
Department of Mathematics, IST — Probability and Statistics Unit

Introduction to Stochastic Processes
2nd. Test 2nd. Semester — 2013/14

Duration: 1h30m 2014/06/11 — 3PM, Room V1.14

• Please justify all your answers.

• This test has two pages and three groups. The total of points is 20.0.

Group 1 — Renewal Processes 2.0 points

The number of inspections by a supervisor to an industrial plant is governed by a delayed (2.0)

renewal process such that:

• the first inspection time follows an exponential distribution with unit mean;

• the subsequent inter-inspection times follow a hyper-exponential distribution with

parameters (1, 12 ;
1
2 ,

1
2).

Derive the renewal function of this process.

Note/hint: Admit that the duration of any inspection is insignificant compared to the time

between consecutive inspections; capitalize on the fact that 2(1+2s)
s(3+4s) =

2
3 ⇥

1
s

+ 1
3 ⇥

1
3
4+s

.

• Delayed renewal process

{N
D

(t) : t � 0}
N

D

(t) = number of inspections done by time t

• Inter-renewal times

X

i

independent r.v., i 2 N
X1 ⇠ Exp(1)

X

i

i.i.d.⇠ Hyper-exp(1, 12 ;
1
2 ,

1
2), i 2 N\{1}

• Important

G(x) = P (X1  x)

F (x) = P (X
i

 x), i 2 N\{1}
dF (x)
dx

form.

= 1
2 ⇥ f

Exp(1)(x) +
1
2 ⇥ f

Exp(1/2)(x)

• Deriving the renewal function

Since the inter-renewal times are continuous r.v., the LST of the two inter-renewal

distributions are given by

G̃(s) =

Z +1

0�
e

�sx

dG(x)

= E(e�sX1)

= M

Exp(1)(�s)

form.

=
1

1 + s

1

F̃ (s) =

Z +1

0�
e

�sx

dF (x)

=
1

2
⇥M

Exp(1)(�s) +
1

2
⇥M

Exp(1/2)(�s)

form.

=
1

2
⇥ 1

1 + s

+
1

2
⇥ 1/2

1/2 + s

=
1

2
⇥
✓

1

1 + s

+
1

1 + 2s

◆

=
2 + 3s

2(1 + s)(1 + 2s)
.

Moreover, the LST of the renewal function of a delayed renewal process, m(t) =

E[N
D

(t)], can be obtained in terms of the LST of F and G:

m̃(s) =

Z +1

0�
e

�sx

dm(x)

form.

=
G̃(s)

1� F̃ (s)

=
1

1+s

1� 2+3s
2(1+s)(1+2s)

=
2(1 + 2s)

2(1 + s)(1 + 2s)� (2 + 3s)

=
2(1 + 2s)

2(1 + 3s+ 2s2)� (2 + 3s)

=
2(1 + 2s)

3s+ 4s2

=
2(1 + 2s)

s(3 + 4s)

hint

=
2

3
⇥ 1

s

+
1

3
⇥ 1

3/4 + s

.

Taking advantage of the LT in the formulae, we successively get:

dm(t)

dt

= LT

�1 [m̃(s), t]

= LT

�1


2

3
⇥ 1

s

+
1

3
⇥ 1

3/4 + s

, t

�

=
2

3
⇥ LT

�1


1

s

, t

�
+

1

3
⇥ LT

�1


1

3/4 + s

, t

�

=
2

3
+

1

3
⇥ e

�3t/4

m(t) =

Z
t

0

✓
2

3
+

1

3
⇥ e

�3x/4

◆
dx

=

✓
2x

3
+

1

3
⇥ 4

3
e

�3x/4

◆����
t

0

=
2t

3
+

4

9

�
1� e

�3t/4
�
, t � 0.
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Group 2 — Discrete time Markov chains 9.0 points

1. Evaristo uses four expressions — Duh! (state 1), Bummer!! (state 2), Dunno!!! (state 3),

and Whoops!!!! (state 4) — according to a DTMC with the following TPM:

P =

2

6664

0.6 0.1 0.1 0.2

0.3 0 0.3 0.4

0.3 0.5 0 0.2

0.1 0.2 0.2 0.5

3

7775
.

(a) Find the long-run fraction of time Evaristo uses the expression Bummer!! (2.0)

Note: Recall that ⇡P = ⇡ and check the footnote!1

• DTMC

{X
n

: n 2 N}
X

n

= n

th expression Evaristo used

• State space

S = {1, 2, 3, 4}
1 = Duh!

2 = Bummer!!

3 = Dunno!!!

4 = Whoops!!!!

• TPM

P =

2

6664

0.6 0.1 0.1 0.2

0.3 0 0.3 0.4

0.3 0.5 0 0.2

0.1 0.2 0.2 0.5

3

7775

• Obs.

We are dealing with an irreducible DTMC with finite state space. Hence, all

states are positive recurrent[, by Prop. 3.35]. Furthermore, the DTMC seems to

be aperiodic.

• Stationary distribution

Since the DTMC is irreducible, positive recurrent and aperiodic we can add that

lim
n!+1

P

n

ij

= ⇡

j

> 0, i, j 2 S,

where the row vector ⇡ = [⇡
j

]
j2S is the unique stationary distribution satisfying(

⇡

j

=
P

i2S ⇡i

P

ij

, j 2 SP
j2S ⇡j

= 1
⇢

⇡P = ⇡

⇡ 1> = 1,

where 1 = [1 · · · 1] a row vector with #S ones.

Using the first result in the footnote and considering ⇡

j

= ajP
i2S ai

yields

1
The following results may come handy in this and the next lines: [253 135 117 256]⇥P = [253 135 117 256];

2

4
0.4 �0.1 �0.1
�0.3 1 �0.3
�0.3 �0.5 1

3

5
�1

= 1
128

2

4
425 75 65
195 185 75
225 115 185

3

5.

3

[253 135 117 256]P = [253 135 117 256]
1

253 + 135 + 117 + 256
[253 135 117 256]P =

1

761
[253 135 117 256]

⇡ =
1

761
[253 135 117 256]

⇡ ' [0.333 0.177 0.154 0.336] .

• Requested probability

Thus, the long-run fraction of time Evaristo uses the expression Bummer!! is

⇡2 ' 0.177.

• [Stationary distribution (alternative!)

The row vector denoting the stationary distribution, ⇡ = [⇡
j

]
j2S , is given by

⇡ = 1⇥ (I�P+ONE)�1
,

where:

1 = [1 · · · 1] a row vector with #S ones;

I = identity matrix with rank #S;
P = [P

ij

]
i,j2S is the TPM;

ONE is the #S ⇥#S matrix all of whose entries are equal to 1.

Since the footnote does not provide any inverse of a 4⇥ 4 matrix, we are bound to

use a calculator and to obtain

⇡ = 1⇥ (I�P+ONE)�1

= 1⇥

0

BBB@

2

6664

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

7775
�

2

6664

0.6 0.1 0.1 0.2

0.3 0 0.3 0.4

0.3 0.5 0 0.2

0.1 0.2 0.2 0.5

3

7775
+

2

6664

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

3

7775

1

CCCA

�1

= 1⇥

2

6664

1.4 0.9 0.9 0.8

0.7 2 0.7 0.6

0.7 0.5 2 0.8

0.9 0.8 0.8 1.5

3

7775

�1

' [1 1 1 1]⇥

2

6664

1.288765 �0.349869 �0.303219 �0.385677

�0.222405 0.661958 �0.092970 �0.096583

�0.169842 0.018068 0.682326 �0.280552

�0.564060 �0.152760 �0.132392 1.099212

3

7775

' [0.332457 0.177398 0.153745 0.336399] .

Thus, the long-run fraction of time Evaristo uses the expression Bummer!! is equal

to the sum of the entries of the 2nd. column of (I�P+ONE)�1: ⇡2 ' 0.177397.]

(b) Given that Evaristo just used the expression Duh!, determine the expected number of (2.0)

transitions until he says Whoops!!!!

• Initial/present state

X1 = i
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• Important

To obtain the expected number of transitions until Evaristo says Whoops!!!!, given

that X1 = i, we have to consider another DTMC where state 4 (Whoops!!!! ) is

absorbing. The associated TPM is

P0 =

2

6664

0.6 0.1 0.1 0.2

0.3 0 0.3 0.4

0.3 0.5 0 0.2

0 0 0 1

3

7775
.

• Requested expected value

Let

Q =

2

4
0.6 0.1 0.1

0.3 0 0.3

0.3 0.5 0

3

5

be the substochastic matrix governing the transitions between the states in T =

{1, 2, 3}, the class of transient states of this new DTMC, and

⌧ = inf{n 2 N : X
n

62 T}

be the number of transitions until Evaristo says Whoops!!!! Then [(see Prop. 3.116)]

the 2nd. result in the footnote yields

[E(⌧ | X1 = i)]
i2T

form.

= (I�Q)�1 ⇥ 1

=

0

@

2

4
1 0 0

0 1 0

0 0 1

3

5�

2

4
0.6 0.1 0.1

0.3 0 0.3

0.3 0.5 0

3

5

1

A

�1

⇥ 1

=

2

4
0.4 �0.1 �0.1

�0.3 1 �0.3

�0.3 �0.5 1

3

5

�1

⇥ 1

=
1

128

2

4
425 75 65

195 185 75

225 115 185

3

5⇥

2

4
1

1

1

3

5

=

2

4
565
128
455
128
525
128

3

5
.

Finally, E(transitions until Evaristo says Whoops!!!! | he just said Duh! ) is equal

to

E(⌧ | X1 = 1) =
565

128
' 4.414063.

(c) Find the probability that Evaristo will say Bummer!! before Dunno!!!, considering once (2.0)

again that he just used the expression Duh!

Note: You may have to consider states 2 and 3 absorbing, eventually relabel the states,

identify substochastic matrices Q and R and calculate (I�Q)�1 ⇥R.

5

• Important

To calculate the requested probability, we have to consider once again another

DTMC. In this case, states 2 (Bummer!! ) and 3 (Dunno!!! ) are absorbing and

the associated TPM equals

P? =

2

6664

0.6 0.2 0.1 0.1

0.1 0.5 0.2 0.2

0 0 1 0

0 0 0 1

3

7775
.

The substochastic matrices governing the transitions between the transient states

of this DTMC and the transitions from the transient to the absorbing states are

Q =


0.6 0.2

0.1 0.5

�

R =


0.1 0.1

0.2 0.2

�
,

respectively.

• Requested probability

Keeping in mind that


a b

c d

��1

=
1

ad� bc


d �b

�c a

�
,

we get

U = [P (reach absorbing state k | X1 = i)]
i2T, k 62T

= (I�Q)�1 ⇥R

=

✓
1 0

0 1

�
�

0.6 0.2

0.1 0.5

�◆�1

⇥

0.1 0.1

0.2 0.2

�

=


0.4 �0.2

�0.1 0.5

��1

⇥

0.1 0.1

0.2 0.2

�

=
1

0.4⇥ 0.5� (�0.2)⇥ (�0.1)


0.5 0.2

0.1 0.4

�
⇥

0.1 0.1

0.2 0.2

�

=
1

0.18


0.09 0.09

0.09 0.09

�

'

0.5 0.5

0.5 0.5

�
.

Thus, given that he just used the expression Duh!, the probability that Evaristo will

say Bummer!! before Dunno!!! is 0.5.

2. Let {X
n

: n 2 N0} be a branching process such that the number of o↵spring per individual

has a Poisson distribution with parameter � = 2.

(a) Starting with a single individual (i.e., X0 = 1), verify that the extinction probability is (1.5)

⇡ ' 0.203188.

6



• Branching process

{X
n

: n 2 N0}
X

n

= size of generation n

• Initial state

X0 = 1 (single initial individual)

• State space

S = N0

• Number of o↵spring per individual

Z

l

⌘ Z

l,n

= number of o↵spring of the l

th individual of generation n

Z

l

i.i.d.⇠ Poisson(�), l 2 N
P

j

= P (Z
l

= j) = e

��

�

j

j! , j 2 N0

• Obs.

X

n

=
P

Xn�1

l=1 Z

l

, n 2 N

• Probability of extinction

Since E(Z
l

) = � = 2 > 1, the probability of extinction,

⇡

form.

= lim
n!+1

P (X
n

= 0 | X0 = 1),

is the smallest positive number satisfying

⇡

form.

=
+1X

j=0

⇡

j ⇥ P

j

=
+1X

j=0

⇡

j ⇥ e

��

�

j

j!

= P

Zl
(⇡),

where P

Zl
(s) = E(sZl)

form.

= e

��(1�s)
, |s|  1, denotes the p.g.f. of the discrete r.v.

Z

l

⇠ Poisson(�). Hence

⇡ = e

��(1�⇡)
.

Furthermore, ⇡ = 0.203188 satisfies ⇡ = e

��(1�⇡), after all

e

�2⇥(1�0.203188) ' 0.203188.

(b) Suppose that, instead of starting with a single individual, X0 ⇠ Poisson(1). (1.5)

Obtain the extinction probability in this case in terms of ⇡ obtained in (a).

• New initial state

X0 = Z0 ⇠ Poisson(1)

• New probability of extinction

Then using the total probability law and the fact that the o↵spring are produced

independently

P (extinction) =
+1X

j=0

P (extinction | X0 = j)⇥ P (X0 = j)

=
+1X

j=0

[P (extinction | X0 = 1)]j ⇥ P (X0 = j)

7

P (extinction) =
+1X

j=0

⇡

j ⇥ P (X0 = j)

= P

X0(⇡)
form.

= e

�(1�⇡)

' e

�(1�0.203188)

' 0.450764.

• [Obs.

Interestingly, if X0 ⇠ Poisson(� = 2) then we would get P (extinction) = e

��(1�⇡) =

⇡ ' 0.203188.]

Group 3 — Continuous time Markov chains 9.0 points

1. Consider an assembly line where parts arrive according to a Poisson process with rate �

parts per minute. A part is immediately processed upon arrival and it takes an exponentially

distributed time with a rate of µ parts per minute to process it.

(a) Write the Kolmogorov’s forward di↵erential equations in terms of P

j

(t) ⌘ P0 j(t) = (1.5)

P [X(t) = j | X(0) = 0], for j 2 N0, where X(t) represents the number of parts being

processed at time t. (Do not try to solve the di↵erential equations!)

• CTMC

{X(t) : t � 0}
X(t) = number of parts being processed at time t

• Birth and death rates

Since the inter-arrival times are i.i.d., exponentially distributed r.v. which we

assume to be independent of the processing times, which are also i.i.d. exponentially

distributed r.v., {X(t) : t � 0} is indeed a birth-death process with rates

�

j

= �, j 2 N0

µ

j

= jµ, j 2 N.

• Kolmogorov’s forward di↵erential equations

Note that

P

j

(t) ⌘ P0 j(t) = P [X(t) = j | X(0) = 0], j 2 N0

P�1(t) = 0

��1 = 0

µ0 = 0

therefore the Kolmogorov’s forward di↵erential equations
dP

j

(t)

dt

form.

= P

j�1(t)�j�1 + P

j+1(t)µj+1 � P

j

(t) (�
j

+ µ

j

), j 2 N0,

reads as follows:
dP0(t)

dt

= P1(t)µ� P0(t)�

dP

j

(t)

dt

= P

j�1(t)�+ P

j+1(t) jµ� P

j

(t) (�+ jµ), j 2 N.

8



(b) Show that the p.g.f. of (X(t) | X(0) = 0), P (z, t) = E

⇥
z

X(t) | X(0) = 0
⇤
, satisfies the (2.0)

following partial di↵erential equation

@P (z, t)

@t

+ � (1� z)P (z, t)� µ (1� z)
@P (z, t)

@z

= 0.

• R.v.

(X(t) | X(0) = 0)

• Rewriting the Kolmogorov’s forward di↵erential equations

By multiplying the j

th Kolmogorov’s forward di↵erential equation by z

j, summing

in j 2 S and noting that
X

j2S

z

j ⇥ dP

j

(t)

dt

form.

=
@P (z, t)

@t

@P (z, t)

@z

form.

=
X

j2S

jz

j�1 ⇥ P

j

(t)

=
X

j2S

(j + 1)zj ⇥ P

j+1(t),

we can reduce the set of Kolmogorov’s forward di↵erential equations derived in (a)

to a single partial differential equation, whose solution is the p.g.f. of the

r.v. (X(t) | X(0) = i):
X

j2S

z

j ⇥ dP

j

(t)

dt

=
X

j2S

z

j ⇥ [P
j�1(t)�j�1 + P

j+1(t)µj+1 � P

j

(t) (�
j

+ µ

j

)]

@P (z, t)

@t

�j=�, µj=jµ

=
X

j2S

z

j ⇥ P

j�1(t)�+
X

j2S

z

j ⇥ P

j+1(t) (j + 1)µ

�
X

j2S

z

j ⇥ P

j

(t)��
X

j2S

z

j ⇥ P

j

(t) jµ

= �z

X

j2S

z

j�1 ⇥ P

j�1(t) + µ

X

j2S

(j + 1)zj ⇥ P

j+1(t)

��

X

j2S

z

j ⇥ P

j

(t)� µz

X

j2S

jz

j�1 ⇥ P

j

(t)

= �z P (z, t) + µ

@P (z, t)

@z

� �P (z, t)� µz

@P (z, t)

@z

,

i.e.,

@P (z, t)

@t

+ � (1� z)P (z, t)� µ (1� z)
@P (z, t)

@z

= 0.

(c) Using the Mathematica commands (1.5)

• pde = D[P [z, t], t] + � (1� z)P [z, t]� µ (1� z)D[P [z, t], z] == 0;

• soln = DSolve[{pde, P [z, 0] == 1}, P [z, t], {z, t}];
• soln = P [z, t]/.Dispatch[soln];

• Simplify[soln[[1]]]

led to the solution e

�(z�1)eµ(�t)(eµt�1)
µ (for t � 0 and |z|  1).

After making brief comments about the first two commands, identify P

j

(t) and calculate

lim
t!+1 P

j

(t).

9

• Brief comments

The 1st. command sets the partial di↵erential equation.

The purpose of the 2nd. command is to solve the partial di↵erential equation in terms

of P (z, t) considering an initial condition reflecting the fact that X(0) = 0, which is

indeed equivalent to P (z, 0) = E[zX(0)] = z

0 ⇥ P [X(0) = 0] = 1.

• Solution of the partial di↵erential equation

P (z, t) = E

⇥
z

X(t) | X(0) = 0
⇤
= e

�(z�1)eµ(�t)(eµt�1)
µ , for t � 0 and |z|  1

• Identifying P

j

(t)

Consulting the table with p.g.f. we conclude that

P (z, t) = exp


��

µ

�
1� e

�µt

�
⇥ (1� z)

�

⌘ p.g.f. of a Poisson with parameter ↵(t),

where ↵(t) = �

µ

(1� e

�µt), that is,

P

j

(t) = e

�↵(t) [↵(t)]
j

j!
, j 2 N0,

• Requested limit

Since lim
t!+1 ↵(t) = �

µ

, we get

lim
t!+1

P

j

(t) = e

��/µ

(�/µ)j

j!
, j 2 N0.

[This p.f. coincides expectedly with the one of LM/M/1
s

.]

2. Consider a drive-in banking service modeled as an M/M/1 queueing system in equilibrium,

with arrival (resp. service) rate equal to � (resp. µ) customers per minute (where �/µ < 1).

(a) When � = 2, it is desired to have fewer than 5 customers in the system 99% (or more) (1.5)

of the time.

How large should the service rate be?

• Birth-death queueing system

M/M/1

• Birth/death rates

�

k

= � = 2, k 2 N0

µ

k

= µ, k 2 N

• Tra�c intensity/ergodicity condition

⇢ = �

µ

= 2
µ

< 1

• Performance measure (in the long-run)

L

s

= number of customers in the drive-in banking service

P (L
s

= k) = ⇢

k (1� ⇢), k 2 N0

10



• Requested service rate

We have to deal with µ > � = 2 and

µ : P (L
s

< 5) � 0.99
4X

k=0

⇢

k (1� ⇢) � 0.99

(1� ⇢)
1� ⇢

5

1� ⇢

� 0.99

1� ⇢

5 � 0.99
�

µ

 (1� 0.99)1/5

µ � 2

0.011/5
µ � 5.023773.

(b) Admit that the service rate is equal to µ = 1
2 customers per minute. It is the policy (1.0)

of the company to add another server if an arriving customer waits an average of 3 or

more minutes for the server.

Find the arrival rate needed to justify a second server.

• Birth-death queueing system

M/M/1 with µ = 1
2

• Tra�c intensity/ergodicity condition

⇢ = �

µ

= 2� < 1

• Performance measure (in the long-run)

W

q

= time (in hours) an arriving customer waits for the server

E(W
q

)
form

= ⇢

µ(1�⇢)

• Requested arrival rate

We have to deal with � <

1
2 and

� : E(W
q

) � 3
⇢

µ(1� ⇢)
� 3

2�
1
2(1� 2�)

� 3

4� � 3� 6�

� � 0.3.

(c) Now, consider the system has two servers and that the arrival (resp. service) rate is (1.5)

equal to � = 2 (resp. µ = 1.5) customers per minute.

What are the probabilities that an arriving customer will:

(i) find both servers busy?

(ii) spend more than 5 minutes in the system?

• New birth-death queueing system

M/M/m, where m = 2 servers.
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• Birth/death rates

�

k

= � = 2, k 2 N0

µ

k

=

⇢
µ = 1.5, k = 1

2µ = 3, k = 2, 3, . . .

• Tra�c intensity/ergodicity condition

⇢ = �

mµ

= 2
3 < 1

• Performance measure (in the long-run)

L

s

= number of customers in the drive-in banking service

• 1st. requested probability

P (L
s

� m)
form.

= C(m,m⇢)

form.,m=2
=

2⇢2

1 + ⇢

=
2
�
2
3

�2

1 + 2
3

=
8

15
' 0.5(3).

• Another performance measure (in the long-run)

W

s

= time an arriving customer spends in the system

• 2nd. requested probability

P (W
s

> t)
form.

=


1 +

e

µ[1�m(1�⇢)]t

1�m(1� ⇢)
⇥ C(m,m⇢)

�
e

�µt

t=5
=


1 +

e

1.5⇥[1�2(1�2/3)]⇥5

1� 2(1� 2/3)
⇥ 8

15

�
e

�1.5⇥5

' 0.011334.
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