) ⊃

√
nil(M/N) + nil(M/N ′).

Find an example where equality fails in (4), yet R is a field.
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13. Support

The spectrum of a ring is the following topological space: its points are the
prime ideals, and each closed set consists of those primes containing a given ideal.
The support of a module is the following subset: its points are the primes at
which the localized module is nonzero. We relate the support to the closed set of
the annihilator. We prove that a sequence is exact if and only if it is exact after
localizing at every maximal ideal. We end this chapter by proving that the following
conditions on a module are equivalent: it is finitely generated and projective; it is
finitely presented and flat; and it is locally free of finite rank.

A. Text

(13.1) (Spectrum of a ring). — Let R be a ring. Its set of prime ideals is denoted
Spec(R), and is called the (prime) spectrum of R.

Let a be an ideal. Let V(a) denote the subset of Spec(R) consisting of those
primes that contain a. We call V(a) the variety of a.

Let b be a second ideal. Obviously, if a ⊂ b, then V(b) ⊂ V(a). Conversely, if
V(b) ⊂ V(a), then a ⊂

√
b, owing to the Scheinnullstellensatz (3.14). Therefore,

V(a) = V(b) if and only if
√
a =
√
b. Further, (2.23) yields

V(a) ∪V(b) = V(a ∩ b) = V(ab).

A prime ideal p contains the ideals aλ in an arbitrary collection if and only if p
contains their sum

∑
aλ; hence,

⋂
V(aλ) = V

(∑
aλ

)
. (13.1.1)

Finally, V(R) = ∅, and V(〈0〉) = Spec(R). Thus the subsets V(a) of Spec(R)
are the closed sets of a topology; it is called the Zariski topology. Moreover,
a 2→ V(a) is a lattice-inverting bijection from the radical ideals to the closed sets.

Given an element f ∈ R, we call the open set

D(f) := Spec(R)−V(〈f〉) (13.1.2)

a principal open set. These sets form a basis for the topology of Spec(R); indeed,
given any prime p -⊃ a, there is an f ∈ a− p, and so p ∈ D(f) ⊂ Spec(R) −V(a).
Further, f, g /∈ p if and only if fg /∈ p, for any f, g ∈ R and prime p; in other words,

D(f) ∩D(g) = D(fg). (13.1.3)

A ring map ϕ : R→ R′ induces a set map

Spec(ϕ) : Spec(R′)→ Spec(R) by Spec(ϕ)(p′) := ϕ−1(p′). (13.1.4)

Notice ϕ−1(p′) ⊃ a if and only if p′ ⊃ aR′; so Spec(ϕ)−1 V(a) = V(aR′) and

Spec(ϕ)−1 D(g) = D(ϕ(g)). (13.1.5)

Hence Spec(ϕ) is continuous. Given another ring map ϕ′ : R′ → R′′, plainly

Spec(ϕ) Spec(ϕ′) = Spec(ϕ′ϕ). (13.1.6)

Moreover, Spec(1R) = 1Spec(R). Thus Spec(•) is a contravariant functor from
((Rings)) to the category of topological spaces and continuous maps.

94



Support (13.2)
/
(13.6) Text

For example, owing to (1.9) and (2.7), the quotient map R →→ R/a induces a
topological embedding

Spec(R/a) ∼−→ V(a) ↪→ Spec(R). (13.1.7)

Owing to (11.12), the localization map R→ Rf induces a topological embedding

Spec(Rf ) ∼−→ D(f) ↪→ Spec(R). (13.1.8)

Proposition (13.2). — Let R be a ring, X := Spec(R). Then X is quasi-
compact: if X =

⋃
λ∈Λ Uλ with Uλ open, then X =

⋃n
i=1 Uλi for some λi ∈ Λ.

Proof: Say Uλ = X −V(aλ). As X =
⋃
λ∈Λ Uλ, then ∅ =

⋂
V(aλ) = V

(∑
aλ

)
.

So
∑

aλ lies in no prime ideal. Hence there are λ1, . . . ,λn ∈ Λ and fλi ∈ aλi with
1 =

∑
fλi . So R =

∑
aλi . So ∅ =

⋂
V(aλi) = V

(∑
aλi

)
. Thus X =

⋃
Uλi . !

Definition (13.3). — Let R be a ring, M a module. Its support is the set

Supp(M) := SuppR(M) := { p ∈ Spec(R) | Mp -= 0 }.

Proposition (13.4). — Let R be a ring, M a module.
(1) Let 0→ L→M → N → 0 be exact. Then Supp(L)

⋃
Supp(N) = Supp(M).

(2) Let Mλ be submodules with
∑

Mλ = M . Then
⋃

Supp(Mλ) = Supp(M).
(3) Then Supp(M) ⊂ V(Ann(M)), with equality if M is finitely generated.
(4) Then rad(M) is contained in the intersection of all the maximal ideals in

Supp(M), with equality if M is finitely generated..

Proof: Consider (1). For every prime p, the sequence 0→ Lp →Mp → Np → 0
is exact by (12.13). So Mp -= 0 if and only if Lp -= 0 or Np -= 0. Thus (1) holds.

In (2), Mλ ⊂ M . So (1) yields
⋃

Supp(Mλ) ⊂ Supp(M). To prove the opposite
inclusion, take p /∈

⋃
Supp(Mλ). Then (Mλ)p = 0 for all λ. By hypothesis,

the natural map
⊕

Mλ → M is surjective. So
⊕

(Mλ)p → Mp is surjective by
(12.9). Hence Mp = 0. Alternatively, given m/s ∈ Mp, express m as a finite sum
m =

∑
mλ with mλ ∈ Mλ. For each such λ, there is tλ ∈ R − p with tλmλ = 0.

Set t :=
∏

tλ. Then tm = 0 and t /∈ p. So m/s = 0 in Mp. Hence again, Mp = 0.
Thus p /∈ Supp(M), and so (2) holds.

Consider (3). Let p be a prime. By (12.17)(2), Mp = 0 if Ann(M)∩(R−p) -= ∅,
and the converse holds if M is finitely generated. But Ann(M)

⋂
(R−p) -= ∅ if and

only if Ann(M) -⊂ p. Thus (3) holds.
For (4), recall from (4.1) that rad(M) is defined as the intersection of all the

maximal ideals containing Ann(M). Thus (3) yields (4). !
(13.5) (Minimal primes of a module). — Let R be a ring, M a module, and p a
prime minimal in Supp(M). We call such a p a minimal prime of M .

Suppose M is finitely generated. Then Supp(M) = V(Ann(M)) by (13.4)(3).
Thus p is a minimal prime of M if and only if p is a minimal prime of Ann(M).
Also, (3.17) implies every prime in Supp(M) contains some minimal prime of M .

Warning: following a old custom, by the minimal primes of an ideal a, we
mean not those of a viewed as an abstract module, but rather those of R/a; however,
by the minimal primes of R, we mean those of R viewed as an abstract module;
compare (3.17).

Proposition (13.6). — Let R be a ring, M a finitely generated module. Then

nil(M) =
⋂

p∈Supp(M) p.
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Proof: First, nil(M) =
⋂

p⊃Ann(M) p by the Scheinnullstellensatz (3.14). But
p ⊃ Ann(M) if and only if p ∈ Supp(M) by (13.4)(3). !

Proposition (13.7). — Let R be a ring, M and N modules. Then

Supp(M ⊗R N) ⊂ Supp(M) ∩ Supp(N), (13.7.1)

with equality if M and N are finitely generated.

Proof: First, (M ⊗R N)p = Mp ⊗Rp Np by (12.27); whence, (13.7.1) holds.
The opposite inclusion follows from (10.10) if M and N are finitely generated. !

Proposition (13.8). — Let R be a ring, M a module. These conditions are equiv-
alent: (1) M = 0; (2) Supp(M) = ∅; (3) Mm = 0 for every maximal ideal m.

Proof: Trivially, if (1) holds, then S−1M = 0 for any multiplicative subset S. In
particular, (2) holds. Trivially, (2) implies (3).

Finally, assume M -= 0, and take a nonzero m ∈M , and set a := Ann(m). Then
1 /∈ a, so a lies in some maximal ideal m. Given f ∈ Sm := R − m, note fm -= 0.
Hence m/1 -= 0 in Mm. Thus (3) implies (1). !

Proposition (13.9). — A sequence of modules L
α−→ M

β−→ N is exact if and only
if its localization Lm

αm−−→Mm
βm−−→ Nm is exact at each maximal ideal m.

Proof: If the sequence is exact, then so is its localization by (12.13).
Consider the converse. First Im(βmαm) = 0. But Im(βmαm) =

(
Im(βα)

)
m

by
(12.13) and (9.3). So Im(βα) = 0 by (13.8). So βα = 0. Thus Im(α) ⊂ Ker(β).
Set H := Ker(β)

/
Im(α). Then Hm = Ker(βm)

/
Im(αm) by (12.13) and (9.3).

So Hm = 0 owing to the hypothesis. Hence H = 0 by (13.8), as required. !

Exercise (13.10) . — Let R be a ring, M a module, and mλ ∈M elements. Prove
the mλ generate M if and only if, at every maximal ideal m, the fractions mλ/1
generate Mm over Rm.

Proposition (13.11). — Let A be a semilocal ring, m1, . . . ,mn its maximal ideals,
M, N finitely presented modules. Assume Mmi % Nmi for each i. Then M % N .

Proof: For each i, take an isomorphism ψi : Mmi
∼−→ Nmi . Then (12.19) yields

si ∈ A−mi and ϕi : M → N with (ϕi)mi = siψi. But
⋂

j *=i mj -⊂ mi by (2.23); so
there’s xi ∈

⋂
j *=i mj with xi /∈ mi. Set γ :=

∑
i xiϕi, so γ : M → N .

For each j, set αj := xjϕj . Then αmj : Mmj
∼−→ Nmj as xj and sj are units. Set

βj :=
∑

i *=j αi. Then βj(Mmj ) ⊂ mjNmj as xi ∈ mj for i -= j. Further, γ = αj+βj .
So γmj is an isomorphism by (10.29). Hence (13.9) implies γ : M ∼−→ N . !

Proposition (13.12). — Let R be a ring, M a module. Then M is flat over R if
and only if, at every maximal ideal m, the localization Mm is flat over Rm.

Proof: If M is flat over R, then M ⊗R Rm is flat over Rm by (9.22). But
M ⊗R Rm = Mm by (12.10). Thus Mm is flat over Rm.

Conversely, assume Mm is flat over Rm for every m. Let α : N ′ → N be an
injection of R-modules. Then αm is injective by (13.9). Hence Mm ⊗Rm αm is
injective. But that map is equal to (M⊗α)m by (12.27). So (M⊗α)m is injective.
Hence M ⊗ α is injective by (13.9). Thus M is flat over R. !
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Definition (13.13). — Let R be a ring, M a module. We say M is locally finitely
generated if each p ∈ Spec(R) has a neighborhood on which M becomes finitely
generated; more precisely, there exists f ∈ R− p such that Mf is finitely generated
over Rf . It is enough that an f exist for each maximal ideal m as every p lies in
some m by (2.21). Similarly, we define the properties locally finitely presented,
locally free of finite rank, and locally free of rank n.

Proposition (13.14). — Let R be a ring, M a module.
(1) If M is locally finitely generated, then it is finitely generated.
(2) If M is locally finitely presented, then it is finitely presented.

Proof: By (13.2), there are f1, . . . , fn ∈ R with
⋃
D(fi) = Spec(R) and finitely

many mi,j ∈M such that, for some ni,j ≥ 0, the mi,j/f
ni,j

i generate Mfi . Clearly,
for each i, the mi,j/1 also generate Mfi .
Given any maximal ideal m, there is i such that fi /∈ m. Let Si be the image

of Sm := R − m in Rfi . Then (12.5) yields Mm = S−1
i (Mfi). Hence the mi,j/1

generate Mm. Thus (13.10) yields (1).
Assume M is locally finitely presented. Then M is finitely generated by (1). So

there is a surjection Rk →→ M . Let K be its kernel. Then K is locally finitely
generated owing to (5.18). Hence K too is finitely generated by (1). So there is a
surjection R+ →→ K. It yields the desired finite presentation R+ → Rk → M → 0.
Thus (2) holds. !

Theorem (13.15). — These conditions on an R-module P are equivalent:

(1) P is finitely generated and projective.
(2) P is finitely presented and flat.
(3) P is finitely presented, and Pm is free over Rm at each maximal ideal m.
(4) P is locally free of finite rank.
(5) P is finitely generated, and for each p ∈ Spec(R), there are f and n such

that p ∈ D(f) and Pq is free of rank n over Rq at each q ∈ D(f).

Proof: Condition (1) implies (2) by (10.12).
Let m be a maximal ideal. Then Rm is local by (11.14). If P is finitely pre-

sented, then Pm is finitely presented, because localization preserves direct sums and
cokernels by (12.9).

Assume (2). Then Pm is flat by (13.12), so free by (10.12). Thus (3) holds.
Assume (3). Fix a surjective map α : M → N . Then αm : Mm → Nm is surjective.

So Hom(Pm, αm) : Hom(Pm, Mm) → Hom(Pm, Nm) is surjective by (5.16) and
(5.15). But Hom(Pm, αm) = Hom(P, α)m by (12.19) as P is finitely presented.
Further, m is arbitrary. Hence Hom(P, α) is surjective by (13.9). Therefore, P is
projective by (5.16). Thus (1) holds.

Again assume (3). Given any prime p, take a maximal ideal m containing it. By
hypothesis, Pm is free; its rank is finite as Pm is finitely generated. By (12.18)(2),
there is f ∈ Sm := R − m such that Pf is free of finite rank over Rf . Thus (4)
holds.

Assume (4). Then P is locally finitely presented. So P is finitely presented by
(13.14)(2). Further, given p ∈ Spec(R), there are f ∈ Sp := R− p and n such that
Pf is free of rank n over Rf . Given q ∈ D(f), let S be the image of Sq := R− q in
Rf . Then (12.5) yields Pq = S−1(Pf ). Hence Pq is free of rank n over Rq. Thus
(5) holds. Further, (3) results from taking p := m and q := m.
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Finally, assume (5), and let’s prove (4). Given p ∈ Spec(R), let f and n be
provided by (5). Take a free basis p1/fk1 , . . . , pn/fkn of Pp over Rp. The pi define
a map α : Rn → P , and αp : Rn

p → Pp is bijective, in particular, surjective.
As P is finitely generated, (12.18)(1) provides g ∈ Sp such that αg : Rn

g → Pg

is surjective. It follows that αq : Rn
q → Pq is surjective for every q ∈ D(g). If also

q ∈ D(f), then by hypothesis Pq % Rn
q . So αq is bijective by (10.4).

Set h := fg. Clearly, D(f) ∩ D(g) = D(h). By (13.1), D(h) = Spec(Rh).
Clearly, αq = (αh)(qRh) for all q ∈ D(h). Hence αh : Rn

h → Ph is bijective owing to
(13.9) with Rh for R. Thus (4) holds. !

B. Exercises

Exercise (13.16) . — Let R be a ring, X := Spec(R), and p, q ∈ X. Show:

(1) The closure {p} of p is equal to V(p); that is, q ∈ {p} if and only if p ⊂ q.
(2) Then p is a closed point, that is, {p} = {p}, if and only if p is maximal.
(3) Then X is T0; that is, if p -= q but every neighborhood of p contains q, then

some neighborhood of q doesn’t contain p.

Exercise (13.17) . — Describe Spec(R), Spec(Z), Spec(C[X]), and Spec(R[X]).

Exercise (13.18) . — Let R be a ring, and set X := Spec(R). Let X1, X2 ⊂ X be
closed subsets. Show that the following four statements are equivalent:

(1) Then X1 =X2 = X; that is, X1 ∪X2 = X and X1 ∩X2 = ∅.
(2) There are complementary idempotents e1, e2 ∈ R with V(〈ei〉) = Xi.
(3) There are comaximal ideals a1, a2 ⊂ R with a1a2 = 0 and V(ai) = Xi.
(4) There are ideals a1, a2 ⊂ R with a1 ⊕ a2 = R and V(ai) = Xi.

Finally, given any ei and ai satisfying (2) and either (3) or (4), necessarily ei ∈ ai.

Exercise (13.19) . — Let R be a ring, a an ideal, and M a module. Show:

(1) Then Γa(M) = {m ∈M | Supp(Rm) ⊂ V(a) }.
(2) Then Γa(M) = {m ∈M | m/1 = 0 in Mp for all primes p -⊃ a }.
(3) Then Γa(M) = M if and only if Supp(M) ⊂ V(a).

Exercise (13.20) . — Let R be a ring, 0 → M ′ α−→ M
β−→ M ′′ → 0 a short exact

sequence of finitely generated modules, and a a finitely generated ideal. Assume
Supp(M ′) ⊂ V(a). Show that 0→ Γa(M ′)→ Γa(M)→ Γa(M ′′)→ 0 is exact.

Exercise (13.21) . — Let R be a ring, S a multiplicative subset. Prove this:

(1) Assume R is absolutely flat. Then S−1R is absolutely flat.
(2) Then R is absolutely flat if and only if Rm is a field for each maximal m.

Exercise (13.22) . — Let R be a ring; set X := Spec(R). Prove that the four
following conditions are equivalent:

(1) R/ nil(R) is absolutely flat.
(2) X is Hausdorff.
(3) X is T1; that is, every point is closed.
(4) Every prime p of R is maximal.

Assume (1) holds. Prove that X is totally disconnected; namely, no two distinct
points lie in the same connected component.
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Exercise (13.23) . — Let R be a ring, and a an ideal. Assume a ⊂ nil(R). Set
X := Spec(R). Show that the following three statements are equivalent:

(1) Then R is decomposable. (2) Then R/a is decomposable.
(3) Then X =

⊔n
i=1 Xi where Xi ⊂ X is closed and has a unique closed point.

Exercise (13.24) . — Let ϕ : R→ R′ be a map of rings, a an ideal of R, and b an
ideal of R′. Set ϕ∗ := Spec(ϕ). Prove these two statements:

(1) Every prime of R is the contraction of a prime if and only if ϕ∗ is surjective.
(2) If every prime of R′ is the extension of a prime, then ϕ∗ is injective.

Is the converse of (2) true?

Exercise (13.25) . — Let R be a ring, and S a multiplicative subset of R. Set
X := Spec(R) and Y := Spec(S−1R). Set ϕ∗

S := Spec(ϕS) and S−1X := Imϕ∗
S in

X. Show (1) that S−1X consists of the primes p of R with p ∩ S = ∅ and (2) that
ϕ∗
S is a homeomorphism of Y onto S−1X.

Exercise (13.26) . — Let θ : R→ R′ be a ring map, S ⊂ R a multiplicative subset.
Set X := Spec(R) and Y := Spec(R′) and θ∗ := Spec(θ). Via (13.25)(2) and
(11.15), identify Spec(S−1R) and Spec(S−1R′) with their images S−1X ⊂ X and
S−1Y ⊂ Y . Show (1) S−1Y = θ∗−1(S−1X) and (2) Spec(S−1θ) = θ∗

∣∣S−1Y .

Exercise (13.27) . — Let θ : R→ R′ be a ring map, a ⊂ R an ideal. Set b := aR′.
Let θ : R/a→ R′/b be the induced map. Set X := Spec(R) and Y := Spec(R′). Set
θ∗ := Spec(θ) and θ

∗
:= Spec(θ). Via (13.1), identify Spec(R/a) and Spec(R′/b)

with V(a) ⊂ X and V(b) ⊂ Y . Show (1) V(b) = θ∗−1(V(a)) and (2) θ
∗
= θ∗

∣∣V(b).

Exercise (13.28) . — Let θ : R→ R′ be a ring map, p ⊂ R a prime, k the residue
field of Rp. Set θ∗ := Spec(θ). Show (1) θ∗−1(p) is canonically homeomorphic to
Spec(R′

p/pR
′
p) and to Spec(k ⊗R R′) and (2) p ∈ Im θ∗ if and only if k ⊗R R′ -= 0.

Exercise (13.29) . — Let R be a ring, p a prime ideal. Show that the image of
Spec(Rp) in Spec(R) is the intersection of all open neighborhoods of p in Spec(R).

Exercise (13.30) . — Let ϕ : R → R′ and ψ : R → R′′ be ring maps, and define
θ : R→ R′ ⊗R R′′ by θ(x) := ϕ(x)⊗ ψ(x). Show

ImSpec(θ) = ImSpec(ϕ)
⋂

ImSpec(ψ).

Exercise (13.31) . — Let R be a filtered direct limit of rings Rλ with transition
maps αλµ and insertions αλ. For each λ, let ϕλ : R′ → Rλ be a ring map with

ϕµ = αλµϕλ for all αλµ, so that ϕ := αλϕλ is independent of λ. Show

ImSpec(ϕ) =
⋂
λ ImSpec(ϕλ).

Exercise (13.32) . — Let R be a ring, ϕσ : R → Rσ for σ ∈ Σ ring maps. Let
γΣ : R→

∐
Rσ and πΣ : R→

∏
Ri be the induced maps. Set X := Spec(R). Show:

(1) Then ImSpec(γΣ) =
⋂

ImSpec(ϕσ).
(2) Assume Σ is finite. Then ImSpec(πΣ) =

⋃
ImSpec(ϕσ).

(3) The subsets of X of the form ImSpec(ϕ), where ϕ : R → R′ is a ring map,
are the closed sets of a topology, known as the constructible topology. It
refines the Zariski topology.

(4) In the constructible topology, X is quasi-compact.

Exercise (13.33) . — Let R be a ring, X := Spec(R). Show:
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(1) Given g ∈ R, the set D(g) is open and closed in the constructible toplogy.
(2) On X, any topology with all D(g) open and closed is Hausdorff and totally

disconnected.
(3) On any set, nested topologies T ⊃ S coincide if T is quasi-compact and S is

Hausdorff.
(4) On X, the constructible and the Zariski topologies coincide if and only if the

Zariski topology is Hausdorff, if and only if R/ nil(R) is absolutely flat.
(5) On X, the construcible topology is smallest with all D(g) open and closed.
(6) On X, the constructible open sets are the arbitray unions U of the finite

intersections of the D(g) and the X −D(g).

Exercise (13.34) . — Let ϕ : R → R′ be a ring map. Show, in the constructible
topology, Spec(ϕ) : Spec(R′)→ Spec(R) is continuous and closed.

Exercise (13.35) . — Let A be a domain with just one nonzero prime p. Set
K := Frac(A) and R := (A/p)×K. Define ϕ : A→ R by ϕ(x) := (x′, x) with x′ the
residue of x. Set ϕ∗ := Spec(ϕ). Show ϕ∗ is bijective, but not a homeomorphism.

Exercise (13.36) . — Let ϕ : R → R′ be a ring map, and b an ideal of R′. Set
ϕ∗ := Spec(ϕ). Show (1) that the closure ϕ∗(V(b)) in Spec(R) is equal to V(ϕ−1b)
and (2) that ϕ∗(Spec(R′)) is dense in Spec(R) if and only if Ker(ϕ) ⊂ nil(R).

Exercise (13.37) . — Let ϕ : R→ R′ be a ring map. Consider these statements:

(1) The map ϕ has the Going-up Property: given primes q′ ⊂ R′ and p ⊂ R
with p ⊃ ϕ−1(q′), there is a prime p′ ⊂ R′ with ϕ−1(p′) = p and p′ ⊃ q′.

(2) Given a prime q′ of R′, set q := ϕ−1(q′). Then Spec(R′/q′) → Spec(R/q) is
surjective.

(3) The map Spec(ϕ) is closed: it maps closed sets to closed sets.

Prove that (1) and (2) are equivalent, and are implied by (3).

Exercise (13.38) . — Let ϕ : R→ R′ be a ring map. Consider these statements:

(1) The map ϕ has theGoing-down Property: given primes q′ ⊂ R′ and p ⊂ R
with p ⊂ ϕ−1(q′), there is a prime p′ ⊂ R′ with ϕ−1(p′) = p and p′ ⊂ q′.

(2) Given a prime q′ of R′, set q := ϕ−1(q′). Then Spec(R′
q′) → Spec(Rq) is

surjective.
(3) The map Spec(ϕ) is open: it maps open sets to open sets.

Prove (1) and (2) are equivalent; using (13.31), prove they’re implied by (3).

Exercise (13.39) . — Let R be a ring; f, g ∈ R. Prove (1)–(8) are equivalent:

(1) D(g) ⊂ D(f). (2) V(〈g〉) ⊃ V(〈f〉). (3)
√
〈g〉 ⊂

√
〈f〉.

(4) Sf ⊂ Sg. (5) g ∈
√
〈f〉. (6) f ∈ Sg.

(7) There is a unique R-algebra map ϕf
g : S

−1
f R→ S

−1
g R.

(8) There is an R-algebra map Rf → Rg.

If these conditions hold, prove the map in (8) is equal to ϕf
g .

Exercise (13.40) . — Let R be a ring. Prove these statements:

(1) D(f) 2→ Rf is a well-defined contravariant functor from the category of prin-
cipal open sets and inclusions to ((R-alg)).

(2) Given p ∈ Spec(R), then lim−→D(f)3p
Rf = Rp.
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Exercise (13.41) . — Let R be a ring, X := Spec(R), and U an open subset. Show
U is quasi-compact if and only if X − U = V(a) where a is finitely generated.

Exercise (13.42) . — Let R be a ring, M a module. Set X := Spec(R). Assume
X =

⋃
λ∈Λ D(fλ) for some set Λ and some fλ ∈ R.

(1) Given m ∈M , assume m/1 = 0 in Mfλ for all λ. Show m = 0.
(2) Given mλ ∈Mfλ for each λ, assume the images of mλ and mµ in Mfλfµ are

equal. Show there is a unique m ∈ M whose image in Mfλ is mλ for all λ.
First assume Λ is finite.

Exercise (13.43) . — Let B be a Boolean ring, and set X := Spec(B). Show a
subset U ⊂ X is both open and closed if and only if U = D(f) for some f ∈ B.
Further, show X is a compact Hausdorff space. (Following Bourbaki, we shorten
“quasi-compact” to “compact” when the space is Hausdorff.)

Exercise (13.44) (Stone’s Theorem) . — Show every Boolean ring B is isomorphic
to the ring of continuous functions from a compact Hausdorff space X to F2 with
the discrete topology. Equivalently, show B is isomorphic to the ring R of open and
closed subsets of X; in fact, X := Spec(B), and B ∼−→ R is given by f 2→ D(f).

Exercise (13.45) . — Let L be a Boolean lattice. Show that L is isomorphic to
the lattice of open and closed subsets of a compact Hausdorff space.

Exercise (13.46) . — Let R be a ring, q an ideal, M a module. Show:
(1) Supp(M/qM) ⊂ Supp(M)

⋂
V(q), with equality if M is finitely generated.

(2) Assume M is finitely generated. Then

V(q+Ann(M)) = Supp(M/qM) = V(Ann(M/qM)).

Exercise (13.47) . — Let ϕ : R → R′ be a ring map, M ′ a finitely generated R′-
module. Set ϕ∗ := Spec(ϕ). Assume M ′ is flat over R. Then M ′ is faithfully flat
if and only if ϕ∗ Supp(M ′) = Spec(R).

Exercise (13.48) . — Let ϕ : R → R′ be a ring map, M ′ a finitely generated R′-
module, and q ∈ Supp(M ′). Assume that M ′ is flat over R. Set p := ϕ−1(q). Show
that ϕ induces a surjection Supp(M ′

q)→→ Spec(Rp).

Exercise (13.49) . — Let ϕ : R→ R′ be a map of rings, M an R-module. Prove

Supp(M ⊗R R′) ⊂ Spec(ϕ)−1(Supp(M)),

with equality if M is finitely generated.

Exercise (13.50) . — Let R be a ring, M a module, p ∈ Supp(M). Prove

V(p) ⊂ Supp(M).

Exercise (13.51) . — Set M := Q/Z. Find Supp(M), and show it’s not Zariski
closed in Spec(Z). Is Supp(M) = V(Ann(M))? What about (13.4)(3)?

Exercise (13.52) . — Let R be a domain, M a module. Set T (M) := TS0(M).
Call T (M) the torsion submodule of M , and M torsionfree if T (M) = 0.

Prove M is torsionfree if and only if Mm is torsionfree for all maximal ideals m.

Exercise (13.53) . — Let R be a ring, P a module, M, N submodules. Assume
Mm = Nm for every maximal ideal m. Show M = N . First assume M ⊂ N .
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Exercise (13.54) . — Let R be a ring, M a module, and a an ideal. Suppose
Mm = 0 for all maximal ideals m ⊃ a. Show that M = aM .

Exercise (13.55) . — Let R be a ring, P a module, M a submodule, and p ∈ P an
element. Assume p/1 ∈Mm for every maximal ideal m. Show p ∈M .

Exercise (13.56) . — Let R be a domain, a an ideal. Show a =
⋂

m aRm where m
runs through the maximal ideals and the intersection takes place in Frac(R).

Exercise (13.57) . — Prove these three conditions on a ring R are equivalent:

(1) R is reduced.
(2) S−1R is reduced for all multiplicative subsets S.
(3) Rm is reduced for all maximal ideals m.

Exercise (13.58) . — Let R be a ring, Σ the set of minimal primes. Prove this:

(1) If Rp is a domain for any prime p, then the p ∈ Σ are pairwise comaximal.
(2) R =

∏n
i=1 Ri where Ri is a domain if and only if Rp is a domain for any

prime p and Σ is finite. If so, then Ri = R/pi with {p1, . . . , pn} = Σ.

If Rm is a domain for all maximal ideals m, is R necessarily a domain?

Exercise (13.59) . — Let R be a ring, M a module. Assume that there are only
finitely many maximal ideals mi with Mmi -= 0. Show that the canonical map
α : M →

∏
Mmi is bijective if and only if (Mmi)mj = 0 whenever i -= j.

Exercise (13.60) . — Let R be a ring, R′ a flat algebra, p′ a prime in R′, and p its
contraction in R. Prove that R′

p′ is a faithfully flat Rp-algebra.

Exercise (13.61) . — Let R be an absolutely flat ring, p a prime. Show p is
maximal, Rp is a field, and R is reduced,

Exercise (13.62) . — Given n, prove an R-module P is locally free of rank n if
and only if P is finitely generated and Pm % Rn

m holds at each maximal ideal m.

Exercise (13.63) . — Let A be a semilocal ring, P a locally free module of rank n.
Show that P is free of rank n.

Exercise (13.64) . — Let R be a ring, M a finitely presented module, n ≥ 0. Show
that M is locally free of rank n if and only if Fn−1(M) = 〈0〉 and Fn(M) = R.
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14. Cohen–Seidenberg Theory

Cohen–Seidenberg Theory relates the prime ideals in a ring to those in an integral
extension. We prove each prime has at least one prime lying over it— that is,
contracting to it. The overprime can be taken to contain any ideal that contracts
to an ideal contained in the given prime; this stronger statement is known as the
Going-up Theorem. Further, one prime is maximal if and only if the other is, and
two overprimes cannot be nested. On the other hand, the Going-down Theorem
asserts that, given nested primes in the subring and a prime lying over the larger,
there is a subprime lying over the smaller, either if the subring is normal, the
overring is a domain, and the extension is ingeral, or if simply the extension is flat.

A. Text

Lemma (14.1). — Let R′/R be an integral extension of domains. Then R′ is a
field if and only if R is.

Proof: First, suppose R′ is a field. Let x ∈ R be nonzero. Then 1/x ∈ R′, so
satisfies an equation of integral dependence:

(1/x)n + a1(1/x)
n−1 + · · ·+ an = 0

with n ≥ 1 and ai ∈ R. Multiplying the equation by xn−1, we obtain

1/x = −(a1 + an−2x+ · · ·+ anx
n−1) ∈ R.

Conversely, suppose R is a field. Let y ∈ R′ be nonzero. Then y satisfies an
equation of integral dependence

yn + a1y
n−1 + · · ·+ an−1y + an = 0

with n ≥ 1 and ai ∈ R. Rewriting the equation, we obtain

y(yn−1 + · · ·+ an−1) = −an.

Take n minimal. Then an -= 0 as R′ is a domain. So dividing by −any, we obtain

1/y = (−1/an)(yn−1 + · · ·+ an−1) ∈ R′. !

Definition (14.2). — Let R be a ring, R′ an R-algebra, p a prime of R, and p′ a
prime of R′. We say p′ lies over p if p′ contracts to p; that is, p′ ∩R = p.

Theorem (14.3). — Let R′/R be an integral extension of rings, p a prime of R.
Let p′ ⊂ q′ be nested primes of R′, and a′ an arbitrary ideal of R′.

(1) (Maximality) Suppose p′ lies over p. Then p′ is maximal if and only if p is.
(2) (Incomparability) Suppose both p′ and q′ lie over p. Then p′ = q′.
(3) (Lying over) Then there is a prime r′ of R′ lying over p.
(4) (Going-up) Suppose a′ ∩R ⊂ p. Then in (3) we can take r′ to contain a′.

Proof: Assertion (1) follows from (14.1) applied to the extension R/p ↪→ R′/p′,
which is integral as R ↪→ R′ is, since, if y ∈ R′ satisfies yn + a1yn−1 + · · ·+ an = 0,
then reduction modulo p′ yields an equation of integral dependence over R/p.
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To prove (2), localize at R− p, and form this commutative diagram:

R′ −→ R′
p8
8

R −→ Rp

Here Rp → R′
p is injective by (12.12)(1), and the extension is integral by (11.29).

Here p′R′
p and q′R′

p are nested primes of R′
p by (11.12)(2). By the same token,

both lie over pRp, because both their contractions in Rp contract to p in R. Thus
we may replace R by Rp and R′ by R′

p, and so assume R is local with p as maximal
ideal by (11.14). Then p′ is maximal by (1); whence, p′ = q′.

To prove (3), again we may replace R by Rp and R′ by R′
p: if r

′′ is a prime ideal
of R′

p lying over pRp, then the contraction r′ of r′′ in R′ lies over p. So we may
assume R is local with p as unique maximal ideal. Now, R′ has a maximal ideal r′

by 2.21; further, r′ contracts to a maximal ideal r of R by (1). Thus r = p.
Finally, (4) follows from (3) applied to the extension R/(a′ ∩R) ↪→ R′/a′. !

Lemma (14.4). — Let R′/R be an extension of rings, X a variable, and F ∈ R[X]
a monic polynomial. Assume F = GH with G, H ∈ R′[X] and G monic.

(1) Then there’s an extension R′′ of R with F (X) =
∏d

i=1(X − xi) in R′′[X].
Moreover, R′′ is a free R-module of rank d ! where d := deg(F ).
(2) Then H is monic, and the coefficients of G and H are integral over R.

Proof: For (1), set R1 := R′[X]/〈F 〉. Let x1 be the residue of X. As F is monic,
1, x1, . . . , x

d−1
1 form a free basis of R1 over R by (10.15); note R1 ⊃ R. Now,

F (x1) = 0; so F = (X − x1)F1 with F1 ∈ R1[X] by (1.19); note F1 is monic and
deg(F1) = d−1. Induction on d yields an extension R′′ of R1 free of degree (d−1)!

with F1 =
∏d

i=2(X − xi). Then R′′ is free over R of degree d ! by (10.16). Thus
(1) holds.

In (2), G is monic. So the leading coefficient of F is equal to that of H. But F
is monic. Thus H is monic too.

Next, (1) yields an extension R′′ of R′ with G(X) =
∏
(X−xi) in R′′[X], and an

extension R′′′ of R′′ with H(X) =
∏
(X − yj) in R′′[X]. The xi and yj are integral

over R as they are roots of F . But the coefficients of G and H are polynomials in
the xi and yj ; so they too are integral over R owing to (10.20). !
Proposition (14.5). — Let R be a normal domain, K := Frac(R), and L/K a
field extension. Let y ∈ L be integral over R, and F ∈ K[X] its monic minimal
polynomial. Then F ∈ R[X], and so F (y) = 0 is an equation of integral dependence.

Proof: Since y is integral, there is a monic polynomial G ∈ R[X] with G(y) = 0.
Write G = FH with H ∈ K[X]. Then by (14.4) the coefficients of F are integral
over R, so in R since R is normal. !

Theorem (14.6) (Going-down for integral extensions). — Let R′/R be an integral
extension of domains with R normal, p ! q nested primes of R, and q′ a prime of
R′ lying over q. Then there is a prime p′ lying over p and contained in q′.

Proof: First, let’s show pR′
q′∩R = p. Given y ∈ pR′

q′∩R with y /∈ p, say y = x/s
with x ∈ pR′ and s ∈ R′ − q′. Say x =

∑m
i=1 yixi with yi ∈ p and xi ∈ R′, and set

R′′ := R[x1, . . . , xm]. Then R′′ is module finite by (10.18) and xR′′ ⊂ pR′′. Let
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F (X) = Xn+a1Xn−1+ · · ·+an be the characteristic polynomial of µx : R′′ → R′′.
Then ai ∈ pi ⊂ p by (10.1), and F (x) = 0 by (10.2).

Set K := Frac(R). Say F = GH with G, H ∈ K[X] monic. By (14.4) the
coefficients of G, H lie in R as R is normal. Further, F ≡ Xn (mod p). So
G ≡ Xr (mod p) and H ≡ Xn−r (mod p) for some r by unique factorization in
Frac(R/p)[X]. Hence G and H have all nonleading coefficients in p. Replace F by
a monic factor of minimal degree. Then F is the minimal polynomial of x over K.
Recall s = x/y. So s satisfies the equation

sn + b1s
n−1 + · · ·+ bn = 0 with bi := ai/y

i ∈ K. (14.6.1)

Conversely, any such equation yields one of the same degree for x as y ∈ R ⊂ K.
So (14.6.1) is the minimal polynomial of s over K. So all bi are in R by (14.5).

Recall y /∈ p. Then bi ∈ p as ai = biyi ∈ p. So sn ∈ pR′ ⊂ qR′ ⊂ q′. So s ∈ q′, a
contradiction. Hence y ∈ p. Thus pR′

q′ ∩ R ⊂ p. But the opposite inclusion holds
trivially. Thus pR′

q′ ∩R = p.
Hence, there is a prime p′′ of R′

q′ with p′′ ∩ R = p by (3.10). Then p′′ lies in
q′R′

q′ as it is the only maximal ideal. Set p′ := p′′ ∩ R′. Then p′ ∩ R = p, and
p′ ⊂ q′ by (11.12)(2), as desired. !
Lemma (14.7). — Always, a minimal prime consists entirely of zerodivisors.

Proof: Let R be the ring, p the minimal prime. Then Rp has only one prime
pRp by (11.12)(2). So by the Scheinnullstellensatz (3.14), pRp consists entirely
of nilpotents. Hence, given x ∈ p, there is s ∈ R − p with sxn = 0 for some n ≥ 1.
Take n minimal. Then sxn−1 -= 0, but (sxn−1)x = 0. Thus x is a zerodivisor. !
Theorem (14.8) (Going-down for flat modules). — Let R→ R′ be a map of rings,
M ′ a finitely generated R′-module, p ! q nested primes of R, and q′ a prime
of Supp(M ′) lying over q. Assume M ′ is flat over R. Then there is a prime
p′ ∈ Supp(M ′) lying over p and contained in q′.

Proof: By (13.48), the map Supp(M ′
q′) → Spec(Rq) is surjective. But pRq is

prime and lies over p by (11.12)(2). Thus there’s p′ ∈ Supp(M ′
q′) lying over p.

However, M ′
q′ = M ′ ⊗ R′

q′ by (12.10). Also Spec(R′
q′) is equal to the set of

primes contained in q′ by (13.25). So Supp(M ′
q′) = Supp(M ′) ∩ Spec(R′

q′) by
(13.49). Thus p′ ∈ Supp(M ′) and p′ ⊂ q′, as desired.
Alternatively, M ′ ⊗R (R/p) is flat over R/p by (9.22). Also, (8.27)(1) yields

M ′ ⊗R (R/p) = M ′/pM ′. So replacing R by R/p and M ′ by M ′/pM ′, we may
assume R is a domain and p = 〈0〉. By (13.5), q′ contains a minimal prime
p′ ∈ Supp(M ′) = V(Ann(M ′)). It suffices show that p′ lies over 〈0〉 in R.

Replace R′ by R′/Ann(M ′). Then p′ is a minimal prime R′. Say m′
1, . . . ,m

′
n

generate M ′. Define a map α : R′ →M ′n by α(x′) := (x′m′
1, . . . , x

′m′
n). Then α is

injective as Ann(M ′) = 〈0〉.
Given x ∈ R nonzero, note µx : R→ R is injective. SinceM ′ is flat, µx : M ′ →M ′

is also injective. So µx : M ′n →M ′n is injective too. Hence µx : R′ → R′ is injective.
So x /∈ p′ by (14.7). Thus p′ lies over 〈0〉 in R, as desired. !
(14.9) (Arbitrary normal rings). — An arbitrary ring R is said to be normal if Rp

is a normal domain for every prime p. If R is a domain, then this definition recovers
that in (10.19). Indeed, if R is normal, then Rp is too for all p, as localization
commutes with normalization by (11.32). Conversely, say R′ is the normalization
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of R. Then (R′/R)p = 0 for all p by (12.13). So R′/R = 0 by (13.8).

B. Exercises

Exercise (14.10) . — Let R′/R be an integral extension of rings, x ∈ R. Show:
(1) if x ∈ R′×, then x ∈ R× and (2) rad(R) = rad(R′) ∩R.

Exercise (14.11) . — Let ϕ : R → R′ be a map of rings. Assume R′ is integral
over R. Show the map Spec(ϕ) : Spec(R′)→ Spec(R) is closed.

Exercise (14.12) . — Let R′/R be an integral extension of rings, ρ : R→ Ω a map
to an algebraically closed field. Show ρ extends to a map ρ′ : R′ → Ω. First, assume
R′/R is an algebraic extension of fields K/k, and use Zorn’s lemma on the set S of
all extensions λ : L→ Ω of ρ where L ⊂ K is a subfield containing k.

Exercise (14.13) (E. Artin) . — Form the algebraic closure of a field k as follows:

(1) Let X be a variable, S the set of all monic F ∈ k[X], and XF a variable for
each F ∈ S. Set P := k[{XF }] and a := 〈{F (XF )}〉. Show 1 /∈ a. Conclude
k has an algebraic extension k1 in which each F ∈ S has a root.

(2) Apply (1) repeatedly to obtain a chain k0 := k ⊂ k1 ⊂ k2 ⊂ · · · such that
every monic polynomial with coefficients in kn has a root in kn+1 for all n.
Set K := lim−→ kn. Show K is an algebraic closure of k.

(3) Using (14.12), show any two algebraic closures K1,K2 are k-isomorphic.

Exercise (14.14) . — Let R be a domain, R its integral closure, K := Frac(R).
Let L/K be a field extension, y ∈ L algebraic with monic minimal polynomial
G(X) ∈ K[X]. Show that y is integral over R if and only if G ∈ R[X].

Exercise (14.15) . — Let R′/R be an integral extension of rings, p a prime of R.
Assume R′ has just one prime p′ over p. Show (1) that p′R′

p is the only maximal
ideal of R′

p, (2) that R
′
p′ = R′

p, and (3) that R′
p′ is integral over Rp.

Exercise (14.16) . — Let R′/R be an integral extension of rings, p ⊂ R a prime,
p′, q′ ⊂ R′ two distinct primes lying over p. Assume R′ is a domain, or simply,
R′

p ⊂ R′
p′ . Show that R′

p′ is not integral over Rp. Show that, in fact, given
y ∈ q′ − p′, then 1/y ∈ R′

p′ is not integral over Rp.

Exercise (14.17) . — Let k be a field, and X an indeterminate. Set R′ := k[X],
and Y := X2, and R := k[Y ]. Set p := (Y − 1)R and p′ := (X − 1)R′. Is R′

p′

integral over Rp? Treat the case char(k) = 2 separately. Explain.

Exercise (14.18) . — Let R be a ring, G be a finite group acting on R, and p a
prime of RG. Let P denote the set of primes P of R whose contraction in RG is p.
Prove: (1) G acts transitively on P; and (2) P is nonempty and finite.

Exercise (14.19) . — Let R be a normal domain, K its fraction field, L/K a finite
field extension, R the integral closure of R in L. Prove that only finitely many
primes P of R lie over a given prime p of R as follows.

First, assume L/K is separable, and use (14.18). Next, assume L/K is purely
inseparable, and show that P is unique; in fact, P = {x ∈ R | xpn ∈ p for some n}
where p denotes the characteristic of K. Finally, do the general case.
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Exercise (14.20) . — Let R be a ring. For i = 1, 2, let Ri be an algebra, Pi ⊂ Ri

a subalgebra. Assume P1, P2, R1, R2 are R-flat domains. Denote their fraction
fields by L1, L2, K1, K2. Form the following diagram, induced by the inclusions:

L1 ⊗R L2 −→ K1 ⊗R K28
8β

P1 ⊗R P2
α−→ R1 ⊗R R2

(1) Show K1 ⊗K2 is flat over P1 ⊗ P2. (2) Show β is injective.
(3) Given a minimal prime p of R1 ⊗R2, show α−1p = 0 if P1 ⊗ P2 is a domain.

Exercise (14.21) . — Let R be a reduced ring, Σ the set of minimal primes. Prove
that z.div(R) =

⋃
p∈Σ p and that Rp = Frac(R/p) for any p ∈ Σ.

Exercise (14.22) . — Let R be a ring, Σ the set of minimal primes, and K the
total quotient ring. Assume Σ is finite. Prove these three conditions are equivalent:

(1) R is reduced.
(2) z.div(R) =

⋃
p∈Σ p, and Rp = Frac(R/p) for each p ∈ Σ.

(3) K/pK = Frac(R/p) for each p ∈ Σ, and K =
∏

p∈Σ K/pK.

Exercise (14.23) . — Let A be a reduced local ring with residue field k and finite
set Σ of minimal primes. For each p ∈ Σ, set K(p) := Frac(A/p). Let P be a finitely
generated module. Show that P is free of rank r if and only if dimk(P ⊗A k) = r
and dimK(p)(P ⊗A K(p)) = r for each p ∈ Σ.

Exercise (14.24) . — Let A be a reduced local ring with residue field k and a finite
set of minimal primes. Let P be a finitely generated module, B an A-algebra with
Spec(B) → Spec(A) surjective. Show that P is a free A-module of rank r if and
only if P ⊗B is a free B-module of rank r.

Exercise (14.25) . — Let R be a ring, p1 . . . , pr all its minimal primes, and K the
total quotient ring. Prove that these three conditions are equivalent:

(1) R is normal.
(2) R is reduced and integrally closed in K.
(3) R is a finite product of normal domains Ri.

Assume the conditions hold. Prove the Ri are equal to the R/pj in some order.

Exercise (14.26) . — Let X be a nonempty compact Hausdorff space, R the ring of
R-valued continuous functions on X, and X̃ ⊂ Spec(R) the set of maximal ideals.
Give X̃ the induced topology. For all x ∈ X, set mx := {f ∈ R | f(x) = 0}. Show:

(1) Given a maximal ideal m, set V := {x ∈ X | f(x) = 0 for all f ∈ m}. Then
V -= ∅; otherwise, there’s a contradiction. Moreover, m = mx for any x ∈ V .

(2) Urysohn’s Lemma [15, Thm. 3.1, p. 207] implies mx -= my if x -= y..

(3) For any f ∈ R, set Uf = {x ∈ X | f(x) -= 0} and Uf = {m ∈ X̃ | f /∈ m}.
Then mx ∈ X̃ for any x ∈ X, and x ∈ Uf if and only if mx ∈ Uf ; moreover,
the Uf and, by Urysohn’s Lemma, the Uf form bases of the topologies.

(4) Define ϕ : X → X̃ by ϕ(x) = mx. Then ϕ is a well-defined homeomorphism.
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15. Noether Normalization

The Noether Normalization Lemma describes the basic structure of a finitely
generated algebra over a field; namely, given a chain of ideals, there is a polynomial
subring over which the algebra is module finite, and the ideals contract to ideals
generated by initial segments of variables. After proving this lemma, we derive
several versions of the Nullstellensatz. The most famous is Hilbert’s; namely, the
radical of any ideal is the intersection of all the maximal ideals containing it.

Then we study the (Krull) dimension: the maximal length of any chain of primes.
We prove our algebra is catenary; that is, if two chains have the same ends and
maximal lengths, then the lengths are the same. Further, if the algebra is a domain,
then its dimension is equal to the transcendence degree of its fraction field.

In an appendix, we give a simple direct proof of the Hilbert Nullstellensatz. At
the same time, we prove it in significantly greater generality: for Jacobson rings.

A. Text

Lemma (15.1) (Noether Normalization). — Let k be a field, R := k[x1, . . . , xn] a
nonzero finitely generated k-algebra, a1 ⊂ · · · ⊂ ar nested proper ideals of R. Then
there are algebraically independent elements t1, . . . , tν ∈ R with ν ≤ n such that

(1) R is module finite over P := k[t1, . . . tν ] and
(2) for i = 1, · · · , r, there is an hi such that ai ∩ P = 〈t1, . . . , thi〉.

Proof: Let R′ := k[X1, . . . , Xn] be the polynomial ring, and ϕ : R′ → R the
k-algebra map with ϕXi := xi. Set a′0 := Kerϕ and a′i := ϕ−1ai for i = 1, · · · , r.
It suffices to prove the lemma for R′ and a′0 ⊂ · · · ⊂ a′r: if t′i ∈ R′ and h′

i work
here, then ti := ϕt′i+h′

0
and hi := h′

i − h′
0 work for R and the ai, because the ti are

algebraically independent by (1.17)(4), and clearly (1), (2), and ν ≤ n hold. Thus
we may assume the xi are algebraically independent.

The proof proceeds by induction on r, and shows ν := n works now.
First, assume r = 1 and a1 = t1R for some nonzero t1. Then t1 /∈ k because

a1 is proper. Suppose we have found t2, . . . , tn ∈ R so that x1 is integral over
P := k[t1, t2, . . . , tn] and so that P [x1] = R. Then (10.18) yields (1).

Further, by the theory of transcendence bases [3, (8.3), p. 526], [14, Thm. 1.1,
p. 356], the elements t1, . . . , tn are algebraically independent. Now, take x ∈ a1∩P .
Then x = t1x′ where x′ ∈ R ∩Frac(P ). Also, R ∩Frac(P ) = P , for P is normal by
(10.22) as P is a polynomial algebra. Hence a1 ∩ P = t1P . Thus (2) holds too.
To find t2, . . . , tn, we are going to choose 2i and set ti := xi − x+i1 . Then clearly

P [x1] = R. Now, say t1 =
∑

a(j)x
j1
1 · · ·xjn

n with (j) := (j1, . . . , jn) and a(j) ∈ k.
Recall t1 /∈ k, and note that x1 satisfies this equation:

∑
a(j)x

j1
1 (t2 + x+21 )j2 · · · (tn + x+n1 )jn = t1.

Set e(j) := j1 + 22j2 + · · · + 2njn. Take 2 > max{ji} and 2i := 2i. Then the e(j)
are distinct. Let e(j′) be largest among the e(j) with a(j) -= 0. Then e(j′) > 0, and
the above equation may be rewritten as follows:

a(j′)x
e(j′)
1 +

∑
e<e(j′) pex

e
1 = 0
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where pe ∈ P . Thus x1 is integral over P , as desired.
Second, assume r = 1 and a1 is arbitrary. We may assume a1 -= 0. The proof

proceeds by induction on n. The case n = 1 follows from the first case (but is
simpler) because k[x1] is a PID. Let t1 ∈ a1 be nonzero. By the first case, there
exist elements u2, . . . , un such that t1, u2, . . . un are algebraically independent and
satisfy (1) and (2) with respect to R and t1R. By induction, there are t2, . . . , tn
satisfying (1) and (2) with respect to k[u2, . . . , un] and a1 ∩ k[u2, . . . , un].

Set P := k[t1, . . . , tn]. Since R is module finite over k[t1, u2, . . . , un] and the
latter is so over P , the former is so over P by (10.17)(3). Thus (1) holds, and so
t1, . . . , tn are algebraically independent. Further, by assumption,

a1 ∩ k[t2, . . . , tn] = 〈t2, . . . , th〉
for some h. But t1 ∈ a1. So a1 ∩ P ⊃ 〈t1, . . . , th〉.

Conversely, given x ∈ a1 ∩ P , say x =
∑d

i=0 fit
i
1 with fi ∈ k[t2, . . . , tn]. Since

t1 ∈ a1, we have f0 ∈ a1 ∩ k[t2, . . . , tn]; so f0 ∈ 〈t2, . . . , th〉. Hence x ∈ 〈t1, . . . , th〉.
Thus a1 ∩ P = 〈t1, . . . , th〉. Thus (2) holds for r = 1.
Finally, assume the lemma holds for r − 1. Let u1, . . . , un ∈ R be algebraically

independent elements satisfying (1) and (2) for the sequence a1 ⊂ · · · ⊂ ar−1, and
set h := hr−1. By the second case, there exist elements th+1, . . . , tn satisfying (1)
and (2) for k[uh+1, . . . , un] and ar ∩ k[uh+1, . . . , un]. Then, for some hr,

ar ∩ k[th+1, . . . , tn] = 〈th+1, . . . , thr 〉.
Set ti := ui for 1 ≤ i ≤ h. Set P := k[t1, . . . , tn]. Then, by assumption, R is

module finite over k[u1, . . . , un], and k[u1, . . . , un] is so over P ; thus R is so over P
by (10.17)(3). Thus (1) holds, and t1, . . . , tn are algebraically independent over k.
Fix i with 1 ≤ i ≤ r. Set m := hi. Then t1, . . . , tm ∈ ai. Given x ∈ ai ∩ P , say

x =
∑

f(v)t
v1
1 · · · tvmm with (v) = (v1, . . . , vm) and f(v) ∈ k[tm+1, . . . , tn]. Then f(0)

lies in ai ∩ k[tm+1, . . . , tn]. Let’s see the latter intersection is equal to 〈0〉. It is so
if i ≤ r− 1 because it lies in ai ∩ k[um+1, . . . , un], which is equal to 〈0〉. Further, if
i = r, then, by assumption, ai ∩ k[tm+1, . . . , tn] = 〈tm+1, . . . , tm〉 = 0.

Thus f(0) = 0. Hence x ∈ 〈t1, . . . , thi〉. Thus ai ∩ P ⊂ 〈t1, . . . , thi〉. So the two
are equal. Thus (2) holds, and the proof is complete. !

Remark (15.2) (Noether Normalization over an infinite field). — In (15.1), let’s
assume k is infinite, and let’s see we can take t1, . . . , tν to be linear combinations
of x1, . . . , xn so that (1) still holds, although (2) need not.

To prove (1), induct on n. If n = 0, then (1) is trivial.
So assume n ≥ 1. If x1, . . . , xn are algebraically independent over k, then (1)

holds with ν := n and ti := xi for all i.
So assume there’s a nonzero F ∈ k[X1, . . . , Xn] with F (x1, . . . , xn) = 0. Say

F = Fd + · · ·+F0 where Fd -= 0 and where each Fi is homogeneous of degree i;
that is, Fi is a linear combination of monomials of degree i. Then d > 0. But k is
infinite. So by (3.28)(1) with S = k×, there are ai ∈ k× with Fd(a1, a2, . . . , an) -= 0.
Since Fd is homogeneous, we may replace ai by ai/a1. Set a := Fd(1, a2, . . . , an).
Set yi := xi − aix1 for 2 ≤ i ≤ n, and set R′ := k[y2, . . . , , yn]. Then

0 = F (x1, x2, . . . , xn) = F (x1, y2 + a2x1, . . . , yn + anx1)

= axd
1 +A1x

d−1
1 + · · ·+Ad with 0 -= a ∈ k and each Ai ∈ R′.

So x1 is integral over R′. But R′[x1] = R. So R is module finite over R′ by (10.14).
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By induction, there are linear combinations t1, . . . , tν of y2, . . . , yn such that R′

is module finite over P := k[t1, . . . , tν ]. So R is module finite over P by (10.18)(3).
And plainly, the ti are linear combinations of the xi. Thus (1) holds.

Here’s a simple example, due to P. Etingof, where (1) holds, but (2) doesn’t. Let
x be transcendental over k,. Set a := 〈x2〉. Then any “linear combination” t of x
is of the form t = ax. As (1) holds, a -= 0. So t /∈ a. Thus (2) doesn’t hold.

Proposition (15.3). — Let R be a domain, R′ an algebra-finite extension. Then
there are a nonzero f ∈ R and algebraically independent x1, . . . , xn in R′ such that
R′

f is a module-finite and integral extension of R[x1, . . . , xn]f .

Proof: Set K := Frac(R). Then K = S−1
0 R. Say R′ = R[z1 . . . , zm]. Then

S−1
0 R′ = K[z1/1, . . . , zm/1]. So by (15.1) there are y1, . . . , yn ∈ S−1

0 R′ that
are algebraically independent over K and such that S−1

0 R′ is module finite over
K[y1, . . . , yn]. Say yi = xi/g with xi ∈ R′ and g ∈ S0.
Suppose

∑
p apMp(x1, . . . , xn) = 0 in R′ with ap ∈ R and Mp a monomial. Set

dp := degMp. Then
∑

p apgdpMp(y1, . . . , yn) = 0 in S−1
0 R′. However, y1, . . . , yn

are algebraically independent over K. So apgdp = 0. So ap = 0. Thus x1, . . . , xn

are algebraically independent over R.
Each zj/1 ∈ S−1

0 R′ is integral over K[y1, . . . , yn] by (10.18). Say

(zj/1)
nj +Aj,1(zj/1)

nj−1 + · · ·+Aj,nj = 0 with Aj,k ∈ K[y1, . . . , yn].

But K = S−1
0 R and yi = xi/g. So Aj,k = Bj,k/h for some Bj,k ∈ R[x1, . . . , xn]

and h ∈ S0. So h(zj/1)nj + (Bj,1/1)(zj/1)nj−1 + · · ·+ (Bj,nj/1) = 0 in S−1
0 R′. So

there’s h′ ∈ S0 with h′(hznj

j +Bj,1z
nj−1
j + · · ·+Bj,nj

)
= 0 in R′.

Set f := h′h. Then R[x1, . . . , xn]f ⊂ R′
f by (12.12)(5)(b). Further, in R′

f ,

(zj/1)
nj + (h′Bj,1/f)(zj/1)

nj−1 + · · ·+ (h′Bj,nj/f) = 0.

But R′ = R[z1, . . . , zm], so R′
f = R[z1, . . . , zm]f . And double inclusion shows

R[z1, . . . , zm]f = Rf [z1/1, . . . , , zm/1]. Thus (10.18) implies R′
f is module finite

and integral over R[x1, . . . , xn]f . !
Theorem (15.4) (Zariski Nullstellensatz). — Let k be a field, R an algebra-finite
extension. Assume R is a field. Then R/k is a finite algebraic extension.

Proof: By the Noether Normalization Lemma (15.1)(1), R is module finite over
a polynomial subring P := k[t1, . . . , tν ]. Then R/P is integral by (10.14). As R is
a field, so is P by (14.1). So ν = 0. So P = k. Thus R/k is finite, as asserted.

Alternatively, here’s a short proof, not using (15.1). Say R = k[x1, . . . , xn]. Set
P := k[x1] and K := Frac(P ). Then R = K[x2, . . . , xn]. By induction on n, assume
R/K is finite. Suppose x1 is transcendental over k, so P is a polynomial ring.
Note R = P [x2, . . . , xn]. Hence (11.31) yields f ∈ P with Rf/Pf module finite,

so integral by (10.18). But Rf = R. Thus Pf is a field by (14.1). So f /∈ k.
Set g := 1 + f . Then 1/g ∈ Pf . So 1/g = h/fr for some h ∈ P and r ≥ 1. Then

fr = gh. But f and g are relatively prime, a contradiction. Thus x1 is algebraic
over k. Hence P = K, and K/k is finite. But R/K is finite. Thus R/k is too. !
Corollary (15.5). — Let k be a field, R := k[x1, . . . , xn] an algebra-finite extension,
and m a maximal ideal of R. Assume k is algebraically closed. Then there are
a1, . . . , an ∈ k such that m = 〈x1 − a1, . . . , xn − an〉.
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Proof: Set K := R/m. Then K is a finite extension field of k by the Zariski
Nullstellensatz (15.4). But k is algebraically closed. Hence k = K. Let ai ∈ k be
the residue of xi, and set n := 〈x1 − a1, . . . , xn − an〉. Then n ⊂ m.

Let R′ := k[X1, . . . , Xn] be the polynomial ring, and ϕ : R′ → R the k-algebra
map with ϕXi := xi. Set n′ := 〈X1 − a1, . . . , Xn − an〉. Then ϕ(n′) = n. But n′ is
maximal by (2.14). So n is maximal. Hence n = m, as desired. !

Corollary (15.6). — Let k be any field, P := k[X1, . . . , Xn] the polynomial ring,
and m a maximal ideal of P . Then m is generated by n elements.

Proof: Set K := P/m. Then K is a field. So K/k is finite by (15.4).

Induct on n. If n = 0, then m = 0. Assume n ≥ 1. Set R := k[X1] and
p := m ∩ R. Then p = 〈F1〉 for some F1 ∈ R as R is a PID. Set k1 := R/p. Then
k1 is isomorphic to the image of R in K. But K is a finite-dimensional k-vector
space. So k1 is too. So k1/k is an integral extension by (10.14). Since k is a field,
so is k1 by (14.1).

Note P/pP = k1[X2, . . . , Xn] by (1.16). But m/p is a maximal ideal. So by
induction m/p is generated by n − 1 elements, say the residues of F2, . . . , Fn ∈ m.
Then m = 〈F1, . . . , Fn〉, as desired. !

Theorem (15.7) (Hilbert Nullstellensatz). — Let k be a field, and R a finitely
generated k-algebra. Let a be a proper ideal of R. Then

√
a =

⋂
m⊃a m

where m runs through all maximal ideals containing a.

Proof: We may assume a = 0 by replacing R by R/a. Clearly
√
0 ⊂

⋂
m.

Conversely, take f /∈
√
0. Then Rf -= 0 by (11.19). So Rf has a maximal ideal n

by (2.21). Let m be its contraction in R. Now, R is a finitely generated k-algebra
by hypothesis; hence, Rf is one too owing to (11.7). Therefore, by the Zariski
Nullstellensatz (15.4), Rf/n is a finite extension field of k.

Set K := R/m. By construction, K is a k-subalgebra of Rf/n. Therefore, K is
a finite-dimensional k-vector space. So K/k is an integral extension by (10.14).
Since k is a field, so is K by (14.1). Thus m is maximal. But f/1 is a unit in Rf ;
so f/1 /∈ n. Hence f /∈ m. So f /∈

⋂
m. Thus

√
0 =

⋂
m. !

Lemma (15.8). — Let k be a field, R a finitely generated k-algebra. Assume R
is a domain. Let p0 ! · · · ! pr be a chain of primes. Set K := Frac(R) and
d := tr. degk K. Then r ≤ d, with equality if and only if the chain is maximal,
that is, it is not a proper subchain of a longer chain.

Proof: By the Noether Normalization Lemma (15.1), R is module finite over a
polynomial subring P := k[t1, . . . , tν ] such that pi ∩ P = 〈t1, . . . , thi〉 for suitable
hi. Set L := Frac(P ). Then ν = tr. degk L. But R/P is an integral extension
by (10.14). So K/L is algebraic. Hence ν = d. Now, Incomparability (14.3)(2)
yields hi < hi+1 for all i. Hence r ≤ hr. But hr ≤ ν and ν = d. Thus r ≤ d.
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If r = d, then r is maximal, as it was just proved that no chain can be longer.
Conversely, assume r is maximal. Then p0 = 〈0〉 since R is a domain. So h0 = 0.
Further, pr is maximal since pr is contained in some maximal ideal and it is prime.
So pr ∩ P is maximal by Maximality (14.3)(1). Hence hr = ν.

Suppose there is an i such that hi + 1 < hi+1. Then

(pi ∩ P ) ! 〈t1, . . . , thi+1〉 ! (pi+1 ∩ P ).

But P/(pi ∩P ) is, by (1.17)(3), equal to k[thi+1, . . . , tν ]; the latter is a polynomial
ring, so normal by (10.22)(1). Also, the extension P/(pi ∩ P ) ↪→ R/pi is integral
as P ⊂ R is. Hence, the Going-down Theorem (14.6) yields a prime p with
pi ⊂ p ⊂ pi+1 and p ∩ P = 〈t1, . . . , thi+1〉. Then pi ! p ! pi+1, contradicting the
maximality of r. Thus hi + 1 = hi+1 for all i. But h0 = 0. Hence r = hr. But
hr = ν and ν = d. Thus r = d, as desired. !
(15.9) (Krull Dimension). — Given a ring R, its (Krull) dimension dim(R) is
the supremum of the lengths r of all strictly ascending chains of primes:

dim(R) := sup{ r | there’s a chain of primes p0 ! · · · ! pr in R }.
For example, if R is a field, then dim(R) = 0; more generally, dim(R) = 0 if

and only if every minimal prime is maximal. If R is a PID, but not a field, then
dim(R) = 1, as every nonzero prime is maximal by (2.17).

Theorem (15.10). — Let k be a field, R a finitely generated k-algebra. If R is a
domain, then dim(R) = tr. degk(Frac(R)).

Proof: The assertion is an immediate consequence of (15.8). !
Example (15.11). — Let k be a field, P := k[X1, . . . , Xn], the polynomial k-algebra
in n variables. Then the transcendence degree of k(X1, . . . , Xn) over k is equal to
n. So (15.10) yields dim(P ) = n.

Let P ′ := k[Y1, . . . , Ym] be the polynomial k-algebra in m variables. Then (8.18)
yields P ⊗k P ′ = k[X1, . . . , Xn, Y1, . . . , Ym]. So dim(P ⊗k P ′) = m+ n.

Theorem (15.12). — Let k be a field, R a finitely generated k-algebra, p a prime
ideal, and m a maximal ideal. Suppose R is a domain. Then

dim(Rp) + dim(R/p) = dim(R) and dim(Rm) = dim(R).

Proof: A chain of primes p0 ! · · · ! p ! · · · ! pr in R gives rise to a pair of
chains of primes, one in Rp and one in R/p,

p0Rp ! · · · ! pRp and 0 = p/p ! · · · ! pr/p,

owing to (11.12) and to (1.9) and (2.6); conversely, every such pair arises from
a unique chain in R through p. But by (15.8), every maximal strictly ascending
chain through p is of length dim(R). The first equation follows.

Clearly dim(R/m) = 0, and so dim(Rm) = dim(R). !
(15.13) (Catenary modules and rings). — Let R be a ring, M a module. We
call M catenary if, given any two nested primes containing Ann(M), all maximal
chains of primes between the two primes have the same finite length. We call R
catenary if R is catenary as an R-module.

Note that M is catenary if and only if the ring R/Ann(M) is catenary.
Assume M is catenary. Then so is any quotient N of M as Ann(M) ⊂ Ann(N).

Further, so is the localization S−1M for any multiplicative set S, for this reason.
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As R/Ann(M) is catenary, so is S−1R/S−1 Ann(M) owing to (11.12)(2). But
plainly S−1 Ann(M) ⊂ Ann(S−1M). Thus S−1R/Ann(S−1M) is catenary.

Theorem (15.14). — Over a field, a finitely generated algebra is catenary.

Proof: Let R be the algebra, and q ⊂ p two nested primes. Replacing R by R/q,
we may assume R is a domain. Then the proof of (15.12) shows that any maximal
chain of primes 〈0〉 ! · · · ! p is of length dim(R)− dim(R/p). !

B. Exercises

Exercise (15.15) . — Let k := Fq be the finite field with q elements, and k[X,Y ]
the polynomial ring. Set F := XqY −XY q and R := k[X,Y ]

/
〈F 〉. Let x, y ∈ R

be the residues of X, Y . For every a ∈ k, show that R is not module finite over
P := k[y−ax]. (Thus, in (15.1), no k-linear combination works.) First, take a = 0.

Exercise (15.16) . — Let k be a field, and X, Y, Z variables. Set

R := k[X, Y, Z]
/
〈X2 − Y 3 − 1, XZ − 1〉,

and let x, y, z ∈ R be the residues of X, Y, Z. Fix a, b ∈ k, and set t := x+ay+ bz
and P := k[t]. Show that x and y are integral over P for any a, b and that z is
integral over P if and only if b -= 0.

Exercise (15.17) . — Let R′/R be a ring extension, X a variable, R the integral
closure of R in R′. Show R[X] is the integral closure R[X] of R[X] in R′[X].

Exercise (15.18) . — Let R be a domain, ϕ : R ↪→ R′ an algebra-finite extension.
Set ϕ∗ := Spec(ϕ). Find a nonzero f ∈ R such that ϕ∗(Spec(R′)) ⊃ D(f).

Exercise (15.19) . — Let R be a domain, R′ an algebra-finite extension. Find
a nonzero f ∈ R such that, given an algebraically closed field Ω and a ring map
ϕ : R→ Ω with ϕ(f) -= 0, there’s an extension of ϕ to R′.

Exercise (15.20) . — Let R be a domain, R′ an algebra-finite extension. Assume
rad(R) = 〈0〉. Prove rad(R′) = nil(R′). First do the case where R is a domain by
applying (15.19) with R′ := R′

g for any given nonzero g ∈ R′.

Exercise (15.21) . — Let k be a field, K an algebraically closed extension field.
Let P := k[X1, . . . , Xn] be the polynomial ring, and F, F1, . . . , Fr ∈ P . Assume F
vanishes at every zero in Kn of F1, . . . , Fr; that is, if (a) := (a1, . . . , an) ∈ Kn and
F1(a) = 0, . . . , Fr(a) = 0, then F (a) = 0 too. Prove that there are polynomials
G1, . . . , Gr ∈ P and an integer N such that FN = G1F1 + · · ·+GrFr.

Exercise (15.22) . — (1) Find an example where (15.21) fails if K isn’t required
to be algebraically closed, say with K := k := R and n := 1 and r := 1.

(2) Find an example where (15.21) fails if the Gi are all required to be in k, say
with K := k := C and n := 1 and r := 2.

Exercise (15.23) . — Let k be an algebraically closed field, P := k[X1, . . . , Xn]
the polynomial ring in n variables Xi, and V ⊂ kn the set of common zeroes of a
set of polynomials Fµ. Assume V -= ∅. Show there exist a linear subspace L ⊂ kn

and a linear map λ : kn →→ L such that λ(V ) = L.
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Exercise (15.24) . — Let R be a domain of (finite) dimension r, and p a nonzero
prime. Prove that dim(R/p) < r.

Exercise (15.25) . — Given an integral extension of rings R′/R, show

dim(R) = dim(R′). (15.25.1)

Exercise (15.26) . — Let R′/R be an integral extension of domains with R normal,
m a maximal ideal of R′. Show n := m ∩R is maximal and dim(R′

m) = dim(Rn).

Exercise (15.27) . — (1) Given a product of rings R := R′ ×R′′, show

dim(R) = max{ dim(R′), dim(R′′) }. (15.27.1)

(2) Find a ring R with a maximal chain of primes p0 ! · · · ! pr, yet r < dim(R).

Exercise (15.28) . — Let k be a field, R1 and R2 algebra-finite domains, and p a
minimal prime of R1⊗kR2. Use Noether Normalization and (14.20) to prove this:

dim
(
(R1 ⊗k R2)/p

)
= dim(R1) + dim(R2). (15.28.1)

Exercise (15.29) . — Let k be a field, R a finitely generated k-algebra, f ∈ R
nonzero. Assume R is a domain. Prove that dim(R) = dim(Rf ).

Exercise (15.30) . — Let k be a field, P := k[f ] the polynomial ring in one variable
f . Set p := 〈f〉 and R := Pp. Find dim(R) and dim(Rf ).

Exercise (15.31) . — Let R be a ring, R[X] the polynomial ring. Prove

1 + dim(R) ≤ dim(R[X]) ≤ 1 + 2dim(R).

(In particular, dim(R[X]) =∞ if and only if dim(R) =∞.)

C. Appendix: Jacobson Rings

(15.32) (Jacobson Rings). — We call a ring R Jacobson if, given any ideal a, its
radical is equal to the intersection of all maximal ideals containing it; that is,

√
a =

⋂
m⊃a m. (15.32.1)

Plainly, the nilradical of a Jacobson ring is equal to its Jacobson radical. Also,
any quotient ring of a Jacobson ring is Jacobson too. In fact, a ring is Jacobson if
and only if the the nilradical of every quotient ring is equal to its Jacobson radical.

In general, the right-hand side of (15.32.1) contains the left. So (15.32.1) holds
if and only if every f outside

√
a lies outside some maximal ideal m containing a.

Recall the Scheinnullstellensatz, (3.14): it says
√
a =

⋂
p⊃a p with p prime. Thus

R is Jacobson if and only if p =
⋂

m⊃p m for every prime p.
For example, a field k is Jacobson; in fact, a local ring A is Jacobson if and only

if its maximal ideal is its only prime. Further, a Boolean ring B is Jacobson, as
every prime is maximal by (2.31), and so trivially p =

⋂
m⊃p m for every prime p.

Finally, a PID R is Jacobson if and only if it has infinitely many maximal ideals;
in particular, Z and a polynomial ring in one variable over a field are Jacobson.
Indeed, R is a UFD, and by (15.9), every nonzero prime is maximal. Given a
nonzero x ∈ R, say x =

∏r
i=1 p

ni
i ; then owing to (2.25)(1), the only maximal

ideals containing x are the 〈pi〉. Thus the next lemma does the trick.
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Lemma (15.33). — Let R be a 1-dimensional domain, {mλ}λ∈Λ its set of maximal
ideals. Assume every nonzero element lies in only finitely many mλ. Then R is
Jacobson if and only if Λ is infinite.

Proof: If Λ is finite, take a nonzero xλ ∈ mλ for each λ, and set x :=
∏

xλ. Then
x -= 0 and x ∈

⋂
mλ. But

√
〈0〉 = 〈0〉 as R is a domain. So

√
〈0〉 -=

⋂
mλ. Thus R

is not Jacobson.
If Λ is infinite, then

⋂
mλ = 〈0〉 by hypothesis. But every nonzero prime is

maximal as R is 1-dimensional. Thus p =
⋂

mλ⊃p mλ for every prime p. !

Proposition (15.34). — A ring R is Jacobson if and only if, for any nonmaximal
prime p and any f /∈ p, the extension pRf is not maximal.

Proof: Assume R is Jacobson. Take a nonmaximal prime p and an f /∈ p. Then
f /∈ m for some maximal ideal m containing p. So pRf is not maximal by (11.12).

Conversely, let a be an ideal, f /∈
√
a. Then (R/a)f -= 0. So there is a maximal

ideal n in (R/a)f . Let m be its contraction in R. Then m ⊃ a and f /∈ m. Further,
(4.8) and (12.15) yield Rf/mRf = (R/a

/
m/a)f = (R/a)f

/
n. Since n is maximal,

Rf/mRf is a field. So m is maximal by hypothesis. Thus R is Jacobson. !
Lemma (15.35). — Let R′/R be an extension of domains. Assume R′ = R[x] for
some x ∈ R′ and there is y ∈ R′ with R′

y a field. Then there is z ∈ R with Rz a
field and x algebraic over Rz. Further, if R is Jacobson, then R and R′ are fields.

Proof: Set Q := Frac(R). Then Q ⊂ R′
y, so R′

y = R[x]y ⊂ Q[x]y ⊂ R′
y. Hence

Q[x]y = R′
y. So Q[x]y is a field. Now, if x is transcendental over Q, then Q[x] is a

polynomial ring, so Jacobson by (15.32); whence, Q[x]y is not a field by (15.34),
a contradiction. Thus x is algebraic over Q. Hence y is algebraic over Q too.

Let a0xn + · · ·+ an = 0 and b0ym + · · ·+ bm = 0 be equations of minimal degree
with ai, bj ∈ R. Set z := a0bm. Then z -= 0. Further,

1/y = −a0(b0ym−1 + · · ·+ bm−1)/z ∈ Rz[x].

Hence R[x]y ⊂ Rz[x] ⊂ R′
y. So Rz[x] = R′

y. Therefore Rz[x] is a field too. But
xn + (a1bm/z)xn−1 + · · ·+ (anbm/z) = 0, so is an equation of integral dependence
of x on Rz. So Rz[x] is integral over Rz (10.18) . Hence Rz is a field by (14.1).
Further, if R is Jacobson, then 〈0〉 is a maximal ideal by (15.34), and so R is a

field. Hence R = Rz. Thus R′ is a field by (14.1). !
Theorem (15.36) (Generalized Hilbert Nullstellensatz). — Let R be a Jacobson
ring, R′ an algebra-finite algebra, and m′ a maximal ideal of R′. Set m := m′c.
Then (1) m is maximal, and R′/m′ is finite over R/m, and (2) R′ is Jacobson.

Proof: First, assume R′ = R[x] for some x ∈ R′. Given a prime q ⊂ R′ and a
y ∈ R′ − q, set p := qc and R1 := R/p and R′

1 := R′/q. Then R1 is Jacobson by
(15.32). Suppose (R′

1)y is a field. Then by (15.35), R′
1/R1 is a finite extension of

fields. Thus q and p are maximal. To obtain (1), simply take q := m′ and y := 1.
To obtain (2), take q nonmaximal, so R′

1 is not a field; conclude (R′
1)y is not a field;

whence, (15.34) yields (2).
Second, assume R′ = R[x1, . . . , xn] with n ≥ 2. Set R′′ := R[x1, . . . , xn−1] and

m′′ := m′c ⊂ R′′. Then R′ = R′′[xn]. By induction on n, we may assume (1) and
(2) hold for R′′/R. So the first case for R′/R′′ yields (2) for R′; by the same token,
m′′ is maximal, and R′/m′ is finite over R′′/m′′. Hence, m is maximal, and R′′/m′′
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is finite over R/m by (1) for R′′/R. Finally, (10.16) implies that R′/m′ is finite
over R/m, as desired. !

Example (15.37). — Part (1) of (15.36) may fail if R is not Jacobson, even if
R′ := R[Y ] is the polynomial ring in one variable Y over R. For example, let k be
a field, and R := k[[X]] the formal power series ring. According to (3.8), the ideal
m′ := 〈1−XY 〉 is maximal, but m′c is 〈0〉, not 〈X〉.

D. Appendix: Exercises

Exercise (15.38) . — Let X be a topological space. We say a subset Y is locally
closed if Y is the intersection of an open set and a closed set; equivalently, Y is
open in its closure Y ; equivalently, Y is closed in an open set containing it.

We say a subset X0 of X is very dense if X0 meets every nonempty locally
closed subset Y . We say X is Jacobson if its set of closed points is very dense.

Show that the following conditions on a subset X0 of X are equivalent:

(1) X0 is very dense.
(2) Every closed set F of X satisfies F ∩X0 = F .
(3) The map U 2→ U ∩X0 from the open sets of X to those of X0 is bijective.

Exercise (15.39) . — Let R be a ring, X := Spec(R), and X0 the set of closed
points of X. Show that the following conditions are equivalent:

(1) R is a Jacobson ring.
(2) X is a Jacobson space.
(3) If y ∈ X is a point such that {y} is locally closed, then y ∈ X0.

Exercise (15.40) . — Why is a field K finite if it’s an algebra-finite Z-algebra?

Exercise (15.41) . — Let P := Z[X1, . . . , Xn] be the polynomial ring. Assume
F ∈ P vanishes at every zero in Kn of F1, . . . , Fr ∈ P for every finite field K; that
is, if (a) := (a1, . . . , an) ∈ Kn and F1(a) = 0, . . . , Fr(a) = 0 in K, then F (a) = 0
too. Prove there are G1, . . . , Gr ∈ P and N ≥ 1 with FN = G1F1 + · · ·+GrFr.

Exercise (15.42) . — Prove that a ring R is Jacobson if and only if each algebra-
finite algebra R′ that is a field is module finite over R.

Exercise (15.43) . — Prove a ring R is Jacobson if and only if each nonmaximal
prime p is the intersection of the primes that properly contain p.

Exercise (15.44) . — Let R be a Jacobson ring, p a prime, f ∈ R− p. Prove that
p is the intersection of all the maximal ideals containing p but not f .

Exercise (15.45) . — Let R be a ring, R′ an algebra. Prove that if R′ is integral
over R and R is Jacobson, then R′ is Jacobson.

Exercise (15.46) . — Let R be a Jacobson ring, S a multiplicative subset, f ∈ R.
True or false: prove or give a counterexample to each of the following statements.

(1) The localized ring Rf is Jacobson.
(2) The localized ring S−1R is Jacobson.
(3) The filtered direct limit lim−→Rλ of Jacobson rings is Jacobson.
(4) In a filtered direct limit of rings Rλ, necessarily lim−→ rad(Rλ) = rad(lim−→Rλ).
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Exercise (15.47) . — Let R be a reduced Jacobson ring with a finite set Σ of
minimal primes, and P a finitely generated module. Show that P is locally free of
rank r if and only if dimR/m(P/mP ) = r for any maximal ideal m.
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Often in a ring, every ideal is finitely generated; if so, the ring is said to be
Noetherian. Examples include any PID and any field. We characterize Noetherian
rings as those in which every ascending chain of ideals stabilizes, or equivalently, in
which every nonempty set of ideals has a member maximal under inclusion.

We prove the Hilbert Basis Theorem: if a ring is Noetherian, then so is any
finitely generated algebra over it. We define and characterize Noetherian modules
similarly, and we prove that, over a Noetherian ring, it is equivalent for a module to
be Noetherian, to be finitely generated, or to be finitely presented. Conversely, given
a Noetherian R-module M , we prove R/Ann(M) is a Noetherian ring, over which
M is a finitely generated module. Lastly, we study Artinian rings and modules; in
them, by definition, every descending chain of ideals or of submodules, stabilizes.

In an appendix, we discuss two types of topological spaces: irreducible and
Noetherian. By definition, in the former, any two nonempty open sets meet, and
in the latter, the open sets satisfy the acc. We prove that a Noetherian space
is the union of finitely many irreducible components, which are the maximal
irreducible subspaces. We prove that Spec(R) is Noetherian if R is, and that its
irreducible components are the V(p) with p a minimal prime.

Lastly, we prove Chevalley’s Theorem: given a map of rings, whose source is
Noetherian and whose target is algebra finite over it, the induced map on their
Spec’s preserves the constructible sets, which are the finite unions of the subsets
of the form the intersection of an open set and a closed set.

A. Text

(16.1) (Noetherian rings). — We call a ring Noetherian if every ideal is finitely
generated. For example, a Principal Ideal Ring (PIR) is, trivially, Noetherian.

Here are two standard examples of non-Noetherian rings. More are given in
(16.6), (16.56), (16.31), (16.66), (18.24), and (26.11)(2).

First, form the polynomial ring k[X1, X2, . . . ] in infinitely many variables. It is
non-Noetherian as 〈X1, X2, . . . 〉 is not finitely generated (but the ring is a UFD).

Second, in the polynomial ring k[X,Y ], form this subring R and its ideal a:

R :=
{
F := a+XG | a ∈ k and G ∈ k[X,Y ]

}
and

a := 〈X, XY, XY 2, . . . 〉.
Then a is not generated by any F1, . . . , Fm ∈ a. Indeed, let n be the highest power
of Y occurring in any Fi. Then XY n+1 /∈ 〈F1, . . . , Fm〉. Thus R is non-Noetherian.

Exercise (16.2) . — Let M be a finitely generated module over an arbitrary ring.
Show every set that generates M contains a finite subset that generates.

Definition (16.3). — Given a ring, we say the ascending chain condition (acc)
is satisfied if every ascending chain of ideals a0 ⊂ a1 ⊂ · · · stabilizes; that is, there
is a j ≥ 0 such that aj = aj+1 = · · · .

We say the maximal condition (maxc) is satisfied if every nonempty set of
ideals S contains ones maximal for inclusion, that is, properly contained in no
other in S.
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Lemma (16.4). — In a ring, the acc is satisfied if and only if maxc is satisfied.

Proof: Let a0 ⊂ a1 ⊂ · · · be a chain of ideals. If aj is maximal, then trivially
aj = aj+1 = · · · . Thus maxc implies acc.

Conversely, given a nonempty set of ideals S with no maximal member, there’s
a0 ∈ S; for each j ≥ 0, there’s aj+1 ∈ S with aj ! aj+1. So the Axiom of Countable
Choice provides an infinite chain a0 ! a1 ! · · · . Thus acc implies maxc. !
Proposition (16.5). — The following conditions on a ring are equivalent:

(1) the ring is Noetherian; (2) the acc is satisfied; (3) the maxc is satisfied.

Proof: Assume (1) holds. Let a0 ⊂ a1 ⊂ · · · be a chain of ideals. Set a :=
⋃
an.

Clearly, a is an ideal. So by hypothesis, a is finitely generated, say by x1, . . . , xr.
For each i, there is a ji with xi ∈ aji . Set j := max{ji}. Then xi ∈ aj for all i. So
a ⊂ aj ⊂ aj+1 ⊂ · · · ⊂ a. So aj = aj+1 = · · · . Thus (2) holds.

Assume (2) holds. Then (3) holds by (16.4).
Assume (3) holds. Let a be an ideal, xλ for λ ∈ Λ generators, S the set of ideals

generated by finitely many xλ. Let b be a maximal element of S; say b is generated
by xλ1 , . . . , xλm . Then b ⊂ b + 〈xλ〉 for any λ. So by maximality, b = b + 〈xλ〉.
Hence xλ ∈ b. So b = a; whence, a is finitely generated. Thus (1) holds. !
Example (16.6). — In the field of rational functions k(X,Y ), form this ring:

R := k[X, Y, X/Y, X/Y 2, X/Y 3, . . . ].

Then R is non-Noetherian by (16.5). Indeed, X does not factor into irreducibles:
X = (X/Y ) · Y and X/Y = (X/Y 2) · Y and so on. Correspondingly, there is an
ascending chain of ideals that does not stabilize:

〈X〉 ! 〈X/Y 〉 ! 〈X/Y 2〉 ! · · · .

Proposition (16.7). — Let R be a Noetherian ring, S a multiplicative subset, a an
ideal. Then R/a and S−1R are Noetherian.

Proof: If R satisfies the acc, so do R/a and S−1R by (1.9) and by (11.12)(1).
Alternatively, any ideal b/a of R/a is, clearly, generated by the images of gener-

ators of b. Similarly, any ideal b of S−1R is generated by the images of generators
of ϕ−1

S b by (11.11)(1)(b). !
Proposition (16.8) (Cohen). — A ring R is Noetherian if every prime is finitely
generated.

Proof: Suppose there are non-finitely-generated ideals. Given a nonempty set
of them {aλ} that is linearly ordered by inclusion, set a :=

⋃
aλ. If a is finitely

generated, then all the generators lie in some aλ, so generate aλ; so aλ = a, a
contradiction. Thus a is non-finitely-generated. Hence, by Zorn’s Lemma, there is
a maximal non-finitely-generated ideal p. In particular, p -= R.

Assume every prime is finitely generated. Then there are a, b ∈ R−p with ab ∈ p.
So p + 〈a〉 is finitely generated, say by x1 + w1a, . . . , xn + wna with xi ∈ p. Then
{x1, . . . , xn, a} generate p+ 〈a〉.

Set b = Ann
(
(p+ 〈a〉)/p

)
. Then b ⊃ p+ 〈b〉 and b /∈ p. So b is finitely generated,

say by y1, . . . , ym. Take z ∈ p. Then z ∈ p+ 〈a〉, so write

z = a1x1 + · · ·+ anxn + ya

with ai, y ∈ R. Then ya ∈ p. So y ∈ b. Hence y = b1y1 + · · ·+ bmym with bj ∈ R.
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Thus p is generated by {x1, . . . , xn, ay1, . . . , aym}, a contradiction. Thus there are
no non-finitely-generated ideals; in other words, R is Noetherian. !
Lemma (16.9). — If a ring R is Noetherian, then so is the polynomial ring R[X].

Proof: By way of contradiction, assume there is an ideal a of R[X] that is not
finitely generated. Set a0 := 〈0〉. For each i ≥ 1, choose inductively Fi ∈ a−ai−1 of
least degree di. Set ai := 〈F1, . . . , Fi〉. Let ai be the leading coefficient of Fi, and
b the ideal generated by all the ai. As R is Noetherian, b is finitely generated. So
b = 〈a1, . . . , an〉 for some n by (16.2). Thus an+1 = r1a1 + · · ·+ rnan with ri ∈ R.
By construction, di ≤ di+1 for all i. Set

F := Fn+1 − (r1F1X
dn+1−d1 + · · ·+ rnFnX

dn+1−dn).

Then deg(F ) < dn+1, so F ∈ an. Therefore, Fn+1 ∈ an, a contradiction. !
Theorem (16.10) (Hilbert Basis). — Let R be a Noetherian ring, R′ a finitely
generated algebra. Then R′ is Noetherian.

Proof: Say x1, . . . , xr generate R′ over R, and let P := R[X1, . . . , Xr] be the
polynomial ring in r variables. Then P is Noetherian by (16.9) and induction
on r. Assigning xi to Xi defines an R-algebra map P → R′, and obviously, it is
surjective. Hence R′ is Noetherian by (16.7). !
(16.11) (Noetherian modules). — We call a module M Noetherian if every
submodule is finitely generated. In particular, a ring is Noetherian as a ring if and
only if it is Noetherian as a module, because its submodules are just the ideals.

We say the ascending chain condition (acc) is satisfied inM if every ascending
chain of submodules M0 ⊂ M1 ⊂ · · · stabilizes. We say the maximal condition
(maxc) is satisfied in M if every nonempty set of submodules contains ones maximal
under inclusion. It is simple to generalize (16.5): These conditions are equivalent:

(1) M is Noetherian; (2) acc is satisfied in M ; (3) maxc is satisfied in M .

Lemma (16.12). — Let R be a ring, M a module, and N a submodule. Nested
submodules M1 ⊂M2 of M are equal if both these equations hold:

M1 ∩N = M2 ∩N and (M1 +N)/N = (M2 +N)/N.

Proof: Given m2 ∈ M2, there is m1 ∈ M1 with n := m2 − m1 ∈ N . Then
n ∈M2 ∩N = M1 ∩N . Hence m2 ∈M1. Thus M1 = M2. !
Proposition (16.13). — Let R be a ring, M a module, N a submodule.

(1) Then M is finitely generated if N and M/N are finitely generated.
(2) Then M is Noetherian if and only if N and M/N are Noetherian.

Proof: Assertion (1) is equivalent to (5.5) owing to (5.2).
To prove (2), first assume M is Noetherian. A submodule N ′ of N is also a

submodule of M , so N ′ is finitely generated; thus N is Noetherian. A submodule of
M/N is finitely generated as its inverse image in M is so; thus M/N is Noetherian.

Conversely, assume N and M/N are Noetherian. Let P be a submodule of M .
Then P ∩N and (P +N)

/
N are finitely generated. But P/(P ∩N) ∼−→ (P +N)/N

by (4.8.2). So (1) implies P is finitely generated. Thus M is Noetherian.
Here is a second proof of (2). First assume M is Noetherian. Then any ascending

chain in N is also a chain in M , so it stabilizes. And any chain in M/N is the image
of a chain in M , so it too stabilizes. Thus N and M/N are Noetherian.
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Conversely, assume N and M/N are Noetherian. Given M1 ⊂ M2 ⊂ · · · ⊂ M ,
both (M1 ∩N) ⊂ (M2 ∩N) ⊂ · · · and (M1+N)/N ⊂ (M2+N)/N ⊂ · · · stabilize,
say Mj ∩ N = Mj+1 ∩ N = · · · and (Mj + N)/N = (Mj+1 + N)/N = · · · . Then
Mj = Mj+1 = · · · by (16.12). Thus M is Noetherian. !
Corollary (16.14). — Modules M1, . . . ,Mr are Noetherian if and only if their direct
sum M1 ⊕ · · ·⊕Mr is Noetherian.

Proof: The sequence 0 → M1 → M1 ⊕ (M2 ⊕ · · · ⊕Mr) → M2 ⊕ · · · ⊕Mr → 0
is exact. So the assertion results from (16.13)(2) by induction on r. !
Theorem (16.15). — Let R be a Noetherian ring, and M a module. Then the
following conditions on M are equivalent:

(1) M is Noetherian; (2) M is finitely generated; (3) M is finitely presented.

Proof: Assume (2). Then there is an exact sequence 0 → K → Rn → M → 0.
Now, Rn is Noetherian by (16.14) and by (16.11). Hence K is finitely generated,
so (3) holds; further, (1) holds by (16.13)(2). Trivially, (1) or (3) implies (2). !
Theorem (16.16). — Let R be a ring, M a module. Set R′ := R/Ann(M). Then
M is Noetherian if and only if R′ is Noetherian and M is finitely generated.

Proof: First, assume M is Noetherian. Say m1, . . . ,mr generate M . Define
α : R → M⊕r by α(x) := (xm1, . . . , xmr). Plainly Ker(α) = Ann(M). Hence
α induces an injection R′ ↪→ M⊕r. But M⊕r is Noetherian by (16.14). Thus
(16.13)(2) implies that R′ is Noetherian. Trivially, M is finitely generated.

Conversely, assume R′ is Noetherian and M is finitely generated. Apply (16.15)
over R′. Thus M is Noetherian. !
Lemma (16.17) (Artin–Tate [2, Thm. 1]). — Let R′/R and R′′/R′ be extensions
of rings. Assume that R is Noetherian, that R′′/R is algebra finite, and that R′′/R′

either is module finite or is integral. Then R′/R is algebra finite.

Proof: Since R′′/R is algebra finite, so is R′′/R′. Hence, the two conditions on
R′′/R′ are equivalent by (10.18).

Say x1, . . . , xm generate R′′ as an R-algebra, and y1, . . . , yn generate R′′ as an
R′-module. Then there exist zij ∈ R′ and zijk ∈ R′ with

xi =
∑

j zijyj and yiyj =
∑

k zijkyk. (16.17.1)

Set R′
0 := R[{zij , zijk}] ⊂ R′′. Since R is Noetherian, so is R′

0 by (16.10).
Any x ∈ R′′ is a polynomial in the xi with coefficients in R. So (16.17.1) implies

x is a linear combination of the yj with coefficients in R′
0. Thus R′′/R′

0 is module
finite. But R′

0 is a Noetherian ring. So R′′ is a Noetherian R′
0-module by (16.15),

(2)⇒(1). But R′ is an R′
0-submodule of R′′. So R′/R′

0 is module finite by (16.11).
So there are w1 . . . , wp ∈ R′ such that, if x ∈ R′, then x =

∑
akwk with ak ∈ R′

0.
But R′

0 := R[{zij , zijk}] ⊂ R′′. Thus R′ = R[{zij , zijk, wk}] ⊂ R′′, as desired. !
Theorem (16.18) (Noether on Invariants). — Let R be a Noetherian ring, R′ an
algebra-finite extension, and G a finite group of R-automorphisms of R′. Then the
subring of invariants R′G is also algebra finite; in other words, every invariant can
be expressed as a polynomial in a certain finite number of “fundamental” invariants.

Proof: By (10.35), R′ is integral over R′G. So (16.17) yields the assertion. !
121



Chain Conditions (16.19)
/
(16.24) Exercises

(16.19) (Artin–Tate proof [2, Thm. 2] of the Zariski Nullstellensatz (15.4)). —
In the setup of (15.4), take a transcendence base x1, . . . , xr of R/k. Then R is
integral over k(x1, . . . , xr) by definition of transcendence basis [3, (8.3), p. 526]. So
k(x1, . . . , xr) is algebra finite over k by (16.17), say k(x1, . . . , xr)k[y1, . . . , ys].

Suppose r ≥ 1. Write yi = Fi/Gi with Fi, Gi ∈ k[x1, . . . , xr]. Let H be an
irreducible factor of G1 · · ·Gs + 1. Plainly H " Gi for all i.

Say H−1 = P (y1, . . . , ys) where P is a polynomial. Then H−1 = Q/(G1 · · ·Gs)m

for some Q ∈ k[x1, . . . , xr] and m ≥ 1. But H " Gi for all i, a contradiction. Thus
r = 0. So (10.18) implies R/k is module finite, as desired.

Example (16.20). — Set δ :=
√
−5, set R := Z[δ], and set p := 〈2, 1 + δ〉. Let’s

prove that p is finitely presented and that pRq is free of rank 1 over Rq for every
maximal ideal q of R, but that p is not free. Thus the equivalent conditions of
(13.15) do not imply that P is free.

Since Z is Noetherian and since R is finitely generated over Z, the Hilbert Basis
Theorem (16.10) yields that R is Noetherian. So since p is generated by two
elements, (16.15) yields that p is finitely presented.

Recall from [3, pp. 417, 421, 425] that p is maximal in R, but not principal. Now,
3 /∈ p; otherwise, 1 ∈ p as 2 ∈ p, but p -= R. So (1 − δ)/3 ∈ Rp. Hence (1 + δ)Rp

contains (1+ δ)(1− δ)/3, or 2. So (1+ δ)Rp = pRp. Since Rp is a domain, the map
µ1+δ : Rp → pRp is injective, so bijective. Thus pRp is free of rank 1.

Let q be a maximal ideal distinct from p. Then p ∩ (R − q) -= ∅; so, pRq = Rq

by (11.8)(2). Thus pRq is free of rank 1.
Finally, suppose p % Rn. Set K := Frac(R). Then K = S−1

0 R. So S−1
0 p % Kn.

But the inclusion p ↪→ R yields an injection S−1
0 p ↪→ K. Also, S−1

0 p is a nonzero
K-vector space. Hence S−1

0 p ∼−→ K. Therefore, n = 1. So p % R. Hence p is
generated by one element, so is principal, a contradiction. Thus p is not free.

Definition (16.21). — We say a module is Artinian or the descending chain
condition (dcc) is satisfied if every descending chain of submodules stabilizes.

We say the ring itself is Artinian if it is an Artinian module.
We say theminimal condition (minc) is satisfied in a module if every nonempty

set of submodules has a minimal member.

Proposition (16.22). — Let M1, . . . ,Mr, M be modules, N a submodule of M .
(1) Then M is Artinian if and only if minc is satisfied in M .
(2) Then M is Artinian if and only if N and M/N are Artinian.
(3) Then M1, . . . ,Mr are Artinian if and only if M1 ⊕ · · ·⊕Mr is Artinian.

Proof: It is easy to adapt the proof of (16.4), the second proof of (16.13)(2),
and the proof of (16.14). !

B. Exercises

Exercise (16.23) . — Let M be a module. Assume that every nonempty set of
finitely generated submodules has a maximal element. Show M is Noetherian.

Exercise (16.24) . — Let R be a Noetherian ring, {Fλ}λ∈Λ a set of polynomials
in variables X1, . . . , Xn. Show there’s a finite subset Λ0 ⊂ Λ such that the set V0

of zeros in Rn of the Fλ for λ ∈ Λ0 is precisely that V of the Fλ for λ ∈ Λ.
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Exercise (16.25) . — Let R be a Noetherian ring, F :=
∑

anXn ∈ R[[X]] a power
series in one variable. Show that F is nilpotent if and only if each an is too.

Exercise (16.26) . — Let R be a ring, X a variable, R[X] the polynomial ring.
Prove this statement or find a counterexample: if R[X] is Noetherian, then so is R.

Exercise (16.27) . — Let R′/R be a ring extension with an R-linear retraction
ρ : R′ → R. If R′ is Noetherian, show R is too. What if R′ is Artinian?

Exercise (16.28) . — Let R be a ring, M a module, R′ a faithfully flat algebra. If
M ⊗R R′ is Noetherian over R′, show M is Noetherian over R. What if M ⊗R R′

is Artinian over R′?

Exercise (16.29) . — Let R be a ring. Assume that, for each maximal ideal m, the
local ring Rm is Noetherian and that each nonzero x ∈ R lies in only finitely many
maximal ideals. Show R is Noetherian: use (13.10) to show any ideal is finitely
generated; alternatively, use (13.9) to show any ascending chain stabilizes.

Exercise (16.30) (Nagata) . — Let k be a field, P := k[X1, X2, . . . ] a polynomial
ring, m1 < m2 < · · · positive integers with mi+1 −mi > mi −mi−1 for i > 1. Set
pi := 〈Xmi+1, . . . , Xmi+1〉 and S := P −

⋃
i≥1 pi. Show S is multiplicative, S−1P is

Noetherian of infinite dimension, and the S−1pi are the maximal ideals of S−1P .

Exercise (16.31) . — Let z be a complex variable. Determine which of these rings
R are Noetherian:

(1) the ring R of rational functions of z having no pole on the circle |z| = 1,
(2) the ring R of power series in z having a positive radius of convergence,
(3) the ring R of power series in z with an infinite radius of convergence,
(4) the ring R of polynomials in z whose first k derivatives vanish at the origin,
(5) the ring R of polynomials in two complex variables z, w whose first partial

derivative with respect to w vanishes for z = 0.

Exercise (16.32) . — Let R be a ring, M a Noetherian module. Adapt the proof
of the Hilbert Basis Theorem (16.9) to prove M [X] is a Noetherian R[X]-module.

Exercise (16.33) . — Let R be a ring, S a multiplicative subset, M a Noetherian
module. Show that S−1M is a Noetherian S−1R-module.

Exercise (16.34) . — For i = 1, 2, let Ri be a ring, Mi a Noetherian Ri-module.
Set R := R1 ×R2 and M := M1 ×M2. Show that M is a Noetherian R-module.

Exercise (16.35) . — Let 0 → L
α−→ M

β−→ N → 0 be a short exact sequence of
R-modules, and M1, M2 two submodules of M . Prove or give a counterexample to
this statement: if β(M1) = β(M2) and α−1(M1) = α−1(M2), then M1 = M2.

Exercise (16.36) . — Let R be a ring, a1, . . . , ar ideals such that each R/ai is a
Noetherian ring. Prove (1) that

⊕
R/ai is a Noetherian R-module, and (2) that,

if
⋂

ai = 0, then R too is a Noetherian ring.

Exercise (16.37) . — Let R be a ring, and M and N modules. Assume that N is
Noetherian and that M is finitely generated. Show that Hom(M,N) is Noetherian.

Exercise (16.38) . — Let R be a ring, M a module. If R is Noetherian, and M
finitely generated, show S−1D(M) = D(S−1M).
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Exercise (16.39) . — Let R be a domain, R′ an algebra, and set K := Frac(R).
Assume R is Noetherian. Prove the following statements.

(1) [2, Thm. 3] Assume R′ is a field containing R. Then R′/R is algebra finite if
and only if K/R is algebra finite and R′/K is (module) finite.
(2) [2, bot. p. 77] Let K ′ ⊃ R be a field that embeds in R′. Assume R′/R is

algebra finite. Then K/R is algebra finite and K ′/K is finite.

Exercise (16.40) . — Let R be a domain, K := Frac(R), and x ∈ K. If x is integral
over R, show there is a nonzero d ∈ R such that dxn ∈ R for all n ≥ 0. Conversely,
if such a d exists and if R is Noetherian, show x is integral over R.

Exercise (16.41) . — Let k be a field, R an algebra. Assume that R is finite
dimensional as a k-vector space. Prove that R is Noetherian and Artinian.

Exercise (16.42) . — Let R be a ring, and m1, . . . ,mn maximal ideals. Assume
m1 · · ·mn = 0. Set a0 := R, and for 1 ≤ i ≤ n, set ai := m1 · · ·mi and Vi := ai−1/ai.
Using the ai and Vi, show that R is Artinian if and only if R is Noetherian.

Exercise (16.43) . — Fix a prime number p. Set Mn := { q ∈ Q/Z | pnq = 0 } for
n ≥ 0. Set M :=

⋃
Mn. Find a canonical isomorphism Z/〈pn〉 ∼−→ Mn. Given a

proper Z-submodule N of M , show N = Mn for some n. Deduce M is Artinian,
but not Noetherian. Find Ann(M), and deduce Z/Ann(M) is not Artinian.

Exercise (16.44) . — Let R be an Artinian ring. Prove that R is a field if it is a
domain. Deduce that, in general, every prime ideal p of R is maximal.

Exercise (16.45) . — Let R be a ring, M an Artinian module, α : M → M an
endomorphism. Assume α is injective. Show that α is an isomorphism.

Exercise (16.46) . — Let R be a ring; M a module; N1, N2 submodules. If the
M/Ni are Noetherian, show M/(N1 ∩N2) is too. What if the M/Ni are Artinian?

C. Appendix: Noetherian Spaces

Definition (16.47). — We call a topological space irreducible if it is nonempty
and if every pair of nonempty open subsets meet. A subspace is said to be an
irreducible component if it is a maximal irreducible subspace.

Proposition (16.48). — Let R be a ring. Set X := Spec(R) and n := nil(R). Then
X is irreducible if and only if n is prime.

Proof: Given g ∈ R, take f := 0. Plainly, D(f) = ∅; see (13.1). Thus, in
(13.40), the equivalence of (1) and (5) means this: D(g) = ∅ if and only if g ∈ n.

Suppose n is not prime. Then there are f, g ∈ R with f, g /∈ n but fg ∈ n.
The above observation yields D(f) -= ∅ and D(g) -= ∅ but D(fg) = ∅. Further,
D(f) ∩D(g) = D(fg) by (13.1.3). Thus X is not irreducible.
Suppose X is not irreducible: say U, V are nonempty open sets with U ∩ V = ∅.

By (13.1), the D(f) form a basis of the topology: fix f, g with ∅ -= D(f) ⊂ U and
∅ -= D(g) ⊂ V . Then D(f) ∩D(g) = ∅. But D(f) ∩D(g) = D(fg) by (13.1.3).
Hence, the first observation implies f, g /∈ n but fg ∈ n. Thus n is not prime. !
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Lemma (16.49). — Let X be a topological space, Y an irreducible subspace.

(1) Assume Y =
⋃n

i=1 Yi with each Yi closed in Y . Then Y = Yi for some i.

(2) Assume Y ⊂
⋃n

i=1 Xi with each Xi closed in X. Then Y ⊂ Xi for some i.

(3) Then the closure Y of Y is also irreducible.

(4) Then Y lies in an irreducible component of X.

(5) Then the irreducible components of X are closed, and cover X.

Proof: For (1), induct on n. Assume Y -= Y1, else (1) holds. Then n ≥ 2. Set
U := Y − Y1 and V := Y −

⋃n
i=2 Yi. Then U and V are open in Y , but don’t meet.

Also U -= ∅. But Y is irreducible. So V = ∅. So Y =
⋃n

i=2 Yi. So by induction,
Y = Yi for some i ≥ 2. Thus (1) holds.

For (2), set Yi := Y ∩Xi. Then each Yi is closed in Y , and Y =
⋃n

i=1 Yi. So (1)
implies Y = Yi for some i. Thus (2) holds.

For (3), let U, V be nonempty open sets of Y . Then U ∩Y and V ∩Y are open in
Y , and nonempty. But Y is irreducible. So (U ∩ Y )

⋂
(V ∩ Y ) -= ∅. So U ∩ V -= ∅.

Thus (3) holds.

For (4), let S be the set of irreducible subspaces containing Y . Then Y ∈ S, and
S is partially ordered by inclusion. Given a totally ordered subset {Yλ} of S, set
Y ′ :=

⋃
λ Yλ. Then Y ′ is irreducible: given nonempty open sets U, V of Y ′, there is

λ with U ∩ Yλ -= ∅ and V ∩ Yλ -= ∅; so (U ∩ Yλ)
⋂
(V ∩ Yλ) -= ∅ as Yλ is irreducible;

so U ∩ V -= ∅. Thus Zorn’s Lemma yields (4).

For (5), note (3) implies the irreducible components are closed, as they’re maxi-
mal. And (4) implies they cover, as every point is irreducible. Thus (4) holds. !

Exercise (16.50) . — Let R be a ring. Prove the following statements:

(1) a 2→ V(a) = Spec(R/a) is an inclusion-reversing bijection β from the radical
ideals a of R onto the closed subspaces of Spec(R).

(2) β restricts to a bijection from the primes onto the irreducible closed subspaces.
(3) β restricts further to a bijection from the minimal primes onto the irreducible

components.

Definition (16.51). — A topological space is said to be Noetherian if its closed
subsets satisfy the dcc, or equivalently, if its open subsets satisfy the acc.

Lemma (16.52). — Let X be a Noetherian space. Then X is quasi-compact, and
every subspace Y is Noetherian.

Proof: Given X =
⋃

Uλ with the Uλ open, form the set of finite unions of the
Uλ. Each such union is open, and X is Noetherian. So an adaptation of (16.4)
yields a maximal element V =

⋃n
i=1 Uλi . Then V ∪ Uλ = V for any Uλ. But every

point of x lies in some Uλ. Hence V = X. Thus X is quasi-compact.

Let C0 ⊃ C1 ⊃ · · · be a descending chain of closed subsets of Y . Then their
closures in X form a descending chain C0 ⊃ C1 ⊃ · · · . It stabilizes, as X is
Noetherian. But Cn ∩ Y = Cn for all n. So C0 ⊃ C1 ⊃ · · · stabilizes too. Thus Y
is Noetherian. !

Lemma (16.53). — A nonempty Noetherian space X is the union of finitely many
irreducible closed subspaces.
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Proof (Noetherian induction): Let S be the set of nonempty closed sub-
spaces of X that are not the union of finitely many irreducible closed subspaces.
Suppose S -= ∅. Since X is Noetherian, an adaptation of (16.4) yields a minimal
element Y ∈ S. Then Y is nonempty and reducible. So Y = Y1 ∪ Y2 with each Yi

closed and Yi # Y . By minimality, Yi /∈ S. So Yi is a finite union of irreducible
closed subspaces. Hence Y is too, a contradiction. Thus S = ∅, as desired. !

Proposition (16.54). — Let X be a Noetherian space, Xλ for λ ∈ Λ its distinct
irreducible components, µ ∈ Λ. Then Λ is finite, X =

⋃
λ∈Λ Xλ, but X -=

⋃
λ *=µ Xλ.

Proof: By (16.53), X =
⋃n

i=1 Yi with each Yi irreducible. By (16.49)(4), each
Yi lies in an irreducible component Xλi of X. Thus X =

⋃n
i=1 Xλi =

⋃
λ∈Λ Xλ.

So Xµ ⊂
⋃n

i=1 Xλi . But the Xλ are closed by (16.49)(5). Hence Xµ ⊂ Xλi for
some i by (16.49)(2). But Xµ is maximal irreducible. So Xµ = Xλi . Thus Λ has
at most n elements.

Finally, if X =
⋃
λ *=µ Xλ, then the above reasoning yields Xµ = Xλ for λ -= µ, a

contradiction. !

Exercise (16.55) . — Let R be a ring. Prove the following statements:

(1) Spec(R) is Noetherian if and only if the radical ideals satisfy the acc.
(2) If Spec(R) is Noetherian, then the primes satisfy the acc.
(3) If R is Noetherian, then Spec(R) is too.

Example (16.56). — In (16.55)(2), the converse is false.
For example, take R := FN

2 where N := {1, 2, 3, . . . }. Then R is Boolean by (1.2),
so absolutely flat by (10.26). So every prime is maximal by (13.61). Thus the
primes trivially satisfy the acc.

Since R is Boolean, fn = f for all f ∈ R and n ≥ 1. So every ideal is radical.
For each m ∈ N, let am be the set of vectors (x1, x2, . . . ) with xn = 0 for n ≥ m.
The am form an ascending chain of ideals, which doesn’t stabilize. Thus the radical
ideals do not satisfy the acc. Thus by (16.55)(1), Spec(R) is not Noetherian.

Example (16.57). — In (16.55)(3), the converse is false.
For example, take a field k and an infinite set X of variables. Set P := k[X] and

m := 〈{X}〉 and R := P/m2. Given any prime p of R containing m2, note p ⊃ m by
(2.23). But m is maximal by (2.32) with R := k and p := 〈0〉. So p = m. Thus
m/m2 is the only prime of R. Thus Spec(R) has one point, so is Noetherian.

However, m/m2 is not finitely generated. Thus R is not Noetherian.

Proposition (16.58). — Let ϕ : R → R′ be a ring map. Assume that Spec(R′) is
Noetherian. Then ϕ has the Going-up Property if and only if Spec(ϕ) is closed.

Proof: Set ϕ∗ := Spec(ϕ). Recall from (13.37) that, if ϕ∗ is closed, then ϕ has
the Going-up Property, even if Spec(R′) is not Noetherian.

Conversely, assume ϕ has the Going-up Property. Given a closed subset Y of
Spec(R′), we must show ϕ∗Y is closed.

Since Spec(R′) is Noetherian, Y is too by (16.52). So Y =
⋃n

i=1 Yi for some
n and irreducible closed Yi by (16.53). Then ϕ∗Y =

⋃n
i=1 ϕ

∗Yi. So it suffices to
show each ϕ∗Yi is closed. Thus we may assume Y is irreducible and closed.

Then Y = Spec(R′/q′) for some prime q′ of R′ by (16.50)(2). Set q := ϕ−1q′.
Then ϕ∗Y = Spec(R/q) by (13.37)(2). Thus ϕ∗Y is closed by (13.1.7). !
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Definition (16.59). — A subset Y of a topological space is called constructible
if Y =

⋃n
i=1(Ui ∩ Ci) for some n, open sets Ui, and closed sets Ci.

Exercise (16.60) . — Let X be a topological space, Y and Z constructible subsets,
ϕ : X ′ → X a continuous map, A ⊂ Z an arbitrary subset. Prove the following:

(1) Open and closed sets are constructible.
(2) Y ∪ Z and Y ∩ Z are constructible.
(3) ϕ−1Y is constructible in X ′.
(4) A is constructible in Z if and only if A is constructible in X.

Lemma (16.61). — Let X be a topological space, Y a constructible subset. Then
its complement X − Y is constructible.

Proof: Say Y =
⋃n

i=1(Ui ∩ Ci) with Ui open and Ci closed. Set Vi := X − Ci

and Di := X − Ui. Then Vi is open, Di is closed, and X − Y =
⋂n

i=1(Vi ∪Di).
Induct on n. If n = 0, then X − Y = X. But X is plainly contructible.
Assume n ≥ 1. Set A :=

⋂n−1
i=1 (Vi ∪Di). By induction, A is constructible. Now,

Vn and Dn are constructible by (16.60)(1); so Vn ∪Dn is too by (16.60)(2). But
X − Y = A ∩ (Vn ∪Dn). Thus (16.60)(2) implies X − Y is constructible. !
Proposition (16.62). — Let X be a topological space, F the smallest family of
subsets that contains all open sets and that is stable under finite intersection and
under complement in X. Then F consists precisely of the constructible sets.

Proof: Let F′ be the family of all constructible sets. Then F′ contains all open
sets by (16.60)(1). It is stable under finite intersection by (16.60)(2) and induc-
tion. It is stable under complement in X by (16.61). Thus F′ ⊃ F.

Conversely, given Y ∈ F′, say Y =
⋃n

i=1(Ui ∩ Ci) with Ui open and Ci closed.
Set Zi := Ui ∩ Ci. Then Y = X −

⋂
(X − Zi). But Ui and X − Ci are open, so lie

in F. So Ci = X − (X − Ci) ∈ F. So Zi ∈ F. So X − Zi ∈ F. So
⋂
(X − Zi) ∈ F.

Thus Y ∈ F. Thus F′ ⊂ F. Thus F′ = F. !
Lemma (16.63). — Let X be an irreducible topological space, Y a constructible
subset. Then Y is dense in X if and only if Y contains a nonempty open set.

Proof: First, assume Y contains a nonempty open set U . As X is irreducible,
every nonempty open set V meets U . So V meets Y . Thus Y is dense in X.

Conversely, assume Y = X. Say Y =
⋃n

i=1(Ui ∩Ci) with Ui open and Ci closed.
As X is irreducible, X -= ∅. So Y -= ∅. Discard Ui if Ui = ∅. Then Ui -= ∅ for all i.

Note Y ⊂
⋃n

i=1 Ci. Also Y = X, and X is irreducible. So X = Ci for some i by
(16.49)(1). Hence Y ⊃ Ui ∩ Ci = Ui. Thus Y contains a nonempty open set. !
Lemma (16.64). — Let X be a Noetherian topological space. Then a subset Y is
constructible if and only if this condition holds: given a closed irreducible subset Z
of X, either Y ∩Z isn’t dense in Z or it contains a nonempty set that’s open in Z.

Proof: Assume Y is constructible. Given a closed irreducible subset Z of X,
note Y ∩Z is constructible in Z by (16.60)(1), (2), (4). If Y ∩Z is dense in Z, then
it contains a nonempty set that’s open in Z by (16.63). Thus the condition holds.

Conversely, assume the condition holds. Use Noetherian induction: form the set
S of closed sets C with Y ∩ C not constructible (in X). Assume S -= ∅. As X is
Noetherian, an adaptation of (16.4) yields a minimal element Z ∈ S.

Note that Z -= ∅ as Y ∩ Z is not constructible.
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Suppose Z = Z1 ∪ Z2 with each Zi closed and Zi # Z. By minimality, Zi /∈ S.
So Y ∩Zi is constructible. But Y ∩Z = (Y ∩Z1)∪ (Y ∪Z2). So (16.60)(2) implies
Y ∩ Z is constructible, a contradiction. Thus Z is irreducible.

Assume Y ∩Z isn’t dense in Z, and let A be its closure. Then A ! Z. So A /∈ S.
So Y ∩ A is constructible. But Y ∩ Z ⊂ Y ∩ A ⊂ Y ∩ Z, so Y ∩ A = Y ∩ Z. Thus
Y ∩ Z is constructible, a contradiction. Thus Y ∩ Z is dense in Z.

So by the condition, Y ∩ Z contains a nonempty set U that’s open in Z. So by
definition of the topology on Z, we have U = V ∩ Z where V is open in X. But Z
is closed in X. Thus U is constructible in X.

Set B := Z − U . Then B is closed in Z, so in X. Also B ! Z. So B /∈ S. So
Y ∩B is constructible. But Y ∩ Z = (Y ∩B) ∪ U . So (16.60)(2) implies Y ∩ Z is
constructible, a contradiction. Thus S = ∅. Thus Y is constructible. !

Theorem (16.65) (Chevalley’s). — Let ϕ : R→ R′ be a map of rings. Assume R is
Noetherian and R′ is algebra finite over R. Set X := Spec(R) and X ′ := Spec(R′)
and ϕ∗ := Spec(ϕ). Let Y ′ ⊂ X ′ be constructible. Then ϕ∗Y ′ ⊂ X is constructible.

Proof: Say that Y ′ =
⋃n

i=1(U
′
i ∩ C ′

i) where U ′
i is open and that C ′

i is closed.
Then ϕ∗Y ′ =

⋃
ϕ∗(U ′

i ∩C ′
i). So by (16.60)(2) it suffices to show each ϕ∗(U ′

i ∩C ′
i)

is constructible. So assume Y ′ = U ′ ∩ C ′ with U ′ open and C ′ closed.

Since R is Noetherian and R′ is algebra finite, R′ is Noetherian by (16.10). Thus
(16.55)(3) implies X and X ′ are Noetherian.

Since X is Noetherian, let’s use (16.64) to show ϕ∗Y ′ is constructible. Given a
closed irreducible subset Z ofX such that (ϕ∗Y ′)∩Z is dense in Z, set Z ′ := ϕ∗−1Z.
Then (ϕ∗Y ′) ∩ Z = ϕ∗(Y ′ ∩ Z ′). Set D′ := C ′ ∩ Z ′. Then Y ′ ∩ Z ′ = U ′ ∩D′. We
have to see that ϕ∗(U ′ ∩D′) contains a nonempty set that’s open in Z.

Owing to (16.50)(2), (1), there’s a prime p of R and a radical ideal a′ of R′ such
that Z = V(p) and D′ = V(a′); moreover, p and a′ are uniquely determined. Since
ϕ∗(U ′ ∩D′) is dense in Z, so is ϕ∗D′. So Z = V(ϕ−1a′) owing to (13.36)(1). But
ϕ−1a′ is radical. Thus ϕ−1a′ = p.

So ϕ induces an injection ψ : R/p ↪→ R′/a′. Further, R/p is Noetherian by
(16.7), and plainly, R′/a′ is algebra finite over R/p. But Z = Spec(R/p) and
D′ = Spec(R′/a′) by (13.1.7). Replace ϕ and Y ′ by ψ and U ′ ∩ D′. Then ψ is
injective, R is a domain, and Y ′ is an open set of X ′ such that ϕ∗Y ′ is dense in X.
We have to see that ϕ∗Y ′ contains a nonempty set that’s open in X.

By (13.1), the principal open sets D(f ′) with f ′ ∈ R′ form a basis for the
topology of X ′. Since X ′ is Noetherian, Y ′ is too by (16.52); so Y ′ is quasi-
compact again by (16.52). Thus Y ′ =

⋃m
j=1 D(f ′

j) for some m and f ′
j ∈ R′. So

ϕ∗Y ′ =
⋃m

j=1 ϕ
∗D(f ′

j). But ϕ
∗Y ′ is dense in X. Thus

⋃m
j=1 ϕ

∗D(f ′
j) = X.

However, X is irreducible. So ϕ∗D(f ′
j) = X for some j by (16.49)(1). But

D(f ′
j) = Spec(R′

f ′
j
) by (13.1.8). So the composition R → R′ → R′

f ′
j
is injective

by (13.36)(2). Plainly, R′
f ′
j
is algebra finite over R. Hence ϕ∗D(f ′

j) contains a

nonempty set V that’s open in X by (15.18). Then V ⊂ ϕ∗Y ′, as desired. !
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D. Appendix: Exercises

Exercise (16.66) . — Find a non-Noetherian ring R with Rp Noetherian for every
prime p.

Exercise (16.67) . — Describe Spec(Z[X]).

Exercise (16.68) . — What are the irreducible components of a Hausdorff space?

Exercise (16.69) . — Are these conditions on a topological space X equivalent?

(1) X is Noetherian.
(2) Every subspace Y is quasi-compact.
(3) Every open subspace V is quasi-compact.

Exercise (16.70) . — Let ϕ : R → R′ a map of rings. Assume R′ is algebra finite
over R. Show that the fibers of Spec(ϕ) are Noetherian subspaces of Spec(R′).

Exercise (16.71) . — Let M be a Noetherian module over a ring R. Show that
Supp(M) is a closed Noetherian subspace of Spec(R). Conclude that M has only
finitely many minimal primes.

Exercise (16.72) . — Let X be a Noetherian topological space. Then a subset U
is open if and only if this condition holds: given a closed irreducible subset Z of X,
either U ∩ Z is empty or it contains a nonempty subset that’s open in Z.

Exercise (16.73) . — Let ϕ : R → R′ a map of rings. Assume R is Noetherian
and R′ is algebra finite over R. Set X := Spec(R), set Y := Spec(R′), and set
ϕ∗ := Spec(ϕ). Prove that ϕ∗ is open if and only if it has the Going-down Property.

Exercise (16.74) . — Let ϕ : R → R′ a map of rings, M ′ a finitely generated R′-
module. Assume R is Noetherian, R′ is algebra finite, and M ′ is flat over R. Show
Spec(ϕ) is open.
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17. Associated Primes

Given a module, a prime is associated to it if the prime is equal to the annihilator
of an element. Given a subset of the set of all associated primes, we prove there
is a submodule whose own associated primes constitute that subset. If the ring
is Noetherian, then the set of annihilators of elements has maximal members; we
prove the latter are prime, so associated. Assume just the module is Noetherian.
Then the union of all the associated primes is the set of zerodivisors on the module,
and the intersection is the set of nilpotents. Furthermore, there is then a finite
chain of submodules whose successive quotients are cyclic with prime annihilators;
these primes include all associated primes, which are, therefore, finite in number.

A. Text

Definition (17.1). — Let R be a ring, M a module. A prime ideal p is said to be
associated to M , or simply a prime of M , if there is a (nonzero) m ∈ M with
p = Ann(m). The set of associated primes is denoted by Ass(M) or AssR(M).

A p ∈ Ass(M) is said to be embedded if it properly contains a q ∈ Ass(M).
Warning: following a old custom, by the associated primes of a proper ideal

a, we mean not those of a viewed as an abstract module, but rather those of R/a;
however, by the associated primes of R, we mean do mean those of R viewed as
an abstract module.

Example (17.2). — Here’s an example of a local ring R whose maximal ideal m
is an embedded (associated) prime. Let k be a field, and X, Y variables. Set
P := k[[X,Y ]] and n := 〈X,Y 〉. By (3.7), P is a local ring with maximal ideal n.

Set a := 〈XY, Y 2〉. Set R := P/a and m := n/a. Then R is local with maximal
ideal m. Let x, y ∈ R be the residues of X,Y . Then x, y ∈ Ann(y) ⊂ m = 〈x, y〉.
So m = Ann(y). Thus m ∈ Ass(R).

Note y ∈ Ann(x). Given
∑

ij aijx
iyj ∈ Ann(x), note

∑
i ai0x

i+1 = 0. Hence∑
i ai0X

i+1 ∈ a. So
∑

i ai0X
i+1 = 0. So

∑
ij aijx

iyj ∈ 〈y〉. Thus 〈y〉 = Ann(x).

Plainly, Y ∈ P is a prime element; so 〈Y 〉 ⊂ P is a prime ideal by (2.5); so
〈y〉 ⊂ R is a prime ideal by (2.7). Thus 〈y〉 ∈ Ass(x). Thus m is embedded.

Proposition (17.3). — Let R be a ring, M a module, and p a prime ideal. Then
p ∈ Ass(M) if and only if there is an R-injection R/p ↪→M .

Proof: Assume p = Ann(m) with m ∈ M . Define a map R → M by x 2→ xm.
This map induces an R-injection R/p ↪→M .
Conversely, suppose there is an R-injection R/p ↪→ M , and let m ∈ M be the

image of 1. Then p = Ann(m), so p ∈ Ass(M). !

Exercise (17.4) . — Let R be a ring, M a module, a ⊂ Ann(M) an ideal. Set
R′ := R/a. Let κ : R→→ R′ be the quotient map. Show that p 2→ p/a is a bijection
from AssR(M) to AssR′(M) with inverse p′ 2→ κ−1(p′).

Lemma (17.5). — Let R be a ring, p a prime ideal, m ∈ R/p a nonzero element.
Then (1) Ann(m) = p and (2) Ass(R/p) = {p}.
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Proof: To prove (1), say m is the residue of y ∈ R. Let x ∈ R. Then xm = 0 if
and only if xy ∈ p, so if and only if x ∈ p, as p is prime and m -= 0. Thus (1) holds.

Trivially, (1) implies (2). !
Proposition (17.6). — Let M be a module, N a submodule. Then

Ass(N) ⊂ Ass(M) ⊂ Ass(N) ∪Ass(M/N).

Proof: Take m ∈ N . Then the annihilator of m is the same whether m is
regarded as an element of N or of M . So Ass(N) ⊂ Ass(M).

Let p ∈ Ass(M). Then (17.3) yields an R-injection R/p ↪→M . Denote its image
by E. If E ∩N = 0, then the composition R/p → M → M/N is injective; hence,
p ∈ Ass(M/N) by (17.3). Else, take a nonzero m ∈ E ∩N . Then Ann(m) = p by
(17.5)(1). Thus p ∈ Ass(N). !
Proposition (17.7). — Let M be a module, and Ψ a subset of Ass(M). Then there
is a submodule N of M with Ass(M/N) = Ψ and Ass(N) = Ass(M)−Ψ.

Proof: Given submodules Nλ of M totally ordered by inclusion, set N :=
⋃
Nλ.

Given p ∈ Ass(N), say p = Ann(m). Then m ∈ Nλ for some λ; so p ∈ Ass(Nλ).
Conversely, Ass(Nλ) ⊂ Ass(N) for all λ by (17.6). Thus Ass(N) =

⋃
Ass(Nλ).

So we may apply Zorn’s Lemma to obtain a submodule N of M that is maximal
with Ass(N) ⊂ Ass(M)−Ψ. By (17.6), it suffices to show that Ass(M/N) ⊂ Ψ.

Take p ∈ Ass(M/N). Then M/N has a submodule N ′/N isomorphic to R/p by
(17.3). So Ass(N ′) ⊂ Ass(N) ∪ {p} by (17.6) and (17.5)(2). Now, N ′ $ N and
N is maximal with Ass(N) ⊂ Ass(M) − Ψ. Hence p ∈ Ass(N ′) ⊂ Ass(M), but
p /∈ Ass(M)−Ψ. Thus p ∈ Ψ. !
Proposition (17.8). — Let R be a ring, S a multiplicative subset, M a module,
and p a prime ideal. If p ∩ S = ∅ and p ∈ Ass(M), then S−1p ∈ Ass(S−1M); the
converse holds if p is finitely generated modulo Ann(M).

Proof: Assume p ∈ Ass(M). Then (17.3) yields an injection R/p ↪→ M . It
induces an injection S−1(R/p) ↪→ S−1M by (12.13). But S−1(R/p) = S−1R/S−1p
by (12.15). Assume p ∩ S = ∅ also. Then pS−1R is prime by (11.11)(3)(b). But
pS−1R = S−1p by (12.2). Thus S−1p ∈ Ass(S−1M).

Conversely, assume S−1p ∈ Ass(S−1M). Then there are m ∈M and t ∈ S with
S−1p = Ann(m/t). Set a := Ann(M). Assume there are x1, . . . , xn ∈ p whose
residues generate (a + p)/a. Fix i. Then xim/t = 0. So there is si ∈ S with
sixim = 0. Set s :=

∏
si and b := Ann(sm). Then xi ∈ b. Given x ∈ p, say

x = a+
∑

aixi with a ∈ a and ai ∈ R. Then a, xi ∈ b. So x ∈ b. Thus p ⊂ b.
Take b ∈ b. Then bsm/st = 0. So b/1 ∈ S−1p. So b ∈ p by (11.11)(1)(a) and

(11.11)(3)(a). Thus p ⊃ b. So p = b := Ann(sm). Thus p ∈ Ass(M).
Finally, p ∩ S = ∅ by (11.12)(2), as S−1p is prime. !

Lemma (17.9). — Let R be a ring, M a module, and p an ideal. Suppose p is
maximal in the set of annihilators of nonzero elements m of M . Then p ∈ Ass(M).

Proof: Say p := Ann(m) with m -= 0. Then 1 /∈ p as m -= 0. Now, take b, c ∈ R
with bc ∈ p, but c /∈ p. Then bcm = 0, but cm -= 0. Plainly, p ⊂ Ann(cm). So
p = Ann(cm) by maximality. But b ∈ Ann(cm), so b ∈ p. Thus p is prime. !
Proposition (17.10). — Let R be a ring, M a module. Assume R is Noetherian,
or assume M is Noetherian. Then M = 0 if and only if Ass(M) = ∅.

131



Associated Primes (17.11)
/
(17.15) Text

Proof: Plainly, if M = 0, then Ass(M) = ∅. For the converse, assume M -= 0.
First, assumeR is Noetherian. Let S be the set of annihilators of nonzero elements

of M . Then S has a maximal element p by (16.5). By (17.9), p ∈ Ass(M).
Second, assume M is Noetherian. Set R′ := R/Ann(M). Then R′ is Noetherian

by (16.16). By the above, AssR′(M) -= ∅. So (17.4) yields AssR(M) -= ∅. !
(17.11) (Zerodivisors). — Let R be a ring, M a module, x ∈ R. We say x is a
zerodivisor on M if there is a nonzero m ∈M with xm = 0; otherwise, we say x
is a nonzerodivisor. We denote the set of zerodivisors by z.div(M) or z.divR(M).
Plainly the set of nonzerodivisors on M is a saturated multiplicative subset of R.
Assume M -= 0. Given x ∈ nil(M), take n ≥ 1 minimal with xn ∈ Ann(M).

Then there’s m ∈M with xn−1m -= 0. But x(xn−1m) = 0. Thus

nil(M) ⊂ z.div(M). (17.11.1)

Proposition (17.12). — Let R be a ring, M a module. Assume R is Noetherian,
or assume M is Noetherian. Then z.div(M) =

⋃
p∈Ass(M) p.

Proof: Given x ∈ z.div(M), there exists a nonzero m ∈ M with xm = 0. Then
x ∈ Ann(m). Assume R is Noetherian. Then Ann(m) lies in an ideal p maximal
among annihilators of nonzero elements because of (16.5); hence, p ∈ Ass(M) by
(17.9). Thus z.div(M) ⊂

⋃
p. The opposite inclusion results from the definitions.

Assume instead M is Noetherian. By (16.16), R′ := R/Ann(M) is Noetherian.
So by the above, z.divR′(M) =

⋃
p′∈Ass(M) p

′. Let κ : R→→ R′ be the quotient map.

Given x ∈ R and m ∈ M , note xm = κ(x)m; so κ−1(z.divR′(M)) = z.divR(M).
But κ−1

⋃
p′ =

⋃
κ−1p′. Thus (17.4) yields z.divR(M) =

⋃
p∈Ass(M) p. !

Lemma (17.13). — Let M be a module. Then

Ass(M) ⊂
⋃

q∈Ass(M) V(q) ⊂ Supp(M) ⊂ V(Ann(M)).

Proof: Fix q ∈ Ass(M) and p ∈ V(q). Say q = Ann(m). Then m/1 -= 0 in Mp;
else, there’s x ∈ R − p with xm = 0, and so x ∈ Ann(m) = q ⊂ p, a contradiction.
Thus p ∈ Supp(M). Finally, (13.4)(3) asserts Supp(M) ⊂ V(Ann(M). !
Theorem (17.14). — Let R be a ring, M a module, p ∈ Supp(M). Assume R is
Noetherian, or assume M is Noetherian. Then p contains some q ∈ Ass(M); if p
is minimal in Supp(M), then p ∈ Ass(M).

Proof: Assume R is Noetherian. Then Rp is too by (16.7). But Mp -= 0. So
there’s Q ∈ AssRp(Mp) by (17.10). Set q := ϕ−1

Sp
Q. Then qRp = Q by (11.12)(2).

As R is Noetherian, q is finitely generated. So q ∈ Ass(M) by(17.8). But q∩Sp = ∅
and Sp := R− p . Thus q ⊂ p, as desired.

Assume instead M is Noetherian. Then M is finitely generated. So (13.4)(3)
yields SuppR(M) = V(AnnR(M)). So p ⊃ AnnR(M). Set p′ := p/AnnR(M).
Then p′ ⊃ AnnR′(M) = 0. So (13.4)(3) yields p′ ∈ SuppR′(M).

Set R′ := R/AnnR(M). Then R′ is Noetherian by (16.16). So by the first
paragraph, p′ contains some q′ ∈ AssR′(M). Let κ : R →→ R′ be the quotient map.
Set q := κ−1q′. Thus p ⊃ q, and (17.4) yields q ∈ Ass(M), as desired.

Finally, q ∈ Supp(M) by (17.13). Thus p = q ∈ Ass(M) if p is minimal. !
Theorem (17.15). — Let M be a Noetherian module. Then

nil(M) =
⋂

p∈Ass(M) p.
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Proof: Since M is finitely generated, nil(M) =
⋂

p∈Supp(M) p by (13.6). Since
M is Noetherian, given p ∈ Supp(M), there is q ∈ Ass(M) with q ⊂ p by (17.14).
The assertion follows. !
Lemma (17.16). — Let R be a ring, M a nonzero Noetherian module. Then there
exists a finite chain of submodules

0 = M0 ⊂M1 ⊂ · · · ⊂Mn−1 ⊂Mn = M

with Mi/Mi−1 % R/pi for some prime pi for i = 1, . . . , n. For any such chain,

Ass(M) ⊂ {p1, . . . , pn} ⊂ Supp(M). (17.16.1)

Proof: There are submodules of M having such a chain by (17.10). So there’s
a maximal such submodule N by (16.11). Suppose M/N -= 0. Then by (17.10),
the quotient M/N contains a submodule N ′/N isomorphic to R/p for some prime
p. Then N ! N ′, contradicting maximality. Hence N = M . Thus a chain exists.

The first inclusion of (17.16.1) follows by induction from (17.6) and (17.5)(2).
Now, pi ∈ Supp(R/pi) owing to (13.4)(3). Thus (13.4)(1) yields (17.16.1). !
Theorem (17.17). — Let M be a Noetherian module. Then Ass(M) is finite.

Proof: The assertion follows directly from (17.16). !
Proposition (17.18). — Let R be a ring, M and N modules. Assume that M is
Noetherian. Then Ass(Hom(M, N)) = Supp(M)

⋂
Ass(N).

Proof: Set a := Ann(M) and N ′ := {n ∈ N | an = 0 }. Then Hom(M,N ′) lies
in Hom(M,N). Conversely, given α : M → N and m ∈M , plainly a(α(m)) = 0; so
α(M) ⊂ N ′. Thus Hom(M, N) = Hom(M, N ′).
Let’s see that Supp(M)

⋂
Ass(N) = Ass(N ′) by double inclusion. First, given

p ∈ Supp(M)
⋂

Ass(N), say p = Ann(n) for n ∈ N . But Supp(M) ⊂ V(a) by
(13.4)(3); so p ⊃ a. Hence an = 0. So n ∈ N ′. Thus p ∈ Ass(N ′).

Conversely, given p ∈ Ass(N ′), say p = Ann(n) for n ∈ N ′. Then an = 0. So
p ⊃ a. But Supp(M) = V(a) by (13.4)(3) as M is Noetherian. So p ∈ Supp(M).
But n ∈ N ′ ⊂ N . Thus p ∈ Ass(N). Thus Supp(M)

⋂
Ass(N) = Ass(N ′).

Thus we have to prove

Ass(Hom(M, N ′)) = Ass(N ′). (17.18.1)

Set R′ := R/a. Plainly HomR′(M, N ′) = HomR(M, N ′). Let κ : R →→ R′ be
the quotient map. Owing to (17.4), p′ 2→ κ−1(p′) sets up two bijections: one
from AssR′(HomR′(M,N ′)) to AssR(HomR(M,N ′)), and one from AssR′(N ′) to
AssR(N ′). Thus we may replace R by R′. Then by (16.16), R is Noetherian.
Given p ∈ Ass

(
Hom(M, N ′)

)
, there’s an R-injection R/p ↪→ Hom(M, N ′) by

(17.3). Set k(p) := Frac(R/p). Then k(p) = (R/pR)p by (11.15). But, R is
Noetherian, so M is finitely presented by (16.15); so by (12.19),

HomR(M, N ′)p = HomRp(Mp, N
′
p). (17.18.2)

Hence, by exactness, localizing yields an injection ϕ : k(p) ↪→ HomRp(Mp, N ′
p).

For any m ∈ Mp with ϕ(1)(m) -= 0, the map k(p) → N ′
p given by x 2→ ϕ(x)(m)

is nonzero, so an injection. But k(p) = Rp/pRp by (12.15). Hence by (17.3), we
have pRp ∈ Ass(N ′

p). Thus by (17.8) also p ∈ Ass(N ′).
Conversely, given p ∈ Ass(N ′), recall from the third paragraph that p ∈ Supp(M).

So Mp -= 0. So by Nakayama’s Lemma, Mp/pMp is a nonzero vector space over
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k(p). Take any nonzero R-map Mp/pMp → k(p), precede it by the quotient map
Mp → Mp/pMp, and follow it by an R-injection k(p) ↪→ N ′

p; the latter exists by
(17.3) and (17.8) since p ∈ Ass(N ′).

We obtain a nonzero element of HomRp(Mp, N ′
p), annihilated by pRp. But pRp

is maximal; so the annihilator is too. So pRp ∈ Ass
(
HomRp(Mp, N ′

p)
)
by (17.9).

So p ∈ Ass(Hom(M, N ′)) by (17.18.2) and (17.8). Thus (17.18.1) holds. !

Proposition (17.19). — Let R be a ring, M a Noetherian module, p a prime,
x, y ∈ p− z.div(M). Assume p ∈ Ass(M/xM). Then p ∈ Ass(M/yM).

Proof: Form the sequence 0 → K → M/xM
µy−−→ M/xM with K := Ker(µy).

Apply the functor Hom(R/p, •) to that sequence, and get the following one:

0→ Hom(R/p, K)→ Hom(R/p, M/xM)
µy−−→ Hom(R/p, M/xM).

It is exact by (5.11). But y ∈ p; so the right-hand map vanishes. Thus

Hom(R/p,K) ∼−→ Hom(R/p, M/xM).

Form the following commutative diagram with exact rows:

0 −→ M
µx−−→ M −→ M/xM −→ 0

µy

) µy

) µy

)
0 −→ M

µx−−→ M −→ M/xM −→ 0

The Snake Lemma (5.10) yields an exact sequence 0→ K →M/yM
µx−−→M/yM as

Ker(µy|M) = 0. Hence, similarly, Hom(R/p, K) ∼−→ Hom(R/p, M/yM). Hence,

Hom(R/p, M/yM) = Hom(R/p, M/xM). (17.19.1)

Assume for a moment that R is Noetherian. Then (17.18) yields

Ass(Hom(R/p, M/xM)) = Supp(R/p)
⋂

Ass(M/xM). (17.19.2)

But p ∈ Supp(R/p) by (13.4)(3). Also p ∈ Ass(M/xM) by hypothesis. So p lies
in the left side of (17.19.2). So p ∈ Ass(Hom(R/p, M/yM)) by (17.19.1). But
(17.19.2) holds with y in place of x. Thus p ∈ Ass(M/yM) as desired.

In general, set a := AnnR(M) and R′ := R/a. Then R′ is Noetherian by
(16.16). But p ∈ AssR(M/xM). So (17.13) yields p ⊃ AnnR(M/xM). But
AnnR(M/xM) ⊃ a. Set p′ := p/a. Then p′ ∈ AssR′(M/xM) by (17.4). Let
x′, y′ ∈ p′ be the residues of x, y. Then M/x′M = M/xM and M/y′M = M/yM .
But R′ is Noetherian. Hence the above argument yields p′ ∈ AssR′(M/yM). But
AnnR(M/yM) ⊃ a. Thus (17.4) yields p ∈ Ass(M/yM) as desired. !

Proposition (17.20). — Let R be a ring, q an ideal, and M a Noetherian module.
Then the following conditions are equivalent:

(1) V(q) ∩Ass(M) = ∅. (2) q -⊂ p for any p ∈ Ass(M).
(3) q -⊂ z.div(M); that is, there is a nonzerodivisor x on M in q.
(4) Hom(N,M) = 0 for all finitely generated modules N with Supp(N) ⊂ V(q).
(5) Hom(N,M) = 0 for some finitely generated module N with Supp(N) = V(q).
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Proof: Plainly (1) and (2) are equivalent.
Next, z.div(M) =

⋃
p∈Ass(M) p by (17.12). So (3) implies (2). But Ass(M) is

finite by (17.17); so (3.12) and (2) yield (3). Thus (2) and (3) are equivalent.
Note that (4) implies (5) with N := R/q as Supp(N) = V(q) by (13.46).
Thus it remains to prove that (1) implies (4) and that (5) implies (1).
Assume (1) and R is Noetherian. Given any module N with Supp(N) ⊂ V(q),

then Supp(N) ∩ Ass(M) = ∅. Hence if N is finitely generated too, then (17.18)
yields Ass(Hom(N,M)) = ∅, and so Hom(N,M) = 0 by (17.10). Thus (4) holds.

Assume (5) and R is Noetherian. Then Ass(Hom(N,M)) = ∅ by (17.10). So
V(q) ∩Ass(M) = ∅ by (17.18). Thus (1) holds.

Set a := Ann(M) and R′ := R/a. Let κ : R →→ R′ be the quotient map, and set
q′ := κ(q). Let (1′), (4′), and (5′) stand for (1), (4), and (5) over R′. By (16.16),
R′ is Noetherian; so by the above, (1′) implies (4′), and (5′) implies (1′).

Let’s see that (1) and (1′) are equivalent. Since Ass(M) ⊂ V(a) by (17.13),
any p ∈ V(q) ∩ Ass(M) contains q + a. So κ(p) ∈ V(q′). But κ carries AssR(M)
bijectively onto AssR′(M) by (17.4). Also, given p′ ∈ V(q′), plainly κ−1p′ ∈ V(q).
Thus κ induces a bijection from V(q) ∩ AssR(M) onto V(q′) ∩ AssR′(M). Thus
V(q) ∩AssR(M) = ∅ if and only if V(q′) ∩AssR′(M) = ∅, as desired.

Next, given a finitely generated R-module N , set N ′ := N/aN . Then (8.27)(1)
yields N ′ = N ⊗R R′. So (8.9) yields

HomR(N,M) = HomR′(N ′,M). (17.20.1)

Also, SuppR′(N ′) = Spec(κ)−1 SuppR(N) by (13.49). Hence, given p′ ∈ Spec(R′),

p′ ∈ SuppR′(N ′) if and only if p := κ−1p′ ∈ SuppR(N).

Plainly p′ ∈ V(q′) if and only if p ∈ V(q). Thus if SuppR(N) ⊂ V(q), then
SuppR′(N ′) ⊂ V(q′), since if p′ ∈ SuppR′(N ′), then p ∈ SuppR(N), so p ∈ V(q),
so p′ ∈ V(q′). Similarly, if SuppR(N) ⊃ V(q), then SuppR′(N ′) ⊃ V(q′).

Assume (4′), and let’s prove (4). Given a finitely generated R-module N with
SuppR(N) ⊂ V(q), set N ′ := N/aN . By the above, SuppR′(N ′) ⊂ V(q′). So
HomR′(N ′,M) = 0 by (4′). So HomR(N,M) = 0 by (17.20.1). Thus (4) holds.

Assume (5); it provides an N . Let’s prove (5′) with N ′ := N/aN . Since
SuppR(N) = V(q), the above yields SuppR′(N ′) = V(q′). Since HomR(N ′,M) = 0,
also HomR′(N ′,M) = 0 by (17.20.1). Thus (5′) holds.

Summarizing, we’ve proved the following two chains of implications:

(1)⇒ (1′)⇒ (4′)⇒ (4) and (5)⇒ (5′)⇒ (1′)⇒ (1).

Thus (1) implies (4), and (5) implies (1), as desired. !

B. Exercises

Exercise (17.21) . — Given modules M1, . . . ,Mr, set M := M1⊕ · · ·⊕Mr. Prove:

Ass(M) = Ass(M1) ∪ · · · ∪Ass(Mr).

Exercise (17.22) . — Let R be a ring, M a module, Mλ for λ ∈ Λ submodules.
Assume M =

⋃
Mλ. Show Ass(M) =

⋃
Ass(Mλ).

Exercise (17.23) . — Take R := Z and M := Z/〈2〉 ⊕ Z. Find Ass(M) and find
two submodules L, N ⊂M with L+N = M but Ass(L) ∪Ass(N) ! Ass(M).
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Exercise (17.24) . — If a prime p is sandwiched between two primes in Ass(M),
is p necessarily in Ass(M) too?

Exercise (17.25) . — Let R be a ring, S a multiplicative subset, M a module, N
a submodule. Prove Ass(M/NS) ⊃ {p ∈ Ass(M/N) | p ∩ S = ∅}, with equality if
either R is Noetherian or M/N is Noetherian.

Exercise (17.26) . — Let R be a ring, and suppose Rp is a domain for every prime
p. Prove every associated prime of R is minimal.

Exercise (17.27) . — Let R be a ring, M a module, N a submodule, x ∈ R.
Assume that R is Noetherian or M/N is and that x /∈ p for all p ∈ Ass(M/N).
Show xM ∩N = xN .

Exercise (17.28) . — Let R be a ring, M a module, p a prime. Show (1)–(3) are
equivalent if R is Noetherian, and (1)–(4) are equivalent if M is Noetherian:

(1) p is a minimal prime of M . (2) p is minimal in Supp(M).
(3) p is minimal in Ass(M). (4) p is a minimal prime of Ann(M).

Exercise (17.29) . — Let R be a ring, a an ideal. Assume R/a is Noetherian.
Show the minimal primes of a are associated to a, and they are finite in number.

Exercise (17.30) . — Let M a Noetherian module. Show that Supp(M) has only
finitely many irreducible components Y .

Exercise (17.31) . — Take R := Z and M := Z in (17.16). Determine when a
chain 0 ⊂ M1 ! M is acceptable, that is a chain like the one in (17.16), and
show that then p2 /∈ Ass(M).

Exercise (17.32) . — Take R := Z and M := Z/〈12〉 in (17.16). Find all three
acceptable chains, and show that, in each case, {pi} = Ass(M).

Exercise (17.33) . — Let R be a ring, M a nonzero Noetherian module, x, y ∈ R
and a ∈ rad(M). Assume ar+x ∈ z.div(M) for all r ≥ 1. Show a+xy ∈ z.div(M).

Exercise (17.34) (Grothendieck Group K0(R) ) . — Let R be a ring, C a subcat-
egory of ((R-mod)) such that the isomorphism classes of its objects form a set Λ.
Let C be the free Abelian group Z⊕Λ. Given M in C, let (M) ∈ Λ be its class. To
each short exact sequence 0 → M1 → M2 → M3 → 0 in C, associate the element
(M2) − (M1) − (M3) of C. Let D ⊂ C be the subgroup generated by all these
elements. Set K(C) := C/D, and let γC : C → K(C) be the quotient map.

In particular, let N be the subcategory of all Noetherian modules and all linear
maps between them; set K0(R) := K(N) and γ0 := γN. Show:

(1) Then K(C) has this UMP: for each Abelian group G and function λ : Λ→ G
with λ(M2) = λ(M1) + λ(M3) for all exact sequences as above, there’s an
induced Z-map λ0 : K(C)→ G with λ(M) = λ0(γC(M)) for all M ∈ C.

(2) Then K0(R) is generated by the various elements γ0(R/p) with p prime.
(3) Assume R is a Noetherian domain. Find a surjective Z-map κ : K0(R)→→ Z.
(4) Assume R is a field or a PID. Then K0(R) = Z.
(5) Assume R is Noetherian. Let ϕ : R → R′ and ψ : R′ → R′′ be module-

finite maps of rings. Then (a) restriction of scalars gives rise to a Z-map
ϕ! : K0(R′)→ K0(R), and (b) we have (ψϕ)! = ϕ!ψ!.
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Exercise (17.35) (Grothendieck Group K0(R)) . — Keep the setup of (17.34).
Assume R is Noetherian. Let F be the subcategory of ((R-mod)) of all finitely
generated flat R-modules M and all linear maps between them; set K0(R) := K(F)
and γ0 := γF. Let ϕ : R→ R′ and ψ : R′ → R′′ be maps of Noetherian rings. Show:

(1) Setting γ0(M)γ0(N) := γ0(M⊗N) makesK0(R) a Z-algebra with γ0(R) = 1.
(2) Setting γ0(M)γ0(L) := γ0(M ⊗ L) makes K0(R) a K0(R)-module.
(3) Assume R is local. Then K0(R) = Z.
(4) Setting ϕ!γ0(M) := γ0(M ⊗R R′) defines a ring map ϕ! : K0(R) → K0(R′).

Moreover, (ϕψ)! = ϕ!ψ!.
(5) If ϕ : R→ R′ is module finite, then ϕ! : K0(R′)→ K0(R) is linear overK0(R).
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18. Primary Decomposition

Primary decomposition of a submodule generalizes factorization of an integer into
powers of primes. A proper submodule is called primary if the quotient module
has only one associated prime. There’s an older notion, which we call old-primary;
it requires that, given an element of the ring and one of the module whose product
lies in the submodule, but whose second element doesn’t, then some power of the
first annihilates the quotient of the module by the submodule.

The two notions coincide when the quotient is Noetherian. In this case, we
characterize primary submodules in various ways, and we study primary decompo-
sitions, representations of an arbitrary submodule as a finite intersection of primary
submodules. A decomposition is called irredundant, or minimal, if it cannot be
shorthened. We consider several illustrative examples in a polynomial ring over a
field. Then we prove the celebrated Lasker–Noether Theorem: every proper sub-
module with Noetherian quotient has an irredundant primary decomposition.

We prove two uniqueness theorems. The first asserts the uniqueness of the primes
that arise; they are just the associated primes of the quotient. The second asserts
the uniqueness of those primary components whose primes are minimal among these
associated primes; the other primary components may vary. To prove it, we study
the behavior of primary decomposition under localization. Lastly, we derive the
important Krull Intersection Theorem: given an ideal a and a Noetherian module
M , the infinite intersection

⋂
n≥0 a

nM is annihilated by some y with y − 1 ∈ a.
Another and more common proof is considered in Exercise (20.21).
In an appendix, we study old-primary submodules further. In the Noetherian

case, we thus obtain alternative proofs of some of the earlier results; also we obtain
some new results about primary submodules.

A. Text

Definition (18.1). — Let R be a ring, Q ! M modules. If Ass(M/Q) consists of a
single prime p, we say Q is primary or p-primary in M . We say Q is old-primary
if given x ∈ R and m ∈M with xm ∈ Q, either m ∈ Q or x ∈ nil(M/Q).

Example (18.2). — A prime p is p-primary, as Ass(R/p) = {p} by (17.5)(2).
Plainly, p is old-primary too.

Theorem (18.3). — Let R be a ring, Q ! M modules. Set p := nil(M/Q).
(1) Then Q is old-primary if and only if z.div(M/Q) = p.
(2) If Q is old-primary, then p is the smallest prime containing Ann(M/Q).
(3) If Q is old-primary and Ass(M/Q) -= ∅, then Q is p-primary.
(4) If Q is old-primary, and if M/Q is Noetherian or R is, then Q is p-primary,
(5) If Q is q-primary and M/Q is Noetherian, then q = p and Q is old-primary.

Proof: For (1), first assume Q is old-primary. Given x ∈ z.div(M/Q), there’s
m ∈ M −Q with xm ∈ Q. So x ∈ p. Thus z.div(M/Q) ⊂ p. But z.div(M/Q) ⊃ p
by (17.11.1). Thus z.div(M/Q) = p.
Conversely, assume z.div(M/Q) = p. Given x ∈ R and m ∈ M with xm ∈ Q,

but m /∈ Q, note x ∈ z.div(M/Q). So x ∈ p. So Q is old-primary. Thus (1) holds.

138



Primary Decomposition (18.4)
/
(18.9) Text

For (2), let x, y ∈ R with xy ∈ p, but y /∈ p. As xy ∈ p, there’s n ≥ 1 with
(xy)nM ⊂ Q. As y /∈ p, there’s m ∈ M with ynm /∈ Q. But Q is old-primary. So
xn ∈ p. So x ∈ p. Thus p is prime.

Given a prime q ⊃ Ann(M/Q) and x ∈ p, there’s n ≥ 1 with xn ∈ Ann(M/Q),
so xn ∈ q. So x ∈ q. Thus q ⊃ p. Thus (2) holds.

For (3), assume Q is old-primary, and say q ∈ Ass(M/Q). Say q = Ann(m) with
m ∈M/Q nonzero. Then Ann(M/Q) ⊂ q ⊂ z.div(M/Q). But z.div(M/Q) = p by
(1). Hence (2) gives q = p. Thus (3) holds.

For (4), note M/Q -= 0. So if M/Q is Noetherian or R is, then Ass(M/Q) -= ∅
by (17.10). Thus (3) yields (4).

For (5), note p =
⋂

q∈Ass(M/Q) q by (17.15) and z.div(M/Q) =
⋃

q∈Ass(M/Q) q

by (17.12) if M/Q is Noetherian. Thus (1) yields (5). !
Lemma (18.4). — Let R be a ring, N a Noetherian module. Set n := nil(N). Then
nnN = 0 for some n ≥ 1.

Proof: Set a := Ann(N) and R′ := R/a. Then n :=
√
a, and R′ is Noetherian by

(16.16). Set n′ := n/a. Then n′ is finitely generated. So n′n = 0 for some n ≥ 1
by (3.38). So nn ⊂ a. Thus nnN = 0. !
Proposition (18.5). — Let M be a module, Q a submodule. If Q is p-primary and
M/Q is Noetherian, then p = nil(M/Q) and pn(M/Q) = 0 for some n ≥ 1.

Proof: The assertion follows immediately from (17.15) and (18.4). !
Exercise (18.6) . — Let R be a ring, and p = 〈p〉 a principal prime generated by
a nonzerodivisor p. Show every positive power pn is old-primary and p-primary.
Show conversely, an ideal q is equal to some pn if either (1) q is old-primary and√
q = p or (2) R is Noetherian and q is p-primary.

Exercise (18.7) . — Let ϕ : R → R′ be a ring map, M an R-module, Q′ ! M ′

R′-modules, α : M → M ′ an R-map. Set Q := α−1Q′, and assume Q ! M . Set
p := nil(M/Q) and p′ := nil(M ′/Q′). If Q′ is old-primary, show Q is and ϕ−1p′ = p.
Conversely, when ϕ and α are surjective, show Q′ is old-primary if Q is.

Proposition (18.8). — Let R be a ring, m a maximal ideal, Q ! M modules.
(1) Assume nil(M/Q) = m. Then Q is old-primary.
(2) Assume mn(M/Q) = 0 with n ≥ 1. Then nil(M/Q) = m and Q is m-primary.

Proof: Set a := Ann(M/Q). Then
√
a =: nil(M/Q).

For (1), fix x ∈ R and m ∈M with xm ∈ Q, but x /∈ m. As m is maximal, x is a
unit mod a by (3.37)(3)⇒(2); so there’s y ∈ R with 1− xy ∈ a. But a(M/Q) = 0.
So m− xym ∈ aM ⊂ Q. But xm ∈ Q; so xym ∈ Q. Thus m ∈ Q. Thus (1) holds.

For (2), note mn ⊂ a. So m ⊂
√
a. But Q -= M , so

√
a -= R. But m is maximal.

Thus m =
√
a =: nil(M/Q). Thus (1) implies Q is old-primary.

Take n ≥ 1 minimal with mn(M/Q) = 0. Then there’s m ∈ mn−1(M/Q) with
m -= 0 but mm = 0. So m ⊂ Ann(m) ! R. But m is maximal. So m = Ann(m).
Thus m ∈ Ass(M). Thus (18.3)(3) yields that Q is m-primary. Thus (2) holds. !
Corollary (18.9). — Let R be a ring, m and q ideals. Assume m is maximal, q
is proper, and mn ⊂ q for some n ≥ 1. Then m =

√
q, and q is old-primary and

m-primary.

Proof: In (18.8)(2), just take M := R and Q := q. !
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Proposition (18.10). — Let R be a ring, m a maximal ideal, M a module, Q a
proper submodule. Assume M/Q is Noetherian. Then (1)–(3) are equivalent:

(1) Q is m-primary; (2) m = nil(M/Q); (3) mn(M/Q) = 0 for some n ≥ 1.

Proof: First, (1) implies (2) and (3) by (18.5). Second, (2) implies (3) by (18.4).
Third, (3) implies (1) and (2) by (18.8)(2). !
Corollary (18.11). — Let R be a ring, m and q an ideals. Assume m is maximal,
q is proper, and R/q is Noetherian. Then (1)–(3) are equivalent:

(1) q is m-primary; (2) m =
√
q; (3) mn ⊂ q for some n ≥ 1.

Proof: In (18.10), just take M := R and Q := q. !
Lemma (18.12). — Let R be a ring, Q1, Q2 ! M modules. Set Q3 := Q1 ∩Q2.

(1) Set pi := nil(M/Qi). If Q1, Q2 are old-primary, and if p1 = p2, then p3 = p2
and Q3 is old-primary.

(2) If M/Q3 is Noetherian or R is, and if Q1, Q2 are p-primary, then so is Q3.

Proof: For (1), note p3 = p1 ∩ p2 by (12.39)(2). Thus if p1 = p2, then p3 = p2.
Given x ∈ R and m ∈ M with xm ∈ Q3 but m /∈ Q3, say m /∈ Q1. Then x ∈ p1

if Q1 is old-primary. But if p1 = p2, then p3 = p2. Thus (1) holds.
For (2), form the canonical map M → M/Q1 ⊕M/Q2. Its kernel is Q3. So it

induces an injection M/Q3 ↪→M/Q1 ⊕M/Q2. Assume M/Q3 is Noetherian or R
is. Then (17.10) and (17.6) yield

∅ -= Ass(M/Q3) ⊂ Ass(M/Q1) ∪Ass(M/Q2).

If the latter two sets are each equal to {p}, then so is Ass(M/Q3), as desired. !
(18.13) (Primary decomposition). — Let R be a ring, M a module, and N a
submodule. A primary decomposition of N is a decomposition

N = Q1 ∩ · · · ∩Qr with the Qi primary.

We call the decomposition irredundant or minimal if these conditions hold:

(1) N -=
⋂

i *=j Qi, or equivalently,
⋂

i *=j Qi -⊂ Qj for j = 1, . . . , r.
(2) Set pi := Ann(M/Qi) for i = 1, . . . , r. Then p1, . . . , pr are distinct.

If so, then we call Qi the pi-primary component of the decomposition.
Assume M/N is Noetherian or R is. If M/N is Noetherian, so is M/Q for any

N ⊂ Q ⊂M by (16.13)(2). Hence, any primary decomposition of N can be made
irredundant owing to (18.12): simply intersect all the primary submodules with
the same prime, and then repeatedly discard the first unnecessary component.

Example (18.14). — Let k be a field, R := k[X,Y ] the polynomial ring. Set
a := 〈X2, XY 〉. Below, it is proved that, for any n ≥ 1,

a = 〈X〉 ∩ 〈X2, XY, Y n〉 = 〈X〉 ∩ 〈X2, Y 〉. (18.14.1)

Here 〈X2, XY, Y n〉 and 〈X2, Y 〉 contain 〈X, Y 〉n; so they are 〈X, Y 〉-primary by
(18.9). Thus (18.14.1) gives infinitely many primary decompositions of a. They
are clearly irredundant. Note: the 〈X, Y 〉-primary component is not unique!

Plainly, a ⊂ 〈X〉 and a ⊂〈X2, XY, Y n〉 ⊂ 〈X2, Y 〉. To see a ⊃ 〈X〉 ∩ 〈X2, Y 〉,
take F ∈ 〈X〉 ∩ 〈X2, Y 〉. Then F = GX = AX2 + BY where A,B,G ∈ R. Then
X(G−AX) = BY . So X | B. Say B = B′X. Then F = AX2 +B′XY ∈ a.
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Example (18.15). — Let k be a field, R := k[X,Y ] the polynomial ring, a ∈ k.
Set a := 〈X2, XY 〉. Define an automorphism α of R by X 2→ X and Y 2→ aX +Y .
Then α preserves a and 〈X〉, and carries 〈X2, Y 〉 onto 〈X2, aX + Y 〉. So (18.14)
implies that a = 〈X〉 ∩ 〈X2, aX + Y 〉 is an irredundant primary decomposition.
Moreover, if a -= b, then 〈X2, aX+Y, bX+Y 〉 = 〈X, Y 〉. Thus two 〈X, Y 〉-primary
components are not always contained in a third, although their intersection is one
by (18.12).

Example (18.16). — Let k be a field, P := k[X,Y, Z] the polynomial ring. Set
R := P/〈XZ − Y 2〉. Let x, y, z be the residues of X,Y, Z in R. Set p := 〈x, y〉.
Clearly p2 = 〈x2, xy, y2〉 = x〈x, y, z〉. Let’s show that p2 = 〈x〉 ∩ 〈x2, y, z〉 is an
irredundant primary decomposition.

First note the inclusions x〈x, y, z〉 ⊂ 〈x〉 ∩ 〈x, y, z〉2 ⊂ 〈x〉 ∩ 〈x2, y, z〉.
Conversely, given f ∈ 〈x〉 ∩ 〈x2, y, z〉, represent f by GX with G ∈ P . Then

GX = AX2 +BY + CZ +D(XZ − Y 2) with A,B,C,D ∈ P.

So (G− AX)X = B′Y + C ′Z with B′, C ′ ∈ P . Say G− AX = A′′ + B′′Y + C ′′Z
with A′′ ∈ k[X] and B′′, C ′′ ∈ P . Then

A′′X = −B′′XY − C ′′XZ +B′Y + C ′Z = (B′ −B′′X)Y + (C ′ − C ′′X)Z;

whence, A′′ = 0. Therefore, GX ∈ X〈X,Y, Z〉. Thus p2 =〈x〉 ∩ 〈x2, y, z〉.
The ideal 〈x〉 is 〈x, y〉-primary in R by (18.7). Indeed, the preimage in P of

〈x〉 is 〈X, Y 2〉 and of 〈x, y〉 is 〈X, Y 〉. Further, 〈X, Y 2〉 is 〈X, Y 〉-primary, as
under the map ϕ : P → k[Y, Z] with ϕ(X) = 0, clearly 〈X, Y 2〉 = ϕ−1〈Y 2〉 and
〈X, Y 〉 = ϕ−1〈Y 〉; moreover, 〈Y 2〉 is 〈Y 〉-primary by (18.6).

Finally 〈x, y, z〉2 ⊂ 〈x2, y, z〉 ⊂ 〈x, y, z〉 and 〈x, y, z〉 is maximal. So 〈x2, y, z〉 is
〈x, y, z〉-primary by (18.9).

Thus p2 = 〈x〉 ∩ 〈x2, y, z〉 is a primary decomposition. It is clearly irredundant.
Moreover, 〈x〉 is the p-primary component of p2.

Lemma (18.17). — Let R be a ring, N = Q1 ∩ · · · ∩Qr a primary decomposition
in a module M . Say Qi is pi-primary for all i. Then

Ass(M/N) # {p1, . . . , pr}. (18.17.1)

If equality holds and if p1, . . . , pr are distinct, then the decomposition is irredundant;
the converse holds if R is Noetherian or if M/N is Noetherian.

Proof: Since N =
⋂

Qi, the canonical map is injective: M/N ↪→
⊕

M/Qi. So
(17.6) and (17.21) yield Ass(M/N) # ⋃

Ass(M/Qi). Thus (18.17.1) holds.
If N = Q2 ∩ · · · ∩Qr, then Ass(M/N) # {p2, . . . , pr} too. Thus if equality holds

in (18.17.1) and if p1, . . . , pr are distinct, then N = Q1 ∩ · · · ∩Qr is irredundant.
Conversely, assume N = Q1∩ · · ·∩Qr is irredundant. Given i, set Pi :=

⋂
j *=i Qj .

Then Pi ∩Qi = N and Pi/N -= 0. Consider these two canonical injections:

Pi/N ↪→M/Qi and Pi/N ↪→M/N.

Assume R is Noetherian orM/N is Noetherian. IfM/N is Noetherian, so is Pi/N
by (16.13)(2). So in both cases Ass(Pi/N) -= ∅ by (17.10). So the first injection
yields Ass(Pi/N) = {pi} by (17.6); then the second yields pi ∈ Ass(M/N). Thus
Ass(M/N) ⊇ {p1, . . . , pr}, and (18.17.1) yields equality, as desired. !
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Theorem (18.18) (First Uniqueness). — Let R be a ring, N = Q1 ∩ · · · ∩ Qr an
irredundant primary decomposition in a module M . Say Qi is pi-primary for all
i. Assume R is Noetherian or M/N is Noetherian. Then p1, . . . , pr are uniquely
determined; in fact, they are just the distinct associated primes of M/N .

Proof: The assertion is just part of (18.17). !

Theorem (18.19) (Lasker–Noether). — A proper submodule N of a module M has
an irredundant primary decomposition if M/N is Noetherian.

Proof: First, M/N has finitely many distinct associated primes, say p1, . . . , pr,
by (17.17). But by (17.7), for each i, there is a pi-primary submodule Qi of M
with Ass(Qi/N) = Ass(M/N) − {pi}. Set P :=

⋂
Qi. Fix i. Then P/N ⊂ Qi/N .

So Ass(P/N) ⊂ Ass(Qi/N) by (17.6). But i is arbitrary. So Ass(P/N) = ∅. But
P/N is Noetherian as M/N is. So P/N = 0 by (17.10). Finally, the decomposition
N =

⋂
Qi is irredundant by (18.17). !

Lemma (18.20). — Let R be a ring, S a multiplicative subset, p a prime ideal, M
a module, Q a p-primary submodule. Assume M/Q is Noetherian and S ∩ p = ∅.
Then S−1Q is S−1p-primary and QS = ϕ−1

S (S−1Q) = Q.

Proof: Every prime of S−1R is of the form S−1q where q is a prime of R with
S ∩ q = ∅ by (11.12)(2) and (12.2). But M/Q is Noetherian, so R/Ann(M/Q)
is too by (16.16). Hence S−1q ∈ Ass(S−1(M/Q)) if and only if q ∈ Ass(M/Q) by
(17.8); but if so, then q = p as Q is p-primary.

Note S−1(M/Q) = S−1M/S−1Q by (12.13); also, S−1(M/Q) is a Noetherian
S−1R-module by (16.33). But S ∩ p = ∅. Hence Ass(S−1M/S−1Q) = {S−1p}.
Thus, S−1Q is S−1p-primary.

Finally, QS = ϕ−1
S (S−1Q) by (12.12)(3). Given m ∈ QS , there is s ∈ S with

sm ∈ Q. But s /∈ p. Further, Q is old-primary, and p = nil(M/Q) by (18.2)(5).
So m ∈ Q. Thus QS ⊂ Q. But QS ⊃ Q as 1 ∈ S. Thus QS = Q. !

Proposition (18.21). — Let R be a ring, S a multiplicative subset, M a module,
N = Q1 ∩ · · · ∩ Qr ⊂ M an irredundant primary decomposition. Assume M/N is
Noetherian. Say Qi is pi-primary for all i, and S ∩ pi = ∅ just for i ≤ h. Then

S−1N = S−1Q1 ∩ · · · ∩ S−1Qh ⊂ S−1M and NS = Q1 ∩ · · · ∩Qh ⊂M

are irredundant primary decompositions.

Proof: Note S−1N = S−1Q1 ∩ · · · ∩ S−1Qr by (12.12)(6)(b). But S−1Qi is
S−1pi-primary for i ≤ h by (18.20), and S−1Qi = S−1M for i > h by (12.23).
Therefore, S−1N = S−1Q1 ∩ · · · ∩ S−1Qh is a primary decomposition.

It is irredundant by (18.17). Indeed, Ass(S−1M/S−1N) = {S−1p1, . . . , S−1ph}
by an argument like that in the first part of (18.20). Further, S−1p1, . . . , S−1ph
are distinct by (11.12)(2) as the pi are distinct.

Apply ϕ−1
S to S−1N = S−1Q1 ∩ · · · ∩ S−1Qh. We get NS = QS

1 ∩ · · · ∩ QS
h by

(12.12)(3). But each M/Qi is Noetherian as it is a quotient of M/N . So QS
i = Qi

by (18.20). So NS = Q1 ∩ · · · ∩Qh is a primary decomposition. It is irredundant
as, clearly, (18.13)(1), (2) hold for it, as they do for N = Q1 ∩ · · · ∩Qr. !
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Theorem (18.22) (Second Uniqueness). — Let R be a ring, M a module, N a
submodule. Assume M/N is Noetherian. Let p be minimal in Ass(M/N). Recall
that Sp : R − p. Then, in any irredundant primary decomposition of N in M , the
p-primary component Q is uniquely determined; in fact, Q = NSp .

Proof: In (18.21), take S := Sp. Then h = 1 as p is minimal in Ass(M/N). !

Theorem (18.23) (Krull Intersection). — Let a be an ideal, and M a Noetherian
module. Set N :=

⋂
n≥0 a

nM . Then there is x ∈ a such that (1 + x)N = 0.

Proof: Since N is finitely generated, the desired x ∈ a exists by (10.3) provided
N = aN . Clearly N ⊃ aN . To prove N ⊂ aN , note that, as M is Noetherian,
M/N is too by (16.13)(2). So (18.19) yields a decomposition aN =

⋂
Qi with

Qi pi-primary, so old-primary by (18.3)(5). Fix i. So, if there’s a ∈ a − pi, then
aN ⊂ Qi, and so N ⊂ Qi. If a ⊂ pi, then there’s ni with aniM ⊂ Qi by (18.5)
and (3.38), and so again N ⊂ Qi. Thus N ⊂

⋂
Qi = aN , as desired. !

Example (18.24) (Another non-Noetherian ring). — Let A be the local ring of
germs of C∞-functions F (x) at x = 0 on R, and m the ideal of F ∈ A with F (0) = 0.
Note that m is maximal, as F 2→ F (0) defines an isomorphism A/m ∼−→ R.

Given F ∈ A and n ≥ 1, apply Taylor’s Formula to f(t) := F (xt) from t = 0 to
t = 1 (see [13, Theorem 3.1, p. 109]); as f (n)(t) = xnF (n)(xt), we get

F (x) = F (0) + F ′(0)x+ · · ·+ F (n−1)(0)
(n−1)! xn−1 + xnFn(x)

where Fn(x) :=
∫ 1
0

(1−t)n−1

(n−1)! F (n)(xt) dt.
(18.24.1)

Note Fn is C∞: just differentiate under the integral sign (by [13, Thm. 7.1, p. 276]).

If F (k)(0) = 0 for k < n, then (18.24.1) yields F ∈ 〈xn〉. Conversely, assume
F (x) = xnG(x) for some G ∈ A. By Leibniz’s Product Rule,

F (k)(x) =
∑k

j=0

(k
j

)
n!

(n−j)!x
n−jG(k−j)(x).

So F (k)(0) = 0 if k < n. So 〈xn〉 = {F ∈ A | F (k)(0) = 0 for k < n }. So m = 〈x〉.
Thus 〈xn〉 = mn. Set n :=

⋂
n≥0 m

n. Thus n = {F ∈ A | F (k)(0) = 0 for all k }.

Taylor’s Formula defines a map τ : A → R[[x]] by τ(F ) :=
∑∞

n=0
F (n)(0)

n! xn.
Plainly τ is R-linear and, by Leibniz’s Product Rule, τ is a ring map. Moreover,
by the previous paragraph, Ker(τ) = n.
Cauchy’s Function is a well-known nonzero C∞-function H ∈ n; namely,

H(x) :=

{
e−1/x2

if x -= 0,

0 if x = 0;

see [13, Ex. 7, p. 82]. Thus n -= 0.
Given G ∈ m, let’s show (1 + G)H -= 0. Since G(0) = 0 and G is continuous,

there is δ > 0 such that |G(x)| < 1/2 if |x| < δ. Hence 1 + G(x) ≥ 1/2 if |x| < δ.
Hence

(
1 + G(x)

)
H(x) > (1/2)h(x) > 0 if 0 < |x| < δ. Thus (1 + G)n -= 0. Thus

the Krull Intersection Theorem (18.23) fails for A, and so A is non-Noetherian.
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B. Exercises

Exercise (18.25) . — Fix a prime p ∈ Z. Set M :=
⊕∞

n=1 Z/〈pn〉 and Q := 0 in
M . Show Q is 〈p〉-primary, but not old-primary (even though Z is Noetherian).

Exercise (18.26) . — Let k be a field, and k[X,Y ] the polynomial ring. Let a be
the ideal 〈X2, XY 〉. Show a is not primary, but

√
a is prime. Recall S := Sp. Show

a satisfies this condition: FG ∈ a implies F 2 ∈ a or G2 ∈ a.

Exercise (18.27) . — Let R be PIR, q a primary ideal, and p, r prime ideals.

(1) Assume q ⊂ p and r ! p. Show r ⊂ q. (2) Assume r =
√
q ! p. Show r = q.

(3) Assume r ! p. Show r is the intersection of all primary ideals contained in p.
(4) Assume p and r are not comaximal. Show one contains the other.

Exercise (18.28) . — Let Z[X] be the polynomial ring, and set m := 〈2, X〉 and
q := 〈4, X〉. Show m is maximal, q is m-primary, and q is not a power of m.

Exercise (18.29) . — Let k be a field, R := k[X,Y, Z] the polynomial ring in
three variables. Set p1 := 〈X,Y 〉, set p2 := 〈X,Z〉, set m := 〈X,Y, Z〉, and set
a := p1p2. Show that a = p1 ∩ p2 ∩ m2 is an irredundant primary decomposition.
Which associated primes are minimal, and which are embedded?

Exercise (18.30) . — Let k be a field, R := k[X,Y, Z] be the polynomial ring.
Set a := 〈XY, X − Y Z〉, set q1 := 〈X,Z〉 and set q2 := 〈Y 2, X − Y Z〉. Show that
a = q1∩q2 holds and that this expression is an irredundant primary decomposition.

Exercise (18.31) . — For i = 1, 2, let Ri be a ring, Mi a Ri-module with 0 ⊂ Mi

primary. Find an irredundant primary decomposition for 0 ⊂M1×M2 over R1×R2.

Exercise (18.32) . — Let R be a ring, a an ideal. Assume a =
√
a. Prove (1) every

prime p associated to a is minimal over a and (2) if R is Noetherian, then the
converse holds, and

√
a =

⋂
p∈Ass(R/a) p is an irredundant primary decomposition.

Find a simple example showing (1) doesn’t generalize to modules.

Exercise (18.33) . — Let R be a ring, M a module. We call a proper submodule Q
irreducible if Q = N1 ∩N2 implies Q = N1 or Q = N2. Prove: (1) an irreducible
submodule Q is primary if M/Q is Noetherian; and (2) a proper submodule N is
the intersection of finitely many irreducible submodules if M/N is Noetherian.

Exercise (18.34) . — Let R be a ring, M a module, N a submodule. Consider:

(1) The submodule N is old-primary.
(2) Given a multiplicative subset S, there is s ∈ S with NS = (N : 〈s〉).
(3) Given x ∈ R, the sequence (N : 〈x〉) ⊂ (N : 〈x2〉) ⊂ · · · stabilizes.

Prove (1) implies (2), and (2) implies (3). Prove (3) implies (1) if N is irreducible.

Exercise (18.35) . — Let R be a ring, M a Noetherian module, N a submodule,
m ⊂ rad(M) an ideal. Show N =

⋂
n≥0(m

nM +N).
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C. Appendix: Old-primary Submodules

Lemma (18.36). — Let R be a ring, and Q ! P ⊂ M modules. Assume Q is
old-primary in M . Then nil(M/Q) = nil(P/Q) and Q is old-primary in P .

Proof: First, nil(M/Q) ⊂ nil(P/Q) since Ann(M/Q) ⊂ Ann(P/Q) because
P/Q ⊂ M/Q. Second, nil(P/Q) ⊂ z.div(P/Q) by (17.11.1). Third, again as
P/Q ⊂ M/Q, so z.div(P/Q) ⊂ z.div(M/Q). Fourth, Q is old-primary in M ; so
z.div(M/Q) = nil(M/Q) by (18.3)(1). Thus nil(M/Q) = nil(P/Q) = z.div(P/Q).
Finally, by (18.3)(1) again, Q is old-primary in P . !
Proposition (18.37). — Let R be a ring, and L, N, Q1, . . . , Qn ⊂M modules with
N =

⋂n
i=1 Qi. Set pi := nil(M/Qi).

(1) Then
√
(N : L) =

⋂n
i=1

√
(Qi : L). (2) Then nil(M/N) =

⋂n
i=1 pi.

(3) Assume N !
⋂n

i=2 Qi. Given m ∈
(⋂n

i=2 Qi

)
−N , let m ∈ M/N denote its

residue. Then p1 ⊂
√

Ann(m) ⊂ z.div(M/N). Further, if Q1 is old-primary

too, then Ann(m) is old-primary and p1 =
√
Ann(m).

(4) Let m ∈M/N be any nonzero element, and p any minimal prime of Ann(m).
Assume Q1, . . . , Qn are old-primary. Then p = pi for some i.

(5) Assume Q1, . . . , Qn are old-primary. Then z.div(M/N) ⊂
⋃n

i=1 pi.
(6) Assume N !

⋂
i *=j Qi for all j, and Q1, . . . , Qn are old-primary. Then

z.div(M/N) =
⋃n

i=1 pi.

Proof: For (1), recall (4.17)(5) asserts (N : L) =
⋂n

i=1(Qi : L). And (3.32)(1)

asserts
√
a ∩ b =

√
a ∩
√
b for any ideals a, b. Thus (1) holds.

For (2), note (N : M) = Ann(M/N) and (Qi : M) = Ann(Qi/N) owing to
(4.17)(2). Thus (1) with L := M yields (2).

For (3), given x ∈ p1, say xh ∈ Ann(M/Q1) with h ≥ 1. Then xhm ⊂ Qi for all
i. So xhm ∈ N . Thus p1 ⊂

√
Ann(m).

Next, given y ∈
√
Ann(m), take k ≥ 0 minimal with ykm = 0. But m /∈ N . So

k ≥ 1. Set m′ := yk−1m. Then m′ /∈ N , but ym′ ∈ N . Thus y ∈ z.div(M/N).
Thus

√
Ann(m) ⊂ z.div(M/N).

Further, assume Q1 is old-primary too. Given x, y ∈ R with xy ∈ Ann(m) but
y /∈ Ann(m), then xym ∈ Q1 but ym /∈ Q1. Hence x ∈ p1 as Q1 is old-primary.
Thus Ann(m) is old-primary.

Finally, given z ∈
√

Ann(m), there’s l ≥ 1 with zlm ∈ N . So zlm ∈ Q1. But
m /∈ Q1, and Q1 is old-primary. So zl ∈ p1. But p1 is prime by (18.3)(2). So
z ∈ p1. Thus p1 ⊃

√
Ann(m). Thus (3) holds.

For (4), take an m ∈M −N that represents m. Reorder the Qi so that m /∈ Qi

if and only if i ≤ h. Apply (1) with L := Rm, and let’s identify the terms. First,
(N : L) = Ann((N+L)/N) and (Qi : L) = Ann((Qi+L)/Qi) for all i by (4.17)(2).

Note Ann((N +L)/N) = Ann(m). So
√

(N : L) ⊂ p. Moreover, Qi ! Qi+L for
i ≤ h, and Qi is old-primary; so nil((Qi+L)/Qi) = pi by (18.36). But Qi+L = Qi

for i > h; so nil((Qi + L)/Qi) = R. So (1) yields p ⊃
⋂

i≤h pi. Thus, as p is prime,
(2.25)(1) yields p ⊃ pj for some j ≤ h.

Given x ∈ Ann(m), note xm ∈ N ⊂ Qj . But m /∈ Qj as j ≤ h. So x ∈ pj as Qj

is old-primary. Thus pj ⊃ Ann(m). But p is a minimal prime of Ann(m). Thus
p = pj . Thus (4) holds.

In (5), given x ∈ z.div(M/N), take m ∈M −N with xm ∈ N . Then m /∈ Qi for
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some i. But xm ∈ Qi, and Qi is old-primary. So x ∈ pi. Thus (5) holds.
Finally, (6) follows immediately from (3) and (5). !

Lemma (18.38). — Let R be a ring, M a module, Q an old-primary submodule
m ∈M , and m its residue in M/Q. Set p := nil(M/Q). Then

(1) If m /∈ Q, then Ann(m) is old-primary and p =
√

Ann(m).
(2) Given x ∈ R− p, then (Q : 〈x〉) = Q.

Proof: Note (1) is just (18.37)(3) with N = Q1 and n = 1 as
⋂1

i=2 Qi = R by
convention.

For (2), suppose m ∈ (Q : 〈x〉). Then xm ∈ Q. But x /∈ p. So m ∈ Q as Q is
old-primary. Thus (Q : 〈x〉) ⊂ Q. Conversely, (Q : 〈x〉) ⊃ Q by (4.16)(2). Thus
(2) holds. !
Theorem (18.39). — Let R be a ring, M a module. Let D(M) or DR(M) denote
the set of primes p each minimal over some Ann(m) for m ∈M .

(1) Then z.div(M) =
⋃

p∈D(M) p. (2) Set N :=
⋂

p∈D(M) 0
Sp . Then N = 0.

(3) Let S ⊂ R be a multiplicatively closed subset. Then

DS−1R(S
−1M) = {S−1p | p ∈ DR(M) and p ∩ S = ∅ }.

(4) Assume 0 =
⋂n

i=1 Qi with the Qi old-primary. For all j, assume
⋂

i *=j Qi -= 0.
Set pi := nil(M/Qi). Then D(M) = {pi}.

(5) Then Ass(M) ⊂ D(M), with equality if R or M is Noetherian.

Proof: In (1), given x ∈ z.div(M), there’s m ∈ M nonzero with x ∈ Ann(m).
As Ann(m) is proper, there’s a prime p minimal over it owing to (2.21), (2.15),
and (3.16). Thus x ∈ p ∈ D(M). Thus z.div(M) ⊂

⋃
p∈D(M) p..

Conversely, given p ∈ D(M), say p is minimal over Ann(m). Then p consists of
zerodivisors modulo Ann(m) by (14.7). So there ’s y ∈ R−Ann(m) with xym = 0.
But ym -= 0. Thus x ∈ z.div(M). Thus z.div(M) ⊃

⋃
p∈D(M) p. Thus (1) holds.

In (2), given m ∈ M nonzero, again as Ann(m) is proper, there’s a prime p
minimal over it owing to (2.21), (2.15), and (3.16). So there’s no s ∈ Sp with
sm = 0. So m /∈ 0Sp . Thus m /∈ N . Thus (2) holds.

In (3), given any m ∈M with AnnR(m)∩S = ∅ and any s ∈ S, it’s easy to show:

AnnR(m)S = AnnR(m/1) = AnnR(m/s) ⊃ AnnR(m). (18.39.1)

Next, given p ∈ DR(M) with p ∩ S = ∅, say p is minimal over AnnR(m). Set
P := S−1p. Then P ⊃ S−1 AnnR(m); also P is prime by (11.12)(2). Given a
prime Q of S−1R with P ⊃ Q ⊃ S−1 AnnR(m), set q := ϕ−1

S Q. Then q is prime,
and ϕ−1

S P ⊃ q ⊃ ϕ−1
S S−1 AnnR(m). So p ⊃ q ⊃ AnnR(m)S by (12.12)(3)(a) and

(11.11)(3)(a). But p is minimal over AnnR(m)S owing to (18.39.1). So p = q. So
P = Q by (11.12)(2). Thus P is minimal over S−1 AnnR(m). But (12.17) with
M := Rm yields S−1 AnnR(m) = AnnS−1R(m/1). Thus P ∈ DS−1R(S

−1M).
Here p 2→ P is injective by (11.12)(2). So we have left to show it’s surjective.
Given P ∈ DS−1R(S

−1M), set p := ϕ−1
S P. Then p is prime, p ∩ S = ∅, and

P = S−1p by (11.12)(2). Thus we have left to show p ∈ DR(M).
Say P is minimal over AnnS−1R(m/s). But AnnS−1R(m/s) = AnnS−1R(m/1) as

1/s is a unit. Moreover, again AnnS−1R(m/1) = S−1 AnnR(m) by (12.17) with
M := Rm. Thus P is minimal over S−1 AnnR(m).

So p ⊃ ϕ−1
S S−1 AnnR(m). So (12.12)(3)(a) yields p ⊃ AnnR(m). Now, given
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a prime q of R with p ⊃ q ⊃ AnnR(m), note P ⊃ S−1q ⊃ S−1 AnnR(m). But P
is minimal over S−1 AnnR(m). So P = S−1q. So p = q by (11.12)(2). Thus p is
minimal over AnnR(m). Thus p ∈ DR(M), as desired. Thus (3) holds.

For (4), given p ∈ D(M), say p is minimal over Ann(m). Thus by (18.37)(4),
p = pi for some i. Thus D(M) ⊂ {pi}.

Conversely, each pi is of the form
√

Ann(m) for some m -= 0 by (18.37)(3).
Then pi is minimal over Ann(m); indeed, given a prime q ⊃ Ann(M/Qi) and
x ∈ pi, there’s n ≥ 1 with xn ∈ Ann(M/Qi), so xn ∈ q, so x ∈ q, and thus q ⊃ pi.
Thus D(M) ⊃ {pi}. Thus (4) holds.

In (5), given p := Ann(m) ∈ Ass(M), note p ∈ D(M). Thus Ass(M) ⊂ DR(M).
If M is Noetherian, so is R/Ann(M) by (16.16). Fix p ∈ D(M). Then, under

either Noetherian hypothesis, p is finitely generated modulo Ann(M). Therefore,
p ∈ Ass(M) if S−1

p p ∈ Ass(S−1
p M) by (17.8). But S−1

p p ∈ DS−1
p R(S

−1
p M) by (3).

Thus we may localize at p and so assume R is local and p is its maximal ideal.
Say p is minimal over Ann(m). Then m -= 0. Also if M is Noetherian, so is Rm.

So under either Noetherian hypothesis, (17.10) gives a q ∈ Ass(Rm) ⊂ Ass(M).
Then q = Ann(m′) with m′ ∈ Rm; so q ⊃ Ann(m). As p is maximal, p ⊃ q. But p
is minimal over Ann(m). So p = q. Thus Ass(M) ⊃ DR(M). Thus (5) holds. !
Lemma (18.40). — Let R be a ring, N ! M modules, p be a minimal prime
of Ann(M/N). Assume M/N is finitely generated. Recall Sp := R − p, and set
Q := NSp . Then p = nil(M/Q) and Q is old-primary.

Proof: Set a := Ann(M/N). Then p is a minimal prime of a. So pRp is the only
prime of Rp containing aRp. Thus (3.14) yields pRp =

√
aRp.

Set n := nil(M/Q) and b := Ann(M/Q). Given x ∈ n, there’s n ≥ 1 with xn ∈ b.
So xn/1 ∈ bp. But bp ⊂ Ann(Mp/Qp) by (12.17)(1). Now, plainly Qp = Np. Also
Mp/Np = (M/N)p. But M/N is finitely generated. So Ann(M/N)p = ap again by
(12.17)(1). Thus xn/1 ∈ ap. So there’s s ∈ Sp with sxn ∈ a. But a ⊂ p, and p is
prime. Hence x ∈ p. Thus n ⊂ p.

Conversely, let x ∈ p. Then x/1 ∈ pRp. Recall pRp =
√

aRp. So there’s n ≥ 1
with xn/1 ∈ aRp. So there’s s ∈ Sp with sxn ∈ a. So sxnM ⊂ N . Hence xnM ⊂ Q.
So xn ∈ b. So x ∈ n. Thus p ⊂ n. Thus p = n.

As M/N is finitely generated, V(a) = Supp(M/N) by (13.4)(3). But p ∈ V(a).
So p ∈ Supp(M/N). So (M/N)p -= 0. So Np -= Mp by (12.13). Thus NSp -= M .

Let x ∈ R and m ∈ M with xm ∈ Q, but m /∈ Q. Recall Qp = Np. Hence
xm/1 ∈ Np, but m/1 /∈ Np. So x/1 /∈ R×

p . Thus x ∈ p. But p = n. Thus Q is
old-primary, as desired. !
Proposition (18.41). — Let R be a ring, and M a module with this property:

(L1) Given any submodule N and prime p, there’s x ∈ Sp with xNSp ⊂ N .

Assume M finitely generated. Let N ! M be a submodule.

(1) Given a minimal prime p of Ann(M/N) and x as in (L1), set Q := NSp and
P := N + xM . Then Q is old-primary, p = nil(M/Q), and P $ N = Q∩P .

(2) Then N is an intersection of old-primary submodules.

Proof: In (1), note that N ⊂ Q ∩ P . Conversely, given m ∈ Q ∩ P , say that
m = n + xm′ with n ∈ N and m′ ∈ M . But m ∈ Q and N ⊂ Q. So xm′ ∈ Q.
But Q is old-primary and p = nil(M/Q) by (18.40). Also x /∈ p. So m′ ∈ Q. But
xQ ⊂ N . So xm′ ∈ N . So m ∈ N . Thus N ⊃ Q ∩ P . Thus N = Q ∩ P .
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Finally, x /∈ p and p ⊃ Ann(M/N). So xM -⊂ N . Thus P $ N . Thus (1) holds.
For (2), let S be the set of pairs (Q, P ) where Q is a set of old-primary submodules

Q and where P is a submodule with N = (
⋂

Q∈Q Q)∩P . Order S by coordinatewise
inclusion. Note S is nonempty as (∅, N) ∈ S. Every linearly ordered subset (Qλ, Pλ)
has an upper bound, namely (Q, P ) with Q :=

⋃
Qλ, where this union takes place

in the set of subsets of M , and with P :=
⋃

Pλ. Thus Zorn’s Lemma implies S has
a maximal element (Q, P ).
Suppose P -= M . Then (1) yields P = Q1 ∩ P1 where Q1 is old-primary and

P1 is a submodule with P1 $ P . Set Q1 := Q ∪ {Q1}. Then (Q1, P1) > (Q, P ), a
contradiction. Thus P = M and N =

⋂
Q∈Q Q, as required. Thus (2) holds. !

Proposition (18.42). — Let R be a ring, M a Noetherian module.

(1) Then the condition (L1) of (18.41) holds.
(2) Then each proper submodule N is a finite intersection of old-primary sub-

modules.

Proof: In (1), given any submodule N and prime p, asM is Noetherian, there are
m1, . . . ,mr ∈ NSp that generate NSp . For each i, there’s xi ∈ Sp with ximi ∈ N .
Set x :=

∏
xi. Then xNSp ⊂ N . Thus (1) holds.

For (2), form the set S of all submodules P of M for which there are finitely
many old-primary submodules Qi with N = (

⋂
Qi) ∩ P . As M is Noetherian,

there’s a maximal P . If P -= M , then (18.41)(1) provides a submodule P ′ $ P
and an old-primary submodule Q with P = Q ∩ P ′. So N = ((

⋂
Qi) ∩Q) ∩ P ′, in

contradiction to the maximality of P . Thus P = M . Thus (2) holds. !

Proposition (18.43). — Let R be a ring, S a multiplicatively closed subset, and
Q ! M modules. Set p := nil(M/Q). Assume Q is old-primary and S ∩ p = ∅.
Then QS = Q and S−1Q is old-primary in S−1M over S−1R.

Proof: Given s ∈ S and m ∈ M with sm ∈ Q, note m ∈ Q, as s /∈ p and Q is
old-primary. Thus QS ⊂ Q. But QS ⊃ Q always. Thus QS = Q.

Note S−1Q ! S−1M as ϕ−1
S S−1Q = QS by (12.12)(3), but QS = Q ! M .

Given x ∈ R, m ∈M and s, t ∈ S with xm/st ∈ S−1Q, but m/t /∈ S−1Q, there’s
u ∈ S with uxm ∈ Q, but um /∈ Q. So x ∈ p as Q is old-primary. So x/s ∈ S−1p.
But S−1p ⊂ nil(S−1M/S−1Q) by (12.37). Thus S−1Q is old-primary. !

Proposition (18.44). — Let R be a ring, M a finitely generated module. Along
with (L1) of (18.41), consider this property of M :

(L2) Given any submodule N ! M and given any descending chain S1 ⊃ S2 ⊃ · · ·
of multiplicatively closed subsets, the chain NS1 ⊃ NS2 ⊃ · · · stabilizes.

If every submodule N ! M is a finite intersection of old-primary submodules, then
(L1) and (L2) hold. Conversely, assume N isn’t such an intersection and (L1)
holds. Then there are submodules Q1, , . . . , Qm and N0, N1, . . . , Nm such that:

(1) Each Qi is old-primary. Also N0 := N , and Nm−1 ! Nm ! M if m ≥ 1.
(2) If m ≥ 1, then Nm is maximal among the P such that N =

⋂m
i=1 Qi ∩ P .

(3) For i ≤ m, set pi := Ann(M/Qi). If m ≥ 1, then Ann(M/Nm) -⊂ pi for
i ≤ m.

(4) If m ≥ 1, set Sm := R−
⋃

i≤m pi. Then NSm =
⋂m

i=1 Qi.

(5) If m ≥ 1, then Sm−1 ⊃ Sm, but NSm−1 $ NSm .
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Proof: First, say N =
⋂m

i=1 Qi with old-primary Qi. Set pi := nil(M/Qi).
Given a multiplicatively closed subset S, note NS =

⋂m
i=1 Q

S
i by (12.12)(6)(a).

Say S ∩ pi = ∅ if and only if i ≤ n. Then QS
i = Qi for i ≤ n by (18.43)(1). But

QS
i = M for i > n by (12.38)(2). Thus NS =

⋂n
i=1 Qi and N = NS ∩

⋂
i>n Qi.

To check (L1), let p be a prime, and take S := Sp. Then pi ⊂ p if and only if
i ≤ n. For each i > n, take xi ∈ pi − p. Say ni ≥ 0 with xni

i ∈ Ann(M/Qi). Set
x :=

∏
xni
i ; so x = 1 if n = m. Then x ∈ Ann(M/Qi) for each i > n, and x /∈ p.

So xM ⊂ Qi, and x ∈ Sp. Hence xNSp ⊂ NSp ∩
⋂

i>n Qi = N . Thus (L1) holds.
As to (L2), for each i, say Si ∩ pj = ∅ if and only if j ≤ ni. But S1 ⊃ S2 ⊃ · · · .

So n1 ≤ n2 ≤ · · · ≤ m. So the ni stabilize. But NSi =
⋂ni

j=1 Qj . Thus (L2) holds.
Conversely, assume N isn’t a finite intersection of old-primary submodules, and

(L1) holds. Set N0 := N , and given n ≥ 0, say Q1, . . . , Qn and N0, N1, . . . , Nn

satisfy (1)–(5) for m = n. Let’s find suitable Qn+1 and Nn+1.
Note Nn ! M by (1). So Ann(M/Nn) -= R. So there’s a minimal prime pn+1

of Ann(M/Nn), and so an x as in (L1). Set Qn+1 := NSpn+1n and P := Nn + xM .
Then Qn+1 is old-primary, pn+1 = nil(M/Qn+1), and P $ Nn = Qn+1 ∩ P by
(18.41)(1).

Form the set S of submodules U of M with U ⊃ P and N =
⋂n+1

i=1 Qi ∩U . Then
P ∈ S as N =

⋂n
i=1 Qi ∩Nn by (2). Given a linearly ordered subset {Pλ} of S, set

U :=
⋃
Pλ. If u ∈

⋂n+1
i=1 Qi ∩ U , then u ∈

⋂n+1
i=1 Qi ∩ Pλ for some λ; so U ∈ S. So

U is an upper bound. So Zorn’s Lemma yields a maximal element in S, say Nn+1.
Note Nn ! Nn+1 as Nn ! P ⊂ Nn+1. And Nn+1 ! M ; otherwise, N =

⋂n+1
i=1 Qi

but N isn’t a finite intersection of old-primary submodules, Thus Q1, . . . , Qn+1 and
N0, N1, . . . , Nn+1 satisfy (1)–(2) for m = n+ 1.

As to (3) for m = n + 1, note Ann(M/Nn) ⊂ Ann(M/Nn+1) as Nn ⊂ Nn+1.
So Ann(M/Nn+1) -⊂ pi for i ≤ n by (3) for m = n. But x ∈ Ann(M/Nn+1) as
Nn+1 ⊃ P . But x /∈ pn+1. So Ann(M/Nn+1) -⊂ pn+1. Thus (3) holds for m = n+1.

As to (4) for m = n + 1, note Ann(M/Nn+1) -⊂
⋃n+1

i=1 pi by (3) for m = n + 1

and by Prime Avoidance (3.12). Hence there’s y ∈ Ann(M/Nn+1) −
⋃n+1

i=1 pi.

Then yM ⊂ Nn+1. Hence M = NSn+1

n+1 . Now, N =
⋂n+1

i=1 Qi ∩ Nn+1 by (2) for

m = n+ 1. So NSn+1 =
⋂n+1

i=1 QSn+1

i ∩NSn+1

n+1 by (12.12)(6)(a). And QSn+1

i = Qi

by (18.43)(1). Thus (4) holds for m = n+ 1.
As to (5) for m = n + 1, plainly Sn ⊃ Sn+1. Now, Nn ! Nn+1 by (1) for

m = n+1. So (2) for m = n gives N !
⋂n

i=1 Qi ∩Nn+1. But N =
⋂n+1

i=1 Qi ∩Nn+1

by (2) for m = n + 1. Hence
⋂n

i=1 Qi $
⋂n+1

i=1 Qi. So (4) for m = n, n + 1 implies
NSn $ NSn+1 . Thus (5) holds for m = n+ 1.

Finally, (5) for all m implies that the Sm form a descending chain S1 ⊃ S2 ⊃ · · · ,
but that the chain NS1 ⊃ NS2 ⊃ · · · doesn’t stabilize, as desired. !

Proposition (18.45). — Let R be a ring, S a multiplicative subset, and M a module.
Then the map Q 2→ S−1Q is an inclusion-preserving bijection from the old-primary
submodules of M with nil(M/Q) ∩ S = ∅ onto the old-primary S−1R-submodules
K of S−1M . The inverse is K 2→ ϕ−1

S K.

Proof: The map in question is well defined by (18.43). It is injective because
ϕ−1
S S−1Q = QS by (12.12)(3) and Q = QS by (18.43). Finally, it’s surjective

with inverse K 2→ ϕ−1
S K as ϕ−1

S K is old-primary by (18.7) and S−1ϕ−1
S K = K

for any submodule K of S−1R by (12.12)(2)(b). !
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Proposition (18.46). — Let R be a ring, S a multiplicative subset, and M a module.
Let N, Q1, . . . , Qn be submodules with N =

⋂n
i=1 Qi and the Qi old-primary. Set

pi := nil(M/Qi), and assume S ∩ pi = ∅ just for i ≤ t. Then

(1) Then S−1N =
⋂t

i=1 S
−1Qi ⊂ S−1M and NS =

⋂t
i=1 Qi ⊂M .

(2) Then the S−1Qi are old primary just for i ≤ t.
(3) Set Pi := nil(S−1M/S−1Qi). For i -= j and j ≤ t, if pi -= pj, then Pi -= Pj.
(4) For j ≤ t, if Qj -⊃

⋂
i≤r, i *=j Qi, then S−1Qj -⊃

⋂
i≤t, i*=j S

−1Qi.

Proof: In (1), note S−1N =
⋂r

i=1 S
−1Qi and NS =

⋂r
i=1 Q

S
i by (12.12)(6).

But S−1Qi = S−1M for i > t and Qi = M by (12.23). Thus (1) holds.
Note (2) results immediately from (18.43) and (12.23).
Note (3) holds as pj = ϕ−1

S Pj for j ≤ t by (18.7).
Note (4) holds as Qj = QS

j = ϕ−1
S S−1Qj by (18.43) and (12.12)(3)(a). !

Theorem (18.47). — Let N, Q1, . . . , Qr ! M be modules, S some set of minimal
primes of Ann(M/N). Set pi := nil(M/Qi) and S :=

⋂
p∈S Sp. Assume pi ∈ S just

for i ≤ t, the Qi are old-primary, and N =
⋂r

i=1 Qi. Then NS =
⋂t

i=1 Qi.

Proof: Fix 1 ≤ i ≤ r. First, assume i ≤ t. Then pi ∈ S. Thus S ∩ pi = ∅.
Next, assume t < i and S ∩ pi = ∅. Then pi ⊂

⋃
p∈S p. So (3.12) provides

p ∈ S with pi ⊂ p. But N ⊂ Qi; hence, Ann(M/N) ⊂ Ann(M/Qi) ⊂ pi. But p is
minimal over Ann(M/N). Hence pi = p ∈ S, contradicting t < i. Thus S ∩ pi -= ∅.
Finally, (18.46)(1) yields NS =

⋂t
i=1 Qi. !

Proposition (18.48). — Let N,Q1, . . . , Qn ! M be modules with N =
⋂n

i=1 Qi.
Assume the Qi are old-primary. Set pi := nil(M/Qi) and X := Supp(M/N). Then

(1) Set a := Ann(M/N). Then every minimal prime p of a is one of the pi.
(2) If M/N is finitely generated, then X has at most n irreducible components.

Proof: In (1), p ⊃ nil(M/N). So (18.37)(2) gives p ⊃ pi for some i. Note pi ⊃ a.
Also pi is prime by (18.3)(2). So p = pi as p is minimal. Thus (1) holds.

For (2), assume M/N is finitely generated. So Supp(M/N) = V(a) by (13.4)(3).
But a has at most n minimal primes by (1). Thus (16.50)(1), (3) yield (2). !

D. Appendix: Exercises

Exercise (18.49) . — Let q ⊂ p be primes, M a module, and Q an old-primary
submodule with nil(M/Q) = q. Then 0Sp ⊂ Q.

Exercise (18.50) . — Let R be an absolutely flat ring, q an old-primary ideal.
Show that q is maximal.

Exercise (18.51) . — Let X be an infinite compact Hausdorff space, R the ring of
continuous R-valued functions on X. Using (14.26), show that 〈0〉 is not a finite
intersection of old-primary ideals.

Exercise (18.52) . — Let R be a ring, X a variable, N, Q ⊂ M modules, and
N =

⋂r
i=1 Qi a decomposition. Assume Q is old-primary. Assume N =

⋂r
i=1 Qi is

irredundant; that is, (18.13)(1)–(2) hold. Show:

(1) Assume M is finitely generated. Let p be a minimal prime of M . Then p[X]
is a minimal prime of M [X].
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(2) Then nil
(
M [X]

/
N [X]

)
= nil(M/N)[X].

(3) Then Q[X] is old-primary in M [X].
(4) Then N [X] =

⋂r
i=1 Qi[X] is irredundant in M [X].

Exercise (18.53) . — Let k be a field, P := k[X1, . . . , Xn] the polynomial ring.
Given i, set pi := 〈X1, . . . , Xi〉. Show pi is prime, and all its powers are pi -primary.

Exercise (18.54) . — Let R be a ring, p a prime, M a module. Set N := 0Sp ⊂M .
Assume M is finitely generated. Show the following conditions are equivalent:

(1) nil(M/N) = p. (2) p is minimal over Ann(M). (3) N is old-primary.

Exercise (18.55) . — Let R be a ring, M a module, Σ the set of minimal primes
of Ann(M). Assume M is finitely generated. Set N :=

⋂
p∈Σ 0Sp . Show:

(1) Given p ∈ Σ, the saturation 0Sp is the smallest old-primary submodule Q
with nil(M/Q) = p.

(2) Say 0 =
⋂r

i=1 Qi with the Qi old-primary. For all j, assume Qj -⊃
⋂

i *=j Qi.
Set pi := nil(M/Qi). Then N = 0 if and only if {p1, . . . , pr} = Σ.

(3) If M = R, then N ⊂ nil(R).

Exercise (18.56) . — Let R be a ring, N ! M modules. Assume there exists a
decomposition N =

⋂n
i=1 Qi with the Qi old-primary. Show that there are at most

finitely many submodules of M of the form NS where S is a multiplicative subset.

Exercise (18.57) . — Let R be a ring, M a module, p ∈ Supp(M). Fix m, n ≥ 1.
Set (pM)(n) := (pnM)Sp and p(n) := (p)(n). (We call p(n) the nth symbolic
power of p.) Assume M is finitely generated. Set N := p(m)(pM)(n). Show:

(1) Then p is the smallest prime containing Ann(M/pnM).
(2) Then (pM)(n) is old-primary, and nil

(
M

/
(pM)(n)

)
= p.

(3) Say pnM =
⋂r

i=1 Qi with Qi old-primary. Set pi := nil(M/Qi). Assume

pi = p if and only if i ≤ t. Then (pM)(n) =
⋂t

i=1 Qi.
(4) Then (pM)(n) = pnM if and only if pnM is old-primary.
(5) Let Q be an old-primary submodule with nil(M/Q) = p. Assume p is finitely

generated modulo Ann(M/Q). Then Q ⊃ (pM)(n) if nA 0.
(6) Then NSp = (pM)(m+n) and p is the smallest prime containing Ann(M/N).
(7) Say N =

⋂r
i=1 Qi with all Qi old-primary. Set pi := nil(M/Qi). Assume

pi = p if and only if i ≤ t. Then Qi = (pM)(m+n) for some i.

Exercise (18.58) . — Let R be a ring, f ∈ R, and N,Q1, . . . , Qn ! M modules
with N =

⋂n
i=1 Qi and the Qi old-primary. Set pi := nil(M/Qi) for all i. Assume

f ∈ pi just for i > h. Show
⋂h

i=1Qi = NSf = (N : 〈fn〉) for nA 0.

Exercise (18.59) . — Let R be a ring, p a prime ideal, M a Noetherian module.
Denote the intersection of all p-primary submodules by N . Show N = 0Sp .

Exercise (18.60) . — Let R be a ring, M a module, and p1, . . . , pn ∈ Supp(M)
distinct primes, none minimal in Supp(M). Assume M is finitely generated, and
assume the following condition holds (it does, by (18.59), if M is Noetherian):

(*) For every prime p, the saturation 0Sp is equal to the intersection of all the
old-primary submodules Q with nil(M/Q) = p.

(1) For 1 ≤ i < n, assume pi -⊃ pn and let Qi be an old-primary submodule with
nil(M/Qi) = pi and

⋂
j *=i Qj -⊂ Qi. Set P :=

⋂
j<n Qj . Show P -⊂ 0Spn .
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(2) In the setup of (1), show there is an old-primary submodule Qn such that
nil(M/Qn) = pn and P -⊂ Qn. Then show

⋂
j *=i Qj -⊂ Qi for all i.

(3) Use (2) and induction on n to find old-primary submodules Q1, . . . , Qn with
nil(M/Qi) = pi and

⋂
j *=i Qj -⊂ Qi for all i.

Exercise (18.61) . — Let R be a ring, M a module, Q an old-primary submodule.
Set q := Ann(M/Q). Show that q is old-primary.

Exercise (18.62) . — Let ϕ : R → R′ be a ring map, and M an R-module. Set
M ′ := M ⊗R R′ and α := 1M ⊗ ϕ. Let N ′ =

⋂r
i=1 Q

′
i be a decomposition in M ′

with each Q′
i old-primary. Set N := α−1N ′ and Qi := α−1Q′

i. Set pi := nil(M/Qi)
and p′i := nil(M ′/Q′

i). Show:

(1) Then N =
⋂r

i=1 Qi with Qi old-primary, and pi = ϕ−1p′i for all i.
(2) Assume R′ is flat and N ′ = R′α(N). Assume N ′ -=

⋂
i *=j Q

′
i for all j, but

N =
⋂t

i=1 Qi with t < r. Fix t < i ≤ r. Then pi ⊂ pj for some j ≤ t.

Exercise (18.63) . — Let R be a ring, a an ideal, M a module, 0 =
⋂
Qi a finite

decomposition with Qi old-primary. Set pi = nil(M/Qi). Show Γa(M) =
⋂

a*⊂pi
Qi.

(If a ⊂ pi for all i, then
⋂

a*⊂pi
Qi = M by convention.)

Exercise (18.64) . — Let R be a ring, N % M modules. Assume N =
⋂r

i=1 Qi

with Qi old-primary. Set pi = nil(M/Qi). Show N =
⋂r

i=1 ϕ
−1
pi

(Npi).

Exercise (18.65) . — Let ϕ : R → R′ be a ring map, M ′ an R′-module, M ⊂ M ′

an R-submodule, and p ∈ DR(M). Assume 0 =
⋂r

i=1 Q
′
i with the Q′

i old-primary
R′-submodules. Show there’s p′ ∈ DR′(M ′) with ϕ−1p′ = p.

Exercise (18.66) . — Let R be a ring, M a module, 0 =
⋂n

i=1 Qi an old-primary
decomposition in M . Set pi := nil(M/Qi). Assume

⋂
j *=i Qj -= 0 for all i, the pi are

distinct, M is finitely generated, and p1 is finitely generated mod Ann(M). Show:

(1) Suppose that p1 is minimal over Ann(M). Then Q1 = p1M (r) for r A 0.
(2) Suppose that p1 is not minimal over Ann(M). Show that replacing Q1 by

(p1M)(r) for r A 0 gives infinitely many distinct old-primary decompositions
of 0, still with

⋂
j *=i Qj -= 0 for all i and the pi distinct. (Thus, when R is

Noetherian, then 0 has infinitely many irredundant primary decompositions,
which differ only in the first component.)
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19. Length

The length of a module is a generalization of the dimension of a vector space.
The length is the number of links in a composition series, which is a finite chain
of submodules whose successive quotients are simple— that is, their only proper
submodules are zero. Our main result is the Jordan–Hölder Theorem: any two
composition series do have the same length and even the same successive quotients;
further, their annihilators are just the primes in the support of the module, and
the module is equal to the product of its localizations at these primes. Hence, the
length is finite if and only if the module is both Artinian and Noetherian.

We also prove the Akizuki–Hopkins Theorem: a ring is Artinian if and only if it
is Noetherian and every prime is maximal. Consequently, a ring is Artinian if and
only if its length is finite; if so, then it is the product of Artinian local rings.

Lastly, we study parameter ideals q of a module M ; by definition, M/qM is of
finite length, and q lies in the radical rad(M), which is the intersection of all the
maximal ideals containing the annihilator Ann(M). So if M is the ring R itself,
then R/q is a product of Artinian local rings; moreover, we prove that then R/q has
at least as many idempotents as R, with equality if and only if R is decomposable.

A. Text

(19.1) (Length). — Let R be a ring, and M a module. We call M simple if it is
nonzero and its only proper submodule is 0. We call a chain of submodules,

M = M0 ⊃M1 ⊃ · · · ⊃Mm = 0 (19.1.1)

a composition series of length m if each successive quotient Mi−1/Mi is simple.
We define the length 2(M) or 2R(M) to be the infimum of all those lengths:

2(M) := inf{m | M has a composition series of length m }. (19.1.2)

By convention, if M has no composition series, then 2(M) :=∞. Further, 2(M) = 0
if and only if M = 0.

For example, if R is a field, then M is a vector space and 2(M) = dimR(M).
Also, the chains in (17.32) are composition series, but those in (17.31) are not.

Given a submodule N ⊂M , we call 2(M/N) the colength of N .

Exercise (19.2) . — Let R be a ring, M a module. Prove these statements:

(1) If M is simple, then any nonzero element m ∈M generates M .
(2) M is simple if and only if M % R/m for some maximal ideal m, and if so,

then m = Ann(M).
(3) If M has finite length, then M is finitely generated.

Theorem (19.3) (Jordan–Hölder). — Let R be a ring, and M a module with a
composition series (19.1.1). Then any chain of submodules can be refined to a
composition series, and every composition series is of the same length 2(M). Also,

Supp(M) = {m ∈ Spec(R) | m = Ann(Mi−1/Mi) for some i };

the m ∈ Supp(M) are maximal; given i, there is an m ∈ Supp(M) such that
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Mi−1/Mi % R/mi; there is a canonical isomorphism

M ∼−→
∏

m∈Supp(M) Mm; (19.3.1)

and 2(Mm) is equal to the number of i with m = Ann(Mi−1/Mi).

Proof: First, let M ′ be a proper submodule of M . Let’s show that

2(M ′) < 2(M). (19.3.2)

To do so, set M ′
i := Mi ∩M ′. Then M ′

i−1 ∩Mi = M ′
i . So

M ′
i−1/M

′
i = (M ′

i−1 +Mi)/Mi ⊂Mi−1/Mi.

Since Mi−1/Mi is simple, either M ′
i−1/M

′
i = 0, or M ′

i−1/M
′
i = Mi−1/Mi and so

M ′
i−1 +Mi = Mi−1. (19.3.3)

If (19.3.3) holds and if Mi ⊂ M ′, then Mi−1 ⊂ M ′. Hence, if (19.3.3) holds for
all i, then M ⊂ M ′, a contradiction. Therefore, there is an i with M ′

i−1/M
′
i = 0.

Now, M ′ = M ′
0 ⊃ · · · ⊃M ′

m = 0. Omit M ′
i whenever M ′

i−1/M
′
i = 0. Thus M ′ has

a composition series of length strictly less than m. Therefore, 2(M ′) < m for any
choice of (19.1.1). Thus (19.3.2) holds.
Next, given a chain N0 $ · · · $ Nn = 0, let’s prove n ≤ 2(M) by induction on

2(M). If 2(M) = 0, then M = 0; so also n = 0. Assume 2(M) ≥ 1. If n = 0,
then we’re done. If n ≥ 1, then 2(N1) < 2(M) by (19.3.2); so n − 1 ≤ 2(N1) by
induction. Thus n ≤ 2(M).

If Ni−1/Ni is not simple, then there is N ′ with Ni−1 $ N ′ $ Ni. The new chain
can have length at most 2(M) by the previous paragraph. Repeating, we can refine
the given chain into a composition series in at most 2(M)− n steps.

Suppose the given chain is a composition series. Then 2(M) ≤ n by (19.1.2).
But we proved n ≤ 2(M) above. Thus n = 2(M), and the first assertion is proved.

To proceed, fix a prime p. Exactness of Localization, (12.13), yields this chain:

Mp = (M0)p ⊃ (M1)p ⊃ · · · ⊃ (Mm)p = 0. (19.3.4)

Now, consider a maximal ideal m. If p = m, then (R/m)p % R/m by (12.4) and
(12.1). If p -= m, then there is s ∈ m− p; so (R/m)p = 0.

Set mi := Ann(Mi−1/Mi). SoMi−1/Mi % R/mi and mi is maximal by (19.2)(2).
Then Exactness of Localization yields (Mi−1/Mi)p = (Mi−1)p/(Mi)p. Hence

(Mi−1)p/(Mi)p =

{
0, if p -= mi;

Mi−1/Mi % R/mi, if p = mi.

Thus Supp(M) = {m1, . . . ,mm}.
If we omit the duplicates from the chain (19.3.4), then we get a composition

series from the (Mi)p with Mi−1/Mi % R/p. Thus the number of such i is 2(Mp).
Finally, (Mmi)mj = 0 if i -= j by the above. So (13.59) yields (19.3.1). !

Exercise (19.4) . — Let R be a ring, M a Noetherian module. Show that the
following three conditions are equivalent:

(1) M has finite length;
(2) Supp(M) consists entirely of maximal ideals;
(3) Ass(M) consists entirely of maximal ideals.

Show that, if the conditions hold, then Ass(M) and Supp(M) are equal and finite.
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Corollary (19.5). — A module M is both Artinian and Noetherian if and only if
M is of finite length.

Proof: Any chain M ⊃ N0 $ · · · $ Nn = 0 has n < 2(M) by the Jordan–Hölder
Theorem, (19.3). So if 2(M) <∞, then M satisfies both the dcc and the acc.

Conversely, assume M is both Artinian and Noetherian. Form a chain as follows.
Set M0 := M . For i ≥ 1, if Mi−1 -= 0, take a maximal Mi ! Mi−1 by the maxc.
By the dcc, this recursion terminates. Then the chain is a composition series. !
Example (19.6). — Any simple Z-module is finite owing to (19.2)(2). Hence, a
Z-module is of finite length if and only if it is finite. In particular, 2(Z) =∞.

Of course, Z is Noetherian, but not Artinian.
Let p ∈ Z be a prime, and set M := Z[1/p]

/
Z. Then M is an Artinian Z-module,

but not Noetherian by (16.43). Also, as M is infinite, 2(M) =∞.
Moreover, for no m ∈ Z is m(1/pn) ∈ Z for all n; so Ann(M) = 〈0〉. Thus

Z/Ann(M) is Z, so not Artinian, even though M is Artinian.

Theorem (19.7) (Additivity of Length). — Let M be a module, and M ′ a submod-
ule. Then 2(M) = 2(M ′) + 2(M/M ′).

Proof: If M has a composition series, then the Jordan–Hölder Theorem yields
another one of the form M = M0 ⊃ · · · ⊃ M ′ ⊃ · · · ⊃ Mm = 0. The latter
yields a pair of composition series: M/M ′ = M0/M ′ ⊃ · · · ⊃ M ′/M ′ = 0 and
M ′ ⊃ · · · ⊃Mm = 0. Conversely, every such pair arises from a unique composition
series in M through M ′. Therefore, 2(M) < ∞ if and only if 2(M/M ′) < ∞ and
2(M ′) <∞; furthermore, if so, then 2(M) = 2(M ′) + 2(M/M ′), as desired. !
Theorem (19.8) (Akizuki–Hopkins). — A ring R is Artinian if and only if R is
Noetherian and dim(R) = 0. If so, then R has only finitely many primes.

Proof: Assume dim(R) = 0. Then, by definition, every prime is both maximal
and minimal. Assume also R is Noetherian.

Then R has finite length by (19.4). Thus R is Artinian by (19.5).
Alternatively, recall that any minimal prime is associated by (17.14), and that

Ass(R) is finite by (17.17). Thus R has only finitely many primes, all maximal.
Set n := nil(R). It is the intersection of all the primes by (3.14), so of finitely

many maximal ideals. So n is their product by (1.21). But n is finitely generated,
as R is Noetherian. So nk = 0 for k >> 0 by (3.38). Thus some (finite) product
of maximal ideals is 0. Thus (16.42) implies that R is Artinian.

Conversely, assume R is Artinian. Let m be a minimal (finite) product of maximal
ideals of R. Then m2 = m. Let S be the set of ideals a contained in m such that
am -= 0. If S -= ∅, take a ∈ S minimal. Then am2 = am -= 0; hence, am = a by
minimality of a. Given x ∈ a with xm -= 0, note a = 〈x〉 by minimality of a.

Given any maximal ideal n, note nm = m by minimality of m. But nm ⊂ n. Thus
m ⊂ rad(R). But a = 〈x〉; so a is finitely generated. So Nakayama’s Lemma yields
a = 0, a contradiction. So xm = 0 for any x ∈ a. Thus am = 0, a contradiction.
Thus S = ∅. So m2 = 0. But m2 = m. So m = 0. Thus some product of maximal
ideals is 0. Thus (16.42) implies that R is Noetherian, and (2.24) implies that R
has only finitely many primes, all maximal; in particular, dim(R) = 0. !
Corollary (19.9). — Let R be an Artinian ring, and M a finitely generated module.
Then M has finite length, and Ass(M) and Supp(M) are equal and finite.
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Proof: By (19.8) every prime is maximal, so Supp(M) consists of maximal
ideals. Also R is Noetherian by (19.8). So M is Noetherian by (16.15). Hence
(19.4) yields the assertions. !
Corollary (19.10). — A ring R is Artinian if and only if 2(R) <∞.

Proof: Simply take M := R in (19.9) and (19.5). !
Corollary (19.11). — A ring R is Artinian if and only if R is a finite product of
Artinian local rings; if so, then R =

∏
m∈Spec(R) Rm.

Proof: A finite product of rings is Artinian if and only if each factor is Artinian
by (16.22)(3). If R is Artinian, then 2(R) < ∞ by (19.10); whence, R =

∏
Rm

by the Jordan–Hölder Theorem. Thus the assertion holds. !
Definition (19.12). — Let R be a ring, q an ideal, M a nonzero module. If q ⊂
rad(M) and 2(M/qM) <∞, call q a parameter ideal of M .

Lemma (19.13). — Let R be a ring, q an ideal, M a nonzero module. Assume that
M is Noetherian or just that M is finitely generated and M/qM is Noetherian. Set
m := rad(M) and q′ := Ann(M/qM). Then these conditions are equivalent:

(1) q is a parameter ideal.
(2) q ⊂ m, and Supp(M/qM) consists of finitely many maximal ideals.
(3) q ⊂ m, and V(q′) consists of finitely many maximal ideals.
(4) M is semilocal, and V(q′) = V(m).
(5) M is semilocal, and

√
q′ = m.

(6) M is semilocal, and mn ⊂ q′ ⊂ m for some n ≥ 1.

Proof: First, (1) and (2) are equivalent by (19.4), as M/qM is Noetherian.
Next, (2) and (3) are equivalent, as V(q′) = Supp(M/qM) by (13.4)(3).
Assume (3). As M is finitely generated, V(q′) = V(q+Ann(M)) by (13.46)(2).

But q, Ann(M) ⊂ m. So V(q+Ann(M)) ⊃ V(m). Thus V(q′) ⊃ V(m).
Conversely, given n ∈ V(q′), note n ⊃ q′ ⊃ Ann(M). But n is maximal by (3).

So n ⊃ m. Thus V(q′) ⊂ V(m). Thus V(q′) = V(m). So V(m) consists of finitely
many maximal ideals by (3). Thus M is semilocal. Thus (4) holds.

To see that (4) and (5) are equivalent, note that V(q′) = V(m) if and only if√
q′ =

√
m by (13.1). But plainly

√
m = m. Thus (4) and (5) are equivalent.

Let’s see that (4) and (5) together imply (3). First,
√
q′ = m by (5). But plainly

q ⊂ q′ ⊂
√
q′. Thus q ⊂ m.

By (4) or (5), M is semilocal; say the maximal ideals containing Ann(M) are
m1, . . . ,mn. So m :=

⋂
mi. Given p ∈ V(m), note p ⊃ m ⊃

∏
mi. But p is prime.

So p ⊃ mi0 for some i0. But mi0 is maximal. So p = mi0 . Thus V(m) = {mi}. But
V(q′) = V(m) by (4). So V(q′) consists of m1, . . . ,mn. Thus (3) holds.

Assume (5). Then q′ ⊂
√
q′ = m. Further, as M/qM is Noetherian, so is R/q′ by

(16.16). So m/q′ is finitely generated. But m/q′ =
√
0. So (m/q′)n = 0 for some

n ≥ 1 by (3.38). So mn ⊂ q′. Thus (6) holds.
Finally, assume (6). Then

√
q′ =

√
m. But

√
m = m. Thus (5) holds. !

Proposition (19.14). — Let R be a ring, and M a nonzero Noetherian module. Set
m := rad(M). If M has a parameter ideal, them M is semilocal; conversely, if M
is semilocal, then mn is a parameter ideal for any n ≥ 1.

Moreover, if R has a parameter ideal q, then q is a parameter ideal of M too.
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Proof: The first assertion results immediately from (1)⇔(6) of (19.13).
Assume R has a parameter ideal q. Then 2(R/q) < ∞. So R/q is Noetherian

by (19.5). Apply (1)⇒(3) of (19.13) with M := R. Thus q ⊂ rad(R), and V(q)
consists of finitely many maximal ideals (as q′ = q).

Note rad(R) ⊂ rad(M). So q ⊂ rad(M). Set q′ := Ann(M/qM). Then q′ ⊃ q, so
V(q′) ⊂ V(q). Apply (3)⇒(1) of (19.13). Thus q is a parameter ideal of M . !
Theorem (19.15). — Let R be a ring having a parameter ideal q. Let κ : R→ R/q
be the quotient map, and {mi} the set of maximal ideals.

(1) Then R is semilocal, and the mi are precisely the primes containing q.
(2) Then R/q is decomposable; in fact, R/q =

∏
(R/q)mi .

(3) Then Idem(κ) is injective; it’s bijective if and only if R is decomposable.

Proof: For (1), note q = Ann(R/q) by (4.7). And R/q is Noetherian by (19.5)
as 2(R/q) is finite. Thus (19.13)(1)⇒(3), (4) gives (1).

For (2), note R/q is Artinian by (19.10). Thus (1) and (19.11) give (2).
For (3), note q ⊂ rad(R). Thus (3.3) implies that Idem(κ) is injective.
Next, for all i, set Ri := Rmi . Then (2) gives R/q =

∏
(R/q)mi =

∏
Ri/qRi.

Assume R is decomposable. Then R =
∏

Ri by (11.18). Set ei := (δij) ∈ R
and ei := (δij) ∈ R/q with δij the Kronecker delta. Then each ei reduces to ei.

Given an idempotent e ∈ R/q, note that, for all i, its projection ei ∈ Ri/qRi

is equal to either 1 or 0 by (3.22). So e is a sum of certain of the ei. Form the
corresponding sum in R. Its residue is e. Thus Idem(κ) is surjective.

Conversely, assume Idem(κ) is surjective. Set ei := (δij) ∈ R/q. Then plainly
Ri/qRi = (R/q)ei. As Idem(κ) is surjective, each ei lifts to some idempotent ei in
R. Then

∑
ei and ejek for all j, k are idempotents. But

∑
ei = 1, and ejek = 0

for j -= k. Also, Idem(κ) is injective. So
∑

ei = 1, and ejek = 0 for j -= k. Thus
by induction, (1.11) yields R =

∏
Rei.

As ei reduces ei, then Rei/qRei = (R/q)ei. So Rei/qRei = Ri/qRi. But Ri/qRi

is local. So Rei is local. Thus R is decomposable. Thus (3) holds. !

B. Exercises

Exercise (19.16) . — Let R be a ring, M a module, Q a p-primary submodule, and
Q1 & · · · & Qm := Q a chain of p-primary submodules. Set M ′ := M/Q. Assume
that M ′ is Noetherian. Show that m ≤ 2(M ′

p) < ∞, and that m = 2(M ′
p) if and

only if m is maximal.

Exercise (19.17) . — Let k be a field, R an algebra-finite extension. Prove that R
is Artinian if and only if R is a finite-dimensional k-vector space.

Exercise (19.18) . — Given a prime p ∈ Z, find all four different Artinian rings R
with p2 elements. Which R are Fp-algebras?

Exercise (19.19) . — Let k be a field, A a local k-algebra. Assume the map from
k to the residue field is bijective. Given an A-module M , prove 2(M) = dimk(M).

Exercise (19.20) . — Prove these conditions on a Noetherian ring R equivalent:

(1) R is Artinian. (2) Spec(R) is discrete and finite. (3) Spec(R) is discrete.

Exercise (19.21) . — Let ϕ : R → R′ be a map of rings. Assume R′ is algebra
finite over R. Given p ∈ Spec(R), set k := Frac(R/p). Consider these statements:
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(1) The fibers of Spec(ϕ) are finite.
(2) The fibers of Spec(ϕ) are discrete.
(3) All R′ ⊗R k are finite-dimensional k-vector spaces.
(4) R′ is module finite over R.

Show (1), (2), and (3) are equivalent and follow from (4). Show (4) holds if R′ is
integral over R. If R′ is integral, but not algebra finite, and if (1) holds, does (4)?

Exercise (19.22) . — Let A be a local ring, m its maximal ideal, B a module-finite
algebra, and {ni} its set of maximal ideals. Then the ni are precisely the primes
lying over m, and mB is a parameter ideal of B.

Exercise (19.23) . — Let R be an Artinian ring. Show that rad(R) is nilpotent.

Exercise (19.24) . — Find another solution to (18.66)(1). Begin by setting p := p1
and A := (R/Ann(M))p and showing A is Artinian.

Exercise (19.25) . — Let R be a ring, p a prime ideal, and R′ a module-finite
R-algebra. Show that R′ has only finitely many primes p′ over p, as follows: reduce
to the case that R is a field by localizing at p and passing to the residue rings.

Exercise (19.26) . — Let R be a ring, and M a Noetherian module. Show the
following four conditions are equivalent:

(1) M has finite length;
(2) M is annihilated by some finite product of maximal ideals

∏
mi;

(3) every prime p containing Ann(M) is maximal;
(4) R/Ann(M) is Artinian.

Exercise (19.27) . — (1) Prove that a finite product rings R :=
∏r

i=1 Ri is a PIR
if and only if each Ri is a PIR.

(2) Using (18.27), prove that a PIR R is uniquely a finite product of PIDs and
Artinian local PIRs.

Exercise (19.28) . — Let A → B be a local homomorphism of Artinian rings, N
an A-flat B-module, m the maximal ideal of A. Show 2B(N) = 2A(A) · 2B(N/mN).

Exercise (19.29) . — Let R be a ring, and a an ideal. Assume a ⊂ nil(R). Set
R′ := R/a. Use (19.15)(3) to give a second proof (compare (13.23)) that R is
decomposable if and only if R′ is.
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20. Hilbert Functions

The Hilbert Function of a graded module lists the lengths of its components.
The corresponding generating function is called the Hilbert Series. We prove the
Hilbert–Serre Theorem: under suitable hypotheses, this series is a rational function
with poles just at 0 and 1. Hence these lengths are eventually given by a polynomial,
called the Hilbert Polynomial.

Passing to an arbitrary module, we study its Hilbert–Samuel Series, the gen-
erating function of the colengths of the submodules in a filtration, which is a
descending chain of submodules FnM . We derive Samuel’s Theorem: this series
is a similar rational function under suitable hypotheses. Hence these colengths are
eventually given by a polynomial, called the Hilbert–Samuel Polynomial. In
the next chapter, we relate its degree to the dimension of M . Here we we consider
its normalized leading coefficient, called the multiplicity of M .
Lastly, we relate the Hilbert polynomial of a Noetherian module M to the sum of

the polynomials of a submodule N and their quotient M/N in the case of a stable
q-filtration for an ideal q; that is, qFnM ⊂ qFn+1 for all n, with equality for
n A 0. Our key is the Artin–Rees Lemma: if the FnM form a stable q-filtration
of M , then the intersections N ∩ FnM form a stable q-filtration of N .

In a brief appendix, we study further one notion that arose: homogeneity.

A. Text

(20.1) (Graded rings and modules). — We call a ring R graded if there are
additive subgroups Rn for n ≥ 0 with R =

⊕
Rn and RmRn ⊂ Rm+n for all m, n.

For example, a polynomial ring R with coefficient ring R0 is graded if Rn is the
R0-submodule generated by the monomials of (total) degree n.

In general, R0 is a subring. Obviously, R0 is closed under addition and under
multiplication, but we must check 1 ∈ R0. So say 1 =

∑
xm with xm ∈ Rm. Given

z ∈ R, say z =
∑

zn with zn ∈ Rn. Fix n. Then zn = 1 · zn =
∑

xmzn with
xmzn ∈ Rm+n. So

∑
m>0 xmzn = zn − x0zn ∈ Rn. Hence xmzn = 0 for m > 0.

But n is arbitrary. So xmz = 0 for m > 0. But z is arbitrary. Taking z := 1 yields
xm = xm · 1 = 0 for m > 0. Thus 1 = x0 ∈ R0.
We call an R-module M (compatibly) graded if there are additive subgroups Mn

for n ∈ Z with M =
⊕

Mn and RmMn ⊂Mm+n for all m, n. We call Mn the nth
homogeneous component; we say its elements are homogeneous. Obviously,
Mn is an R0-module.

Given m ∈ Z, set M(m) :=
⊕

Mm+n. Then M(m) is another graded module;
its nth homogeneous component M(m)n is Mm+n. Thus M(m) is obtained from
M by shifting m places to the left.

Lemma (20.2). — Let R =
⊕

Rn be a graded ring, and M =
⊕

Mn a graded
R-module. If R is a finitely generated R0-algebra and if M is a finitely generated
R-module, then each Mn is a finitely generated R0-module and Mn = 0 if n << 0.

Proof: Say R = R0[x1, . . . , xr]. If xi =
∑

j xij with xij ∈ Rj , then replace the
xi by the nonzero xij . Similarly, say M is generated over R by m1, . . . ,ms with
mi ∈Mli . Then any m ∈Mn is a sum m =

∑
fimi where fi ∈ R. Say fi =

∑
fij
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with fij ∈ Rj , and replace fi by fik with k := n − li or by 0 if n < li. Then fi is
an R0-linear combination of monomials xi1

1 · · ·xir
r ∈ Rk. Thus, m is an R0-linear

combination of the products xi1
1 · · ·xir

r mi ∈Mn, and Mn = 0 if m < min{li}. !
(20.3) (Hilbert Function). — Let R =

⊕
Rn be a graded ring, M =

⊕
Mn a

graded R-module. Assume R0 is Artinian, R is algebra finite over R0, and M
is finitely generated over R. Then each Mn is a finitely generated R0-module by
(20.2), so is of finite length 2(Mn) by (19.9). We call n 2→ 2(Mn) the Hilbert
Function of M and its generating function

H(M, t) :=
∑

n∈Z 2(Mn)tn

the Hilbert Series of M . This series is a rational function by (20.5) below.
Given any k ∈ Z, recall M(−k)n := Mn−k for all n. Hence,

H(M(−k), t) = tkH(M, t). (20.3.1)

If R = R0[x1, . . . , xr] with xi ∈ R1, then by (20.6) below, the Hilbert Function
is, for nA 0, a polynomial h(M, n), called the Hilbert Polynomial of M .

Example (20.4). — Let R := R0[X1, . . . , Xr] be the polynomial ring, graded by
degree. Then Rn is free over R0 on the monomials of degree n, so of rank

(r−1+n
r−1

)
.

Let M0 be an R0-module. Form the set of polynomials M := M0[X1, . . . , Xr].
Then M is a graded R-module, with Mn the direct sum of

(r−1+n
r−1

)
copies of M0.

Assume 2(M0) < ∞. Then 2(Mn) = 2(M0)
(r−1+n

r−1

)
by Additivity of Length,

(19.7). Thus the Hilbert Function is, for n ≥ 0, a polynomial of degree r − 1.
Formal manipulation yields

(r−1+n
r−1

)
= (−1)n

(−r
n

)
. Therefore, Newton’s binomial

theorem for negative exponents yields this computation for the Hilbert Series:

H(M, t) =
∑

n≥0 2(M0)
(r−1+n

r−1

)
tn =

∑
n≥0 2(M0)

(−r
n

)
(−t)n = 2(M0)

/
(1− t)r.

Theorem (20.5) (Hilbert–Serre). — Let R =
⊕

Rn be a graded ring, M =
⊕

Mn

a finitely generated graded R-module. Assume R0 is Artinian, R is algebra finite
over R0, and Mn = 0 for n < n0 but Mn0 -= 0. Then

H(M, t) = f(t)
/
t−n0(1− tk1) · · · (1− tkr )

with f(t) ∈ Z[t] and f(0) -= 0 and with ki ≥ 1.

Proof: Say R = R0[x1, . . . , xr] with xi ∈ Rki and ki ≥ 1. First, assume r = 0;
so R = R0. Say M is generated by m1, . . . ,ms with mi ∈Mli and li ≤ li+1. Then
n0 = l1 and Mn = 0 n > ls. Thus H(M, t) = tn0f(t) with f(t) ∈ Z[t] and f(0) -= 0.
Assume r ≥ 1. Form this exact sequence, where µx1 means multiplication by x1:

0→ K →M(−k1)
µx1−−→M → L→ 0.

As x1 ∈ Rk1 , the grading on M induces a grading on K and on L. Also, Kn = 0
for n ≤ n0 as k1 ≥ 1. So Ln = 0 for n < n0, but Ln0 -= 0.

As R0 is Artinian, R0 is Noetherian by (19.8). So, as R is a finitely generated
R0-algebra, R is Noetherian by (16.10). As M is a finitely generated R-module,
M(−k1) is too. Thus, by (16.13)(2), both K and L are too.

Set R′ := R0[x2, . . . , xr]. Note x1 acts as 0 on K and L. So they are finitely
generated R′-modules. Therefore, by induction on r, both H(K, t) and H(L, t)
can be written in the desired form.

Note H(M, t)−H(M(−k1), t) = H(L, t)−H(K, t) by (19.7). Apply (20.3.1)
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and the previous paragraph. Thus (1− tk1)H(M, t) = f(t)
/
tn0(1− tk2) · · · (1− tkr )

with f(t) ∈ Z[t] and f(0) -= 0 and with ki ≥ 1. !

Corollary (20.6). — Under the conditions of (20.5), say R = R0[x1, . . . , xr] with
xi ∈ R1. Then H(M, t) can be written uniquely in the form

H(M, t) = e(t)
/
tn0(1− t)d (20.6.1)

with e(t) ∈ Z[t] and e(0), e(1) -= 0 and r ≥ d ≥ 0. Also, there is a polynomial
h(M, n) ∈ Q[n] of degree d− 1 and leading coefficient e(1)/(d− 1) ! such that

2(Mn) = h(M, n) for n ≥ deg e(t) + n0. (20.6.2)

Proof: We may take ki = 1 for all i in the proof of (20.5). So H(M, t) has the
form e(t)(1 − t)s

/
tn0(1 − t)r with e(0) -= 0 and e(1) -= 0. Set d := r − s. Then

d ≥ 0 as H(M, 1) =
∑
2(Mn) > 0 as Mn0 -= 0. Thus H(M, t) has the asserted

form. This form is unique owing to the uniqueness of factorization of polynomials.
Say e(t) =

∑h
i=0 eit

i with eh -= 0. Now, (1−t)−d =
∑(−d

n

)
(−t)n =

∑(d−1+n
d−1

)
tn.

So 2(Mn) =
∑h

i=0 ei
(d−1+n−n0−i

d−1

)
for n − n0 ≥ h. But

(d−1+n−i
d−1

)
is a polynomial

in n of degree d− 1 and leading coefficient 1/(d− 1) !. Thus (20.6.2) holds. !

(20.7) (Filtrations). — Let R be an arbitrary ring, q an ideal, and M a module. A
(descending) filtration F •M of M is an infinite descending chain of submodules:

· · · ⊃ FnM ⊃ Fn+1M ⊃ · · · .
Call it a q-filtration if qFnM ⊂ Fn+1M for all n, and a stable q-filtration if
also M = FnM for nC 0 and qFnM = Fn+1M for nA 0. This condition means
that there are µ and ν with M = FµM and qnF νM = Fn+νM for n > 0.

For example, set qn := R for n ≤ 0 and FnM := qnM for all n. Thus we get a
stable q-filtration, called the q-adic filtration.

The q-adic filtration of R yields two canonical graded rings:

R(q) :=
⊕

n∈Z q
n and Gq(R) : G(R) := R(q)

/(
R(q)(−1)

)
. (20.7.1)

They’re called the extended Rees Algebra and associated graded ring of q.
Notice that G(R) =

⊕
n≥0 Gn(R) where Gn(R) := qn/qn+1.

Say x1, . . . , xr ∈ q generate. In R(q), regard the xi as in q1 and 1 ∈ R as in q−1.
Those r+1 elements generate R(q) as an R-algebra. Thus if q is finitely generated,
then R(q) is R-algebra finite, and Gq(R) is (R/q)-algebra finite.

As each FnM is an R-module, so are the direct sums

R(F •M) :=
⊕

n∈Z F
nM and G(M) := R(F •M)

/(
R(F •M)(−1)

)
. (20.7.2)

Notice that G(M) =
⊕

n∈Z Gn(M) where Gn(M) := qnM/qn+1M .
If F •M is a q-filtration, then R(F •M) is a graded R(F •R)-module, and G(M)

is a graded G(R)-module. If F •M is the q-adic filtration, set Gq(M) := G(M).
Given m ∈ Z, let M [m] denote M with the filtration F •M reindexed by shifting

it m places to the left; that is, Fn(M [m]) := Fn+mM for all n. Then

R(F •M [m]) = R(F •M)(m) and G(M [m]) = (G(M))(m).

If the quotients M/FnM have finite length, call n 2→ 2(M/FnM) the Hilbert–
Samuel Function, and call the generating function

P (F •M, t) :=
∑

n≥0 2(M/FnM)tn
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the Hilbert–Samuel Series. If the function n 2→ 2(M/FnM) is, for n A 0,
a polynomial p(F •M, n), then call it the Hilbert–Samuel Polynomial. If the
filtration is the q-adic filtration, we also denote P (F •M, t), and p(F •M, n) by
Pq(M, t) and pq(M,n).

Lemma (20.8). — Let R be a ring, q an ideal, M a module, F •M a q-filtration. If
R(F •M) is finitely generated over R(q), then G(M) is finitely generated over G(R).
Moreover, if R(F •M) is finitely generated over R(q) and

⋃
FnM = M , then F •M

is stable; the converse holds if M is Noetherian.

Proof: First, assume R(F •M) is finitely generated over R(q).
By (20.7.2), G(M) is a quotient of R(F •M). So G(M) too is finitely generated

over R(q). But G(R) is a quotient of R(q) by (20.7.1). Thus G(M) is finitely
generated over G(R), as desired.

Say m1, . . . ,ms ∈ R(F •M) generate over R(q). Write mi =
∑ν

j=µ mij with

mij ∈ F jM for some uniform µ ≤ ν. Given any n and any m ∈ FnM , note
m =

∑
fijmij with fij ∈ Rn−j(q) := qn−j . Hence, if n ≤ µ, then m ∈ FµM , and

so FnM ⊂ FµM . Thus, if
⋃

FnM = M too, then FµM = M . But, if n ≥ ν, then
fij ∈ qn−j = qn−νqν−j , and so qn−νF νM = FnM . Thus F •M is stable.
Conversely, assume F •M is stable: say FµM = M and qnF νM = Fn+νM for

n > 0. Then
⋃

FnM = M . Further, FµM, . . . , F νM generate R(F •M) over R(q).
Assume M is Noetherian too. Then FnM ⊂M is finitely generated over R for all
n. Thus R(F •M) is finitely generated over R(q), as desiered. !

Theorem (20.9) (Samuel’s). — Let R be a ring, q an ideal, and M a module with
a stable q-filtration F •M . Assume M is Noetherian, and 2(M/qM) < ∞. Then
2(FnM/Fn+1M) <∞ and 2(M/FnM) <∞ for every n ≥ 0; further,

P (F •M, t) = H(G(M), t) t/(1− t). (20.9.1)

Proof: Set a := Ann(M). Set R′ := R/a and q′ := (a+q)/a. AsM is Noetherian,
so is R′ by (16.16). So R′/q′ is Noetherian too. Also, M can be viewed as
a finitely generated R′-module, and F •M as a stable q′-filtration. So G(R′) is
generated as an R′/q′-algebra by finitely many elements of degree 1, and G(M) is a
finitely generated G(R′)-module by (20.8) applied with R′ for R. Therefore, each
FnM/Fn+1M is finitely generated over R′/q′ by (20.2) or by the proof of (20.8).

However, V(a + q) = Supp(M/qM) by (13.46)(2). Hence V(a + q) consists
entirely of maximal ideals, because Supp(M/qM) does by (19.4) as 2(M/qM) <∞.
Thus dim(R′/q′) = 0. But R′/q′ is Noetherian. Therefore, R′/q′ is Artinian by the
Akizuki–Hopkins Theorem, (19.8).

Hence 2(FnM/Fn+1M) <∞ for every n by (19.9). Form the exact sequence

0→ FnM/Fn+1M →M/Fn+1M →M/FnM → 0.

Then Additivity of Length, (19.7), yields

2(FnM/Fn+1M) = 2(M/Fn+1M)− 2(M/FnM). (20.9.2)

So induction on n yields 2(M/Fn+1M) <∞ for every n. Further, multiplying that
equation by tn and summing over n yields the desired expression in another form:

H(G(M), t) = (t−1 − 1)P (F •M, t) = P (F •M, t) (1− t)/t. !
162



Hilbert Functions (20.10)
/
(20.12) Text

Corollary (20.10). — Under the conditions of (20.9), assume q is generated by r
elements and M -= 0. Then P (F •M, t) can be written uniquely in the form

P (F •M, t) = e(t)
/
tl−1(1− t)d+1 (20.10.1)

with e(t) ∈ Z[t] and e(0), e(1) -= 0 and l ∈ Z and r ≥ d ≥ 0; also, there is a
polynomial p(F •M, n) ∈ Q[n] with degree d and leading coefficient e(1)/d ! such that

2(M/FnM) = p(F •M, n) for n ≥ deg e(t)− l + 1. (20.10.2)

If nonzero, pq(M, n)−p(F •M, n) is a polynomial of degree at most d−1 and positive
leading coefficient; also, d and e(1) are the same for every stable q-filtration.

Proof: The proof of (20.9) shows that G(R′) and G(M) satisfy the hypotheses
of (20.6). So (20.6.1) and (20.9.1) yield (20.10.1). In turn, (20.9.1) yields
(20.10.2) by the argument in the second paragraph of the proof of (20.6).

Finally, as F •M is a stable q-filtration, there is an m such that

FnM ⊃ qnM ⊃ qnFmM = Fn+mM

for all n ≥ 0. Dividing into M and extracting lengths, we get

2(M/FnM) ≤ 2(M/qnM) ≤ 2(M/Fn+mM).

Therefore, (20.10.2) yields

p(F •M, n) ≤ pq(M, n) ≤ p(F •M, n+m) for nA 0.

The two extremes are polynomials in n with the same degree d and the same leading
coefficient c where c := e(1)/d !. Dividing by nd and letting n → ∞, we conclude
that the polynomial pq(M, n) also has degree d and leading coefficient c.

Thus the degree and leading coefficient are the same for every stable q-filtration.
Also pq(M, n)−p(F •M, n) has degree at most d−1 and positive leading coefficient,
owing to cancellation of the two leading terms and to the first inequality. !

(20.11) (Multiplicity). — Preserve the conditions of (20.10). The “normalized”
leading coefficient e(1) of the Hilbert–Samuel polynomial p(F •M,n) is called the
multiplicity of q on M and is also denoted e(q, M).

Note that e(q, M) is the same number for every stable q-filtration F •M . More-
over, 2(M/qnM) > 0 for all n > 0; hence, e(q,M) is a positive integer.

Set d := deg p(F •M,n), Then (20.3) and (20.9.2) yield, for nA 0,

h(Gq(M), n) :=2(qnM/qn+1M)

=
(
e(q, M)/(d− 1)!

)
nd−1 + lower degree terms.

Lemma (20.12) (Artin–Rees). — Let R be a ring, M a module, N a submodule, q
an ideal, F •M a stable q-filtration. Set

FnN := N ∩ FnM for n ∈ Z.
Assume M is Noetherian. Then the FnN form a stable q-filtration F •N .

Proof: Set a := Ann(M), set R′ := R/a, and set q′ := (q + a)/a. Then M and
N are R′-modules, and F •M is a stable q′-filtration. So we may replace R by R′

(and q by q′), and thus by (16.16), assume R is Noetherian.
By (20.7), the extended Rees Algebra R(q) is finitely generated over R, so Noe-

therian by the Hilbert Basis Theorem (16.10). By (20.8), the module R(F •M)
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is finitely generated over R(q), so Noetherian by (16.15). Clearly, F •N is a q-
filtration; hence, R(F •N) is a submodule of R(F •M), so finitely generated. But⋃

FnM = M , so
⋃
FnN = N . Thus F •N is stable by (20.8). !

Proposition (20.13). — Let R be a ring, q an ideal, and

0→M ′ →M →M ′′ → 0

an exact sequence of Noetherian modules.

(1) Then 2(M/qM) <∞ if and only if 2(M ′/qM ′) <∞ and 2(M ′′/qM ′′) <∞.

(2) Assume 2(M/qM) <∞. Then the polynomial

pq(M
′, n)− pq(M,n) + pq(M

′′, n)

has degree at most deg(pq(M ′, n))−1 and has positive leading coefficient; also then

deg pq(M,n) = max{ deg pq(M ′, n), deg pq(M
′′, n) }.

Proof: For (1), note (13.46) and (13.4)(1) and (13.46) yield

Supp(M/qM) = Supp(M)
⋂
V(q) =

(
Supp(M ′)

⋃
Supp(M ′′)

)⋂
V(q)

=
(
Supp(M ′)

⋂
V(q)

)⋃(
Supp(M ′′)

⋂
V(q)

)

= Supp(M ′/qM ′)
⋃

Supp(M ′′/qM ′′).

Thus (19.4) yields (1).

For (2), given n ∈ Z, set FnM ′ := M ′ ⋂ qnM . Then the FnM ′ form a stable
q-filtration F •M ′ by the Artin–Rees Lemma (20.12). Form the following canonical
commutative diagram:

0 −→ FnM ′ −→ qnM −→ qnM ′′ −→ 0)
)

)
0 −−→ M ′ −−−→ M −−−→ M ′′ −−→ 0

Its rows are exact. So the Nine Lemma (5.24) yields this exact sequence:

0→M ′/FnM ′ →M/qnM →M ′′/qnM ′′ → 0.

As M/qM <∞, Additivity of Length, (19.7), and (20.10) yield

p(F •M ′, n)− pq(M, n) + pq(M
′′, n) = 0. (20.13.1)

Hence pq(M ′, n)− pq(M, n)+ pq(M ′′, n) is equal to pq(M ′, n)− p(F •M ′, n). But
by (20.10) again, the latter is a polynomial with degree at most deg pq(M ′, n)− 1
and positive leading coefficient.

Finally, deg pq(M,n) = max{ deg p(F •M ′, n), deg pq(M ′′, n) } by (20.13.1), as
the leading coefficients of p(F •M ′, n) and pq(M ′′, n) are both positive, so cannot
cancel. But deg p(F •M ′, n) = deg pq(M ′, n) by (20.10). Thus (2) holds. !
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B. Exercises

Exercise (20.14) . — Let k be a field, k[X,Y ] the polynomial ring. Show 〈X,Y 2〉
and 〈X2, Y 2〉 have different Hilbert Series, but the same Hilbert Polynomial.

Exercise (20.15) . — Let k be a field, P := k[X,Y, Z] the polynomial ring in three
variables, F ∈ P a homogeneous polynomial of degree d ≥ 1. Set R := P/〈F 〉.
Find the coefficients of the Hilbert Polynomial h(R, n) explicitly in terms of d.

Exercise (20.16) . — Let K be a field, X1, . . . , Xr variables, k1, . . . , kr positive
integers. Set R := K[X1, . . . , Xr], and define a grading on R by deg(Xi) := ki. Set
qr(t) :=

∏r
i=1(1− tki) ∈ Z[t]. Show H(R, t) = 1/qr(t).

Exercise (20.17) . — Under the conditions of (20.6), assume there is a homoge-
neous nonzerodivisor f ∈ R with Mf = 0. Prove deg h(R, n) > deg h(M,n); start
with the case M := R/〈fk〉.

Exercise (20.18) . — Let R be a ring, q an ideal, and M a Noetherian module.
Assume 2(M/qM) <∞. Set m :=

√
q. Show

deg pm(M,n) = deg pq(M,n).

Exercise (20.19) . — Let R be a ring, q ⊂ q′ nested ideals, and M a Noetherian
module. Assume 2(M/qM) <∞. Prove these two statements:

(1) Then e(q′,M) ≤ e(q,M), with equality if the q′-adic filtration is q-stable.
(2) If 2(M) <∞ and q ⊂ rad(M), then e(q,M) = 2(M).

Exercise (20.20) . — Let R be a ring, q an ideal, and M a Noetherian module
with 2(M/qM) < ∞. Set S := Supp(M) ∩V(q). Set d := maxm∈S dim(Mm) and
Λ := {m ∈ S | dim(Mm) = d. Show

e(q,M) =
∑

m∈Λ e(qRm,Mm).

Exercise (20.21) . — Derive the Krull Intersection Theorem, (18.23), from the
Artin–Rees Lemma, (20.12).

C. Appendix: Homogeneity

(20.22) (Homogeneity). — Let R be a graded ring, and M =
⊕

Mn a graded
module. Given m ∈ M , write m =

∑
mn with mn ∈ Mn. Call the finitely many

nonzero mn the homogeneous components of m. Say that a component mn is
homogeneous of degree n. If n is lowest, call mn the initial component of m.

Call a submodule N ⊂M homogeneous if, whenever m ∈ N , also mn ∈ N , or
equivalently, N =

⊕
(Mn ∩N). Call an ideal homogeneous if it’s a homogeneous

submodule of R.
Consider a map α : M ′ → M of graded modules with components M ′

n and Mn.
Call α homogeneous of degree r if α(M ′

n) ⊂ Mn+r for all n. If so, then clearly
Ker(α) is a homogeneous submodule ofM . Further, Coker(α) is canonically graded,
and the quotient map M → Coker(α) is homogeneous of degree 0.

Proposition (20.23). — Let R be a graded ring, M a graded module, Q a proper
homogeneous submodule. Set p := nil(M/Q). Assume that Q has this property:
given any homogeneous x ∈ R and homogeneous m ∈ M with xm ∈ Q but m /∈ Q,
necessarily x ∈ p. Then Q is old-primary.
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Proof: Given x ∈ R and m ∈ M , decompose them into their homogeneous
components: x =

∑
i≥r xi and m =

∑
j≥s mj . Suppose xm ∈ Q, but m /∈ Q.

Then mt /∈ Q for some t; take t minimal. Set m′ :=
∑

j<t mj . Then m′ ∈ Q. Set
m′′ := m−m′. Then xm′′ ∈ Q.

Either xsmt vanishes or it’s the initial component of xm′′. But Q is homogeneous.
So xsmt ∈ Q. But mt /∈ Q. Hence xs ∈ p by the hypothesis. Say xs, . . . , xu ∈ p
with u maximal. Set x′ :=

∑u
i=s xi. Then x′ ∈ p. So x′k ∈ Ann(M/Q) for some

k ≥ 1. So x′km′′ ∈ Q. Set x′′ := x− x′. Since xm′′ ∈ Q, also x′′km′′ ∈ Q.
Suppose x /∈ p. Then x′′ -= 0. And its initial component is xv with v > u. Either

x′′
vm

′′
t vanishes or it is the initial component of xm. But Q is homogeneous. So

xvmt ∈ Q. But mt /∈ Q. Hence xv ∈ p by the hypothesis, contradicting v > u.
Thus x ∈ p. Thus Q is old-primary. !

Exercise (20.24) . — Let R be a graded ring, a a homogeneous ideal, and M a
graded module. Show that

√
a and Ann(M) and nil(M) are homogeneous.

Exercise (20.25) . — Let R be a graded ring, M a graded module, and Q an old-
primary submodule. Let Q∗ ⊂ Q be the submodule generated by the homogeneous
elements of Q. Show that Q∗ is old-primary.

Theorem (20.26). — Let R be a graded ring, M a graded module, and N a proper
homogeneous submodule. Assume M/N is Noetherian. Then N admits an irredun-
dant primary decomposition in which all the primary submodules are homogeneous;
moreover, the associated primes pi of M/N are homogeneous.

Proof: Let N =
⋂

Qj be any primary decomposition; one exists by (18.19).
Also, each Qj is old-primary by (18.3)(5). Let Q∗

j ⊂ Qj be the submodule gen-
erated by the homogeneous elements of Qj . Trivially,

⋂
Q∗

j ⊂
⋂

Qj = N ⊂
⋂
Q∗

j .
Further, each Q∗

j is plainly homogeneous, and is primary by (20.25) and (18.3)(4).
Thus N =

⋂
Q∗

j is a decomposition into homogeneous primary submodules. And,
owing to (18.17), it is irredundant if N =

⋂
Qj is, as both decompositions have

minimal length.
Moreover, the pi are the nil(M/Q∗

i ) by (18.18). The M/Q∗
i are graded by

(20.22). Thus by (20.24) the pi are homogeneous. !

(20.27) (Graded Domains). — Let R =
⊕

n≥0 Rn be a graded domain, and set
K := Frac(R). We call z ∈ K homogeneous of degree n ∈ Z if z = x/y with
x ∈ Rm and y ∈ Rm−n. Clearly, n is well defined.

Let Kn be the set of all such z, plus 0. Then KmKn ⊂ Km+n. Clearly, the
canonical map

⊕
n∈Z Kn → K is injective. Thus

⊕
n≥0 Kn is a graded subring of

K. Further, K0 is a field.
The n with Kn -= 0 form a subgroup of Z. So by renumbering, we may assume

K1 -= 0. Fix any nonzero x ∈ K1. Clearly, x is transcendental over K0. If z ∈ Kn,
then z/xn ∈ K0. Hence R ⊂ K0[x]. So (2.3) yields K = K0(x).
Any w ∈

⊕
Kn can be written w = a/b with a, b ∈ R and b homogeneous: say

w =
∑

(an/bn) with an, bn ∈ R homogeneous; set b :=
∏

bn and a :=
∑

(anb/bn).

Theorem (20.28). — Let R be a Noetherian graded domain, K := Frac(R), and R
the integral closure of R in K. Then R is a graded R-algebra.
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Proof: Use the setup of (20.27). Since K0[x] is a polynomial ring over a field,
it is normal by (10.22). Hence R ⊂ K0[x]. So every y ∈ R can be written as
y =

∑r+n
i=r yi, with yi homogeneous and nonzero. Let’s show yi ∈ R for all i.

Since y is integral over R, the R-algebra R[y] is module finite by (10.14). So
(20.27) yields a homogeneous b ∈ R with bR[y] ⊂ R. Hence byj ∈ R for all j ≥ 0.
But R is graded. Hence byjr ∈ R. Set z := 1/b. Then yjr ∈ Rz. Since R is
Noetherian, the R-algebra R[yr] is module finite. Hence yr ∈ R. Then y − yr ∈ R.
Thus yi ∈ R for all i by induction on n. Thus R is graded. !

D. Appendix: Exercises

Exercise (20.29) (Nakayama’s Lemma for graded modules) . — Let R be a graded
ring, a a homogeneous ideal, M a graded module. Assume a =

∑
i≥i0

ai with i0 > 0
and M =

∑
n≥n0

Mn for some n0. Assume aM = M . Show M = 0.

Exercise (20.30) (Homogeneous prime avoidance) . — Let R be a graded ring,
a a homogeneous ideal, a3 its subset of homogeneous elements, p1, . . . , pn primes.
Adapt the method of (3.12) to prove the following assertions:
(1) If a3 -⊂ pj for all j, then there is x ∈ a3 such that x /∈ pj for all j.
(2) If a3 ⊂

⋃n
i=1 pi, then a ⊂ pi for some i.

Exercise (20.31) . — Let R =
⊕

Rn be a graded ring, M =
⊕

Mn a graded
module, N =

⊕
Nn a homogeneous submodule. Assume M/N is Noetherian. Set

N ′ := {m ∈M | Rnm ∈ N for all nA 0 }.
(1) Show that N ′ is the largest homogeneous submodule of M containing N and

having, for all nA 0, its degree-n homogeneous component N ′
n equal to Nn.

(2) Let N =
⋂

Qi be a primary decomposition. Say Qi is pi-primary. Set
R+ :=

⊕
n>0 Rn. Show that N ′ =

⋂
pi *⊃R+

Qi.

Exercise (20.32) . — Under the conditions of (20.6), assume R is a domain whose
integral closure R in Frac(R) is module finite (see (24.17)). Prove the following:

(1) There is a homogeneous f ∈ R with Rf = Rf .
(2) The Hilbert Polynomials of R and R have the same degree and same leading

coefficient.

Exercise (20.33) . — Let R =
⊕

Rn be a graded ring with R0 Artinian. Assume
R = R0[x1, . . . , xr] with xi ∈ Rki and ki ≥ 1. Set q(t) :=

∏r
i=1(1−tki). Let C be the

subcategory of ((R-mod)) of all finitely generated graded R-modules M =
⊕

Mn

and all homogeneous maps of degree 0; let C0 be its subcategory of all M with
Mn = 0 for all n < 0. Using the notation of (17.34), let λ0 : K0(R0) → Z be a
Z-map. Show that assigning to each M ∈ C the series

∑
n∈Z λ0(γ0(Mn))tn gives

rise to Z-maps K(C)→ (1/q(t))Z[t, 1/t] and K(C0)→ (1/q(t))Z[t].
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21. Dimension

The dimension of a module is defined as the supremum of the lengths of the chains
of primes in its support. The Dimension Theorem, which we prove, characterizes
the dimension of a nonzero Noetherian semilocal module in two ways. First, the
dimension is the degree of the Hilbert–Samuel Polynomial of the adic filtration
associated to the radical of the module. Second, the dimension is the smallest
number of elements in the radical that span a submodule of finite colength.

Next, in an arbitrary Noetherian ring, we study the height of a prime, which is
the length of the longest chain of subprimes. We bound the height by the minimal
number of generators of an ideal over which the prime is minimal. In particular,
when this number is 1, we obtain Krull’s Principal Ideal Theorem.

Given any ring R and R-module M , we define the M -quasi-regularity of a
sequence of elements x1, . . . , xs ∈ R. Under appropriate hypotheses, including
s = dim(M), we prove x1, . . . , xs is M -quasi-regular if and only if the multiplicity
of M is equal to the length of M/〈x1, . . . , xs〉M . Finally, we study regular local
rings: they are the Noetherian local rings whose maximal ideal has the minimum
number of generators, namely, the dimension.

A. Text

(21.1) (Dimension of a module). — Let R be a ring, and M a nonzero module.
The dimension of M , denoted dim(M), is defined by this formula:

dim(M) := sup{ r | there’s a chain of primes p0 ! · · · ! pr in Supp(M) }.

AssumeM is Noetherian. ThenM has finitely many minimal (associated) primes
by (17.16). They are also the minimal primes p0 ∈ Supp(M) by (17.13) and
(17.14). Thus (1.9) yields

dim(M) = max{ dim(R/p0) | p0 ∈ Supp(M) is minimal }. (21.1.1)

(21.2) (The invariants d(M) and s(M)). — Let R be a ring, M a nonzero Noether-
ian module, q a parameter ideal of M . Set m := rad(M) and q′ := Ann(M/qM).

Then the Hilbert–Samuel Polynomial pq(M, n) exists by (20.10). Similarly,
pm(M, n) exists, and the two polynomials have the same degree by (20.18) since
m =

√
q′ by (1)⇔(5) of (19.13), since

√
q′ =

√
q′′ where q′′ := q+Ann(M) owing to

(13.46)(2) and (13.1), and since plainly pq′′(M, n) = pq(M, n). Thus the degree
is the same for every parameter ideal. Denote this common degree by d(M).

Alternatively, d(M) can be viewed as the order of pole at 1 of the Hilbert Series
H(Gq(M), t). Indeed, that order is 1 less than the order of pole at 1 of the Hilbert–
Samuel Series Pq(M, t) by (20.9). In turn, the latter order is d(M)+1 by (20.10).

Denote by s(M) the smallest s such that there are x1, . . . , xs ∈ m with

2(M/〈x1, . . . , xs〉M) <∞. (21.2.1)

By convention, if 2(M) <∞, then s(M) = 0. If s = s(M) and (21.2.1) holds, we
say that x1, . . . , xs ∈ m form a system of parameters (sop) for M . Note that a
sop generates a parameter ideal.
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Lemma (21.3). — Let R be a ring, M a nonzero Noetherian semilocal module, q

a parameter ideal of M , and x ∈ rad(M). Set K := Ker(M
µx−−→M).

(1) Then s(M) ≤ s(M/xM) + 1.
(2) Then dim(M/xM) ≤ dim(M) − 1 if x /∈ p for any p ∈ Supp(M) with

dim(R/p) = dim(M).
(3) Then deg

(
pq(K, n)− pq(M/xM, n)

)
≤ d(M)− 1.

Proof: For (1), set s := s(M/xM). There are x1, . . . , xs ∈ rad(M/xM) with

2(M/〈x, x1, . . . , xs〉M) <∞.

Now, Supp(M/xM) = Supp(M) ∩ V(〈x〉) by (13.46). But x ∈ rad(M). Hence,
Supp(M/xM) and Supp(M) have the same maximal ideals owing to (13.4)(4).
Therefore, rad(M/xM) = rad(M). Hence s(M) ≤ s+ 1. Thus (1) holds.

To prove (2), take a chain of primes p0 ! · · · ! pr in Supp(M/xM). Again,
Supp(M/xM) = Supp(M) ∩ V(〈x〉) by (13.46). So x ∈ p0 ∈ Supp(M). So, by
hypothesis, dim(R/p0) < dim(M). Hence r ≤ dim(M)− 1. Thus (2) holds.

To prove (3), note that xM := Im(µx), and form these two exact sequences:

0→ K →M → xM → 0, and 0→ xM →M →M/xM → 0.

Then (20.13) yields d(K) ≤ d(M) and d(xM) ≤ d(M). So by (20.13) again, both
pq(K, n) + pq(xM, n) − pq(M, n) and pq(xM, n) + pq(M/xM, n) − pq(M, n) are
of degree at most d(M)− 1. So their difference is too. Thus (3) holds. !
Theorem (21.4) (Dimension). — Let R be a ring, and M a nonzero Noetherian
semilocal module. Then

dim(M) = d(M) = s(M) <∞.

Proof: Let’s prove a cycle of inequalities. Set m := rad(M).
First, let’s prove dim(M) ≤ d(M) by induction on d(M). Suppose d(M) = 0.

Then 2(M/mnM) stabilizes. So mnM = mn+1M for some n. But mnM is finitely
generated as M is Noetherian. Also, Ann(M) ⊂ Ann(mnM); so m ⊂ rad(mnM).
So mnM = 0 by Nakayama’s Lemma (10.6). But 2(M/mnM) <∞. So 2(M) <∞.
Thus (19.4) yields dim(M) = 0.

Suppose d(M) ≥ 1. By (21.1.1), dim(R/p0) = dim(M) for some p0 ∈ Supp(M).
Then p0 is minimal. So p0 ∈ Ass(M) by (17.14). Hence M has a submodule N
isomorphic to R/p0 by (17.3). Further, by (20.13), d(N) ≤ d(M).

Take a chain of primes p0 ! · · · ! pr in Supp(N). If r = 0, then r ≤ d(M).
Suppose r ≥ 1. Then there’s an x1 ∈ p1 − p0. Further, since p0 is not maximal, for
each maximal ideal n in Supp(M), there is an xn ∈ n− p0. Set x := x1

∏
xn. Then

x ∈ (p1 ∩m)− p0. Then p1 ! · · · ! pr lies in Supp(N)
⋂

V(〈x〉). But the latter is
equal to Supp(N/xN) by (13.46). So r − 1 ≤ dim(N/xN).

However, µx is injective on N as N % R/p0 and x /∈ p0. So (21.3)(3) yields
d(N/xN) ≤ d(N) − 1. But d(N) ≤ d(M). So dim(N/xN) ≤ d(N/xN) by the
induction hypothesis. Therefore, r ≤ d(M). Thus dim(M) ≤ d(M).
Second, let’s prove d(M) ≤ s(M). Let q be a parameter ideal of M with s(M)

generators. Then d(M) := deg pq(M, n). But deg pq(M, n) ≤ s(M) owing to
(20.10). Thus d(M) ≤ s(M).

Finally, let’s prove s(M) ≤ dim(M). Set r := dim(M), which is finite since
r ≤ d(M) by the first step. The proof proceeds by induction on r. If r = 0, then
M has finite length by (19.4); so by convention s(M) = 0.
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Suppose r ≥ 1. Let p1, . . . , pk be the primes of Supp(M) with dim(R/pi) = r. No
pi is maximal as r ≥ 1. So m lies in no pi. Hence, by Prime Avoidance (3.12), there
is an x ∈ m such that x /∈ pi for all i. So (21.3)(1), (2) yield s(M) ≤ s(M/xM)+1
and dim(M/xM)+1 ≤ r. By the induction hypothesis, s(M/xM) ≤ dim(M/xM).
Hence s(M) ≤ r, as desired. !
Corollary (21.5). — Let R be a ring, M a nonzero Noetherian semilocal module,
x ∈ rad(M). Then dim(M/xM) ≥ dim(M) − 1, with equality if and only if x /∈ p
for all p ∈ Supp(M) with dim(R/p) = dim(M); equality holds if x /∈ z.div(M).

Proof: By (21.3)(1), we have s(M/xM) ≥ s(M)− 1. So the asserted inequality
holds by (21.4). If x /∈ p ∈ Supp(M) when dim(R/p) = dim(M), then (21.3)(2)
yields the opposite inequality, so equality.

Conversely, assume x /∈ p for some p ∈ Supp(M) with dim(R/p) = dim(M).
Now, Supp(M/xM) = Supp(M) ∩V(〈x〉) by (13.46). So V(p) ⊂ Supp(M/xM).
Hence dim(M/xM) ≥ dim(R/p) = dim(M). Thus the equality in question fails.

Finally, assume x /∈ z.div(M). Then x /∈ p for any p ∈ Ass(M) by (17.12). So
x /∈ p for any p minimal in Supp(M) by (17.14). Thus x /∈ p for any p ∈ Supp(M)
with dim(R/p) = dim(M), and so the desired equality follows from the above. !
(21.6) (Height). — Let R be a ring, and p a prime. The height of p, denoted
ht(p), is defined by this formula:

ht(p) := sup{ r | there’s a chain of primes p0 ! · · · ! pr = p }.
The bijective correspondence p 2→ pRp of (11.12)(2) yields this formula:

ht(p) = dim(Rp). (21.6.1)

If ht(p) = h, then we say that p is a height-h prime.

Corollary (21.7). — Let R be a Noetherian ring, p a prime. Then ht(p) ≤ r if and
only if p is a minimal prime of some ideal generated by r elements.

Proof: Assume p is minimal containing an ideal a generated by r elements. Now,
any prime of Rp containing aRp is of the form qRp where q is a prime of R with
a ⊂ q ⊂ p by (11.12). So q = p. Hence pRp =

√
aRp by the Scheinnullstellensatz

(3.14). Hence r ≥ s(Rp) by (21.2). But s(Rp) = dim(Rp) by (21.4), and
dim(Rp) = ht(p) by (21.6.1). Thus ht(p) ≤ r.

Conversely, assume ht(p) ≤ r. Then Rp has a parameter ideal b generated by r
elements, say y1, . . . , yr by (21.6.1) and (21.4). Say yi = xi/si with si /∈ p. Set
a := 〈x1, . . . , xr〉. Then aRp = b.

Suppose there is a prime q with a ⊂ q ⊂ p. Then b = aRp ⊂ qRp ⊂ pRp, and
qRp is prime by (11.12)(2). But

√
b = pRp. So qRp = pRp. Hence q = p by

(11.12)(2). Thus p is minimal containing a, which is generated by r elements. !
Theorem (21.8) (Krull Principal Ideal). — Let R be a Noetherian ring, x ∈ R,
and p a minimal prime of 〈x〉. If x /∈ z.div(R), then ht(p) = 1.

Proof: By (21.7), ht(p) ≤ 1. But by (14.7), x ∈ z.div(R) if ht(p) = 0. !
Exercise (21.9) . — (1) Let A be a Noetherian local ring with a principal prime p
of height at least 1. Prove A is a domain by showing any prime q ! p is 〈0〉.

(2) Let k be a field, P := k[[X]] the formal power series ring in one variable.
Set R := P × P . Prove that R is Noetherian and semilocal, and that R contains a
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principal prime p of height 1, but that R is not a domain.

Corollary (21.10). — Let ϕ : A → B be a local map of Noetherian local rings, m
and n their maximal ideals. Then

dim(B) ≤ dim(A) + dim(B/mB),

with equality if either (a) ϕ has the Going-down Property or (b) ϕ is quasi-flat, that
is, there’s a finitely generated B-module M flat over A with Supp(M) = Spec(B).

Proof: Set s := dim(A). By (21.4), there is a parameter ideal q generated
by s elements. Then m/q is nilpotent by (1)⇒(6) of (19.13). Hence mB/qB is
nilpotent. It follows that dim(B/mB) = dim(B/qB).

Say q = 〈x1, . . . , xs〉. Set M0 := B and Mi := M/〈x1, . . . , xi〉M for 1 ≤ i ≤ s.
Then (4.21) with a := 〈x1, . . . , xi〉 and b := 〈xi+1〉 yields Mi+1

∼−→ Mi/xi+1Mi.
So dim(Mi+1) ≥ dim(Mi) − 1 by (21.5). But Ms = B/qB and M0 := B. Hence
dim(B/qB) ≥ dim(B)− s. Thus the inequality holds.

For the equality, note that Case (b) is a special case of Case (a) owing to (14.8).
So assume Case (a) obtains; that is, ϕ has the Going-down Property.

Given any prime p of B, note that dim(B) ≥ ht(p)+dim(B/p), as concatenating a
maximal chain of primes contained in p with a maximal chain of primes containing
p yields a chain of primes of length ht(p) + dim(B/p). Fix p ⊃ mB such that
dim(B/p) = dim(B/mB). Thus it suffices to show that ht(p) ≥ dim(A).

As ϕ is local, ϕ−1n = m. But n ⊃ p ⊃ mB, so ϕ−1n ⊃ ϕ−1p ⊃ ϕ−1mB ⊃ m.
Thus ϕ−1p = m. But ϕ has the Going-down Property. So induction yields a
chain of primes of B descending from p and lying over any given chain in A. Thus
ht(p) ≥ dim(A), as desired. !
(21.11) (Quasi-regularity). — Let R be a ring, x1, . . . , xs elements, X1, . . . , Xs

variables, and M a module. Set q := 〈x1, . . . , xs〉, and define a map

φ : (M/qM)[X1, . . . , Xs]→ Gq(M)

by sending a homogeneous polynomial F (X1, . . . , Xs) of degree r with coefficients
in M to the residue of F (x1, . . . , xs) in qrM/qr+1M . Note that φ is well defined,
surjective, R-linear, and homogenoeous of degree 0.

If φ is bijective and qM -= M , then x1, . . . , xs is said to be M-quasi-regular.

Proposition (21.12). — Let R be a ring, M a Noetherian semilocal module. Let
x1, . . . , xs be a sop for M , and set q := 〈x1, . . . , xs〉. Then e(q,M) ≤ 2(M/qM),
with equality if and only if x1, . . . , xs is M -quasi-regular.

Proof: Form the map φ of (21.11). Set P := (M/qM)[X1, . . . , Xs], and grade
P by degree. For n ≥ 0, define Nn by the exact sequence

0→ Nn → Pn
φn−−→ qnM/qn+1M → 0. (21.12.1)

Note that 2(Pn) = 2(M/qM)
(s−1+n

s−1

)
by (20.4). Thus

2(Pn) =
(
2(M/qM)

/
(s− 1)!

)
ns−1 + lower degree terms. (21.12.2)

Also deg pq(M, n) = d(M) by (21.2), and d(M) = s(M) by (21.4), and s(M) = s
by (21.4) again; so deg pq(M, n) = s. Thus (20.11) with d = s yields, for nA 0,

2(qnM/qn+1M)
(
e(q, M)

/
(s− 1)!

)
ns−1 + lower degree terms. (21.12.3)

By (21.11), x1, . . . , xs is M -quasi-regular if and only if φ is bijective. If φ is
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so, then 2(Pn) = 2(qnM/qn+1M) for all n by (21.12.1). Thus (21.12.2) and
(21.12.3) yield e(q,M) = 2(M/qM).

Assume φ isn’t bijective. Then (21.12.1) yields q with a nonzero G ∈ Nq.
Say V(q) = {m1, . . . ,mh}, and set m := m1 · · ·mh. Then mr(M/qM) = 0 for

some r by (1)⇒(6) of (19.13). Hence mrP = 0. So mrG = 0. Take p so
that mpG = 0, but mp−1G -= 0. Then take k so that m1 · · ·mkmp−1G = 0, but
m1 · · ·mk−1mp−1G -= 0. Then there’s x ∈ m1 · · ·mk−1mp−1 with xG -= 0. Replace
G by xG. Then G -= 0, but mkG = 0. Also G ∈ Nq.

Set K := R/mk and Q := K[X1, . . . , Xs]. Grade Q by degree, and for each n ≥ q,
form the R-linear map

ν : Qn−q → Pn by ν(F ) := FG.

It’s well defined as mkG = 0. Let’s see that it’s injective.
Let F ∈ Qn−q be nonzero. As in (2.4), consider the grlex leading coefficients a

of F and b of G. Then a ∈ K×. So ab ∈ M/qM is nonzero. Hence ab is the grlex
leading coefficient of FG, and FG is nonzero. Thus ν is injective.

Given F ∈ Qn−q, lift F to F̃ ∈ R[X1, . . . , Xn]. Then F̃ (x1, . . . , xs) ∈ qn−q.
Denote its residue in qn−q/qn−q+1 by f . Then φ(FG) = fφ(G) = 0. Hence
ν(F ) ∈ Nn. Thus ν(Qn−q) ⊂ Nn.

Since ν is injective, 2(Qn−q) ≤ 2(Nn). But 2(Qn−q) =
(s−1+n−q

s−1

)
by (20.4). Also

(21.12.1) and (19.7) yield 2(qnM/qn+1M) = 2(Pn)− 2(Nn). So (21.12.2) yields

2(qnM/qn+1M) ≤
(
(2(M/qM)− 1)

/
(s− 1)!

)
ns−1 + lower degree terms.

Thus (21.12.3) yields e(q,M) ≤ 2(M/qM)− 1, as desired. !
Exercise (21.13) . — Let A be a Noetherian local ring of dimension r. Let m be
the maximal ideal, and k := A/m the residue class field. Prove that

r ≤ dimk(m/m2),

with equality if and only if m is generated by r elements.

(21.14) (Regular local rings). — Let A be a Noetherian local ring of dimension r
with maximal ideal m and residue field k. We say A is regular if m is generated by
r elements. If so, then, as r = s(R) by (21.4), any such r elements form a system
of parameters; it is known as a regular system of parameters, or regular sop.

By (21.13), A is regular if and only if r = dimk(m/m2). If so, then, by (10.9),
elements of m form a regular sop if and only if their residues form a k-basis of m/m2.

For example, a field is a regular local ring of dimension 0, and conversely. An
example of a regular local ring of given dimension n is the localization Pm of a
polynomial ring P in n variables over a field at any maximal idealm, as dim(Pm) = n
by (15.10) and (15.12) and as m is generated by n elements by (15.6).

Corollary (21.15). — Let A be a Noetherian local ring of dimension r, and m its
maximal ideal. Then A is regular if and only if its associated graded ring G(A) is
a polynomial ring; if so, then the number of variables is r and e(m, A) = 1.

Proof: Say G(A) is a polynomial ring in s variables. Then dim(m/m2) = s. By
(20.4), deg h(G(A), n) = s−1. So s = d(A) by (20.11) and (21.2). But d(A) = r
by (21.4). Thus s = r, and by (21.14), A is regular.

Conversely, assume A is regular. Then by (21.14), m is generated by r elements,
which form a system of parameters. So (21.12) yields 1 ≤ e(m, A) ≤ 2(A/m) = 1.
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Thus e(m, A) = 1, and so by (21.12) again, ϕr is an isomorphism, as desired. !

Exercise (21.16) . — Let A be a Noetherian local ring of dimension r, and let
x1, . . . , xs ∈ A with s ≤ r. Set a := 〈x1, . . . , xs〉 and B := A/a. Prove equivalent:

(1) A is regular, and there are xs+1, . . . , xr ∈ A with x1, . . . , xr a regular sop.
(2) B is regular of dimension r − s.

Theorem (21.17). — A regular local ring A is a domain.

Proof: Use induction on r := dimA. If r = 0, then A is a field, so a domain.
Assume r ≥ 1. Let x be a member of a regular sop. Then A/〈x〉 is regular of

dimension r − 1 by (21.16). By induction, A/〈x〉 is a domain. So 〈x〉 is prime.
Thus A is a domain by (21.9). (Another proof is found in (22.39).) !

Lemma (21.18). — Let A be a local ring, m its maximal ideal, a a proper ideal.
Set n := m/a and k := A/m. Then this sequence of k-vector spaces is exact:

0→ (m2 + a)/m2 → m/m2 → n/n2 → 0.

Proof: The assertion is very easy to check. !

Proposition (21.19). — Let A be a regular local ring of dimension r, and a an
ideal. Set B := A/a, and assume B is regular of dimension r − s. Then a is
generated by s elements, and any such s elements form part of a regular sop.

Proof: In its notation, (21.18) yields dim((m2 + a)/m2) = s. Hence, any set of
generators of a includes s members of a regular sop of A. Let b be the ideal the s
generate. Then A/b is regular of dimension r − s by (21.16). By (21.17), both
A/b and B are domains of dimension r − s; whence, (15.24) implies a = b. !

B. Exercises

Exercise (21.20) . — Let R be a ring, R′ an algebra, and N a nonzero R′-module
that’s a Noetherian R-module. Prove the following statements:

(1) dimR(N) = dimR′(N).
(2) Each prime in SuppR′(N) contracts to a prime in SuppR(N). Moreover, one

is maximal if and only if the other is.
(3) Each maximal ideal in SuppR(N) is the contraction of at least one and at

most finitely many maximal ideals in SuppR′(N).
(4) radR(N)R′ ⊂ radR′(N).
(5) N is semilocal over R if and only if N is semilocal over R′.

Exercise (21.21) . — Let R be a ring, M a nonzero Noetherian semilocal module,
q a parameter ideal, and 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M a chain of submodules
with Mi/Mi−1 % R/pi for some pi ∈ Supp(M). Set d := dim(M) and set

I := { i | dim(R/pi) = d } and Φ := { p ∈ Supp(M) | dim(R/p) = d }.
Prove: (1) e(q,M) =

∑
i∈I e(q, R/pi) and (2) e(q,M) =

∑
p∈Φ 2Rp(Mp)e(q, R/p).

Exercise (21.22) . — Let A be a Noetherian local ring, m its maximal ideal, q a
parameter ideal, P := (A/q)[X1, . . . , Xs] a polynomial ring for some s ≥ 0. Show:

(1) Set M := (m/q)[X1, . . . , Xs]. Then z.div(P ) = M.
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(2) Assume q is generated by a sop x1, . . . , xs. Let φ : P → Gq(A) be the (A/q)-
algebra map with φ(Xi) equal to the residue of xi. Then Ker(φ) ⊂ z.div(P ).

Exercise (21.23) . — Let A be a Noetherian local ring, k ⊂ A a coefficient field
(or field of representatives)— that is, k maps isomorphically onto the residue field—
x1 . . . , xs a sop. Using (21.22), show the xi are algebraically independent over k.

Exercise (21.24) . — Let k be an algebraically closed field, R an algebra-finite
domain, m a maximal ideal of R. Using the dimension theory in this chapter and
(15.1)(1), but not (2), show dim(R) = dim(Rm) = tr. degk(Frac(R)). (Compare
with (15.10) and (15.12).)

Exercise (21.25) . — Let R be a ring, N a Noetherian semilocal module, and
y1, . . . , yr a sop for N . Set Ni := N/〈y1, . . . , yi〉N . Show dim(Ni) = r − i.

Exercise (21.26) . — Let R be a ring, p a prime, M a finitely generated module.
Set R′ := R/AnnM . Prove these two statements: (1) dim(Mp) = dim(R′

p).
(2) If Ann(M) = 〈0〉, then dim(Mp) = ht(p).

Exercise (21.27) . — Let R be a Noetherian ring, and p be a prime minimal
containing x1, . . . , xr. Given r′ with 1 ≤ r′ ≤ r, set R′ := R/〈x1, . . . , xr′〉 and
p′ := p/〈x1, . . . , xr′〉. Assume ht(p) = r. Prove ht(p′) = r − r′.

Exercise (21.28) . — Let R be a Noetherian ring, p a prime of height at least 2.
Prove that p is the union of height-1 primes, but not of finitely many.

Exercise (21.29) . — Let R be a Noetherian ring of dimension at least 1. Show
that the following conditions are equivalent:

(1) R has only finitely many primes.
(2) R has only finitely many height-1 primes.
(3) R is semilocal of exactly dimension 1.

Exercise (21.30) (Artin–Tate [2, Thm. 4]) . — Let R be a Noetherian domain, and
set K := Frac(R). Prove the following statements are equivalent:

(1) 〈fX − 1〉 ⊂ R[X] is a maximal ideal for some nonzero f ∈ R.
(2) K = Rf for some nonzero f ∈ R.
(3) K is algebra finite over R.
(4) Some nonzero f ∈ R lies in every nonzero prime.
(5) R has only finitely many height-1 primes.
(6) R is semilocal of dimension 1.

Exercise (21.31) . — Let R be a Noetherian domain, p a prime element. Show
that 〈p〉 is a height-1 prime ideal.

Exercise (21.32) . — Let R be a UFD, and p a height-1 prime ideal. Show that
p = 〈p〉 for some prime element p.

Exercise (21.33) . — Let R be a Noetherian domain such that every height-1 prime
ideal p is principal. Show that R is a UFD.

Exercise (21.34) (Gauss’ Lemma) . — Let R be a UFD, and X a variable, and
F, G ∈ R[X]. Call F primitive if its coefficients have no common prime divisor.

(1) Show that F is primitive if and only if c(F ) lies in no height-1 prime ideal.
(2) Assume that F and G are primitive. Show that FG is primitive.
(3) Let f, g, h be the gcd’s of the coefficients of F, G, FG. Show fg = h.
(4) Assume c(F ) = 〈f〉 with f ∈ R. Show f is the gcd of the coefficients of F .
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Exercise (21.35) . — Let R be a finitely generated algebra over a field. Assume
R is a domain of dimension r. Let x ∈ R be neither 0 nor a unit. Set R′ := R/〈x〉.
Prove that r − 1 is the length of any chain of primes in R′ of maximal length.

Exercise (21.36) . — Let k be a field, P = k[X1, . . . , Xn] the polynomial ring, R1

and R2 two P -algebra-finite domains, and p a minimal prime of R1 ⊗P R2.
(1) Set C := R1 ⊗k R2, and let q ⊂ C denote the preimage of p. Use (8.28)(1)

to prove that q is a minimal prime of an ideal generated by n elements.
(2) Use (15.12) and (15.28) to prove this inequality:

dim(R1) + dim(R2) ≤ n+ dim
(
(R1 ⊗P R2)/p

)
. (21.36.1)

Exercise (21.37) . — Let k be a field, P := k[X1, . . . , Xn] the polynomial ring, R′

a P -algebra-finite domain. Let p be a prime of P , and p′ a minimal prime of pR′.
Prove this inequality: ht(p′) ≤ ht(p).

Exercise (21.38) . — Let k be a field, P := k[X1, . . . , Xn] the polynomial ring, p1
and p2 primes of P , and p a minimal prime of p1 + p2. Prove this inequality:

ht(p) ≤ ht(p1) + ht(p2). (21.38.1)

Exercise (21.39) . — Let k be a field, k[X,Y, Z,W ] the polynomial ring. Set

q1 := 〈X, Y 〉 and q2 := 〈Z, W 〉 and q := 〈X, Y, Z, W 〉 and

R := k[X, Y, Z, W ]
/
〈XZ − YW 〉 and pi := qiR and p := qR.

Show that p1, p2, p are primes of heights 1, 1, 3. Does (21.38) hold for R?

Exercise (21.40) . — Let R be a Noetherian ring, X,X1, . . . , Xn] variables. Show:

dim(R[X]) = 1 + dim(R) and dim(R[X1, . . . , Xn]) = n+ dim(R).

Exercise (21.41) (Jacobian Criterion) . — Let k be a field, P := k[X1, . . . , Xn]
the polynomial ring, A ⊂ P an ideal, x := (x1, . . . , xn) ∈ kn. Set R := P/A and
M := 〈X1 − x1, . . . , Xn − xn〉. Prove the following statements:

(1) Say A = 〈F1, . . . Fm〉. Assume Fi(x) = 0 for all i. For all i, j, define
∂Fi/∂Xj ∈ P formally as in (1.18.1), and set aij := (∂Fi/∂Xj)(x). Let
r be the rank of the m by n matrix (aij). Set d := dimRM. Then these
conditions are equivalent: (a) RM is regular; (b) r = n−d; and (c) r ≥ n−d.

(2) Assume A is prime, F /∈ A and k is algebraically closed. Then there’s a choice
of x with F (x) -= 0 and A ⊂M and RM regular.

Start with the case A = 〈G〉. Then reduce to it by using a separating
transcendence basis for K := Frac(R) over k and a primitive element.
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22. Completion

Completion is used to simplify a ring and its modules beyond localization. First,
we discuss the topology of a filtration, and use Cauchy sequences to construct the
(separated) completion. Then we discuss the inverse limit, the dual notion of the
direct limit; using it, we obtain an alternate construction. We conclude that, if we
use the a-adic filtration, for any ideal a, then the functor of completion is exact on
the Noetherian modules. Moreover, if the ring is Noetherian, then the completion
of a finitely generated module is equal to its tensor product with the completion
of the ring; hence, the latter is flat. Lastly, we prove that the completion of a
Noetherian module is Noetherian over the completion of the ring.

In an appendix, we study Henselian rings, the local rings such that, given a
monic univariate polynomial F , any factorization of F , modulo the maximal ideal,
into monic and coprime factors, lifts to a factorization of F itself. The completion
of any local ring is Henselian by Hensel’s Lemma, which we prove. We characterize
Henselian rings as the local rings over which any module-finite algebra is decom-
posable; hence, such an algebra, if local, is Henselian too. Next, we consider an
equicharacteristic local ring: it and its residue field k have the same character-
istic. Its completion contains a coefficient field, one mappng isomorphically onto
k, by the Cohen Existence Theorem, which we prove using Hensel’s lemma.
Lastly, we prove the Weierstraß Division Theorem and Preparation Theorem.

The former is a version of the Division Algorithm for formal power series in one
variable X over a ring R that is separated and complete in the a-adic topology for
some ideal a; the divisor F =

∑
fiXi must have fn a unit in R for some n ≥ 0 but

fi ∈ a for i < n. The Preparation Theorem asserts F = UV uniquely, where U is
an invertible power series and V is a monic polynomial. We adapt these theorems
to the local ring A of convergent complex power series in several variables, and
conclude that A is Henselian, regular, and a UFD.

A. Text

(22.1) (Topology and completion). — Let R be a ring, M a filtered module with
filtration F •M . Then M has a (linear) topology : the open sets are the arbitrary
unions of sets of the form m+FnM for various m and n. Indeed, the intersection of
two open sets is open, as the intersection of two unions is the union of the pairwise
intersections; further, if the intersection U of m+FnM and m′+Fn′

M is nonempty
and if n ≥ n′, then U = m+ FnM , because, if say m′′ ∈ U , then

m+ FnM = m′′ + FnM ⊂ m′′ + Fn′
M = m′ + Fn′

M. (22.1.1)

Let K ⊂M be a submodule. If K ⊃ FnM for some n, then K is both open and
closed for this reason: given m ∈ K, we have m + FnM ⊂ K; given m ∈ M −K,
we have m+ FnM ⊂M −K. In particular, each FnM is both open and closed.

The addition map M ×M →M , given by (m,m′) 2→ m+m′, is continuous, as

(m+ FnM) + (m′ + FnM) ⊂ (m+m′) + FnM.

So, with m′ fixed, the translation m 2→ m + m′ is a homeomorphism M → M .
(Similarly, inversion m 2→ −m is a homeomorphism; so M is a topological group.)
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Given another filtration F̃ •M such that, for anym, there’s n with FmM ⊃ F̃nM ,
and for any p, there’s q with F̃ pM ⊃ F qM , both filtrations yield the same topology.
Let a be an ideal, and give R the a-adic filtration. If the filtration on M is an

a-filtration, then scalar multiplication (x,m) 2→ xm too is continuous, because

(x+ an)(m+ FnM) ⊂ xm+ FnM.

Further, if the filtration is a-stable, then it yields the same topology as the a-adic
filtration, because for some n′ and any n,

FnM ⊃ anM ⊃ anFn′
M = Fn+n′

M.

Thus any two stable a-filtrations give the same topology : the a-adic topology.
When a is given, it is conventional to use the a-adic filtration and a-adic topology

unless there’s explicit mention to the contrary. Moreover, if M is semilocal, then it
is conventional to take a to be rad(M) or another parameter ideal q; the topology
is the same for all q owing to (1)⇒(6) of (19.13). Further, if R is semilocal, then
it is conventional to take a to be rad(R) or another parameter ideal r for R; recall
from (21.2) that r is also a parameter ideal for M .

Let K denote the closure of the submodule K ⊂ M . Then m ∈ M −K means
there’s n with (m + FnM) ∩ K = ∅, or equivalently m /∈ (K + FnM). Thus
K =

⋂
n(K + FnM). In particular, {0} is closed if and only if

⋂
FnM = {0}.

Also, M is separated—that is, Hausdorff— if and only if {0} is closed. For, if
{0} is closed, so is each {m}. So given m′ -= m, there’s n′ with m /∈ (m′ + Fn′

M).
Take n ≥ n′. Then (m+ FnM) ∩ (m′ + Fn′

M) = ∅ owing to (22.1.1).
Finally, M is discrete—that is, every {m} is both open and closed— if and

only if {0} is just open, if and only if FnM = 0 for some n.
A sequence (mn)n≥0 in M is called Cauchy if, given n0, there’s n1 with

mn −mn′ ∈ Fn0M, or simply mn −mn+1 ∈ Fn0M, for all n, n′ ≥ n1;

the two conditions are equivalent because Fn0M is a subgroup and

mn −mn′ = (mn −mn+1) + (mn+1 −mn+2) + · · ·+ (mn′−1 −mn′).

An m ∈M is called a limit of (mn) if, given n0, there’s n1 with m−mn ∈ Fn0M
for all n ≥ n1. If so, we say (mn) converge to m, and write m = limmn.

Plainly, if (mn) converges, then it’s Cauchy If every Cauchy sequence converges,
then M is called complete. Plainly, the notions of Cauchy sequence and limit
depend only on the topology.

The Cauchy sequences form a module C(M) under termwise addition and scalar
multiplication. The sequences with 0 as a limit form a submodule Z(M). Set

M̂ := C(M)/Z(M).

Call M̂ the (separated) completion of M ; this name is justified by (22.13)(2),
(22.16)(4), and (22.54) below.

Form the R-map M → C(M) that carries m to the constant sequence (m).

Composing it with the quotient map C(M)→ M̂ yields this canonical R-map:

κM : M → M̂ by κMm := the residue of (m). (22.1.2)

If M is discrete, then every Cauchy sequence stabilizes; hence, then κM is bijective;
moreover, M is separated and complete. For example, an Artinian ring R is discrete
as its radical is nilpotent by (19.23); so R is separated and complete.
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The submodule K ⊂M carries an induced filtration: FnK := K∩FnM . Plainly
C(K) ⊂ C(M) and Z(K) = C(K) ∩ Z(M). Thus K̂ ⊂ M̂ and κK = κM |K. In

particular, the F̂nM form a filtration of M̂ .

Note F̂nM
⋂
K̂ ⊃ F̂nK. Conversely, given m ∈ F̂nM

⋂
K̂, lift it to (mk) in

C(M). Then mk ∈ FnM ∩K for k A 0. So m ∈ F̂nK. Thus F̂nM
⋂
K̂ = F̂nK;

that is, on K̂, the F̂nM induce the filtration formed by the F̂nK.

Note κ−1
M F̂nM ⊃ FnM as κM |FnM = κFnM . Conversely, given a constant

sequence (m) ∈ C(FnM), note m ∈ FnM . Thus κ−1
M F̂nM = FnM .

Let α : M → N be a map of filtered modules with filtrations F •M and F •N ;
that is, α(FnM) ⊂ FnN for all n. Plainly α is continuous, and preserves Cauchy
sequences and limits. So α induces an R-map C(M) → C(N) by (mn) 2→ (αmn),

and it carries Z(M) into Z(N). Thus α induces an R-map α̂ : M̂ → N̂ with

α̂κM = κNα. Plainly, (α|FnM)̂ : F̂nM → F̂nN is equal to α̂
∣∣ F̂nM ; thus α̂ is a

map of filtered modules. Moreover, M 2→ M̂ is an R-linear functor.
Again, let a be an ideal. Under termwise multiplication of Cauchy sequences, R̂

is a ring, κR : R → R̂ is a ring map, and M̂ is an R̂-module. Similarly, given an
ideal b ⊂ R equipped with the a-adic topology, define the R̂-submodule b̂M̂ ⊂ M̂ ,
even if the natural map b̂ → R̂ isn’t injective. A priori, the a-adic filtration of M̂

might differ from the induced filtration, which is given by FnM := ânM for all n;
however, when M is Noetherian, the two coincide by (22.21).

Example (22.2). — Let R be a ring, X1, . . . , Xr variables. Set P := R[X1, . . . , Xr]
and a := 〈X1, . . . , Xr〉. Then a sequence (Fn)n≥0 of polynomials is Cauchy in the
a-adic topology if and only if, given n0, there’s n1 such that, for all n ≥ n1, the Fn

agree in degree less than n0. So (Fn) determines a power series, and it is 0 if and
only if (Fn) converges to 0. Thus P̂ is just the power series ring R[[X1, . . . , Xr]].

Given n ≥ 0, note an consists of the polynomials with no monomial of degree
less than n. So a Cauchy sequence of polynomials in an converges to a power series
with no monomial of degree less than n. Hence ân = anP̂ . Thus P̂ has the a-adic
topology. Note

⋂
anP̂ = {0}; thus P̂ is separated. Further, a sequence (mn)n≥0 of

power series is Cauchy if and only if, given n0, there’s n1 such that, for all n ≥ n1,
the mn agree in degree less than n0. Thus P̂ is complete.

For another example, take a prime integer p, and set a := 〈p〉. Then a sequence
(xn)n≥0 of integers is Cauchy if and only if, given n0, there’s n1 such that, for all
n, n′ ≥ n1, the difference xn − xn′ is a multiple of pn0 . The completion, denoted
Ẑp, is called the ring of p-adic integers, and consists of the sums

∑∞
i=0 zip

i with

0 ≤ zi < p. Moreover, Ẑp has the p-adic topology, and is separated and complete.

Exercise (22.3) . — Let R be a ring, M a module, F •M a filtration. Prove that

Ker(κM ) =
⋂

FnM. (22.3.1)

where κM is the map of (22.1.2). Conclude that these conditions are equivalent:

(1) κM : M → M̂ is injective; (2)
⋂

FnM = {0}; (3) M is separated.

Assume M is Noetherian and F •M is the a-adic filtration for a proper ideal a
with either (a) a ⊂ rad(M) or (b) R a domain and M torsionfree. Prove M ⊂ M̂ .
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Proposition (22.4). — Let R be a ring, and a an ideal. Then â ⊂ rad(R̂ ).

Proof: Given a ∈ â, represent a by (an) ∈ C(a). For all n, set bn := 1− an and
cn := 1 + an + · · · + ann and dn := 1 − an+1

n ; then bncn = dn. Note (bn) and (cn)
and (dn) are Cauchy. Also, (bn) and (dn) represent 1 − a and 1 in R̂. Say (cn)
represents c. Then (1− a)c = 1. Thus (3.2) implies â ⊂ rad(R̂ ). !
(22.5) (Inverse limits). — Let R be a ring. A sequence of modules Qn and maps
αn+1
n : Qn+1 → Qn for n ≥ 0 is called an inverse system. Its inverse limit

lim←−Qn is the submodule of
∏

Qn of all vectors (qn) with αn+1
n qn+1 = qn for all n.

Define θ :
∏

Qn →
∏

Qn by θ(qn) := (qn − αn+1
n qn+1). Then

lim←−Qn = Ker θ. Set lim←−
1 Qn := Coker θ. (22.5.1)

Plainly, lim←−Qn has this UMP: given maps βn : P → Qn with αn+1
n βn+1 = βn,

there’s a unique map β : P → lim←−Qn with πnβ = βn for all n.
Further, owing to the UMP, a map of inverse systems, in the obvious sense of

the term, induces a map between their inverse limits. (The notion of inverse limit
is formally dual to that of direct limit.)

For instance, a module M with a filtration F •M yields the inverse system with
Qn := M/FnM and αn+1

n the quotient maps for n ≥ 0. Moreover, let αM → N be
a map of filtered modules, F •N the filtration on N , and αn : M/FnM → N/FnN
the induced maps. The αn form a map of inverse systems, as they respect the
quotient maps. In (22.7) below, we prove M̂ = lim←−(M/FnM) and α̂ = lim←−αn.

Example (22.6). — First, let R be a ring, P := R[X1, . . . , Xr] the polynomial
ring in r variables. Set m := 〈X1, . . . , Xr〉 and Pn := P/mn+1. Then Pn is just the
algebra of polynomials of degree at most n, and the quotient map αn+1

n : Pn+1 → Pn

is just truncation. Thus lim←−Pn is equal to the power series ring R[[X1, . . . , Xr]].

Second, take a prime integer p, and set Zn := Z/〈pn+1〉. Then Zn is just the ring
of sums

∑n
i=0 zip

i with 0 ≤ zi < p, and the quotient map αn+1
n : Zn+1 → Zn is just

truncation. Thus lim←−Zn is just the ring of p-adic integers.

Proposition (22.7). — Let α M → N be a map of filtered modules with filtrations
F •M and F •N , and αn : M/FnM → N/FnN the induced maps for n ≥ 0. Then

M̂ = lim←−(M/FnM) and α̂ = lim←−αn.

Moreover, κM : M → M̂ is induced by the quotient maps M →M/FnM .

Proof: Let’s define an R-map γ : C(M)→ lim←−(M/FnM). Given (mν) ∈ C(M),
let qn ∈ M/FnM be the residue of mν for ν A 0. Then qn is independent of
ν, because (mν) is Cauchy. Further, qn is the residue of qn+1 in M/FnM ; so
(qn) ∈ lim←−(M/FnM). Define γ(mν) := (qn). Plainly, γ is R-linear.
Above, it’s easy to see that (mν) ∈ Z(M) if and only if qn = 0 for all n. Hence

γ factors through an injective R-map λ : M̂ → lim←−(M/FnM).
Next, given (qn) ∈ lim←−(M/FnM), lift qν ∈ M/F νM to some mν ∈ M for all ν.

Then mµ −mν ∈ F νM for µ ≥ ν, as qµ ∈M/FµM maps to qν ∈M/F νM . Hence
(mν) ∈ C(M). Thus γ is surjective. So λ is too. Thus λ is an isomorphism.
Next, α̂ = lim←−αn as αn(qn) is the residue of α(mν) in N/FnN for ν A 0.
Moreover, given m ∈ M , assume mν = m for all ν. Then qn ∈ M/FnM is the

residue of m for all n. Thus κM : M → M̂ is induced by the M →M/FnM . !
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Exercise (22.8) . — Let R be a ring, M a module, F •M a filtration. Use (22.7)

to compute F̂ kM ⊂ M̂ . Then use (22.3) to show M̂ is separated.

Exercise (22.9) . — Let Q0 ⊃ Q1 ⊃ Q2 ⊃ · · · be a descending chain of modules,
αn+1
n : Qn+1 ↪→ Qn the inclusions. Show

⋂
Qn = lim←−Qn.

Lemma (22.10). — (1) Let (Mn, µn+1
n ) be an inverse system. Assume the µn+1

n

are surjective for all n. Then lim←−
1
n
Mn = 0.

(2) For n ≥ 0, given commutative diagrams with exact rows

0 −→ Mn+1
αn+1−−−→ Nn+1

βn+1−−−→ Pn+1 −→ 0)
)

)
0 −−→ Mn

αn−−−−−→ Nn
βn−−−−−→ Pn −−→ 0

they induce the following exact sequence:
0→ lim←−Mn → lim←−Nn → lim←−Pn → lim←−

1 Mn → lim←−
1 Nn → lim←−

1 Pn → 0.

Proof: In (1), the µn+1
n are surjective. So given (mn) ∈

∏
Mn, we can solve

qn − µn+1
n (qn+1) = mn recursively, starting with q0 = 0, to get (qn) ∈

∏
Mn with

θ((qn)) = (mn), where θ is the map of (22.5). So θ is surjective. Thus (1) holds.
For (2), note that the given diagrams induce the next one:

0 −→
∏

Mn

∏
αn−−−→

∏
Nn

∏
βn−−−→

∏
Pn −→ 0

θ

) θ

) θ

)
0 −→

∏
Mn

∏
αn−−−→

∏
Nn

∏
βn−−−→

∏
Pn −→ 0

Its rows are exact by (5.4). So the Snake Lemma (5.10) and (22.5.1) give (2). !
Example (22.11). — Let R be a ring, M a module, F •M a filtration. For n ≥ 0,
consider the following natural commutative diagrams with exact rows:

0 −→ Fn+1M −→ M −→ M/Fn+1M −→ 0)
)

)
0 −−→ FnM −−→ M −−→ M/FnM −−→ 0

with vertical maps, respectively, the inclusion, the identity, and the quotient map.
By (22.9) and (22.7), the exact sequence of inverse limits in (22.10)(2) yields

0→ lim←−FnM →M
κM−−→ M̂.

But κM is not always surjective; for examples, see (22.2). Thus lim←− is not always

exact, nor is lim←−
1 always 0.

Exercise (22.12) . — Let R be a ring, M a module, F •M a filtration, and N ⊂M
a submodule. Give N and M/N the induced filtrations: FnN := N ∩ FnM and

Fn(M/N) := FnM/FnN . Show the following: (1) N̂ ⊂ M̂ and M̂/N̂ = M̂/N .

(2) If N ⊃ F kM for some k, then κM/N is a bijection, κM/N : M/N ∼−→ M̂/N .

Exercise (22.13) . — Let R be a ring, M a module, F •M a filtration. Show:

(1) The canonical map κM : M → M̂ is surjective if and only if M is complete.

(2) Given (mn) ∈ C(M), its residue m ∈ M̂ is the limit of the sequence (κMmn).
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Exercise (22.14) . — Let R be a ring, M a module, and F •M a filtration. Show
that the following statements are equivalent: (1) κM is bijective;

(2) M is separated and complete; (3) κM is an isomorphism of filtered modules.
Assume M is Noetherian and F •M is the a-adic filtration for a proper ideal a

with either (a) a ⊂ rad(M) or (b) R a domain and M torsionfree. Prove that M

is complete if and only if M = M̂ .

Exercise (22.15) . — Let R be a ring, α : M → N a map of filtered modules,

α′ : M̂ → N̂ a continuous map such that α′κM = κNα. Show α′ = α̂.

Exercise (22.16) . — Let R be a ring, M a module, F •M a filtration. Show:

(1) G(κM ) : G(M)→ G(M̂) is bijective. (2) κ̂M : M̂ → ̂̂
M is bijective.

(3) κM̂ = κ̂M . (4) M̂ is separated and complete.

Lemma (22.17). — Let R be a ring, a an ideal, M a Noetherian module, N a
submodule. Then the (a-adic) topology on M induces that on N .

Proof: Set FnN := N ∩ anM . The FnN form an a-stable filtration by the
Artin–Rees Lemma (20.12). Thus by (22.1), it defines the a-adic topology. !
Theorem (22.18) (Exactness of Completion). — Let R be a ring, a an ideal. Then

on the Noetherian modules M , the functor M 2→ M̂ is exact.

Proof: Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of Noetherian
modules. Then 0→ M̂ ′ → M̂ → M̂ ′′ → 0 is exact by (22.12)(1) and (22.17). !
Corollary (22.19). — Let R be a ring, a an ideal, M a finitely generated module.

Then the canonical map R̂⊗M → M̂ is surjective; it’s bijective if R is Noetherian.

Proof: On ((R-mod)), the functor N 2→ N̂ preserves surjections by (22.12)(1);
on the Noetherian modules, it is exact by (22.18). But if R is Noetherian, then
every finitely generated module is Noetherian and finitely presented by (16.15).
Thus (8.14) yields both assertions. !
Corollary (22.20). — Let R be a ring, a and b ideals, M a module. Use the a-adic
topology. Assume either (a) M and bM are finitely generated and b ⊃ a, or (b) M

is Noetherian. Then b̂nM = bnM̂ = b̂nM̂ = b̂
n
M̂ for any n ≥ 1.

Proof: To do n = 1, form the square induced by the inclusion bM →M :

R̂⊗ (bM)
α−→ R̂⊗M)β

)γ

b̂M
δ−−−−−→ M̂

It’s commutative. Moreover, both β and γ are surjective by (22.19) as both bM
and M are finitely generated under either (a) or (b)

Plainly Im(α) = b(R̂⊗M). But γ is surjective. Thus Im(γα) = bM̂ .
At the bottom, δ is injective by (22.12)(1), as the topology on M induces that

on bM for these reasons. It does if (a) holds, namely if a ⊂ b ⊂ R, as then for any
k ≥ 0, multiplying by akM yields ak+1M ⊂ akbM ⊂ akM . And it does by (22.17)

if (b) holds. Hence Im(δβ) = b̂M . But Im(δβ) = Im(γα). Thus b̂M = bM̂ .

Plainly bM̂ ⊂ b̂M̂ . Also, b̂M̂ ⊂ b̂M as, given a Cauchy sequence in b and one
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in M , their product is one in bM . But b̂M = bM̂ . Thus the case n = 1 holds.
For n ≥ 2, on any module, the an-adic topology is the same as the a-adic. So

the case n = 1 applies with an and bn for a and b. Thus b̂nM = bnM̂ b̂
n
M̂ . So it

remains to show bnM̂ = b̂
n
M̂ . Induct on n. For n = 1, recall bM̂ = b̂ M̂ .

Assume bn−1M̂ = b̂
n−1

M̂ with n ≥ 2. Multiplying by b gives bnM̂ = b̂
n−1

bM̂ .

But bM̂ = b̂ M̂ . Thus bnM̂ = b̂
n
M̂ , as desired. !

Corollary (22.21). — Let R be a ring, a an ideal, M a module. Assume M is

Noetherian, or just M and aM are finitely generated. Then these filtrations of M̂

coincide: the induced (for which FnM̂ := ânM), the â-adic, and the a-adic.

Proof: The assertion is an immediate consequence of (22.20) with b := a. !

Corollary (22.22). — Let R be a Noetherian ring, a an ideal, and M a finitely

generated module. Assume M is flat. Then M̂ is flat both over R̂ and over R.

Proof: First, M̂ is flat over R̂ by (9.22) as M̂ = M ⊗R R̂ by (22.19).

Second, fix an ideal b. Note bM̂ = b̂M by (22.20). And b̂M = R̂ ⊗ bM by

(22.19). But M is flat; so bM = b⊗M by (9.15). Thus bM̂ = R̂ ⊗ b⊗M . But

R̂⊗M = M̂ by (22.19). Thus bM̂ = b⊗ M̂ . So M̂ is flat over R by (9.15). !

Lemma (22.23). — Let R be a ring, α : M → N a map of filtered modules with
filtrations F •M and F •N .

(1) Assume FnM = M for nC 0 and G(α) is injective. Then α̂ is injective.
(2) Assume FnN = N for nC 0 and G(α) is surjective. Then α̂ is surjective.

Proof: Given n ∈ Z, form the following commutative diagram:

0 −→ FnM/Fn+1M −→ M/Fn+1M −→ M/FnM −→ 0

Gn(α)

) αn+1

) αn

)
0 −→ FnN/Fn+1N −→ N/Fn+1N −→ N/FnN −→ 0

Its rows are exact. So the Snake Lemma (5.10) yields this exact sequence:

KerGn(α)→ Kerαn+1
βn−−→Kerαn → CokerGn(α)→ Cokerαn+1

γn−→ Cokerαn.

In (1), KerGn(α) = 0 for all n; so βn is injective for all n. Also M/FnM = 0
for n C 0; so Kerαn = 0 for n C 0. Hence by induction, Kerαn = 0 for all n. So
lim←−αn is injective by (22.10)(2). Thus (22.7) yields (1).
In (2), note CokerGn(α) = 0 for all n. So βn is surjective for all n. Thus

(22.10)(1) yields lim←−
1 Kerαn = 0.

Again, CokerGn(α) = 0 for all n. So γn is injective for all n. Also N/FnN = 0
for nC 0; so Cokerαn = 0 for nC 0. So by induction, Cokerαn = 0 for all n. So
αn is surjective for all n. So for all n, the following sequence is exact:

0→ Kerαn →M/FnM
αn−−→ N/FnN → 0

So lim←−αn is surjective by (22.10)(1)–(2). Thus (22.7) yields (2). !

Lemma (22.24). — Let R be a ring, a an ideal, M a module, F •M an a-filtration.
Assume R is complete, M is separated, FnM = M for nC 0, and G(M) is finitely
generated over G(R). Then M is complete, and finitely generated over R.
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Proof: Take finitely many generators µi of G(M), and replace them by their
homogeneous components. Set ni := deg(µi). Lift µi to mi ∈ FniM .

Filter R a-adically. Set E :=
⊕

i R[−ni]. Filter E with FnE :=
⊕

i F
n(R[−ni]).

Then FnE = E for n C 0. Define α : E → M by sending 1 ∈ R[−ni] to mi ∈ M .
Then αFnE ⊂ FnM for all n. Also, G(α) : G(E) → G(M) is surjective as the µi

generate. Thus α̂ is surjective by (22.23).
Form the following canonical commutative diagram:

E
κE−−−→ Ê

α

) α̂

)

M
κM−−→ M̂

Plainly, κE =
⊕

i κR[−ni]. But κR is surjective by (22.13)(1), as R is complete.
Hence κE is surjective. So α̂◦κE is surjective. So κM is surjective. Thus (22.13)(1)
implies M is complete.

By hypothesis, M is separated. So κM is injective by (22.3). Hence κM is
bijective. So α is surjective. Thus M is finitely generated. !
Proposition (22.25). — Let R be a ring, a an ideal, and M a module. Assume R
is complete, and M separated. Assume G(M) is a Noetherian G(R)-module. Then
M is Noetherian over R, and every submodule N is complete.

Proof: Let F •M denote the a-adic filtration, and F •N the induced filtration:
FnN := N ∩ FnM . Then N is separated, and FnN = N for n C 0. Further,
G(N) ⊂ G(M). However, G(M) is Noetherian. So G(N) is finitely generated. Thus
N is complete and finitely generated over R by (22.24). ThusM is Noetherian. !
Theorem (22.26). — Let R be a ring, a an ideal, and M a Noetherian module.

Then M̂ is Noetherian over R̂, and every R̂-submodule is complete.

Proof: Set R′ := R/Ann(M) and a′ := aR′. Then R′ is Noetherian by (16.16).
Also, a′r = arR′ and a′rM = arM for all r ≥ 0. So the (a-adic) topology on R′ and

on M is equal to the a′-adic topology. Also, R̂′ is a quotient of R̂ by (22.12)(1).

Hence, if M̂ is Noetherian over R̂′, then it’s so over R̂. Thus we may replace R by
R′, and thus assume R is Noetherian.

Since M is Noetherian and its a-adic filtration is (trivially) stable, G(M) is a
finitely generated G(R)-module owing to (20.8). But R is Noetherian. So a is
finitely generated. So G(R) is algebra finite over R/a by (20.7). But R/a is
Noetherian as R is. So G(R) is Noetherian by the Hilbert Basis Theorem, (16.10).

But G(R) = G(R̂) and G(M) = G(M̂) owing to (22.16)(1) and (22.17). So

G(M̂) is a Noetherian G(R̂)-module. But R̂ is complete and M̂ is separated by
(22.16)(4). Thus (22.25) now yields both assertions. !
Example (22.27). — Let k be a Noetherian ring, P := k[X1, . . . , Xr] the polynomi-
al ring, and A := k[[X1, . . . , Xr]] the formal power series ring. Then A is the com-
pletion of P in the 〈X1, . . . , Xr〉-adic topology by (22.2). Further, P is Noetherian
by the Hilbert Basis Theorem, (16.10). Thus A is Noetherian by (22.26).

Assume k is a domain. Then A is a domain. Indeed, A is one if r = 1, because

(amXm
1 + · · · )(bnXn

1 + · · · ) = ambnX
m+n
1 + · · · .

If r > 1, then A = k[[X1, . . . , Xi]] [[Xi+1, . . . , Xr]]; so A is a domain by induction.
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Set pi := 〈Xi+1, . . . , Xr〉. Then A/pi = k[[X1, . . . , Xi]] by (3.7). Hence pi is
prime. So 0 = pr ! · · · ! p0 is a chain of primes of length r. Thus dimA ≥ r.

Assume k is a field. Then A is local with maximal ideal 〈X1, . . . , Xr〉 and residue
field k by (3.7). So dimA ≤ r by (21.13). Thus A is regular of dimension r.

B. Exercises

Exercise (22.28) . — Let R be a ring, a an ideal, X a variable. Filter R[[X]] with
the ideals bn consisting of the H =:

∑
hiXi with hi ∈ an for all i. Show: (1) that

R[[X]]̂ = R̂[[X]] and (2) that if R is separated and complete, then so is R[[X]].

Exercise (22.29) . — In Ẑ2, evaluate the sum s := 1 + 2 + 4 + 8 + · · · .

Exercise (22.30) . — Let R be a ring, αn+1
n : Qn+1 → Qn linear maps for n ≥ 0.

Set αm
n := αn+1

n · · ·αm
m−1 for m > n and αn

n = 1. Assume the Mittag-Leffler
Condition: for all n ≥ 0, there’s m ≥ n such that

Qn ⊃ αn+1
n Qn+1 ⊃ · · · ⊃ αm

n Qm = αm+1
n Qm+1 = · · · .

Set Pn :=
⋂

m≥n α
m
n Qm, and prove αn+1

n Pn+1 = Pn. Conclude that lim←−
1 Qn = 0.

Exercise (22.31) . — Let R be a ring, and a an ideal. Set S := 1 + a and set
T := κ−1

R (R̂×). Given t ∈ R, let tn ∈ R/an be its residue for all n. Show:

(1) Given t ∈ R, then t ∈ T if and only if tn ∈ (R/an)× for all n.
(2) Then T = {t ∈ R | t lies in no maximal ideal containing a}.
(3) Then S ⊂ T , and R̂ is the completion of S−1R and of T−1R.
(4) Assume κR : R→ R̂ is injective. Then κS−1R and κT−1R are too.

(5) Assume a is a maximal ideal m. Then R̂ = R̂m.

Exercise (22.32) . — Let R be a ring, a an ideal, M a finitely generated module.

Show R̂ · κM (M) = M̂ .

Exercise (22.33) . — Let R be a ring, M a module, F •M a filtration, and N a
submodule. Give N the induced filtration: FnN := N ∩ FnM for all n. Show:
(1) N̂ is the closure of κMN in M̂ . (2) κ−1

M N̂ is the closure of N in M .

Exercise (22.34) . — Let R be a ring, a an ideal. Show that every closed maximal
ideal m contains a.

Exercise (22.35) . — Let R be a ring, a an ideal. Show equivalent:

(1) a ⊂ rad(R). (2) Every element of 1 + a is invertible.
(3) Given any finitely generated R-module M , if M = aM , then M = 0.
(4) Every maximal ideal m is closed.

Show, moreover, that (1)–(4) hold if R is separated and complete.

Exercise (22.36) . — Let R be a Noetherian ring, a an ideal. Show equivalent:

(1) R is a Zariski ring; that is, R is Noetherian, and a ⊂ rad(R).
(2) Every finitely generated module M is separated.
(3) Every submodule N of every finitely generated module M is closed.
(4) Every ideal b is closed. (5) Every maximal ideal m is closed.

(6) Every faithfully flat, finitely generated module M has a faithfully R-flat M̂ .
(7) The completion R̂ is faithfully R-flat.
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Exercise (22.37) . — Let R be a ring, a an ideal, M a Noetherian module. Prove:

(1)
⋂∞

n=1 a
nM =

⋂
m∈Ψ Ker(M

ϕm−−→Mm) where Ψ := {m ⊃ a | m maximal }.

(2) M̂ = 0 if and only if Supp(M) ∩V(a) = ∅.

Exercise (22.38) . — Let R be a ring, m1, . . . ,mm maximal ideals, and M module.

Set m :=
⋂

mi, and give M the m-adic topology. Show M̂ =
∏

M̂mi .

Exercise (22.39) . — (1) Let R be a ring, a an ideal. If Ga(R) is a domain, show
R̂ is a domain. If also

⋂
n≥0 a

n = 0, show R is a domain.

(2) Use (1) to give an alternative proof that a regular local ring A is a domain.

Exercise (22.40) . — (1) Let R be a Noetherian ring, a an ideal. Assume that
Ga(R) is a normal domain and that

⋂
n≥0(sR + an) = sR for any s ∈ R. Show

using induction on n and applying (16.40) that R is a normal domain.
(2) Use (1) to prove a regular local ring A is normal.

Exercise (22.41) . — Let R be a ring, a an ideal, M a module with 2R(M) <∞.

(1) Assume M is simple. Show M̂ is simple if a ⊂ Ann(M), but M̂ = 0 if not.

(2) Show 2R̂(M̂ ) ≤ 2R(M), with equality if and only if a ⊂ rad(M).

Exercise (22.42) . — Let R be a ring, M a module with two filtrations F •M and
G•M . For all m, give GmM the filtration induced by F •M , and let (GmM)F be its
completion; filter MF by the (GmM)F , and let (MF )G be the completion. Define
H•M by HpM := F pM +GpM , and let MH be the completion. Show:

(MF )G = lim←−m
lim←−n

M/(FnM +GmM) = MH . (22.42.1)

Exercise (22.43) . — Let R be a ring, a and b ideals. Given any module M , let
Ma be its a-adic completions. Set c := a+ b. Assume M is Noetherian. Show:

(1) Then (Ma)b = M c. (2) Assume a ⊃ b and Ma = M . Then Mb = M

Exercise (22.44) . — Let R be a ring, a an ideal, X a variable, Fn, G ∈ R[[X]] for
n ≥ 0. In R[[X]], set b := 〈a, X〉. Show the following:

(1) Then bm consists of all H =:
∑

hiXi with hi ∈ am−i for all i < m.
(2) Say Fn =:

∑
fn,iXi. Then (Fn) is Cauchy if and only if every (fn,i) is.

(3) Say G =:
∑

giXi. Then G = limFn if and only if gi = lim fn,i for all i.
(4) If R is separated or complete, then so is R[[X]].
(5) The 〈a, X〉-adic completion of R[X] is R̂[[X]].

Exercise (22.45) . — Let R be a ring, a an ideal, M a Noetherian module, x ∈ R.

Prove: if x /∈ z.div(M), then x /∈ z.div(M̂); and the converse holds if a ⊂ rad(M).

Exercise (22.46) . — Let k be a field with char(k) -= 2, and X,Y variables. Set
P := k[X,Y ] and R := P/〈Y 2 −X2 −X3〉. Let x, y be the residues of X,Y , and
set m := 〈x, y〉. Prove R is a domain, but its completion R̂ with respect to m isn’t.

Exercise (22.47) . — Given modules M1,M2, . . . , set Pk :=
∏k

n=1 Mn, and let
πk+1
k : Pk+1 → Pk be the projections. Show lim←−k≥1

Pk =
∏∞

n=1 Mn.
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Exercise (22.48) . — Let p ∈ Z be prime. For n > 0, define a Z-linear map

αn : Z/〈p〉 → Z/〈pn〉 by αn(1) = pn−1.

Set A :=
⊕

n≥1 Z/〈p〉 and B :=
⊕

n≥1 Z/〈pn〉. Set α :=
⊕
αn; so α : A→ B.

(1) Show that α is injective and that the p-adic completion Â is just A.
(2) Show that, in the topology on A induced by the p-adic topology on B, the

completion A is equal to
∏∞

n=1 Z/〈p〉.
(3) Show that the natural sequence of p-adic completions

Â
α̂−→ B̂

β̂−→(B/A)̂

is not exact at B̂. (Thus p-adic completion is neither left exact nor right exact.)

Exercise (22.49) . — Preserve the setup of (22.48). Set Ak := α−1(pkB) and
P :=

∏∞
k=1 Z

/
〈p〉. Show lim←−

1
k≥1

Ak = P/A, and conclude lim←− is not right exact.

Exercise (22.50) . — Let R be a ring, a an ideal, and M a module. Show that

AnnR(M)R̂ ⊂ AnnR̂(M̂ ), with equality if R is Noetherian and if M is finitely
generated.

Exercise (22.51) . — Let R be a ring, a an ideal, M a module. Assume aM = 0.

Set b := AnnR(M). Show b̂ = AnnR̂(M̂ ).

Exercise (22.52) . — Let R be a ring, a an ideal, and M , N , P modules. Assume
aM ⊂ P ⊂ N ⊂M . Prove:

(1) The (a-adic) topology on M induces that on N .

(2) Then (aM)̂ ⊂ P̂ ⊂ N̂ ⊂ M̂ , and N/P = N̂/P̂ .
(3) The map Q 2→ Q̂ is a bijection from the R-submodules Q with P ⊂ Q ⊂ N

to the R̂-submodules Q′ with P̂ ⊂ Q′ ⊂ N̂ . Its inverse is Q′ 2→ κ−1
M (Q′).

Exercise (22.53) . — Let R be a ring, a ⊂ b ideals, and M a finitely generated
module. Let Φ be the set of maximal ideals m ∈ Supp(M) with m ⊃ a. Use the
a-adic topology. Prove:

(1) Then M̂ is a finitely generated R̂-module, and b̂M̂ = b̂M ⊂ M̂ .

(2) The map p 2→ p̂ is a bijection Supp(M/bM) ∼−→ Supp(M̂/b̂M̂). Its inverse
is p′ 2→ κ−1

R p′. It restricts to a bijection on the subsets of maximal ideals.

(3) Then Supp(M̂/âM̂) and Supp(M̂ ) have the same maximal ideals.

(4) Then the m̂ with m ∈ Φ are precisely the maximal ideals of R̂ in Supp(M̂).

(5) Then κ−1
R rad(M̂ ) =

⋂
m∈Φ m and rad(M̂ ) =

(⋂
m∈Φ m

)̂.
(6) Then Φ is finite if and only if M̂ is semilocal.

(7) If M = R, then Φ = {b} if and only if R̂ is local with maximal ideal b̂.

Exercise (22.54) (UMP of completion) . — (1) Let R be a ring, M a filtered

module. Show κM : M → M̂ is the universal example of a map of filtered modules
α : M → N with N separated and complete. (2) Let R be a filtered ring. Show κR
is the universal filtered ring map ϕ : R→ R′ with R′ separated and complete.

Exercise (22.55) (UMP of formal power series) . — Let R be a ring, R′ an algebra,
b an ideal of R′, and x1, . . . , xn ∈ b. Let A := R[[X1, . . . , Xn]] be the formal power
series ring. Assume R′ is separated and complete in the b-adic topology. Show
there’s a unique map of R-algebras ϕ : A → R′ with ϕ(Xi) = xi for all i, and ϕ is
surjective if the induced map R→ R′/b is surjective and the xi generate b.
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Exercise (22.56) . — Let R be a ring, a a finitely generated ideal, X1, . . . , Xn

variables. Set P := R[[X1, . . . , Xn]]. Prove P/aP = (R/a)[[X1, . . . , Xn]]. (But, it’s
not always true that R′ ⊗R P = R′[[X1, . . . , Xn]] for an R-algebra R′; see (8.18).)

Exercise (22.57) (Cohen Structure Theorem I ) . — Let A→ B be a local homo-
morphism, b ⊂ B an ideal. Assume that A = B/b and that B is separated and
complete in the b-adic topology. Prove the following statements:

(1) The hypotheses hold if B is a complete Noetherian local ring, b is its maximal
ideal, and A is a coefficient field.

(2) Then B % A[[X1, . . . , Xr]]/a for some r, variables Xi, and some ideal a.

Exercise (22.58) (Cohen Structure Theorem II ) . — Let A → B be a flat local
homomorphism of complete Noetherian local rings, and b ⊂ B an ideal. Denote the
maximal ideal of A by m, and set B′ := B/mB. Assume that A ∼−→ B/b and that
B′ is regular of dimension r. Find an A-isomorphism ψ : B ∼−→ A[[X1, . . . , Xr]] for
variables Xi with ψ(b) = 〈X1, . . . , Xr〉. In fact, if b = 〈x1, . . . , xr〉 for given xi, find
such a ψ with ψ(xi) = Xi.

Exercise (22.59) . — Let k be a field, A := k[[X1, . . . , Xn]] the power series ring
in variables Xi with n ≥ 1, and F ∈ A nonzero. Find an algebra automorphism ϕ
of A such that ϕ(F ) contains the monomial Xs

n for some s ≥ 0; do so as follows.
First, find suitable mi ≥ 1 and use (22.55) to define ϕ by

ϕ(Xi) := Xi +Xmi
n for 1 ≤ i ≤ n− 1 and ϕ(Xn) := Xn. (22.59.1)

Second, if k is infinite, find suitable ai ∈ k× and use (22.55) to define ϕ by

ϕ(Xi) := Xi + aiXn for 1 ≤ i ≤ n− 1 and ϕ(Xn) := Xn. (22.59.2)

Exercise (22.60) . — Let A be a separated and complete Noetherian local ring, k
a coefficient field, x1, . . . , xs a sop, X1, . . . , Xs variables. Set B := k[[X1, . . . , Xs]].
Find an injective map ϕ : B → A such that ϕ(Xi) = xi and A is B-module finite.

Exercise (22.61) . — Let R be a ring, M a nonzero Noetherian module, and q a

parameter ideal of M . Show: (1) M̂ is a nonzero Noetherian R̂-module, and q̂ is a

parameter ideal of M̂ ; and (2) e(q,M) = e(q̂, M̂ ) and dim(M) = dim(M̂ ).

Exercise (22.62) . — Let A be a Noetherian local ring, m the maximal ideal, k the
residue field. Show: (1) Â is a Noetherian local ring with m̂ as maximal ideal and
k as residue field; and (2) A is regular of dimension r if and only if Â is so.

Exercise (22.63) . — Let A be a Noetherian local ring, k ⊂ A a coefficient field.
Show A is regular if and only if, given any surjective k-map of finite-dimensional
local k-algebras B →→ C, every local k-map A→ C lifts to a local k-map A→ B.

Exercise (22.64) . — Let k be a field, ϕ : B → A a local homomorphism of Noe-
therian local k-algebras, and n, m the maximal ideals. Assume k = A/m = B/n,
the induced map ϕ′ : n/n2 → m/m2 is injective, and A is regular. Show B is regular.

Exercise (22.65) . — Let R be a Noetherian ring, and X1, . . . , Xn variables. Show
that R[[X1, . . . , Xn]] is faithfully flat.

Exercise (22.66) (Gabber–Ramero [8, Lem. 7.1.6]) . — Let R be a ring, a an ideal,
N a module. Assume N is flat. Prove the following:
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(1) The functor M 2→ (M ⊗N)̂ is exact on the Noetherian modules M .
(2) Assume R is Noetherian. Then for all finitely generated modules M , there’s

a canonical isomorphism M ⊗ N̂ ∼−→ (M ⊗N)̂, and N̂ is flat over R.

Exercise (22.67) . — Let P be the polynomial ring over C in variables X1, . . . , Xn,
and A its localization at 〈X1, . . . , Xn〉. Let C the ring of all formal power series in
X1, . . . , Xn, and B its subring of series converging about the origin in Cn. Assume
basic Complex Analysis (see [7, pp. 105–9]). Show B is local, and its maximal ideal
is generated by X1, . . . , Xn. Show P ⊂ A ⊂ B ⊂ C, and P̂ = Â = B̂ = C. Show B
is flat over A.

Exercise (22.68) . — Let R be a Noetherian ring, and a and b ideals. Assume
a ⊂ rad(R), and use the a-adic topology. Prove b is principal if bR̂ is.

Exercise (22.69) (Nakayama’s Lemma for adically complete rings) . — Let R be a
ring, a an ideal, and M a module. Assume R is complete, and M separated. Show
m1, . . . ,mn ∈M generate assuming their images m′

1, . . . ,m
′
n in M/aM generate.

Exercise (22.70) . — Let A → B be a local homomorphism of Noetherian local
rings, m the maximal ideal of A. Assume B is quasi-finite over A; that is, B/mB
is a finite-dimensional A/m-vector space. Show that B̂ is module finite over Â.

Exercise (22.71) . — Let A be the non-Noetherian local ring of (18.24). Using
E. Borel’s theorem that every formal power series in x is the Taylor expansion of
some C∞-function (see [13, Ex. 5, p. 244]), show Â = R[[x]], and Â is Noetherian;
moreover, show Â is a quotient of A (so module finite).

Exercise (22.72) . — Let R be a ring, q an ideal, M a module. Prove that, if M is
free, then M/qM is free over R/q and multiplication of Gq(R) on Gq(M) induces
an isomorphism σM : Gq(R) ⊗R/q M/qM ∼−→ Gq(M). Prove the converse holds if
either (a) q is nilpotent, or (b) M is Noetherian, and q ⊂ rad(M).

C. Appendix: Henselian Rings

(22.73) (Henselian pairs and Rings). — Let R be a ring, a an ideal. We call the
pair (R, a) Henselian if a ⊂ rad(R) and if, given any variable X and any monic
polynomial F ∈ R[X] whose residue F ∈ (R/a)[X] factors as F = G̃H̃ with G̃ and
H̃ monic and coprime, then F itself factors as F = GH where G and H are monic
with residues G̃, H̃ ∈ (R/a)[X].

Note that G and H too are coprime by (10.33)(2).
The factorization F = GH is unique: given F = G′H ′ where G’ and H ′ are

monic with residues G̃ and H̃, then G = G′ and H = H ′. Indeed, G and H ′ are
coprime by (10.33)(2). So there are A,B ∈ R[X] with AG+BH ′ = 1. Then

G′ = AGG′ +BH ′G′ = AGG′ +BGH = (AG′ +BH)G.

But G and G′ are monic of degree deg(G0). Thus G = G′. So GH = GH ′. So
G(H −H ′) = 0. As G is monic, H = H ′.

For future application, note that, even if we don’t require F and H to be monic,
the preceding argument establishes the uniqueness of the factorization F = GH.

If (R, a) is Henselian, then so is (R/b , a/b) for any ideal b ⊂ a.
We call a local ring A with maximal ideal m Henselian if (A,m) is Henselian.
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Example (22.74) (Some Henselian Rings). — (1) Any field is Henselian.
(2) Any separated and complete local ring is Henselian by (22.75) just below.
(3) Let A be the localization of Z at 〈p〉. Set F := X(X − 1) + p ∈ A[X]. Then

F = X(X − 1) in (A/〈p〉A)[X] with X and X − 1 coprime and monic. But plainly
F does not factor in A[X]. Thus A is not Henselian.

Theorem (22.75) (Hensel’s Lemma). — Let R be a ring, a an ideal. Assume R is
separated and complete (in the a-adic topology). Then (R, a) is Henselian.

In fact, given any variable X and any F ∈ R[X] whose image F ∈ (R/a)[X]
factors as F = G̃H̃ where G̃ is monic and G̃ and H̃ are coprime, then F = GH
uniquely where G is monic and G and H are coprime with residues G̃ and H̃.

Proof: As R is separated and complete, (22.35) yields a ⊂ rad(R).

Set P := R[X]. Lift G̃, H̃ to some G0, H0 ∈ P with G0 monic. By (10.33)(2),
G0 and H0 are relatively prime. Set n := degG0 and m := max{degH0, degF−n}.

Starting with G0, H0, by induction let’s find Gk, Hk ∈ P for k ≥ 1 with Gk

monic of degree n, with deg(Hk) ≤ m, and with

Gk−1 ≡ Gk and Hk−1 ≡ Hk (mod a2
k−1

P ) and F ≡ GkHk (mod a2
k

P ).

Plainly, applying (10.34) to Gk−1, Hk−1, and a2
k−1

yields suitable Gk and Hk.
Set p := max{deg(H0), deg(F )} and M :=

∑p
i=0 RXi. As R is separated and

complete, plainly so is M . But the Gk and Hk form Cauchy sequences in M . So
they have limits, say G and H; in fact, the coefficients of G and H are the limits
of the coefficients of the Gk and Hk.

As the Gk are monic of degree n, so is G. As all Gk and Hk have residues G̃ and
H̃, so do G and H. Now, F is the limit of GkHk; so F = GH; this factorization is
unique by (22.73). As G̃ and H̃ are coprime, so are G and H by (10.33)(2). !

Exercise (22.76) . — Let R be a ring, a an ideal, X a variable, F ∈ R[X]. Assume
its residue F ∈ (R/a)[X] has a supersimple root ã ∈ R/a, and R is separated and
complete. Then F has a unique supersimple root a ∈ R with residue ã.

Proposition (22.77). — Let A be a local domain, R an overdomain. Assume A is
Henselian, and R is integral over A. Then R is local.

Proof: Let m be the maximal ideal of A, and m′, m′′ maximal ideals of R. The
latter lie over m by (14.3)(1). By way of contradiction, assume there’s x ∈ m′−m′′.

As R/A is integral, x satisfies a monic polynomial of minimal degree, say

F (X) := Xn + c1X
n−1 + · · ·+ cn ∈ A[x].

Then F is irreducible; for if F = GH, then G(x)H(x) = 0, but R is a domain.
Note x ∈ m′. So cn = −x(xn−1 + · · · + cn−1)) ∈ A ∩ m′ = m. Now, ci /∈ m for

some i; else, xn = −(c1xn−1 + · · ·+ cn) ∈ m′′, but x /∈ m′′. Let j be maximal such
that cj /∈ m. Then 1 ≤ j < n.

Set k := A/m. Let ci ∈ k be the residue of ci. Set G̃ := Xj + c1Xj−1 + · · ·+ cj
and H̃ := Xn−j . Then the residue F ∈ k[X] factors as F = G̃H̃. But cj -= 0. So G̃

and H̃ are coprime by (2.33) or (2.18). But A is Henselian. Thus F is reducible,
a contradiction. So m′ ⊂ m′′. But m′ is maximal. So m′ = m′′. Thus R is local. !
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Theorem (22.78). — Let A be a local ring, and X a variable. Then the following
four conditions are equivalent: (1) A is Henselian.

(2) For any monic polynomial F ∈ A[X], the algebra A[X]
/
〈F 〉 is decomposable.

(3) Any module-finite A-algebra B is decomposable.
(4) Any module-finite A-algebra B that is free is decomposable.

Proof: Let m be the maximal ideal of A, and set k := A/m.
Assume (1). To prove (2), set B := A[X]/〈F 〉, and let F ∈ k[X] be the image of

F . Note A[X]/m[X] = k[X] by (1.16); so B/mB = k[X]/〈F 〉. If F is a power of
an irreducible polynomial, then k[X]/〈F 〉 is local, and so B is local.

Otherwise, F = GH with G, H monic and coprime of positive degrees. So (1)
yields F = GH with G, H monic and coprime with residues G and H. Hence

B =
(
A[X]/〈G〉

)
×
(
A[X]/〈H〉

)

by (1.21)(1). So B is decomposable by recursion. Thus (2) holds.
Assume (2). To prove (3), set B := B/mB. By (19.15)(2), B =

∏
Bni where

the ni are the maximal ideals of B. Let ei ∈ B be the idempotent with Bni = Bei.
Fix i. Let b ∈ B lift ei ∈ B. Set B′ := A[b]. As B is a module-finite A-algebra,

B is a module-finite B′-algebra, For all j, set n′j := nj ∩ B. By (14.3)(1), the n′j
are maximal (but not necessarily distinct). Now, ei /∈ niB, but ei ∈ njB for j -= i.
So b /∈ ni, but b ∈ nj for j -= i. Thus n′j -= n′i for j -= i.

By (10.14)(3)⇒(1), F (b) = 0 for a monic F ∈ A[X]. Set B′′ := A[X]/〈F 〉. Let
x ∈ B′′ be the residue of X. Define ϕ : B′′ →→ B′ by ϕ(x) := b. For all j, set
n′′j := ϕ−1n′j . Then as ϕ is surjective, the n′′j are maximal, and n′′j -= n′′i for j -= i.

By (10.15)(1)⇒(3), B′′ is a module-finite A-algebra. So B′′ is decomposable by
(2). For all j, set B′′

j := B′′
n′′
j
. By (11.18), each B′′

j is a factor of B′′.

Let e be the idempotent with B′′
i = B′′e, and e the residue of ϕ(e) in B. Then

e projects to 1 in Bni and to 0 in Bnj for j -= i. Hence e = ei. So ϕ(e) ∈ B is
idempotent, and lifts ei. So the map Idem(B)→ Idem(B/mB) is surjective. So B
is decomposable by (11.18). Thus (3) holds.

Trivially, (3) implies (4). And (4) implies (2) by (10.15).
Assume (2). To prove (1), let F be a monic polynomial whose residue F ∈ k[X]

factors as F = G1G2 with the Gi monic and coprime. Set B := A[X]/〈F 〉. Then
(1.21)(1) yields B/mB ∼−→

(
k[X]/〈G1〉

)
×

(
k[X]/〈G2〉

)
.

By (2), B is decomposable. So idempotents of B/mB lift to idempotents of B
by (11.18). Thus B = B1 ×B2 with Bi/mBi = k[X]/〈Gi〉.

By(10.15)(1)⇒(4), B is free over A. So each Bi is projective by (5.16)(3)⇒(1).
But A is local, and Bi is module-finite. Thus (10.12)(2)⇒(1) implies Bi is free.

By (10.32), each Bi = A[X]/〈Gi〉 where Gi is monic and lifts Gi. Plainly,
deg(Gi) = deg(Gi). By (10.33)(2), theGi are coprime. SoB1×B2 = A[X]/〈G1G2〉
by (1.21)(1). So A[X]/〈F 〉 = A[X]/〈G1G2〉. So 〈F 〉 = 〈G1G2〉. But F and G1G2

are monic of the same degree. Hence F = G1G2. Thus (1) holds. !

Corollary (22.79). — Let A be a Henselian local ring, B be a module-finite local
A-algebra. Then B is Henselian.

Proof: Apply (22.78)(3)⇒(1): a module-finite B-algebra C is a module-finite
A-algebra by (10.16); thus, (22.78)(1)⇒(3) implies C is decomposable. !
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(22.80) (Equicharacteristic). — A local ring A is said to be equicharacteristic
if it has the same characteristic as its residue field.

Assume A is equicharacteristic. Let m be its maximal ideal, p its characteristic,
and A0 the image of the canonical map ϕ : Z→ A. If p > 0, then Ker(ϕ) = 〈p〉, and
so Fp

∼−→ A0. Suppose p = 0. Then ϕ : Z ∼−→ A0. But A/m too has characteristic
0. Hence A0 ∩m = 〈0〉. So A0− 0 ⊂ A×. Hence A contains Q = Frac(A0). In sum,
A contains a field isomorphic to the prime field, either Fp or Q.
Conversely, if a local ring contains a field, then that field is isomorphic to a

subfield of the residue field, and so the local ring is equicharacteristic.
Any quotient of A is, plainly, equicharacteristic too. Moreover, given any local

subring B of A with B ∩m as maximal ideal, plainly B has the same characteristic
as A, and its residue field is a subfield of that of A; so B is equicharacteristic too.

Theorem (22.81) (Cohen Existence). — A separated and complete equicharacter-
istic local ring contains a coefficient field.

Proof: Let A be the local ring, m its maximal ideal, K its residue field, and
κ : A→ K the quotient map. Let p be the characteristic of A and K.

First, assume p = 0. Then Q ⊂ A by (22.80). Apply Zorn’s Lemma to the
subfields of A ordered by inclusion; it yields a maximal subfield E. Set L = κ(E).
Suppose there’s an x ∈ A with κ(x) transcendental over L. Then E[x]∩m = 0. So
E[x]− 0 ⊂ A×. So E(x) ⊂ A, contradicting maximality. Thus K/L is algebraic.

Suppose there’s y ∈ K − L. Let F (X) ∈ L[X] be its monic minimal polynomial.

Set F
′
(X) := ∂F (X)/∂X; see (1.18.1). Then F

′
(X) -= 0 as p = 0. So F

′
(y) -= 0

as deg(F
′
) < deg(F ). Thus (1.19) implies y is a super simple root of F .

Let F ∈ E[X] be the lift of F . Then by (22.76), there’s a root x ∈ A of F
lifting y. Consider the surjections E[X]/〈F 〉 →→ E[x] →→ L[y]. The composition is
an isomorphism owing to (10.15)(4)⇒(1). So E[X]/〈F 〉 ∼−→ E[x] ∼−→ L[y]. But
L[y] ⊂ K, so L[y] is a domain. Thus E[x] is a domain.

Note x is integral over E. Hence E[x] is integral over E by (10.18)(2)⇒(1). But
E[x] is a domain. So E[x] is a field by (14.1). But x /∈ E as y /∈ L. So E[x] -= E,
contradicting maximality. Thus L = K, as desired.
So assume p > 0 instead. For all n ≥ 1, set An := A/mn. Then A1 = K. Set

K1 := A1. For n ≥ 2, let’s find a field Kn ⊂ An that’s carried isomorphically onto
Kn−1 by the canonical surjection ψn : An →→ An−1. Suppose we have Kn−1.

Set B := ψ−1
n (Kn−1) and n := Ker(ψn). Then n ⊂ B as 0 ∈ Kn−1. Let’s show

B is local with n as maximal ideal. Given x ∈ B − n, set y := ψn(x). Then y -= 0
in Kn−1. So there’s z ∈ Kn−1 with yz = 1. So y /∈ m/mn−1. So x /∈ m/mn. So
there’s u ∈ An with xu = 1. So yψn(u) = 1. So ψn(u) = z. So u ∈ B. Thus by
(3.5), B is local with n as maximal ideal.
Note n := ψ−1

n (Kn−1) = mn−1/mn. So n2 = 0. Set Bp = {xp | x ∈ B}. Then Bp

is a ring. Given y ∈ Bp − 0, say y = xp. Then x /∈ n as n2 = 0. So there’s z ∈ B
with xz = 1. Then yzp = 1. Thus Bp is a field.
Zorn’s Lemma yields a maximal subfield Kn of B containing Bp. Suppose there’s

x ∈ B with ψn(x) /∈ ψn(Kn). Then xp ∈ Bp ⊂ Kn. So ψn(x)p ∈ ψn(Kn). So its
monic minimal polynomial is Xp−ψn(x)p. So Xp−xp is irreducible in B[X], as any
nontrivial monic factor would reduce to one of Xp − ψn(x)p. So Kn[X]/〈Xp − xp〉
is a domain. Hence, as above, it is isomorphic to Kn[x], and Kn[x] is a field,
contradicting maximality. Thus ψn(Kn) = Kn−1, as desired.

191



Completion (22.82)
/
(22.83) App: Henselian Rings

Finally, given x1 ∈ K1, define xn ∈ Kn inductively by xn := (ψn|Kn)−1(xn−1).
Then (xn) ∈ lim←−An ⊂

∏
An as ψn(xn) = xn−1 for all n. But lim←−An = Â by

(22.7), and A = Â by (22.14)(2)⇒(1) as A is separated and complete. Define
ψ : K1 → A by ψ(x1) := (xn). Then ψ(K1) ⊂ A is a field, and κψ(K1) = K. Thus
ψ(K1) is a coefficient field of A. !
Theorem (22.82) (Hensel’s Lemma, ver. 2). — Let R be a ring, a an ideal, x ∈ R.
Let X be a variable, F ∈ R[X] a polynomial. Set F ′(X) := ∂F (X)/∂X as in
(1.18.1), and set e := F ′(x). Assume that R is separated and complete and that
F (x) ≡ 0 (mod e2a). Then there’s a root y ∈ R of F with y ≡ x (mod ea).
Moreover, if e is a nonzerodivisor, then y is unique.

Proof: By hypothesis, F (x) = e2a for some a ∈ a. So by (1.18), there’s some
H(X) ∈ R[X] with F (X) = e2a+ e(X − x) + (X − x)2H(X). Thus

F (x+ eX) = e2
(
a+X +X2H(x+ eX)

)
. (22.82.1)

Set H1(X) := H(x+ eX) and b := 〈X〉. Then R[[X]] is b-adically separated and
complete by (22.2). So (22.55) yields an R-algebra map ϕ : R[[X]]→ R[[X]] with
ϕ(X) = X + X2H1(X). But Gb(ϕ) is, plainly, the identity of R[X]. So ϕ is an
automorphism by (22.23). Thus we may apply ϕ−1 to (22.82.1), and obtain

F (x+ eϕ−1(X)) = e2(a+X). (22.82.2)

By hypothesis, R is a-adically separated and complete. So (22.55) yields an
R-algebra map ψ : R[[X]] → R with ψ(X) = −a. Applying ψ to (22.82.2) yields
F (x+eψϕ−1(X)) = 0. So set y := x+eψϕ−1(X). Then F (y) = 0. But ϕ−1(X) ∈ b
and ψ(b) ⊂ a. So y ≡ x (mod ea). Thus y exists.

Moreover, assume e is a nonzerodivisor. Given two roots y1, y2 of F such that
yi = x+ eai with ai ∈ a, note 0 = F (yi) = e2(a+ ai + a2iH1(ai)) by (22.82.1). So
a1+a21H1(a1) = a2+a22H1(a2). But, (22.55) gives R-algebra maps θi : R[[X]]→ R
with θi(X) = ai. So θ1ϕ(X) = θ2ϕ(X). So θ1ϕ = θ2ϕ by uniqueness in (22.55).
But ϕ is an isomorphism. So θ1 = θ2. Thus y1 = y2, as desired. !
Example (22.83). — Let’s determine the nonzero squares z in the p-adic numbers

Ẑp, introduced in (22.2). Say z =
∑∞

i=n zip
i with 0 ≤ zi < p and zn -= 0. Set

y =
∑∞

i=n zi−npi. Then z = pny and y isn’t divisible by p.

Suppose z = x2. Say x = pmw with w ∈ Ẑp not divisible by p. Then z = p2mw2.
If n ≥ 2m, then pn−2my = w2; so n = 2m as w2 isn’t divisible by p. Similarly, if
n ≤ 2m, then n = 2m. Thus n is even, and y is a square. Conversely, if n is even,
and y is a square, then z is a square. Thus it remains to see when y is a square.
If y is a square, then so is its residue y ∈ Fp = Ẑp/〈p〉. Conversely, suppose

y = w̃2 for some w̃ ∈ Fp. Form F (X) := X2 − y ∈ Ẑp[X]. Then w̃ is a root of the

residue F (X). Set F
′
(X) := ∂F (X)/∂X as in (1.18.1). Then F

′
(X) = 2X.

First, assume p > 2. Then F
′
(w) = 2w̃ -= 0 as w̃ -= 0. So w̃ is a super simple

root of F by (1.19). So (22.76) yields a root w of F in A. So y = w2. Thus y is
a square if and only if y is a square.

For instance, 2 is a square in Ẑ7 as 32 ≡ 2 (mod 7).
Lastly, assume p = 2. Then 2X ≡ 0 (mod 2). So the above reasoning fails.

But suppose y ≡ 1 (mod 8). Then (∂F (X)/∂X)(1) = 2 and F (1) = 1 − y ≡ 0

(mod 22 · 2). So (22.82) yields a root w of F . Thus y is a square in Ẑ2.
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Conversely, suppose y = w2 for some w ∈ Ẑ2. Recall y isn’t divisible by 2.
So y = 1 ∈ F2 = Ẑ2/〈2〉. So w = 1. So w = 1 + 2v for some v ∈ Ẑ2. So
y = (1 + 2v)2 = 1 + 4v(1 + v). But v(1 + v) ≡ 0 (mod 2). Hence y ≡ 1 (mod 8).
Thus y is a square if and only if y ≡ 1 (mod 8).

Theorem (22.84) (Weierstraß Division). — Let R be a ring, a an ideal. Assume
R is separated and complete (in the a-adic topology). Fix F =

∑
fiXi ∈ R[[X]].

Assume there’s n ≥ 0 with fn ∈ R× but fi ∈ a for i < n. Then given G ∈ R[[X]],
there are unique Q ∈ R[[X]] and P ∈ R[X] with either P = 0 or deg(P ) < n such
that G = QF + P . Moreover, if F,G ∈ R[X] and deg(F ) = n, then Q ∈ R[X] with
either Q = 0 or deg(Q) = deg(G)− n.

Proof: Given H =
∑

hiXi ∈ R[[X]], set α(H) := h0 + · · · + hn−1Xn−1 and
τ(H) := hn + hn+1X + · · · . As fn ∈ R×, then τ(F ) ∈ R[[X]]× by (3.7). Set
M := −α(F )τ(F )−1 and µ(H) := τ(MH). Then α, τ, µ ∈ EndR(R[[X]]).

Assume F, G ∈ R[X] and deg(F ) = n. Then the usual Division Algorithm (DA)
yields Q, P . Let’s review it, then modify it so that it yields Q, P for any F, G.

The DA is this: set Q := 0 and P := G; while P =:
∑m

i=0 piX
i with pm -= 0 and

m ≥ n, replace Q by Q+ pmf−1
n Xm−n and replace P by P − pmf−1

n Xm−nF .
Note G = QF + P holds initially. and is preserved on each iteration of the loop:

G = QF + P = (Q+ pmf−1
n Xm−n)F + (P − pmf−1

n Xm−nF ).

Moreover, when the DA terminates, P = 0 or deg(P ) < n. So if Q -= 0, then
deg(G) = deg(Q) + n as G = QF + P and fn ∈ R×. Thus Q, P work.

The algorithm does, in fact, terminate. Indeed, replacing P by P−pmf−1
n Xm−nF

eliminates pm and modifies the pi for i < m, but adds no new piXi for i > m. Thus
on each iteration of the loop, either P becomes 0 or its degree drops.

The Modified Dvision Algorithm (MDA) is similar, but de-emphasizes m. Also,
n can be made implicit as fn = τ(F ). The MDA is this: set Q := 0 and P := G;
while τ(P ) -= 0, replace Q by Q+ τ(P )τ(F )−1 and P by P − τ(P )τ(F )−1F .

Initially, G = QF +P . And G = QF +P remains true when we replace Q, P as

G = QF + P = (Q+ τ(P )τ(F )−1)F + (P − τ(P )τ(F )−1F ).

When the MDA terminates, τ(P ) = 0, and so P = 0 or deg(P ) < n.
At any stage, P = τ(P )Xn + α(P ). Moreover, F = τ(F )Xn + α(F ), and

M := −τ(F )−1α(F ). Thus P − τ(P )τ(F )−1F = Mτ(P ) + α(P ).
Note M = 0 or deg(M) < n. So Mτ(P ) = 0 or deg(Mτ(P )) < deg(P ). Further,

if τ(P ) -= 0 and α(P ) -= 0, then deg(α(P )) < deg(P ). So when we replace P , either
P becomes 0 or deg(P ) drops. Thus the MDA does terminate.

Note τ
(
Mτ(P ) + α(P )

)
= τ(Mτ(P )) + τ(α(P )) = µ(τ(P )); that is, when we

replace P , the new value of τ(P ) is equal to the old value of µ(τ(P )). Initially,
P := G. So for r ≥ 1, after r interations, τ(P ) = µr(τ(G)). Initially, Q := 0. Thus
after r interations, Q =

∑r−1
i=0 µi(τ(G))τ(F )−1 where µ0 := 1 in EndR(R[[X]]).

As before, if Q -= 0, then deg(G) = deg(Q) + n as G = QF + P and fn ∈ R×

and either P = 0 or deg(P ) < n. Thus the MDA too yields Q, P that work. The
uniqueness statement, proved at the very end, implies that these Q, P coincide
with those given by the DA.
For the general case, filter R[[X]] with the ideals bn of all H =:

∑
hiXi with

hi ∈ an for all i. Correspondingly, R[[X]] is separated and complete by (22.28)(2).
Let’s prove that the sum

∑
i≥0 µ

i(τ(G))τ(F )−1 converges to a Q that works.
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Note α(F ) ∈ b. So M ∈ b. So for any i ≥ 1 and H ∈ bi−1, we have µ(H) ∈ bi.
So by induction, for any i ≥ 0 and H ∈ R[[X]], we have µi(H) ∈ bi. Thus for any
H, H1 ∈ R[[X]], the sum

∑
i≥0 µ

i(H)H1 converges uniquely.

Set Q :=
∑

i≥0 µ
i(τ(G))τ(F )−1. Let’s find τ(QF ). Note F = τ(F )Xn + α(F ).

Also τ(XnH) = H for any H ∈ R[[X]]. Hence τ(QF ) = Qτ(F ) + τ(Qα(F )).
But Qτ(F ) =

∑
i≥0 µ

i(τ(G)). Furthermore, Qα(F ) = −
∑

i≥0 µ
i(τ(G))M , and

τ(µi(τ(G))M) = µi+1(τ(G)). But τ(bs) ⊂ bs for all s; so τ is continuous. Hence
τ(Qα(F )) =

∑
i≥1 µ

i(τ(G)). Thus τ(QF ) = τ(G).
Set P := G − QF . Then τ(P ) = τ(G) − τ(QF ) = 0. So P ∈ R[X] with either

P = 0 or deg(P ) < n. Thus Q, P work.
It remains to show Q, P are unique. Suppose G = Q1F + P1 with P1 ∈ R[X]

and either P1 = 0 or deg(P1) < n. Then τ(G) = τ(Q1F ) + τ(P1) = τ(Q1F ). But
F = τ(F )Xn+α(F ). So τ(Q1F ) = Q1τ(F )+τ(Q1α(F )). Set H := Q1τ(F ). Then
Q1α(F ) = −HM . Thus τ(G) = H − τ(HM) = H − µ(H).
So µi(τ(G)) = µi(H) − µi+1(H) for all i. So

∑s−1
i=0 µi(τ(G)) = H − µs(H) for

all s. But µs(H) ∈ bs. So
∑

i≥0 µ
i(τ(G)) = H. So Qτ(F ) = H := Q1τ(F ). Thus

Q = Q1. But P = G−QF and P1 = G−Q1F . Thus P = P1, as desired. !
Theorem (22.85) (Weierstraß Preparation). — In (22.84), further F = UV where
U ∈ R[[X]]× and V = Xn + vn−1Xn−1 + · · · + v0; both U and V are unique, and
all vi ∈ a. And if F ∈ R[X], then U ∈ R[X] and deg(U) = deg(F )− n.

Proof: Say (22.84) yields Xn = QF + P where Q =
∑

qiXi ∈ R[[X]] and
P ∈ R[X] with P = 0 or deg(P ) < n. But F =

∑
fiXi with fi ∈ a for i < n.

Hence q0fn = 1 + a with a ∈ a. But R is separated and complete. So 1 + a ∈ R×

by (22.35). Hence q0 ∈ R×. Thus (3.7) yields Q ∈ R[[X]]×.
Set U := Q−1 and V := Xn − P . Then F = UV , as desired.
Say P =: pn−1Xn−1 + · · · + p0. Then V = Xn − (pn−1Xn−1 + · · · + p0). But

P = Xn −QF and fi ∈ a for i < n. Thus all pi ∈ a, as desired.
Suppose F = U1V1 too, with U1 ∈ R[[X]]× and V1 ∈ R[[X]] monic of degree n.

Set Q1 := U−1
1 and P1 := Xn − V1. Then Xn = Q1F + P1, and either P1 = 0 or

deg(P1) < n. So Q1 = Q and P1 = P by the uniqueness of Q and P , which is part
of (22.84). Thus U1 = U and V1 = V , as desired.

Finally, suppose F ∈ R[X]. Apply (22.84) with F := V and G := F . Thus, by
uniqueness, U ∈ R[X] and deg(U) = deg(F )− n, as desired. !
Exercise (22.86) . — Show that (22.75) is a formal consequence of (22.85) when
R is a local ring with maximal ideal a such that k := A/a is algebraically closed.

Exercise (22.87) . — Let k be a field, Bn := k[[X1, . . . , Xn]] the local ring of power
series in n variables Xi. Use (22.59) and (22.84) to recover, by induction, the
conclusion of (22.27), that Bn is Noetherian.

Exercise (22.88) . — Let k be a field, Bn := k[[X1, . . . , Xn]] the local ring of
power series in n variables Xi. Use (22.27) and (22.59) and (22.85) to show, by
induction, that Bn is a UFD.

(22.89) (Analysis). — Let’s adapt the Weierstraß Division Theorem (22.84) and
its consequences (22.85)–(22.88) to convergent complex power series. Specifically,
let A be the ring of complex power series in variables X1, . . . , Xr converging about
the origin in Cr. Then A is local with maximal ideal m := 〈X1, . . . , Xr〉 by (22.67).
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Let’s now see A is Henselian, Noetherian, regular of dimension r, and a UFD.
Consider the Weierstraß Division Theorem (22.84). First, suppose F, G ∈ R[X]

with deg(F ) = n and fn ∈ R×. Then for any R whatsoever, the DA and the MDA
work as before to provide P, Q ∈ R[X] with either P = 0 or deg(P ) < n and with
either Q = 0 or deg(Q) = deg(G)− n such that G = QF + P . Moreover, P and Q
are unique. Indeed, suppose P1, Q1 ∈ R[X] with either P1 = 0 or deg(P1) < n such
that G = Q1F+P1. Then (Q−Q1)F = P1−P . If Q -= Q1, then deg(Q−Q1)F ≥ n,
but deg(P1 − P ) < n, a contradiction. Thus Q = Q1 and so P = P1.

Next, take R to be A and a to be m. Let B be the ring of complex power
series in X1, . . . , Xr, X converging about the origin 0 := (0, . . . , 0, 0) in Cr+1. Then
B ⊂ A[[X]]. Suppose F, G ∈ B. Distilling and adapting the discussion in [7,
pp. 105–115]), let’s see that the sum

∑
i≥0 µ

i(τ(G))τ(F )−1, defined in the proof of
(22.84), converges, complex analytically, to a Q ∈ B that works.

Fix a vector t := (t1, . . . , tr, t) of positive real numbers. Given a complex power
series H =

∑
aiXi where i := (i1, . . . , ir, i) is a vector of nonegative integers and

Xi := Xi1
1 · · ·Xir

r Xi, set ‖H‖ :=
∑

|ai|ti and C :=
{
H

∣∣ ‖H‖ <∞
}
. Then C ⊂ B.

Note ‖H‖ = 0 if and only if H = 0. Moreover, ‖aH‖ = |a|‖H‖ for any a ∈ C
as aH =

∑
aaiXi and |aai| = |a||ai|. Furthermore, given H ′ =

∑
a′iX

i, note
‖HH ′‖ ≤ ‖H‖‖H ′‖ as HH ′ =

∑
biXi where bi :=

∑
j+k=i aja

′
k and where by the

triangle inequality |bi| ≤
∑

j+k=i |aj||a′k|. Similarly, ‖H +H ′‖ ≤ ‖H‖+ ‖H ′‖.
Let’s see C is complete in this norm. Let (En) be Cauchy. Say En =

∑
bn,iXi.

Given ε > 0, there’s nε with
∑

|bn,i − bn′,i|ti < ε for all n, n′ ≥ nε. But ti -= 0 for
all i. So |bn,i − bn′,i| < ε/ti. Thus (bn,i) is Cauchy in C, so has a limit bi. Given
any set I of m vectors i for any m, there’s n′ ≥ nε with |bn′,i − bi| < ε/tim for
all i ∈ I. So

∑
i∈I |bn′,i − bi|ti < ε. But bn,i − bi = bn,i − bn′,i + bn′,i − bi. Thus∑

i∈I |bn,i − bi|ti < 2ε for all n ≥ nε. Set E :=
∑

biXi. Then ‖En − E‖ ≤ 2ε
for all n ≥ nε. Hence En − E ∈ C. But E = (E − En) + En. Thus E ∈ C, and
limEn = E. Thus C is complete. In sum, C is a complex Banach algebra.

Replacing the ti and t by smaller values just decreases ‖H‖ and so enlarges C.
In particular, given any E ∈ B, replace the ti and t by smaller values so that t lies
in the open polydisk of convergence of E; then E ∈ C.

Next, given E ∈ C with E(0) = 0 and given ε > 0, let’s see we can replace the ti
and t by smaller values so that ‖E‖ < ε. Note E = X1E1 + · · · +XrEr +XEr+1

for some formal power series Ei. But, as shown in the solution to (22.67), the Ei

can be altered so that they have distinct monomials. Then

‖E‖ = t1‖E1‖+ · · ·+ tr‖Er‖+ t‖Er+1‖.
So all Ei ∈ C. Thus replacing the ti and t by small enough values gives ‖E‖ < ε.

Given H ∈ B with a := H(0) -= 0, let’s see why H ∈ B×. First replace the ti
and t by smaller values so that H ∈ C. Set E := 1−H/a. Then E(0) = 0. So, as
just observed, we can replace the ti and t by even smaller values so that ‖E‖ < 1.
Then

∑
i≥0 E

i converges, say to E′ ∈ C. Then (1−E)E′ = 1. Thus H ·(E′/a) = 1.

Returning to
∑

i≥0 µ
i(τ(G))τ(F )−1, let’s see it converges. Replace the ti and t

by smaller values so that F, G ∈ C. Note F =
∑

fiXi with fi ∈ A; also, fn(0) -= 0,
but fi0) = 0 for i < n. Recall α(F ) :=

∑n−1
i=0 fiXi and τ(F ) :=

∑
i≥n fiX

i. So

τ(F )(0) -= 0. Replace the ti and t by even smaller values so that τ(F )−1 ∈ C. Set
c := ‖τ(F )−1‖. Fix 0 < ε < 1. Replace the ti, but not t, by yet smaller values so
that ‖fi‖ < tn−iε/cn for i < n. Then ‖α(F )‖ < tnε/c. Recall M := −α(F )τ(F )−1.
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Hence ‖M‖ ≤ ‖α(F )‖‖τ(F )−1‖ < tnε. For all H ∈ C, note tn‖τ(H)‖ ≤ ‖H‖.
Recall µ(H) := τ(MH). So ‖µ(H)‖ ≤ t−n‖M‖‖H‖ ≤ ε‖H‖. So ‖µi(H)‖ ≤ εi‖H‖
for i ≥ 0. But C is complete. Thus

∑
i≥0 µ

i(τ(G))τ(F )−1 converges.
Note τ(H) is continuous in H, as ‖τ(H)‖ ≤ t−n‖H‖. So the rest of the existence

proof in (22.84) carries over here without change. Uniqueness here is a special case
of uniqueness in (22.84). Thus the Weierstraß Division Theorem can be adapted.

To adapt the Weierstraß Preparation Theorem (22.85), note that the Division
Theorem above yields Xn = FQ+P where Q ∈ B and P ∈ A[X] with deg(P ) < n.
The proof of (22.85) shows Q(0) -= 0. So Q ∈ B×. Set U := Q−1 and set
V := Xn − P . Then F = UV where U ∈ B× and V = Xn + vn−1Xn−1 + · · ·+ v0
with vi ∈ A. By (22.85), U and V are unique; also, if F ∈ R[X], then U ∈ R[X]
and deg(U) = deg(F )−n. Thus we can adapt the Weierstraß Preparation Theorem.
To prove A is Henselian, adapt the solution to (22.86) by replacing (22.85)

with its counterpart above.
Next, consider the second automorphism ϕ of C[[X1, . . . , Xr, X]] in (22.59). Let

H ∈ B. If H converges at (x1, . . . , xr, x), then ϕ(H) converges at (x′
1, . . . , x

′
r, x)

where x′
i := xi − aix, and so ϕ(H) ∈ B. Thus ϕ induces an automorphism of B.

To prove B is Noetherian, adapt the solution to (22.87) by replacing (22.84)
with its analytic counterpart. Thus, as r is arbitrary, A is Noetherian too.

To prove A is regular of dimension r, recall from (22.67) that A is local with
completion C[[X1, . . . , Xr]]. By (22.27), the latter ring is regular of dimension r.
Thus, by (22.62)(2), A too is regular of dimension r.

Finally, to prove A is a UFD, adapt the solution to (22.88) by replacing (22.27)
and (22.59) and (22.85) by their analytic counterparts.

D. Appendix: Exercises

Exercise (22.90) . — (Implicit Function Theorem) Let R be a ring, T1, . . . , Tn, X
variables. Given a polynomial F ∈ R[T1, . . . , Tn, X] such that F (0, . . . , 0, X) has a
supersimple root a0 ∈ R. Show there’s a unique power series a ∈ R[[T1, . . . , Tn]]
with a(0, . . . , 0) = a0 and F (T1, . . . , Tn, , a) = 0.

Exercise (22.91) . — Let A be the filtered direct limit of Henselian local rings Aλ
with local transition maps. Show that A is a Henselian local ring.

Exercise (22.92) . — Let A be a local Henselian ring, m its maximal ideal, B an
integral A-algebra, and n a maximal ideal of B. Set B = B/mB. Show:

(1) Idem(B)→ Idem(B) is bijective. (2) Bn is integral over A, and Henselian.

Exercise (22.93) . — Let A be local ring. Show that A is Henselian if and only if,
given any module-finite algebra B and any maximal ideal n of B, the localization
Bn is integral over A.

Exercise (22.94) . — Let A be a local ring, and a an ideal. Assume a ⊂ nil(A).
Set A′ := A/a. Show that A is Henselian if and only if A′ is so.

Exercise (22.95) . — Let A be a local ring. Assume A is separated and complete.
Use (22.78)(4)⇒(1) to give a second proof (compare (22.75)) that A is Henselian.

Exercise (22.96) . — Let R be a ring, a an ideal, u ∈ R×, and n ≥ 2. Assume R
is separated and complete, and u ≡ 1 (mod n2a). Find an nth root of u.
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Exercise (22.97) . — Let p, a1, . . . , as, k be integers, and X1, . . . , Xs variables. Set
F := a1Xk

1 + · · ·+asXk
s . Assume p prime, each ai and k prime to p, and s > k > 0.

Using (2.45), show F has a nontrivial zero in Ẑs
p.

Exercise (22.98) . — Find a cube root of 2 in Ẑ5.

Exercise (22.99) . — Find a cube root of 10 in Ẑ3.

Exercise (22.100) . — In the setup of (22.84), if n ≥ 1, find an alternative proof
for the existence of Q and P as follows: take a variable Y ; view R[[X]] as an R[[Y ]]-
algebra via the map ϕ with ϕ(Y ) := F : and show 1, X, . . . ,Xn−1 generate R[[X]]
as a module by using Nakayama’s Lemma for adically complete rings (22.69).
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23. Discrete Valuation Rings

A discrete valuation is a homomorphism from the multiplicative group of a
field to the additive group of integers such that the value of a sum is at least the
minimum value of the summands. The corresponding discrete valuation ring
consists of the elements whose values are nonnegative, plus 0. We characterize
these rings in various ways; notably, we prove they are the normal Noetherian local
domains of dimension 1. Then we prove that any normal Noetherian domain is the
intersection of all the discrete valuation rings obtained by localizing at its height-1
primes. Finally, we prove Serre’s Criterion for normality of a Noetherian domain.

Along the way, we consider two important notions for a module M over any
ring R. We say x1, . . . , xn is an M -sequence or is M -regular if xi+1 ∈ R is a
nonzerodivisor on Mi := M/〈x1, . . . , xi〉M for 0 ≤ i ≤ n and if Mn -= 0. If R is
local, we call the supremum of the lengths n of the M -sequences, the depth of M .

In an appendix, we study those two notions and one more: we call M Cohen–
Macaulay if M is nonzero Noetherian and if, for all maximal ideals m ∈ Supp(M),
the depth of Mm equals its dimension. We prove the Unmixedness Theorem: if
there are only finitely many m and the dimensions are equal, then every associated
prime of M is minimal, and all maximal chains of primes in Supp(M) have the same
length. We end by proving, under appropriate hypotheses, the equivalence of these
conditions: (1) the multiplicity of M is equal to the length of Mn; (2) x1, . . . , xn is
M -quasi-regular; (3) x1, . . . , xn is M -regular; (4) M is Cohen–Macaulay.

A. Text

(23.1) (Discrete Valuations). — LetK be a field. We define a discrete valuation
of K to be a surjective function v : K× → Z such that, for every x, y ∈ K×,

(1) v(x · y) = v(x) + v(y), (2) v(x+ y) ≥ min{v(x), v(y)} if x -= −y. (23.1.1)

Condition (1) just means v is a group homomorphism. Hence, for any x ∈ K×,

(1) v(1) = 0 and (2) v(x−1) = −v(x). (23.1.2)

As a convention, we define v(0) :=∞. Consider the sets

A := {x ∈ K | v(x) ≥ 0} and m := {x ∈ K | v(x) > 0}.
Clearly, A is a subring, so a domain, and m is an ideal. Further, m is nonzero as v
is surjective. We call A the discrete valuation ring (DVR) of v.

Notice that, if x ∈ K, but x /∈ A, then x−1 ∈ m; indeed, v(x) < 0, and so
v(x−1) = −v(x) > 0. Hence, Frac(A) = K. Further,

A× = {x ∈ K | v(x) = 0} = A−m.

Indeed, if x ∈ A×, then v(x) ≥ 0 and −v(x) = v(x−1) ≥ 0; so v(x) = 0. Conversely,
if v(x) = 0, then v(x−1) = −v(x) = 0; so x−1 ∈ A, and so x ∈ A×. Therefore, by
the nonunit criterion, A is a local domain, not a field, and m is its maximal ideal.
An element t ∈ m with v(t) = 1 is called a (local) uniformizing parameter.

Such a t is irreducible, as t = ab with v(a) ≥ 0 and v(b) ≥ 0 implies v(a) = 0 or
v(b) = 0 since 1 = v(a) + v(b). Further, any x ∈ K× has the unique factorization
x = utn where u ∈ A× and n := v(x); indeed, v(u) = 0 as u = xt−n. In particular,
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t1 is uniformizing parameter if and only if t1 = ut with u ∈ A×; also, A is a UFD.
Moreover, A is a PID; in fact, any nonzero ideal a of A has the form

a = 〈tm〉 where m := min{ v(x) | x ∈ a }. (23.1.3)

Indeed, given a nonzero x ∈ a, say x = utn where u ∈ A×. Then tn ∈ a. So n ≥ m.
Set y := utn−m. Then y ∈ A and x = ytm, as desired.

In particular, m = 〈t〉 and dim(A) = 1. Thus A is regular local of dimension 1.

Example (23.2). — The prototype of a DVR is this example. Let k be a field,
and K := k((t)) the field of formal Laurent series x :=

∑
i≥n ait

i with n ∈ Z
and ai ∈ k. If an -= 0, set v(x) := n, the “order of vanishing” of x. Plainly, v is a
discrete valuation, the formal power series ring k[[t]] is its DVR, and m := 〈t〉 is its
maximal ideal.

The preceding example can be extended to cover any DVR A that contains a
field k with k ∼−→ A/〈t〉 where t is a uniformizing power. Indeed, A is a subring of
its completion Â by (22.3), and k ∼−→ Â/tÂ by (22.12)(2); so Â = k[[t]] by the
Cohen Structure Theorem II (22.58). Further, clearly, the valuation on Â restricts
to that on A.

A second old example is this. Let p ∈ Z be prime. Given x ∈ Q, write x = apn/b
with a, b ∈ Z relatively prime and prime to p. Set v(x) := n. Clearly, v is a discrete
valuation, the localization Z〈p〉 is its DVR, and pZ〈p〉 is its maximal ideal. We call
v the p-adic valuation of Q.

Lemma (23.3). — Let A be a local domain, m its maximal ideal. Assume that m
is nonzero and principal and that

⋂
n≥0 m

n = 0. Then A is a DVR.

Proof: Given a nonzero x ∈ A, there is an n ≥ 0 such that x ∈ mn −mn+1. Say
m = 〈t〉. Then x = utn, and u /∈ m, so u ∈ A×. Set K := Frac(A). Given x ∈ K×,
write x = y/z where y = btm and z = ctk with b, c ∈ A×. Then x = utn with
u := b/c ∈ A× and n := m− k ∈ Z. Define v : K× → Z by v(x) := n. If utn = wth

with n ≥ h, then (u/w)tn−h = 1, and so n = h. Thus v is well defined.
Since v(t) = 1, clearly v is surjective. To verify (23.1.1), take x = utn and

y = wth with u,w ∈ A×. Then xy = (uw)tn+h. Thus (1) holds. To verify (2), we
may assume n ≥ h. Then x+ y = th(utn−h + w). Hence

v(x+ y) ≥ h = min{n, h} = min{v(x), v(y)}.
Thus (2) holds. So v : K× → Z is a valuation. Clearly, A is the DVR of v. !
(23.4) (Depth). — Let R be a ring, M a nonzero module, and x1, . . . , xn ∈ R. Set
Mi := M/〈x1, . . . , xi〉M . We say the sequence x1, . . . , xn is M -regular, or is an
M -sequence, and we call n its length if Mn -= 0 and xi /∈ z.div(Mi−1) for all i.

For reference, note that (4.21) with a := 〈x1, . . . , xi〉 and b := 〈xi+1〉 yields
Mi+1

∼−→Mi/xi+1Mi. (23.4.1)

If M is finitely generated, then (13.46) with a := 〈x1, . . . , xi〉 and (13.4)(4) yield

rad(Mi) = rad(M) if and only if x1, . . . , xi ∈ rad(M). (23.4.2)

Call the supremum of the lengths n of the M -sequences found in an ideal a, the
depth of a on M , and denote it by depth(a, M). By convention, depth(a, M) = 0
means a contains no nonzerodivisor on M .

Call the depth of rad(M) on M just the depth of M , and denote it by depth(M)

199



Discrete Valuation Rings (23.5)
/
(23.6) Text

or depthR(M). Notice that, in this case, if M is finitely generated, then Mn -= 0
automatically owing to Nakayama’s Lemma (10.6).

Lemma (23.5). — Let R be a ring, M a nonzero Noetherian semilocal module.
(1) Then depth(M) = 0 if and only if there’s a maximal ideal m ∈ Ass(M).
(2) Then depth(M) = 1 if and only if there’s an x ∈ rad(M) with x /∈ z.div(M)

and there’s a maximal ideal m ∈ Ass(M/xM).
(3) Then depth(M) ≤ dim(M).

Proof: Consider (1). First, if there’s a maximal ideal m ∈ Ass(M), then the
definitions readily yield rad(M) ⊂ m ⊂ z.div(M), and so depth(M) = 0.

Conversely, assume that depth(M) = 0. Then rad(M) ⊂ z.div(M). Since M is
Noetherian, z.div(M) =

⋃
p∈Ass(M) p by (17.12). Since M is nonzero and finitely

generated, Ass(M) is nonempty and finite by (17.10) and (17.17). So rad(M) ⊂ p
for some p ∈ Ass(M) by Prime Avoidance, (3.12). But rad(M) is, by definition,
the intersection of some of the finitely many maximal ideals m. So (2.23) yields
an m ⊂ p. But m is maximal. So m = p. Thus m ∈ Ass(M). Thus (1) holds.

Consider (2). Assume depth(M) = 1. Then there is an M -sequence of length 1
in rad(M), but none longer; that is, there’s an x ∈ rad(M) with x /∈ z.div(M) and
depth(M/xM) = 0. Then (1) yields a maximal ideal m ∈ Ass(M/xM).

Conversely, assume there’s x ∈ Ass(M) with x /∈ z.div(M). Then by definition,
depth(M) ≥ 1. Assume also there’s a maximal ideal m ∈ Ass(M/xM). Then
given any y ∈ rad(M) with y /∈ z.div(M), also m ∈ Ass(M/yM) by (17.19).
So depth(M/yM) = 0 by (1). So there is no z ∈ rad(M) such that y, z is an
M -sequence. Thus depth(M) ≤ 1. Thus depth(M) = 1. Thus (2) holds.

Consider (3). Given any M -sequence x1, . . . , xn, set Mi := M/〈x1, . . . , xi〉M .
Then Mi+1

∼−→ Mi/xi+1Mi by (23.4.1). Assume xi ∈ rad(M) for all i. Then
dim(Mi+1) = dim(Mi) − 1 by (21.5). Hence dim(M) − n = dim(Mn) ≥ 0. But
depth(M) := sup{n}. Thus (3) holds. !

Theorem (23.6) (Characterization of DVRs). — Let A be a local ring, m its max-
imal ideal. Assume A is Noetherian. Then these five conditions are equivalent:

(1) A is a DVR.
(2) A is a normal domain of dimension 1.
(3) A is a normal domain of depth 1.
(4) A is a regular local ring of dimension 1.
(5) m is principal and of height at least 1.

Proof: Assume (1). Then A is UFD by (23.1); so A is normal by (10.21).
Further, A has just two primes, 〈0〉 and m; so dim(A) = 1. Thus (2) holds. Further,
(4) holds by (23.1). Clearly, (4) implies (5).

Assume (2). As dim(A) = 1, there’s x ∈ m nonzero; x /∈ z.div(A) as A is a
domain. So 1 ≤ depth(A). But depth(A) ≤ dim(A) by (23.5)(3). Thus (3) holds.

Assume (3). By (23.5)(2), there are x, y ∈ m such that x is nonzero and y has
residue y ∈ A/〈x〉 with m = Ann(y). So ym ⊂ 〈x〉. Set z := y/x ∈ Frac(A). Then
zm = (ym)/x ⊂ A. Suppose zm ⊂ m. Then z is integral over A by (10.14). But
A is normal, so z ∈ A. So y = zx ∈ 〈x〉, a contradiction. Hence, 1 ∈ zm; so there
is t ∈ m with zt = 1. Given w ∈ m, therefore w = (wz)t with wz ∈ A. Thus m is
principal. Finally, ht(m) ≥ 1 because x ∈ m and x -= 0. Thus (5) holds.

Assume (5). Set N :=
⋂

mn. The Krull Intersection Theorem (18.23) yields an
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x ∈ m with (1 + x)N = 0. Then 1+ x ∈ A×. So N = 0. Further, A is a domain by
(21.9)(1). Thus (1) holds by (23.3). !

Exercise (23.7) . — Let R be a normal Noetherian domain, x ∈ R a nonzero
nonunit, a an ideal. Show that every p ∈ Ass(R/〈x〉) has height 1. Conversely, if
R is a UFD and if every p ∈ Ass(R/a) has height 1, show that a is principal.

Theorem (23.8) (Nagata). — Let A ⊂ B be a faithfully flat extension of Noetherian
local domains. Assume B is a UFD. Then so is A.

Proof: By (21.33), it suffices to show every height-1 prime p of A is principal.
Let k and 2 be the residue fields of A and B. Owing to (10.8)(2), p is principal

if and only if p⊗A k % k; similarly, pB is principal if and only if (pB)⊗B 2 % 2. But
B is flat; so pB = p⊗A B by (9.15). But p⊗A B ⊗B 2 = p⊗A 2 = p⊗A k ⊗k 2 by
(8.9). Hence p is principal if and only if pB is. But B is a UFD. Thus by (23.7),
it suffices to show every P ∈ Ass(B/pB) has height 1.

AsB is faithfully flat, pB∩A = p by (9.28)(3). SoP∩A lies in p owing to (18.62)
and (18.17). Hence p = P∩A. Set S := A− p. Then S−1P ∈ Ass(S−1B/pS−1B)
by (17.8). Thus it suffices to show every Q ∈ Ass(S−1B/pS−1B) has height 1.
Next, let’s show S−1A is normal. Set K := Frac(A) and L := Frac(B). Then

K ⊂ L as A ⊂ B. Given x/y ∈ K ∩ B with x, y ∈ A, note x ∈ yB ∩ A. But
yB ∩ A = yA by (9.28)(3). Thus K ∩ A = A. But B is a UFD, so normal by
(10.21). Hence A too is normal. Thus by (11.32) also S−1A is normal.

Recall p has height 1. So S−1A has dimension 1. So pS−1A is principal by
(23.6)(2)⇒(5). But (pS−1A)S−1B = pS−1B. So pS−1B is principal. But B is
normal, so S−1B is too by (11.32). Thus by (23.7), Q has height 1, as desired. !

Exercise (23.9) . — Let A be a DVR with fraction field K, and f ∈ A a nonzero
nonunit. Prove A is a maximal proper subring of K. Prove dim(A) -= dim(Af ).

(23.10) (Serre’s Conditions). — We say a ring R satisfies Serre’s Condition
(Rn) if, for any prime p of height m ≤ n, the localization Rp is regular of dimension
m.
For example, (R0) holds if and only if Rp is a field for any minimal prime p. Also,

(R1) holds if and only if (R0) does and Rp is a DVR for any p of height-1.
We say Serre’s Condition (Sn) holds for a nonzero semilocal R-module M if

depth(Mp) ≥ min{dim(Mp), n} for any p ∈ Supp(M),

where Mp is regarded as an Rp-module.
Assume M is Noetherian. Then depth(Mp) ≤ dim(Mp) by (23.5)(3). Thus (Sn)

holds if and only if depth(Mp) = dim(Mp) when depth(Mp) < n.
In particular, (S1) holds if and only if p is minimal whenever depth(Mp) = 0.

But depth(Mp) = 0 and only if pRp ∈ Ass(Mp) by (23.5)(1); so if and only if
p ∈ Ass(M) by (17.8). Thus (S1) holds if and only if M has no embedded primes.

Exercise (23.11) . — Let R be a domain, M a Noetherian module. Show that M
is torsionfree if and only if it satisfies (S1).

Exercise (23.12) . — Let R be a Noetherian ring. Show that R is reduced if and
only if (R0) and (S1) hold.
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Lemma (23.13). — Let R be a domain, M a nonzero torsionfree Noetherian mod-
ule. Set Φ := {p prime | ht(p) = 1} and Σ := {p prime | depth(Mp) = 1}. Then
Φ ⊂ Σ, and Φ = Σ if and only if M satisfies (S2). Further, M =

⋂
p∈Σ Mp ⊂M〈0〉.

Proof: By hypothesis, M is torsionfree. So given s ∈ R and m ∈M , if s -= 0 but
sm = 0, then m = 0. Thus, by construction, M ⊂Mp ⊂M〈0〉 for all primes p.

So Supp(M) = Spec(R) as M -= 0. Thus dim(Mp) = ht(p) for any p ∈ Spec(R).

So given p ∈ Φ, we have dim(Mp) = 1. So depth(Mp) ≤ 1 by (23.5)(3). But
if depth(Mp) = 0, then pRp ∈ Ass(Mp) by (23.5)(1). So p = Ann(m) for some
nonzero m ∈ M by (17.8). But M is torsionfree. So p = 〈0〉, a contradiction.
Thus depth(Mp) = 1. Thus Φ ⊂ Σ.

If M satisfies (S2), then dim(Mp) = 1 for any p ∈ Σ, so p ∈ Φ; thus then Φ = Σ.

Conversely, assume Φ = Σ. Then given any prime p with dim(Mp) ≥ 2, also
depth(Mp) ≥ 2. But M satisfies (S1) by (23.11). Thus M satisfies (S2).

We noted that M ⊂Mp for all primes p. Thus M ⊂
⋂

p∈Σ Mp.

Conversely, given m ∈
⋂

p∈Σ Mp, say m = m′/s with m′ ∈ M and s ∈ R − 〈0〉.
Then m′ ∈ sMp for all p ∈ Σ.

Given p ∈ Ass(M/sM), note pRp ∈ Ass(Mp/sMp) by (17.8). But s /∈ z.div(Mp).
Thus (23.5)(2) yields p ∈ Σ.

Note sM =
⋂

p∈Ass(M/sM) sMp by (18.64) applied with N = sM . Hence

sM =
⋂

p∈Ass(M/sM)

sMp ⊃
⋂

p∈Σ

sMp ⊃ sM.

Thus sM =
⋂

p∈Σ sMp. Hence m′ ∈ sM . So m′ = sm′′ for some m′′ ∈ M . So
m = m′′ ∈M . Thus M ⊃

⋂
p∈Σ Mp, as desired. !

Theorem (23.14). — Let R be a normal Noetherian domain. Then

R =
⋂

p∈Φ Rp where Φ := { p prime | ht(p) = 1 }.

Proof: As R is normal, so is Rp for any prime p by (11.32). So depth(Rp) = 1
if and only if dim(Rp) = 1 by (23.6). Thus (23.13) yields the assertion. !

Theorem (23.15) (Serre’s Criterion). — Let R be a Noetherian domain. Then R
is normal if and only if (R1) and (S2) hold.

Proof: As R is a domain, (R0) and (S1) hold by (23.12). If R is normal, then
so is Rp for any prime p by (11.32); whence, (R1) and (S2) hold by (23.6).

Conversely, assume R satisfies (R1) and (S2). Let x be integral over R. Then
x is integral over Rp for any prime p. Now, Rp is a DVR for all p of height 1 as
R satisfies (R1). Hence, x ∈ Rp for all p of height 1, so for all p of depth 1 as R
satisfies (S2). So x ∈ R owing to (23.13). Thus R is normal. !
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B. Exercises

Exercise (23.16) . — Show an equicharacteristic regular local ring A is a UFD.

Exercise (23.17) . — Let R be a ring, 0 → N → M → L → 0 a short exact
sequence, and x1, . . . , xn ∈ R. Set ai : 〈x1, . . . , xi〉 for 0 ≤ i ≤ n. Prove:

(1) Assume x1, . . . , xn is L-regular. Then aiM ∩NaiN for 0 ≤ i ≤ n.
(2) Then x1, . . . , xn is both N -regular and L-regular if and only if x1, . . . , xn is

M -regular, aiM ∩N = aiN for 0 ≤ i ≤ n, and N/anN -= 0 and L/anL -= 0.

Exercise (23.18) . — Let R be a ring, M a module, F : ((R-mod)) → ((R-mod))
a left-exact functor. Assume F (M) is nonzero and finitely generated. Show that,
for d = 1, 2, if M has depth at least d, then so does F (M).

Exercise (23.19) . — Let k be a field, A a ring intermediate between the polynomial
ring and the formal power series ring in one variable: k[X] ⊂ A ⊂ k[[X]]. Suppose
that A is local with maximal ideal 〈X〉. Prove that A is a DVR. (Such local rings
arise as rings of power series with curious convergence conditions.)

Exercise (23.20) . — Let L/K be an algebraic extension of fields; X1, . . . , Xn

variables; P and Q the polynomial rings over K and L in X1, . . . , Xn. Prove this:

(1) Let q be a prime of Q, and p its contraction in P . Then ht(p) = ht(q).
(2) Let F, G ∈ P be two polynomials with no common prime factor in P . Then

F and G have no common prime factor H ∈ Q.

Exercise (23.21) . — Prove that a Noetherian domain R is normal if and only if,
given any prime p associated to a principal ideal, pRp is principal.

Exercise (23.22) . — Let R be a ring, M a nonzero Noetherian module. Set

Φ := { p prime | dim(Mp) = 1 } and Σ := { p prime | depth(Mp) = 1 }.

Assume M satisfies (S1). Show Φ ⊂ Σ, with equality if and only if M satisfies (S2).
Set S := R− z.div(M). Without assuming (S1), show this sequence is exact:

M → S−1M →
∏

p∈Σ S−1Mp/Mp. (23.22.1)

Exercise (23.23) (Serre’s Criterion) . — Let R be a Noetherian ring, and K its
total quotient ring. Set Φ := { p prime | ht(p) = 1 }. Prove equivalent:

(1) R is normal.
(2) (R1) and (S2) hold.
(3) (R1) and (S1) hold, and R→ K →

∏
p∈Φ Kp/Rp is exact.

C. Appendix: M-sequences

Exercise (23.24) . — Let R be a ring, M a module, and x, y an M -sequence.
(1) Given m,n ∈M with xm = yn, find p ∈M with m = yp and n = xp.
(2) Assume y /∈ z.div(M). Show y, x form an M -sequence too.

Proposition (23.25). — Let R be a ring, M a nonzero Noetherian module, and
x, y ∈ rad(M). Assume that, given any m, n ∈ M with xm = yn, there exists
p ∈M with m = yp and n = xp. Then x, y form an M -sequence.
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Proof: First, as noted in (23.4), automatically M/〈x, y〉M -= 0.
Next, we have to prove x /∈ z.div(M). Given m ∈ M with xm = 0, set n := 0.

Then xm = yn; so there exists p ∈ M with m = yp and n = xp. Repeat with p
in place of m, obtaining p1 ∈ M such that p = yp1 and 0 = xp1. Induction yields
pi ∈M for i ≥ 2 such that pi−1 = ypi and 0 = xpi.

Then Rp1 ⊂ Rp2 ⊂ · · · is an ascending chain. It stabilizes as M is Noetherian.
Say Rpn = Rpn+1. So pn+1 = zpn for some z ∈ R. Then pn = ypn+1 = yzpn. So
(1− yz)pn = 0. Set R′ := R/Ann(M) and let y′, z′ ∈ R′ be the residues of x, y.
But y ∈ rad(M). Also rad(M)/Ann(M) = rad(R′) by (4.1.1). Hence 1− y′z′ is

a unit by (3.2). But (1−y′z′)pn = (1−yz)pn = 0. Hence pn = 0. But m = yn+1pn.
Thus m = 0, as desired. Thus x /∈ z.div(M).
Finally, set M1 := M/xM . We must prove y /∈ z.div(M1). Given n1 ∈ M1 with

yn1 = 0, lift n1 to n ∈M . Then yn = xm for some m ∈M . So there’s p ∈M with
n = xp. Thus n1 = 0, as desired. Thus x, y form an M -sequence, as desired. !
Exercise (23.26) . — Let R be a ring, a ⊂ R an ideal, M a module, x1, . . . , xr

an M -sequence in a, and R′ an algebra. Set M ′ := M ⊗R R′. Assume R′ flat and
M ′/aM ′ -= 0. Prove x1, . . . , xr is an M ′-sequence in aR′.

Exercise (23.27) . — Let R be a ring, a an ideal, M a Noetherian module with
M/aM -= 0. Let x1, . . . , xr be an M -sequence in a, and p ∈ Supp(M/aM). Prove:
(1) x1/1, . . . , xr/1 is an Mp-sequence in ap, and (2) depth(a, M) ≤ depth(ap, Mp).

(23.28) (Maximal sequences). — Let R be a ring, a an ideal, M a nonzero module.
We say an M -sequence in a is maximal in a, if it can not be lengthened in a.

In particular, the sequence of length 0 (the empty sequence) is maximal in a if
and only if there are no nonzerodivisors on M in a, that is, a ⊂ z.div(M).

Theorem (23.29). — Let R be a ring, a an ideal, and M a Noetherian module.
Then there exists a finite maximal M -sequence in a if and only if M/aM -= 0. If
so, then any finite M -sequence in a can be lengthened until maximal in a, and every
maximal M -sequence in a is of the same length, namely, depth(a,M).

Proof: First, assume M/aM -= 0. Then there’s p ∈ Supp(M/aM) by (13.8).
Hence successively (23.27)(2) and (23.5)(3) and (21.4) yield

depth(a,M) ≤ depth(Mp) ≤ dim(Mp) <∞.

However, every M -sequence in a is of length at most depth(a,M) by (23.4). Hence
the M -sequences in a are of bounded length. Thus in finitely many steps, any one
can be lengthened until maximal in a. In particular, the empty sequence can be so
lengthened. Thus there exists a finite maximal M -sequence in a.

Instead, assume there exists a finite maximal M -sequence x1, . . . , xm in a. Set
Mi := M/〈x1, . . . , xi〉M for all i. Suppose Mm = aMm. Then there’s a ∈ a with
(1 + a)M = 0 by (10.3). But a ⊂ z.div(Mm) by maximality. So aµ = 0 for some
nonzero µ ∈Mm. So µ+ aµ = 0. So µ = 0, a contradiction. Hence Mm/aMm -= 0.
But Mm/aMm is a quotient of M/aM . Thus M/aM -= 0.

Given any other maximal M -sequence y1, . . . , yn in a, it now suffices to prove
m = n. Indeed, then m = depth(a,M) by (23.4), completing the proof.

To prove m = n, induct on m. If m = 0, then a ⊂ z.div(M), and so n = 0 too.
Assume m ≥ 1. Set Nj := M/〈y1, . . . , yj〉M for all j, and set

U :=
⋃m−1

i=0 z.div(Mi) ∪
⋃n−1

j=0 z.div(Nj).
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Then U is equal to the union of all associated primes of Mi for i < m and of Nj

for j < n by (17.12). And these primes are finite in number by (17.17).
Suppose a ⊂ U . Then a lies in one of the primes, say p ∈ Ass(Mi), by (3.12).

But xi+1 ∈ a− z.div(Mi) and a ⊂ p ⊂ z.div(Mi), a contradiction. Thus a -⊂ U .
Take z ∈ a − U . Then z /∈ z.div(Mi) for i < m and z /∈ z.div(Nj) for j < n. In

particular, x1, . . . , xm−1, z and y1, . . . , yn−1, z are M -regular.
By maximality, a ⊂ z.div(Mm). So a ⊂ q for some q ∈ Ass(Mm) by (17.12) and

(3.12). But Mm = Mm−1/xmMm−1 by (23.4.1). Also, xm, z /∈ z.div(Mm−1).
Further, xm, z ∈ a ⊂ q. So q ∈ Ass(Mm−1/zMm−1) by (17.19). Hence

a ⊂ z.div(M/〈x1, . . . , xm−1, z〉M).

Thus x1, . . . , xm−1, z is maximal in a. Similarly, y1, . . . , yn−1, z is maximal in a.
Note Mm−1 = Mm−2/xm−1Mm−2 by (23.4.1). Hence xm−1, z is Mm−2-regular.

However, z /∈ z.div(Mm−2). So z, xm−1 is Mm−2-regular by (23.24)(2). Therefore,
x1, . . . , xm−2, z, xm−1 is a maximal M -regular sequence in a. Continuing shows
that z, x1, . . . , xm−1 is one too. Similarly, z, y1, . . . , yn−1 is another one.

Thus we may assume x1 = y1. ThenM1 = N1. Further, x2, . . . , xm and y2, . . . , yn
are maximal M1-sequences in a. So by induction, m− 1 = n− 1. Thus m = n. !

Example (23.30). — For any n ≥ 0, here’s an example of a Noetherian local ring
Rn of depth n that does not satisfy (S1), so not (Sn). Let R := k[[X,Y ]]

/
〈XY, Y 2〉

be the local ring of (17.2). Take additional variables Z1, . . . , Zn. Set R0 := R and
Rn := R[[Z1, . . . , Zn]] if n ≥ 1. By (22.27), Rn is a Noetherian local ring.

If n ≥ 1, then Zn is a nonzerodivisor on Rn. But Rn = Rn−1[[Zn]]. So (3.7)
yields Rn/〈Zn〉Rn−1. Thus Z1, . . . , Zn is an Rn-sequence by induction on n.

Set m := 〈x, y, Z1, · · · , Zn〉 ⊂ Rn where x, y are the residues of X, Y . Then
m ⊂ z.divRn(R0). So Z1, . . . , Zn is a maximal Rn-sequence in m. Thus (23.29)
yields depth(Rn) = n.

Set P := k[[X,Y, Z1, . . . , Zn]], Then P is a power series ring in n + 2 variables.
The ideals 〈Y 〉 and 〈X,Y 〉 are prime by (22.27). Set a := 〈XY, Y 2〉. Then
P/aP = Rn by (22.56). Thus 〈y〉 and 〈x, y〉 are prime ideals of Rn.

Plainly 〈x, y〉 ⊂ Ann(y). Given F ∈ Rn, say F =
∑

aijxiyjFij where Fij is
a power series in Z1, . . . , Zn. Assume F ∈ Ann(y). Then

∑
aijxiyj+1Fij = 0.

So
∑

aijXiY j+1Fij ∈ a. Hence
∑

a00kY Fij ∈ a. So
∑

a00kY Fij = 0. Hence
F ∈ 〈x, y〉. Thus 〈x, y〉 = Ann(y). But 〈x, y〉 is prime. Thus 〈x, y〉 ∈ Ass(Rn).

Plainly 〈y〉 ⊂ Ann(x). Assume F ∈ Ann(x). Then
∑

aijxi+1yjFij = 0. So∑
aijxi+1yjFij ∈ a. So

∑
aijxi+1yjFij = 0. So F ∈ 〈y〉. Thus 〈y〉Ann(x). But

〈y〉 is prime. Thus 〈y〉 ∈ Ass(Rn). So 〈x, y〉 ia an embedded prime of Rn. Thus
(23.10) implies Rn does not satisfy (S1).

Exercise (23.31) . — Let R be a ring, a an ideal, M a Noetherian module with
M/aM -= 0, and x ∈ a− z.div(M). Show depth(a, M/xM) = depth(a, M)− 1.

Exercise (23.32) . — Let R be a ring, M a nonzero Noetherian semilocal mod-
ule, and x ∈ rad(M) − z.div(M). Show that depth(M) = dim(M) if and only if
depth(M/xM) = dim(M/xM).

Exercise (23.33) . — Let R be a ring, R′ an algebra, and N a nonzero R′-module
that’s a Noetherian R-module. Assume N is semilocal over R (or equivalently by
(21.20)(5), semilocal over R′). Show depthR(N) = depthR′(N).
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Proposition (23.34). — Let R→ R′ be a map of rings, a ⊂ R an ideal, and M an
R-module with M/aM -= 0. Set M ′ := M ⊗R R′. Assume R′ is faithfully flat over
R, and M and M ′ are Noetherian. Then depth(aR′, M ′) = depth(a, M).

Proof: By (23.28), there is a maximal M -sequence x1, . . . , xr in a. For all i, set
Mi := M/〈x1, . . . , xi〉M and M ′

i := M ′/〈x1, . . . , xi〉M ′. By (8.10), we have

M ′/aM ′ = M/aM ⊗R R′ and M ′
i = Mi ⊗R R′.

SoM ′/aM ′ -= 0 by faithful flatness. Hence x1, . . . , xr is anM ′-sequence by (23.26).
As x1, . . . , xr is maximal, a ⊂ z.div(Mr). So HomR(R/a, Mr) -= 0 by (17.20).

So HomR(R/a, Mr)⊗R R′ -= 0 by faithful flatness. But (9.10) and (8.9) yield

HomR(R/a, Mr)⊗R R′ ↪→ HomR(R/a, M ′
r) = HomR′(R′/aR′, M ′

r).

So HomR′(R′/aR′,M ′
r) -= 0. So aR′ ⊂ z.div(M ′

r) by (17.20). So x1, . . . , xr is a
maximal M ′-sequence in aR′. Thus (23.29) yields the assertion. !

Lemma (23.35). — Let R be a ring, a an ideal, M a nonzero Noetherian module,
x ∈ rad(M)− z.div(M). Assume a ⊂ z.div(M). Set M ′ := M/xM . Then there is
p ∈ Ass(M ′) with p ⊃ a.

Proof: Set a′ := Ann(M) and q := a + a′. Given any a ∈ a, there’s a nonzero
m ∈M with am = 0. So given any a′ ∈ a′, also (a+a′)m = 0. Thus q ⊂ z.div(M).
Set R′ := R/a′. Then R′ is Noetherian by (16.16). Set N := R/q. Then N is a

quotient of R′. Thus N is Noetherian.
Set H := Hom(N,M). Then H is Noetherian by (16.37). Also Supp(N) = V(q)

by (13.4)(3). But q ⊂ z.div(M). So H -= 0 by (17.20). Further, a′ ⊂ Ann(H); so
rad(M) ⊂ rad(H). So Nakayama’s Lemma (10.6) yields H/xH -= 0.

As 0 → M
µx−−→ M → M ′ → 0 is exact, so is 0 → H

µx−−→H → Hom(N, M ′) by
(5.11). Hence, H/xH ⊂ Hom(N, M ′). So Hom(N, M ′) -= 0. Thus (17.20) yields
p ∈ Ass(M ′) with p ⊃ q ⊃ a. !

Lemma (23.36). — Let R be a ring, M a nonzero Noetherian module, p0 in
Ass(M), and p0 ! · · · ! pr a chain of primes. Assume that there is no prime
p with pi−1 ! p ! pi for any i. Then depth(pr, M) ≤ depth(Mpr ) ≤ r.

Proof: If r = 0, then p0 ⊂ z.div(M). So depth(p0, M) = 0, as desired. Induct
on r. Assume r ≥ 1. As p0 ∈ Ass(M), we have pr ∈ Supp(M) by (17.13);
so Mpr -= 0. So Nakayama’s Lemma (10.6) yields Mpr/prMpr -= 0. Further,
depth(pr, M) ≤ depth(Mpr ) by (23.27)(2). So localizing at pr, we may assume R
is local, pr is the maximal ideal, and M = Mpr . Then depth(pr, M) = depth(Mpr ).

Let x1, . . . , xs be a maximal M -sequence in pr−1. Then as pr−1 ⊂ pr, clearly
M/pr−1M -= 0. So s = depth(pr−1, M) by (23.29). So by induction s ≤ r − 1.
Set Ms := M/〈x1, . . . , xs〉M . Then pr−1 ⊂ z.div(Ms) by maximality.

Suppose pr ⊂ z.div(Ms). Then x1, . . . , xs is maximal in pr. So s = depth(M) by
(23.29), as desired.

Suppose instead pr -⊂ z.div(Ms). Then there’s x ∈ pr−z.div(Ms). So x1, . . . , xs, x
is an M -sequence in pr. By (23.35), there is p ∈ Ass(Ms/xMs) with p ⊃ pr−1.
But p = Ann(m) for some m ∈ Ms/xMs, so x ∈ p. Hence pr−1 ! p ⊂ pr. Hence,
by hypothesis, p = pr. Hence x1, . . . , xs, x is maximal in pr. So (23.29) yields
s+ 1 = depth(M). Thus depth(M) ≤ r, as desired. !
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Theorem (23.37) (Unmixedness). — Let R be a ring, M a nonzero Noetherian
semilocal module. Assume depth(M) = dim(M). Then M has no embedded primes,
and all maximal chains of primes in Supp(M) are of length dim(M).

Proof: Given p0 ∈ Ass(M), take any maximal chain of primes p0 ! · · · ! pr.
Then pr is a maximal ideal in Supp(M). So pr ⊃ rad(M) by (13.4)(4). So
(23.29) yields depth(M) ≤ depth(pr,M). But (23.36) yields depth(pr,M) ≤ r.
Also depth(M) = dim(M). Moreover, r ≤ dim(M) by definition (21.1). So
r = dim(M). Hence p0 is minimal. Thus M has no embedded primes.

Given any maximal chain of primes p0 ! · · · ! pr in Supp(M), necessarily p0 is
minimal. So p0 ∈ Ass(M) by (17.14). Thus, as above, r = dim(M), as desired. !

Proposition (23.38). — Let R be a ring, M a nonzero Noetherian semilocal mod-
ule, and x1, . . . , xn ∈ rad(M). Set Mi := M/〈x1, . . . , xi〉M for all i. Assume
depth(M) = dim(M). Then x1, . . . , xn is M -regular if and only if it is part of a
sop; if so, then depth(Mi) = dim(Mi) for all i.

Proof: Assume x1, . . . , xn is M -regular. Then depth(Mi) = dim(Mi) for all i by
(23.32) and (23.4.1) applied inductively. Moreover, x1, . . . , xn can be extended
to a maximal M -sequence by (23.29); so assume it is already maximal. Then
depth(Mn) = 0. Hence dim(Mn) = 0. Thus x1, . . . , xn is a sop.

Conversely, assume x1, . . . , xn is part of a sop x1, . . . , xs. Induct on n. If n is
0, there is nothing to prove. Assume n ≥ 1. By induction x1, . . . , xn−1 is M -
regular. So as above, depth(Mn−1) = dim(Mn−1). Thus, by (23.37), Mn−1 has no
embedded primes, and dim(R/p) = dim(Mn−1) for all minimal primes p of Mn−1.

However, dim(Mn) = dim(Mn−1)− 1 by (21.25). Also Mn
∼−→Mn−1/xnMn−1

by (23.4.1). Hence xn lies in no minimal prime of Mn−1 by (21.5). But Mn−1

has no embedded primes. So xn /∈ p for all p ∈ Ass(Mn−1). So xn /∈ z.div(Mn−1)
by (17.12). Thus x1, . . . , xn is M -regular. !

Proposition (23.39). — Let R be a ring, M a Noetherian semilocal module, p in
Supp(M). If depth(M) = dim(M), then depth(p,M) = depth(Mp) = dim(Mp).

Proof: Set s := depth(p, M). Induct on s. Assume s = 0. Then p ⊂ z.div(M).
So p lies in some q ∈ Ass(M) by (17.20). But q is minimal in Supp(M) by (23.37).
So q = p. Hence dim(Mp) = 0. Thus (23.5)(3) yields depth(Mp) = dim(Mp) = 0.

Assume s ≥ 1. Then there’s x ∈ p − z.div(M). Set M ′ := M/xM . Then M ′

is Noetherian and semilocal. Now, Mp -= 0. So (10.6) yields Mp

/
pMp -= 0. But

Mp

/
pMp = (M/pM)p by (12.15). So M/pM -= 0. Set s′ := depth(p,M ′). Thus

s′ = s− 1 by (23.31), and depth(M ′) = dim(M ′) by (23.32).
Assume s ≥ 1. Then there is x ∈ p − z.div(M). Set M ′ := M/xM , and

set s′ := depth(p,M ′). As Mp -= 0, also Mp

/
pMp -= 0 owing to (10.6). But

Mp

/
pMp = (M/pM)p by (12.15). So M/pM -= 0. Thus s′ = s − 1 by (23.31),

and depth(M ′) = dim(M ′) by (23.32).
Further, M ′

p = Mp/xMp by (12.15). But x ∈ p. So M ′
p -= 0 by Nakayama’s

Lemma (10.6). Thus p ∈ Supp(M ′). So by induction, depth(M ′
p) = dim(M ′

p) = s′.

As x /∈ z.div(M), also x/1 /∈ z.div(Mp) by (23.27)(1). But x/1 ∈ pRp and
pRp = rad(Mp). Hence depth(Mp) = dim(Mp) by (23.32). Finally, dim(Mp) = s
by (21.5). !
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Exercise (23.40) . — Let R be a ring, a an ideal, and M a Noetherian module
with M/aM -= 0. Find a maximal ideal m ∈ Supp(M/aM) with

depth(a,M) = depth(am, Mm).

Definition (23.41). — Let R be a ring. A nonzero Noetherian module M is called
Cohen–Macaulay if depth(Mm) = dim(Mm) for all maximal ideals m ∈ Supp(M).

It’s equivalent that depth(m,M) = dim(Mm) for all m by (23.40) with a := m.
It’s equivalent that Mp be a Cohen–Macaulay Rp-module for all p ∈ Supp(M),

since if p lies in the maximal ideal m, then Mp is the localization of Mm at the prime
ideal pRm by (11.34), and hence Mp is Cohen–Macaulay if Mm is by (23.39).

The ring R is called Cohen–Macaulay if R is so as an R-module.

Exercise (23.42) . — Let R be a ring, and M a nonzero Noetherian semilocal
module. Set d := dim(M). Show depth(M) = d if and only if M is Cohen–
Macaulay and dim(Mm) = d for all maximal m ∈ Supp(M).

Proposition (23.43). — Let R be a ring, and M a module. Then M is Cohen–
Macaulay if and only if the polynomial module M [X] is so over R[X].

Proof: First, assume M [X] is Cohen–Macaulay. Given m ∈ Supp(M) maximal,
set M := mR[X] + 〈X〉. Then M is maximal in R[X] and M ∩ R = m by (2.32).
So M ∈ Supp(M [X]) by (13.49) and (8.31). Thus M [X]M is Cohen–Macaulay.

Form the ring map ϕ : R[X]→ R with ϕ(X) = 0, and viewM as an R[X]-module
via ϕ. Then ϕ(M) = m. So MM = Mm by (12.29)(3).

There is a unique R[X]-map β : M [X] → M with β|M = 1M by (4.18)(1).
Plainly Ker(β) = XM [X], and β is surjective. So M [X]

/
XM [X] ∼−→ M . Hence

M [X]M
/
XM [X]M = MM. But X /∈ z.div(M [X]M). So MM is Cohen–Macaulay

over R[X]M by (23.32). But MM = Mm. So Mm is Cohen–Macaulay over Rm

owing to (23.33) and (21.20)(1) with R := R[X]M and R′ := Rm. Thus M is
Cohen–Macaulay over R.

Conversely, assume M is Cohen–Macaulay over R. Given a maximal ideal M in
Supp(M [X]), set m := M∩R. Then M [X]M = (M [X]m)M by (12.29)(1)(3). Also
M [X]mMm[X] by (12.28). So m ∈ Supp(M). So Mm is Cohen–Macaulay over Rm.
Thus, to show M [X]M is Cohen–Macaulay over R[X]M, replace R by Rm and M
by Mm, so that R is local with maximal ideal m. Set k := R/m.

Note R[X]/mR[X] = k[X] by (1.16). Also, M
/
mR[X] is maximal in k[X], so

contains a nonzero polynomial F . As k is a field, we may take F monic. Lift F to
a monic polynomial F ∈M. Set B := R[X]

/
〈F 〉 and n := degF . Then B is a free

R-module of rank n by (10.15).
Set N := M [X]

/
F ·M [X]. Then N = B ⊗R[X] M [X] by (8.27)(1). But (8.31)

yields M [X] = R[X]⊗R M . So N = B ⊗R M by (8.9). Thus N = M⊕n.
Plainly Supp(N) = Supp(M). Hence dim(N) = dim(M). Now, given a sequence

x1, . . . , xn ∈ m, plainly it’s an N -sequence if and only if it’s an M -sequence. Hence
depth(N) = depth(M). Thus N is Cohen–Macaulay over R, as M is.

Note dimR(N) = dimB(N) by (21.20)(1), and B is semilocal by (21.20)(5).
Note depthR(N) = depthB(N) by (23.33). But N is Cohen–Macaulay over R.
Hence depthB(N) = dimB(N). Thus by (23.42), N is Cohen–Macaulay over B.

Set n := MB. Then Nn is Cohen–Macaulay over Bn as N is Cohen–Macaulay
over B. But Nn = NM by (12.29)(3). So NM is Cohen–Macaulay over R[X]M by
(23.33) and (21.20)(1) with R := R[X]M and R′ := Rm. But NM = M [X]M/F ·

208



Discrete Valuation Rings (23.44)
/
(23.48) App: M -sequences

M [X]M by (12.15). And F is monic, so a nonzerodivisor. So M [X]M is Cohen–
Macaulay over R[X]M by (23.32). Thus M [X] is Cohen–Macaulay over R[X]. !
Definition (23.44). — Let R be a ring, M a module. We call M universally
catenary if, for every finite set of variables X1, . . . , Xn, every quotient of the
R[X1, . . . , Xn]-module M [X1, . . . , Xn] is catenary.

We call R universally catenary if R is so as an R-module.

Theorem (23.45). — A Cohen–Macaulay module M is universally catenary.

Proof: Any quotient of a catenary module is catenary by (15.13). So it suffices
to prove that N := M [X1, . . . , Xn] is catenary over P := R[X1, . . . , Xn] for every
set of variables X1, . . . , Xn.

Given nested primes q ⊂ p in P , the chains of primes from q to p correspond
bijectively to the chain from qPp to pPp. But N is Cohen–Macaulay over P by
(23.43) and induction on n. So Np is catenary over Pp by (23.42). Thus all
maximal chains of primes between q and p have the same length, as desired. !
Example (23.46). — Trivially, a field is Cohen–Macaulay. Plainly, a domain of
dimension 1 is Cohen–Macaulay. By (23.15), a normal domain of dimension 2
is Cohen–Macaulay. Thus these rings are all universally catenary by (23.45). In
particular, we recover (15.14).

Proposition (23.47). — Let A be a regular local ring of dimension n, and M a
finitely generated module. Assume M is Cohen–Macaulay of dimension n. Then
M is free.

Proof: Induct on n. If n = 0, then A is a field by (21.14), and so M is free.
Assume n ≥ 1. Let t ∈ A be an element of a regular system of parameters.

Then A/〈t〉 is regular of dimension n− 1 by (21.16). As M is Cohen–Macaulay of
dimension n, any associated prime q is minimal in A by (23.37); so q = 〈0〉 as A is
a domain by (21.17). Hence t is a nonzerodivisor on M by (17.12). So M/tM is
Cohen–Macaulay of dimension n− 1 by (23.32) and (21.5). Hence by induction,
M/tM is free, say of rank r.

Let k be the residue field of A. Then M ⊗A k = (M/tM)⊗A/〈t〉 k by (8.27)(1).
So r = rank(M ⊗A k).

Set p := 〈t〉. Then Ap is a DVR by (23.6). Moreover, Mp is Cohen–Macaulay
of dimension 1 by (23.39) as depth(〈t〉,M) = 1. So Mp is torsionfree by (23.11).
Therefore Mp is flat by (9.35), so free by (10.12). Set s := rank(Mp).

Let k(p) be the residue field of Ap. Then Mp ⊗Ap k(p) = Mp/tMp by (8.27)(1).
Moreover, Mp/tMp = (M/tM)p by (12.15). So r = s.

Set K := Frac(A). Then Mp ⊗Ap K = M ⊗A K by (12.29)(1). Hence M ⊗A K
has rank r. Thus M is free by (14.23). !
Proposition (23.48). — Let R be a ring, M a module, and x1, . . . , xs ∈ R an
M -sequence. Then x1, . . . , xs is M -quasi-regular.

Proof: Consider the surjection φ : (M/qM)[X1, . . . , Xs] →→ Gq(M) of (21.11),
where q := 〈x1, . . . , xs〉 and the Xi are variables. We have to prove that φ is
bijective. So given a homogeneous polynomial F ∈M [X1, . . . , Xs] of degree r with
F (x1, . . . , xs) ∈ qr+1M , we have to show that the coefficients of F lie in qM .

As F (x1, . . . , xs) ∈ qr+1M , there are homogeneous Fi ∈M [X1, . . . , Xd] of degree
r with F (x1, . . . , xs) =

∑
i xiFi(x1, . . . , xs). Set F ′ :=

∑
i xiFi(X1, . . . , Xs). Then
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F ′ has coefficients in qM . Set F ′′ := F − F ′. If F ′′ has coefficients in qM , then F
does too. Also F ′′ has coefficients in qM , so does F . Also F ′′(x1, . . . , xs) = 0. So
replace F by F ′′.

Induct on s. For s = 1, say F = mXr
1 . Then xr

1m = 0. But x1 is M -regular. So
xr−1
1 m = 0. Thus, by recursion, m = 0.
Assume s > 1. Set r := 〈x1, . . . , xs−1〉. By induction, x1, . . . , xs−1 is M -quasi-

regular; that is, ϕs−1 : (M/rM)[X1, . . . , Xs−1] → Gr(M) is bijective. So Gr,k(M)
is a direct sum of copies of M/rM for all k. But xs is M/rM -regular. So xs is
Gr,k(M)-regular. Consider the exact sequence

0→ Gr,k(M)→M/rk+1M →M/rkM → 0.

Induct on k and apply (23.17) to conclude that xs is M/rkM -regular for all k.
To see that the coefficients of F lie in qM , induct on r. The case r = 0 is trivial.

So assume r > 0. Say

F (X1, . . . , Xs) = G(X1, . . . , Xs−1) +XsH(X1, . . . , Xs),

where G is homogeneous of degree r and H is homogeneous of degree r− 1. Recall
F (x1, . . . , xs) = 0. Hence xsH(x1, . . . , xs) ∈ rrM . But xs is M/rrM -regular.
Hence H(x1, . . . , xs) ∈ rrM ⊂ qrM . So by induction on r, the coefficients of H lie
in qM . Thus it suffices to see that the coefficients of G lie in qM .

SinceH(x1, . . . , xs) ∈ rrM , there is a homogeneous polynomialH ′(X1, . . . , Xs−1)
of degree r with H ′(x1, . . . , xs) = H(x1, . . . , xs). Set

G′(X1, . . . , Xs−1) := G(X1, . . . , Xs−1) + xsH
′(X1, . . . , Xs−1).

Then G′ has degree r, and G′(x1, . . . , xs−1) = 0. So the coefficients of G′ lie in rM
by induction on s. So the coefficients of G lie in qM . So the coefficients of F lie in
qM . Thus x1, . . . , xs is M -quasi-regular. !
Proposition (23.49). — Let R be a ring, M a module, and x1, . . . , xs ∈ R. Set
Mi := M/〈x1, . . . , xi〉M , and set q := 〈x1, . . . , xs〉. Assume that x1, . . . , xs is M -
quasi-regular and that Mi is separated for the q-adic topology for 0 ≤ i ≤ s − 1.
Then x1, . . . , xs is M -regular.

Proof: First, let’s see that x1 is M -regular. Given m ∈ M with x1m = 0, we
have to show m = 0. But

⋂
r≥0 q

rM = 0 as M is separated. So we have to show

m ∈ qrM for all r ≥ 0. Induct on r. Note m ∈ M = q0M . So assume m ∈ qrM .
We have to show m ∈ qr+1M .

As m ∈ qrM , there’s a homogeneous polynomial F ∈ M [X1, . . . , Xs] of degree
r with F (x1, . . . , xs) = m. Consider the map φ : (M/qM)[X1, . . . , Xs] → Gq(M)
of (21.11), where the Xi are variables. As x1, . . . , xs is M -quasi-regular, φ is
bijective. But x1m = 0. Hence X1F has coefficients in qM . But X1F and F have
the same coefficients. Thus m ∈ qr+1M . Thus x1 is M -regular.

Suppose s ≥ 2. Induct on s. Set q1 := 〈x2, . . . , xs〉. Then (4.21) yields
M1/q1M1 = M/qM . Thus M1/q1M1 -= 0. Next, form this commutative diagram:

(M/qM)[X1, . . . , Xs]
ϕs−−−−−→ Gq(M)

ι

8
8ψ

(M1/q1M1)[X2, . . . , Xs]
ϕs−1−−−→ Gq1(M1)

where ι is the inclusion and ψ is induced by the inclusions qr1 ⊂ qr for r ≥ 0. As ι
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and ϕs are injective, so is ϕs−1. Thus x2, . . . , xs is M1-quasi-regular.
Set M1,i := M1/〈x2, . . . , xi〉 for 1 ≤ i ≤ s. Then M1,i = Mi by (4.21) again.

Also q1M1,i = qMi. So M1,i is separated for the q1-adic topology for 1 ≤ i ≤ s− 1.
Hence x2, . . . , xs is M1-regular by induction on s. Thus x1, . . . , xs is M -regular. !

Theorem (23.50). — Let R be a ring, M a Noetherian semilocal module, and
x1, . . . , xs a sop for M . Set q := 〈x1, . . . , xs〉. Then these conditions are equivalent:

(1) e(q,M) = 2(M/qM) . (2) x1, . . . , xs is M -quasi-regular.
(3) x1, . . . , xs is M -regular. (4) M is Cohen–Macaulay.

Proof: First, (1) and (2) are equivalent by (21.12).
Second, (3) implies (2) by (23.48). Conversely, fix i. Set N := 〈x1, . . . , xi〉M .

Set M ′ := M/N and R′ := R/Ann(M ′). Then rad(R′) = rad(M ′)/Ann(M ′) by
(4.1.1). But Ann(M ′) ⊃ Ann(M); so rad(M ′) ⊃ rad(M). But rad(M) ⊃ q. Hence
qR′ ⊂ rad(R′). Hence M ′ is separated for the q-adic topology by (18.35). Thus
owing to (23.49), (2) implies (3). Thus (2) and (3) are equivalent.

Third, (4) implies (3) by y (23.38). Conversely, assume (3). Then s ≤ depth(M).
But depth(M) ≤ dim(M) by (23.5). Also, as x1, . . . , xs is a sop, dim(M) = s by
(21.4). Thus (4) holds. Thus (3) and (4) are equivalent. !

D. Appendix: Exercises

Exercise (23.51) . — Let R be a ring, M a module, and x1, . . . , xn ∈ R. Set
a := 〈x1, . . . , xn〉 and assume M/aM -= 0. For all p ∈ Supp(M)

⋂
V(a), assume

x1/1, . . . xn/1 is Mp-regular. Prove x1, . . . , xn is M -regular.

Exercise (23.52) . — Let R be a ring, M a Noetherian module, x1, . . . , xn an
M -sequence in rad(M), and σ a permutation of 1, . . . , n. Prove that xσ1, . . . , xσn
is an M -sequence too; first, say σ just transposes i and i+ 1.

Exercise (23.53) . — Let R be a ring, a an ideal, and M a Noetherian module.
Let x1, . . . , xr be an M -sequence, and n1, . . . , nr ≥ 1. Prove these two assertions:

(1) xn1
1 , . . . , xnr

r is an M -sequence. (2) depth(a,M) = depth(
√
a,M).

Exercise (23.54) . — Let R be a ring, a an ideal, M a nonzero Noetherian module,
x ∈ R. Assume a ⊂ z.div(M) and a+ 〈x〉 ⊂ rad(M). Show depth(a+ 〈x〉, M) ≤ 1.

Exercise (23.55) . — Let R be a ring, a an ideal, M a nonzero Noetherian module,
x ∈ R. Set b := a+〈x〉. Assume b ⊂ rad(M). Show depth(b,M) ≤ depth(a,M)+1.

Exercise (23.56) . — Let R be a ring, M a nonzero Noetherian module. Given
any proper ideal a, set c(a,M) := min{dimMp | p ∈ Supp(M/aM)}. Prove M is
Cohen–Macaulay if and only if depth(a,M) = c(a,M) for all proper ideals a.

Exercise (23.57) . — Prove that a Noetherian local ring A of dimension r ≥ 1 is
regular if and only if its maximal ideal m is generated by an A-sequence. Prove
that, if A is regular, then A is Cohen–Macaulay and universally catenary.

Exercise (23.58) . — Let R be a ring, and M a nonzero Noetherian semilocal

module. Set m := rad(M). Prove: (1) M̂ is a nonzero Noetherian semilocal R̂-

module, and m̂ = rad(M̂ ); and (2) depthR(M) = depthR(M̂ ) = depthR̂(M̂ ).
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Exercise (23.59) . — Let A be a DVR, t a uniformizing parameter, X a variable.
Set P := A[X]. Set m1 := 〈1− tX〉 and m2 := 〈t,X〉. Prove P is Cohen–Macaulay,
and each mi is maximal with ht(mi) = i.

Set Si := P −mi and T := S1 ∩ S2. Set B := T−1P and ni := miB. Prove B is
semilocal and Cohen–Macaulay, ni is maximal, and dim(Bni) = i.

Exercise (23.60) . — Let R be a ring, M a nonzero Noetherian semilocal module,
and x1, . . . , xm ∈ rad(M). For all i, set Mi := M/〈x1, . . . , xi〉M . Assume that
depth(M) = dim(M) and dim(Mm) = dim(M)−m. For all i, show x1, . . . , xi form
an M -sequence, and depth(Mi) = dim(Mi) = dim(M)− i.

Exercise (23.61) . — Let k be an algebraically closed field, P := k[X1, . . . , Xn] a
polynomial ring, and F1, . . . , Fm ∈ P . Set A := 〈F1, . . . , Fm〉. For all i, j, define
∂Fi/∂Xj ∈ P formally as in (1.18.1). Let A′ be the ideal generated by A and
all the maximal minors of the m by n matrix (∂Fi/∂Xj). Set R := P/A and
R′ := P/A′. Assume dimR = n −m. Show that R is Cohen–Macaulay, and that
R is normal if and only if either R′ = 0 or dimR′ ≤ n−m− 2.
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24. Dedekind Domains

Dedekind domains are defined as the 1-dimensional normal Noetherian do-
mains. We prove they are the Noetherian domains whose localizations at nonzero
primes are discrete valuation rings. Next we prove the Main Theorem of Classi-
cal Ideal Theory: in a Dedekind domain, every nonzero ideal factors uniquely into
primes. Then we prove that a normal domain has a module-finite integral closure
in any finite separable extension of its fraction field by means of the trace pairing
of the extension; in Chapter 26, we do without separability by means of the Krull–
Akizuki Theorem. We conclude that a ring of algebraic integers is a Dedekind
domain and that, if a domain is algebra finite over a field of characteristic 0, then
in the fraction field or in any algebraic extension of it, the integral closure is module
finite over the domain and is algebra finite over the field.

A. Text

Definition (24.1). — A domain R is said to be Dedekind if it is Noetherian,
normal, and of dimension 1.

Example (24.2). — Examples of Dedekind domains include the integers Z, the
Gaussian integers Z

[√
−1

]
, the polynomial ring k[X] in one variable over a field,

and any DVR. Indeed, those rings are PIDs, and every PID R is a Dedekind domain:
R is Noetherian by definition; R is a UFD, so normal by Gauss’s Theorem, (10.21);
and R is of dimension 1 since every nonzero prime is maximal by (2.17).

On the other hand, any local Dedekind domain is a DVR by (23.6).

Example (24.3). — Let d ∈ Z be a square-free integer. Set R := Z+ Zη where

η :=

{
(1 +

√
d)/2 if d ≡ 1 (mod 4);√

d if not.

Then R is the integral closure of Z in Q(
√
d) by [3, Prp. (6.14), p. 412]; so R is

normal by (10.16). Also, dim(R) = dim(Z) by (15.25); so dim(R) = 1. Finally,
R is Noetherian by (16.10) as Z is so and as R := Z+ Zη. Thus R is Dedekind.

Exercise (24.4) . — Let R be a domain, S a multiplicative subset.
(1) Assume dim(R) = 1. Prove dim(S−1R) = 1 if and only if there is a nonzero

prime p of R with p ∩ S = ∅.
(2) Assume dim(R) ≥ 1. Prove dim(R) = 1 if and only if dim(Rp) = 1 for every

nonzero prime p of R.

Exercise (24.5) . — Let R be a Dedekind domain, S a multiplicative subset. Show
that S−1R is Dedekind if there’s a nonzero prime p with p ∩ S = ∅, and that
S−1R = Frac(R) if not.

Proposition (24.6). — Let R be a Noetherian domain, not a field. Then R is a
Dedekind domain if and only if Rp is a DVR for every nonzero prime p.

Proof: If R is Dedekind, then Rp is too by (24.5); so Rp is a DVR by (23.6).
Conversely, suppose Rp is a DVR for every nonzero prime p. Then, trivially, R
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satisfies (R1) and (S2); so R is normal by Serre’s Criterion. Since R is not a field,
dim(R) ≥ 1; whence, dim(R) = 1 by (24.4)(2). Thus R is Dedekind. !
Proposition (24.7). — In a Noetherian domain R of dimension 1, every ideal
a -= 0 has a unique factorization a = q1 · · · qr with the qi primary and their primes
pi distinct; further, {p1, . . . , pr} = Ass(R/a) and qi = aRpi ∩R for each i.

Proof: The Lasker–Noether Theorem, (18.19), yields an irredundant primary
decomposition a =

⋂
qi. Say qi is pi-primary. Then by (18.17) the pi are distinct

and {pi} = Ass(R/a).
The qi are pairwise comaximal for the following reason. Suppose qi + qj lies in a

maximal ideal m. Now, pi :=
√
qi by (18.3)(5); so pni

i ⊂ qi for some ni by (3.38).
Hence pni

i ⊂ m. So pi ⊂ m by (2.23). But 0 -= a ⊂ pi; hence, pi is maximal since
dim(R) = 1. Therefore, pi = m. Similarly, pj = m. Hence i = j. Thus the qi are
pairwise comaximal. So the Chinese Remainder Theorem, (1.21), yields a =

∏
i qi.

As to uniqueness, let a =
∏

qi be any factorization with the qi primary and their
primes pi distinct. The pi are minimal containing a as dim(R) = 1; so the pi lie
in Ass(R/a) by (17.14). By the above reasoning, the qi are pairwise comaximal
and so

∏
qi =

⋂
qi. Hence a =

⋂
qi is an irredundant primary decomposition

by (18.17). So the pi are unique by the First Uniqueness Theorem, (18.18), and
qi = aRpi∩R by the Second Uniqueness Theorem, (18.22), and by (12.12)(3). !
Theorem (24.8) (Main Theorem of Classical Ideal Theory). — Let R be a domain.
Assume R is Dedekind. Then every nonzero ideal a has a unique factorization into
primes p. In fact, if vp denotes the valuation of Rp, then

a =
∏

pvp(a) where vp(a) := min{ vp(a) | a ∈ a }.

Proof: Using (24.7), write a =
∏

qi with the qi primary, their primes pi distinct
and unique, and qi = aRpi ∩R. Then Rpi is a DVR by (24.6). So (23.1.3) yields
aRpi = pmi

i Rpi withmi := min{ vpi(a/s) | a ∈ a and s ∈ R−pi }. But vpi(1/s) = 0.
So vpi(a/s) = vpi(a). Hence mi := vpi(a). Now, pmi

i is primary by (18.11) as pi is
maximal; so pmi

i Rpi ∩R = pmi
i by (18.20). Thus qi = pmi

i . !
Corollary (24.9). — A Noetherian domain R of dimension 1 is Dedekind if and
only if every primary ideal is a power of its radical.

Proof: If R is Dedekind, every primary ideal is a power of its radical by (24.8).
Conversely, given a nonzero prime p, set m := pRp. Then m -= 0. So m -= m2 by

Nakayama’s Lemma. Take t ∈ m − m2. Then m is the only prime containing t, as
dim(Rp) = 1 by (24.4)(2). So tRp is m-primary by (18.11). Set q := tRp ∩ R.
Then q is p-primary by (18.7). So q = pn for some n by hypothesis. But qRp = tRp

by (11.11)(3)(b). So tRp = mn. But t /∈ m2. So n = 1. So Rp is a DVR by (23.6).
Thus R is Dedekind by (24.6). !
Lemma (24.10) (Artin Character). — Let L be a field, G a group, σi : G → L×

distinct homomorphisms. Then the σi are linearly independent over L in the vector
space of set maps σ : G→ L under valuewise addition and scalar multiplication.

Proof: Suppose there’s an equation
∑m

i=1 aiσi = 0 with nonzero ai ∈ L. Take
m ≥ 1 minimal. Now, σi -= 0 as σi : = G→ L×; so m ≥ 2. Since σ1 -= σ2, there’s
an x ∈ G with σ1(x) -= σ2(x). Then

∑m
i=1 aiσi(x)σi(y) =

∑m
i=1 aiσi(xy) = 0 for

every y ∈ G since σi is a homomorphism.
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Set bi := ai
(
1− σi(x)/σ1(x)

)
. Then

∑m
i=1 biσi =

∑m
i=1 aiσi −

1
σ1(x)

∑m
i=1 aiσi(x)σi = 0.

But b1 = 0 and b2 -= 0, contradicting the minimality of m. !

(24.11) (Trace). — Let L/K be a finite Galois field extension. Its trace is this:

tr : L→ K by tr(x) :=
∑
σ∈Gal(L/K) σ(x).

Clearly, tr is K-linear. It is nonzero by (24.10) applied with G := L×.
Consider the symmetric K-bilinear Trace Pairing:

L× L→ K by (x, y) 2→ tr(xy). (24.11.1)

It is nondegenerate for this reason. As tr is nonzero, there is z ∈ L with tr(z) -= 0.
Now, given x ∈ L×, set y := z/x. Then tr(xy) -= 0, as desired.

Lemma (24.12). — Let R be a normal domain, K its fraction field, L/K a finite
Galois field extension, and x ∈ L integral over R. Then tr(x) ∈ R.

Proof: Let xn+ a1xn−1+ · · ·+ an = 0 be an equation of integral dependence for
x over R. Let σ ∈ Gal(L/K). Then

(σx)n + a1(σx)
n−1 + · · ·+ an = 0;

so σx is integral over R. Hence tr(x) is integral over R, and lies in K. Thus
tr(x) ∈ R since R is normal. !

Theorem (24.13) (Finiteness of integral closure). — Let R be a normal Noetherian
domain, K its fraction field, L/K a finite separable field extension, and R′ the
integral closure of R in L. Then R′ is module finite over R, and is Noetherian.

Proof: Let L1 be the Galois closure of L/K, and R′
1 the integral closure of R

in L1. Let z1, . . . , zn ∈ L1 form a K-basis. Using (11.30), write zi = yi/ai with
yi ∈ R′

1 and ai ∈ R. Clearly, y1, . . . , yn form a basis of L1/K contained in R′
1.

Let x1, . . . , xn form the dual basis with respect to the Trace Pairing, (24.11.1),
so that tr(xiyj) = δij . Given b ∈ R′, write b =

∑
cixi with ci ∈ K. Fix j. Then

tr(byj) = tr
(∑

i cixiyj
)
=

∑
i ci tr(xiyj) = cj for each j.

But byj ∈ R′
1. So cj ∈ R by (24.12). Thus R′ ⊂

∑
Rxi. Since R is Noetherian, R′

is module finite over R by definition, and so is Noetherian owing to (16.15). !

Corollary (24.14). — Let R be a Dedekind domain, K its fraction field, L/K a
finite separable field extension. Then the integral closure R′ of R in L is Dedekind.

Proof: First, R′ is module finite over R by (24.13); so R′ is Noetherian by
(16.15). Second, R′ is normal by (10.20). Finally, dim(R′) = dim(R) by (15.25),
and dim(R) = 1 as R is Dedekind. Thus R is Dedekind. !

Theorem (24.15). — A ring of algebraic integers is a Dedekind domain.

Proof: By (24.2), Z is a Dedekind domain; whence, so is its integral closure in
any field that is a finite extension of Q by (24.14). !
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Theorem (24.16) (Noether’s Finiteness of Integral Closure). — Let k be a field of
characteristic 0, and R an algebra-finite domain over k. Set K := Frac(R). Let
L/K be a finite field extension (possibly L = K), and R′ the integral closure of R
in L. Then R′ is module finite over R and is algebra finite over k.

Proof: By the Noether Normalization Lemma, (15.1), R is module finite over
a polynomial subring P . Then P is normal by Gauss’s Theorem, (10.21), and
Noetherian by the Hilbert Basis Theorem, (16.10); also, L/Frac(P ) is a finite field
extension, which is separable as k is of characteristic 0. Thus R′ is module finite
over P by (24.13), and so R′ is plainly algebra finite over k. !

(24.17) (Other cases). — In (24.14), even if L/K is inseparable, the integral
closure R′ of R in L is still Dedekind; see (26.14).

However, Akizuki constructed an example of a DVR R and a finite inseparable
extension L/Frac(R) such that the integral closure of R is a DVR, but is not
module finite over R. The construction is nicely explained in [16, Secs. 9.4(1) and
9.5]. Thus separability is a necessary hypothesis in (24.13).

Noether’s Theorem, (24.16), remains valid in positive characteristic, but the
proof is more involved. See [6, (13.13), p. 297].

B. Exercises

Exercise (24.18) . — Let R be a Dedekind domain, and a, b, c ideals. By first
reducing to the case that R is local, prove that

a ∩ (b+ c) = (a ∩ b) + (a ∩ c),

a+ (b ∩ c) = (a+ b) ∩ (a+ c).

Exercise (24.19) . — Prove that a semilocal Dedekind domain A is a PID. Begin
by proving that each maximal ideal is principal.

Exercise (24.20) . — Let R be a Dedekind domain, and a a nonzero ideal. Prove
(1) R/a is PIR, and (2) a is generated by two elements.

Exercise (24.21) . — Let R be a Dedekind domain, and M a finitely generated
module. Assume M is torsion; that is, T (M) = M . Show M %

∑
i,j R/p

nij

i for
unique nonzero primes pi and unique nij > 0.

Exercise (24.22) . — Let R be a Dedekind domain; X a variable; F, G ∈ R[X].
Show c(FG) = c(F )c(G).

Exercise (24.23) . — Let R be a Dedekind domain; x1, . . . , xn ∈ R; and a1, . . . , an
ideals. Prove that the system of congruences x ≡ xi mod ai for all i has a solution
x ∈ R if and only if xi ≡ xj mod (ai + aj) for i -= j. In other words, prove the
exactness (in the middle) of the sequence of R-modules

R
ϕ−→

⊕n
i=1 R/ai

ψ−→
⊕

i<j R/(ai + aj)

where ϕ(y) is the vector of residues of y in the R/ai and where ψ(y1, . . . , yn) is the
vector of residues of the yi − yj in R/(ai + aj).
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Exercise (24.24) . — Let k be an algebraically closed field, P := k[X1, . . . , Xn] a
polynomial ring, and F1, . . . , Fm ∈ P . Set P := 〈F1, . . . , Fm〉. For all i, j, define
∂Fi/∂Xj ∈ P formally as in (1.18.1). Let A be the ideal generated by P and all
the n−1 by n−1 minors of the m by n matrix (∂Fi/∂Xj). Set R := P/P. Assume
R is a domain of dimension 1. Show R is Dedekind if and only if 1 ∈ A.
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25. Fractional Ideals

A fractional ideal is defined to be a submodule of the fraction field of a domain.
A fractional ideal is called invertible if its product with another fractional ideal is
equal to the given domain. We characterize the invertible fractional ideals as those
that are nonzero, finitely generated, and principal locally at every maximal ideal.
We prove that, in a Dedekind domain, any two nonzero ordinary ideals have an
invertible fractional ideal as their quotient.

We characterize Dedekind domains as the domains whose ordinary ideals are,
equivalently, all invertible, all projective, or all flat of finite rank. Further, we
prove a Noetherian domain is Dedekind if and only if every torsionfree module is
flat. Finally, we prove the ideal class group is equal to the Picard group; the
former is the group of invertible fractional ideals modulo those that are principal,
and the latter is the group, under tensor product, of isomorphism classes of modules
local free of rank 1.

A. Text

Definition (25.1). — Let R be a domain, and set K := Frac(R). We call an R-
submodule M of K a fractional ideal. We call M principal if there is an x ∈ K
with M = Rx.

Given another fractional ideal N , form these two new fractional ideals:

MN :=
{∑

xiyi
∣∣ xi ∈M and yi ∈ N

}
and (M : N) := { z ∈ K | zN ⊂M }.

We call them the product of M and N and the quotient of M by N .

Exercise (25.2) . — Let R be a domain, M and N nonzero fractional ideals. Prove
that M is principal if and only if there exists some isomorphism M % R. Construct
the following canonical surjection and canonical isomorphism:

π : M ⊗N →→MN and ϕ : (M : N) ∼−→ Hom(N,M).

Proposition (25.3). — Let R be a domain, and K := Frac(R). Consider these
finiteness conditions on a fractional ideal M :

(1) There exist ordinary ideals a and b with b -= 0 and (a : b) = M .
(2) There exists an x ∈ K× with xM ⊂ R.
(3) There exists a nonzero x ∈ R with xM ⊂ R.
(4) M is finitely generated.

Then (1), (2), and (3) are equivalent, and they are implied by (4). Further, all four
conditions are equivalent for every M if and only if R is Noetherian.

Proof: Assume (1) holds. Take any nonzero x ∈ b. Given m ∈ M , clearly
xm ∈ a ⊂ R; so xM ⊂ R. Thus (2) holds.

Assume (2) holds. Write x = a/b with a, b ∈ R and a, b -= 0. Then aM ⊂ bR ⊂ R.
Thus (3) holds.

If (3) holds, then xM and xR are ordinary, and M = (xM : xR); thus (1) holds.
Assume (4) holds. Say y1/x1, . . . , yn/xn ∈ K× generate M with xi, yi ∈ R. Set

x :=
∏

xi. Then x -= 0 and xM ⊂ R. Thus (3) holds.
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Assume (3) holds and R is Noetherian. Then xM ⊂ R. So xM is finitely
generated, say by y1, . . . , yn. Then y1/x, . . . , yn/x generate M . Thus (4) holds.

Finally, assume all four conditions are equivalent for every M . If M is ordinary,
then (3) holds with x := 1, and so (4) holds. Thus R is Noetherian. !
Lemma (25.4). — Let R be a domain, M and N fractional ideals. Let S be a
multiplicative subset. Then

S−1(MN) = (S−1M)(S−1N) and S−1(M : N) ⊂ (S−1M : S−1N),

with equality if N is finitely generated.

Proof: Given x ∈ S−1(MN), write x = (
∑

mini)/s with mi ∈M , with ni ∈ N ,
and with s ∈ S. Then x =

∑
(mi/s)(ni/1), and so x ∈ (S−1M)(S−1N). Thus

S−1(MN) ⊂ (S−1M)(S−1N).
Conversely, given x ∈ (S−1M)(S−1N), say x =

∑
(mi/si)(ni/ti) with mi ∈ M

and ni ∈ N and si, ti ∈ S. Set s :=
∏

si and t :=
∏

ti. Then

x =
∑

(mini/siti) =
∑

m′
in

′
i/st ∈ S−1(MN)

with m′
i ∈M and n′

i ∈ N . Thus S−1(MN) ⊃ (S−1M)(S−1N), so equality holds.
Given z ∈ S−1(M : N), write z = x/s with x ∈ (M : N) and s ∈ S. Given

y ∈ S−1N , write y = n/t with n ∈ N and t ∈ S. Then z ·n/t = xn/st and xn ∈M
and st ∈ S. So z ∈ (S−1M : S−1N). Thus S−1(M : N) ⊂ (S−1M : S−1N).

Conversely, say N is generated by n1, . . . , nr. Given z ∈ (S−1M : S−1N), write
zni/1 = mi/si with mi ∈ M and si ∈ S. Set s :=

∏
si. Then sz · ni ∈ M . So

sz ∈ (M : N). Hence z ∈ S−1(M : N), as desired. !
Definition (25.5). — Let R be a domain. We call a fractional ideal M locally
principal if, for every maximal ideal m, the localization Mm is principal over Rm.

Exercise (25.6) . — Let R be a domain, M and N fractional ideals. Prove that
the map π : M ⊗N →MN of (25.2) is an isomorphism if M is locally principal.

(25.7) (Invertible fractional ideals). — Let R be a domain. A fractional ideal M
is said to be invertible if there is some fractional ideal M−1 with MM−1 = R.

For example, a nonzero principal ideal Rx is invertible, as (Rx)(R · 1/x) = R.

Proposition (25.8). — Let R be a domain, M an invertible fractional ideal. Then
M−1 is unique; in fact, M−1 = (R : M).

Proof: Clearly M−1 ⊂ (R : M) as MM−1 = R. But, if x ∈ (R : M), then
x · 1 ∈ (R : M)MM−1 ⊂M−1, so x ∈M−1. Thus (R : M) ⊂M−1, as desired. !
Exercise (25.9) . — Let R be a domain, M and N fractional ideals. Prove this:

(1) Assume N is invertible. Then (M : N) = M ·N−1.
(2) Both M and N are invertible if and only if their product MN is. If so, then

(MN)−1 = N−1M−1.

Lemma (25.10). — An invertible ideal is finitely generated and nonzero.

Proof: Let R be the domain, M the ideal. Say 1 =
∑

mini with mi ∈ M and
ni ∈ M−1. Let m ∈ M . Then m =

∑
mimni. But mni ∈ R as m ∈ M and

ni ∈M−1. So the mi generate M . Trivially, M -= 0. !
Lemma (25.11). — Let A be a local domain, M a fractional ideal. Then M is
invertible if and only if M is principal and nonzero.
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Proof: Assume M is invertible. Say 1 =
∑

mini with mi ∈ M and ni ∈ M−1.
As A is local, A − A× is an ideal. So there’s a j with mjnj ∈ A×. Let m ∈ M .
Then mnj ∈ A. Set a := (mnj)(mjnj)−1 ∈ A. Then m = amj . Thus M = Amj .

Conversely, if M is principal and nonzero, then it’s invertible by (25.7). !
Exercise (25.12) . — Let R be a UFD. Show that a fractional ideal M is invertible
if and only if M is principal and nonzero.

Theorem (25.13). — Let R be a domain, M a fractional ideal. Then M is invert-
ible if and only if M is finitely generated and locally principal.

Proof: Say MN = R. Then M is finitely generated and nonzero by (25.10).
Let S be a multiplicative subset. Then (S−1M)(S−1N) = S−1R by (25.4). Let m
be a maximal ideal. Then, therefore, Mm is an invertible fractional ideal over Rm.
Thus Mm is principal by (25.11), as desired.

Conversely, set a := M(R : M) ⊂ R. Assume M is finitely generated. Then
(25.4) yields am = Mm(Rm : Mm). In addition, assume Mm is principal and
nonzero. Then (25.7) and (25.8) yield am = Rm. Hence (13.8) yields a = R, as
desired. !
Theorem (25.14). — Let R be a Dedekind domain, a, b nonzero ordinary ideals,
M := (a : b). Then M is invertible, and has a unique factorization into powers of
primes p: if vp denotes the valuation of Rp and if pv := (p−1)−v when v < 0, then

M =
∏

pvp(M) where vp(M) := min{ vp(x) | x ∈M }.

Further, vp(M) = min{vp(xi)} if the xi generate M .

Proof: First, R is Noetherian. So (25.2) yields that M is finitely generated and
that there is a nonzero x ∈ R with xM ⊂ R. Also, each Rp is a DVR by (24.6).
So xMp is principal by (23.1.3). Thus M is invertible by (25.13).

The Main Theorem of Classical Ideal Theory, (24.8), yields xM =
∏

pvp(xM)

and xR =
∏

pvp(x). But vp(xM) = vp(x) + vp(M). Thus (25.9) yields

M = (xM : xR) =
∏

pvp(x)+vp(M) ·
∏

p−vp(x) =
∏

pvp(M).

Further, given x ∈M , say x =
∑n

i=1 aixi with ai ∈ R. Then (23.1.1) yields

vp(x) ≥ min{vp(aixi)} ≥ min{vp(xi)}
by induction on n. Thus vp(M) = min{vp(xi)}. !
Exercise (25.15) . — Show that it is equivalent for a ring R to be either a PID, a
1-dimensional UFD, or a Dedekind domain and a UFD.

(25.16) (Invertible modules). — Let R be an arbitrary ring. We call a module M
invertible if there is another module N with M ⊗N % R.

Up to (noncanonical) isomorphism, N is unique if it exists: if N ′⊗M % R, then

N = R⊗N % (N ′ ⊗M)⊗N = N ′ ⊗ (M ⊗N) % N ′ ⊗R = N ′.

Exercise (25.17) . — Let R be an ring, M an invertible module. Prove that M is
finitely generated, and that, if R is local, then M is free of rank 1.

Exercise (25.18) . — Show these conditions on an R-module M are equivalent:

(1) M is invertible.
(2) M is finitely generated, and Mm % Rm at each maximal ideal m.
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(3) M is locally free of rank 1.

Assuming these conditions hold, show that M ⊗Hom(M,R) = R.

Proposition (25.19). — Let R be a domain, M a fractional ideal. Then the fol-
lowing conditions are equivalent:

(1) M is an invertible fractional ideal.
(2) M is an invertible abstract module.
(3) M is a nonzero projective abstract module.

Proof: Assume (1). Then M is locally principal by (25.13). So (25.6) yields
M ⊗M−1 = MM−1 by (1). But MM−1 = 1. Thus (2) holds.

If (2) holds, then M is locally free of rank 1 by (25.18); so (13.15) yields (3).
Finally, assume (3). By (5.16), there’s an M ′ with M ⊕ M ′ % R⊕Λ. Let

ρ : R⊕Λ →M be the projection, and set xλ := ρ(eλ) where eλ is the standard basis
vector. Define ϕλ : M ↪→ R⊕Λ → R to be the composition of the injection with the
projection ϕλ on the λth factor. Then given x ∈M , we have ϕλ(x) = 0 for almost
all λ and x =

∑
λ∈Λ ϕλ(x)xλ.

Fix a nonzero y ∈M . For λ ∈ Λ, set qλ := 1
yϕλ(y) ∈ Frac(R). Set N :=

∑
Rqλ.

Given any nonzero x ∈ M , say x = a/b and y = c/d with a, b, c, d ∈ R. Then
a, c ∈ M ; whence, adϕλ(y)ϕλ(ac) = bcϕλ(x). Thus xqλ = ϕλ(x) ∈ R. Hence
M · N ⊂ R. But y =

∑
ϕλ(y)yλ; so 1 = yλqλ. Thus M · N = R. Thus (1)

holds. !
Theorem (25.20). — Let R be a domain. Then the following are equivalent:

(1) R is a Dedekind domain or a field.
(2) Every nonzero ordinary ideal a is invertible.
(3) Every nonzero ordinary ideal a is projective.
(4) Every nonzero ordinary ideal a is finitely generated and flat.

Proof: Assume R is not a field; otherwise, (1)–(4) hold trivially.
If R is Dedekind, then (25.14) yields (2) since a = (a : R).
Assume (2). Then a is finitely generated by (25.10). Thus R is Noetherian. Let

p be any nonzero prime of R. Then by hypothesis, p is invertible. So by (25.13),
p is locally principal. So Rp is a DVR by (23.6). Hence R is Dedekind by (24.6).
Thus (1) holds. Thus (1) and (2) are equivalent.

By (25.19), (2) and (3) are equivalent. But (2) implies that R is Noetherian by
(25.10). Thus (3) and (4) are equivalent by (16.15) and (13.15). !
Theorem (25.21). — Let R be a Noetherian domain, but not a field. Then R is
Dedekind if and only if every torsionfree module is flat.

Proof: (Of course, as R is a domain, every flat module is torsionfree by (9.35).)
Assume R is Dedekind. Let M be a torsionfree module, m a maximal ideal.

Let’s see that Mm is torsionfree over Rm. Let z ∈ Rm be nonzero, and say z = x/s
with x, s ∈ R and s /∈ m. Then µx : M → M is injective as M is torsionfree. So
µx : Mm → Mm is injective by the Exactness of Localization. But µx/s = µxµ1/s

and µ1/s is invertible. So µx/s is injective. Thus Mm is torsionfree.
Since R is Dedekind, Rm is a DVR by (24.6), so a PID by (24.1). Hence Mm

is flat over Rm by (9.35). But m is arbitrary. Thus by (13.12), M is flat over R.
Conversely, assume every torsionfree module is flat. In particular, every nonzero

ordinary ideal is flat. But R is Noetherian. Thus R is Dedekind by (25.20). !
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(25.22) (The Picard Group). — Let R be a ring. We denote the collection of
isomorphism classes of invertible modules by Pic(R). By (25.17), every invertible
module is finitely generated, so isomorphic to a quotient of Rn for some integer n.
Hence, Pic(R) is a set. Further, Pic(R) is, clearly, a group under tensor product
with the class of R as identity. We call Pic(R) the Picard Group of R.

Assume R is a domain, not a field. Set K := Frac(R). Given an invertible
abstract module M , we can embed M into K as follows. Recall S0 := R − 0.
Form the canonical map M → S−1

0 M . It is injective owing to (12.12) if the
multiplication map µx : M →M is injective for any x ∈ S0. Let’s prove it is.

Let m be a maximal ideal. Clearly, Mm is an invertible Rm-module. So Mm % Rm

by (25.17). Hence µx : Mm →Mm is injective. Therefore, µx : M →M is injective
by (13.9). Thus M embeds canonically into S−1

0 M . Now, S−1
0 M is a localization

of Mm, so is a 1-dimensional K-vector space, again as Mm % Rm. Choose an
isomorphism S−1

0 M % K. It yields the desired embedding of M into K.
Hence, (25.19) implies M is also invertible as a fractional ideal.
The invertible fractional ideals N , clearly, form a group F(R). Sending an N to

its isomorphism class yields a map κ : F(R) → Pic(R) by (25.16). By the above,
κ is surjective. Further, κ is a group homomorphism by (25.6). It’s not hard to
check that its kernel is the group P(R) of principal ideals and that P(R) = K×/R×.
We call F(R)/P(R) the Ideal Class Group of R. Thus F(R)/P(R) = Pic(R); in
other words, the Ideal Class Group is canonically isomorphic to the Picard Group.

Every invertible fractional ideal is, by (25.13), finitely generated and nonzero, so
of the form (a : b) where a and b are nonzero ordinary ideals by (25.3). Conversely,
by (25.14) and (25.20), every fractional ideal of this form is invertible if and only
if R is Dedekind. In fact, then F(R) is the free abelian group on the prime ideals.
Further, then Pic(R) = 0 if and only if R is UFD, or equivalently by (25.15), a
PID. See [3, Ch. 11, Sects. 10–11, pp. 424–437] for a discussion of the case in which
R is a ring of quadratic integers, including many examples where Pic(R) -= 0.

B. Exercises

Exercise (25.23) . — Let R be a Dedekind domain, S a multiplicative subset.
Prove M 2→ S−1M induces a surjective group map Pic(R)→→ Pic(S−1R).
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26. Arbitrary Valuation Rings

A valuation ring is a subring of a field such that the reciprocal of any element
outside the subring lies in it. We prove valuation rings are normal local domains.
They are maximal under domination of local rings; that is, one contains the
other, and the inclusion map is a local homomorphism. Given any domain, its
normalization is equal to the intersection of all the valuation rings containing it.
Given a 1-dimensional Noetherian domain and a finite extension of its fraction field
with a proper subring containing the domain, that subring too is 1-dimensional and
Noetherian; this is the Krull–Akizuki Theorem. So normalizing a Dedekind domain
in any finite extension of its fraction field yields another Dededind domain.

A. Text

Definition (26.1). — A proper subring V of a field K is said to be a valuation
ring of K if, whenever z ∈ K − V , then 1/z ∈ V .

Proposition (26.2). — Let V be a valuation ring of a field K, and set

m := {1/z | z ∈ K − V } ∪ {0}.
Then V is local, m is its maximal ideal, and K is its fraction field.

Proof: Clearly m = V −V ×. Let’s show m is an ideal. Take a nonzero a ∈ V and
nonzero x, y ∈ m. Suppose ax /∈ m. Then ax ∈ V ×. So a(1/ax) ∈ V . So 1/x ∈ V .
So x ∈ V ×, a contradiction. Thus ax ∈ m. Now, by hypothesis, either x/y ∈ V or
y/x ∈ V . Say y/x ∈ V . Then 1 + (y/x) ∈ V . So x + y = (1 + (y/x))x ∈ m. Thus
m is an ideal. Hence V is local and m is its maximal ideal by (3.5). Finally, K is
its fraction field, because whenever z ∈ K − V , then 1/z ∈ V . !
Exercise (26.3) . — Prove that a valuation ring V is normal.

Lemma (26.4). — Let R be a domain, a an ideal, K := Frac(R), and x ∈ K×.
Then either 1 /∈ aR[x] or 1 /∈ aR[1/x].

Proof: Assume 1 ∈ aR[x] and 1 ∈ aR[1/x]. Then there are equations

1 = a0 + · · ·+ anx
n and 1 = b0 + · · ·+ bm/xm with all ai, bj ∈ a.

Assume n, m minimal and m ≤ n. Multiply through by 1− b0 and anxn, getting

1− b0 = (1− b0)a0 + · · ·+ (1− b0)anx
n and

(1− b0)anx
n = anb1x

n−1 + · · ·+ anbmxn−m.

Combine the latter equations, getting

1− b0 = (1− b0)a0 + · · ·+ (1− b0)an−1x
n−1 + anb1x

n−1 + · · ·+ anbmxn−m.

Simplify, getting an equation of the form 1 = c0+ · · ·+cn−1xn−1 with ci ∈ a, which
contradicts the minimality of n. !
(26.5) (Domination). — Let A, B be local rings, and m, n their maximal ideals.
We say B dominates A if B ⊃ A and n ∩ A = m; in other words, the inclusion
map ϕ : A ↪→ B is a local homomorphism.
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Proposition (26.6). — Let K be a field, A a local subring. Then A is dominated
by a valuation ring V of K with algebraic residue field extension.

Proof: Let m be the maximal ideal of A. There is an algebraic closure Ω of A/m
by (14.13). Form the set S of pairs (R, σ) with A ⊂ R ⊂ K and σ : R → Ω an
extension of the quotient map A → A/m. Order S as follows: (R, σ) ≤ (R′, σ′) if
R ⊂ R′ and σ′|R = σ. Given a totally ordered subset {(Rλ, σλ)}, set B :=

⋃
Rλ

and define τ : B → Ω by τ(x) := σλ(x) if x ∈ Rλ. Plainly τ is well defined, and
(B, τ) ∈ S. Thus by Zorn’s Lemma, S has a maximal element, say (V, ρ).
Set M := Ker(ρ). Let’s see that V is local with M as maximal ideal. Indeed,

V ⊂ VM and ρ extends to VM as ρ(V −M) ⊂ Ω×. Thus maximality yields V = VM.
Let’s see that V is a valuation ring of K. Given x ∈ K, set V ′ := V [x]. First,

suppose 1 /∈ MV ′. Let’s see x ∈ V . Then MV ′ is contained in a maximal ideal
M′ of V ′. So M′ ∩ V ⊃ M, but 1 /∈ M′. So M′ ∩ V = M. Set k := V/M and
k′ := V ′/M′. Then k′ = k[x′] where x′ is the residue of x. But k′ is a field, not a
polynomial ring. So x′ is algebraic over k. Thus k′/k is algebraic by (10.17)(2).

Let ρ : k ↪→ Ω be the embedding induced by ρ. Then ρ extends to an embedding
ρ′ : k′ ↪→ Ω by (14.12). Composing with the quotient map V ′ → k′ yields a
map ρ′ : V ′ → Ω that extends ρ. Thus (V ′, ρ′) ∈ S, and (V ′, ρ′) ≥ (V, ρ). By
maximality, V = V ′. Thus x ∈ V .

Similarly, set V ′′ := V [1/x]. Then 1 /∈ MV ′′ implies 1/x ∈ V . But by (26.4),
either 1 /∈MV ′ or 1 /∈MV ′′. Thus either x ∈ V or 1/x ∈ V . Thus V is a valuation
ring of K. But (V, ρ) ∈ S. Thus V dominates A.

Finally, k ↪→ Ω. But Ω is an algebraic closure of A/m, so algebraic over A/m.
Hence k is algebraic over A/m too. Thus V is as desired. !

Theorem (26.7). — Let R be any subring of a field K. Then the integral closure R
of R in K is the intersection of all valuation rings V of K containing R. Further,
if R is local, then the V dominating R with algebraic residue field extension suffice.

Proof: Every valuation ring V is normal by (26.3). So if V ⊃ R, then V ⊃ R.
Thus

(⋂
V⊃R V

)
⊃ R.

To prove the opposite inclusion, take any x ∈ K −R. To find a valuation ring V
with V ⊃ R and x /∈ V , set y := 1/x. If 1/y ∈ R[y], then for some n,

1/y = a0y
n + a1y

n−1 + · · ·+ an with aλ ∈ R.

Multiplying by xn yields xn+1 − anxn − · · ·− a0 = 0. So x ∈ R, a contradiction.
Thus 1 /∈ yR[y]. So there is a maximal ideal m of R[y] containing y. Then

the composition R → R[y] → R[y]/m is surjective as y ∈ m. Its kernel is m ∩ R,
so m ∩ R is a maximal ideal of R. By (26.6), there is a valuation ring V that
dominates R[y]m with algebraic residue field extension; whence, if R is local, then
V also dominates R, and the residue field of R[y]m is equal to that of R. But y ∈ m;
so x = 1/y /∈ V , as desired. !

(26.8) (Valuations). — We call an additive abelian group Γ totally ordered if Γ
has a subset Γ+ that is closed under addition and satisfies Γ+ = {0} = −Γ+ = Γ.

Given x, y ∈ Γ, write x > y if x − y ∈ Γ+. Note that either x > y or x = y or
y > x. Note that, if x > y, then x+ z > y + z for any z ∈ Γ.

Let V be a domain, and set K := Frac(V ) and Γ := K×/V ×. Write the group Γ
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additively, and let v : K× → Γ be the quotient map. It is a homomorphism:

v(xy) = v(x) + v(y). (26.8.1)

Set Γ+ := v
(
V −0

)
−0. Then Γ+ is closed under addition. Clearly, V is a valuation

ring if and only if −Γ+ = {0} = Γ+ = Γ, so if and only if Γ is totally ordered.
Assume V is a valuation ring. Let’s prove that, for all x, y ∈ K×,

v(x+ y) ≥ min{v(x), v(y)} if x -= −y. (26.8.2)

Indeed, say v(x) ≥ v(y). Then z := x/y ∈ V . So v(z + 1) ≥ 0. Hence

v(x+ y) = v(z + 1) + v(y) ≥ v(y) = min{v(x), v(y)},
Note that (26.8.1) and (26.8.2) are the same as (1) and (2) of (23.1).

Conversely, start with a field K, with a totally ordered additive abelian group Γ,
and with a surjective homomorphism v : K× → Γ satisfying (26.8.2). Set

V := {x ∈ K× | v(x) ≥ 0} ∪ {0}.
Then V is a valuation ring, and Γ = K×/V ×. We call such a v a valuation of K,
and Γ the value group of v or of V .

For example, a DVR V of K is just a valuation ring with value group Z, since
any x ∈ K× has the form x = utn with u ∈ V × and n ∈ Z.

Example (26.9). — Fix a totally ordered additive abelian group Γ, and a field
k. Form the k-vector space R on the symbols Xa for a ∈ Γ as basis. Define
XaXb := Xa+b, and extend this product to R by linearity. Then R is a k-algebra
with X0 = 1. We call R the group algebra of Γ. Define v : (R− 0)→ Γ by

v
(∑

raXa
)
:= min{a | ra -= 0}.

Then for x, y ∈ (R − 0), clearly v(xy) = v(x) + v(y) because k is a domain and Γ
is ordered. Hence R is a domain. Moreover, if v(x + y) = a, then either v(x) ≤ a
or v(y) ≤ a. Thus v(x+ y) ≥ min{v(x), v(y)}.

Set K := Frac(R), and extend v to a map v : K× → Γ by v(x/y) := v(x)− v(y)
if y -= 0. Clearly v is well defined, surjective, and a homomorphism. Further, for
x, y ∈ K×, clearly v(x+ y) ≥ min{v(x), v(y)}. Thus v is a valuation with group Γ.

Set R′ := {x ∈ R | v(x) ≥ 0} and p := {x ∈ R | v(x) > 0}. Clearly, R′ is a ring,
and p is a prime of R′. Further, R′

p is the valuation ring of v.
There are many choices for Γ other than Z. Examples include the additive

rationals, the additive reals, its subgroup generated by two incommensurate reals,
and the lexicographically ordered product of any two totally ordered abelian groups.

Proposition (26.10). — Let v be a valuation of a field K, and x1, . . . , xn ∈ K×

with n ≥ 2. Set m := min{v(xi)}.
(1) If n = 2 and if v(x1) -= v(x2), then v(x1 + x2) = m.
(2) If x1 + · · ·+ xn = 0, then m = v(xi) = v(xj) for some i -= j.

Proof: For (1), say v(x1) > v(x2); so v(x2) = m. Set z := x1/x2. Then v(z) > 0.
Also v(−z) = v(z) + v(−1) > 0. Now,

0 = v(1) = v(z + 1− z) ≥ min{v(z + 1), v(−z)} ≥ 0.

Hence v(z+1) = 0. Now, x1 + x2 = (z+1)x2. Therefore, v(x1 + x2) = v(x2) = m.
Thus (1) holds.

For (2), reorder the xi so v(xi) = m for i ≤ k and v(xi) > m for i > k.
By induction, (26.8.2) yields v(xk+1 + · · · + xn) ≥ mini>k{v(xi)}. Therefore,
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v(xk+1+ · · ·+xn) > m. If k = 1, then (1) yields v(0) = v(x1+(x2+ · · ·+xn)) = m,
a contradiction. So k > 1, and v(x1) = v(x2) = m, as desired. !
Exercise (26.11) . — Let V be a valuation ring. Prove these statements:

(1) Every finitely generated ideal a is principal.
(2) V is Noetherian if and only if V is a DVR.

Lemma (26.12). — Let R be a 1-dimensional Noetherian domain, K its fraction
field, M a torsionfree module, and x ∈ R nonzero. Then 2(R/xR) <∞. Further,

2(M/xM) ≤ dimK(M ⊗R K) 2(R/xR), (26.12.1)

with equality if M is finitely generated.

Proof: Set r := dimK(M ⊗R K). If r =∞, then (26.12.1) is trivial; so we may
assume r <∞.

Given any module N , set NK := S−1
0 N with S0 := R−0. Recall NK = N ⊗RK.

First, assume M is finitely generated. Choose any K-basis m1/s1, . . . ,mr/sr
of MK with mi ∈ M and si ∈ S0. Then m1/1, . . . ,mr/1 is also a basis. Define
an R-map α : Rr → M by sending the standard basis elements to the mi. Then
its localization αK is an K-isomorphism. But Ker(α) is a submodule of Rr, so
torsionfree. Further, S−1

0 Ker(α) = Ker(αK) = 0. Hence Ker(α) = 0. Thus α is
injective.
Set N := Coker(α). Then NK = 0, and N is finitely generated. Hence, Supp(N)

is a proper closed subset of Spec(R). But dim(R) = 1 by hypothesis. Hence,
Supp(N) consists entirely of maximal ideals. So 2(N) <∞ by (19.4).

Similarly, Supp(R/xR) is closed and proper in Spec(R). So 2(R/xR) <∞.
Consider the standard exact sequence:

0→ N ′ → N → N → N/xN → 0 where N ′ := Ker(µx).

Apply Additivity of Length, (19.7); it yields 2
(
N ′) = 2(N/xN).

Since M is torsionfree, µx : M → M is injective. Consider this commutative
diagram with exact rows:

0 −→ Rr α−→ M −→ N −→ 0
µx

) µx

) µx

)
0 −→ Rr α−→ M −→ N −→ 0

Apply the snake lemma (5.10). It yields this exact sequence:

0→ N ′ → (R/xR)r →M/xM → N/xN → 0.

Hence 2(M/xM) = 2
(
(R/xR)r

)
by additivity. But 2

(
(R/xR)r

)
= r 2(R/xR) also

by additivity. Thus equality holds in (26.12.1) when M is finitely generated.
Second, assume M is arbitrary, but (26.12.1) fails. Then M possesses a finitely

generated submodule M ′ whose image H in M/xM satisfies 2(H) > r2(R/xR).
Now, MK ⊃M ′

K ; so r ≥ dimK(M ′
K). Therefore,

2(M ′/xM ′) ≥ 2(H) > r 2(R/xR) ≥ dimK(M ′
K) 2

(
R/xR

)
.

However, together these inequalities contradict the first case with M ′ for M . !
Theorem (26.13) (Krull–Akizuki). — Let R be a 1-dimensional Noetherian do-
main, K its fraction field, K ′ a finite extension field, and R′ a proper subring of
K ′ containing R. Then R′ is, like R, a 1-dimensional Noetherian domain.
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Proof: Given a nonzero ideal a′ of R′, take any nonzero x ∈ a′. Since K ′/K is
finite, there is an equation anxn + · · · + a0 = 0 with ai ∈ R and a0 -= 0. Then
a0 ∈ a′ ∩R. Further, (26.12) yields 2(R/a0R) <∞.

Clearly, R′ is a domain, so a torsionfree R-module. Further, R′ ⊗R K ⊂ K ′;
hence, dimK(R′ ⊗R K) <∞. Therefore, (26.12) yields 2R(R′/a0R′) <∞.

But a′/a0R′ ⊂ R′/a0R′. So 2R(a′/a0R′) < ∞. So a′/a0R′ is finitely generated
over R by (19.2)(3). Hence a′ is finitely generated over R′. Thus R′ is Noetherian.

Set R′′ := R′/a0R′. Clearly, 2R′′R′′ ≤ 2RR′′. So 2R′′R′′ < ∞. So, in R′′, every
prime is maximal by (19.4). So if a′ is prime, then a′/a0R′ is maximal, whence a′

maximal. So in R, every nonzero prime is maximal. Thus R′ is 1-dimensional. !

Corollary (26.14). — Let R be a 1-dimensional Noetherian domain, such as a
Dedekind domain. Let K be its fraction field, K ′ a finite extension field, and R′

the normalization of R in K ′. Then R′ is Dedekind.

Proof: Since R is 1-dimensional, it’s not a field. But R′ is the normalization of
R. So R′ is not a field by (14.1). Hence, R′ is Noetherian and 1-dimensional by
(26.13). Thus R′ is Dedekind by (24.1). !

Corollary (26.15). — Let K ′/K be a field extension, V ′ a valuation ring of K ′ not
containing K. Set V := V ′ ∩K. Then V is a DVR if V ′ is, and the converse holds
if K ′/K is finite.

Proof: It follows easily from (26.1) that V is a valuation ring, and from (26.8)
that its value group is a subgroup of that of V ′. Now, a nonzero subgroup of Z is
a copy of Z. Thus V is a DVR if V ′ is.

Conversely, assume V is a DVR, so Noetherian and 1-dimensional. Now, V ′ -⊃ K,
so V ′ % K ′. Hence, V ′ is Noetherian by (26.13), so a DVR by (26.11)(2). !

B. Exercises

Exercise (26.16) . — Let V be a domain. Show that V is a valuation ring if and
only if, given any two ideals a and b, either a lies in b or b lies in a.

Exercise (26.17) . — Let V be a valuation ring of K, and V ⊂W ⊂ K a subring.
Prove that W is also a valuation ring of K, that its maximal ideal p lies in V , that
V/p is a valuation ring of the field W/p, and that W = Vp.

Exercise (26.18) . — Let K be a field, S the set of local subrings ordered by
domination. Show that the valuation rings of K are the maximal elements of S.

Exercise (26.19) . — Let V be a valuation ring of a field K. Let ϕ : V → R
and ψ : R → K be ring maps. Assume Spec(ϕ) is closed and ψϕ : V → K is the
inclusion. Set W := ψ(R). Show W = V .

Exercise (26.20) . — Let ϕ : R → R′ be a map of rings. Prove that, if R′ is
integral over R, then for any R-algebra C, the map Spec(ϕ⊗RC) is closed; further,
the converse holds if also R′ has only finitely many minimal primes. To prove
the converse, start with the case where R′ is a domain, take C to be an arbitrary
valuation ring of Frac(R′) containing ϕ(R), and apply (26.19).
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Exercise (26.21) . — Let V be a valuation ring with valuation v : K× → Γ, and p
a prime of V . Set ∆ := v(V ×

p ). Prove the following statements:

(1) ∆ and Γ/∆ are the valuation groups of the valuation rings V/p and Vp.
(2) v(V − p) is the set of nonegative elements ∆≥0, and p = V − v−1∆≥0.
(3) ∆ is isolated in Γ; that is, given α ∈ ∆ and 0 ≤ β ≤ α, also β ∈ ∆.

Exercise (26.22) . — Let V be a valuation ring with valuation v : K× → Γ. Prove
that p 2→ v(V ×

p ) is a bijection γ from the primes p of V onto the isolated subgroups
∆ of Γ and that its inverse is ∆ 2→ V − v−1∆≥0.

Exercise (26.23) . — Let V be a valuation ring, such as a DVR, whose value group
Γ is Archimedean; that is, given any nonzero α,β ∈ Γ, there’s n ∈ Z such that
nα > β. Show that V is a maximal proper subring of its fraction field K.

Exercise (26.24) . — Let R be a Noetherian domain, K := Frac(R), and L a finite
extension field (possibly L = K). Prove the integral closure R of R in L is the
intersection of all DVRs V of L containing R by modifying the proof of (26.7):
show y is contained in a height-1 prime p of R[y] and apply (26.14) to R[y]p.
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