Department of Mathematics, IST — Probability and Statistics Unit
Introduction to Stochastic Processes

2nd. Test 2nd. Semester — 2013/14
Duration: 1h30m 2014/06/11 — 3PM, Room V1.14

e Please justify all your answers.

e This test has TWO PAGES and THREE GROUPS. The total of points is 20.0.

Group 1 — Renewal Processes 2.0 points

The number of inspections by a supervisor to an industrial plant is governed by a delayed
renewal process such that:

e the first inspection time follows an exponential distribution with unit mean;

e the subsequent inter-inspection times follow a hyper-exponential distribution with
parameters (17%; % %)
Derive the renewal function of this process.

Note/hint: Admit that the duration of any inspection is insignificant compared to the time

o . s 2(14+25) _
between consecutive inspections; capitalize on the fact that q((; 4;; =2Zxliix ;xig-

e Delayed renewal process
{Np(t) : t >0}

Np(t) = number of inspections done by time ¢

Inter-renewal times

X; independent r.v., i € N
Xy ~ Exp(1)
X; "% Hyper-exp(1, 4 §,1), i € N\{1}

e Important
G(z) =P(X, <x)
F(z) = P(X; <x),1 € N\{1}

dF(z) form.
B TE X Frap)(®) + 3 X Frapa2) (%)

Deriving the renewal function
Since the inter-renewal times are continuous r.v., the LST of the two inter-renewal
distributions are given by

) = / " s aGa)

=  EB(e %)
= Mpgapa)(—s)
form. 1

1+s

Moreover, the LST of the renewal function of a delayed renewal process, m(t)
E[Np(t)], can be obtained in terms of the LST of F and G:

m(s)

Taking advantage of the LT in the formulae, we successively get:
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Group 2 — Discrete time Markov chains 9.0 points
(253 135 117 256|P = [253 135 117 256]

1. Evaristo uses four expressions — Duh! (state 1), Bummer!! (state 2), Dunno!!! (state 3), )
[253 135 117 256]P = ——[253 135 117 256]

and Whoops!!!! (state 4) — according to a DTMC with the following TPM: L

253 4 135 + 117 + 256 761
06 0.10.170.2 - 253 135 117 256
p_ |03 0 0304 S 5
“l0305 0 02| T o~ [0.333 0.177 0.154 0.336].
0102 02 05 e Requested probability
(a) Find the long-run fraction of time Evaristo uses the expression Bummer!! (2.0) Thus, the long-run fraction of time Evaristo uses the expression Bummer!! is
Note: Recall that 7 P = 7 and check the footnote!! my ~ 0.177.
¢ DTMC e [Stationary distribution (alternative!)
{X, :neN} The row vector denoting the stationary distribution, m = [m;];es, is given by

X,, = n* expression Evaristo used
7=1x(I-P+ONE),
e State space

S§=1{1,2,3,4} where:
1= Duh!

1=]1
2 = Bummer!! 1=l
3 = Dunno!!!
4 = Whoops!!!!

1] a row vector with #8 ones;

I = identity matrix with rank #S;

P = [P;]; jes is the TPM;

ONE is the #8 x #8 matrix all of whose entries are equal to 1.

o TPM Since the footnote does not provide any inverse of a 4 x 4 matrix, we are bound to
06 01 01 02 use a calculator and to obtain
b= gg 0(.)5 063 83 T = 1x(I-P+ONE)" .
0.1 0.2 02 0.5 1000 0.6 0.1 0.1 0.2 1111
_ 1x 01 00| |03 0 0304 n 1111
e Obs. = 0010 03 05 0 02 1111
We are dealing with an irreducible DTMC with finite state space. Hence, all 000 1 0.1 02 02 0.5 1111

states are positive recurrent[, by Prop. 3.35]. Furthermore, the DTMC seems to —1

(1.4 09 09 08

be aperiodic.
0.7 2 0.7 0.6

e Stationary distribution = 1x 0.7 05 2 0.8
Since the DTMC is irreducible, positive recurrent and aperiodic we can add that 09 08 08 15
rlgl}»loo PZ'JL =m;>0,4,j €S, 1.288765 —0.349869 —0.303219 —0.385677
) ) ) R oo —0.222405  0.661958 —0.092970 —0.096583
where the row vector m = [7}]jcs is the unique stationary distribution satisfying ~ [1 1 1 1] 0169842 0.018068  0.682326 —0.280552
{ T = Zies mPy, €S —0.564060 —0.152760 —0.132392 1.099212
Djesmi =1 ~ [0.332457 0.177398 0.153745 0.336399] .
{ TP=m Thus, the long-run fraction of time Evaristo uses the expression Bummer!! is equal
xlT =1, to the sum of the entries of the 2nd. column of (I — P + ONE)™!: my ~ 0.177397.]
where 1=1[1 --- 1] arow vector with #S ones.
Using the first result in the footnote and considering m; = ﬁ yields (b) Given that Evaristo just used the expression Duh/, determine the expected number of (2.0)

1 X - . ) transitions until he says Whoops!!!!
The following results may come handy in this and the next lines: [253 135 117 256] x P = [253 135 117 256]; :

04  —01 -017° 425 75 65 e Initial/present state
—03 1 03 =15 | 195 18 75 X .
1=

—-03 —05 1 225 115 185



e Important
To obtain the expected number of transitions until Evaristo says Whoops!!!!, given
that X; = 4, we have to consider another DTMC where state 4 (Whoops!!!!) is
absorbing. The associated TPM is

06 0.1 0.1 0.2

e Important
To calculate the requested probability, we have to consider once again another
DTMC. In this case, states 2 (Bummer!!) and 3 (Dunno!!!) are absorbing and
the associated TPM equals

06 02 01 0.1

P 03 0 03 04 pr_ 0.1 05 0.2 02
03 05 0 02]° "o o 1 o
0 0 0 1 0o o 0 1
* Requested expected value The substochastic matrices governing the transitions between the transient states
Let of this DTMC and the transitions from the transient to the absorbing states are
06 0.1 0.1 Q - [ 8(15 8? }
Q=103 0 03 -
03 05 0 R — 0.1 0.1
{ 02 02’
be the substochastic matrix governing the transitions between the states in 7' = respectively.

{1,2,3}, the class of transient states of this new DTMC, and
e Requested probability

T=inf{neN: X, ¢T} Keeping in mind that
be the number of transitions until Evaristo says Whoops!!!!' Then [(see Prop. 3.116)] a b1 1 d —b
the 2nd. result in the footnote yields { c d } = ad—be [ —¢ a ] ’
. form. At
B X = ™ I-Q)7 X1 ) o gt
100 06 0.1 0.1 U = [P(reach absorbing state k | X1 = @)]ier kgr
= 010]|—-103 0 03 x 1 - Q)A <R
001 03 05 0 B .
04 —01 —017°" _ 1 o] [06 02 o 0.1 0.1
T T B 01 0.1 05 0.2 0.2
= -0.3 1 -03 x 1 .
—0.3 —05 1 - [ 04 —-0.2 } « [ 0.1 0.1 }
L[4 65 1 —01 05 02 02
= — [ 195 18 75 | x |1 _ 1 0.5 0.2 « 0.1 0.1
128 225 115 185 1 0.4x05—(-0.2) x (=0.1) | 0.1 0.4 0.2 0.2
El)gg - 1 0.09 0.09
_ 455 | ~0.18 [ 0.09 0.09
i
T _[05 05
Finally, E(transitions until Evaristo says Whoops!/!!! | he just said Duh!) is equal 05 05 |°
to Thus, given that he just used the expression Duh/, the probability that Evaristo will
Er|Xi=1) = % say Bummer!! before Dunno!!!l is 0.5.
~ 4.414063.

2. Let {X,, : n € Ng} be a branching process such that the number of offspring per individual
(¢) Find the probability that Evaristo will say Bummer!! before Dunno!!!, considering once (2.0) has a Poisson distribution with parameter A = 2.

again that he just used the expression Duh/!
(a) Starting with a single individual (i.e., Xy = 1), verify that the extinction probability is (1.5)

Note: You may have to consider states 2 and 3 absorbing, eventually relabel the states,
7~ 0.203188.

identify substochastic matrices Q and R and calculate (I — Q)~! x R.
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e Branching process

{X, :n e Ny} R = i .
X, = size of generation n Plextinction) = 'Zo X P(Xo =)
=
e Initial state = Px,(m)
Xo =1 (single initial individual) Jorm. —(1-m)
e State space ~  —(1-0203188)
S=No ~  0.450764.
e Number of offspring per individual . [Obs
L=, = ber of offspri f the I** individual of generati )
! id b ] number of olispring ok the £ ndividual of generation n Interestingly, if X, ~ Poisson(A = 2) then we would get P(extinction) = ¢ 21~ =
7y~ Poisson(\), l € N ~ 0.203188
. AN T =U. ]
Pp=PZ=j)=e"5 j €Ny
e Obs.
X, =" Z, neN Group 3 — Continuous time Markov chains 9.0 points
e Probability of extinction 1. Consider an assembly line where parts arrive according to a Poisson process with rate A
Since E(Z;) = A =2 > 1, the probability of extinction, parts per minute. A part is immediately processed upon arrival and it takes an exponentially
7 fome P(X, =0 Xo=1), distributed time with a rate of y parts per minute to process it.
n—+00
is the smallest positive number satisfying (a) Write the Kolmogorov’s forward differential equations in terms of P;(t) = FPy;(t) =
; +oo P[X(t) =j| X(0) = 0], for j € Ny, where X (f) represents the number of parts being
r TE Z w7 x P; processed at time ¢. (Do not try to solve the differential equations!)
/=0 e CTMC
~+00 ) /\]‘
= ZWJX(AT {X(t): ¢t >0}
= J X (t) = number of parts being processed at time ¢
= Py(m), e Birth and death rates
where Py (s) = BE(s%) Jorm. =179 |s| < 1, denotes the p.g.f. of the discrete r.v. Since the inter-arrival times are i.i.d., exponentially distributed r.v. which we
Z; ~ Poisson()). Hence assume to be independent of the processing times, which are also i.i.d. exponentially
o= e M1-m distributed r.v., {X(¢) : t > 0} is indeed a birth-death process with rates
A= NJjeEN
Furthermore, 7 = 0.203188 satisfies 7 = e~*1=™ after all / B J } 0
Wi = Jjp,jEN

£—2x(1-0.203188) ., () 903188,
e Kolmogorov’s forward differential equations

(b) Suppose that, instead of starting with a single individual, X ~ Poisson(1). (1.5) Note that
Obtain the extinction probability in this case in terms of 7 obtained in (a). Pi(t) = Po(t) =PIX(t) =7 | X(0)=0], j € No
e New initial state P(t) = 0
Xo = Zy ~ Poisson(1) A =0
e New probability of extinction po = 0
Then using the total probability law and the fact that the offspring are produced therefore the Kolmogorov’s forward differential equations
. dPi(t)  form. .
independently - 0o P i+ P g - B O ). € N,
P(extinction) = Z P(extinction | Xo = j) x P(Xo = j) reads as follows:
pars dPR(t)
= Pi(t)p— R(t)A
+o00 dt
= P(extinction | Xo = 1)} x P(Xo =j d Py(t , S
j;[ (extinction | X )l x P(Xo = j) d]t() = P () A+ Py (t) ju— Py(t) (A + ju), j € N.



(b) Show that the p.g.f. of (X(t) | X(0) = 0), P(z,t) = E [¢X® | X(0) = 0], satisfies the (2.0) e Brief comments

following partial differential equation The 1st. command sets the partial differential equation.

OP(z,t OP(z,t . and i rtial di i ion i
(z,t) SN =) P ) - p(1—2) (z,t) —o. The purpose of thc' 2nd c.or'm'nand is ‘t(') solve tho' partial differential equation in t'orn?s
ot 0z of P(z,t) considering an initial condition reflecting the fact that X (0) = 0, which is

¢ R.v. indeed equivalent to P(z,0) = E[zX(©] = 20 x P[X(0) = 0] = 1.
(X() | X(0)=0) e Solution of the partial differential equation
e Rewriting the Kolmogorov’s forward differential equations <0 A=t (=0) (et -
By multiplying the j** Kolmogorov’s forward differential equation by 2/, summing P(z,t) = E [X0 [ X(0) =0] =e " sfort>0and |2 <1
in j € S and noting that o Identifying P;(t)
] P orm. P <~ . .
Z 2 X dTJt(t) for w Consulting the table with p.g.f. we conclude that
jes A
OP(z,t)  form ; P(zt) = exp|—= (1—e™)x(1-2z
00 e 5 () = e |5 (1= ™) x(1-2)
“ jes = p.g.f of a Poisson with parameter a(t),
= Z(J + 1)z x Pa(t), where a(t) = % (1 —e™#), that is,
jes
we can reduce the set of Kolmogorov’s forward differential equations derived in (a) ol N
to a SINGLE PARTIAL DIFFERENTIAL EQUATION, whose solution is the p.g.f. of the Py(t) = e T J €N,
r.v. (X(t) | X(0) =4):
j dP;(t) j e Requested limit
Do x g = D02 X [Pra(t) Aoy + P () pysn — Bi(8) (0 + )] q
jes jes Since limy o0 a(t) = %, we get
OP(z,t =\, 1;=5 ; i .
Col) AP S BN+ Y P X Palt) G+ ;
ot . . : VR OVID
jes jes tl1£}1 Pi(t)=e —J€ Np.
. . —+400 7!
—YF R BOA- Y < B0 jn
jes jes [This p.f. coincides expectedly with the one of LY/*/* ]
= Az Y AT Pa(t) 4 > (G 1)2 x Pia(t)
jes jes
’ ; JE‘ i 2. Consider a drive-in banking service modeled as an M/M/1 queueing system in equilibrium,
A ZSZ x Bi(t) = p ZSJ # x Bi(t) with arrival (resp. service) rate equal to A (resp. p) customers per minute (where \/p < 1).
je je
_ Az P(2,8) + oP(z,t) AP(2 1) — iz 6P(27t): (a) When A = 2, it is desired to have fewer than 5 customers in the system 99% (or more) (1.5)
. 0z 0z of the time.
ie.,
5 o How large should the service rate be?
P(z,t P(z,t
Z(% ) +A(1—2)P(z,t) —p(l— z)% =0. e Birth-death queueing system
M/M/1
(¢) Using the Mathematica commands (1.5) e Birth/death rates
e pde = D[P[z,t],t] + A(1 — 2) P[z,t] — (1 — 2) D[P[2,t], 2] == 0; A=A=2keNy
e soln = DSolve[{pde, P[z,0] == 1}, Pz, 1], {z,t}]; fe = p, k€N
e soln = P|z,t]/.Dispatchsoln]; e Traffic intensity/ergodicity condition
o Simplify[soln[[1]]] P= ﬁ = % <1
e Gt I e Performance measure (in the long-run)
led to the solution e W (for t > 0 and |2| < 1). . . L .
) ) ) . Ly = number of customers in the drive-in banking service
After making brief comments about the first two commands, identify P;(t) and calculate P(L,=k)=p"(1—p), k€ Ny
limy, 40 Pj(t).



e Requested service rate
We have to deal with g > A =2 and

u : P(Ls;<5)>0.99
4
> (1= p) =099
k=0

5

1—p
17
(1-0)7 p

>0.99

1—p°>099

A
Z<(1-0.99)°
i
> 7
H=0017
> 5.023773.
(b) Admit that the service rate is equal to pu = % customers per minute. It is the policy
of the company to add another server if an arriving customer waits an average of 3 or
more minutes for the server.

Find the arrival rate needed to justify a second server.
e Birth-death queueing system
M/M/1 with pp =1

e Traffic intensity /ergodicity condition
p= % =2\<1
e Performance measure (in the long-run)
W, = time (in hours) an arriving customer waits for the server

-y form
BW,) 2" s

e Requested arrival rate
‘We have to deal with A < % and
A E(W,)>3
p
P >3
m(l—p)
2\
Mi-2n
4X >3 -6
A>0.3.

>3

(¢) Now, consider the system has two servers and that the arrival (resp. service) rate is
equal to A = 2 (resp. p = 1.5) customers per minute.

What are the probabilities that an arriving customer will:

(i) find both servers busy?

(ii) spend more than 5 minutes in the system?

e New birth-death queueing system
M /M /m, where m = 2 servers.

11

(1.0)

(1.5)

e Birth/death rates
M=A=2keN,

fu=15 k=1
ME=\ou=3, k=23,...

e Traffic intensity/ergodicity condition

— A _2
pinm73<1

Performance measure (in the long-run)

Lg = number of customers in the drive-in banking service

~

1st. requested probability
P(Ly>m) T

form.,m=2

C(m,mp)

[N
o
g;Jr‘bN
S

N
o

E
+
Wi

O =
o

(3).

e Another performance measure (in the long-run)
W, = time an arriving customer spends in the system

e 2nd. requested probability

P(W, > t)

t=5

Jorm.

* 1—m(1-p)
el 5x[1-201-2/3)]x5 g
b X
[ 1-20-2/3) 15
0.011334.

epll-m1-p)
[1 X C(mﬂnp)] et

:| e—l.5><5
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