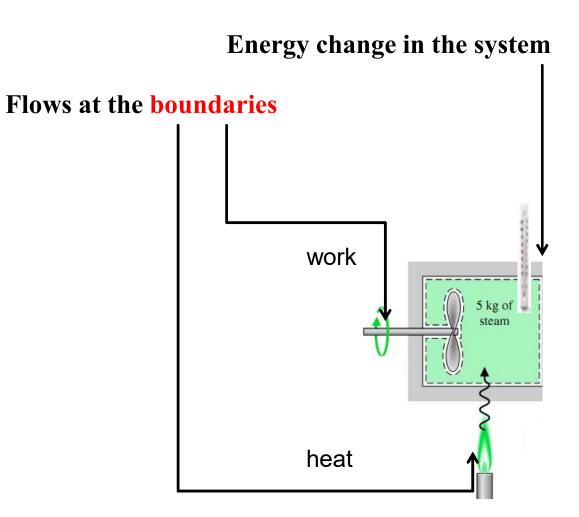


2019/2020

Thermodynamics

Prof. Tânia Sousa taniasousa@tecnico.ulisboa.pt

Energy Balance in Closed Systems



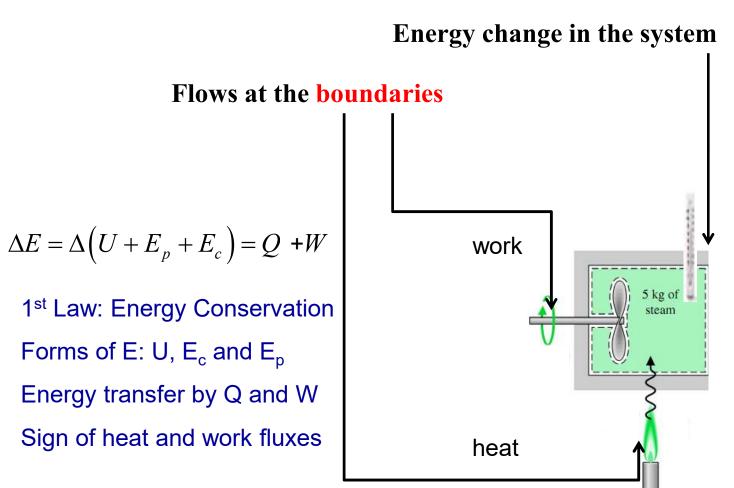
Moran et al., 2014

٠

٠

Energy Balance in Closed Systems

Energy Change = Heat + Work

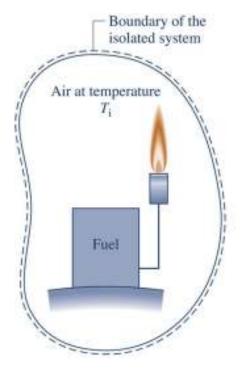


Moran et al., 2014

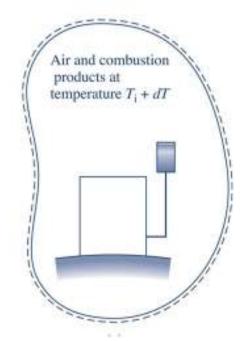
Energy Balance in Closed Systems

Energy Balance in isolated systems

• What happens to the total energy of the system?



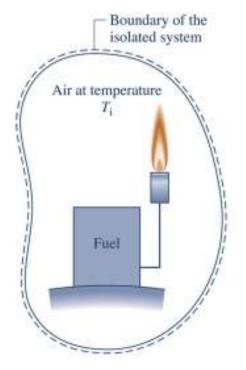
Moran et al., 2014

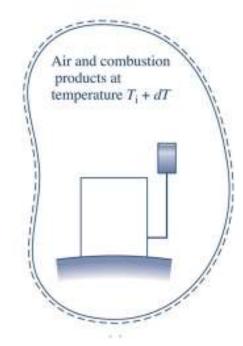


•

Energy vs. Exergy

What happens to the total energy of the system?

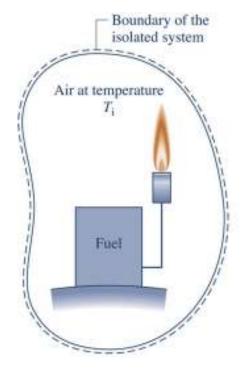


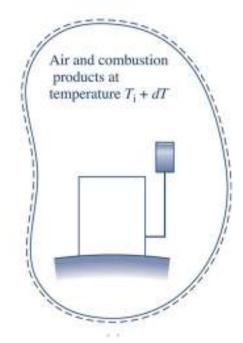


• It remains constant (system is isolated)

Energy vs. Exergy

• Can the process occur from the right to the left?





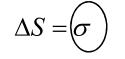
Is the first law enough?

• What happens if you put a dish with ice over a pan with boiling water?

Entropy Balance in Adiabatic Systems & Isolated Systems

Entropy Balance in Adiabatic Systems & Isolated Systems

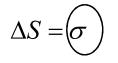
Entropy change = Entropy production



• 2nd Law: ?

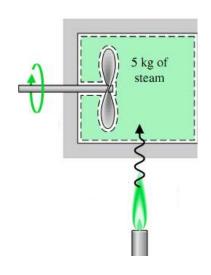
Entropy Balance in Adiabatic Systems & Isolated Systems

Entropy change = Entropy production



• 2nd Law: <u>In an adiabatic system the entropy</u> <u>must not decrease</u>

Entropy Balance in Closed Systems

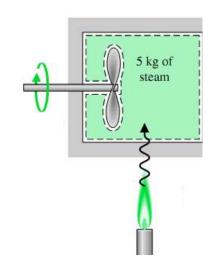


Entropy Balance in Closed Systems

Entropy change = Entropy transfer in the form of heat + entropy production

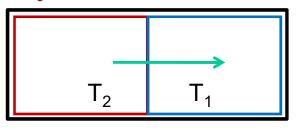
$$\Delta S = \frac{Q}{T} + \sigma$$

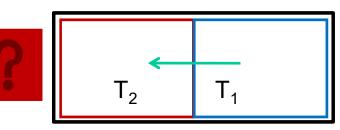
Entropy flows with heat but not with work



Entropy Balance in Adiabatic Systems

- Suppose the combined system (contained in the black boundary) is adiabatic and that $T_2 > T_1$
- What happens to the entropy of the combined system in each case?





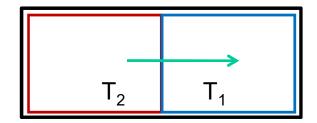
Entropy Balance in Adiabatic Systems

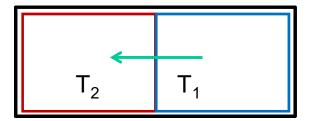
$$\Delta S = \sigma > 0$$

$$\sigma > \sigma_1 + \sigma_2$$

$$\Delta S = \Delta S_1 + \Delta S_2 = \frac{Q}{T_1} - \frac{Q}{T_2} + \sigma_1 + \sigma_2$$

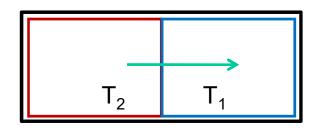
$$\begin{split} \Delta S &= \sigma > 0 \\ \sigma &> \sigma_1 + \sigma_2 \\ \Delta S &= \Delta S_1 + \Delta S_2 = \frac{Q}{T_2} - \frac{Q}{T_1} + \sigma_1 + \sigma_2 \end{split}$$

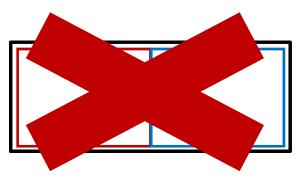




Entropy Balance in Adiabatic Systems

• <u>2nd Law: In an adiabatic system the entropy</u> <u>must not decrease</u>

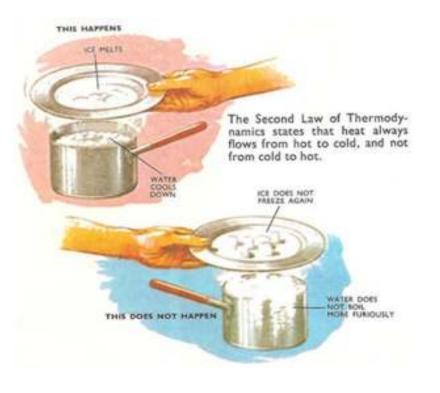


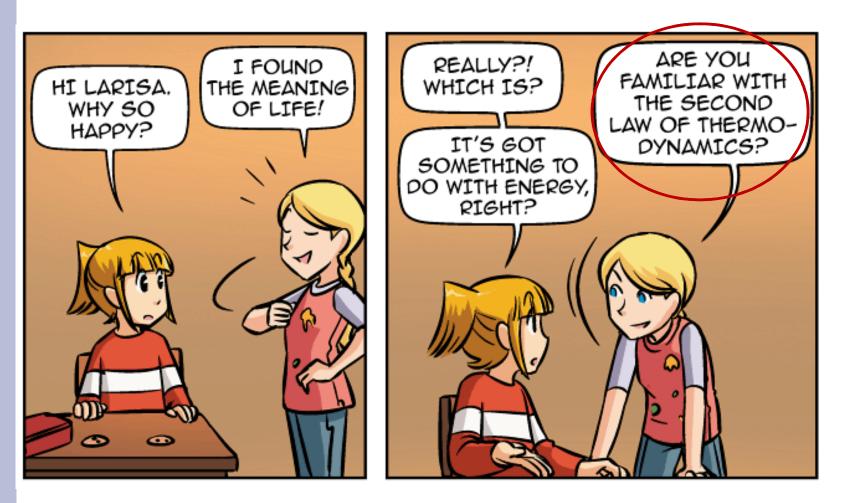


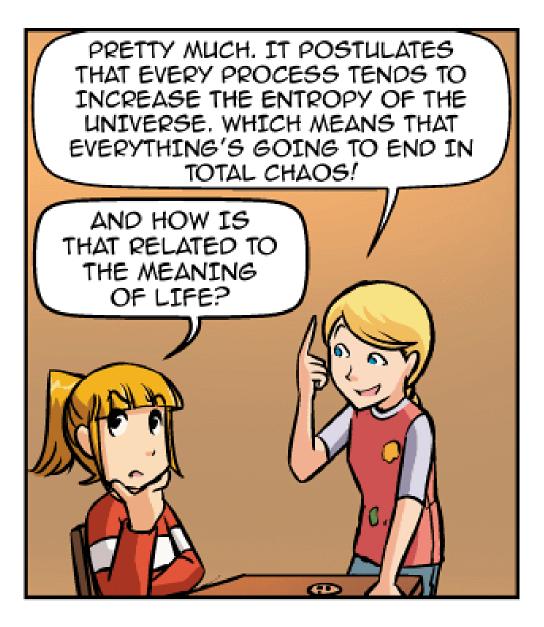
- 2nd Law: the arrow of time
- Entropy production in spontaneous processes

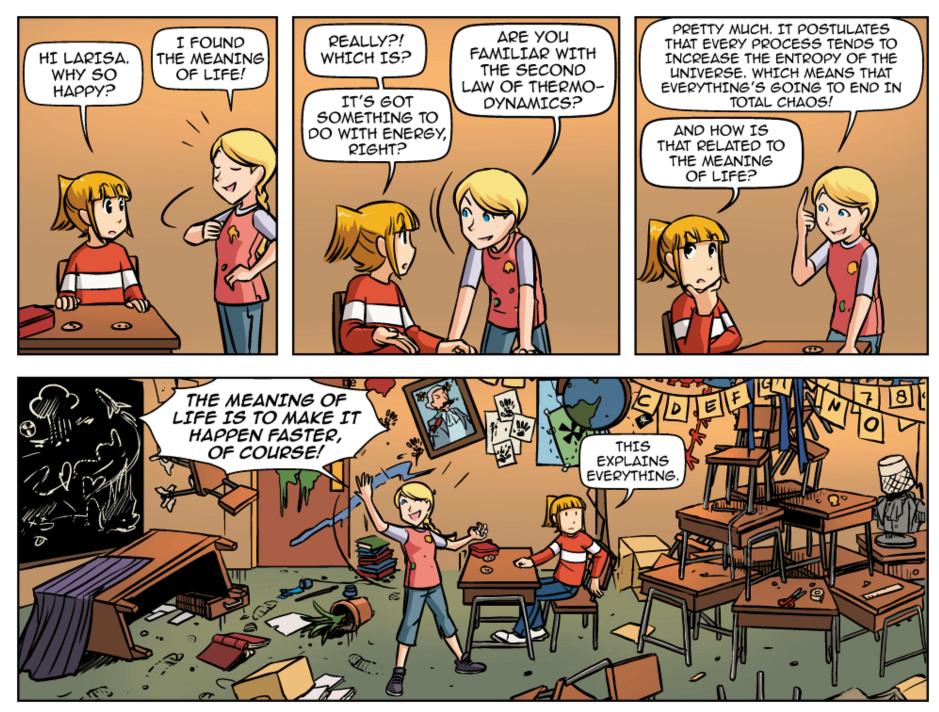
Is the first law enough?

• What happens if you put a dish with ice over a pan with boiling water?





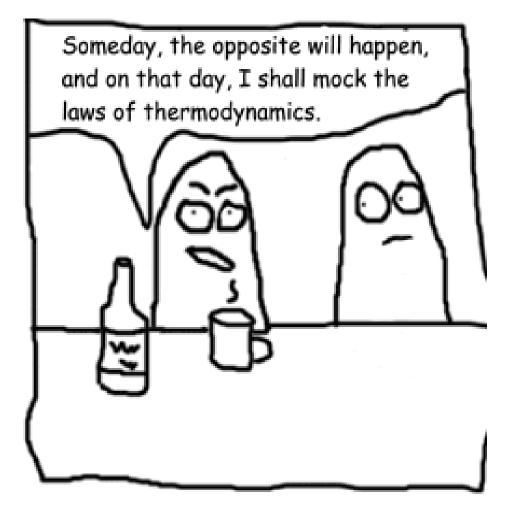




Sandra and Woo by Oliver Knörzer (writer), Powree (artist) and Lisa Moore (colorist) - www.sandraandwoo.com

The state variable: Entropy

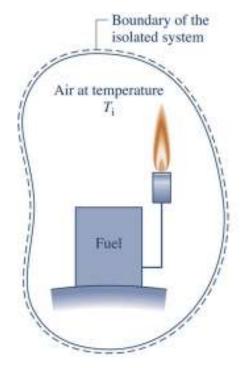
• Entropy is the state variable that gives unidirectionality to time in physical processes ocurring in isolated & adiabatic systems.

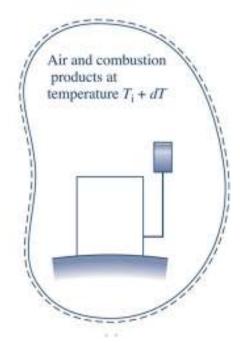


•

Entropy

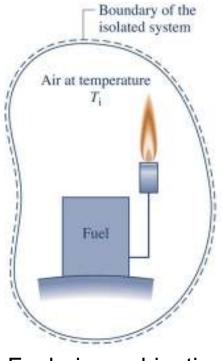
What happens to the total entropy of the system?



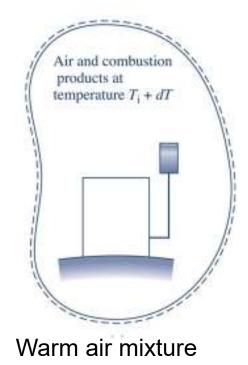


Energy vs. Exergy

• Which system has a greater potential for use?

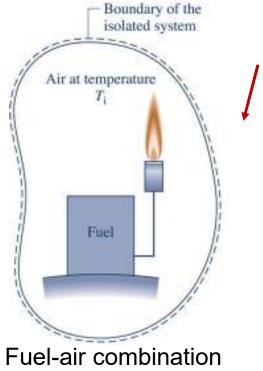


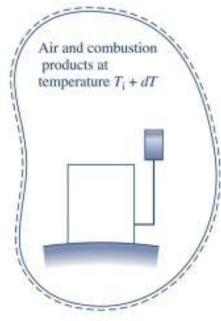
Fuel-air combination



Energy vs. Exergy

Which system has a greater potential for use?





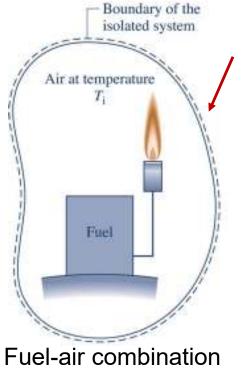
Warm air mixture

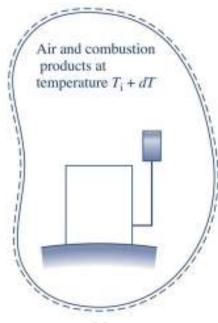
• "The fuel might be used to generate electricity, produce steam, or power a car whereas the final warm mixture is clearly unsuited for such applications."

۲

Energy vs. Exergy

Which system has a greater potential for use?





Warm air mixture

• "During the process the initial potential for use (and economic value) is predominately *destroyed* owing to the irreversible nature of that process."

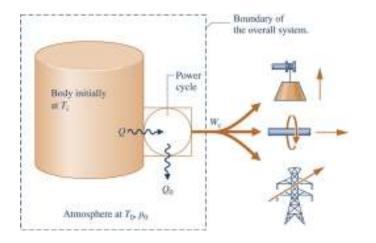
Energy vs. Exergy

- Exergy is the property that quantifies the potential for use and it is exergy that has economic value.
- Exergy is a property that takes into account the second law of thermodynamics
- How can we make use of a body at $T_i > T_0$?

•

Energy vs. Exergy

Controlled cooling to produce work

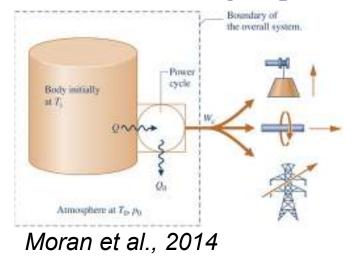


Moran et al., 2014

•

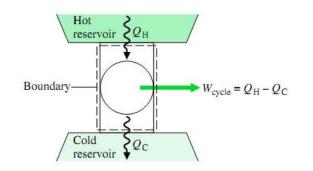
Energy vs. Exergy

Controlled cooling to produce work

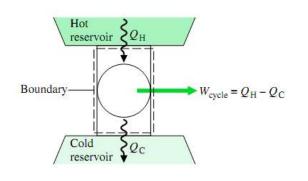


• The amount of maximum work depends on what?

The Carnot Efficiency – Power Cycle



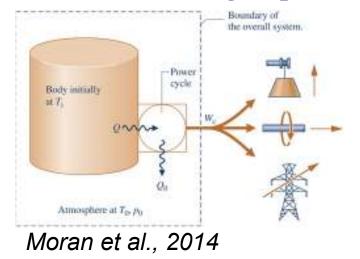
The Carnot Efficiency – Power Cycle



- First law: $\Delta E = Q_H Q_C W_{cycle} = 0 \Longrightarrow W_{cycle} = Q_H Q_C$
- Second law: $\Delta S = \frac{Q_H}{T_H} \frac{Q_C}{T_C} + \sigma = 0 \Longrightarrow Q_C \neq 0$
- Ideal (Reversible) Cycle: $\Delta S = \frac{Q_H}{T_H} - \frac{Q_C}{T_C} = 0$ $\eta_{ideal} = \frac{W_{cycle}}{Q_H} = \frac{Q_H - Q_C}{Q_H} = 1 - \frac{Q_C}{Q_H} = 1 - \frac{T_C}{T_H}$

Energy vs. Exergy

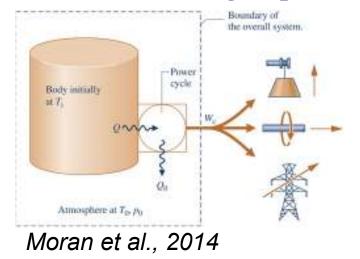
Controlled cooling to produce work



- Exergy is the maximum theoretical value for the work $W_{\rm c}$.
- What happens to the exergy of the body with time?

Energy vs. Exergy

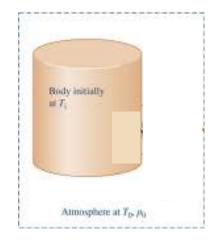
Controlled cooling to produce work



- Exergy is the maximum theoretical value for the work $W_{\rm c}$.
- What happens to the exergy of the body with time?

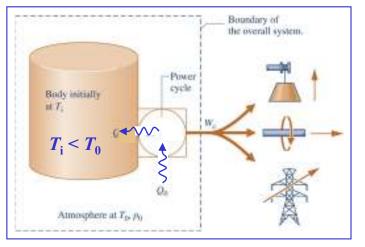
Energy vs. Exergy

• Could we produce work if $T_i < T_0$?



Energy vs. Exergy

Could we produce work if $T_i < T_0$?

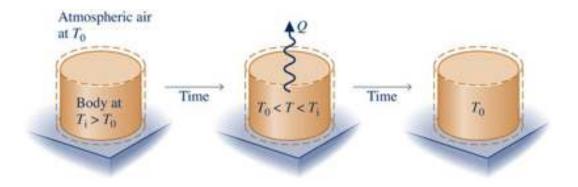


Moran et al., 2014

• The potential for developing work W_c exists because the initial state of the body differs from that of the environment, i.e., $T_i < T_0$.

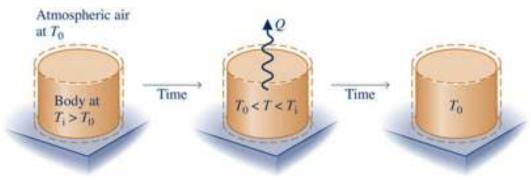
Defining Exergy

- Reference environment: T₀ and P₀
- Exergy is the maximum $W_{\rm c}$ obtainable from the system plus the environment as the system comes into equilibrium with the environment (goes to the dead state $T_0 \& P_0$).
- What happened in the case of spontaneous cooling?



Defining Exergy

- Reference environment: T₀ and P₀
- Exergy is the maximum $W_{\rm c}$ obtainable from the system plus the environment as the system comes into equilibrium with the environment (goes to the dead state $T_0 \& P_0$).
- W_c is null because exergy is destroyed by irreversibilities (spontaneous processes)

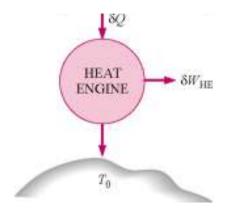


Defining Exergy

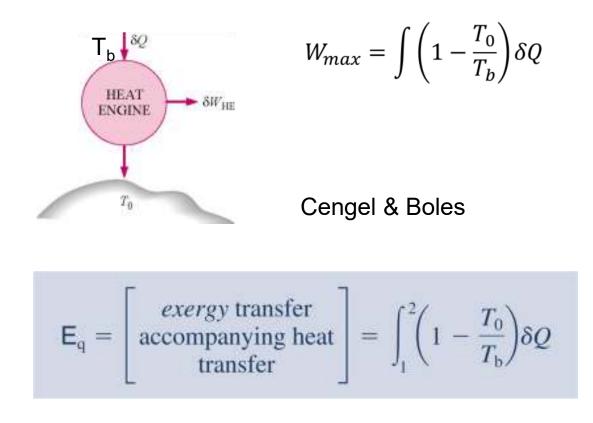
• If temperature and/or pressure of a system differ from that of the environment, the system has **thermomechanical** exergy. Another contribution, called **chemical exergy**, arises when there is a chemical composition difference between the system and environment.

$$\frac{\mathsf{E}_2 - \mathsf{E}_1}{\underset{\text{change}}{\text{exergy}}{\text{change}}} = \underbrace{\int_1^2 \left(1 - \frac{T_0}{T_b}\right) \delta Q}_1 + \left[W + p_0(V_2 - V_1)\right] - \underbrace{T_0 \sigma}_{0}$$

- Exergy transfer by heat
 - What is the maximum amount of work that can be produced with Q?

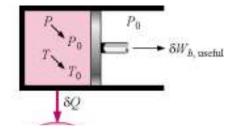


- Exergy transfer by heat
 - What is the maximum amount of work that can be produced with Q?

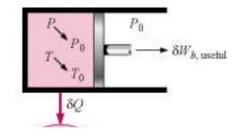


$$\frac{\mathsf{E}_2 - \mathsf{E}_1}{\underset{\text{change}}{\text{exergy}}{\text{change}}} = \frac{\int_1^2 \left(1 - \frac{T_0}{T_b}\right) \delta Q + \left[W + p_0(V_2 - V_1)\right] - T_0 \sigma}{T_0 \sigma}$$

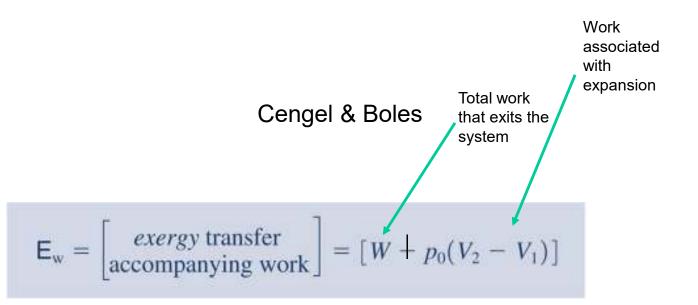
- Exergy transfer by work
 - What is the maximum amount of useful work that can be used from W?



• Exergy transfer by work



$$W = W_{b,useful} - \int P_0 \, dV$$
$$W_{b,useful} = W + P_0(V_2 - V_1)$$



$$\frac{\mathsf{E}_2 - \mathsf{E}_1}{\underset{\text{change}}{\text{exergy}}{\text{change}}} = \frac{\int_1^2 \left(1 - \frac{T_0}{T_b}\right) \delta Q + \left[W + p_0(V_2 - V_1)\right] - \underbrace{T_0 \sigma}$$

• Exergy destruction: irreversibilities destroy exergy

$$\mathsf{E}_{\mathrm{d}} = T_0 \sigma$$

• 2nd Law?

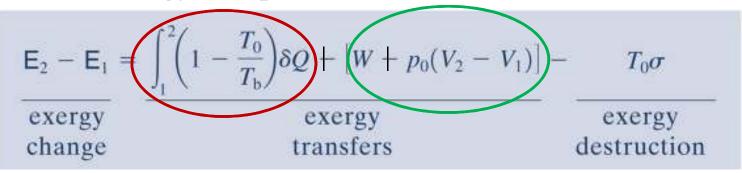
• Exergy destruction: irreversibilities destroy exergy

$$\mathsf{E}_{\mathrm{d}} = T_0 \sigma$$

•
$$2^{nd}$$
 Law?

 $E_{d}: \begin{cases} = 0 \text{ (no irreversibilities present within the system)} \\ > 0 \text{ (irreversibilities present within the system)} \\ < 0 \text{ (impossible)} \end{cases}$

Exergy Change = exergy transfer by heat - exergy transfer by work - exergy dissipation



• What happens to the exergy of an isolated system?

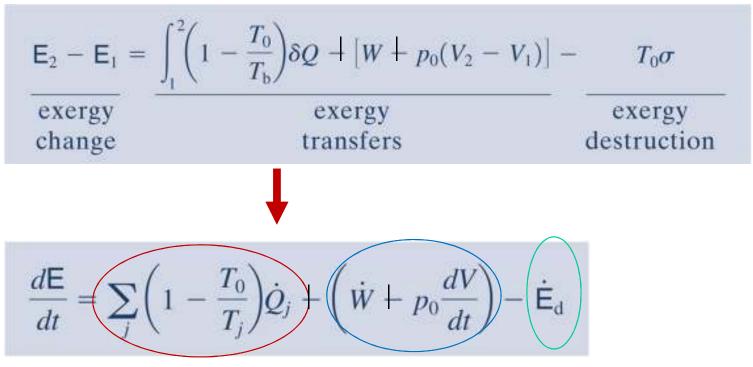
Exergy Rate Balance for Closed Systems

• The exergy rate balance?

$$\frac{\mathsf{E}_{2} - \mathsf{E}_{1}}{\underset{\text{change}}{\text{exergy}}{\text{exergy}}} = \frac{\int_{1}^{2} \left(1 - \frac{T_{0}}{T_{b}}\right) \delta Q + \left[W + p_{0}(V_{2} - V_{1})\right] - \frac{T_{0}\sigma}{\underset{\text{exergy}}{\text{exergy}}} - \frac{T_{0}\sigma}{\underset{\text{destruction}}{\text{exergy}}}$$

Exergy Rate Balance for Closed Systems

• The exergy rate balance



• Steady-state?

Exergy Rate Balance for Closed Systems

• The exergy rate balance

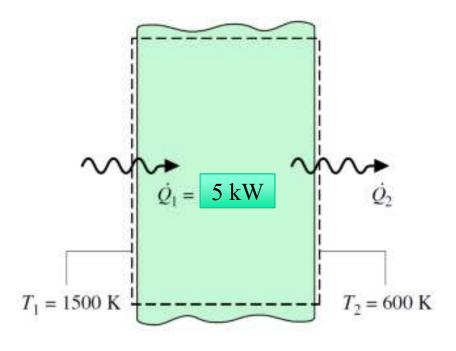
$$\frac{\mathsf{E}_{2} - \mathsf{E}_{1}}{\frac{\mathsf{exergy}}{\mathsf{exergy}}} = \frac{\int_{1}^{2} \left(1 - \frac{T_{0}}{T_{b}}\right) \delta Q + \left[W + p_{0}(V_{2} - V_{1})\right] - \frac{T_{0}\sigma}{\mathsf{exergy}}}{\frac{\mathsf{exergy}}{\mathsf{destruction}}}$$

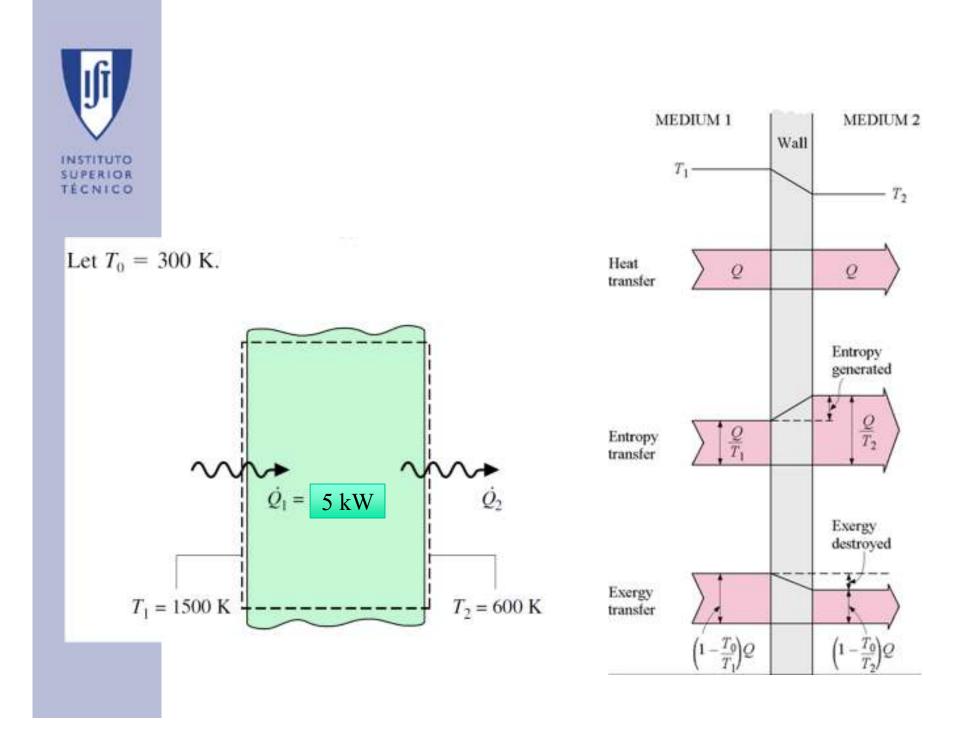
$$\frac{d\mathsf{E}}{dt} = \sum_{j} \left(1 - \frac{T_{0}}{T_{j}}\right) \dot{Q}_{j} + \left(\dot{W} + p_{0}\frac{dV}{dt}\right) - \dot{\mathsf{E}}_{d}$$

• Steady-state

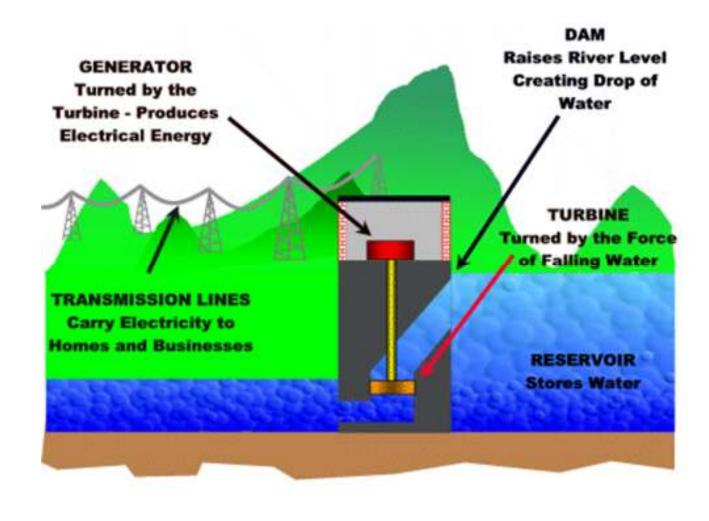
$$0 = \sum_{j} \left(1 - \frac{T_0}{T_j} \right) \dot{Q}_j + \dot{W} - \dot{\mathsf{E}}_{\mathsf{d}}$$

$$0 = \sum_{j} \left(1 - \frac{T_0}{T_j} \right) \dot{Q}_j + \dot{W} - \dot{\mathsf{E}}_{\mathsf{d}}$$





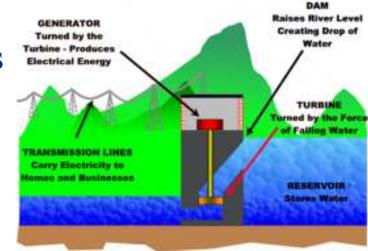
Energy Balance in Open Systems



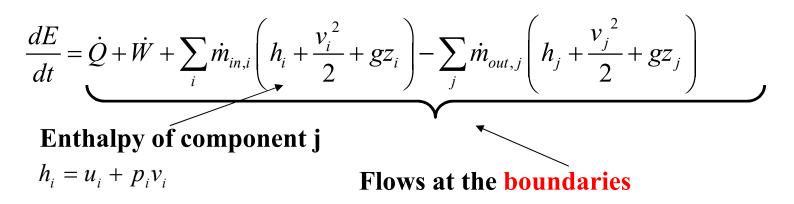
Energy Balance in Open Systems

Mass Change = Σ Mass Flows

$$\frac{dm}{dt} = \sum_{i} \dot{m}_{in,i} - \sum_{j} \dot{m}_{out,j}$$

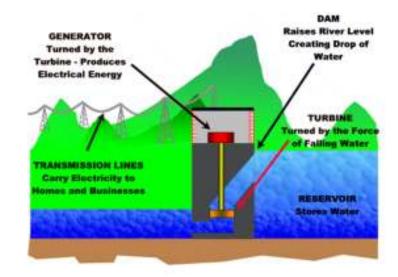


Energy Change = Heat + Work + Energy in Mass Flow

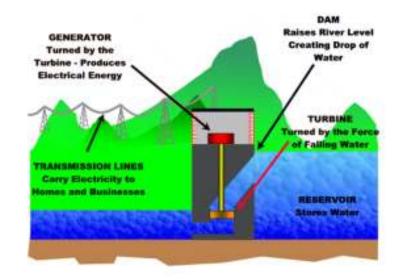


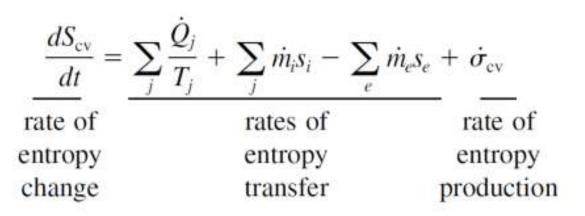
Energy Balance in Open Systems

Entropy Balance in Open Systems



Entropy Balance in Open Systems





Exergy Rate Balance for Control Volume Systems

The exergy rate balance for closed systems

$$\frac{d\mathsf{E}}{dt} = \sum_{j} \left(1 - \frac{T_0}{T_j} \right) \dot{Q}_j + \left(\dot{W} + p_0 \frac{dV}{dt} \right) - \dot{\mathsf{E}}_d$$

• The exergy rate balance for open systems

Exergy Rate Balance for Control Volume Systems

The exergy rate balance for closed systems

$$\frac{d\mathsf{E}}{dt} = \sum_{j} \left(1 - \frac{T_0}{T_j} \right) \dot{Q}_j + \left(\dot{W} + p_0 \frac{dV}{dt} \right) - \dot{\mathsf{E}}_d$$

• The exergy rate balance for open systems

$$\frac{d\mathbf{E}_{ev}}{dt} = \sum_{j} \left(1 - \frac{T_0}{T_j} \right) \dot{Q}_j + \left(\dot{W}_{ev} \vdash p_0 \frac{dV_{ev}}{dt} \right) + \sum_{i} \dot{m}_i \mathbf{e}_{fi} - \sum_{e} \dot{m}_e \mathbf{e}_{fe} - \dot{\mathbf{E}}_d$$

• Steady-state?

Exergy Rate Balance for Control Volume Systems

The exergy rate balance for closed systems

$$\frac{d\mathsf{E}}{dt} = \sum_{j} \left(1 - \frac{T_0}{T_j} \right) \dot{Q}_j + \left(\dot{W} + p_0 \frac{dV}{dt} \right) - \dot{\mathsf{E}}_{\mathsf{d}}$$

• The exergy rate balance for open systems

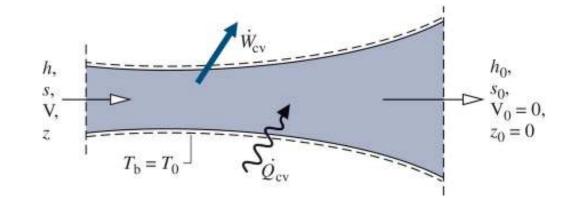
$$\frac{d\mathsf{E}_{\mathrm{cv}}}{dt} = \sum_{j} \left(1 - \frac{T_0}{T_j}\right) \dot{Q}_j + \left(\dot{W}_{\mathrm{cv}} + p_0 \frac{dV_{\mathrm{cv}}}{dt}\right) + \sum_{i} \dot{m}_i \mathbf{e}_{\mathrm{fi}} - \sum_{e} \dot{m}_e \mathbf{e}_{\mathrm{fe}} - \dot{\mathsf{E}}_{\mathrm{d}}$$

• Steady-state?

$$0 = \sum_{j} \left(1 - \frac{T_0}{T_j} \right) \dot{Q}_j + \dot{W}_{cv} + \dot{m} (\mathbf{e}_{f1} - \mathbf{e}_{f2}) - \dot{\mathsf{E}}_d$$

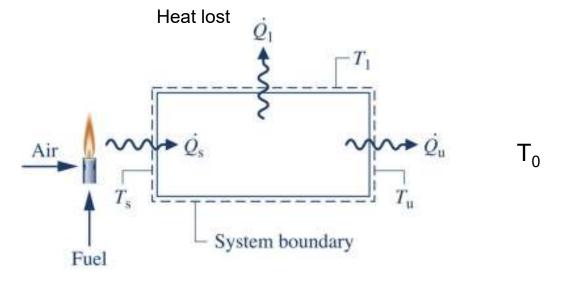
The specific flow exergy

• What is the specific flow exergy?



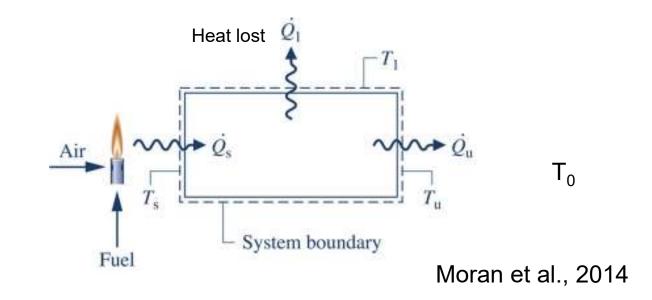
Energy & Exergy Efficiencies

• Energy and exergy balances at steady-state?



Moran et al., 2014

• Energy and exergy balances at steady-state

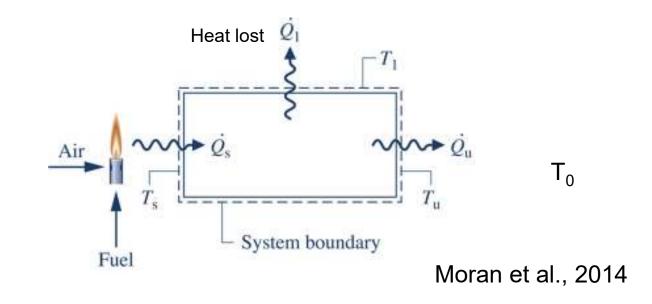


$$\frac{d\vec{E}'}{dt}^{0} = (\dot{Q}_{s} - \dot{Q}_{u} - \dot{Q}_{1}) - \dot{W}^{0}$$
$$\frac{d\vec{E}'}{dt}^{0} = \left[\left(1 - \frac{T_{0}}{T_{s}} \right) \dot{Q}_{s} - \left(1 - \frac{T_{0}}{T_{u}} \right) \dot{Q}_{u} - \left(1 - \frac{T_{0}}{T_{1}} \right) \dot{Q}_{1} \right] - \left[\dot{W}^{0} - p_{0} \frac{d\vec{V}^{0}}{dt} \right] - \dot{\mathsf{E}}_{d}$$

• Energy efficiency?

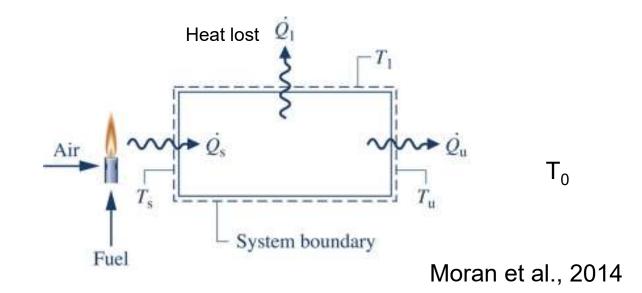


• Energy efficiency

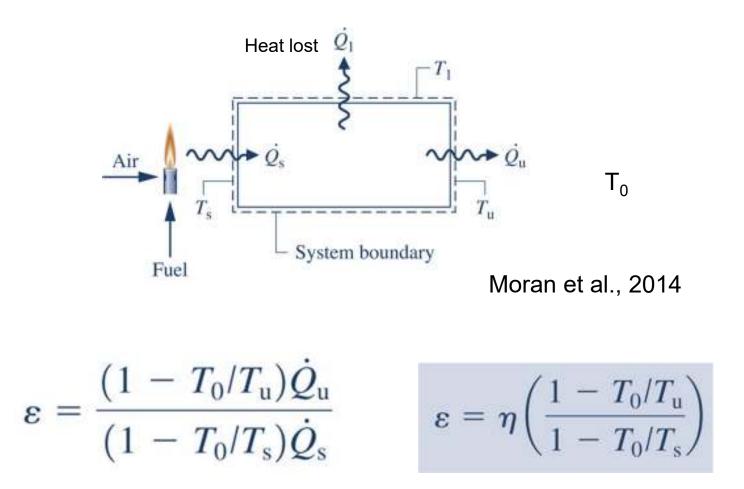


$$\eta = rac{\dot{Q}_{\mathrm{u}}}{\dot{Q}_{\mathrm{s}}}$$

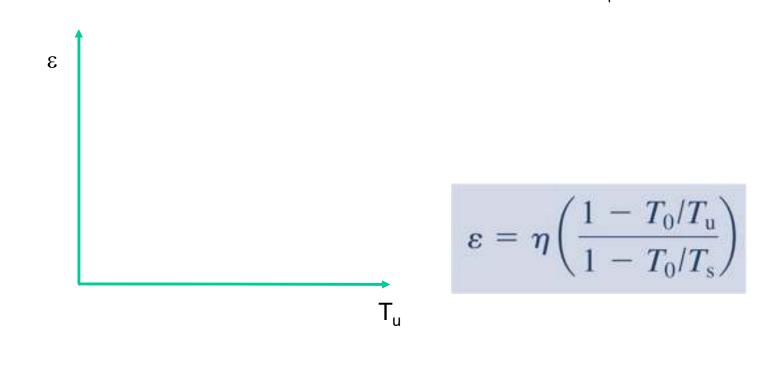
• Exergy efficiency?



• Exergy efficiency

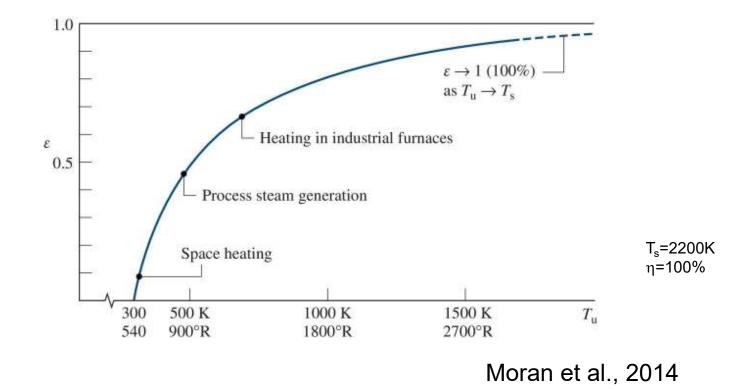


• How does exergy efficiency varies assuming $T_s=2200K$?



Moran et al., 2014

• Exergy efficiency



• Exergy analysis: (mis)match between energy used and end-use

• 2nd Law efficiency

$$\varepsilon = \frac{W_{max,output}}{W_{max,input}} \longleftarrow \quad \eta = \frac{E_{output}}{E_{input}}$$

• 2nd Law efficiency

$$\varepsilon = \frac{W_{max,output}}{W_{max,input}} \longleftarrow \quad \eta = \frac{E_{output}}{E_{input}}$$

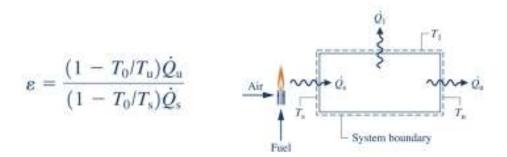
• For a device which converts one form of mechanical energy to another $\varepsilon = \frac{W_{output}}{W_{input}} = \eta$

Household appliances with electric motors

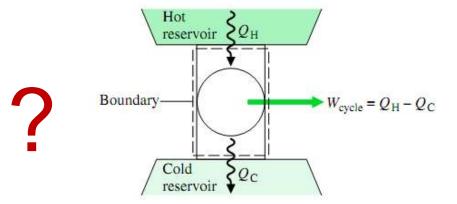
• 2nd Law efficiency

$$\varepsilon = \frac{W_{max,output}}{W_{max,input}} \longleftarrow \eta = \frac{E_{output}}{E_{input}}$$

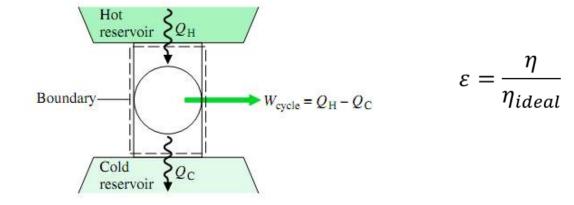
• When the input or output of a device is heat then heat must be downgraded into equivalent units of mechanical work (Cullen & Allwood, 2010)



Exergy Efficiency – Power Cycle



Exergy Efficiency – Power Cycle



 Second law efficiencies are bounded (thay are less than or equal to 100%) - > they provide information on how much you can improve your efficiency.

• Exergy losses vs. Exergy destruction

$$\frac{d\mathsf{E}}{dt} = \sum_{j} \left(1 - \frac{T_0}{T_j}\right) \dot{Q}_j - \left(\dot{W} - p_0 \frac{dV}{dt}\right) - \dot{\mathsf{E}}_{\mathsf{d}}$$

$$\varepsilon = \frac{\eta}{\gamma_{ideal}}$$

• 2nd Law efficiency

$$\varepsilon = \frac{W_{max,output}}{W_{max,input}} \quad \longleftarrow \quad \eta = \frac{E_{output}}{E_{input}}$$

• When the input is work (electricity) and the output is neither work nor heat (e.g. light or music then

$$\varepsilon = \frac{W_{output}}{W_{max,input}} =$$

$$=\frac{\eta}{\eta_{ideal}}=\frac{\eta}{683\,lm/W}$$

