Department of Mathematics, IST - Probability and Statistics Unit

Introduction to Stochastic Processes

2nd. Test
2nd. Semester - 2013/14
Duration: 1h30m
2014/06/11 - 3PM, Room V1.14

- Please justify all your answers.
- This test has two pages and three groups. The total of points is 20.0 .

Group 1 - Renewal Processes

2.0 points

The number of inspections by a supervisor to an industrial plant is governed by a delayed (2.0) enewal process such that:

- the first inspection time follows an exponential distribution with unit mean;
- the subsequent inter-inspection times follow a hyper-exponential distribution with parameters $\left(1, \frac{1}{2} ; \frac{1}{2}, \frac{1}{2}\right)$

Derive the renewal function of this process.
Note/hint: Admit that the duration of any inspection is insignificant compared to the time between consecutive inspections; capitalize on the fact that $\frac{2(1+2 s)}{s(3+4 s)}=\frac{2}{3} \times \frac{1}{s}+\frac{1}{3} \times \frac{1}{3+s}$.

- Delayed renewal process
$\left\{N_{D}(t): t \geq 0\right\}$
$N_{D}(t)=$ number of inspections done by time t
- Inter-renewal times
X_{i} independent r.v., $i \in \mathbb{N}$
$X_{1} \sim \operatorname{Exp}(1)$
$X_{i} \stackrel{i . i . d .}{\sim} \operatorname{Hyper}-\exp \left(1, \frac{1}{2} ; \frac{1}{2}, \frac{1}{2}\right), i \in \mathbb{N} \backslash\{1\}$
- Important
$G(x)=P\left(X_{1} \leq x\right)$
$F(x)=P\left(X_{i} \leq x\right), i \in \mathbb{N} \backslash\{1\}$
$\frac{d F(x)}{d x} \stackrel{\text { form. }}{=} \frac{1}{2} \times f_{\operatorname{Exp}(1)}(x)+\frac{1}{2} \times f_{\operatorname{Exp}(1 / 2)}(x)$
- Deriving the renewal function

Since the inter-renewal times are continuous r.v., the LST of the two inter-renewal distributions are given by

$$
\begin{aligned}
\tilde{G}(s) & =\int_{0^{-}}^{+\infty} e^{-s x} d G(x) \\
& =E\left(e^{-s X_{1}}\right) \\
& =M_{\operatorname{Exp}(1)}(-s) \\
& \stackrel{\text { form. }}{=} \frac{1}{1+s}
\end{aligned}
$$

$$
\begin{aligned}
\tilde{F}(s) & =\int_{0^{-}}^{+\infty} e^{-s x} d F(x) \\
& =\frac{1}{2} \times M_{\operatorname{Exp}(1)}(-s)+\frac{1}{2} \times M_{\operatorname{Exp}(1 / 2)}(-s) \\
& \stackrel{\text { form. }}{=} \frac{1}{2} \times \frac{1}{1+s}+\frac{1}{2} \times \frac{1 / 2}{1 / 2+s} \\
& =\frac{1}{2} \times\left(\frac{1}{1+s}+\frac{1}{1+2 s}\right) \\
& =\frac{2+3 s}{2(1+s)(1+2 s)}
\end{aligned}
$$

Moreover, the LST of the renewal function of a delayed renewal process, $m(t)=$ $E\left[N_{D}(t)\right]$, can be obtained in terms of the LST of F and G :

$$
\begin{aligned}
\tilde{m}(s) & =\int_{0^{-}}^{+\infty} e^{-s x} d m(x) \\
& \stackrel{\text { form. }}{=} \frac{\tilde{G}(s)}{1-\tilde{F}(s)} \\
& =\frac{\frac{1}{1+s}}{1-\frac{2+3 s}{2(1+s)(1+2 s)}} \\
& =\frac{2(1+2 s)}{2(1+s)(1+2 s)-(2+3 s)} \\
& =\frac{2(1+2 s)}{2\left(1+3 s+2 s^{2}\right)-(2+3 s)} \\
& =\frac{2(1+2 s)}{3 s+4 s^{2}} \\
& =\frac{2(1+2 s)}{s(3+4 s)} \\
& \stackrel{2}{=} \\
= & \frac{1}{3}+\frac{1}{3} \times \frac{1}{3 / 4+s} .
\end{aligned}
$$

Taking advantage of the LT in the formulae, we successively get:

$$
\begin{aligned}
\frac{d m(t)}{d t} & =L T^{-1}[\tilde{m}(s), t] \\
& =L T^{-1}\left[\frac{2}{3} \times \frac{1}{s}+\frac{1}{3} \times \frac{1}{3 / 4+s}, t\right] \\
& =\frac{2}{3} \times L T^{-1}\left[\frac{1}{s}, t\right]+\frac{1}{3} \times L T^{-1}\left[\frac{1}{3 / 4+s}, t\right] \\
& =\frac{2}{3}+\frac{1}{3} \times e^{-3 t / 4} \\
m(t) & =\int_{0}^{t}\left(\frac{2}{3}+\frac{1}{3} \times e^{-3 x / 4}\right) d x \\
& =\left.\left(\frac{2 x}{3}+\frac{1}{3} \times \frac{4}{3} e^{-3 x / 4}\right)\right|_{0} ^{t} \\
& =\frac{2 t}{3}+\frac{4}{9}\left(1-e^{-3 t / 4}\right), t \geq 0 .
\end{aligned}
$$

Group 2 - Discrete time Markov chains

1. Evaristo uses four expressions - Duh! (state 1), Bummer!! (state 2), Dunno!!! (state 3), and Whoops!!!! (state 4) - according to a DTMC with the following TPM:

$$
\mathbf{P}=\left[\begin{array}{cccc}
0.6 & 0.1 & 0.1 & 0.2 \\
0.3 & 0 & 0.3 & 0.4 \\
0.3 & 0.5 & 0 & 0.2 \\
0.1 & 0.2 & 0.2 & 0.5
\end{array}\right]
$$

(a) Find the long-run fraction of time Evaristo uses the expression Bummer!!

Note: Recall that $\underline{\pi} \mathbf{P}=\underline{\pi}$ and check the footnote! ${ }^{1}$

- DTMC

$\left\{X_{n}: n \in \mathbb{N}\right\}$
$X_{n}=n^{\text {th }}$ expression Evaristo used

- State space
$\mathcal{S}=\{1,2,3,4\}$
$1=D u h!$
$2=$ Bummer!!
3 = Dunno!!!
$4=$ Whoops!!!!

- TPM

$$
\mathbf{P}=\left[\begin{array}{cccc}
0.6 & 0.1 & 0.1 & 0.2 \\
0.3 & 0 & 0.3 & 0.4 \\
0.3 & 0.5 & 0 & 0.2 \\
0.1 & 0.2 & 0.2 & 0.5
\end{array}\right]
$$

- Obs.

We are dealing with an irreducible DTMC with finite state space. Hence, all states are positive recurrent[, by Prop. 3.35]. Furthermore, the DTMC seems to be aperiodic.

- Stationary distribution

Since the DTMC is irreducible, positive recurrent and aperiodic we can add that

$$
\lim _{n \rightarrow+\infty} P_{i j}^{n}=\pi_{j}>0, i, j \in \mathcal{S},
$$

where the row vector $\underline{\pi}=\left[\pi_{j}\right]_{j \in \mathcal{S}}$ is the unique stationary distribution satisfying

$$
\begin{aligned}
& \left\{\begin{array}{l}
\pi_{j}=\sum_{i \in \mathcal{S}} \pi_{i} P_{i j}, j \in \mathcal{S} \\
\sum_{j \in \mathcal{S}} \pi_{j}=1
\end{array}\right. \\
& \left\{\begin{array}{l}
\frac{\pi}{\mathbf{P}}=\boldsymbol{\pi} \\
\pi 1^{\top}=1,
\end{array}\right.
\end{aligned}
$$

where $\underline{1}=[1$
Using the first result in the footnote and considering $\pi_{j}=\frac{a_{j}}{\sum_{i \in \mathcal{S}} a_{i}}$ yields

[^0]\[

$$
\begin{aligned}
& \frac{\left[\begin{array}{llll}
253 & 135 & 117 & 256
\end{array}\right] \mathbf{P}}{}=\left[\begin{array}{llll}
253 & 135 & 117 & 256
\end{array}\right] \\
& 253+135+117+256 \\
& {\left[\begin{array}{llll}
253 & 135 & 117 & 256
\end{array}\right] \mathbf{P} }=\frac{1}{761}\left[\begin{array}{lllll}
253 & 135 & 117 & 256
\end{array}\right] \\
& \underline{\pi}=\frac{1}{761}\left[\begin{array}{lllll}
253 & 135 & 117 & 256
\end{array}\right] \\
& \underline{\pi} \simeq\left[\begin{array}{lllll}
0.333 & 0.177 & 0.154 & 0.336
\end{array}\right] .
\end{aligned}
$$
\]

- Requested probability

Thus, the long-run fraction of time Evaristo uses the expression Bummer!! is $\pi_{2} \simeq 0.177$.

- [Stationary distribution (alternative!)

The row vector denoting the stationary distribution, $\underline{\pi}=\left[\pi_{j}\right]_{j \in \mathcal{S}}$, is given by

$$
\underline{\pi}=\underline{1} \times(\mathbf{I}-\mathbf{P}+\mathbf{O N E})^{-1}
$$

where:
$\underline{1}=\left[\begin{array}{lll}1 & \cdots & 1\end{array}\right]$ a row vector with $\# \mathcal{S}$ ones;
$\mathbf{I}=$ identity matrix with rank $\# \mathcal{S}$;
$\mathbf{P}=\left[P_{i j}\right]_{i, j \in \mathcal{S}}$ is the TPM;
ONE is the $\# \mathcal{S} \times \# \mathcal{S}$ matrix all of whose entries are equal to 1
Since the footnote does not provide any inverse of a 4×4 matrix, we are bound to use a calculator and to obtain

$$
\begin{aligned}
\underline{\pi} & =\underline{1} \times(\mathbf{I}-\mathbf{P}+\mathbf{O N E})^{-1} \\
& =\underline{1} \times\left(\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]-\left[\begin{array}{cccc}
0.6 & 0.1 & 0.1 & 0.2 \\
0.3 & 0 & 0.3 & 0.4 \\
0.3 & 0.5 & 0 & 0.2 \\
0.1 & 0.2 & 0.2 & 0.5
\end{array}\right]+\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right]\right)^{-1} \\
& =\underline{1} \times\left[\begin{array}{cccc}
1.4 & 0.9 & 0.9 & 0.8 \\
0.7 & 2 & 0.7 & 0.6 \\
0.7 & 0.5 & 2 & 0.8 \\
0.9 & 0.8 & 0.8 & 1.5
\end{array}\right] \\
& \simeq\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \times\left[\begin{array}{rrrr}
1.288765 & -0.349869 & -0.303219 & -0.385677 \\
-0.222405 & 0.661958 & -0.092970 & -0.096583 \\
-0.169842 & 0.018068 & 0.682326 & -0.280552 \\
-0.564060 & -0.152760 & -0.132392 & 1.099212
\end{array}\right]
\end{aligned}
$$

$$
\simeq\left[\begin{array}{llll}
0.332457 & 0.177398 & 0.153745 & 0.336399
\end{array}\right]
$$

Thus, the long-run fraction of time Evaristo uses the expression Bummer!! is equal to the sum of the entries of the 2 nd. column of $(\mathbf{I}-\mathbf{P}+\mathbf{O N E})^{-1}: \pi_{2} \simeq 0.177397$.]
(b) Given that Evaristo just used the expression Duh!, determine the expected number of (2.0) transitions until he says Whoops!!!!

- Initial/present state

$X_{1}=i$

- Important

To obtain the expected number of transitions until Evaristo says Whoops!!!!, given that $X_{1}=i$, we have to consider another DTMC where state 4 (Whoops!!!!) is absorbing. The associated TPM is

$$
\mathbf{P}^{\prime}=\left[\begin{array}{cccc}
0.6 & 0.1 & 0.1 & 0.2 \\
0.3 & 0 & 0.3 & 0.4 \\
0.3 & 0.5 & 0 & 0.2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Requested expected value

Let

$$
\mathbf{Q}=\left[\begin{array}{ccc}
0.6 & 0.1 & 0.1 \\
0.3 & 0 & 0.3 \\
0.3 & 0.5 & 0
\end{array}\right]
$$

be the substochastic matrix governing the transitions between the states in $T=$ $\{1,2,3\}$, the class of transient states of this new DTMC, and

$$
\tau=\inf \left\{n \in \mathbb{N}: X_{n} \notin T\right\}
$$

be the number of transitions until Evaristo says Whoops!!!! Then [(see Prop. 3.116)] the 2nd. result in the footnote yields

$$
\begin{aligned}
{\left[E\left(\tau \mid X_{1}=i\right)\right]_{i \in T} } & \stackrel{\text { form. }}{=}(\mathbf{I}-\mathbf{Q})^{-1} \times \underline{1} \\
& =\left(\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{ccc}
0.6 & 0.1 & 0.1 \\
0.3 & 0 & 0.3 \\
0.3 & 0.5 & 0
\end{array}\right]\right)^{-1} \times \underline{1} \\
& =\left[\begin{array}{rrr}
0.4 & -0.1 & -0.1 \\
-0.3 & 1 & -0.3 \\
-0.3 & -0.5 & 1
\end{array}\right]^{-1} \times \underline{1} \\
& =\frac{1}{128}\left[\begin{array}{rrr}
425 & 75 & 65 \\
195 & 185 & 75 \\
225 & 115 & 185
\end{array}\right] \times\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{565}{128} \\
\frac{455}{128} \\
\frac{525}{128}
\end{array}\right]
\end{aligned}
$$

Finally, E (transitions until Evaristo says Whoops!!!! | he just said Duh!) is equal to

$$
\begin{aligned}
E\left(\tau \mid X_{1}=1\right) & =\frac{565}{128} \\
& \simeq 4.414063
\end{aligned}
$$

(c) Find the probability that Evaristo will say Bummer!! before Dunno!!!, considering once (2.0) again that he just used the expression Duh!
Note: You may have to consider states 2 and 3 absorbing, eventually relabel the states, identify substochastic matrices \mathbf{Q} and \mathbf{R} and calculate $(\mathbf{I}-\mathbf{Q})^{-1} \times \mathbf{R}$.

- Important

To calculate the requested probability, we have to consider once again another DTMC. In this case, states 2 (Bummer!!) and 3 (Dunno!!!) are absorbing and the associated TPM equals

$$
\mathbf{P}^{\star}=\left[\begin{array}{cccc}
0.6 & 0.2 & 0.1 & 0.1 \\
0.1 & 0.5 & 0.2 & 0.2 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The substochastic matrices governing the transitions between the transient states of this DTMC and the transitions from the transient to the absorbing states are

$$
\begin{aligned}
& \mathbf{Q}=\left[\begin{array}{ll}
0.6 & 0.2 \\
0.1 & 0.5
\end{array}\right] \\
& \mathbf{R}=\left[\begin{array}{ll}
0.1 & 0.1 \\
0.2 & 0.2
\end{array}\right],
\end{aligned}
$$

respectively.

- Requested probability

Keeping in mind that

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

we get
$\mathbf{U}=\left[P\left(\text { reach absorbing state } k \mid X_{1}=i\right)\right]_{i \in T, k \notin T}$
$=(\mathbf{I}-\mathbf{Q})^{-1} \times \mathbf{R}$
$=\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-\left[\begin{array}{ll}0.6 & 0.2 \\ 0.1 & 0.5\end{array}\right]\right)^{-1} \times\left[\begin{array}{ll}0.1 & 0.1 \\ 0.2 & 0.2\end{array}\right]$
$=\left[\begin{array}{rr}0.4 & -0.2 \\ -0.1 & 0.5\end{array}\right]^{-1} \times\left[\begin{array}{ll}0.1 & 0.1 \\ 0.2 & 0.2\end{array}\right]$
$=\frac{1}{0.4 \times 0.5-(-0.2) \times(-0.1)}\left[\begin{array}{cc}0.5 & 0.2 \\ 0.1 & 0.4\end{array}\right] \times\left[\begin{array}{cc}0.1 & 0.1 \\ 0.2 & 0.2\end{array}\right]$
$=\frac{1}{0.18}\left[\begin{array}{cc}0.09 & 0.09 \\ 0.09 & 0.09\end{array}\right]$
$\simeq\left[\begin{array}{ll}0.5 & 0.5 \\ 0.5 & 0.5\end{array}\right]$
Thus, given that he just used the expression Duh!, the probability that Evaristo will say Bummer!! before Dunno!!! is 0.5 .
2. Let $\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$ be a branching process such that the number of offspring per individual has a Poisson distribution with parameter $\lambda=2$.
(a) Starting with a single individual (i.e., $X_{0}=1$), verify that the extinction probability is (1.5) $\pi \simeq 0.203188$.

- Branching process
$\left\{X_{n}: n \in \mathbb{N}_{0}\right\}$
$X_{n}=$ size of generation n
- Initial state
$X_{0}=1$ (single initial individual)
- State space
$\mathcal{S}=\mathbb{N}_{0}$
- Number of offspring per individual
$Z_{l} \equiv Z_{l, n}=$ number of offspring of the $l^{t h}$ individual of generation n
$Z_{l} \stackrel{i . i . d .}{\sim} \operatorname{Poisson}(\lambda), l \in \mathbb{N}$
$P_{j}=P\left(Z_{l}=j\right)=e^{-\lambda \frac{\lambda^{j}}{j!}}, j \in \mathbb{N}_{0}$
- Obs.
$X_{n}=\sum_{l=1}^{X_{n-1}} Z_{l}, n \in \mathbb{N}$
- Probability of extinction

Since $E\left(Z_{l}\right)=\lambda=2>1$, the probability of extinction,

$$
\pi \stackrel{\text { form. }}{=} \lim _{n \rightarrow+\infty} P\left(X_{n}=0 \mid X_{0}=1\right)
$$

is the smallest positive number satisfying

$$
\pi \stackrel{\text { form. }}{=} \sum_{j=0}^{+\infty} \pi^{j} \times P_{j}
$$

$=\sum_{j=0}^{+\infty} \pi^{j} \times e^{-\lambda} \frac{\lambda^{j}}{j!}$
$=P_{Z_{l}}(\pi)$,
where $P_{Z_{l}}(s)=E\left(s^{Z_{l}}\right) \stackrel{\text { form. }}{=} e^{-\lambda(1-s)},|s| \leq 1$, denotes the p.g.f. of the discrete r.v. $Z_{l} \sim \operatorname{Poisson}(\lambda)$. Hence

$$
\pi=e^{-\lambda(1-\pi)}
$$

Furthermore, $\pi=0.203188$ satisfies $\pi=e^{-\lambda(1-\pi)}$, after all

$$
e^{-2 \times(1-0.203188)} \simeq 0.203188
$$

(b) Suppose that, instead of starting with a single individual, $X_{0} \sim \operatorname{Poisson}(1)$.

Obtain the extinction probability in this case in terms of π obtained in (a).

- New initial state
$X_{0}=Z_{0} \sim \operatorname{Poisson}(1)$
- New probability of extinction

Then using the total probability law and the fact that the offspring are produced independently

$$
\begin{aligned}
P(\text { extinction }) & =\sum_{j=0}^{+\infty} P\left(\text { extinction } \mid X_{0}=j\right) \times P\left(X_{0}=j\right) \\
& =\sum_{j=0}^{+\infty}\left[P\left(\text { extinction } \mid X_{0}=1\right)\right]^{j} \times P\left(X_{0}=j\right)
\end{aligned}
$$

$$
\begin{aligned}
& P(\text { extinction })=\sum_{j=0}^{+\infty} \pi^{j} \times P\left(X_{0}=j\right) \\
&=P_{X_{0}}(\pi) \\
& \stackrel{f o r m .}{=} e^{-(1-\pi)} \\
& \simeq e^{-(1-0.203188)} \\
& \simeq 0.450764 .
\end{aligned}
$$

- [Obs.

Interestingly, if $X_{0} \sim \operatorname{Poisson}(\lambda=2)$ then we would get $P($ extinction $)=e^{-\lambda(1-\pi)}=$ $\pi \simeq 0.203188$.]

Group 3 - Continuous time Markov chains

9.0 points

1. Consider an assembly line where parts arrive according to a Poisson process with rate λ parts per minute. A part is immediately processed upon arrival and it takes an exponentially distributed time with a rate of μ parts per minute to process it.
(a) Write the Kolmogorov's forward differential equations in terms of $P_{j}(t) \equiv P_{0 j}(t)=(\mathbf{1 . 5}$ $P[X(t)=j \mid X(0)=0]$, for $j \in \mathbb{N}_{0}$, where $X(t)$ represents the number of parts being processed at time t. (Do not try to solve the differential equations!)

- CTMC

$\{X(t): t \geq 0\}$
$X(t)=$ number of parts being processed at time t

- Birth and death rates

Since the inter-arrival times are i.i.d., exponentially distributed r.v. which we assume to be independent of the processing times, which are also i.i.d. exponentially distributed r.v., $\{X(t): t \geq 0\}$ is indeed a birth-death process with rates

$$
\begin{aligned}
\lambda_{j} & =\lambda, j \in \mathbb{N}_{0} \\
\mu_{j} & =j \mu, j \in \mathbb{N}
\end{aligned}
$$

- Kolmogorov's forward differential equations

Note that

$$
\begin{aligned}
P_{j}(t) & \equiv P_{0 j}(t)=P[X(t)=j \mid X(0)=0], j \in \mathbb{N}_{0} \\
P_{-1}(t) & =0 \\
\lambda_{-1} & =0 \\
\mu_{0} & =0
\end{aligned}
$$

therefore the Kolmogorov's forward differential equations

$$
\begin{aligned}
& \frac{d P_{j}(t)}{d t} \stackrel{\text { form. }}{=} P_{j-1}(t) \lambda_{j-1}+P_{j+1}(t) \mu_{j+1}-P_{j}(t)\left(\lambda_{j}+\mu_{j}\right), j \in \mathbb{N}_{0} \\
& \text { reads as follows: } \\
& \frac{d P_{0}(t)}{d t}=P_{1}(t) \mu-P_{0}(t) \lambda \\
& \frac{d P_{j}(t)}{d t}=P_{j-1}(t) \lambda+P_{j+1}(t) j \mu-P_{j}(t)(\lambda+j \mu), j \in \mathbb{N} .
\end{aligned}
$$

(b) Show that the p.g.f. of $(X(t) \mid X(0)=0), P(z, t)=E\left[z^{X(t)} \mid X(0)=0\right]$, satisfies the $\quad(\mathbf{2 . 0}$ following partial differential equation

$$
\frac{\partial P(z, t)}{\partial t}+\lambda(1-z) P(z, t)-\mu(1-z) \frac{\partial P(z, t)}{\partial z}=0
$$

- R.v
$(X(t) \mid X(0)=0)$
- Rewriting the Kolmogorov's forward differential equations

By multiplying the $j^{\text {th }}$ Kolmogorov's forward differential equation by z^{j}, summing in $j \in \mathcal{S}$ and noting that

$$
\begin{aligned}
& \sum_{j \in \mathcal{S}} z^{j} \times \frac{d P_{j}(t)}{d t} \stackrel{\text { form. }}{=} \frac{\partial P(z, t)}{\partial t} \\
& \frac{\partial P(z, t)}{\partial z} \stackrel{\text { form. }}{=} \sum_{j \in \mathcal{S}} j z^{j-1} \times P_{j}(t) \\
&=\sum_{j \in \mathcal{S}}(j+1) z^{j} \times P_{j+1}(t)
\end{aligned}
$$

we can reduce the set of Kolmogorov's forward differential equations derived in (a) to a Single partial differential equation, whose solution is the p.g.f. of the r.v. $(X(t) \mid X(0)=i)$:

$$
\begin{aligned}
& \begin{aligned}
& \sum_{j \in \mathcal{S}} z^{j} \times \frac{d P_{j}(t)}{d t}= \sum_{j \in \mathcal{S}} z^{j} \times\left[P_{j-1}(t) \lambda_{j-1}+P_{j+1}(t) \mu_{j+1}-P_{j}(t)\left(\lambda_{j}+\mu_{j}\right)\right] \\
& \frac{\partial P(z, t)}{\partial t} \lambda_{j}=\lambda, \mu_{j}=j \mu \\
& \sum_{j \in \mathcal{S}} z^{j} \times P_{j-1}(t) \lambda+\sum_{j \in \mathcal{S}} z^{j} \times P_{j+1}(t)(j+1) \mu \\
&-\sum_{j \in \mathcal{S}} z^{j} \times P_{j}(t) \lambda-\sum_{j \in \mathcal{S}} z^{j} \times P_{j}(t) j \mu \\
&= \lambda z \sum_{j \in \mathcal{S}} z^{j-1} \times P_{j-1}(t)+\mu \sum_{j \in \mathcal{S}}(j+1) z^{j} \times P_{j+1}(t) \\
&-\lambda \sum_{j \in \mathcal{S}} z^{j} \times P_{j}(t)-\mu z \sum_{j \in \mathcal{S}} j z^{j-1} \times P_{j}(t) \\
&= \lambda z P(z, t)+\mu \frac{\partial P(z, t)}{\partial z}-\lambda P(z, t)-\mu z \frac{\partial P(z, t)}{\partial z}, \\
& \text { i.e., } \quad \\
& \quad \frac{\partial P(z, t)}{\partial t}+\lambda(1-z) P(z, t)-\mu(1-z) \frac{\partial P(z, t)}{\partial z}=0 .
\end{aligned}
\end{aligned}
$$

(c) Using the Mathematica commands

- pde $=D[P[z, t], t]+\lambda(1-z) P[z, t]-\mu(1-z) D[P[z, t], z]==0$;
- $\operatorname{soln}=$ DSolve $[\{$ pde,$P[z, 0]==1\}, P[z, t],\{z, t\}]$;
- $\operatorname{soln}=P[z, t] /$.Dispatch $[$ soln $] ;$
- Simplify $[\operatorname{soln}[[1]]]$
led to the solution $e^{\frac{\lambda(z-1) e^{\mu(-t)}\left(e^{\mu t}-1\right)}{\mu}}$ (for $t \geq 0$ and $|z| \leq 1$).
After making brief comments about the first two commands, identify $P_{j}(t)$ and calculate $\lim _{t \rightarrow+\infty} P_{j}(t)$.
- Brief comments

The 1st. command sets the partial differential equation.
The purpose of the 2 nd. command is to solve the partial differential equation in terms of $P(z, t)$ considering an initial condition reflecting the fact that $X(0)=0$, which is indeed equivalent to $P(z, 0)=E\left[z^{X(0)}\right]=z^{0} \times P[X(0)=0]=1$.

- Solution of the partial differential equation
$P(z, t)=E\left[z^{X(t)} \mid X(0)=0\right]=e^{\frac{\lambda(z-1) e^{\mu(-t)}\left(e^{\mu t}-1\right)}{\mu}}$, for $t \geq 0$ and $|z| \leq 1$
- Identifying $P_{j}(t)$

Consulting the table with p.g.f. we conclude that

$$
P(z, t)=\exp \left[-\frac{\lambda}{\mu}\left(1-e^{-\mu t}\right) \times(1-z)\right]
$$

$$
\equiv \text { p.g.f. of a Poisson with parameter } \alpha(t)
$$

where $\alpha(t)=\frac{\lambda}{\mu}\left(1-e^{-\mu t}\right)$, that is,

$$
P_{j}(t)=e^{-\alpha(t)} \frac{[\alpha(t)]^{j}}{j!}, j \in \mathbb{N}_{0},
$$

- Requested limit

Since $\lim _{t \rightarrow+\infty} \alpha(t)=\frac{\lambda}{\mu}$, we get

$$
\lim _{t \rightarrow+\infty} P_{j}(t)=e^{-\lambda / \mu} \frac{(\lambda / \mu)^{j}}{j!}, j \in \mathbb{N}_{0} .
$$

[This p.f. coincides expectedly with the one of $L_{s}^{M / M / \infty}$.]
2. Consider a drive-in banking service modeled as an $M / M / 1$ queueing system in equilibrium, with arrival (resp. service) rate equal to λ (resp. μ) customers per minute (where $\lambda / \mu<1$).
(a) When $\lambda=2$, it is desired to have fewer than 5 customers in the system 99% (or more)
of the time.
How large should the service rate be?

- Birth-death queueing system

M/M/1

- Birth/death rates
$\lambda_{k}=\lambda=2, k \in \mathbb{N}_{0}$
$\mu_{k}=\mu, k \in \mathbb{N}$
- Traffic intensity/ergodicity condition
$\rho=\frac{\lambda}{\mu}=\frac{2}{\mu}<1$
- Performance measure (in the long-run)
$L_{s}=$ number of customers in the drive-in banking service
$P\left(L_{s}=k\right)=\rho^{k}(1-\rho), k \in \mathbb{N}_{0}$
- Requested service rate

We have to deal with $\mu>\lambda=2$ and

$$
\begin{aligned}
\mu: & P\left(L_{s}<5\right) \geq 0.99 \\
& \sum_{k=0}^{4} \rho^{k}(1-\rho) \geq 0.99 \\
& (1-\rho) \frac{1-\rho^{5}}{1-\rho} \geq 0.99 \\
& 1-\rho^{5} \geq 0.99 \\
& \frac{\lambda}{\mu} \leq(1-0.99)^{1 / 5} \\
& \mu \geq \frac{2}{0.01^{1 / 5}} \\
& \mu \geq 5.023773 .
\end{aligned}
$$

(b) Admit that the service rate is equal to $\mu=\frac{1}{2}$ customers per minute. It is the policy (1.0) of the company to add another server if an arriving customer waits an average of 3 or more minutes for the server.
Find the arrival rate needed to justify a second server.

- Birth-death queueing system
$M / M / 1$ with $\mu=\frac{1}{2}$
- Traffic intensity/ergodicity condition
$\rho=\frac{\lambda}{\mu}=2 \lambda<1$
- Performance measure (in the long-run)
$W_{q}=$ time (in hours) an arriving customer waits for the server
$E\left(W_{q}\right) \stackrel{\text { form }}{=} \frac{\rho}{\mu(1-\rho)}$
- Requested arrival rate

We have to deal with $\lambda<\frac{1}{2}$ and

$$
\begin{aligned}
\lambda: & E\left(W_{q}\right) \geq 3 \\
& \frac{\rho}{\mu(1-\rho)} \geq 3 \\
& \frac{2 \lambda}{\frac{1}{2}(1-2 \lambda)} \geq 3 \\
& 4 \lambda \geq 3-6 \lambda \\
& \lambda \geq 0.3 .
\end{aligned}
$$

(c) Now, consider the system has two servers and that the arrival (resp. service) rate is (1.5) equal to $\lambda=2$ (resp. $\mu=1.5$) customers per minute.
What are the probabilities that an arriving customer will:
(i) find both servers busy?
(ii) spend more than 5 minutes in the system?

- New birth-death queueing system
$M / M / m$, where $m=2$ servers.
- Birth/death rates
$\lambda_{k}=\lambda=2, k \in \mathbb{N}_{0}$

$$
\mu_{k}= \begin{cases}\mu=1.5, & k=1 \\ 2 \|=3 & k=2\end{cases}
$$

- Traffic intensity/ergodicity condition
$\rho=\frac{\lambda}{m \mu}=\frac{2}{3}<1$
- Performance measure (in the long-run)
$L_{s}=$ number of customers in the drive-in banking service
- 1st. requested probability

$$
\begin{aligned}
P\left(L_{s} \geq m\right) & \stackrel{\text { form. }}{=} \quad C(m, m \rho) \\
& \stackrel{\text { form., } m=2}{=} \\
& \frac{2 \rho^{2}}{1+\rho} \\
& =\frac{2\left(\frac{2}{3}\right)^{2}}{1+\frac{2}{3}} \\
& =\frac{8}{15} \\
\simeq & 0.5(3)
\end{aligned}
$$

- Another performance measure (in the long-run)
$W_{s}=$ time an arriving customer spends in the system
- 2nd. requested probability

$$
\begin{aligned}
& P\left(W_{s}>t\right) \stackrel{\text { form. }}{=}\left[1+\frac{e^{\mu[1-m(1-\rho)] t}}{1-m(1-\rho)} \times C(m, m \rho)\right] e^{-\mu t} \\
& \stackrel{t=5}{=}\left[1+\frac{e^{1.5 \times[1-2(1-2 / 3)] \times 5}}{1-2(1-2 / 3)} \times \frac{8}{15}\right] e^{-1.5 \times 5} \\
& \simeq 0.011334 .
\end{aligned}
$$

[^0]: ${ }^{1}$ The following results may come handy in this and the next lines: $\left[\begin{array}{llll}253 & 135 & 117 & 256\end{array}\right] \times \mathbf{P}=\left[\begin{array}{llll}253 & 135 & 117 & 256\end{array}\right]$;
 $\left[\begin{array}{lll}0.4 & -0.1 & -0.1 \\ -0.3 & 1 & -0.3 \\ -0.3 & -0.5 & 1\end{array}\right]^{-1}=\frac{1}{128}\left[\begin{array}{ccc}425 & 75 & 65 \\ 195 & 185 & 75 \\ 225 & 115 & 185\end{array}\right]$

