
6 Queueing systems/networks 281

6.1 Description of a queueing system . . . . . . . . . . . . . . . . . . . . . . . 282

6.2 Queueing systems and Kendall’s notation . . . . . . . . . . . . . . . . . . . 284

6.3 Performance measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

6.4 Continuous time Markov chains . . . . . . . . . . . . . . . . . . . . . . . . 289

6.4.1 Birth and death processes . . . . . . . . . . . . . . . . . . . . . . . 297

6.4.2 Classification of states . . . . . . . . . . . . . . . . . . . . . . . . . 305

6.4.3 Limit behavior of CTMC . . . . . . . . . . . . . . . . . . . . . . . . 309

6.5 Birth and death queueing systems in equilibrium . . . . . . . . . . . . . . . 316

6.5.1 M/M/1, the classical queueing system . . . . . . . . . . . . . . . . 318

6.5.2 M/M/1, the queueing system with responsive servers . . . . . . . 324

6.5.3 M/M/m, the m–server case . . . . . . . . . . . . . . . . . . . . . . 327

6.5.4 M/M/m/m, the m–server pure loss system . . . . . . . . . . . . . . 336

6.5.5 M/M/m/m+d, the m server with finite storage . . . . . . . . . . . 341

6.5.6 Birth and death queues in equilibrium, with finite customer

population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

6.6 Markovian queueing systems in equilibrium . . . . . . . . . . . . . . . . . . 350

6.6.1 M/Er/1, the single-server system with Erlangian service times . . . 351

6.6.2 Er/M/1, the single-server system with Erlangian arrivals . . . . . . 355

6.6.3 (Random-sized) batch arrival systems . . . . . . . . . . . . . . . . . 357

6.6.4 Batch service systems . . . . . . . . . . . . . . . . . . . . . . . . . . 360

6.7 G/M/1 systems in equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 364

6.8 M/G/1 systems in equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . 374

6.9 The busy period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

6.10 Networks of Markovian queues . . . . . . . . . . . . . . . . . . . . . . . . . 392

6.10.1 M/M/m queue output . . . . . . . . . . . . . . . . . . . . . . . . . 394

6.10.2 Open Jackson networks . . . . . . . . . . . . . . . . . . . . . . . . . 396

6.10.3 Closed Jackson networks . . . . . . . . . . . . . . . . . . . . . . . . 410

6.10.4 Tandem queues with blocking and a few other networks . . . . . . . 424

v



Chapter 6

Queueing systems/networks

This chapter is devoted to the study of a class of models in which customers arrive in some

random manner at a service facility and demand service. Upon arrival they are made to

wait in queue1 until it is their turn to be served. Once served they are generally assumed

to leave the system (Ross, 2003, p. 475). These models are usually termed queueing

systems.

If we think for a moment how much time we spend in some form of queue (Kleinrock,

1975, p. 3), we can come with a virtually endless list of queueing systems we deal with

on a daily basis. For example,

• supermarkets, post o�ces, parking lots, call centers of an insurance company and

toll booths

(Adan and Resing, 2002, pp. 7–9).

Queueing theory started with research by the Danish mathematician, statistician

and engineer Agner Krarup Erlang (1878–1929), when he created models to describe

the Copenhagen telephone exchange (https://en.wikipedia.org/wiki/Queueing theory).

Expectedly, the publication of Erlang’s first paper in 1909 is often regarded as marking

the birth of queueing theory (Cooper, 1981, p. 6).

Queueing models have since been applied to such areas like telecommunications,

tra�c engineering, computing and in the design of factories, shops, o�ces and hospitals

(https://en.wikipedia.org/wiki/Queueing theory).

1The word queue comes, via French, from the Latin cauda, meaning tail
(https://en.wikipedia.org/wiki/Queueing theory#Etymology).
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6.1 Description of a queueing system

According to Prabhu (1997, p. 1), a queueing system can be essentially described by its:

• input ;

• queue discipline;

• service mechanism;

• cost structure.

Input

Prabhu (1997, p. 1) also adds that the input describes the way customers arrive and join

the system.

Customers may:

• come from a finite or infinite source;

• arrive individually or in groups.

The system may also provide waiting space of

• finite capacity

and in this case a customer is forced to leave if all the servers and the waiting positions

are occupied.

If a waiting line can be formed when customers arrive and demand service, then we

are dealing with a

• waiting (or delay) system.

However, it is possible that customers cannot join the system if it is fully occupied; in

this case we are dealing with a

• loss system.

Queue discipline

The queue discipline refers to the formation of the queue and the way customers behave

while waiting in queue (Prabhu, 1997, p. 1).

Various queue disciplines can be adopted, namely:
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• first come, first served (FCFS) — the simplest (and fairest!) queue discipline,

according to which customers are served one at a time and in order of their arrival;

• last come, first served (LCFS) — customers are also served one at a time,

however they are served in reverse order of their arrival.

(See Prabhu, 1997, p. 1; http://en.wikipedia.org/wiki/Queueing theory#Service disci

plines .)

In a system with priorities, customers with high priority are served first. Two examples

of priorities: rush orders first and shortest processing time first (Adan and Resing, 2002,

p. 24).

Priority queues can be of two types (http://en.wikipedia.org/wiki/Queueing theory

#Service disciplines):

• non-preemptive, where a job in service cannot be interrupted;

• preemptive, where a job in service can be interrupted by a higher priority job.2

Service mechanism

The service mechanism describes the arrangements of the m (1  m  1)

servers/facilities the customers seek (Prabhu, 1997, p. 2).

If m = 1 then all customers will be served upon arrival and no queue is form.

If m is finite, the servers are arranged in parallel and the FCFS discipline has been

adopted, then a single waiting line is formed and the first of the m servers to be free

serves the customer at the top of the queue (Prabhu, 1997, p. 2).

Prabhu (1997, p. 2) also mentions that, in a system with s servers (1  m < 1)

arranged in series (or tandem), the customers are served by each server in succession and

leave the system after being served by the mth server.

Cost structure

Prabhu (1997, p. 2) continues by adding that the cost structure refers to:

• the payments made by the customers for the service they received;

• the operating costs of the system;

• the holding costs expressed as a function of the number of customers waiting or as

a function of the delay su↵ered by these customers.

2No work is lost in either case.
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6.2 Queueing systems and Kendall’s notation

In 1953, D.G. Kendall proposed to describe queueing systems using the notation A/S/s,

where

• A denotes the time between arrivals to the system

• S the duration of the services

• m the number of servers

(http://en.wikipedia.org/wiki/Kendall’s notation).

Kendall notation has since been extended to A/S/s/K/N/D,3 where

• K refers to the capacity of the system,

• N the size of the population of customers to be served

• D the queueing discipline

(http://en.wikipedia.org/wiki/Kendall’s notation).

When the last three parameters are not specified, we should assume K = 1, N = 1
and D = FCFS.

A: The arrival process

We suppose the successive customers arrive at random time epochs and that the

interarrival times are i.i.d. r.v. with common c.d.f. A(x).4 Moreover, arrivals may refer

to individual customers or batch arrivals (Adan and Resing, 2002, p. 23).

Code letters describe the arrival process. A few examples:

Symbol Distribution of the interarrival times Obs.
M Exponential (Memoryless, Markovian) Poisson arrival process
D Degenerate (Deterministic or regular) Fixed interarrival times
Ek Erlang(k, �)
G or GI General G also refers to Independent arrivals
MX Batch Markov Batch arrivals of random size X

governed by a Poisson process

3Also referred to as the Kendall-Lee notation.
4The assumption of identically distributed interarrival times is not always valid, however, in most

situations it seems reasonable (Prabhu, 1997, p. 3).
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When k = 1 we are dealing with a Poisson arrival process. For k 2 {2, 3, . . .}, the

interarrival times distribution is a k�fold convolution of the exponential distribution;

thus, an arrival takes place only after the completion k stages with i.i.d. durations with

Exponential(�) distribution (Prabhu, 1997, p. 5).

S: The service time distribution

The time elapsed while a customer is being served is called her/his service time. We

usually assume that the service times are i.i.d. r.v., with common c.d.f. B(x), and that

they are independent of the interarrival times.

The previous code letters also apply to the service times.

m: The number of servers

m represents the number of service servers (or channels).

K: The number of places in the system

The capacity of the system, or the maximum number of customers allowed in the system

including those in service. When the number is at this maximum, further arrivals are

turned away.

N: The calling population

The size of the population from which the customers come.

D: The queue’s discipline

As we have previously mentioned, it refers order that jobs in the waiting line are served and

three examples are FCFS, LCFS and priority service (preemptive and non-preemptive).

Another interesting possibility:

• SIRO (Service In Random Order) — the customers are served in a random order

with no regard to arrival order (http://en.wikipedia.org/wiki/Kendall’s notation).

By using the Kendall-Lee notation, we provide all the necessary information to

characterize a queueing system, namely the input, the service mechanism and the queue

discipline.

Example 6.1 — Kendall’s notation

The easiest queueing system to analyze is the M/M/1 queue, where interarrival times

and service times are exponentially distributed and there is a single-server in the system.

If the single-server admits Markovian arrivals, but the service process is governed by

a general distribution, then we are dealing with a M/G/1 queue. •
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6.3 Performance measures

One of life’s most unpleasant (in)activities is waiting in line (Kleinrock, 1975, p. 3).

Unsurprisingly, these are important performance measures to be considered while assessing

a queueing system:

• Ls(t), the number of customers in the system at time t;5

• Lq(t), the number of customers in the queue (waiting to be served!) at time

t;

• Ws(t) the time a customer would have to spend in the system if he/she arrived at

time t, usually termed sojourn time;

• Wq(t), the time a customer would have to wait to be served if he/she arrived at

time t, also called virtual waiting time.

Note that Ws(t) is equal to virtual waiting time plus service time.

Another important performance measure:

• the total workload submitted to the s servers in the interval [0, t], X(t), due to

the N(t) arrivals in that period (Prabhu, 1997, p. 5).

In fact, X(t) =
PN(t)

i=1 Si, where Si represents the service time of the ith arrival.

The ratio

⇢(t) = E



X(t)

t s

�

(6.1)

can be thought as a(n average) measure of congestion in the system (Prabhu, 1997, p. 6).

Interestingly enough,

lim
t!+1

⇢(t) = ⇢ =
�

s µ
, (6.2)

where ��1 is the expected time between successive arrivals and µ�1 the expected service

time. (Prove this result using renewal theory!)

Definition 6.2 — Tra�c intensity (Prabhu, 1997, p. 6; Pacheco, 2002, p. 75)

⇢ is called the tra�c intensity of the system.6 It is a (relative) measure of congestion and

represents the load o↵ered to each server if the work is divided equally among servers. •
5Including the ones being served, if any. Prabhu (1997, p. 7) misleadingly terms this r.v. queue length.
6Or utilization factor (Kleinrock, 1975, p. 98).
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⇢ is expressed in erlang (the corresponding symbol is E); is a dimensionless

quantity used in telephony and named in honor of Agner Krarup Erlang

(http://en.wikipedia.org/wiki/Erlang (unit)).

Remark 6.3 — Tra�c intensity (Prabhu, 1997, p. 9)

If:

• ⇢ > 1 then the system is over saturated;

• ⇢ < 1 the system is undersaturated;7

• ⇢ = 1 then there is a balance between the customers’ need for prompt service and

the management’s desire to avoid an idle system. •

We will be also interested in determining the following performance measures in

the long-run or equilibrium:

• Ls, the number of customers in the system — an arriving customer sees;

• Lq, the number of customers in the queue (waiting to be served) — an arriving

customer sees;

• Ws, the time an arriving customer will spend in the system;

• Wq, the time an arriving customer will spend in the queue waiting to be served.8

Ws and Wq influence customer satisfaction, whereas Ls and Lq are particularly important

performance measures to resource management (Pacheco, 2002, p. 76).

The distributions of these four r.v. depend on the following parameters:

• �, the arrival rate;

• µ, the service rate;

• s, the number of (identical) servers in parallel;

• a = �
µ
, the (o↵ered) load;9

7⇢ should be strictly less than one for the system to function well
(https://en.wikipedia.org/wiki/Queueing theory#Utilization).

8Note that W
s

st= W
q

+ service time
9It corresponds to the expected amount of time a (single) server would take to serve all customers

that in the long-run arrive to the system during one unit of time, including blocked customers (Pacheco,
2002, p. 74).
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• Pb, the blocking probability;10

• �e = �⇥ (1� Pb), the input rate;11

• ⇢ = �
s µ

, the tra�c intensity;

• ⇢e = �
e

s µ
= ⇢⇥ (1� Pb), the carried tra�c intensity;

• Pi, the long-run fraction of time in state i.

In addition, relationships between these four performance measures can be obtained

by using all these parameters and capitalizing on the following result.

Theorem 6.4 — Little’s law (http://en.wikipedia.org/wiki/Little’s law; Ross, 2003,

p. 478)

The long-term average number of customers in a stable system L is equal to the long-

term average e↵ective arrival rate, �e, multiplied by the average time a customer spends

in the system, W — expressed algebraically:

L = �e W. (6.3)

Consequently:

E(Ls) = �e E(Ws); (6.4)

E(Lq) = �e E(Wq). (6.5)

•

Remark 6.5 — Little’s law

• Although Little’s law looks intuitively reasonable, it is a quite remarkable result

(http://en.wikipedia.org/wiki/Little’s law), as it is valid regardless of the

– arrival process distribution;

– service distribution;

– number of servers;

– service policy (as long as it is not biased);

– etc. •

10It is the long-run fraction of customers that are blocked (Pacheco, 2002, p. 75) upon arrival and
unable to enter the system.

11It is the e↵ective arrival rate which corresponds to the rate at which customers enter the system,
thus, we are excluding blocked customers (Pacheco, 2002, p. 75).
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6.4 Continuous time Markov chains

A systematic treatment of queues from the point view of stochastic processes is essentially

due to Kendall (1951, 1953), according to Prabhu (1997, p. 11). A large class of queueing

systems can be indeed studied as continuous time Markov chains (CTMC) (Resnick,

1992, p. 367), namely as birth-death processes. Moreover, since the study of the transient

behavior of queueing systems is far from being trivial, we focus on their equilibrium

behavior, namely derive limiting probabilities of the number of customers an arriving

customer sees in the system.

Unsurprisingly, we proceed with

• generalities on CTMC,

• birth-death processes,

• classification of states

• limit behavior of CTMC,

with definitions, propositions, etc., taken from Morais (2003, Chap. 4).12

Definition 6.6 — CTMC (Ross, 2003, p. 350)

Let {X(t) : t � 0} be a continuous time stochastic process taking values in the set of

non-negative integers (that is, the state space S ✓ N0). If

P [X(t + s) = j | X(s) = i, X(u) = x(u), 0  u < s]

= P [X(t + s) = j | X(s) = i],
(6.6)

for all s, t � 0 and non-negative integers i, j and x(u), 0  u < s, then {X(t) : t � 0} is

said to be a CTMC. If, in addition, the transition probabilities satisfy

P [X(t + s) = j | X(s) = i] = P [X(t) = j | X(0) = i], (6.7)

then the CTMC is said to be time-homogeneous.13 •

To motivate another definition of CTMC, let us recall Ross (1983, p. 142), who mentions

that, by the Markov property, this stochastic process has the following properties each

time it enters state i:
12For a more detailed account on CTMC and birth-death processes the reader should refer to textbooks

such as Kulkarni (1995) and Ross (1983, 1989, 2003).
13Or to have stationary or homogeneous transition probabilities. The material in this and the next

sections only refers to CTMC with stationary transition probabilities.
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• the amount of time spent in state i (sojourn or holding time!) before making a

transition into a di↵erent state has exponential distribution with parameter ⌫i;14

• the probability that the process leaves state i and the next state it enters is j equals

Pij, where
P

j 6=i Pij = 1.15

Definition 6.7 — CTMC (bis) (Kulkarni, 1995, pp. 240–241)

Let:

• {X(t) : t � 0} be a continuous time stochastic process with state space S ✓ N0;

• S0 = 0;

• Sn be the time of the nth transition;

• Yn = Sn � Sn�1 be the nth sojourn or holding time;

• X0 = X(0) be the initial state of the process;

• Xn = X(S+
n ) = X(Sn) be the state of the stochastic process immediately after the

nth transition;

• Pij = P [X(S+
n+1) = j | X(S+

n ) = i].

Then the stochastic process {X(t) : t � 0} is said to be a CTMC with initial state

X0 = X(0) if it changes states at times 0 < S1 < S2 < . . . and the embedded process

{X0, (Xn, Yn) : n 2 N} satisfies

P [Xn+1 = j, Yn+1 > y | (Xn, Yn) = (i, yn), (Xn�1, Yn�1) = (in�1, yn�1), . . . ,

(X1, Y1) = (i1, y1), X0 = i0] = Pij e�⌫
i

⇥y,
(6.8)

for all non-negative integers i, j, in�1, . . . , i1, i0 and non-negative real numbers

y, yn, yn�1, . . . , y1.

{Xn : n 2 N0} is usually called the embedded discrete time Markov chain (DTMC) in

the CTMC {X(t) : t � 0}. •

Less formally, in a CTMC the succession of states visited still follows a DTMC but

now the flow of time is perturbed by exponentially distributed sojourn (or holding) times

in each state (Resnick, 1992, p. 367).

14A state i is called called instantaneous if ⌫
i

= +1 (Kulkarni, 1995, p. 241), i.e., the expected sojourn
time in state i is equal to 0. From now on, we shall only deal with CTMC with no instantaneous states.

15P
ii

= 0 unless state i is an absorbing state — in this case P
ii

= 1 (Kulkarni, 1995, p. 246) and ⌫
i

= 0.
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The law of motion of a CTMC is governed by a time-dependent transition probability

matrix.

Definition 6.8 — Transition probability matrix (Kulkarni, 1995, p. 243)

Let:

• {X(t) : t � 0} be a (time-homogeneous) CTMC with state space S;

• Pij(t) = P [X(t) = j | X(0) = i], i, j 2 S, be the (time-dependent) transition

probabilities.

Then

P(t) = [Pij(t)]i,j2S (6.9)

is called the transition probability matrix (TPM). •

Proposition 6.9 — Characterization of a CTMC (Kulkarni, 1995, Theorem 6.2, p.

244)

A CTMC {X(t) : t � 0} is fully characterized by its

• TPM, P(t), and

• initial distribution, that is, the p.f. of X(0) denoted by ↵ = [↵i]i2S =

[P [X(0) = i]]i2S . •

P(t) is certainly a stochastic matrix and satisfy the Chapman-Kolmogorov equations

(obviously rewritten for a continuous time stochastic process).

Proposition 6.10 — Properties of the TPM; Chapman-Kolmogorov equations

(Kulkarni, 1995, Theorem 6.3, p. 253–254)

The TPM, P(t), of a CTMC {X(t) : t � 0} has the following properties:

• Pij(t) � 0, i, j 2 S, t � 0;

•
P

j2S Pij(t) = 1, i 2 S, t � 0.

Moreover, P(0) = I and the Chapman-Kolmogorov equations16 are written as follows:

Pij(t + s) =
X

k2S

Pik(t)⇥ Pkj(s), i, j 2 S, t, s � 0, (6.10)

16The equations were arrived at independently by both the British mathematician Sydney
Chapman (1888–1970) and the Russian mathematician Andrey Kolmogorov (1903–1987)
(http://en.wikipedia.org/wiki/Chapman-Kolmogorov equation).
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or, in matrix form,

P(t + s) = P(t)⇥P(s) (6.11)

= P(s)⇥P(t), t, s � 0. (6.12)

•

Exercise 6.11 — Properties of the TPM (Isaacson and Madsen, 1976, p. 231,

Exercise 1)

Which of the following matrices have the properties of the TPM for a CTMC?

(a) P1(t) =

"

e�t 1� e�t

0 1

#

(b) P2(t) =

"

et 1� et

0 1

#

(c) P3(t) =

"

1 0

1� te�t te�t

#

(d) P4(t) =

"

t + e�t 1� t� e�t

0 1

#

(e) P5(t) =

2

6

6

6

4

1� te�t te�t 0 0

te�t 1� 3te�t 2te�t 0

0 te�t 1� 2te�t te�t

0 0 te�t 1� te�t

3

7

7

7

5

•

Proposition 6.12 — Marginal and joint probabilities

Let:

• {X(t) : t � 0} be a CTMC with TPM P(t) = [Pij(t)]i,j2S ;

• ↵ = [↵i]i2S be the row vector with the initial distribution of the CTMC (i.e., the

p.f. of X(0)).

Then

P [X(t) = j] =
X

i2S

P [X(0) = i]⇥ P [X(t) = j | X(0) = i]

=
X

i2S

↵i ⇥ Pij(t), j 2 S, (6.13)
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and the row vector with the p.f. of X(t) is given by

[P [X(t) = j)]j2S = ↵⇥P(t). (6.14)

Moreover,

P [X(t1) = x(t1), . . . , X(tk) = x(tk)] =

"

X

i2S

↵i ⇥ Pi,x(t
1

)(t1)

#

⇥
k
Y

j=2

Px(t
j�1

),x(t
j

)(tj � tj�1), (6.15)

for 0  t1 < t2 < . . . < tk and x(t1), . . . , x(tk) 2 S. •

Definition 6.13 — Instantaneous transition rates (Ross, 2003, p. 362)

For any pair of states i and j (i 6= j), let

qij = ⌫i ⇥ Pij, (6.16)

where ⌫i is the rate at which the process makes a transition when in state i and Pij is the

probability that this transition is into state j in the embedded DTMC. The quantities qij

are called the instantaneous transition rates and represent the rate, when in state i, at

which the process makes a transition into state j. •

Remark 6.14 — Instantaneous transition rates and rate diagrams (Kulkarni,

1995, p. 246)

A rate diagram is a directed graph in which each state is represented by a node and there

is an arc going from node i to node j (if qij > 0) with qij written on it.

The rate diagrams helps us visualize the dynamics of the CTMC and are the continuous

analogue of the transition diagrams of DTMC. •

Exercise 6.15 — Rate diagram (Kulkarni, 1995, examples 6.1 and pp. 242 and 246–

247)

Consider a machine that can be either up (1) or down (0). If the machine is up (resp.

down), it fails (resp. is repaired) after an Exp(µ) (resp. Exp(�)) amount of time. Once

this machine is repaired it is good as new.

Let {X(t) : t � 0} be the state of the machine at time t and draw the corresponding

rate diagram. •

Specifying the instantaneous transition rates determines the parameters of the CTMC

(Ross, 2003, p. 362). In addition, the instantaneous transition rates are related to the

infinitesimal behavior of the transition probabilities, as stated by the next proposition.
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Proposition 6.16 — Infinitesimal behavior of the transition probabilities (Ross,

2003, Lemma 6.2, p. 362)

Let {X(t) : t � 0} be a CTMC with state space S, TPM P(t) and instantaneous transition

rates qij. Then:

lim
h!0+

Pij(h)

h
= qij, i 6= j; (6.17)

lim
h!0+

1� Pii(h)

h
= ⌫i. (6.18)

•

Proposition 6.17 — Kolmogorov’s backward and forward equations (Ross, 2003,

Theorem 6.1, pp. 364, 367)

For all states i and j and times t � 0:

d Pij(t)

dt
= lim

h!0+

Pij(h + t)� Pij(t)

h

=
X

k 6=i

qikPkj(t)� ⌫iPij(t) (backward equations); (6.19)

d Pij(t)

dt
= lim

h!0+

Pij(t + h)� Pij(t)

h

=
X

k 6=j

Pik(t)qkj � Pij(t)⌫j (forward equations). (6.20)

•

Proposition 6.18 — Kolmogorov’s backward and forward equations in matrix

form (Ross, 2003, p. 388)

Let

rij =

(

qij, i 6= j

�⌫i, i = j
(6.21)

and R = [rij]i,j2S .17 Then the Kolmogorov’s backward and forward equations can be

written in matrix form:

dP(t)

dt
=



d Pij(t)

dt

�

i,j2S

= R⇥P(t) (backward equations) (6.22)

= P(t)⇥R (forward equations). (6.23)

•

17
R is usually called the rate matrix (or the infinitesimal generator) of the CTMC.
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Proposition 6.19 — Solution of the Kolmogorov’s backward and forward

equations in matrix form (Ross, 2003, p. 388)

The solution of the matrix di↵erential equations dP(t)
dt

= R⇥P(t) and dP(t)
dt

= P(t)⇥R

is

P(t) = eR t (6.24)

=
+1
X

n=0

Rn tn

n!
. (6.25)

•

Rather than using (6.25) to compute the TPM, we can use the matrix equivalent of

the identities

ex = lim
n!+1

⇣

1 +
x

n

⌘n

(6.26)

= lim
n!+1



⇣

1� x

n

⌘�1
�n

(6.27)

to e�ciently (derive or) approximate P(t) when we are dealing with a finite state space.

Proposition 6.20 — Two approximations to P(t) (Ross, 2003, pp. 389–390)

Since

P(t) = eR t

= lim
n!+1

✓

I +
R t

n

◆n

(6.28)

= lim
n!+1

"

✓

I� R t

n

◆�1
#n

, (6.29)

if we let n be a power of 2, say n = 2k, then we can approximate P(t) by raising either the

matrix
�

I + R t
n

�

or the matrix
�

I� R t
n

��1
to the nth power, which can be accomplished

by k matrix multiplications.18 •

Exercise 6.21 — Two approximations to P(t)

Consider

R =

"

�� �

µ �µ

#

,

where � = 1 and µ = 2.

18For instance, we multiply
�

I + R t

n

�

by itself to obtain
�

I + R t

n

�2 and then multiplying that by itself
to obtain

�

I + R t

n

�4 and so on.
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(a) Use Mathematica, in particular the function MatrixExp, to obtain P(t), for t = 1, 100.

(b) Compare the exact results in (a) to the approximate ones, obtained by using

Proposition 6.20. •

For a more detailed account on other methods to compute the TPM P(t) of a CTMC

with finite state space, the reader is referred to Kulkarni (1995, pp. 261–274).
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6.4.1 Birth and death processes

Birth-death processes are special cases of CTMC where the state transitions are of only

two types:

• birth (or arrival) which increase the state variable by one;

• death (or departure) which decrease the state variable by one.

The model’s name comes from a common application, the use of such models to represent

the current size of a population where the transitions are literally due to births and deaths

(http://en.wikipedia.org/wiki/Birth-death process).

Unsurprisingly, birth and death processes have many applications in demography,

queueing theory, performance engineering, epidemiology or in biology — they may be

used, for example to study the evolution of bacteria, the number of people with a

disease within a population, or the number of customers in line at the supermarket

(http://en.wikipedia.org/wiki/Birth-death process).

Definition 6.22 — Birth and death process (Ross, 2003, p. 352)

Let the state variable X(t) be the number of people in a system at time t. Now, suppose

that whenever there are n people in the system

• the time until the next birth/arrival is exponentially distributed, with mean ��1
n

(n 2 N0), and independent of the

• the time until the next death/departure which is exponentially distributed with

mean µ�1
n (n 2 N).

Then {X(t) : t � 0} is called a birth and death process, with birth rates {�n : n 2 N0}
and death rates {µn : n 2 N}. •

Remark 6.23 — Birth and death processes (Ross, 2003, pp. 352–353; Kleinrock,

1975, p. 54)

• A birth and death process is a CTMC with state space N0 for which transitions only

to states n� 1 and n + 1 are possible from state n.

• The rates at which the process makes a transition when in state i are:

⌫0 = �0; (6.30)

⌫i = �i + µi, i 2 N. (6.31)
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The transition probabilities Pij of the embedded DTMC are equal to:

P01 = 1; (6.32)

Pi,i+1 = P (birth before a death given i people in the system)

=
�i

�i + µi

, i 2 N; (6.33)

Pi,i�1 = P (death before a birth given i people in the system)

=
µi

�i + µi

, i 2 N. (6.34)

• In addition, the instantaneous transition rates are given by

qij = ⌫i ⇥ Pij =

(

�i, j = i + 1

µi, j = i� 1,
(6.35)

for i 6= j.

• Given that X(t) = i, the probability that:

– one birth occurs in the interval (t, t + �t] is given by

Pi,i+1(�t) = �i ⇥�t + o(�t);

– one death occurs in the interval (t, t + �t] is equal to

Pi,i�1(�t) = µi ⇥�t + o(�t);

– no death or birth occur in the interval (t, t + �t] amounts to

Pi,i(�t) = 1� (�i + µi)⇥�t + o(�t).

Consequently,

– multiple births,

– multiple deaths,

– a birth and a death,

in intervals of infinitesimal range �t are not possible.

• A birth and death process for which µn = 0, n 2 N (resp. �n = 0, n 2 N0), is called

a pure birth (resp. pure death) process. •
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Exercise 6.24 — Rate diagrams and rate matrices of birth and death processes

Draw the rate diagrams of the following birth and death processes:

(a) Poisson process with arrival rate � (Kulkarni, 1995, Figure 6.5, p. 249);

(b) pure birth process with birth rates �i (Kulkarni, 1995, Figure 6.6, p. 249);

(c) pure death process with death rates µi (Kulkarni, 1995, Figure 6.7, p. 250);

(d) general birth and death process with birth and death rates �i and µi,

respectively (Kulkarni, 1995, Figure 6.8, p. 251; http://en.wikipedia.org/wiki/Birth-

death process).

Identify the rate matrices of all these CTMC. •

Proposition 6.25 — Kolmogorov’s backward and forward equations for birth

and death processes (Ross, 2003, examples 6.10 and 6.12, pp. 364 and 368)

For birth and death processes:

• Kolmogorov’s backward (h + t) equations become

d P0j(t)

dt
=�0 P1j(t)� �0 P0j(t), j 2 N0 (6.36)

d Pij(t)

dt
=�i Pi+1,j(t) + µi Pi�1,j(t)� (�i + µi) Pij(t), i 2 N, j 2 N0; (6.37)

• Kolmogorov’s forward (t + h) equations are given by

d Pi0(t)

dt
=Pi1(t) µ1 � Pi0(t) �0, i 2 N0 (6.38)

d Pij(t)

dt
=Pi,j�1(t) �j�1 + Pi,j+1(t) µj+1 � Pij(t) (�j + µj), i 2 N0, j 2 N. (6.39)

•

Exercise 6.26 — Kolmogorov’s backward and forward equations for a pure

birth process

Write Kolmogorov’s backward and forward equations for a pure birth process (Ross, 2003,

Example 6.9, p. 364). •

Solving Kolmogorov’s backward differential equations is feasible, namely for some

birth and death processes with finite state space such as the CTMC of the next exercise.
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Exercise 6.27 — Solving Kolmogorov’s backward di↵erential equations

Suppose that:

• a machine works for an exponential amount of time with mean ��1 before breaking

down;

• it takes an exponential amount of time with mean µ�1 to repair the machine.

(a) Show that if the machine is in working condition (state 0) at time 0 then the

probability that it will be working at time t is equal to

P00(t) =
�

� + µ
⇥ e�(�+µ)t +

µ

� + µ

and

P10(t) =
µ

� + µ
� µ

� + µ
⇥ e�(�+µ)t.

(Ross, 1989, Example 4c, pp. 263–265; Ross, 2003, Example 6.11, pp. 364–366).

(b) Consider � = 1, µ = 2 and t = 10 and compare P(t) to its approximations
�

I + R t
n

�n

and
h

�

I� R t
n

��1
in

, where n = 210. •

Solving Kolmogorov’s forward differential equations is also possible in certain

cases, namely for pure birth processes, as shown by Proposition 6.28 and Exercise 6.30.

Moreover, Kolmogorov’s forward di↵erential equations are in fact differential-

difference equations; they can always be solved, at least in principle, by recurrence,

that is, successive substitution (Cooper, 1981, p. 16).

Proposition 6.28 — Solving Kolmogorov’s forward equations for pure birth

processes (Ross, 1989, Proposition 4.1, p. 266)

Let {X(t) : t � 0} be a pure birth process with rates �i, i 2 N0. Then the entries of the

TPM can be obtained recursively:

Pii(t) = e��
i

t, i 2 N0; (6.40)

Pij(t) = �j�1 ⇥ e��
j

t ⇥
Z t

0

e�
j

sPi,j�1(s) ds, i 2 N0, j = i + 1, i + 2, . . . ; (6.41)

and Pij(t) = 0, for j = 0, 1, . . . , i. •
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Exercise 6.29 — Solving Kolmogorov’s forward equations for pure birth

processes

Prove Proposition 6.28 (Ross, 1989, p. 266). •

Exercise 6.30 — Solving Kolmogorov’s forward equations for a Yule process

The Yule process is a pure birth process having rates �j = j�, j 2 N0.

(a) Use Proposition 6.28 to prove that, for fixed i 2 N,

Pij(t) =

✓

j � 1

i� 1

◆

�

e��t
�i �

1� e��t
�j�i

, j = i, i + 1, . . .

(Ross, 1989, pp. 266–267).

(b) Give a probabilistic interpretation to the result (Ross, 1983, pp. 144–145). •

Kolmogorov’s forward differential equations are also easy to derive and handle

when we are dealing with pure death processes, such as the ones in exercises 6.31 and

6.32.

Exercise 6.31 — Verifying Kolmogorov’s forward di↵erential equations

Admit the size of a population at time t, X(t), can be be described by a pure death

process with rates µk = kµ, k = 0, 1, . . . , n, where n (n 2 N) represents the initial

number of individuals.

(a) Write Kolmogorov’s forward di↵erential equations in terms of Pk(t) ⌘ Pnk(t) =

P [X(t) = k | X(0) = n].

(b) Show that

Pk(t) =

✓

n

k

◆

�

e�µt
�k �

1� e�µt
�n�k

, k = 0, 1, . . . , n,

verifies the Kolmogorov’s forward equations written in (a). •

Exercise 6.32 — Kolmogorov’s forward di↵erential equations for a pure death

process

There are n0 (n0 2 N) seals in an isolated cove; there are all sick and have to be captured

and taken from the cove to be treated.

Let X(t) be the number of (uncaptured) seals in the isolated cove at time t and admit

that {X(t) : t � 0} is a pure death process with rates µk = kµ, k 2 {0, 1, . . . , n0}.
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(a) Derive Kolmogorov’s forward equations in terms of Pk(t) ⌘ Pn
0

,k(t) = P [X(t) = k |
X(0) = n0].

(b) Argue that the solution to these equations is

Pk(t) = P [X(t) = k | X(0) = n0] =

✓

n0

k

◆

(pt)
k (1� pt)

n
0

�k ,

and identify pt.

(c) Compute E[X(t)| X(0) = n0].

(d) Let Tc be the time needed to capture all the seals. Derive the p.d.f. of Tc. •

The p.g.f. method, also called z � transform method, is frequently used to reduce the

Kolmogorov’s forward di↵erential equations to a single partial differential equation,

whose solution can be derived for some birth and death processes.

Let:

• {X(t) : t � 0} be a birth and death process such that X(0) = i;

• Pj(t) ⌘ P [X(t) = j | X(0) = i] be the p.f. of the r.v. (X(t) | X(0) = i);

• P (z, t) = E
⇥

zX(t) | X(0) = i
⇤

, |z|  1, be the p.g.f. of (X(t) | X(0) = i).

Then multiplying the jth Kolmogorov’s forward di↵erential equation in (6.39) by zj and

summing up in j (Kulkarni, 1995, p. 279), we get a single equation:

X

j2S

zj ⇥ d Pj(t)

dt
=
X

j2S

zj ⇥ [Pj�1(t) �j�1 + Pj+1(t) µj+1 � Pj(t) (�j + µj)] . (6.42)

By noting that

X

j2S

zj ⇥ d Pj(t)

dt
=

@P (z, t)

@t
(6.43)

and that, depending of the birth and death rates, the right term of (6.42) can be written

in terms of P (z, t) and

@P (z, t)

@z
=
X

j2S

jzj�1 ⇥ Pj(t)=
X

j2S

(j + 1)zj ⇥ Pj+1(t), (6.44)

(6.42) is nothing but a (first order) partial di↵erential equation whose solution is the

p.g.f. of the r.v. (X(t) | X(0) = i).
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Exercise 6.33 — Solving Kolmogorov’s forward equations via the p.g.f. method

(Kleinrock, 1975, Exercise 2.10(a)–(d), p. 81)

Admit {X(t) : t � 0} is a Yule process — i.e., a pure birth process with birth rates

�k = k�, for k 2 N0 — with X(0) = 1.

(a) Derive Kolmogorov’s forward equations in terms of Pk(t) ⌘ P1k(t) = P [X(t) = k |
X(0) = 1].

(b) After having rewritten the Kolmogorov’s forward equations derived in (a) as a partial

di↵erential equation in terms of the p.g.f. of the r.v. (X(t) | X(0) = 1), P (z, t) =

E
⇥

zX(t) | X(0) = 1
⇤

, verify that

P (z, t) =
z e��t

1� (1� e��t)⇥ z
, |z|  1,

satisfies that partial di↵erential equation (Cooper, 1981, Exercise 6a)b), p. 34).

(c) Identify the distribution of (X(t)| X(0) = 1) and compute E[X(t)| X(0) = 1]. •

Exercise 6.34 — Solving Kolmogorov’s forward equations via the p.g.f. method

(bis) (Kleinrock, 1975, Exercise 2.12, p. 82)

Let:

• {X(t) : t � 0} be a birth and death process with X(0) = 0 and rates �k = �, k 2 N0

and µk = kµ, k 2 N;

• Pj(t) ⌘ P0j(t) be the p.f. of the r.v. (X(t) | X(0) = 0).

(a) Derive Kolmogorov’s forward equations in terms of Pj(t).

(b) After having rewritten the Kolmogorov’s forward equations derived in (a) as a partial

di↵erential equation in terms of the the p.g.f. of (X(t) | X(0) = 0), verify that

P (z, t) = exp



��⇥ (1� e�µt)⇥ (1� z)

µ

�

, |z|  1,

satisfies that partial di↵erential equation (Cooper, 1981, pp. 32–33).

(c) Rewrite P (z, t) as a power series to identify Pj(t) and calculate limt!+1 Pj(t) (Cooper,

1981, p. 33). •

303



Exercise 6.35 — Solving Kolmogorov’s forward equations via the p.g.f. method

(bis, bis) (Kleinrock, 1975, Exercise 2.14, pp. 82–83)

Let:

• {X(t) : t � 0} a birth and death process with X(0) = 1 and rates �k = k�, k 2 N0

and µk = kµ, k 2 N;

• Pj(t) ⌘ P1j(t) be the p.f. of the r.v. (X(t) | X(0) = 1).

(a) Derive Kolmogorov’s forward equations in terms of Pj(t) and a partial di↵erential

equation satisfied by the p.g.f. of (X(t) | X(0) = 1) (Kulkarni, 1995, Example 6.24,

pp. 278–279).

(b) Verify that P (z, t) =
µ[1�e(��µ)t]�[��µ e(��µ)t]z
µ�� e(��µ)t�� [1�e(��µ)t]z

satisfies the partial di↵erential equation

derived in (a).

(c) Calculate the expected value and the variance of (X(t) | X(0) = 1).

(d) After having rewritten P (z, t) as a power series, show that

Pj(t) =

(

↵(t), j = 0

[1� ↵(t)]⇥ [1� �(t)]⇥ [�(t)]j�1 , j 2 N,

and obtain expressions for ↵(t) and �(t) (Kulkarni, 1995, Example 6.24, p. 281).

(e) Find the extinction probability, limt!+1 P0(t). •
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6.4.2 Classification of states

The concepts of accessibility, communication, irreducibility, transience and recurrence for

CTMC can be defined in the same lines as for DTMC.19 Consequently, these concepts are

going to be briefly discussed.

Definition 6.36 — CTMC and accessibility, communication, irreducibility,

transience and recurrence (Kulkarni, 1995, definitions 6.2–6.8, pp. 283–285)

Let:

• {X(t) : t � 0} be a CTMC with state space S, TPM P(t) and initial state i;

• S1 be the time of the first jump of this stochastic process;

• Tj = inf{t � S1 : X(t) = j} be the first time the CTMC enters state j 2 S;

• Ti = inf{t � S1 : X(t) = i} be the first time the CTMC returns to state i 2 S;

• fij = P [Tj < +1 | X(0) = i] be the probability that the first visit to state j (resp.

the first return to the initial state i if j = i) occurs in finite time;

• µij = E[Tj | X(0) = i] be the expected time until the first visit to state j (resp. the

first return to the initial state i if j = i).

Then, for i, j 2 S:

• state j is said to be accessible from state i, i.e., i ! j, if Pij(t) > 0 for some t � 0;

• states i and j are said to communicate, i.e., i $ j, if i ! j and j ! i;20

• a set of states C ⇢ S is said to be a communicating class if

(i) i, j 2 C ) i $ j

(ii) i 2 C, i$ j ) j 2 C;

• a communicating class C ⇢ S is said to be closed if i 2 C, j 62 C ) i 6! j;

• the CTMC is said to be irreducible if its state space S is a single closed

communicating class, i.e., if all states communicate with each other; otherwise,

the CTMC is called reducible;

19
Please refer to Morais (2013, Chap. 3, Section 3.3).

20Two states that communicate are obviously said to be in the same class.
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• state i is said to be recurrent if fii = 1;

• state i is called transient if fii < 1;

• a recurrent state i is said to be

(i) positive recurrent if µii < +1

(ii) null recurrent if µii = +1. •

Remark 6.37 — Periodicity (Kulkarni, 1995, p. 287)

Tj is a continuous r.v. and, thus, if state j is accessible from state i (i ! j) then it is

possible to visit j at any time t > 0 starting from i.21 Consequently, the notion of period

of a state of a CTMC does not exist. •

Since CTMC can be alternatively described in terms of holding times and an embedded

DTMC, can accessibility, communication, irreducibility, transience and recurrence be

defined in terms of such DTMC?

Yes!

This is indeed possible if we are dealing with what is called a regular CTMC, i.e., with

no instantaneous states.

Definition 6.38 — Regular CTMC (Ross, 1983, p. 142)

A CTMC is said to be regular if with probability one, the number of transitions in any

finite length time is also finite, that is, if supi2S ⌫i < +1. •

Proposition 6.39 — Accessibility, communication, irreducibility, transience

and recurrence redefined for CTMC (Kulkarni, 1995, theorems 6.8 and 6.9, pp.

284–285)

Let:

• {X(t) : t � 0} be a regular CTMC with state space S and TPM P(t) = [Pij(t)]i,j2S ;

• R = [rij]i,j2S be the associated rate matrix (or infinitesimal generator), where rij =

qij= ⌫i ⇥ Pij (i 6= j) and rij = �⌫i (i = j);

• {Xn : n 2 N0} be the embedded DTMC with TPM P = [Pij]i,j2S , where22

21That is, if 9s > 0 : P
ij

(s) > 0 then P
ij

(t) > 0,8t > 0.
22This is because the quantities are undefined when ⌫

i

= 0 (Kulkarni, 1995, p. 284).
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Pij =

8

>

>

>

<

>

>

>

:

q
ij

⌫
i

, ⌫i 6= 0, i 6= j

0, ⌫i 6= 0, i = j

0, ⌫i = 0, i 6= j

1, ⌫i = 0, i = j.

(6.45)

Then

{X(t) : t � 0} {Xn : n 2 N0}
i ! j , i ! j

i $ j , i $ j

C is a communicating class , C is a communicating class

MC is irreducible , MC is irreducible

i is recurrent , i is recurrent

i is transient , i is transient

•

Remark 6.40 — Transience and recurrence redefined for CTMC (Kulkarni, 1995,

p. 285)

Immediate consequences of Proposition 6.39:

• recurrence and transience are class properties;

• the criteria (necessary and su�cient conditions for...) to test recurrence and

transience of a DTMC23 can be used to establish the recurrence and transience

of the embedded DTMC and therefore of the CTMC. •

Needless to say that positive and null recurrence cannot be defined in terms of that

embedded DTMC because those two concepts rely on the holding times. However, the next

proposition establishes a criterion for positive (resp. null) recurrence somewhat related to

a result related to the positive recurrence of the DTMC.

Proposition 6.41 — Criterion for positive (resp. null) recurrence (Kulkarni,

1995, Theorem 6.10, p. 285)

Let:

• {X(t) : t � 0} be an irreducible and recurrent CTMC with state space S;

23These are necessary and su�cient conditions for recurrence and transience: state i is recurrent i↵
P+1

n=1 Pn

ii

= +1; state i is transient i↵
P+1

n=1 Pn

ii

< +1.
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• {Xn : n 2 N0} be the recurrent embedded DTMC with TPM P = [Pij]i,j2S ;

• ⇡ be a positive solution to ⇡ = ⇡ ⇥P.

Then the CTMC is positive (resp. null) recurrent iff
P

i2S
⇡

i

⌫
i

< +1 (resp.
P

i2S
⇡

i

⌫
i

=

+1). •

Proposition 6.41 also proves that positive and null recurrence are class properties in

the CTMC setting (Kulkarni, 1995, p. 286).24

24Please refer to Kulkarni (1995, Example 6.28, pp. 286–287) for a positive recurrent CTMC with null
recurrent embedded DTMC and vice-versa.
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6.4.3 Limit behavior of CTMC

Computing the TPM P(t) for a fixed finite t is not a trivial problem to handle,

algebraically or numerically (Kulkarni, 1995, p. 282). Expectedly, we shift our focus

to the study of the behavior of P(t) as t ! +1. But can we determine limt!+1P(t)?

Yes!

What follows provides answers to questions, such as:

• when does Pij(t) have a limit as t ! +1?

• how to compute limt!+1 Pij(t)?

(Kulkarni, 1995, p. 282).

Example/Exercise 6.42 — Limit behavior of P(t)

(a) The CTMC described in Exercise 6.27 has TPM equal to

P(t) =

"

�
�+µ

� �
�+µ

� µ
�+µ

� µ
�+µ

#

⇥ e�(�+µ)t +

"

µ
�+µ

�
�+µ

µ
�+µ

�
�+µ

#

,

thus,

lim
t!+1

P(t) =

"

µ
�+µ

�
�+µ

µ
�+µ

�
�+µ

#

,

obviously independent of the initial state of the CTMC (Kulkarni, 1995, Example

6.25, p. 282).

(b) Consider the CTMC described in Kulkarni (1995, Example 6.13, pp. 261–262), with

five states and the following rate matrix

2

6

6

6

6

6

6

4

��1 0 �1 0 0

0 ��2 0 �2 0

0 µ1 �(µ1 + �2) 0 �2

µ2 0 0 �(µ2 + �1) �1

0 0 µ2 µ1 �(µ1 + µ2)

3

7

7

7

7

7

7

5

,

where �1 = 1, �2 = 2, µ1 = 0.1 and µ2 = 0.15 (Kulkarni, 1995, Example 6.26, p. 283).

After having drawn the rate diagram of this CTMC, use the Mathematica function

MatrixExp to obtain P(t) and investigate the limit behavior of this TPM.
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(c) Consider the CTMC from Exercise 6.35 — now with X(0) = i and � > µ. It can be

shown that

lim
t!+1

Pij(t) =

(

�

µ
�

�i
, j = 0

0, j 2 N,

thus, the limiting probabilities are dependent of the initial state (Kulkarni, 1995,

Example 6.27, p. 283). •

After this example/exercise, we proceed with results concerning the limit behavior of

the TPM P(t) of a general CTMC.

Proposition 6.43 — Limit behavior of P(t) (Kulkarni, 1995, theorems 6.11–6.12 and

Corollary 6.3, pp. 287–288)

Let {X(t) : t � 0} be a CTMC. Then:

• limt!+1 Pjj(t) = 1
⌫

j

⇥µ
jj

, where 1/µjj is taken to be 0 if µjj = +1;

• limt!+1 Pij(t) =

(

f
ij

⌫
j

⇥µ
jj

, ⌫j > 0

fij, ⌫j = 0,

where, once again, 1/µjj is taken to be 0 if µjj = +1;

• if j is a transient or null recurrent state of the CTMC then limt!+1 Pij(t) = 0, for

all i 2 S. •

Now, we turn our attention to the limit behavior of positive recurrent (i.e., ergodic),

irreducible CTMC. Expectedly, it depends on the stationary distribution of the embedded

DTMC.

Theorem 6.44 — Limiting behavior of irreducible, positive recurrent CTMC

(Kulkarni, 1995, Theorem 6.13, p. 288; Ross, 1983, p. 152)

Let:

• {X(t) : t � 0} be an irreducible, positive recurrent CTMC;

• {Xn : n 2 N0} be the embedded DTMC;

• ⇡ = [⇡j]j2S be the unique stationary distribution of the embedded DTMC.25

25I.e., ⇡
j

=
P

i2S ⇡
i

P
ij

, j 2 S, and
P

j2S ⇡
j

= 1; in other words ⇡ = ⇡P.
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Then the limiting probabilities

Pj = lim
t!+1

Pij(t) (6.46)

are given by

Pj =

⇡
j

⌫
j

P

k2S
⇡

k

⌫
k

, j 2 S. (6.47)

•

Remark 6.45 — Limiting behavior of irreducible, positive recurrent CTMC

(Ross, 1983, p. 152)

• Pj also equals the long-run proportion of time the CTMC is in state j.

• If the initial state is chosen according to the limiting probabilities {Pj : j 2 S},
then P [X(t) = j] =

P

i2S Pi ⇥ Pij(t) = Pj, for all t, i.e., the resultant CTMC is

stationary.26 •

The next theorem gives one method of computing the limiting distribution of X(t) in

terms of the rate matrix.

Theorem 6.46 — Limiting distribution of an irreducible, positive recurrent

CTMC in terms of its rate matrix (Kulkarni, 1995, Theorem 6.11, p. 289; Ross,

1983, p. 152)

Let {X(t) : t � 0} be an irreducible, positive recurrent CTMC with rate matrix R. Then

the limiting distribution, represented by the row vector P = [Pj]j2S , is given by the unique

non negative solution to
(

P ⇥R = 0
P

j2S Pj = 1.
(6.48)

•

Remark 6.47 — Limiting distribution of an irreducible, positive recurrent

CTMC in terms of its rate matrix

• P ⇥R = 0 can be written as

Pj ⇥ ⌫j =
X

i2S

Pi ⇥ qij, j 2 S (6.49)

(Ross, 1983, p. 152), where qii = 0.

26In fact, P [X(t) = j] =
P

i2S P
i

⇥P
ij

(t) =
P

i2S [lim
s!+1 P

ki

(s)]⇥P
ij

(t) = lim
s!+1

P

i2S P
ki

(s)⇥
P

ij

(t) = lim
s!+1 P

kj

(s + t) = P
j

.

311



• Pj ⇥ ⌫j = rate at which the process leaves state j,

because Pj is the proportion of time the process is in state j and when it is in state

j it leaves at rate ⌫j (Ross, 1983, p. 153).

•
P

i2S Pi ⇥ qij = rate at which the process enters state j,

because Pi is the proportion of time the process is in state i and when it is in state

i it departs to state j at rate qij (Ross, 1983, p. 153).

• Since equations (6.49) can be thought as a statement of the equality of the rate

at which the process leaves and enters state j, they are sometimes referred to as

balance equations (Ross, 1983, p. 153).

• An irreducible CTMC is positive recurrent iff there is a solution to the system of

equations (6.48).27 Hence, like in the DTMC setting, by solving these equations, we

are automatically guaranteed positive recurrence of the CTMC. •

Exercise 6.48 — Limiting distribution of an irreducible, positive recurrent

CTMC in terms of its rate matrix

Derive and solve the balance equations of the CTMC with the following rate matrices:

(a)

"

�� �

µ �µ

#

(Kulkarni, 1995, Example 6.29, p. 290);

(b)

2

6

6

6

6

6

6

4

��1 0 �1 0 0

0 ��2 0 �2 0

0 µ1 �(µ1 + �2) 0 �2

µ2 0 0 �(µ2 + �1) �1

0 0 µ2 µ1 �(µ1 + µ2)

3

7

7

7

7

7

7

5

,

where �1 = 1, �2 = 2, µ1 = 0.1 and µ2 = 0.15 (Kulkarni, 1995, Example 6.30, p.

291).28 •

Let us now determine the limiting probabilities for a birth and death process (Ross,

1983, p. 153), with rates �n, n 2 N0, and µn, n 2 N. These are obtained by equating the

rate at which the process leaves a state with the rate at which it enters that state,29 as

follows:
27See Kulkarni (1995, Theorem 6.15, p. 290).
28Try not to solve (b) by hand...
29This is the result of taking limits as t ! +1 throughout Kolmogorov’s forward equations (6.38) –

(6.39), setting lim
t!+1

d Pij(t)
dt

= lim
t!+1

d Pj(t)
dt

= 0 (because if d Pij(t)
dt

converges then it must converge
to 0) and lim

t!+1 P
ij

(t) = P
j

, and normalizing so that
P

j2S P
j

= 1 (Cooper, 1981, p. 21).
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State Rate at which process leaves state = Rate at which process enters state

0 P0�0 = P1µ1

n 2 N Pn(�n + µn) = Pn�1�n�1 + Pn+1µn+1

and then rewriting and solving these equations in terms of P0 we get the limiting

probabilities in the following proposition.

Proposition 6.49 — Limiting probabilities for a birth and death process (Ross,

1983, p. 154)

Let {X(t) : t � 0} be a birth and death process with rates �n, n 2 N0, and µn, n 2 N.

Then

P0 =
1

1 +
P+1

n=1
�
0

�
1

... �
n�1

µ
1

µ
2

... µ
n

(6.50)

Pj =
�j�1

µj

Pj�1

= P0 ⇥
�0 �1 . . . �j�1

µ1 µ2 . . . µj

, j 2 N. (6.51)

•

For an account on the limiting behavior of reducible CTMC, the reader should refer

to Kulkarni (1995, pp. 296–299).

Exercise 6.50 — Limiting probabilities for a birth and death process

Prove Proposition 6.49 (Ross, 1983, p. 154). •

Exercise 6.51 — Limiting probabilities for a birth and death process

A taxi company has one mechanic who replaces fuel pumps when they fail. Assume:

• the waiting time in days until a fuel pump fails is exponentially distributed with

parameter 1
300

;

• the company has 1000 cars;

• the repair time for each car is exponentially distributed with expected repair time

of 1
4

days.

Find the long-run distribution for X(t), the number of cars with a broken fuel pump

at time t, by considering {X(t) : t � 0} a process where a birth corresponds to a broken

fuel pump and a death corresponds to a repaired fuel pump (Isaacson and Madsen, 1976,

Example VII.3.5, p. 246).30 •
30Note that the rates are given by �

n

= 1000�n

300 , for n = 0, 1, . . . , 999, and µ
n+1 = 4, for n = 1, . . . , 1000.
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Remark 6.52 — Existence of limiting probabilities for a birth and death

process

• Equation (6.50) shows us what condition is needed for the limiting probabilities for

a birth and death process to exist:

+1
X

n=1

�0 �1 . . . �n�1

µ1 µ2 . . . µn

< +1 (6.52)

(Ross, 1983, p. 154); we are simply requiring that P0 > 0 (Kleinrock, 1975, p. 93).

• We should also note that the condition for the existence of limiting probabilities for

a birth and death process is met whenever the sequence {�
k

µ
k

: k 2 N} remains below

the unit from some k onwards, i.e., if

9k0 :
�k

µk

< 1,8k � k0 (6.53)

(Kleinrock, 1975, p. 94).

Simply stated, in order for those expressions to represent a probability distribution

we have to place a condition on the birth and death rates that essentially says that

the system occasionally empties (Kleinrock, 1975, p. 93). •

Remark 6.53 — Classification of states of a birth and death process (Kleinrock,

1975, pp. 93–94)

Let

S1 =
+1
X

n=1

�0 �1 . . . �n�1

µ1 µ2 . . . µn

(6.54)

S2 =
+1
X

n=1

µ1 µ2 . . . µn

�0 �1 . . . �n

. (6.55)

Then, all states will be:

• positive recurrent (i.e., ergodic) i↵ S1 < +1 and S2 = +1;

• null recurrent i↵ S1 = +1 and S2 = +1;

• transient i↵ S1 = +1 and S2 < +1;

It is the ergodic case that gives rise to the equilibrium/limiting probabilities and that is

of most interest to our studies. •
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Exercise 6.54 — (Existence of) limiting probabilities for a birth and death

process (Ross, 1993, Exercise 5.13, p. 179)

The size of a biological population is assumed modeled as a birth and death process — for

which immigration is not allowed when the population size is N or larger — with rates

�i =

(

k� + ✓, i = 0, 1, . . . , N � 1

k�, i = N, N + 1, . . .

and µk = kµ, k 2 N.

Determine the proportion of time that immigration is restricted, in case N = 3,

� = ✓ = 1 and µ = 2. •

Exercise 6.55 — (Existence of) limiting probabilities for a birth and death

process (bis)

After having established conditions that guarantee the existence of limiting probabilities,

obtain (in case it is possible) those probabilities for the birth and death processes with

the following birth and death rates �i, i 2 N0, and µk, k 2 N:

(a) �i ⌘ � and µk ⌘ µ;

(b) �i ⌘ � and µk = kµ;

(c) �i ⌘ � and µk =

(

kµ, k = 1, 2, . . . , c

cµ, k = c + 1, c + 2, . . .
, where c 2 N;

(d) �i = i� and µk ⌘ µ;

(e) �i = ↵i� and µk ⌘ µ, with 0 < ↵ < 1

(Kleinrock and Gail, 1996, p. 71);

(f) �i =

(

(M � n)�, i = 1, 2, . . . ,M

0, i = M + 1, M + 2, . . .
and µk ⌘ µ

(Ross, 1983, Example 5.5(b), p. 155). •

Interestingly enough, some of the birth and death processes described in Exercise 6.55

are in fact related to queueing systems we shall study in Section 6.5.
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6.5 Birth and death queueing systems in equilibrium

In this section, we narrowed the class of queueing systems to the ones that can be modelled

as birth and death processes — also called birth and death queues — the M/M/s/s +

c/K/FCFS queueing systems.

Let us remind the reader that these systems have the following characteristics:

• the customers arrive according to a Poisson process at rate � (0 < � < +1);

• the service times are i.i.d. r.v., with exponential distribution with mean µ�1 and

independent of the interarrival times;

• s (1  s  +1) servers are set in parallel;

• the waiting room has capacity c, where 0  c  +1;

• there is a source of K (1  K  +1) customers to be served;

• the queue discipline is FCFS.

Since the times between consecutive arrivals are all exponentially distributed r.v.,

these systems enjoy two very crucial properties. To state them we have to consider the

following r.v. and limits (assuming they exist), as defined by Kulkarni (2011, p. 191):

• X(t) = Ls(t) is the number of customers in the system at time t;

• Xn is the number of customers left behind by the nth departure;

• X⇤
n is the number of customers in the system as seen by the nth entry (excluding

the entering customer) into the system;

• X̂n is the number of customers in the system as seen by the nth arrival (excluding

the arriving customer) to the system;

• pj = limt!+1 P [X(t) = j] is the long-run fraction of the time that the system has

j customers;

• ⇡j = limn!+1 P [Xn = j] is the long-run fraction of departures that leave behind j

customers in the system;

• ⇡⇤j = limn!+1 P [X⇤
n = j] is the long-run fraction of entering customers that see j

customers ahead of them in the system;

• ⇡̂j = limn!+1 P [X̂n = j] is the long-run fraction of arrivals that see j customers

ahead of them in the system.
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It is natural to enquire how are these quantities related (Kulkarni, 2011, p. 191).

Proposition 6.56 — Relating ⇡j and ⇡⇤j (Kulkarni, 2011, p. 192)

Admit the arrivals and departures take place one at a time and that ⇡j and ⇡⇤j exist.

Then

⇡j = ⇡⇤j , j 2 N0, (6.56)

that is, the long-run fraction of departures that leave behind j customers in the system

coincides with the long-run fraction of entries that see j customers ahead of them in the

system. •

Exercise 6.57 — Relating ⇡j and ⇡⇤j
Argue that Proposition 6.56 is valid (Kulkarni, 2011, p. 192). •

Proposition 6.58 — Relating pj and ⇡̂j (PASTA, Poisson Arrivals See Time

Averages) (Kulkarni, 2011, p. 192; Pacheco, 2002, p. 76)

Admit that the customers arrive according to a Poisson process and that {N(t+s) : s � 0}
is independent of {X(u) : 0  u  t}.31 Then

pj = ⇡̂j, j 2 N0, (6.57)

i.e., the fraction of time the system spends in state j coincides with the long-run fraction

of customers that find at arrival j customers in the system. •

Since queueing systems with Poisson arrivals possess the PASTA property, arriving

customers find on average the same situation in the queueing system as an outside observer

looking at the system at an arbitrary point in time (Adan and Resing, 2002, p. 27).

Never forget that the PASTA property is only true when we deal with Poisson arrivals.

For instance, in a D/D/1 system which is empty at time 0, and with arrivals at 1, 3, 5, . . .

and unitary service times, every arriving customer finds an empty system, whereas the

fraction of time the system is empty is 1
2

(Adan and Resing, 2002, p. 27).

Let us proceed and characterize Ls, Lq, Ws and Wq, the four performance measures

of a birth and death queue in the long-run or equilibrium.

31That is, the arrivals after t (or at t) do not interfere with the number of customers in the system up
to time t.
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6.5.1 M/M/1, the classical queueing system

The celebrated M/M/1 queue is the simplest non trivial interesting queueing system

(Kleinrock, 1975, p. 94).

An M/M/1 queue may be described by a birth and death process with rates:

�k = �, k 2 N0 (6.58)

µk = µ, k 2 N (6.59)

(Kleinrock, 1975, pp. 94–95).

Furthermore, the necessary and su�cient condition for the ergodicity in the M/M/1

system is simply written in terms of the tra�c intensity:32

⇢ =
�

µ
< 1 (6.60)

(Kleinrock, 1975, p. 95).33 Needless to say that the next results are stated assuming that

⇢ < 1 and refer to Ls(t), Lq(t), Ws(t) and Wq(t) in equilibrium, Ls, Lq, Ws and Wq

(respectively).

Proposition 6.59 — M/M/1: distribution of Ls (Kleinrock, 1975, p. 96)

The steady state probability of finding k customers in the M/M/1 system only depends

on � and µ through their ratio ⇢ and is given by:

P (Ls = k) = ⇢k (1� ⇢), k 2 N0, (6.61)

i.e., Ls ⇠ Geometric⇤(1� ⇢). •

32Note that in this case ⇢ = ⇢
e

because the M/M/1 system has a waiting area with infinite capacity.
33Expectedly, when ⇢ � 1, the performance measures L

s

(t), L
q

(t), W
s

(t) and W
q

(t) tend to +1, as
t ! +1.
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Exercise 6.60 — M/M/1: distribution of Ls

Prove Proposition 6.59 (Kleinrock, 1975, pp. 95–96). •

Exercise 6.61 — M/M/1: characteristics of Ls

Consider an M/M/1 queueing system.

(a) Plot the p.f. of Ls for ⇢ = 1
2

(Kleinrock, 1975, Figure 3.2, p. 97).

(b) Obtain the expected value and the variance of Ls as a function of ⇢.

(c) Plot E(Ls) (Kleinrock, 1975, Figure 3.3, p. 97) to show that this performance measure

grows in an unbounded fashion with ⇢ (Kleinrock, 1975, p. 98).

(d) Show that Ls stochastically increases with the arrival rate, �, and with the expected

service time, µ�1.34 •

Proposition 6.62 — M/M/1: distribution of Lq

The equilibrium probability of finding k customers waiting to be served in the M/M/1

system equals:

P (Lq = k) =

(

P (Ls  1) = 1� ⇢2, k = 0

P (Ls = k + 1) = ⇢k+1 (1� ⇢), k 2 N.
(6.62)

•

Exercise 6.63 — M/M/1: distribution of Lq

Prove Proposition 6.62. •

Proposition 6.64 — M/M/1: distribution of Ws

Since the service times are memoryless in the M/M/1 queueing system, we get:35

(Ws | Ls = k) ⇠ Gamma(k + 1, µ), k 2 N0; (6.63)

Ws ⇠ Exponential(µ(1� ⇢)). (6.64)

•

34A r.v. X, whose distribution depends on the parameter ✓, is said to stochastically increase with ✓ if
P

✓

(X > x) is an increasing function of ✓, for all �1 < x < +1.
35Given that upon arrival a customer finds k customers in the M/M/1 system, he/she will leave this

system after the completion of 1 + (k � 1) + 1 services: the service that have already started when the
customer arrived; the ones of the k � 1 customers waiting to be served when the customer arrived; and
her/his own service.
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Exercise 6.65 — M/M/1: distribution of Ws

Prove Proposition 6.64.36 •

Proposition 6.66 — M/M/1: distribution of Wq

For the M/M/1 queueing system, Wq is a mixed r.v. with the following characteristics:

(Wq | Ls = 0)
st
= 0; (6.65)

(Wq | Ls = k) ⇠ Gamma(k, µ), k 2 N; (6.66)

(Wq | Wq > 0) ⇠ Exponential(µ(1� ⇢)); (6.67)

FW
q

(t) =

8

>

<

>

:

0, t < 0

1� ⇢, t = 0

(1� ⇢) + ⇢⇥ FExp(µ(1�⇢))(t), t > 0.

(6.68)

•

Exercise 6.67 — M/M/1: distribution of Wq

Prove Proposition 6.66. •

Exercise 6.68 — M/M/1 queueing system

Consider an M/M/1 queueing system and draw the graphs of the following parameters

in terms of ⇢:

(a) the limiting probability that the system is empty;

(b) E(Wq);

(c) E(Ws) (Kleinrock, 1975, Figure 3.4, p. 97). •

Exercise 6.69 — M/M/1 queueing system (bis)

Prove that:

(a) V (Ls) = ⇢
(1�⇢)2

(Prabhu, 1997, p. 15);

(b) V (Lq) = ⇢2(1+⇢�⇢2)
(1�⇢)2

(Pacheco, 1990, p. 36);

(c) V (Ws) = 1
[µ(1�⇢)]2

(Prabhu, 1997, p. 16);

(d) V (Wq) = ⇢(2�⇢)
[µ(1�⇢)]2

(Prabhu, 1997, p. 16). •

36Apply the total probability law to prove (6.163).
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The following table condenses the distributions and expected values of the four

performance measures of an (ergodic) M/M/1.

M/M/1

Rates �k = �, k 2 N0

µk = µ, k 2 N

Ls P (Ls = k) = ⇢k (1� ⇢), k 2 N0

E(Ls) = ⇢
1�⇢

Lq P (Lq = k) =

(

1� ⇢2, k = 0

⇢k+1 (1� ⇢), k 2 N
E(Lq) = ⇢2

1�⇢

Ws (Ws | Ls = k) ⇠ Gamma(k + 1, µ), k 2 N0

Ws ⇠ Exponential(µ(1� ⇢))

E(Ws) = 1
µ(1�⇢)

Wq (Wq | Ls = k) ⇠ Gamma(k, µ), k 2 N

FW
q

(t) =

8

>

<

>

:

0, t < 0

1� ⇢, t = 0

(1� ⇢) + ⇢⇥ FExp(µ(1�⇢))(t), t > 0

(Wq | Wq > 0) ⇠ Exponential(µ(1� ⇢))

E(Wq) = ⇢
µ(1�⇢)

Exercise 6.70 — M/M/1 queueing system (bis, bis)

Admit that defective items from a production line arrive to the repair shop of the same

factory according to a Poisson process with constant rate �. The repair shop has a single-

server who completes repairs after independent and exponentially distributed times with

expected value equal to 3 minutes.

(a) Determine the distribution of Ls.

(b) The manager of the production line wishes that the probability of having more than

5 defective items waiting for repair does not exceed 10% and that the probability of

having an idle server in the repair shop does not exceed 30%. Identify the arrival

rates that satisfy both conditions. •
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Exercise 6.71 — More on the M/M/1 queueing model

Passengers arrive to a passport control area in a very small airport according to a Poisson

process having rate equal to 30 passengers per hour. The passport control has a sole

o�cer who completes checks after independent and exponentially distributed times with

expected value equal to 1.5 minutes.

(a) Obtain the probability that the server is idle.

(b) Calculate the expected number of passengers in the passport control area.

(c) What is the probability that passengers form a queue and its expected size?

(d) Determine not only the expected time an arriving passenger spends in the passport

control area, but also the expected value this passenger waits to be served.

(e) What is the probability that a passenger waits at least 10 minutes until her/his

passport starts to be checked by the o�cer? •

Exercise 6.72 — More on the M/M/1 queueing model (bis)

People arrive to a phone booth according to a Poisson process with rate 1/10 persons per

minute and the durations of the phone calls are independent and exponentially distributed

r.v. with common expected value equal to 3 minutes.

(a) What is the probability that someone has to wait to make a phone call?

(b) Determine the expected size of the queue.

(c) The phone company will install another phone booth in the same area if the expected

waiting time is of at least 3 minutes. Calculate the increase in the arrival rate that

justifies the installation of the second phone booth.

(d) Obtain the probability that a customer has to wait more than 10 minutes to start

her/his phone call.

(e) What is the probability that a person does not spend more than 10 minutes from

arrival to the system until the end of the phone call.

(f) Calculate the percentage of time the phone booth is being used. •
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Exercise 6.73 — More on the M/M/1 queueing model (bis)

Vehicles arrive to a car wash according to a Poisson process with rate 5 vehicles per hour

and the durations of the car washes are independent and exponentially distributed r.v.

with expected value equal to 10 minutes. Admit that the car wash has a waiting area

with infinite capacity.

(a) What is the probability that a vehicle has to wait to be washed?

(b) Determine the expected number of vehicles that have to wait to be washed.

(c) Compute the standard deviation of the time spent in queue waiting for the vehicle to

be washed.

(d) What is the percentage of time the car wash machines are nor working? •

If not all arriving customers decide to join the system we have the phenomenon of

balking (Prabhu, 1997, p. 30) or a queueing model with discouragement (Reynolds,

1968) or discouraged arrivals. We are particularly interested in the case where the

decision to join (or not!) is made on the basis on the number of customers found in the

system upon arrival (Prabhu, 1997, p. 30). The next exercise illustrates an M/M/1 with

balking (or discouraged arrivals); the M/M/s with balking is addressed later on.

Exercise 6.74 — M/M/1 queueing system with discouraged arrivals

Consider an M/M/1 queueing system where arrivals tend to get discouraged when more

and more people are present in the system. One possible way to model this e↵ect is

to consider an harmonic discouragement of arrivals with respect to the number

present in the system, i.e., having birth rates equal to

�k =
�

k + 1
, k 2 N0,

and keep the death rates equal to µk = µ, k 2 N (Kleinrock, 1975, p. 99).

(a) Draw the rate diagram of this birth and death process (Kleinrock, 1975, Figure 3.5,

p. 100).

(b) Verify that the process is ergodic if �
µ

< +1.

(c) Show that the limiting probabilities are given by

Pk = e��/µ (�/µ)k

k!
, k 2 N0

(Kleinrock, 1975, pp. 99–100), i.e., Ls ⇠ Poisson(�/µ). •
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6.5.2 M/M/1, the queueing system with responsive servers

The M/M/1 can be thought as a system where there is always a new server for each

arriving customer (Kleinrock, 1975, p. 101).37

This queueing system can be obviously described by a birth and death process with

rates

�k = �, k 2 N0, (6.69)

µk = kµ, k 2 N, (6.70)

and the ergodic condition is simply �
µ

< +1

(Kleinrock, 1975, p. 101).

Proposition 6.75 — M/M/1: distribution of Ls (Kleinrock, 1975, p. 101)

Ls ⇠ Poisson(�/µ). •

Exercise 6.76 — M/M/1: distribution of Ls

Prove Proposition 6.75. •

Su�ce to say that we have not to wait in this system and the time spent in the system

coincides with the duration of the service, thus,

Lq
st
= 0 (6.71)

Ws ⇠ Exponential(µ) (6.72)

Wq
st
= 0. (6.73)

Since this system is quite simple to describe in the equilibrium state we are tempted

to state the transient behavior of the number of customers in the system at time t.

Proposition 6.77 — M/M/1: transient behavior of number of customers

Let X(t) be number of customers in the M/M/1 system at time t. Then

(X(t) | X(0) = 0) ⇠ Poisson(� (1� e�µt)/µ). (6.74)

•

37It may also be interpreted as a system with a responsive server who accelerates her/his service rate
linearly (Kleinrock, 1975, p. 101), to avoid any customers waiting.
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Exercise 6.78 — M/M/1: transient behavior of number of customers

Prove Proposition 6.77, by deriving the Kolmogorov’s forward equations and the

associated partial di↵erential equation. •

M/M/1

Rates �k = �, k 2 N0

µk = kµ, k 2 N

Ls Ls ⇠ Poisson(�/µ)

Lq Lq
st
= 0

Ws Ws ⇠ Exp(µ)

Wq Wq
st
= 0

X(t) = number of customers in the system at time t

(X(t) | X(0) = 0) ⇠ Poisson(� (1� e�µt)/µ)

Even though the M/G/1 queueing system38 cannot be modeled as a birth and death

process, we digress and state the transient and limit behavior of its number of customers.

Proposition 6.79 — M/G/1: transient and limit behavior of number of

customers (Pacheco, 2002, p. 91)

Let X(t) be number of customers in the M/G/1 system at time t. Then

(X(t) | X(0) = 0) ⇠ Poisson

✓

�

Z t

0

[1�G(t� s)] ds

◆

(6.75)

lim
t!+1

(X(t) | X(0) = 0) ⇠ Poisson(�/µ). (6.76)

•

The limit distribution of the number of customers in the M/G/1 system is insensitive

to the distribution of the service time — it only depends on its mean (Adan and Resing,

2002, p. 111).

Exercise 6.80 — M/G/1: transient and limit behavior of the number of

customers

Prove Proposition 6.79 (Pacheco, 2002, p. 91). •
38This system is associate with a Poisson arrival process with rate � and service time distribution

function G with finite expected value µ�1.
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M/G/1

(X(t) | X(0) = 0) ⇠ Poisson
⇣

�
R t

0
[1�G(t� s)] ds

⌘

limt!+1(X(t) | X(0) = 0) ⇠ Poisson(�/µ)

Exercise 6.81 — M/G/1: transient behavior of the number of customers

Users arrive at a library according to a Poisson process with rate equal to 3 users per

minute and spend in the library an amount of time with Uniform(10, 210) distribution.

What is the expected number of users in the library two hours after it opened (Pacheco,

2002, p. 91)? •

Exercise 6.82 — M/G/1: transient behavior of the number of customers (bis)

According to historical data regarding the National Gallery, the interarrival and visit

times (all in minutes) have Exponential(�) and Gama(↵, �) distributions, respectively.

Considering � = 1, ↵ = 3, � = 0.1 and that the National Gallery opens at 10AM,

obtain an approximate value for the probability that the number of visitors exceeds 200

at 3PM. •
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6.5.3 M/M/m, the m–server case

Once again we consider a queueing system with an unlimited waiting area and a constant

arrival rate; this system provides a maximum of m servers, is within the reach of a birth

and death formulation and leads to

�k = �, k 2 N0 (6.77)

µk =

(

kµ, k = 1, . . . ,m

mµ, k = m + 1, m + 2, . . .
(6.78)

(Kleinrock, 1975, p. 102).

From these birth and death rates, it is easily seen that the condition for ergodicity is

written, expectedly, in terms of the tra�c intensity:

⇢ =
�

mµ
< 1. (6.79)

Proposition 6.83 — M/M/m: distribution of Ls (Kleinrock, 1975, pp. 102–103)

The limit probability of finding k customers in the M/M/m system depends, once again,

on � and µ through the tra�c intensity ⇢ = �
mµ

:

P (Ls = k) =

(

P0
(m⇢)k

k!
, k = 0, 1, . . . ,m� 1

P0
mm⇢k

m!
, k = m, m + 1, . . . ,

(6.80)

where P0 = P (Ls = 0) =
h

Pm�1
k=0

(m⇢)k

k!
+ (m⇢)m

m!(1�⇢)

i�1

. •

Proposition 6.84 — M/M/m: Erlang’s C formula or delay probabilities

(Kleinrock, 1975, p. 103)

In a M/M/m system, the long-run fraction of customers that are delayed is equal to

C(m, m⇢) = P (delay) = P (Ls � m) =

(m⇢)m

m!(1�⇢)
Pm�1

k=0
(m⇢)k

k!
+ (m⇢)m

m!(1�⇢)

. (6.81)

This probability is usually referred to as Erlang’s C formula (or Erlang’s second

formula).39 Expectedly, the p.f. of Ls can be written in terms of C(m, m⇢):

39Some authors, such as Kleinrock (1975, p. 103), represent this probability by C(m, ⇢) instead of
C(m, m⇢). We prefer the notation of Pacheco (2002, p. 80).
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P (Ls = k) =

(

m!
k!

(1� ⇢)(m⇢)k�mC(m, m⇢), k = 0, 1, . . . ,m� 1

(1� ⇢) ⇢k�m C(m, m⇢), k = m, m + 1, . . . .
(6.82)

•

Proposition 6.85 — M/M/m: distribution of Lq

The equilibrium probability of finding k customers waiting in line in the M/M/m queueing

system is simply given by:

P (Lq = k) =

(

P (Ls  m) = 1� ⇢ C(m, m⇢), k = 0

P (Ls = m + k) = (1� ⇢) ⇢k C(m, m⇢), k 2 N.
(6.83)

•

Proposition 6.86 — M/M/m: distribution of Ws

The distribution of Ws conditional Ls = k, depends on the fact that the arriving customer

is immediately served or not:

(Ws | Ls = k) ⇠
(

Exp(µ), k = 0, . . . ,m� 1,

Exp(µ) ? Gamma(k �m + 1, mµ), k = m, m + 1, . . . ,
(6.84)

where ? represents the convolution (or sum of two independent r.v.).

The survival function of Ws has two expressions, depending on whether ⇢ is equal

to m�1
m

or not:

1� FW
s

(t) =

(

[1 + µt C(m, m⇢)] e�µt, t � 0, ⇢ = m�1
m

h

1 + eµ[1�m(1�⇢)]t

1�m(1�⇢)
⇥ C(m, m⇢)

i

e�µt, t � 0, ⇢ 6= m�1
m

.
(6.85)

•

Proposition 6.87 — M/M/m: distribution of Wq

Once more Wq is a mixed r.v. In this case:

(Wq | Lq = k) ⇠ Gamma(k �m + 1, mµ), k = m, m + 1, . . . ; (6.86)

(Wq | Wq > 0) ⇠ Exponential(mµ(1� ⇢)); (6.87)

1� FW
q

(t) =

8

>

<

>

:

1, t < 0

C(m, m⇢), t = 0

C(m, m⇢)⇥ [1� FExp(mµ(1�⇢))(t)], t > 0.

(6.88)

•
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M/M/m

Rates �k = �, k 2 N0

µk =

(

kµ, k = 1, . . . ,m

mµ, k = m + 1, m + 2, . . .

Ls P (Ls = k) =

(

m!
k!

(1� ⇢)(m⇢)k�mC(m, m⇢), k = 0, 1, . . . ,m� 1

(1� ⇢) ⇢k�m C(m, m⇢), k = m, m + 1, . . .

C(m, m⇢) = P (Ls � m) =
(m⇢)

m

m!(1�⇢)

P

m�1

k=0

(m⇢)

k

k!

+
(m⇢)

m

m!(1�⇢)

C(1, ⇢) = ⇢

C(2, 2⇢) = 2⇢2

1+⇢

E(Ls) = m⇢ + ⇢
1�⇢

C(m, m⇢)

Lq P (Lq = k) =

(

1� ⇢ C(m, m⇢), k = 0

(1� ⇢) ⇢k C(m, m⇢), k 2 N
E(Lq) = ⇢

1�⇢
C(m, m⇢)

Ws (Ws | Ls = k) ⇠
(

Exp(µ), k = 0, . . . ,m� 1,

Exp(µ) ? Gamma(k �m + 1, mµ), k = m, m + 1, . . .

1� FW
s

(t) =

(

[1 + µt C(m, m⇢)] e�µt, t � 0, ⇢ = m�1
m

h

1 + eµ[1�m(1�⇢)]t

1�m(1�⇢)
⇥ C(m, m⇢)

i

e�µt, t � 0, ⇢ 6= m�1
m

E(Ws) = 1
µ

+ C(m,m⇢)
mµ(1�⇢)

Wq (Wq | Lq = k) ⇠ Gamma(k �m + 1, mµ), k = m, m + 1, . . .

(Wq | Wq > 0) ⇠ Exponential(mµ(1� ⇢))

1� FW
q

(t) =

8

>

<

>

:

1, t < 0

C(m, m⇢), t = 0

C(m, m⇢)⇥ FExp(µ(1�⇢))(t), t > 0

E(Wq) = C(m,m⇢)
mµ(1�⇢)

Exercise 6.88 — M/M/m: characteristics of Ls, Lq, Ws and Wq

Prove propositions 6.83–6.87 and derive the following results referring to the performance

measures Ls, Lq, Ws and Wq, and to C(m, m⇢):

(a) E(Ls) = m⇢ + ⇢
1�⇢

C(m, m⇢);

(b) E(Lq) = ⇢
1�⇢

C(m, m⇢);
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(c) E(Ws) = 1
µ

+ C(m,m⇢)
mµ(1�⇢)

;

(d) E(Wq) = C(m,m⇢)
mµ(1�⇢)

;

(e) C(1, ⇢) = ⇢; C(2, 2⇢) = 2⇢2

1+⇢
. •

Exercise 6.89 — M/M/m: properties of C(m, m⇢)

Draw graphs to illustrate the following properties of Erlang’s C formula:

(a) C(m, m⇢) " ⇢;

(b) lim⇢!0+ C(m, m⇢) = 0;

(c) lim⇢!1� C(m, m⇢) = 1;

(d) C(m, m⇢) # m;

(e) 0 < C(m, m⇢) < C(1, ⇢) = ⇢, m = 2, 3, . . .. •

Exercise 6.90 — M/M/m queueing system

A system has two servers, who attend to customers in a FCFS basis and whose service

times are independent and exponentially distributed r.v. with mean value 1.8 minutes.

Considering that customers arrive to the system according to a Poisson process with rate

equal to 1 customer per minute and that the system, compute:

(a) the probability that there are more than 10 customers in the system;

(b) the expected time a customer spends in line waiting to be served;

(c) the expected number of customers in the system;

(d) the probability that exactly one server is idle. •

Exercise 6.91 — M/M/m queueing system (bis)

A small public o�ce has two o�cers, who service times are independent and exponentially

distributed r.v. with rate equal to 60 visitors per hour. Admit that the times between

consecutive arrivals of visitors are i.i.d. r.v. exponentially distributed with parameter equal

to 100 visitors per hour and calculate:

(a) the probability that there are more than 4 visitors in the system;

(b) the expected number of visitors in the system;

(c) the expected time a visitor spends in the system. •
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Exercise 6.92 — M/M/m queueing system (bis, bis) (Hsu, 2011, p. 361, Exercise

9.13)

A corporate computing center has two computers of the same capacity. The jobs arriving

at the center are of two types, internal and external jobs. These jobs arrive according to

two independent Poisson processes with rates 18 internal jobs per hour and 15 external

jobs per hour. The service times are i.i.d. r.v. exponentially distributed with mean 3

minutes.

(a) Find the average waiting time per arriving job, when the two computers handle both

types of jobs.

(b) Obtain the average waiting time per arriving internal job, when one computer is used

exclusively for internal jobs and the other for external jobs. Comment the result in

light of (a). •

Exercise 6.93 — M/M/m queueing system (bis, bis, bis)

A department has three secretaries, who process requests that arrive according to a

Poisson process with rate equal to 20 requests per 8 hours. Assume that the processing

times are independent and exponentially distributed r.v. with expected value equal to 40

minutes.

(a) What is the percentage of time all (resp. at least one of) the secretaries are busy?

(b) Obtain the expected time one waits for a request to be completely processed

(c) Admit that due to financial problems one of the secretaries had to be fired. Recompute

the quantities in (a) and (b). •

Exercise 6.94 — Designing a M/M/m queueing system

Airplanes arrive to an airport according to a Poisson process having rate equal to 18

airplanes per hour, and their times in a runway during landing are independent and

exponentially distributed r.v. with expected value equal to 2 minutes.

Derive the number of runways the airport should have so that the probability that an

arriving airplane waits to land (delay probability) does not exceed 0.20. •

Exercise 6.95 — A M/M/m queueing system with impatient customers

(Isaacson and Madsen, 1976, Example VII.3.4, pp. 245–246)

Assume:

• customers arrive at a ticket counter with m windows according to a Poisson process

with parameter 6 per minute;
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• customers are served on a first-come-first-served basis;

• service times are independent and exponentially distributed with mean 1
3

of a

minute.

(a) What is the minimum number of windows needed to guarantee that the line does not

get infinitely long?

(b) Assume m = 4 and that we are dealing with impatient customers who:

• wait for service if Ls  4;

• wait for service with probability 1
2

if Ls = 5;

• leave if Ls � 6.

What is the distribution of Ls? •

The system described in Exercise 6.95 in another example of a queueing system with

balking — consequently, we close this subsection readdressing the issue of balking

(see Prabhu, 1997, pp. 30–32). We shall also introduce the reader to M/M/m queueing

systems with reneging (see Prabhu, 1997, pp. 32–35).

Remark 6.96 — The M/M/m system with balking

Let us remind the reader that:

• the term balk (or baulk)40 means to hesitate or to be unwilling to go on;

• in a queueing system with balking, the probability that an arriving customer joins

the system depends on the number of customers, say k, found in the system upon

arrival; let us represent such probability by bk.41

In practice {bk, k 2 N0} is an non-increasing sequence — the more customers found

upon arrival, the less prone is the arriving customer to join the queueing system. A few

examples taken from Prabhu (1997, p. 30):

(i) bk = 1
k�m+2

, for k � m (bk = 1, k < m);

(ii) bk = ↵k�m+1, for k � m (bk = 1, k < m), where ↵ 2 (0, 1);

(iii) bk = 1, for k < C, and bk = 0, for k � C (where C is some critical value). •
40Variant spelling of balk.
411� b

k

is the balking probability (Prabhu, 1997, p. 30).
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Exercise 6.97 — The M/M/m system with balking

Capitalizing on the fact that, for a M/M/m system with balking, {Ls(t), t � 0} is a birth

and death process with rates

�k = � bk, k 2 N0, (6.89)

µk =

(

kµ, k = 1, . . . ,m

mµ, k = m + 1, m + 2, . . .
(6.90)

(Prabhu, 1997, p. 31), derive:

(a) conditions that ensure the existence of limiting probabilities for this birth and death

process;42

(b) the limiting probabilities referring to Ls.43 •

Remark 6.98 — The M/M/m system with balking (bis)

In general, balking behavior can be characterized by a r.v. D defined as the maximum

number of customers an arriving customer would be prepared to wait for (Prabhu, 1997,

p. 31). Thus, according to Prabhu (1997, p. 32),

bk = P (D � k), k 2 N0, (6.91)

and in the previous examples we have:

(i) P (D = k) = 1
(k�m+2)(k�m+3)

, k � m� 1;

(ii) P (D = k) = (1� ↵)↵k�m+1, k � m� 1;

(iii) D = C � 1.

D can be thought as the psychological e↵ect that the observed number of customers

in the system has on the arriving customer (Prabhu, 1997, p. 32). •

Reneging occurs when a customer decides to leave the system after having waited

for sometime to be served (Prabhu, 1997, p. 32).

42The series
P+1

k=m

�
k

⇢k�m should converge, and note that �
m

= 1, �
k

=
Q

k�1
j=m

b
j

(k � m + 1) and
⇢ = �

mµ

.
43P0 =

h

P

m�1
k=0

(m⇢)k

m! + (m⇢)m

m!

P+1
k=m

�
k

⇢k�m

i�1
; P

k

= P0 ⇥ (m⇢)k

k! , for k = 1, . . . ,m � 1; and P
k

=
P

m

�
k

⇢k�m, for k = m, m + 1, . . ..
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Remark 6.99 — The M/M/m system with reneging

If we admit that the times until reneging by the successive customers are i.i.d. r.v. with

Exponential(⌫) distribution, then {Ls(t), t � 0} is a birth and death process with rates

�k = �, k 2 N0 (6.92)

µk =

(

kµ, k = 1, . . . ,m

mµ + (k �m)⌫, k = m + 1, m + 2, . . .
(6.93)

(Prabhu, 1997, pp. 32–33).

The resulting system is called a M/M/m system with reneging at rate ⌫ (Prabhu,

1997, p. 33). •

Exercise 6.100 — The M/M/1 system with reneging (Kleinrock and Gail, 1996,

p. 93)

Consider a M/M/1 system, with parameters � and µ, and reneging at rate ⌫.

(a) Draw the rate diagram and express Pk+1 in terms of Pk (Kleinrock and Gail, 1996, p.

94).

(b) Derive Pk, when ⌫ = µ (Kleinrock and Gail, 1996, p. 94). •

Exercise 6.101 — The M/M/m system with reneging

Consider a M/M/m system with reneging at rate ⌫ and let

⇢ =
�

mµ
, � =

�

⌫
, �m = 1 �k =

k�m
Y

j=1

✓

j +
�

⇢

◆

. (6.94)

Prove that:

(a) the existence of limiting probabilities for this birth and death process is ensured if

the series
P+1

k=m �k ⇢k�m converges;

(b) the p.f. of Ls is given by

P0 =

"

m�1
X

k=0

(m⇢)k

m!
+

(m⇢)m

m!

+1
X

k=m

�k �k�m

#�1

Pk =

(

P0 ⇥ (m⇢)k

k!
, k = 1, . . . ,m� 1

Pm �k⇢k�m, k = m, m + 1, . . .

(Prabhu, 1997, p. 33).
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Derive:

(c) the distribution of the virtual waiting time of a customer, who arrived at time t and

decided to stay until he/she is served (Prabhu, 1997, p. 34);

(d) the transient and the equilibrium distributions of the waiting time of a customer,

who arrived at time t (Prabhu, 1997, pp. 34–35). •
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6.5.4 M/M/m/m, the m–server pure loss system

The M/M/m/m queueing system is a m�server system with no waiting area: each newly

arriving customer is given her/his private server; however, if a customer arrives when all

servers are occupied, that customer is lost (Kleinrock, 1975, p. 105). Unsurprisingly, this

queueing system also called a m�server pure loss system.

This queueing system can be modeled as birth and death process with

�k =

(

�, k = 0, 1, . . . ,m� 1

0, k = m, m + 1, . . .
(6.95)

µk =

(

kµ, k = 1, . . . ,m

0, k = m + 1, m + 2, . . .
(6.96)

(Kleinrock, 1975, p. 105).

Since we are dealing with a finite state space (S = {0, 1, . . . ,m}), ergodicity is

obviously assured as long as the tra�c intensity ⇢ = �
mµ

is finite, and this condition

can be written in terms of the o↵ered load:

m⇢ =
�

µ
< +1. (6.97)

Proposition 6.102 — M/M/m/m: distribution of Ls (Kleinrock, 1975, p. 105)

The limit probability of finding k customers in the M/M/m/m queueing system depends

on the o↵ered load m ⇢ = �
µ
:

P (Ls = k) =

(

P0
(m⇢)k

k!
, k = 0, 1, . . . ,m

0, k = m + 1, m + 2, . . . ,
(6.98)

where P0 = P (Ls = 0) =
h

Pm
k=0

(m⇢)k

k!

i�1

. •

Proposition 6.103 — M/M/m/m: Erlang’s B formula or blocking probabilities

In a M/M/m/m system, the long-run fraction of lost⌘blocked customers is equal to

P (Ls = m) =
(m⇢)m

m!
Pm

k=0
(m⇢)k

k!

(6.99)

= B(m, m⇢). (6.100)
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It is usually referred to as Erlang’s B formula (or Erlang’s first formula) and it was

first derived by Erlang in 1917 (Kleinrock, 1975, p. 106).

The (equilibrium) distribution of Ls is sometimes written in terms of B(m, m⇢):

P (Ls = k) =

(

m!
k! (m⇢)m�k

⇥B(m, m⇢), k = 0, 1, . . . ,m

0, k = m + 1, m + 2, . . .
(6.101)

•

Exercise 6.104 — M/M/m/m: distributions of Ls, Lq, Ws and Wq

Prove propositions 6.102–6.103 and show that E(Ls) = m⇢[1�B(m, m⇢)]. •

We are dealing, once more, with a system where there is no wait — in this case because

there is no waiting area and, thus, arriving customers who find all the m servers busy are

lost. As a consequence:

Lq
st
= 0 (6.102)

Ws ⇠ Exp(µ) (6.103)

Wq
st
= 0. (6.104)

M/M/m/m

Rates �k =

(

�, k = 0, 1, . . . ,m� 1

0, k = m, m + 1, . . .

µk =

(

kµ, k = 1, . . . ,m

0, k = m + 1, m + 2, . . .

Ls P (Ls = k) =

8

>

>

>

<

>

>

>

:

(m⇢)

k

k!

P

m

k=0

(m⇢)

k

k!

= m!
k! (m⇢)m�k

⇥B(m, m⇢), k = 0, 1, . . . ,m

0, k = m + 1, m + 2, . . .

B(m, m⇢) =
(m⇢)

m

m!

P

m

k=0

(m⇢)

k

k!

B(1, ⇢) = ⇢
1+⇢

B(2, 2⇢) = 2⇢2

1+2⇢+2⇢2

E(Ls) = m⇢[1�B(m, m⇢)]

Lq Lq
st
= 0

Ws Ws ⇠ Exp(µ)

Wq Wq
st
= 0
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Exercise 6.105 — M/M/m/m system

Answer the questions in Exercise 6.91, considering that the small public o�ce has no

waiting area. •

Exercise 6.106 — M/M/m/m: properties of B(m, m⇢)

Draw graphs to illustrate the following properties of Erlang’s B formula:

(a) B(m, m⇢) " ⇢;

(b) lim⇢!0+ B(m, m⇢) = 0;

(c) lim⇢!+1B(m, m⇢) = 1;

(d) B(m, m⇢) # m;

(e) 0 < B(m, m⇢) < B(1, ⇢) = ⇢
1+⇢

, m = 2, 3, . . .. •

Exercise 6.107 — Erlang’s B and C formulae

Prove the following results.

(a) Erlang’s B formula can be obtained in a recursive way:

B(m, m⇢) = B(m, �/µ)

=

(

⇢
1+⇢

, m = 1
m⇢⇥B(m�1,�/µ)

m+m⇢⇥B(m�1,�/µ)
, m = 2, 3, . . .

(6.105)

(b) Erlang’s C formula is related with Erlang’s B formula as follows:

C(m, m⇢) =
m⇥B(m, m⇢)

m�m⇢⇥ [1�B(m, m⇢)]
(6.106)

C(m, �/µ) =
1

1 + (m�m⇢)⇥ [m⇢⇥B(m� 1, �/µ)]�1
, (6.107)

where B(0, �/µ) = 1.

(c) C(m, m⇢) > B(m, m⇢).

(d) C(m, m⇢) = 1

1+ 1�⇢

⇢

⇥ m�1�m⇢⇥C(m�1,m⇢)

(m�1�m⇢)⇥C(m�1,m⇢)

, for m > m⇢ + 1. •
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The computation of values of B(m, m⇢) maybe problematic for large values of m, such

as m = 150. However, let us remind the reader that there is a simple and numerically

stable recursion for the blocking probabilities in a M/M/m/m, formula (6.105), derived

in Exercise 6.107.

Exercise 6.108 — Recursion for Erlang’s B formula

Admit that:

• customers arrive according to a Poisson process at a parking lot near a small

shopping center with a rate of 60 cars per hour,

• the mean parking time is 2.5 hours and the parking lot o↵ers place to 150 cars,

• when the parking lot is full, an arriving customer has to park his car somewhere

else

(Adan and Resing, 2002, p. 114).

(a) Write an expression for the fraction of customers finding all places occupied on arrival.

(b) Use Mathematica to obtain such value.

(c) Use Mathematica to implement the recursion in formula (6.105). •

Exercise 6.109 — M/M/m/m system (bis) (Hsu, 2011, p. 364, Exercise 9.20)

An air freight terminal has 2 loading docks. An aircraft which arrives when all docks

are full is diverted to another terminal. The aircrafts arrive to the air freight terminal

according to a Poisson process with rate 3 aircrafts per hour. The service times are i.i.d.

r.v. exponentially distributed with mean equal to 2 hours.

(a) Find the proportion of arriving aircrafts that are diverted to another terminal.

(b) Obtain the average number of aircrafts in the air freight terminal. •

Exercise 6.110 — M/M/m/m system (bis, bis) (Kulkarni, 2011, p. 203, Example

6.8)

Consider a telephone switch modelled by a M/M/m/m queueing system, with an arrival

rate of � = 4 calls per minute and a service rate of µ = 5 calls per minute per server.

(a) What is the expected number of calls in the switch in the steady state?
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(b) How large should the switch capacity be if we desire to lose no more than 10% of the

incoming calls? •

Exercise 6.111 — M/M/m/m vs. M/M/m system

A small town bank has m employees working at the counter. The stream of customers is

Poisson with rate � and the service times are i.i.d. r.v. with exponential distribution and

mean µ�1.

(a) Admit the customers leave the bank if they are not immediately served.

(i) For which values of � and µ this system reaches equilibrium?

(ii) Derive the steady state p.f. of the number of customers in the system an arriving

customer sees.

(iii) Determine the probability of losing customers and find the mean number of

customers found in this system, when m = 2, � = 4 and µ = 5.

(b) Now, consider that after some marketing “manoeuvres” the customers are willing to

wait for their service.

Obtain the expected value of the number of customers in the system and compare it

with the previous value, admitting once again that � = 4 and µ = 5. Comment the

results. •
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6.5.5 M/M/m/m+d, the m server with finite storage

The M/M/m/m+d queueing system is a m�server system which can accommodate only

a finite number m + d (m, d 2 N)44 of customers at a time (Prabhu, 1997, p. 24), so that

if a customer arrives — when all the m servers and all the d positions in the waiting area

are occupied —, he/she will in fact be refused entry to the system and depart immediately

without service (Kleinrock, 1975, p. 103). Newly arriving customers will continue to be

generated according to a Poisson process; however, only those who arrive and find the

queueing system with strictly less than m+d customers will be allowed entry (Kleinrock,

1975, p. 103).

This queueing system is also aptly termed the m�server loss-delay system. It can be

modelled once again as a birth and death process by e↵ectively turning o↵ the Poisson

input as soon as the system fills up (Kleinrock, 1975, p. 104):

�k =

(

�, k = 0, 1, . . . ,m + d� 1

0, k = m + d, m + d + 1, . . .
(6.108)

µk =

8

>

<

>

:

kµ, k = 1, . . . ,m� 1

mµ, k = m, m + 1, . . . ,m + d

0, k = m + d + 1, . . .

(6.109)

Remark 6.112 — M/M/m/m+d: rate diagram

The corresponding rate diagram when m = 1 is

(K ⌘ m + d)

(Kleinrock, 1975, p. 104). •

We are dealing once again with a finite state space (S = {0, 1, . . . ,m + d}), therefore

ergodicity is immediately assured as long as ⇢ = �
mµ

< 1.

Proposition 6.113 — M/M/m/m+d: distribution of Ls (Prabhu, 1997, p. 25)

The limit probabilities depend on the tra�c intensity ⇢ = �
mµ

and read as follows:

P (Ls = k) =

(

P0
(m⇢)k

k!
, k = 0, 1, . . . ,m� 1

P0
mm⇢k

m!
, k = m, m + 1, . . . ,m + d,

(6.110)

where P0 = P (Ls = 0) =
h

Pm�1
k=0

(m⇢)k

k!
+ (m⇢)m

m!

Pd
k=0 ⇢k

i�1

. •

44When d = 0 we are dealing with a M/M/m/m pure loss system.
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Proposition 6.114 — M/M/m/m+d: loss-delay probabilities (Pacheco, 2002, p.

80)

In this system of finite storage, the loss-delay probability is the long-run fraction of

customers that are either blocked or delayed:45

Cd(m, m⇢) = P (Ls � m) (6.111)

=
(m⇢)m

m!

Pd
k=0 ⇢k

Pm�1
k=0

(m⇢)k

k!
+ (m⇢)m

m!

Pd
k=0 ⇢k

. (6.112)

The p.f. of Ls can written in terms of Cd(m, m⇢):

P (Ls = k) =

8

<

:

m!

k! (m⇢)m�k

P

d

i=0

⇢i

Cd(m, m⇢), k = 0, 1, . . . ,m� 1
⇢k�m

P

d

i=0

⇢i

Cd(m, m⇢), k = m, m + 1, . . . ,m + d.
(6.113)

•

Proposition 6.115 — M/M/m/m+d: distribution of Lq

The equilibrium probability of finding k customers waiting to be served in a M/M/m/m+

d queueing system equals:

P (Lq = k) =

8

<

:

P (Ls  m) = 1�
⇣

1� 1
P

d

i=0

⇢i

⌘

Cd(m, m⇢), k = 0

P (Ls = m + k) = ⇢k

P

d

i=0

⇢i

Cd(m, m⇢), k = 1, . . . , d.
(6.114)

•

Exercise 6.116 — M/M/m/m+d: loss-delay probabilities

Draw graphs to illustrate and comment the following properties of the loss-delay

probabilities:

(a) Cd(m, m⇢) " d;

(b) Cd(m, m⇢) " ⇢;

(c) Cd(m, m⇢) # m;

(d) 0 < Cd(m, m⇢) < Cd(1, ⇢) =
h

1 + 1

1+⇢
P

d

k=0

⇢k

i�1

, m = 2, 3, . . ., d 2 N0. •

Exercise 6.117 — M/M/m/m+d: loss-delay probabilities

Prove that for a M/M/1/1 + d system the loss-delay probabilities are given by:

45We adopted a slightly di↵erent notation than Pacheco (2002, p. 80).
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Cd(1, ⇢) =

(

⇢�⇢d+2

1�⇢d+2

, ⇢ 6= 1
d+1
d+2

, ⇢ = 1
(6.115)

(Pacheco, 2002, p. 80). •

Proposition 6.118 — M/M/m/m+d: blocking probabilities (Pacheco, 2002, p.

78)

In a M/M/m/m+d system the blocking probability corresponds to the long-run fraction

of customers who find m + d clients in the system upon arrival. The blocking probability

is usually denoted by Pb, B(m, m⇢, d) or Bd(m, m⇢); it equals Pm+d, i.e.,

Bd(m, m⇢) =
(m⇢)m

m!
⇢d

Pm�1
j=0

(m⇢)j

j!
+ (m⇢)m

m!

Pd
k=0 ⇢k

. (6.116)

Furthermore:

• Bd(m, m⇢) # d (decreases with the size of the waiting room d);

• Bd(m, m⇢) # m (decreases with the number of servers m);

• Bd(m, m⇢) " ⇢ (increases with the o↵ered tra�c intensity or the o↵ered load). •

Exercise 6.119 — M/M/1/1+d: blocking probabilities (Pacheco, 2002, p. 78)

Prove that the blocking probability in a M/M/1/1 + d system is given by

Bd(1, ⇢) =

(

1
d+2

⇢ = 1
⇢d+1(1�⇢)
1�⇢d+2

⇢ 6= 1.
(6.117)

•

Remark 6.120 — M/M/m/m+d: input rate and the carried tra�c intensity

The input rate and the carried tra�c intensity are equal to

�e = �⇥ (1� Pb)

= �⇥ [1� P (Ls = m + d)]

= �⇥ [1�Bd(m, m⇢)]

= �⇥
"

1� ⇢d

Pd
i=0 ⇢i

Cd(m, m⇢)

#

(6.118)

⇢e = ⇢⇥ (1� Pb)

=
�e

mµ
, (6.119)

respectively. •
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We have to be a bit more careful in the derivation of the distribution of Wq and

Ws
d
= (Wq + service) and take advantage of the following result.

Proposition 6.121 — Relating the M/M/m/m+d and M/M/m/m+d�1 systems

(Pacheco, 2002, p. 84)

Let LM/M/m/m+d
s (resp. LM/M/m/m+d�1

s ) be the number of customers found in the

M/M/m/m + d (resp. M/M/m/m + d� 1) system by an arriving customer. Then

P (LM/M/m/m+d
s = k|LM/M/m/m+d

s < m + d) = P (LM/M/m/m+d�1
s = k). (6.120)

•

For the expressions of the c.d.f. of Ws (resp. Wq) written as mixtures of r.v., the

reader is referred to Pires (1990, equations (4.86–4.88)) (resp. Pacheco, 2002, pp. 85–86).

However, we should refer in passing that:

FW
q

(0) = P (Wq = 0)

= P (Ls < m|Ls < m + d)

= 1� Cd�1(m, m⇢);

P (0 < Wq  t) =
m+d�1
X

k=m

FGamma(k�m+1,mµ)(t)⇥ P (Ls = k|Ls < m + d)

=
m+d�1
X

k=m

FGamma(k�m+1,mµ)(t)⇥
⇢k�m

Pd�1
i=0 ⇢i

Cd�1(m, m⇢).

Exercise 6.122 — M/M/m/m+d: expectations of Lq, Ls, Wq and Ws

Derive the following results referring to Lq, Ls, Wq and Ws:

(a) E(Lq) =

(

d
2
Cd(m, m⇢), ⇢ = 1
⇢

1�⇢
⇥ 1�(d+1) ⇢d+d ⇢d+1

1�⇢d+1

⇥ Cd(m, m⇢), ⇢ 6= 1;

(b) E(Ls) = m⇢e + E(Lq) = m⇢e +

(

d
2
Cd(m, m⇢), ⇢ = 1
⇢

1�⇢
⇥ 1�(d+1) ⇢d+d ⇢d+1

1�⇢d+1

⇥ Cd(m, m⇢), ⇢ 6= 1;

(c) E(Wq) = 1
�

e

E(Lq) =

(

d+1
2mµ

Cd�1(m, m⇢), ⇢ = 1
1

1�⇢
⇥ 1�(d+1) ⇢d+d ⇢d+1

1�⇢d

⇥ C
d�1

(m,m⇢)

mµ
, ⇢ 6= 1.

(d) E(Ws) = 1
�

e

E(Ls) = 1
µ

+ E(Wq)

= 1
µ

+

(

d+1
2mµ

Cd�1(m, m⇢), ⇢ = 1
1

1�⇢
⇥ 1�(d+1) ⇢d+d ⇢d+1

1�⇢d

⇥ C
d�1

(m,m⇢)

mµ
, ⇢ 6= 1.

•
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M/M/m/m+d

Rates �k =

(

�, k = 0, 1, . . . ,m + d� 1

0, k = m + d, m + d + 1, . . .

µk =

8

>

<

>

:

kµ, k = 1, . . . ,m� 1

mµ, k = m, m + 1, . . . ,m + d

0, k = m + d + 1, . . .

Input rate ⇢e = �
mµ
⇥
h

1� ⇢d

P

d

i=0

⇢i

Cd(m, m⇢)
i

Ls P (Ls = k) =

8

<

:

m!

k! (m⇢)m�k

P

d

i=0

⇢i

Cd(m, m⇢), k = 0, 1, . . . ,m� 1
⇢k�m

P

d

i=0

⇢i

Cd(m, m⇢), k = m, . . . ,m + d

Cd(m, m⇢) = P (Ls � m) =
(m⇢)

m

m!

P

d

k=0

⇢k

P

m�1

k=0

(m⇢)

k

k!

+
(m⇢)

m

m!

P

d

k=0

⇢k

.

Cd(1, ⇢) =

(

⇢�⇢d+2

1�⇢d+2

, ⇢ 6= 1
d+1
d+2

, ⇢ = 1

E(Ls) = m⇢e +

(

d
2
Cd(m, m⇢), ⇢ = 1
⇢

1�⇢
⇥ 1�(d+1) ⇢d+d ⇢d+1

1�⇢d+1

⇥ Cd(m, m⇢), ⇢ 6= 1

Lq P (Lq = k) =

8

<

:

P (Ls  m) = 1�
⇣

1� 1
P

d

i=0

⇢i

⌘

Cd(m, m⇢), k = 0

P (Ls = m + k) = ⇢k

P

d

i=0

⇢i

Cd(m, m⇢), k 2 N

E(Lq) =

(

d
2
Cd(m, m⇢), ⇢ = 1
⇢

1�⇢
⇥ 1�(d+1) ⇢d+d ⇢d+1

1�⇢d+1

⇥ Cd(m, m⇢), ⇢ 6= 1;

Ws E(Ws) = 1
µ

+

(

d+1
2mµ

Cd�1(m, m⇢), ⇢ = 1
1

1�⇢
⇥ 1�(d+1) ⇢d+d ⇢d+1

1�⇢d

⇥ C
d�1

(m,m⇢)

mµ
, ⇢ 6= 1.

Wq E(Wq) =

(

d+1
2mµ

Cd�1(m, m⇢), ⇢ = 1
1

1�⇢
⇥ 1�(d+1) ⇢d+d ⇢d+1

1�⇢d

⇥ C
d�1

(m,m⇢)

mµ
, ⇢ 6= 1.

Exercise 6.123 — M/M/m/m+d system (Kulkarni, 2011, p. 202, Example 6.7)

Consider a call center modelled by a M/M/6/6 + 4 with an arrival rate of � = 60 calls

per hour and a service rate of µ = 10 calls per hour per server.

(a) Compute the limiting distribution of the number of calls in the system in steady state.

(b) Obtain the expected number of calls on hold.

(c) What fraction of the calls are lost? •
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Exercise 6.124 — M/M/m/m+d system (bis)

For safety reasons the number of visitors to an exhibition room cannot exceed 2 and not

more than 2 visitors are allowed to be the waiting room.

Admit visitors arrive to the exhibition room according to a Poisson process having

rate equal to 6 visitors per 15 minutes and that the time spent by each visitor in the

exhibition room is an exponentially distributed r.v. with mean equal to 4 minutes.

(a) Determine the probability of finding the exhibition room empty.

(b) What happens to the number of visitors found in the waiting room if its capacity is

reduced to 1? Justify and comment your result. •
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6.5.6 Birth and death queues in equilibrium, with finite

customer population

In this subsection, we no longer consider a Poisson input process with an infinite user

population, but rather a finite population of possible users that act independently of

each other (Kleinrock, 1975, p. 106).

A customer is either in the system46 or not, and in some sense are expected to arrive

after a exponentially distributed time with rate � (Kleinrock, 1975, p. 106).

These self regulating systems can be modelled quite appropriately with birth and

death processes (Kleinrock, 1975, p. 106), as illustrated in the following exercises.

Exercise 6.125 — M/M/1//m, the single-server system with finite customer

population

We model the single-server system with finite customer population with a birth and death

process with rates

�k = �(m� k), k = 0, 1, . . . ,m (6.121)

µk = µ, k = 1, . . . ,m (6.122)

(M ⌘ m)

(Kleinrock, 1975, pp. 106–107).

(a) If ⇢ = �
µ

< +1 then this system reaches equilibrium.

Derive and write in terms of ⇢:

(i) the p.f. of Ls (Kleinrock, 1975, p. 107) and its expectation;

(ii) the p.f. of Lq and prove that E(Lq) = E(Ls)� (1� P0);

(iii) the expressions for the c.d.f. of Ws and Wq;

(b) Prove that the input rate is equal to �e =
Pm

k=0 �k Pk = m [�� E(Ls)].

(c) Use Little’s law to write expressions for the expected values of Ws and Wq. •

46Consisting of a queue and m servers who provide independent and exponentially distributed services
with mean µ�1.
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Exercise 6.126 — M/M/m//m, the m–server system with finite customer

population47

In the m�server system with finite customer population, a separate server is provided for

each customer in the system (Kleinrock, 1975, p. 107), thus,

Lq
st
= 0

Ws ⇠ Exponential(µ)

Wq
st
= 0.

The associated birth and death process has rates

�k = �(m� k), k = 0, 1, . . . ,m (6.123)

µk = kµ, k = 1, . . . ,m (6.124)

(M ⌘ m)

(Kleinrock, 1975, p. 107).

(a) Once again this system reaches equilibrium if ⇢ = �
mµ

< +1.

Derive and write the p.f. of Ls and its expectation (Kleinrock, 1975, p. 108).

(b) Confirm that Ls ⇠ Binomial
⇣

n, 1� 1
1+m⇢

⌘

.48

(c) Prove that the input rate is given by �e =
Pm

k=0 �k Pk = m�
1+m⇢

.

(d) Use Little’s law to confirm that E(Ws) = 1
�

e

E(Ls) = 1
µ
. •

Exercise 6.127 — M/M/m/m+d/m+d+e, the m–server system with finite

customer population and finite storage

Depending on the values of d and e (d, e 2 N0 [1), this rather general model will reduce

to all the previous birth and death queueing systems (Kleinrock, 1975, p. 108), with the

exception of the ones with balking or reneging.

47Kleinrock (1975, p. 107) represents this system as M/M/1//m and terms it a finite customer
population — “infinite” number of servers.

48Curiously enough, Kleinrock (1975, p. 108) fails to note this important fact.
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The rates of the associated birth and death process are equal to

�k = �(m + d + e� k), k = 0, 1, . . . ,m + d� 1 (6.125)

µk =

(

kµ, k = 1, . . . ,m

mµ, k = m + 1, . . . ,m + d
(6.126)

(K ⌘ m + d, M ⌘ m + d + e)

(Kleinrock, 1975, pp. 108–109).

(a) If ⇢ = �
mµ

< +1 and m + d < +1 then this system reaches equilibrium.

Derive the p.f. of Ls (Kleinrock, 1975, p. 109) and write in terms of ⇢.

(b) Prove that, for d = 0,

Pk =

�

m+e
k

�

(m⇢)k

Pm
i=0

�

m+e
i

�

(m⇢)i
, k = 0, 1, . . . ,m,

that is, Ls has a distribution known as the Engset distribution49 (Kleinrock, 1975, p.

109). •

49For more details, the reader is referred to http://en.wikipedia.org/wiki/Erlang (unit)#Engset formula
and http://en.wikipedia.org/wiki/T. O. Engset
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6.6 Markovian queueing systems in equilibrium

The purpose of this section is to go (slightly) beyond the birth and death queueing systems

and deal with systems such as the single-server queues:

• M/Er/1, with Poisson arrivals and Erlang(r, rµ) service density;

• Er/M/1, with Erlang(r, r�) interarrival times and exponential service time density.

In the systems M/Er/1 and Er/M/1, the stochastic process {Ls(t), t � 0}50 is

not Markovian because we are dealing with the Erlang distribution which has not the

memoryless property, as mentioned by Prabhu (1997, p. 59), unless r = 1.

The reader is probably wondering why the Erlang distribution was chosen to model

the service or the interarrival times.

Firstly, the exponential distribution is not the appropriate candidate to model service

or interarrival times.

Secondly, the Erlang model is a two-parameter family of absolutely continuous

distributions which accommodates the exponential distribution and several other

unimodal distributions due to its shape parameter.

Thirdly, the coe�cient of variation of the Erlang(r, •) distribution equals 1p
r
, r 2 N.

Therefore it is a suitable model if the sample data suggests a coe�cient of variation not

larger than the unit. Moreover, if we hold the mean constant to ��1, as r ! +1 then

the distribution converges to the mean ��1, as illustrated by Exercise 6.128.

Exercise 6.128 — Erlangian input/service (limit distribution)

Prove that the sequence of r.v. {Xr, r 2 N}, where Xr ⇠ Erlang(r, r�), converges in

distribution to ��1. •

Finally, the Erlang distribution Er can be interpreted as a r�fold convolution of the

Exponential distribution, thus, an Er distributed service (resp. interarrival) time can be

viewed as being o↵ered in r successive phases (resp. stages), according to Prabhu (1997,

p. 59). This author also adds that, by making use of this interpretation of the Erlang

distribution Er, we deal with a bivariate Markov process in which Ls(t) is one of the two

state variables.

50Recall that L
s

(t) represents the number of customers in the system at time t.
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Curiously enough, the method of stages/phases leads to what can be considered a more

general birth and death processes, where steps beyond nearest neighbours are allowed and

whose structure still permits explicit solutions (Kleinrock, 1975, p. 115) of the balance

equations. This ingenious method is another proof of the brilliance of A.K. Erlang and

dates from the beginning of the XX century (Kleinrock, 1975, p. 119).

The M/Er/1 and Er/M/1 systems are particular cases of the M/G/1 and G/M/1

systems and therefore they are going to be discussed in much more detail in future sections

using the embedded Markov chain approach.

6.6.1 M/Er/1, the single-server system with Erlangian service

times

To fully describe the dynamics of a M/Er/1 system in equilibrium, we need to specify

• Ls, the number of customers found in this system by an arriving customer,

• J , the number of service stages to be completed by the clients seen in the

system by the arriving customer

(Kleinrock, 1975, p. 126).

These two r.v. are obviously related. If the arriving customer finds:

• Ls = 0 customers in the system, then J = 0;

• Ls = k, k 2 N, and the customer being served is in her/his ith stage of service, then

J = (k � 1) r + (r � i + 1) (6.127)

(Kleinrock, 1975, p. 126).

Consequently,

P (Ls = k) =

(

P (J = 0), k = 0
Pkr

j=(k�1)r+1 P (J = j), k 2 N
(6.128)

(Kleinrock, 1975, p. 126).

Exercise 6.129 — M/Er/1: rate diagram and balance equations

Considering the following rate diagram for J
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(Kleinrock, 1975, p. 127), write the balance equations for Qj = P (J = j) by taking

advantage of the previous rate diagram.51 •

Exercise 6.130 — M/Er/1: solving the balance equations

Let Qj = P (J = j).

(a) Use the z�transform method to prove that the p.g.f. of J is given by

Q(z) =
+1
X

j=0

zjQj

=
rµ(1� z)Q0

rµ + �zr+1 � (� + rµ)z
(6.129)

(Kleinrock, 1975, p. 128).

(b) Prove that Q0 = 1� �
µ

= 1� ⇢, by noting that Q(1) = 1 (Kleinrock, 1975, p. 128).

(c) Prove that, for r = 1, Q(z) = 1�⇢
1�⇢z

and Qk = ⇢k(1� ⇢), k 2 N0 (Kleinrock, 1975, pp.

128–129). •

Proposition 6.131 — M/Er/1: p.g.f. and p.f. of J; p.f. of Ls (Kleinrock, 1975, p.

129)

Let:

• ⇢ = �
µ

be the tra�c intensity;

• Q(z) and Qj = P (J = j) be the p.g.f. and p.f. of J , respectively.

Then

Q(z) =
1� ⇢

Qr
i=1

⇣

1� z
z
i

⌘ (6.130)

= (1� ⇢)
r
X

i=1

Ai

1� z
z
i

, (6.131)

where:
51They read as follows: � Q0 = rµQ1; (� + rµ)Q

j

= � Q
j�r

+ rµQ
j+1, j 2 N (Kleinrock, 1975, p.

127).
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• z1, . . . , zr are the r unique roots (not equal to one!) of the denominator of Q(z),

rµ + �zr+1 � (� + rµ)z = (1� z)

"

rµ� �
X

i=1

zi

#

; (6.132)

• Ai =
Qr

n=1,n6=i
1

1� z

z

i

, i = 1, . . . , r.

Furthermore, the distribution of J is a weighted sum of Geometric⇤ distributions,

Qj =

(

1� ⇢, j = 0

(1� ⇢)
Pr

i=1 Ai ⇥ z�j
i , j 2 N

(6.133)

and the p.f. of Ls equals

P (Ls = k) =

8

>

<

>

:

P (J = 0) = 1� ⇢, k = 0
Pkr

j=(k�1)r+1 P (J = j)

= (1� ⇢)
Pkr

j=(k�1)r+1

�

Pr
i=1 Ai ⇥ z�j

i

�

, k 2 N.

(6.134)

•

To provide an expression for E(Ls) we have to invoke the Pollaczek-Khinchin mean-

value formula (Kleinrock, 1975, p. 187):

E(Ls) = ⇢ + ⇢2 1 + CV 2(service)

2(1� ⇢)
, (6.135)

where CV (service) = SD(service)

E(service)
is the coe�cient of variation of the service times.

After noting that 1 + CV 2(service) is the sum of the squares of the coe�cients of

variation of the interarrival and service times, Kleinrock (1975, p. 191) adds that:

• E(Ls) linearly increases with the square of the coe�cient of variation of the service

times;52

• E(Ls) depends non linearly upon the tra�c intensity.

Needless to say that the minimum value of E(Ls) is achieved when r = +1, i.e., when

the service times are constant and equal to µ�1:

E(LM/D/1
s ) = ⇢ + ⇢2 1

2(1� ⇢)
. (6.136)

Furthermore,

E(LM/D/1
s ) < E(LM/E

r

/1
s )  E(LM/M/1

s ), r 2 N. (6.137)

52The more irregular are the services, the larger the expected number of customers found in the system.
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Exercise 6.132 — M/Er/1: expectations of Ls, Lq, Ws and Wq

Derive the following results by using the Pollaczek-Khinchin mean-value formula and

Litte’s law:

(a) E(Ls) = ⇢ + ⇢2 1+ 1

r

2(1�⇢)
= ⇢ + 1+r

2r
⇢2

1�⇢
;

(b) E(Lq) = E(Ls)� ⇢ = 1+r
2r

⇢2

1�⇢
;

(c) E(Ws) = 1
�
E(Ls) = 1

µ
+ 1+r

2r
⇢

µ(1�⇢)
;

(d) E(Wq) = 1
�
E(Lq) = 1+r

2r
⇢

µ(1�⇢)
. •

Exercise 6.133 — M/Er/1 system

Visitors arrive to an information desk according to a Poisson process having rate � = 0.5

visitors per minute. Moreover, the times spent getting information have Erlang(r, rµ)

distribution, with mean (resp. variance) equal to 1 minute (resp. 0.5 minute2).

Consider from now on that this M/Er/1 system is in equilibrium.

(a) Determine the value of r.

(b) Find the probability that the system is empty upon the arrival of a visitor.

(c) Obtain the probability that an arriving visitor finds 2 other customers in the system.

(d) Compute the probability that an arriving visitor finds 2 other customers waiting to

be served.

(e) Calculate the following expectations: E(Ls), E(Lq), E(Ws) and E(Wq). •

Exercise 6.134 — M/Er/1 system with no queue (Kleinrock and Gail, 1996, p. 99,

Problem 4.3)

Consider a M/Er/1 system in which no queue is allowed to form. Let J be the number

of stages of service to be completed when one observes the system in equilibrium.

(a) Draw the rate diagram for J

(b) Find P (J = j), j = 0, 1, . . . , r and the probability of a busy system.

(Kleinrock and Gail, 1996, p. 100.) •
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6.6.2 Er/M/1, the single-server system with Erlangian arrivals

To deal with the Er/M/1 system we have to interchange the roles of interarrival times

and service times (Kleinrock, 1975, p. 130), keeping in mind that this system does not

have the PASTA property.

Expectedly, the description of the dynamics of a M/Er/1 system in equilibrium relies

on:

• Ls, the number of customers actually in the system, as seen by an external

observer,53

• J , the total number of complete arrival phases by the customers already

in the system and the customer in the ith phase of her/his arrival

(Kleinrock, 1975, p. 126).

These two r.v. are obviously related: if Ls = k, k 2 N0, and the customer in the ith

phase of her/his arrival, then

J = k r + (i� 1) (6.138)

(Kleinrock, 1975, p. 130). Thus,

P (Ls = k) =
(k+1)r�1
X

j=kr

P (J = j), k 2 N0 (6.139)

(Kleinrock, 1975, p. 131).

Exercise 6.135 — Er/M/1: rate diagram and balance equations

Considering the rate diagram for J

(Kleinrock, 1975, p. 131), write the balance equations for Qj = P (J = j).54 •

53Not by an arriving or departing customer!
54They can be found in Kleinrock (1975, p. 131): r�Q0 = µQ

r

; r�Q
j

= r�Q
j�1 + µQ

j+r

, j =
1, . . . , r � 1; (r� + µ) Q

j

= r�Q
j�1 + µQ

j+r

, j = r, r + 1, . . .
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Exercise 6.136 — Er/M/1: solving the balance equations

Let Qj = P (J = j) and ⇢ = �
µ
. Use the z�transform method to prove that the p.g.f. of

J is given by

Q(z) =
+1
X

j=0

zjQj

=
(1� zr)

Pr�1
j=0 zjQj

r⇢zr+1 � (1 + r⇢)zr + 1

=
(1� zr)

⇣

1� 1
z
0

⌘

r(1� z)
⇣

1� z
z
0

⌘ , (6.140)

where z0 is the root of [r⇢zr+1 � (1 + r⇢)zr + 1] larger than 1 (Kleinrock, 1975, pp. 131–

132). •

Proposition 6.137 — M/Er/1: p.f. of J, Ls and Lq

Let: ⇢ = �
µ

be the tra�c intensity; z0 be the non-unit root of [r⇢zr+1 � (1 + r⇢)zr + 1].

Then the p.f. of J and Ls equal

P (J = j) =

(

1
r

h

1� z�(j+1)
0

i

, j = 0, 1, . . . , r � 1

⇢(z0 � 1)zr�(j+1)
0 , j = r, r + 1, . . .

(6.141)

P (Ls = k) =
(k+1)r�1
X

j=kr

P (J = j) =

(

1� ⇢, k = 0

⇢(zr
0 � 1) z�rk

0 , k 2 N
(6.142)

(Kleinrock, 1975, p. 133) and the p.f. of Lq is given by

P (Lq = k) =

(

P (Ls  1) = 1� ⇢ z�r
0 , k = 0

P (Ls = k + 1) = ⇢(zr
0 � 1) z�r(k+1)

0 , k 2 N.
(6.143)

•

Exercise 6.138 — Er/M/1: expectations of Ls, Lq, Ws and Wq

Show that:

(a) E(Ls) = ⇢zr

0

zr

0

�1
;

(b) E(Lq) = E(Ls)� ⇢ = ⇢
zr

0

�1
;

(c) E(Ws) = 1
�
E(Ls) = zr

0

µ(zr

0

�1)
;

(d) E(Wq) = 1
�
E(Lq) = 1

µ(zr

0

�1)
. •

356



6.6.3 (Random-sized) batch arrival systems

As put by Kleinrock (1975, p. 134), the system M/Er/1 may be viewed as M/M/1 in

which each “customer” arrival is in reality the arrival of a batch (or bulk) of exactly

r customers, each requiring a single stage of service with exponential distribution. For

convenience sake, we shall consider that the service times have mean µ�1.55

It is unrealistic to consider batch of fixed size, thus we might as well allow the batch

size at each arrival to be a r.v. X with p.f.

gi = P (batch size = i), i 2 N. (6.144)

We take

• Ls, the number of customers in the system as viewed by an external

observer,

as the state variable (Kleinrock, 1975, p. 134) of the system in equilibrium. The associated

queueing system is represented by MX/M/1 and its tra�c intensity is equal to

⇢ =
�E(X)

µ
. (6.145)

Needless to say that ⇢ < 1 to reach the steady state.

Exercise 6.139 — MX/M/1: rate diagram and balance equations

The rate diagram when the state variable is equal to k is

(Kleinrock, 1975, p. 135).

Write the balance equations based on this rate diagram.56 •

Exercise 6.140 — MX/M/1: solving the balance equations

Let G(z) =
P+1

k=1 zkgk be the p.g.f. of the batch size X and ⇢ = �E(X)
µ

.

Use the z�transform method to prove that the p.g.f. of Ls is given by

55Instead of (rµ)�1 which would make the correspondence complete between the M/E
r

/1 system and
M/M/1 system with batch arrival of fixed size r.

56They are: �
⇣

P+1
i=1 g

i

⌘

P0 = µP1;
h

�
⇣

P+1
i=1 g

i

⌘

+ µ
i

P
k

= µP
k+1 +

P

k�1
i=0 P

i

�g
k�i

, k 2 N
(Kleinrock, 1975, p. 135).
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P (z) =
+1
X

k=0

zkPk

=
µ P0 (1� z)

µ(1� z)� �z[1�G(z)]

=
µ (1� ⇢) (1� z)

µ(1� z)� �z[1�G(z)]
(6.146)

(Kleinrock, 1975, p. 136). •

Remark 6.141 — MX/M/1: f.p. and (factorial) moments of Ls

Capitalizing on the p.g.f. of Ls in (6.146), we can get:

P (Ls = 0) = P (0)

= 1� ⇢ (6.147)

P (Ls = k) =
1

k!
⇥ dk P (z)

dzk

�

�

�

�

z=0

, k 2 N (6.148)

E(Ls) =
d P (z)

dz

�

�

�

�

z=1

(6.149)

E
⇥

L(k)
s

⇤

= E[Ls ⇥ (Ls � 1)⇥ . . .⇥ (Ls � k + 1)]

=
dk P (z)

dzk

�

�

�

�

z=1

, k 2 N. (6.150)

•

Exercise 6.142 — MX/M/1 system

Consider a MX/M/1 system with batch size constant and equal to 2 customers.

(a) Draw the corresponding rate diagram and use it to write the balance equations.

(b) Find P (z) and determine E(Ls) and V (Ls).

(c) Derive the p.f. of Ls. •

Exercise 6.143 — MX/M/1 system (bis) (Kleinrock and Gail, 1996, p. 106, Problem

4.6)

Consider a MX/M/1 system with batch size X ⇠ Uniform({1, 2}) distribution.

(a) Draw the its rate diagram and use it to write the equilibrium equations.

(b) Determine P (z) and obtain E(Ls).

(Kleinrock and Gail, 1996, pp. 106–107.) •
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Exercise 6.144 — MX/M/1 system (bis, bis) (Kleinrock and Gail, 1996, p. 108,

Problem 4.7)

Find the p.f. of the number of customers in a MX/M/1 system in equilibrium, with batch

size X ⇠ Geometric(1 � ↵), i.e., gi = ↵i�1(1 � ↵), i 2 N (Kleinrock and Gail, 1996, p.

108).57 •

Exercise 6.145 — MX/M/1 system (bis, bis, bis) (Adan and Resing, 2002, p. 40,

Exercise 13)

Orders arrive to a work station according to a Poisson process with rate �. An order

consists of a random number N of independent jobs, with N ⇠ Geometric(1 � p) and

where p 2 [0, 1). Each job requires an exponentially distributed amount of processing

time with mean µ�1.

(a) Derive the distribution of the total processing time of an order.

(b) Determine the distribution of the number of orders in the system.

(Adan and Resing, 2002, p. 135.) •

By using Remark 6.141 and Little’s law, is certainly possible to add general

expectations of Ls, Lq, Ws and Wq in terms of ⇢ and first and second moments of the

batch size X.

Exercise 6.146 — MX/M/1: expectations of Ls, Lq, Ws and Wq

Let:

• X be the batch size;

• G(z), E(X) = d G(z)
dz

�

�

�

z=1
and E(X2) = d2 G(z)

dz2

�

�

�

z=1
+ E(X) be the p.g.f., the

expectation and the second moment of X, respectively;

• ⇢ = �E(X)
µ

the tra�c intensity of the M/M/1 with batch arrivals of size X.

(a) Show that E(Ls) = ⇢
1�⇢

⇥ E(X2)+E(X)
2E(X)

(Kleinrock and Gail, 1996, p. 110).58

(b) Derive expressions for: E(Lq) = E(Ls)� ⇢; E(Ws) = E(L
s

)
�E(X)

; E(Wq) = E(L
q

)

�E(X)
.59 •

57P0 = 1� ⇢; P
k

= (1� ⇢) �

�+µ

⇣

�+µ

�

↵
⌘

k

, k 2 N.
58Since you shall deal with an indetermination, it may be useful to use L’Hôpital’s rule.
59Check whether the expression you obtained for E(W

q

) coincides with the one in Ross (2003, p. 512),
with N ⌘ X, E(S) = 1

µ

and E(S2) = 2
µ

2 .
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6.6.4 Batch service systems

Scenario 1

There is an equivalence between an M/M/1 system with services to groups of exactly r

customers and a Er/M/1 system. According to Kleinrock (1975, p. 137), in the former

system:

• if the server becomes free then he/she will accept a batch (or bulk) of exactly r

customers from the queue and serve them collectively; the service time for this

group is exponentially distributed with mean µ�1;

• if, upon becoming free, the server finds less than r customers in the queue, he/she

then waits to start service until a total of r customers accumulate and then accepts

them and serve them as group.

Expectedly, the balance equations associated to the Er/M/1 system lead to the same

equilibrium distribution for the number of customers in the M/M/1 system with batch

services of exactly r customers. However, this is not the batch service systems Kleinrock

(1975, pp. 137-139) or Ross (2003, pp. 493–496) describe.

Exercise 6.147 — M/MX/1 system in equilibrium — scenario 1 (Adan and

Resing, 2002, p. 85, Exercise 55)

At a small river cars are brought from the left side to the right side of the river by a ferry.

On average 15 cars per hour arrive according to a Poisson process. It takes the ferry an

exponentially distributed time with a mean of 3 minutes to cross the river and return.

The capacity of the ferry is equal to 2 cars. The ferry only takes o↵ when there are two

or more cars waiting.

(a) Draw the corresponding rate diagram.

(b) What is the fraction of time that the ferry is on its way between the two river sides?

(c) Determine the distribution of the number of cars that are waiting for the ferry.

(d) Determine the mean waiting time of a car.

(Adan and Resing, 2002, p. 167.) •
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Scenario 2

As Kleinrock (1975, p. 137) aptly refers, it seems more reasonable to avoid that the server

remains idle when m (m = 1, . . . , r�1) customers are available for a batch service. Thus,

in scenario 2, we consider that the server, upon becoming free, will accept at most r

customers for a bulk service. The associated rate diagram is:

(Kleinrock, 1975, p. 138).

Exercise 6.148 — M/MX/1: solving the balance equations — scenario 2

Consider a M/MX/1 system and ⇢ = �
rµ

.

(a) Write the balance equations for Ls.60

(b) Apply the z�transform method to prove that the p.g.f. of Ls is given by

P (z) =

Pr�1
k=0 Pk(zk � zr)

r⇢zr+1 � (1 + r⇢)zr + 1
(6.151)

(Kleinrock, 1975, p. 138).

(c) Prove that

P (z) =
1� 1

z
0

1� z
z
0

, (6.152)

where z0 is the only root of the denominator of P (z) larger than the unit (Kleinrock,

1975, p. 139). •

Proposition 6.149 — M/MX/1: the p.f. of Ls and Lq — scenario 2

Let ⇢ = �
rµ

and z0 be the only root of the denominator of P (z), r⇢zr+1 � (1 + r⇢)zr + 1,

larger than the unit. Then, by inverting P (z), we conclude that Ls ⇠ Geometric⇤(1�↵),

where ↵ = z�1
0 , i.e.,

60They are: � P0 = µ
P

r

i=1 P
i

; (� + µ) P
k

= µP
k+r

+ �P
k�1, k 2 N (Kleinrock, 1975, p. 138).
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P (Ls = k) = ↵k(1� ↵), k 2 N0 (6.153)

(Kleinrock, 1975, p. 139). Furthermore, the p.f. of Lq is given by

P (Lq = k) =

(

P (Ls  1) = 1� ↵2, k = 0

P (Ls = k + 1) = ↵k+1(1� ↵), k 2 N.
(6.154)

•

Exercise 6.150 — M/MX/1 — scenario 2

(a) Obtain E(Ls), E(Lq), E(Ws) and E(Wq).

(b) Repeat Exercise 6.147. •

Exercise 6.151 — M/MX/1 — scenario 2 (Kleinrock and Gail, 1996, p. 111, Problem

4.9)

Consider a M/M/1 system with batch service with the following rate diagram

(Kleinrock and Gail, 1996, p. 111).

Let Ls represent the number of customers in the system in equilibrium and P (z) the

corresponding p.g.f.

(a) Write down the balance equations for Pk = P (Ls = k).

(b) Show that P (z), written in terms of P0 and P1, is equal to

P (z) =
(2µ� �)z + µP0(1� z)

µ(z + 1)� �z2
.

(c) Verify that

P (z) =
(2µ� �)

�(1� z1)z2

⇥ 1

1� z
z
2

,

where z1 =
µ�
p

µ2+4�µ

2�
, z2 =

µ+
p

µ2+4�µ

2�
are the roots of the denominator of P (z),

µ(z + 1)� �z2, and z1z2 = �µ
�
.

(d) Verify that the p.f. Pk = 2µ��
µ+�z

2

z�k
2 , k 2 N0, is indeed associated to P (z).

(Kleinrock and Gail, 1996, pp. 111–112.) •
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Exercise 6.152 — M/MX/1 with finite capacity — scenario 2 (Kleinrock and

Gail, 1996, p. 97, Exercise 4.1)

Consider the Markovian queueing system shown below. Branch labels are birth and death

rates; node labels give the number of customers in the system.

(a) Obtain the p.f. and the expected value of the number of customers in this system in

equilibrium.

(b) Repeat (a) for � = µ and try to interpret the values you have obtained.

(Kleinrock and Gail, 1996, pp. 97–98.) •
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6.7 G/M/1 systems in equilibrium

The single-server system G/M/1 is associated to:

• interarrival times that are i.i.d. r.v. with an arbitrary distribution G with mean

��1;61

• i.i.d. service times with exponential distribution with rate µ.

Regretfully, the number of customers in the system at time t, X(t) is not informative

enough (Ross, 2007, p. 543) to serve as a state variable capable of describing the dynamics

of this system in full.62 Moreover, {X(t), t � 0} is not a CTMC (Kulkarni, 2011, p. 216).

For a complete portrait of the G/M/1 system, we need the pair (X(t), x) where x

denotes the elapsed time since the last arrival (Adan and Resing, 2002, p. 79) in case G

is not memoryless.

To get around this two-dimensional state description we shall only look at the system

when a customer arrives (Ross, 2007, p. 544; Adan and Resing, 2002, p. 79).

Proposition 6.153 — G/M/1 embedded Markov chain (Adan and Resing, 2002,

pp. 79–80)

Let X̂n be the number of customers in the system, as seen by the nth arrival. {X̂n, n 2 N}
forms a DTMC — usually called the G/M/1 embedded Markov chain — with transition

probability matrix

P =

2

6

6

6

6

6

6

6

4

P00 �0 0 · · · · · · · · ·
P10 �1 �0 0 · · · · · ·
P20 �2 �1 �0 0 · · ·
P30 �3 �2 �1 �0

. . .
...

...
...

...
. . . . . .

3

7

7

7

7

7

7

7

5

, (6.155)

where �i denotes the probability of serving i (i 2 N0) customers during an interarrival

time63 and

�i =

Z +1

0

e�µt (µt)i

i!
dG(t). (6.156)

•

61The interarrival times may not be exponentially distributed (Kulkarni, 2011, p. 216).
62Unless the interarrival times are exponentially distributed (Kulkarni, 2011, p. 216).
63Given that the server remains busy during this interval.
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Exercise 6.154 — G/M/1 embedded Markov chain

Justify the entries of the TPM defined in Proposition 6.153 (Adan and Resing, 2002, p.

80).64 •

Exercise 6.155 — G/M/1 embedded Markov chain: transition diagram

The following transition diagram for the G/M/1 embedded Markov chain can be found

in Adan and Resing (2002, pp. 79–80):

We must now calculate the associated transition probabilities

pi,j = P (La
k+1 = j|La

k = i).

Clearly pi,j = 0 for all j > i+1 and pi,j for j  i+1 is equal to the probability that exactly
i + 1� j customers are served during the interarrival time of the k + 1th customer. Hence
the matrix P of transition probabilities takes the form

P =

0

B

B

B

B

B

B

B

@

p0,0 �0 0 · · ·
p1,0 �1 �0 0 · · ·
p2,0 �2 �1 �0 0
p3,0 �3 �2 �1 �0
...

. . .

1

C

C

C

C

C

C

C

A

,

where �i denotes the probability of serving i customers during an interarrival time given
that the server remains busy during this interval (thus there are more than i customers
present). To calculate �i we note that given the duration of the interarrival time, t say,
the number of customers served during this interval is Poisson distributed with parameter
µt. Hence, we have

�i =
Z 1

t=0

(µt)i

i!
e�µtfA(t)dt. (8.1)

Since the transition probabilities from state j should add up to one, it follows that

pi,0 = 1�
i

X

j=0

�j =
1
X

j=i+1

�j.

The transition probability diagram is shown in figure 8.1.

Figure 8.1: Transition probability diagram for the G/M/1 imbedded Markov chain

This completes the specification of the imbedded Markov chain. We now wish to deter-
mine its limiting distribution {an}1n=0. The limiting probabilities an satisfy the equilibrium

80

Draw a more detailed transition diagram. •

For the sake of equilibrium, we require that the tra�c intensity ⇢ = �
µ

< 1 (Adan and

Resing, 2002, p. 79),65 as in the M/M/1 system.

Remark 6.156 — Limiting probabilities of the G/M/1 embedded Markov

chain

The G/M/1 embedded DTMC has a limiting distribution

lim
n!+1

P n
ij = ⇡̂j > 0, i, j 2 N0, (6.157)

where {⇡̂j : j 2 N0} satisfies the following system of equilibrium equations:
(

⇡̂j =
P+1

i=0 ⇡̂i Pij =
P+1

i=0 ⇡̂j�1+i �i, j 2 N
P+1

j=0 ⇡̂j = 1.
(6.158)

The z�transform method is pointless as an approach to find the solution of these

equations (Adan and Resing, 2002, p. 81). By trying solutions of the form ⇡̂j = c �j, j 2
N0 (Ross, 2007, p. 545), plugging them in (6.158) and dividing by c and the common

power �j�1 (Adan and Resing, 2002, p. 81), we get

64Note that: P
ij

= 0 for j > i + 1; P
ij

, for j  i + 1 is equal to the probability that exactly i + 1� j

customers are served during the interarrival time of the (n + 1)th customer; P
i0 = 1 �

P

i

j=0 �
j

because
P is a stochastic matrix.

65We refer the reader to any advanced books on queueing for a proof of this result.
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� =
+1
X

i=0

�i



Z +1

0

e�µt (µt)i

i!
dG(t)

�

=

Z +1

0

e�µt

"

+1
X

i=0

(�µt)i

i!

#

dG(t)

=

Z +1

0

e�µ(1��)t dG(t)

= G̃[µ(1� �)], (6.159)

where G̃[µ(1� �)] represents the Laplace-Stieltjes transform of the common c.d.f. of the

interarrival times evaluated at µ(1 � �).66 � = 1 is a root of equation (6.159) because

G̃(0) = 1; however, it is a useless root. It can be shown that, as long as ⇢ = �
µ

< 1,

equation (6.159) has a unique root � in the interval (0, 1);67 the value of � is usually

obtained by numerical methods (Adan and Resing, 2002, p. 81). •

Exercise 6.157 — G/M/1 system in equilibrium: obtaing �

Evaluate � explicitly for the following interarrival distributions:

(a) Exponential(�) (Kleinrock, 1975, p. 252; Adan and Resing, 2002, p. 82);

(b) Erlang(2, 3) and assume µ = 4 (Adan and Resing, 2002, p. 82);

(c) Erlang(2, 2�) (Kleinrock and Gail, 1996, pp. 180–181);

(d) Exponential(µ) ?Exponential(2µ)68 (Kleinrock, 1975, p. 253; Adan and Resing, 2002,

pp. 82–83). •

We can finally state results concerning the distributions of:

• Ls, the number of customers in the system an arriving customer sees;

• Lq, the number of customers in the queue the arriving customer sees;

• Ws, the time an arriving customer will spend in the system;

66Please note that the Laplace-Stieltjes transform of G is equal to G̃(s) =
R +1
0 e�st dG(t), hence it

coincides with the m.g.f. of the distribution of the service time evaluated at �s, M
G

(�s).
67According to Adan and Resing (2002, p. 85), this can be done by setting f(�) = G̃[µ(1 � �)] and

proving that: (i) f(�) is stricly convex over [0, 1]; (ii) f(0) > 0 and f 0(1) > 1, provided that ⇢ < 1; (iii)
conditions (i) and (ii) imply that the equation � = f(�) has exactly one root in the interval (0, 1).

68That is, every interarrival time consists of two exponential and independent phases, the first phase
with parameter µ and the second one with parameter 2µ.
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• Wq, the time this arriving customer will spend in the queue waiting to be served.

Needless to say that these performance measures refer to the G/M/1 system in equilibrium

and their distributions are similar to the ones of the M/M/1 system in equilibrium: ⇢ is

simply replaced by �.69

Proposition 6.158 — G/M/1: distribution of Ls (Kleinrock, 1975, p. 251; Adan

and Resing, 2002, p. 81; Ross, 2007, p. 546)

An arriving customer will find k customers in the G/M/1 system in equilibrium with

probability

P (Ls = k) = �k (1� �), k 2 N0, (6.160)

i.e., Ls ⇠ Geometric⇤(1� �), where � 2 (0, 1) : � = G̃[µ(1� �)]. •

Proposition 6.159 — G/M/1: distribution of Lq

An arriving customer will find k customers waiting to be served in the G/M/1 system in

equilibrium with probability

P (Lq = k) =

(

P (Ls  1) = 1� �2, k = 0

P (Ls = k + 1) = �k+1 (1� �), k 2 N.
(6.161)

•

Proposition 6.160 — G/M/1: distribution of Ws

Since the service times are memoryless in the G/M/1 system, the sojourn time of an

arriving customer has the following properties in equilibrium:

(Ws | Ls = k) ⇠ Gamma(k + 1, µ), k 2 N0; (6.162)

Ws ⇠ Exponential(µ(1� �)). (6.163)

•

Proposition 6.161 — G/M/1: distribution of Wq

In the G/M/1 queueing system, the time spent by an arriving customer waiting to be

served is a mixed r.v. with the following characteristics in equilibrium:

(Wq | Ls = 0)
st
= 0; (6.164)

(Wq | Ls = k) ⇠ Gamma(k, µ), k 2 N; (6.165)

(Wq | Wq > 0) ⇠ Exponential(µ(1� �)); (6.166)

FW
q

(t) =

(

0, t < 0

(1� �) + � ⇥ FExp(µ(1��))(t), t � 0.
(6.167)

•
69But lim

t!+1 P [X(t) = j] 6= P (L
s

= j), etc., unless the interarrival times are exponentially
distributed.
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Exercise 6.162 — G/M/1: distributions of Ls, Lq, Ws and Wq

Prove propositions 6.158–6.161. •

The following table condenses the distributions and expected values of the four

performance measures of an G/M/1 in equilibrium.

G/M/1

Ls P (Ls = k) = �k (1� �), k 2 N0

� 2 (0, 1) : � = G̃[µ(1� �)]

E(Ls) = �
1��

Lq P (Lq = k) =

(

1� �2, k = 0

�k+1 (1� �), k 2 N
E(Lq) = �2

1��

Ws (Ws | Ls = k) ⇠ Gamma(k + 1, µ), k 2 N0

Ws ⇠ Exponential(µ(1� �))

E(Ws) = 1
µ(1��)

Wq (Wq | Ls = k) ⇠ Gamma(k, µ), k 2 N

FW
q

(t) =

8

>

<

>

:

0, t < 0

1� �, t = 0

(1� �) + � ⇥ FExp(µ(1��))(t), t > 0

(Wq | Wq > 0) ⇠ Exponential(µ(1� �))

E(Wq) = �
µ(1��)

Exercise 6.163 — D/M/1 system in equilibrium

Admit a customer arrives to a single-server system every minute and the service times

are independent and exponentially distributed with rate equal to 90 customers per hour.

Consider this system in equilibrium and find the expectations of:

(a) the number of customers in the system as seen by an arriving customer;

(b) the number of customers a customer sees upon her/his arrival waiting to be served;

(c) the time spent in system by an arriving customer;

(d) the time spent by an arriving customer in the waiting line. •
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Exercise 6.164 — D/M/1 system in equilibrium (bis)

Repeat Exercise 6.163 considering now:

(a) � = 1 and µ = 2;

(b) ��1 = 11
16

and µ = 2 (Kleinrock and Gail, 1996, pp. 183–184). •

Exercise 6.165 — D/M/1 system in equilibrium (bis, bis) (Adan and Resing,

2002, p. 85, Exercise 54)

Consider a queueing system where the interarrival times are exactly 4 minutes. The

service times are i.i.d. and exponentially distributed with a mean of 2 minutes.

Compute � and determine the distribution of the sojourn time (Adan and Resing,

2002, p. 166). •

Exercise 6.166 — G/M/1 system in equilibrium

Admit that the times (in minutes) between consecutive arrivals to the information desk

of the Sainsbury Wing are i.i.d. r.v. with Uniform(0, 4) distribution. The only server at

this desk provides information for periods of time that are i.i.d. r.v. having exponential

distribution with mean equal to 1m30s.

After having identified the system and considering it in equilibrium:

(a) verify that the probability an arriving visitor finds at least one person at the

information desk equals 0.650373;

(b) obtain the probability that an arriving visitor waits at least 10 minutes for her/his

turn. •

Exercise 6.167 — En/M/1 system in equilibrium

Suppose the times between consecutive requests to land in an airport are i.i.d. r.v. with

distribution with common p.d.f.

(n�)ntn�1e�n�t

(n� 1)!
, t > 0.

Assume that the times spent in landing manoeuvres are i.i.d. r.v. with exponential

distribution with mean µ�1.

(a) Verify that the probability that at least one airplane is involved in landing manoeuvres

when a pilot makes a request to land satisfies

� =

✓

n�

n� + µ� µ�

◆n

.
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(b) Confirm that, in case n = 3, the mean time between consecutive requests is equal to

20 minutes and µ�1 = 10 minutes, the probability that a pilot “sees” at least two

other airplanes waiting to land is approximately 0.1093.

(c) The airport management is inquiring if there is a decrease of E(Lq) if the requests to

land arrive according to a Poisson process having rate equal to 3 per hour.

What can you tell to the airport management? •

The Hyper-exponential distribution is also used to model the interarrival times. Let

us remind the reader that the r.v. X is said to have a Hyper-exponential distribution if

its p.d.f. is given by

fX(x) =
n
X

i=1

pi fX
i

(x), (6.168)

where: Xi
indep⇠ Exponential(�i), i = 1, . . . , n, with �i 6= �j whenever i 6= j; pi > 0 and

Pn
i=1 pi = 1.70

Exercise 6.168 — H2/M/1 system in equilibrium (Kleinrock and Gail, 1996, p.

182, Problem 6.5)

Consider an H2/M/1 system in which �1 = 2, �2 = 1, p1 = 5
8
, p2 = 3

8
and µ = 2.

(a) Find � and write down P (Ls = k).

(b) Obtain the c.d.f. and the expectation of Wq.

(Kleinrock and Gail, 1996, pp. 182–183.) •

Exercise 6.169 — H2/M/1 system in equilibrium (bis) (Adan and Resing, 2002,

p. 85, Exercise 51)

Customers arrive to a shop according to a Hyper-exponential arrival process; in this case

the interarrival times are i.i.d. and exponentially distributed with a mean of 1 minute

(resp. 3 minutes) with probability 1
3

(resp. 2
3
). The service times are i.i.d. r.v. with

exponential distribution and unitary mean.

70The Hyper-exponential distribution is an example of a mixture density. Its name is due to the fact that
the coe�cient of variation of this distribution is greater than the one of the Exponential distribution,
whose coe�cient of variation is 1 (http://en.wikipedia.org/wiki/Hyper-exponential distribution). It is
represent for short by X ⇠ Hyper-exponential

n

(�1, . . . ,�n

; p1, . . . , pn

).
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(a) Calculate the distribution of the number of customers found in the shop by an arriving

customer.

(b) Calculate the mean number of customers in the record shop found upon arrival.

(c) Determine the mean time an arriving customer spends in the record shop.

(Adan and Resing, 2002, p. 163.) •

Exercise 6.170 — H2/M/1 system in equilibrium (bis, bis) (Adan and Resing,

2002, p. 85, Exercise 52)

Consider a G/M/1 system, whose interarrival times have c.d.f. given by

G(t) =
13

24

�

1� e�3t
�

+
11

24

�

1� e�2t
�

, t � 0,

and whose service times are exponentially distributed with a mean of 1
6
.

(a) Determine the distribution of the number of customers in the system just before an

arrival.

(b) Determine the distribution of the waiting time of an arriving customer.

(Adan and Resing, 2002, p. 164.) •

Exercise 6.171 — H2/M/1 system in equilibrium (bis, bis, bis) (Adan and Resing,

2002, p. 85, Exercise 53)

Determine the distribution of the sojourn time of an arriving customer to G/M/1 system

in equilibrium, with Hyper-exponentially distributed interarrival times with c.d.f.

G(t) =
13

24

�

1� e�3t
�

+
11

24
(1� e�2t) , t � 0,

and exponentially distributed service times with unit mean (Adan and Resing, 2002, p.

165). •

Exercise 6.172 — G/M/1 system with finite storage (Kleinrock and Gail, 1996,

p. 184, Problem 6.7)

Consider a G/M/1 queueing system with room for at most two customers (one in service

plus one waiting) and let G̃(s) =
R +1

0
e�st dG(t) be the Laplace-Stieltjes transform of the

interarrival distribution.
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(a) Prove that the TPM of the embedded DTMC is given by

P =

2

6

4

P00 P01 0

P10 P11 P12

P10 P11 P12

3

7

5

,

where

P10 = P12

= G̃(µ)

P10 =

Z +1

0

�

1� e�µt � µte�µt
�

dG(t)

= 1� G̃(µ) + µG̃(1)(µ)

(Kleinrock and Gail, 1996, p. 185).

(b) Let ⇡̂ = [⇡̂0 ⇡̂1 ⇡̂2] be the vector with the p.f. of Ls.

By solving the system of equations ⇡̂ = ⇡̂ ⇥P, write the p.f. of Ls in terms of µ and

G̃(s) (Kleinrock and Gail, 1996, pp. 185–186). •

Exercise 6.173 — G/M/1 system with costs (Kleinrock and Gail, 1996, p. 186,

Problem 6.8)

Consider a G/M/1 system in which the cost of making a customer wait y seconds is

c(y) = aeby, y > 0 (a > 0).

(a) Find the average cost of queueing for a customer.

(b) Under what conditions will the average cost be finite?

(Kleinrock and Gail, 1996, pp. 186–187.) •

Since the arrival process in a G/M/1 system is not necessarily Poisson, the PASTA

property is not applicable and therefore the long-run fraction of the time that the system

has k customers,

pk = lim
t!+1

P [X(t) = k], (6.169)

is different from the long-run fraction of arrivals that see k customers ahead of them

in the system

⇡̂k = lim
n!+1

P [X̂n = k]. (6.170)

However, we can obtain pk in terms of ⇡̂k, as stated in the next proposition.
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Proposition 6.174 — G/M/1: limiting distribution of X(t) (Kulkarni, 2011, p.

221)

In a stable G/M/1 system,71 the limiting distribution of the number of customers in the

system is given by

p0 = 1� ⇢ (6.171)

pk = ⇢ ⇡̂k�1, k 2 N, (6.172)

where ⇡̂k = �k (1� �), k 2 N0. •

Expectedly, E(Ls) = �
1��

is di↵erent from the expectation of the r.v. limt!+1X(t).

Exercise 6.175 — G/M/1: limiting distribution of X(t) (Kulkarni, 2011, p. 221)

Prove that, by taking advantage of the limiting distribution of the number of customers

in the system, in particular of result (6.172), we get:

E



lim
t!+1

X(t)

�

=
+1
X

k=1

k ⇥ ⇢ �k�1(1� �)

=
⇢

1� �
(6.173)

6= E(Ls).

•

Interestingly enough, by using E [limt!+1X(t)], we can now apply Little’s law and

get the expected value of Ws:

E(Ws) =
1

�
⇥ E



lim
t!+1

X(t)

�

=
1

µ(1� �)
(6.174)

(Adan and Resing, 2002, p. 82).

71With tra�c intensity ⇢ = �

µ

and associated to a root � 2 (0, 1) : � = G̃[µ(1� �)].
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6.8 M/G/1 systems in equilibrium

This section is devoted to another generalization of the M/M/1 system. In this case, the

service times are still i.i.d. but are not necessarily exponentially distributed. Let:

• S and FS(t) be the service time and its c.d.f., respectively;

• E(S) = µ�1 and CV (S) = SD(S)
E(S)

;

• F̃S(s) =
R +1

0
e�st dFS(t) the Laplace-Stieltjes transform of the c.d.f. of S.

In what follows we shall assume that: the service discipline is FCFS; ⇢ = �
µ

< 1, for

stability sake.

Due to the Poisson arrival process (with rate �), the M/G/1 system has the PASTA

property, thus, the limiting distributions of the number of customers in the system seen

by

• an arriving customer or

• an outside observer

are the same. However, knowing the number of customers in the system at time t, X(t),

does not provide enough information about this system, unless the distribution of the

service times is memoryless; in fact, {X(t), t � 0} is not a CTMC (Kulkarni, 2011, p.

212), as in the G/M/1 system.

For a complete description of the M/G/1 system, we need to consider a two-

dimensional state variable (X(t), x), where x represents the additional time required to

complete the service of the customer which is currently being served. But we can certainly

avoid this two-dimensional state description by simply looking at the system just after

the customers depart. In fact, the limiting distribution of

• the number of customers left behind in the system by a departing customer

coincides with the one of the number of customers in the system seen by an arriving

customer or an outside observer (Adan and Resing, 2002, p. 60).

Proposition 6.176 — M/G/1 embedded Markov chain (Adan and Resing, 2002,

p. 61)

Let Xn be the number of customers left behind by the nth departure. {Xn, n 2 N} forms

a DTMC — termed the M/G/1 embedded Markov chain — with transition probability

matrix
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P =

2

6

6

6

6

6

6

6

6

6

6

4

↵0 ↵1 ↵2 ↵3 · · ·
↵0 ↵1 ↵2 ↵3 · · ·
0 ↵0 ↵1 ↵2 · · ·
0 0 ↵0 ↵1

. . .

0 0 0 ↵0
. . .

...
...

...
...

. . .

3

7

7

7

7

7

7

7

7

7

7

5

, (6.175)

where ↵i denotes the probability that exactly i (i 2 N0) customers arrived during a service

time and is equal to

↵i =

Z +1

0

e��t (�t)i

i!
dFS(t). (6.176)

•

Exercise 6.177 — M/G/1 embedded Markov chain and its transition diagram

(a) Justify the entries of the TPM defined in Proposition 6.153 (Adan and Resing, 2002,

p. 61).

(b) The following transition diagram for the M/G/1 embedded Markov chain can be

found in Kleinrock (1975, p. 179):

Draw a more detailed transition diagram. •

Remark 6.178 — Limiting probabilities of the M/G/1 embedded Markov

chain

The M/G/1 embedded DTMC has a limiting distribution

lim
n!+1

P n
ij = ⇡j > 0, i, j 2 N0, (6.177)

where {⇡j : j 2 N0} satisfies the following system of equilibrium equations:
(

⇡j =
P+1

i=0 ⇡i Pij, j 2 N
P+1

j=0 ⇡j = 1.
(6.178)
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Unlike the G/M/1 system, we can successfully use the z�transform to derive the solution

of (6.178). The p.g.f. of the limiting distribution of Xn can be actually written in terms

of the p.g.f. of the number, say A, of customers arrived during a service time

PA(z) =
+1
X

i=0

zi ↵i, (6.179)

or alternatively as a function of the Laplace-Stieltjes of the c.d.f. of the service time

because

PA(z) =
+1
X

n=0

zi



Z +1

0

e��t (�t)i

i!
dFS(t)

�

=

Z +1

0

e��t

"

+1
X

i=0

(z�t)i

i!

#

dFS(t)

=

Z +1

0

e��(1�z)t dFS(t)

= F̃S[�(1� z)]. (6.180)

•

Proposition 6.179 — M/G/1: p.g.f. of Ls (Adan and Resing, 2002, pp. 62–63)

Let Ls be the number of customers left behind by a departing customer in

the M/G/1 system in equilibrium.

Capitalizing on the particular structure of the TPM of the M/G/1 embedded Markov

chain leads to the conclusion that the p.f. of Ls satisfies

P (Ls = j) = ⇡j

= ⇡0 ↵j + ⇡1 ↵j + . . . + ⇡j ↵1 + ⇡j+1 ↵0

= ⇡0 ↵j +
j
X

i=0

⇡j�i+1 ↵i, (6.181)

for j 2 N0. In addition, the p.g.f. of Ls is given by

PL
s

(z) =
+1
X

j=0

zj ⇡j

=
+1
X

j=0

zj

 

⇡0 ↵j +
j
X

i=0

⇡j�i+1 ↵i

!

= ⇡0 PA(z) +
PA(z)⇥ [PL

s

(z)� ⇡0]

z
. (6.182)
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Given that ⇡0 = 1� ⇢,72 we get:

PL
s

(z) =
(1� ⇢) PA(z) (1� z)

PA(z)� z

=
(1� ⇢) F̃S[�(1� z)] (1� z)

F̃S[�(1� z)]� z
. (6.183)

•

Remark 6.180 — M/G/1: Pollaczek-Khinchin transform equation; Laplace-

Stieltjes transform of S; inverting the p.g.f. of Ls

(6.183) is one form of the Pollaczek-Khinchin transform equation (Kleinrock, 1975, p. 194;

Adan and Resing, 2002, p. 63);73 others will soon follow for Ws and Wq.

Note once again that the Laplace-Stieltjes transform of the c.d.f. FS is equal to F̃S(s) =
R +1

0
e�st dFS(t), thus, it can be obtain by evaluating the m.g.f. of the r.v. S at �s,

MS(�s), and the tables with expressions for the m.g.f. of popular distributions may come

in handy.

As for the inversion of the p.g.f. of Ls, if we are led, for instance, to PL
s

(z) = a
1�bz

,

then recalling that
P+1

j=0 abj ⇥ zj = a
1�bz

(|bz| < 1), we can certainly conclude that

P (Ls = j) = P�1
L

s

(z) = abj, j 2 N0. Moreover, we can always resort to

P (Ls = 0) = 1� ⇢ (6.184)

P (Ls = k) =
1

k!
⇥ dk PL

s

(z)

dzk

�

�

�

�

z=0

, k 2 N (6.185)

to derive the p.f. of Ls. •

Exercise 6.181 — M/G/1: p.g.f. and p.f. of Ls

Evaluate the p.g.f. of Ls and invert it in order to provide an explicit expression for the

p.f. of Ls associated to the following service time distributions and tra�c intensities:

(a) Exponential(µ) and ⇢ = �
µ

(Kleinrock, 1975, p. 195; Adan and Resing, 2002, p. 63);

(b) Erlang(2, µ) and ⇢ = 1
3

(Adan and Resing, 2002, pp. 63–64);

(c) HyperExponential(µ1 = 1, µ2 = 2, p1 = 1
4
, p2 = 3

4
), � = 1, µ�1 = 5

8
and ⇢ = �

µ

(Kleinrock, 1975, pp. 195–196; Adan and Resing, 2002, p. 64). •

72This result follows from the identity P
Ls(1) = 1.

73We ought to mention that Prabhu (1997, p. 11) notes that the mathematical theory of queues emerged
through the work of Pollaczek (1957, 1961) and Khintchine (1960).
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Proposition 6.182 — M/G/1: the Pollaczek-Khinchin mean formula for E(Ls)

(Kleinrock, 1975, p. 187)

Di↵erentiating the p.g.f. of Ls, we obtain the Pollaczek-Khinchin mean formula providing

an expression for E(Ls) in terms of the tra�c intensity ⇢ = �
µ

and the square of the

coe�cient of variation of the service time:

E(Ls) =
d PL

s

(z)

dz

�

�

�

�

z=1

= ⇢ + ⇢2 1 + CV 2(S)

2(1� ⇢)
. (6.186)

•

Exercise 6.183 — M/G/1: the Pollaczek-Khinchin mean formula for E(Ls)

Prove Proposition 6.186 (Kleinrock, 1975, pp. 186–187). •

Proposition 6.184 — M/G/1: p.f. and expectation of Lq

Let Lq be the number of customers left behind by a departing customer waiting to be

served in the M/G/1 system in equilibrium. Expectedly:

P (Lq = k) =

(

P (Ls  1), k = 0

P (Ls = k + 1), k 2 N;
(6.187)

E(Lq) = E(Ls)� ⇢

= ⇢2 1 + CV 2(S)

2(1� ⇢)
(6.188)

(Kleinrock, 1975, p. 188). •

Exercise 6.185 — M/G/1: expectations of Lq and Ls (Kulkarni, 2011, p. 215,

Example 6.12)

Packets arrive at an infinite-capacity bu↵er according to a Poisson process at a rate of

400 per second. All packets are exactly 512 bytes long.74 The bu↵er is emptied at a rate

of 2 megabits per second.

Compute:

(a) the expected number of packets waiting for transmission;

(b) the expected number of packets in the bu↵er (including any in transmission). •

74A byte equals eight bits.
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There are other Pollaczek-Khinchin formulae, namely relating the Laplace-Stieltjes

transform of the service time F̃S(s) and the ones of

• Ws, the time an arriving customer will spend in the system (sojourn

time)

• Wq, the time this arriving customer will spend in the queue waiting to

be served (waiting time)

in a M/G/1 system in equilibrium. To prove the results we should remind the reader

that:

• the limiting distribution of the number of customers left behind by a departing

customer coincides with the one of an arriving customer in a M/G/1 system in

equilibrium;

• all customers left behind by a departing customer are precisely those who arrived

during her/his sojourn in the system.

Consequently,

⇡j = ⇡̂j

=

Z +1

0

e��t (�t)j

j!
dFW

s

(t), j 2 N0

+1
X

j=0

zj ⇡j =
+1
X

j=0

zj ⇡̂j

(1� ⇢) F̃S[�(1� z)] (1� z)

F̃S[�(1� z)]� z
= F̃W

s

[�(1� z)].

Proposition 6.186 — M/G/1 system: Laplace-Stieltjes transform of Ws

The Laplace-Stieltjes transform of the c.d.f. of the sojourn time of an arriving customer

in the M/G/1 system in equilibrium equals

F̃W
s

[�(1� z)] =
(1� ⇢) F̃S[�(1� z)] (1� z)

F̃S[�(1� z)]� z
.

By making the change of variable s = �(1� z), we obtain

F̃W
s

(s) =
(1� ⇢) F̃S(s) s

�F̃S(s) + s� �
. (6.189)

•
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Remark 6.187 — M/G/1 system: Laplace-Stieltjes transform of Ws

Admitting that Ws is an absolutely continuous r.v. and capitalizing on the following facts

• F̃W
s

(s) =
R +1

0
e�st dFW

s

(t) =
R +1

0
e�stfW

s

(t) dt, which is the Laplace transform of

the p.d.f. of Ws,

• Mathematica inverts Laplace transforms,

we are capable of identifying the p.d.f. of Ws in various cases. •

Exercise 6.188 — M/G/1: p.d.f. of Ws

Use Mathematica to obtain the p.d.f. of Ws associated to the following service time

distributions and tra�c intensities:

(a) Exponential(µ) and ⇢ = �
µ

(b) Erlang(2, µ) and ⇢ = 1
3

(c) HyperExponential(µ1 = 1, µ2 = 2, p1 = 1
4
, p2 = 3

4
) and ⇢ = �

µ
= 1

5/8

(Adan and Resing, 2002, p. 65). •

Proposition 6.189 — M/G/1: Laplace-Stieltjes transform of Wq (Adan and

Resing, 2002, p. 66)

Having in mind that

• the sojourn time is the sum of two independent r.v., the service and waiting times,

• the Laplace-Stieltjes transform of a convolution, such as Ws = S+Wq, is the product

of the Laplace-Stieltjes transforms of the random and independent summands,

we can determine the Laplace-Stieltjes transform of Wq:

F̃W
q

(z) =
F̃W

s

(z)

F̃S(z)

=
(1� ⇢)s

�F̃S(s) + s� �
. (6.190)

•
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Proposition 6.190 — M/G/1: expectations of Ws and Wq

By applying Little’s law, we can conclude that:

E(Ws) =
E(Ls)

�

=
1

µ
+

⇢

µ

1 + CV 2(S)

2(1� ⇢)
; (6.191)

E(Wq) =
E(Lq)

�

=
⇢

µ

1 + CV 2(S)

2(1� ⇢)
. (6.192)

•

Remark 6.191 — M/G/1: expectation of Wq (Adan and Resing, 2002, p. 68)

An arriving customer has to wait for the residual service time R of the customer being

served (if and) and then continues to wait for an amount of time corresponding to the

service times of all customers who were already waiting in the queue upon her/his arrival.

Moreover, the single-server is busy with probability ⇢. Hence

E(Wq) = E(Lq)⇥ E(S) + ⇢⇥ E(R)

= �E(Wq)⇥
1

µ
+ ⇢⇥ E(R)

=
⇢E(R)

1� ⇢

=
⇢E(S2)

2E(S)

1� ⇢

=
�2E(S2)

2(1� ⇢)
(6.193)

=
⇢

µ

1 + CV 2(S)

2(1� ⇢)
. (6.194)

•

Exercise 6.192 — M/G/1: expectation of Wq (Prabhu, 1997, p. 148, Problem 6)

Patients arrive in a Poisson fashion at the ER of a local hospital at a rate of 4 per hour.

The time (in minutes) required to admit an emergency patient is uniformly distributed

over the interval (5, 15).

Admitting there is only one admission clerk at the ER and the system is equilibrium,

what is the expected amount of time an ER patient spends to get admitted?75 •

75Solution: 20.83 minutes.
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Exercise 6.193 — M/G/1: expectation of Wq (bis) (Adan and Resing, 2002, p. 75,

Exercise 41)

Consider a machine where jobs are being processed. The mean production time is 4

minutes and the standard deviation is 3 minutes. The mean number of jobs arriving per

hour is 10. Suppose that the interarrival times are exponentially distributed.

Determine the mean waiting time of the jobs (Adan and Resing, 2002, p. 159). •

M/G/1

Ls PL
s

(z) = (1�⇢) F̃
S

[�(1�z)] (1�z)

F̃
S

[�(1�z)]�z

P (Ls = k) =

(

1� ⇢, k = 0
1
k!
⇥ dk P

L

s

(z)

dzk

�

�

�

z=0
, k 2 N

E(Ls) = ⇢ + ⇢2 1+CV 2(S)
2(1�⇢)

Lq P (Lq = k) =

(

P (Ls  1), k = 0

P (Ls = k + 1), k 2 N

E(Lq) = ⇢2 1+CV 2(S)
2(1�⇢)

Ws F̃W
s

(s) = (1�⇢) F̃
S

(s) s

�F̃
S

(s)+s��

E(Ws) = 1
µ

+ ⇢
µ

1+CV 2(S)
2(1�⇢)

Wq F̃W
q

(s) = (1�⇢)s

�F̃
S

(s)+s��

E(Wq) = ⇢
µ

1+CV 2(S)
2(1�⇢)

Exercise 6.194 — M/G/1: expectations of Ls, Lq, Ws and Wq

Calculate the expected values of Ls, Lq, Ws and Wq for the following M/G/1 systems in

equilibrium:

(a) Exponential(µ) and ⇢ = �
µ
;

(b) Erlang(2, µ) and ⇢ = 1
3
;

(c) HyperExponential(µ1 = 1, µ2 = 2, p1 = 1
4
, p2 = 3

4
) and ⇢ = �

µ
= 1

5/8
. •

Exercise 6.195 — M/G/1 system (Prabhu, 1997, p. 148, Problem 7)

It has been found that students arrive to submit or pick up jobs in a computer center,

in a manner that may be regarded as a Poisson process having rate equal to 4 jobs per
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minute. Furthermore, there is only one person available to handle the students’ requests

and this server is found to spend T minutes in servicing a student, where T is a discrete

r.v. with p.f.

P (T = t) =

8

>

>

>

<

>

>

>

:

0.2, t = 0.1

0.4, t = 0.2

0.3, t = 0.3

0.1, t = 0.4

.

Consider that this system is in equilibrium and find:

(a) the average time a student spends in the system;76

(b) average length of the waiting line.77 •

Exercise 6.196 — M/G/1 system (bis) (Prabhu, 1997, p. 148, Problem 8)

Customers arrive at a cashier’s window of a local bank according to a Poisson process with

mean interarrival time equal to 15 minutes. Service times have a Gamma distribution

with a mean of 6 minutes and a variance of 5 minutes2.

During steady state, determine the expected:

(a) time a customer waiting in line;78

(b) number of customers in this system.79 •

Exercise 6.197 — M/G/1 system (bis, bis) (Prabhu, 1997, p. 148, Problem 9)

Arrivals at a truck-weighing station occur in accordance to a Poisson process having rate

of 5 per hour. The service time is constant and equal to 6 minutes per truck.

Find:

(a) the expected number of trucks at the weighing station;80

(b) probability that a truck will have to wait for service.81 •

76Solution: 1.755 minutes.
77Solution: 7.02 jobs.
78Solution: 2.28 minutes.
79Solution: 0.55 customers.
80Solution: 0.75 trucks.
81Solution: 1

2 .
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Exercise 6.198 — M/G/1 system (bis, bis, bis) (Prabhu, 1997, p. 148, Problem 10)

Parts arrive at an inspection station at a Poisson rate of 20 per hour. Currently inspection

is performed manually, with inspection time distributed with a mean of 2 minutes and

a standard deviation of 0.5 minutes. It has been proposed that inspection be performed

automatically. With automatic inspection, the time required will be constant and equal

to b minutes.

Show that the mean waiting time is reduced i↵ b < 2.03. •

Exercise 6.199 — M/E2/1 system (Adan and Resing, 2002, p. 74, Exercise 38)

Consider a single machine where jobs arrive according to a Poisson stream with a rate of

10 jobs per hour. The processing time of a job consists of two phases — each phase takes

an exponential time with a mean of 1 minute.

(a) Determine the Laplace-Stieltjes transform of the processing time.

(b) Find the distribution of the number of jobs in the system.

(c) Obtain the mean number of jobs in the system and the mean production lead time

(waiting time plus processing time).

(Adan and Resing, 2002, p. 156.) •

Exercise 6.200 — M/H2/1 system (Adan and Resing, 2002, p. 74, Exercise 39)

At a post o�ce customers arrive according to a Poisson process with a rate of 60 customers

per hour. Half of the customers have a service time that is the sum of a fixed time of 15

seconds and an exponentially distributed time with a mean of 15 seconds. The other half

have an exponentially distributed service time with a mean of 1 minute.

Determine the mean waiting time and the mean number of customers waiting in the

queue (Adan and Resing, 2002, p. 157). •

Exercise 6.201 — Another M/G/1 system (Adan and Resing, 2002, pp. 74–75,

Exercise 40)

A machine produces products in two phases. The first phase is standard and the same for

all products. The second phase is customer specific (the finishing touch). The first (resp.

74 second) phase takes an exponential time with a mean of 10 (resp. 2) minutes. Orders

for the production of one product arrive according to a Poisson stream with a rate of 3

orders per hour. Orders are processed in order of arrival.

Determine the mean production lead time of an order (Adan and Resing, 2002, p.

158). •
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6.9 The busy period

Suppose a single-server system is free initially, then a customer arrives, is served and

during her/his service more customers arrive and will be served, and the process will

continue until no customer is left and the server becomes free again. When this happens,

a busy period has just ended (Prabhu, 1997, p. 7).

If the system has more than one server, the busy period is naturally defined as the

time during which at least one of the servers is busy (Prabhu, 1997, p. 7).

Definition 6.202 — Busy period (http://en.wikipedia.org/wiki/M/M/1 queue#Busy

period of server)

The busy period is the time period measured between the instant a customer arrives to

an empty system until the instant a customer departs leaving behind an empty system. •

The busy period is indeed the time spent in states 1, 2, 3, . . . between visits to the state

0 (http://en.wikipedia.org/wiki/M/G/1 queue). It is followed by an idle period during

which the system is empty (Adan and Resing, 2002, p. 37).

Prabhu (1997, p. 7) also defines the system busy period and slack period for systems

with more than one server. The former is the period of time during which all the m

servers are busy. A system busy period is followed by a slack period, during which less

than m servers are busy.

Since the busy period is an important performance measure of queueing systems,82

we proceed with a brief characterization of the busy periods of the following single-server

systems:

• M/M/1

• G/M/1

• M/G/1.

M/M/1 system

If we assume that a busy cycle (Cohen, 1972) starts with a busy period (BP ) and ends

with the subsequent idle period (IP ), we can

• apply the key renewal theorem to alternating renewal processes and

82The literature on the busy period is vast; the reader is encouraged to use MathSciNet to find papers
on this relevant performance measure.
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• use the fact that the fraction of time the single-server is busy is equal to ⇢ = �
µ

to derive an expression of the expected value of the busy period of a M/M/1 system.

Proposition 6.203 — M/M/1: expectation of the idle/busy period (Adan and

Resing, 2002, pp. 37–38)

Due to the lack of memory of the exponential distribution, IP ⇠ Exponential(�).

Moreover,

E(IP ) =
1

�
(6.195)

and

E(BP )

E(BP ) + E(IP )
= ⇢ (6.196)

E(BP ) =
1

µ(1� ⇢)
. (6.197)

•

An expression for the p.d.f. of BP can be also provided.

Proposition 6.204 — M/M/1: Laplace-Stieltjes transform and p.d.f. of the

busy period (Adan and Resing, 2002, p. 39)

The Laplace-Stieltjes transform of the c.d.f. of the BP of a M/M/1 system in equilibrium

is given by

F̃BP (s) =

Z +1

0

e�st dFBP (t)

=
1

2�

h

� + µ + s�
p

(� + µ + s)2 � 4�µ
i

. (6.198)

The inversion of this transforms leads to the p.d.f. of the BP :

fBP (t) =
e�(�+µ) t

t
p

⇢
⇥ I1

⇣

2t
p

�µ
⌘

, t > 0, (6.199)

where

I1(x) =
+1
X

k=0

(x/2)2k+1

k! (k + 1)!
(6.200)

denotes the modified Bessel function of the first kind of order one. •
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Exercise 6.205 — M/M/1: Laplace-Stieltjes transform and p.d.f. of the busy

period

Prove Proposition 6.204 (Adan and Resing, 2002, pp. 38–39). •

Exercise 6.206 — M/M/1: variance of the busy period

Prove that

V (BP ) =
1 + ⇢

µ2(1� ⇢)3
.

•

Exercise 6.207 — M/M/1: survival function of the busy period

Use the Mathematica function BesselI[n, x]83 to obtain values of the survival function of

the busy period, P (BP > t), when

• µ = 1

• ⇢ = 0.8, 0.9, 0.95

• t = 1, 2, 4, 8, 16, 40, 80

(Adan and Resing, 2002, p. 39). •

G/M/1 system

Due to the similarities between the G/M/1 and M/M/1 systems when it comes to the

probabilistic behavior of the performance measures Ls, Lq, Ws and Wq, the expected value

of the BP can be obtained by simply replacing ⇢ with � in (6.197).

Proposition 6.208 — G/M/1: expectation of the busy/idle period (Ross, 2007,

p. 548)

Let G̃ be the Laplace-Stieltjes transform of the c.d.f. of the interarrival times of a G/M/1

system. Then E(BP )
E(BP )+E(IP )

= limt!+1 P [X(t) > 0]= ⇢, where ⇢ = �
µ

= E(Service T ime)
E(Interarrival T ime)

(see (6.171)). Consequently,

E(BP ) =
1

µ(1� �)
(6.201)

E(IP ) =
µ� �

�µ(1� �)
, (6.202)

where � 2 (0, 1) : � = G̃[µ(1� �)]. •
83It gives the modified Bessel function of the first kind I

n

(x).
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Exercise 6.209 — G/M/1: expectation of the busy/idle period

Prove Propositon 6.208 (Ross, 2007, p. 548). •

Proposition 6.210 — G/M/1: Laplace-Stieltjes transform of the idle period

(Adan et al., 2005)

The Laplace-Stieltjes transform of the c.d.f. of the idle period of a G/M/1 system is given

by:

F̃IP (s) =
µ(1� �)� µ[1� G̃(s)]

µ(1� �)� s

= µ⇥ G̃(s)� �

µ(1� �)� s
. (6.203)

•

Needless to say that, after having obtained �, we can use Mathematica to invert this

transform and identify the p.d.f. of IP .

Exercise 6.211 — G/M/1: expectation of the idle period

Use Equation (6.203) to check that E(IP ) = µ��
�µ(1��)

. •

Proposition 6.212 — G/M/1: Laplace-Stieltjes transform and c.d.f. of the

busy period (Cohen, 1982, p. 226)

The Laplace-Stieltjes transform of the c.d.f. of the busy period of the G/M/1 system is

equal to:

F̃BP (s) =
1� ⇠(s)

µ�1 s + 1� ⇠(s)
, Re(s) � 0, (6.204)

where ⇠(s) is the root with the smallest absolute value of z � G̃ [s + µ(1� z)] = 0.

The inversion of this Laplace-Stieltjes transform leads to

FBP (t) =
+1
X

n=1

⇢

e�µ t (µ t)n�1

n!
⇥
Z t

0

µ[1�Gn?(u)] du

�

, t > 0, (6.205)

where Gn? is the n�fold convolution of the c.d.f. of the interarrival times.84 •

Adan et al. (2005) also add that the busy and idle periods of the G/M/1 queue are

not necessarily independent r.v.

84That is, Gn? is the c.d.f. of a sum on n i.i.d. r.v. with common c.d.f. G. G1?(u) = G(u); G(n+1)?(u) =
R

R Gn?(u� x) dG(x), n 2 N.
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Remark 6.213 — G/M/1: Laplace-Stieltjes transform of the busy period

After reading Ross (2007, p. 548), we are led to believe that the busy cycle BC = BP +IP

can be written as BC =
PN

i=1 Ti, where Ti is the ith interarrival time after the busy period

begins and N ⇠ Geometric(1 � �). Consequently, the Laplace-Stieltjes transform of the

c.d.f. of the busy cycle can be written in terms of the p.g.f. of N :

F̃BC(s) = E
h⇣

e�s
P

N

i=1

T
i

�

�

�

N
⌘i

F̃
T

i

(s)=G̃(s)
= E

⇢

h

G̃(s)
iN
�

= PN

h

G̃(s)
i

=
(1� �)G̃(s)

1� � G̃(s)
(6.206)

We are certainly tempted to admit that BP and IP are independent r.v. and write:

F̃BP (s) =
F̃BP+IP (s)

F̃IP (s)

=

(1��)G̃(s)

1�� G̃(s)

µ⇥ G̃(s)��
µ(1��)�s

=
1� �

µ
⇥ G̃(s)⇥ [µ(1� �)� s]
h

1� � G̃(s)
i

⇥
h

G̃(s)� �
i . (6.207)

Once again, we would use Mathematica to invert this transform and identify the p.d.f.

of BP . •

Exercise 6.214 — G/M/1: expectation of the busy period

Check that, oddly enough, the use of Equation (6.207) leads to E(BP ) = 1
µ(1��)

. •

M/G/1 system

The expected length of a busy period is 1
µ��

where µ�1 is the expected

length of service time and � the rate of the Poisson process governing

the arrivals (http://en.wikipedia.org/wiki/M/G/1 queue#Busy period). Furthermore,
E(BP )

E(BP )+E(IP )
= limt!+1 P [X(t) > 0] = ⇢ = �

µ
(Ross, 2007, p. 530).
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Proposition 6.215 — M/G/1: expectation of the idle/busy period (Ross, 2007,

pp. 530–531)

Let S represent once more the service time in this queueing system and E(S) = µ�1.

From the Poisson arrivals, it follows that IP ⇠ Exponential(�) and

E(IP ) =
1

�
(6.208)

E(BP ) =
1

µ(1� ⇢)
, (6.209)

as in the M/M/1 system. •

The Laplace-Stieltjes of the c.d.f. of the busy period can be shown to obey a functional

relationship (http://en.wikipedia.org/wiki/M/G/1 queue#Busy period), as stated in the

next proposition.

Proposition 6.216 — M/G/1 system: Laplace-Stieltjes of the c.d.f. busy

period (Adan and Resing, 2002, p. 72)

The Laplace-Stieltjes of the c.d.f. of the busy period is such that

F̃BP (s) = G̃[s + �� �F̃BP (s)], (6.210)

where G̃ denotes the Laplace-Stieltjes transform of c.d.f. of the service time. •

Exercise 6.217 — M/G/1 system: Laplace-Stieltjes of the c.d.f. busy period

Prove Proposition 6.216 (Adan and Resing, 2002, pp. 71-72). •

Equation (6.210) can only be solved exactly in special cases such as the M/M/1 queue.

Exercise 6.218 — M/M/1 system: Laplace-Stieltjes of the c.d.f. busy period

Use Proposition 6.216 to check that

F̃BP (s) =
1

2�

h

� + µ + s�
p

(� + µ + s)2 � 4�µ
i

(Adan and Resing, 2002, pp. 72–72). •
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Proposition 6.219 — M/G/1: the spread of the busy period (Adan and Resing,

2002, p. 73)

Let S denote the service time. Then the second moment and the square of the coe�cient

of variation of the busy period of the M/G/1 system are given by

E(BP 2) =
E(S2)

(1� ⇢)3
(6.211)

CV 2(BP ) =
CV 2(S) + ⇢

1� ⇢
, (6.212)

respectively.85 •

Exercise 6.220 — M/G/1: the spread of the busy period

Use (6.210) to show Proposition 6.219 (Adan and Resing, 2002, p. 73). •

Exercise 6.221 — M/H2/1: the mean busy period duration and much more

(Adan and Resing, 2002, p. 74, Exercise 37)

Customers arrive at a post o�ce — with only one server — according to a Poisson process

with a rate of 30 customers per hour.

A quarter of the customers wants to cash a cheque; the associated service time is

exponentially distributed with a mean of 2 minutes. The remaining customers want to

buy stamps and their service times are exponentially distributed with a mean of 1 minute.

Determine:

(a) the p.g.f., p.f. and expected value of the number of customers in the system;

(b) the Laplace-Stieltjes transform of the c.d.f., the c.d.f. and the expectation of the

sojourn time;

(c) the mean busy period duration.

(Adan and Resing, 2002, p. 155.) •

Exercise 6.222 — M/M/1: the mean busy period duration and much more

Resume Exercise 6.221 and admit that all customers have an exponentially distributed

service time with a mean of 75 seconds (Adan and Resing, 2002, p. 74, Exercise 37).

(a) Obtain the mean number of customers in the system and the mean sojourn time

(Adan and Resing, 2002, p. 155).

(b) Calculate E(BP ), V (BP ) and CV 2(BP ). •

85CV (BP ) increases as ⇢ tends to one.
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6.10 Networks of Markovian queues

This section is an introduction to the very important subject of queueing networks

(or networks of queues), a current area of great interest and application, namely to

manufacturing facilities and computer/communication networks (Gross and Harris, 1998,

p. 165), as illustrated by Koole (2010).

We begin with a few definitions and remarks on queueing networks,

systems in which a number of queues are connected by customer routing

(http://en.wikipedia.org/wiki/Queueing theory#Queueing networks).

Definition 6.223 — Queueing network (Gross and Harris, 1998, p. 165;

http://en.wikipedia.org/wiki/Queueing theory#Queueing networks)

A system consisting of a group of say k stations (or nodes), where each station i represents

a service facility of some kind with mi servers (mi 2 N and i = 1, . . . , k) and the stations

are connected by customer routing, is said to be a queueing network. •

Remark 6.224 — Queueing network (Gross and Harris, 1998, p. 165)

In the most general case, customers may:

• arrive from outside the system at any station;

• depart from the system from any station;

• traverse from station to station;

• enter and leave the system at di↵erent stations;

• return to stations previously visited, skip some stations or choose to remain in the

system indefinitely. •

Definition 6.225 — Jackson network (Gross and Harris, 1998, pp. 165–166; Kulkarni,

1995, p. 359)

A queueing network with the following characteristics is said to be a Jackson network:

• it consists of k service stations;

• there are mi (mi 2 N) servers at station i (i = 1, . . . , k);

• there is infinite waiting room at every station;

• customers may arrive from outside to station i (i = 1, . . . , k) according to a Poisson

process, with — external input rates ri —, which is independent of the external

arrival processes at other stations and also independent of any service times;
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• the durations of the services, provided by each server at station i (i = 1, . . . , k),

are not only exponentially distributed i.i.d. r.v. with (service) rate µi, but also

independent of the service times at other stations;

• upon completion of her/his service at station i (i = 1, . . . , k), the customer

– goes to station j (j = 1, . . . , k), with routing probability Pij, where
Pk

j=1 Pij 
1, for all i = 1, . . . , k, or

– leaves the system from station i, with probability 1�
Pk

j=1 Pij;

• the routing probabilities do not depend on the state of the queueing network;

• the routing matrix P = [Pij]i,j=1,...,k is such that I�P is invertible.86 •

Definition 6.226 — Closed Jackson network (Gross and Harris, 1998, p. 166)

If

• ri = 0, for all i = 1, . . . , k, that is, no customer may enter the system from outside,

and

•
Pk

j=1 Pij = 1, for all i = 1, . . . , k,87 i.e, no customer may leave the system,

then we are dealing with a closed Jackson network. •

Definition 6.227 — Open Jackson network (Gross and Harris, 1998, p. 166)

If

• ri 6= 0, for some i (i = 1, . . . , k), or

•
Pk

j=1 Pij 6= 1, for some i (i = 1, . . . , k),

then the system is referred to as an open Jackson network. •

From now on, we shall restrict ourselves to Jackson networks. These systems can be

described as (multivariate) birth and death Markov processes (Gross and Harris, 1998, p.

168).

86This assumption will become clear shortly.
87This means that the routing matrix is stochastic.
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Remark 6.228 — State vector of a Jackson network (Gross and Harris, 1998, p.

166)

Since Jackson networks are Markovian systems, they can be described by a k �
dimensional state vector, N(t) = (N1(t), . . . , Nk(t)), where Ni(t) represents the number

of customers at station i (i = 1, . . . , k) at time t. Furthermore, N(t) is a CMTC. •

However, to describe the steady state behaviour of N(t) we have to briefly address the

issue of the output of M/M/m (m 2 N) queues.

6.10.1 M/M/m queue output

Let us remind the reader that by Kolmogorov’s criterion for reversibility,

any birth and death process is a reversible continuous time Markov chain

(http://en.wikipedia.org/wiki/Burke’s theorem). Thus, if we start at time t and look

backward, the departures become the arrivals and vice-versa, and the probabilistic

behaviour of the backward and forward paths are the same (Gross and Harris, 1998,

p. 168).

Burke’s Theorem (Burke, 1956) states for instance that, in the steady state, the output

(or departure) process of M/M/1, M/M/m or M/M/1 queues follows a Poisson process;

moreover, because no tra�c is lost in such queues, the departure rate must be equal to

the arrival rate in steady state (Zukerman, 2010–2012, p. 208).

Theorem 6.229 — Burke’s Theorem (Gross and Harris, 1998, p. 170;

http://en.wikipedia.org/wiki/Burke’s theorem)

Let:

• {T1, T2, . . .} represent the sequence of times between consecutive departures — the

departure process — from a M/M/m (m 2 N) queue in the steady state with arrival

rate �;

• N(t) be the number of customers in the system at time t.

Then

• N(t) is independent of the departure process prior to time t;88

88This follows from the fact that the departures prior to t in the reversed process coincide with the
arrival process after t in the reversed process and it is clear that the number in the system at time t is
independent of the arrivals after that time point in a Poisson system.
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• the arrival and departure processes are una↵ected by the exponential service

mechanism and are both Poisson processes with rate �.89 •

Burke’s startling result proves to be extremely useful in the analysis of Jackson

networks:

• the steady state joint probability distribution of (N1, N2, . . . , Nm) has a product-

form

(Gross and Harris, 1998, p. 166) and average metrics can be computed, as shown for

instance for open Jackson networks, the topic of our next subsection.

89For a constructive proof of Burke’s Theorem, which shows that, indeed, the inter departure times
are i.i.d. r.v. with Exponential distribution with parameter � when we deal with the M/M/1, M/M/m

or M/M/1 queues in steady state, please refer to Gross and Haris (1998, pp. 168–170). Burke first
published this theorem along with a proof in 1956; however, the theorem was anticipated but not proved
by O’Brien (1954) and Morse (1955), according to http://en.wikipedia.org/wiki/Burke’s theorem
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6.10.2 Open Jackson networks

Before we proceed it is crucial to identify the total input rates of the k stations of an open

Jackson network.

Proposition 6.230 — Total input rates; tra�c equations (Kulkarni, 1995, p. 360;

Gross and Harris, 1998, p. 166; Ross, 2003, p. 499)

The input to station j consists of two parts:

• external input, at rate rj;

• internal input due to routing from stations i = 1, . . . , j, at rate
Pk

i=1 �i Pij.

If we let �j denote the total input rate of customers to station j, then in the steady state

we must deal with the following tra�c equations :

�j = rj +
k
X

i=1

�i Pij, j = 1, . . . , k. (6.213)

•

Corollary 6.231 — Total input rates in matrix form (Kulkarni, 1995, pp. 360–361)

Let:

• r = [rj]j=1,...,k represent the row vector of the external input rates;

• P = [Pij]i,j=1,...,k be the routing matrix of the Jackson network;

• � = [�j]j=1,...,k denote the row vector of the total input rates;

• I is the identity matrix with rank k.

Then � can be obtained as the solution of

�⇥ (I�P) = r, (6.214)

i.e.,

� = r ⇥ (I�P)�1. (6.215)

•

The invertibility of (I�P) is obviously needed to obtain � and fundamentally means

that no customer stays in the queueing network indefinitely (Kulkarni, 1995, p. 361).

Theorem 6.232 — Transient behaviour of N(t) (Kulkarni, 1995, p. 361)

{N(t) : t � 0} is a positive recurrent CTMC i↵ ⇢i = �
i

m
i

µ
i

< 1, for all i = 1, . . . , k, where

� = [�i]i=1,...,k satisfies (6.215). •
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Theorem 6.233 — Jackson’s theorem: steady state behaviour of N(t) in an

open Jackson network (Kulkarni, 1995, p. 361; Gordon and Harris, 1998, p. 178)

Let:

• N = (N1, . . . , Nk) be the state vector of the open Jackson network in the steady

state;

• L(i)
s be the number of customers in a M(�i)/M(µi)/mi system in steady state.

If {N(t) : t � 0} is a positive recurrent CTMC then

P (N = n) = P (N1 = n1, . . . , Nk = nk)

= lim
t!+1

P [N1(t) = n1, . . . , Nk(t) = nk]

=
k
Y

i=1

P [L(i)
s = ni], (6.216)

i.e., in the steady state the open Jackson network acts as if the stations were k

independent M(�i)/M(µi)/mi systems (i = 1, . . . , k). •

Remark 6.234 — Jackson’s theorem: steady state behaviour of N(t) in an

open Jackson network (Kulkarni, 1995, p. 363; Gordon and Harris, 1998, pp. 175–176;

http://en.wikipedia.org/wiki/Arrival theorem)

• The joint probability function in (6.216) is called the product-form, for obvious

reasons.

• The term acts as if is extremely important because the individual processes {Ni(t) :

t  0} (i = 1, . . . , k) are not themselves birth and death processes arising from the

M(�i)/M(µi)/mi (i = 1, . . . , k) systems.

Indeed, the reader should not be misled into believing that the open Jackson network

actually decomposes into k individual M(�i)/M(µi)/mi systems (i = 1, . . . , k)

systems, with the flow into each a true Poisson process with rate �i.

As a matter of fact, as long as customers can return to previously visited stations

(i.e., as long as there is any kind of feedback) the internal flows are not Poisson.

• In an open Jackson network with m stations, the probability that the system is in

state n immediately before an arrival to any node is also P (N = n).

This result does not follow from Jackson’s theorem and was first stated by Sevcik

and Mitrani (1981); furthermore, it refers to particular points in time, namely arrival

times. •
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By plugging in the expressions of P [L(i)
s = ni] to (6.216) we obtain the results stated

in the next corollary.

Corollary 6.235 — Steady state behaviour of N(t) in an open Jackson network

(Gross and Harris, 1998, p. 175, 178; Kulkarni, 1995, p. 361)

The product-form solution for limt!+1 P [N1(t) = n1, . . . , Nk(t) = nk] leads to the

following results concerning an open Jackson network in steady state, with k:

• single-server stations (with ⇢i = �
i

µ
i

< 1, i = 1, . . . , k)

P (N = n) =
k
Y

i=1

[(1� ⇢i) ⇢n
i

i ] , ni 2 N0; (6.217)

• mi-server stations (with ⇢i = �
i

m
i

µ
i

< 1, i = 1, . . . , k)

P (N = n) =

8

>

>

>

>

<

>

>

>

>

:

Qk
i=1

h

m
i

!
n

i

!
(1� ⇢)(mi⇢i)n

i

�m
iC(mi, mi⇢i)

i

,

ni = 0, 1, . . . ,mi � 1
Qk

i=1

⇥

(1� ⇢i) ⇢n
i

�m
i

i C(mi, mi⇢i)
⇤

,

ni = mi, mi + 1, . . . ,

(6.218)

where C(mi, mi⇢i) = P
⇣

L(i)
s � mi

⌘

=
(m

i

⇢

i

)

m

i

m

i

!(1�⇢

i

)

P

m

i

�1

j=0

(m

i

⇢

i

)

j

j!

+
(m

i

⇢

i

)

m

i

m

i

!(1�⇢

i

)

;

• infinite-server stations (with ⇢i = �
i

µ
i

, i = 1, . . . , k)

P (N = n) =
k
Y

i=1

✓

e�⇢
i

⇢n
i

i

ni!

◆

, ni 2 N0. (6.219)

•

Capitalizing once again on the product-form we can compute the mean total number

of customers in an open Jackson network in equilibrium. In addition, we can use Little’s

law to obtain the average time a customer spends in the open Jackson network in steady

state.

Proposition 6.236 — Mean number of customers and mean time spent in an

open Jackson network in steady state

Consider an open Jackson network in steady state and let:

• N =
Pk

i=1 Ni =
Pk

i=1 L(i)
s be the total number of customers in this system;
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• Ws the total time a customer spends in this queueing network.90

Then

E(N) =
k
X

i=1

E
⇥

L(i)
s

⇤

(6.220)

E(Ws) =
E(N)
Pk

i=1 ri

. (6.221)

We have for an open Jackson network in steady state with k:

• single-server stations (with ⇢i = �
i

µ
i

< 1, i = 1, . . . , k),

E(N) =
k
X

i=1

⇢i

1� ⇢i

=
k
X

i=1

�i

µi � �i

(6.222)

(Ross, 2003, pp. 499–500);

• mi-server stations (with ⇢i = �
i

m
i

µ
i

< 1, i = 1, . . . , k),

E(N) =
k
X

i=1



mi ⇢i +
⇢i

1� ⇢i

C(mi, mi⇢i)

�

; (6.223)

• infinite-server stations (with ⇢i = �
i

µ
i

, i = 1, . . . , k),

E(N) =
k
X

i=1

⇢i. (6.224)

•

Let us now consider an example and a few exercises to illustrate and practice the

application of all these results. They refer, for instance, to:

• a network of three single-server stations (Ross, 2003, Chap. 8, Exercise 31);

• a single station queue with Bernoulli feedback (Kulkarni, 1995, pp. 363–364);

• single-server queues in tandem (Kulkarni, 1995, pp. 364–365).

90Ross (2003, p. 500) stresses that the denominator of E(W
s

) = E(N)
�

is equal to
P

k

i=1 r
i

and not
P

k

i=1 �
i

.
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Example 6.237 — A network of three single-server stations (Ross, 2003, Chap.

8, Exercise 31)

Customers arrive at stations 1, 2, 3 in accordance with Poisson processes having respective

rates 5, 10, 15. The service times at the three stations are exponential with rates 10, 50,

100, respectively. Moreover:

• a customer completing service at station 1 is equally likely to

(i) go to station 2,

(ii) go to station 3 or

(iii) leave the system;

• a customer departing service at station 2 always goes to station 3;

• a departure from service at station 3 is equally likely to either go to station 2 or

leave the system.

What is the average number of customers in the system (consisting of all three single-

server stations) in equilibrium?

• Jackson network

Since there is the possibility of entering and exiting the system, we are dealing with

an open Jackson network. Moreover, it consists of k = 3 single-server queues such

that:

– the arrival rates of customers coming from outside to these 3 single-server

stations are

r1 = 5

r2 = 10

r3 = 15;

– the service rates of these 3 single-server stations are equal to

µ1 = 10

µ2 = 50

µ3 = 100.
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• Routing probabilities (Pij)

Let Pij represent the probability that a customer leaves station i (i = 1, . . . , k) and

joins station j (j = 1, . . . , k).91 Since

– a customer completing service at station 1 is equally likely to

(i) go to station 2,

(ii) go to station 3, or

(iii) leave the system,

– a customer departing service at station 2 always goes to station 3,

– a departure from service at station 3 is equally likely to either go to station 2

or leave the system,

we obtain

P = [Pij]i,j=1,2,3 =

2

6

4

0 1
3

1
3

0 0 1

0 1
2

0

3

7

5

.

• Total input rate of customers to server j (�j)

Since ⇢j = �
j

µ
j

< 1, j = 1, 2, 3, these rates are given by the tra�c equations:

�j = rj +
k
X

i=1

�i Pij, j = 1, . . . , k.

In this case,

� = r ⇥ (I�P)�1

= [r1 r2 r3]⇥

0

B

@

2

6

4

1 0 0

0 1 0

0 0 1

3

7

5

�

2

6

4

0 1
3

1
3

0 0 1

0 1
2

0

3

7

5

1

C

A

�1

= [5 10 15]⇥

2

6

4

1 �1
3
�1

3

0 1 �1

0 �1
2

1

3

7

5

�1

91Recall that 1 �
P

k

j=1 P
ij

represents the probability that a customer departs the system after being
served by server i.
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= [5 10 15]⇥

2

6

4

1 1 4
3

0 2 2

0 1 2

3

7

5

= [5 40 170/3].

• Requested expectation

Recall that in the steady state the 3 single-server stations act as if they were 3

independent M(�j)/M(µj)/1 (j = 1, 2, 3) queues. Thus, the average number of

customers in this queueing network in equilibrium, E(N), is given by

k
X

j=1

�j

µj � �j

=
5

10� 5
+

40

50� 40
+

170
3

100� 170
3

= 1 + 4 +
17

13
' 6.307692.

•

Exercise 6.238 — A single station queue with Bernoulli feedback (Kulkarni,

1995, pp. 363–364, Example 7.5)

The simplest queueing network is a single station M/M/m queue with feedback:

• customers arrive at the service station according to a Poisson process with rate r;

• the service station has m servers, each working at rate µ;

• upon completion of her/his service, a customer leaves the system with probability

↵ or rejoins the system and behaves as a new arrival with probability 1� ↵.

Derive the limiting probabilities. •

Exercise 6.239 — Open Jackson network with two single-server stations (Ross,

2003, pp. 500-501, Example 8.5)

Consider a system of two servers where:

• customers from outside the system arrive at server 1 at a Poisson rate 4 and at

server 2 at a Poisson rate 5;

• the service rates of 1 and 2 are respectively 8 and 10;
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• a customer, upon completion of service at server 1, is equally likely to go to server

2 or to leave the system (i.e., P11 = 0, P12 = 1);

• a departure from server 2 will go 25 percent of the time to server 1 and will depart

the system otherwise (i.e., P21 = 1, P22 = 0).

Determine:

(a) the limiting probabilities;

(b) E(N);

(c) E(Ws). •

Exercise 6.240 — Open Jackson network with three stations (Gross and Harris,

1998, pp. 181–182, Example 4.2)

A company has a three-node telephone system with the following characteristics:

• calls coming into the 800 number are Poisson, with mean of 35/hr;

• the caller gets one of two options — press 1 for claims service and press 2 for policy

service;

• it is estimated that the caller’s listening, decision and button-pushing time is

exponential with mean equal to 30 seconds;

• only one call at a time can be processed and all calls put on hold (with nice

background music!) are not lost;

• approximately 55% of the calls go to claims and the remainder to policy service;

• the claims processing station has three parallel servers with exponential service times

with mean equal to 20 minutes;

• about 2% of the customers finishing at claims then go to policy service;

• approximately 1% of the customers finishing at police service go to claims;

Obtain:

(a) the average queue sizes in front of each station;

(b) the average number of customers in the system;

(c) the total average time a customer spends in the system. •
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Exercise 6.241 — Open Jackson network with six single-server stations

(Zuckerman, 2000–2012, p. 211, Homework 19.1)

Consider a six station Jackson network of M/M/1 queues, such that:

• the service rate of all the queues is equal to one, i.e., µi = 1 for i = 1, . . . , 6;

• the arrival rates from the outside into the di↵erent stations is given by r1 = 0.6,

r2 = 0.5, and ri = 0 for i = 3, . . . , 6;

• the routing matrix is given by

P =

2

6

6

6

6

6

6

6

6

4

0 0.4 0.6 0 0 0

0 0.1 0 0.7 0.2 0

0 0 0 0.3 0.7 0

0 0 0 0 0 0.6

0 0 0 0.3 0 0.2

0 0 0.3 0 0 0

3

7

7

7

7

7

7

7

7

5

.

Use Mathematica to find:

(a) the probability that the entire network is empty;

(b) the mean time a packet spends in the network from the moment it enters the network

until it leaves the network. •

Exercise 6.242 — Open Jackson network with seven single-server stations

(Gross and Harris, 1998, p. 205, Exercise 4.10C)

Consider a seven station, open single-server Jackson network, where:

• only stations 2 and 4 get input from the outside at rate 5/min;

• stations 1 and 2 have service rates of 85/min; stations 3 and 4 have service rates of

120/min;

• station 5 has a service rate of 70/min;

• stations 6 and 7 have service rates of 20/min;

• the routing matrix is given by
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P =

2

6

6

6

6

6

6

6

6

6

6

6

4

1
3

1
4

0 1
4

0 1
6

0
1
3

1
4

0 1
3

0 0 0

0 0 1
3

1
3

1
3

0 0
1
3

0 1
3

0 1
3

0 0

0 0 0 4
5

0 0 1
6

1
6

0 1
6

1
6

1
6

1
6

0

0 1
6

1
6

1
6

1
6

0 1
6

3

7

7

7

7

7

7

7

7

7

7

7

5

.

Use Mathematica to find:

(a) the average number of customers in the system;

(b) the average time a customer spends in this queueing network.92 •

Exercise 6.243 — Open Jackson network with six stations with di↵erent

numbers of servers: amusement park (Kulkarni, 2011, pp. 224-225, 231, examples

6.19 and 6.24)

An amusement park has six rides:

• a roller coaster (station 1);

• a merry-go-round (station 2);

• a water-tube ride (station 3);

• a fantasy ride (station 4);

• a ghost-mountain ride (station 5);

• a journey to the moon ride (station 6).

Visitors arrive at the park according to a Poisson process at a rate of 600 per hour and

immediately fan out to the six rides. A newly arriving visitor is equally likely to go to

any of the six rides first. From then on, we assume that, after each ride, the riders choose

to join one of the remaining five rides or leave in a completely random fashion. Moreover:

• the roller coaster ride lasts for an exponentially distributed time with mean equal

to 2 minutes (including the loading and unloading times);

• two roller coaster cars, each carrying 12 riders, are on the track at any one time;

92The original question was: find the mean line delay at each node.
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• the merry-go-round can handle 35 riders at one time, and the ride lasts for an

exponentially distributed time with mean equal to 3 minutes;

• the water-tube ride lasts for an exponentially distributed time with mean equal to

1.5 minutes, and there can be ten tubes on the waterway at any one time, each

carrying two riders;

• the fantasy ride is takes an exponentially distributed time with mean equal to 5-

minute that can carry 60 persons at any one time;

• the ghost-mountain ride can handle 16 persons at a time and lasts for an

exponentially distributed time with mean equal to 90 seconds;

• the journey to the moon ride takes an exponentially distributed time with mean

equal to 100 seconds, and 20 riders can be on it at any one time.

If a ride can handle m riders simultaneously, we shall assume the corresponding service

station has m servers. Furthermore, although the service times of all riders sharing a ride

must be the same, we shall assume the service times are i.i.d.

(a) Use Mathematica to compute the expected number of visitors in the park in steady

state.

(b) Which ride has the longest queue?93 •

We treat now open Jackson networks whose

• stations can be viewed as forming a series system with flow always in a single

direction from station to station and

• customers may enter the system from outside only at station 1 and depart only from

station k (Gross and Harris, 1998, p. 166).

Definition 6.244 — Tandem queue (Gross and Harris, 1998, p. 166)

An open Jackson network associated with

• ri =

(

1, i = 1

0, otherwise

93We need to compute E[L(i)
q

], the expected number of customers in the queue (not including those in
service) which is given by E[L(i)

q

] = E[L(i)
s

]� �i
µi

.
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• Pij =

(

1, i = 1, . . . , k � 1, j = i + 1

0, otherwise,

that is, the routing matrix is given by

P = [Pij]i,j=1,...,k =

2

6

6

6

6

6

6

6

6

6

6

4

0 1 0 · · · · · · 0

0 0 1
. . .

... 0

0 0 0
. . . . . . 0

...
...

. . . . . . . . . 0

0 0 · · · · · · 0 1

0 0 · · · · · · 0 0

3

7

7

7

7

7

7

7

7

7

7

5

, (6.225)

is said to be a tandem (or series) queue. •

Remark 6.245 — Applications of tandem queues (Gross and Harris, 1998, p. 167)

Tandem queues arise in:

• manufacturing and assembly-line processes in which units must proceed through a

series of work stations, each station performing a given task;

• registration processes, when a registrant must visit a series of desks;

• clinic physical examination procedures, where a patient has a consult, is submitted

to lab tests, etc. •

Exercise 6.246 — Two single-server queues in tandem (Ross, 2003, pp. 496–497)

Consider a tandem queue with two single-server stations described as follows:
518 8 Queueing Theory

Figure 8.3. A tandem queue.

serves one customer at a time with server i taking an exponential time with rate
µi for a service, i = 1,2. Such a system is called a tandem or sequential system
(see Figure 8.3).

To analyze this system we need to keep track of the number of customers at
server 1 and the number at server 2. So let us define the state by the pair (n,m)—
meaning that there are n customers at server 1 and m at server 2. The balance
equations are

State Rate that the process leaves = rate that it enters

0,0 λP0,0 = µ2P0,1
n,0;n > 0 (λ + µ1)Pn,0 = µ2Pn,1 + λPn−1,0
0,m;m > 0 (λ + µ2)P0,m = µ2P0,m+1 + µ1P1,m−1
n,m;nm > 0 (λ + µ1 + µ2)Pn,m = µ2Pn,m+1 + µ1Pn+1,m−1

+λPn−1,m (8.15)

Rather than directly attempting to solve these (along with the equation
∑

n,mPn,m

= 1) we shall guess at a solution and then verify that it indeed satisfies the pre-
ceding. We first note that the situation at server 1 is just as in an M/M/1 model.
Similarly, as it was shown in Section 6.6 that the departure process of an M/M/1
queue is a Poisson process with rate λ, it follows that what server 2 faces is also
an M/M/1 queue. Hence, the probability that there are n customers at server 1 is

P {n at server 1} =
(

λ

µ1

)n(
1 − λ

µ1

)

and, similarly,

P {m at server 2} =
(

λ

µ2

)m(
1 − λ

µ2

)

Now if the numbers of customers at servers 1 and 2 were independent random
variables, then it would follow that

Pn,m =
(

λ

µ1

)n(
1 − λ

µ1

)(
λ

µ2

)m(
1 − λ

µ2

)
(8.16)

• customers arrive at a Poisson rate � at server 1;

• after being served by server 1, customers then join the queue in front of server 2;94

• each server serves one customer at a time with server i taking an exponential time

with rate µi (i = 1, 2) for a service.

94We suppose there is infinite waiting space at both servers.
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Find:

(a) the average number of customers in this system in equilibrium (Ross, 2003, pp. 497–

498);

(b) the probability that the network is empty (Kulkarni, 2011, p. 230, Example 6.22). •

Exercise 6.247 — Three single-server queues in tandem (Jain, 2008, Homework

32)

In a series network of three routers, the packets arrive at the first router according to

a Poisson process at the rate of 100 packets/s. The service times are exponentially

distributed in any of the three routers with rates equal to 250 packets/s, 150 packets/s

and 200 packets/s, respectively.

(a) Write an expression for the steady state probabilities.

(b) Calculate the probability of having 2 packets at each of the three routers. •

Exercise 6.248 — k single-server queues in tandem (Kulkarni, 1995, pp. 364–365,

Example 7.6)

Admit k single-server queues are set in tandem:

• customers arrive from outside only at station 1 according to a Poisson process with

rate r1 = �;

• station i provide service at rate µi;

• customers leaving station i join station i + 1 (i = 1, . . . , k � 1);

• customers leaving station k depart the system.

Derive:

(a) a condition that ensures this system reaches equilibrium;95

(b) the steady-state distribution. •

Exercise 6.249 — Tandem queue with four stations with di↵erent numbers of

servers (Kulkarni, 2011, pp. 224, 230–231, examples 6.18 and 6.23)

Consider a queueing network with four service stations with the following characteristics:

• customers arrive at station 1 according to a Poisson process at a rate of 10 per hour

and get served at stations 1, 2, 3, and 4 in that order;

95r1 = � < min
i=1,...,k

µ
i

, i.e., the slowest server determines the tra�c handling capacity of this tandem
system.
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• customers depart after getting served at station 4;

• the mean service time is 10 minutes at station 1, 15 minutes at station 2, 5 minutes

at station 3, and 20 minutes at station 4;

• the first station has two servers, the second has three servers, the third has a single-

server, and the last has four servers.

Compute the expected number of customers in this network in equilibrium. •

Exercise 6.250 — Optimizing the distribution of six servers in an open Jackson

network with two stations in tandem (Kulkarni, 2011, p. 244, Exercise 6.41)

Consider a tandem queue with two stations characterised as follows:

• customers arrive at the first station according to a Poisson process at a rate of 24

per hour;

• the service times at the first station are i.i.d. exponential r.v. with mean 4 minutes;

• after service completion at the first station, the customers move to station 2, where

the service times are i.i.d. exponential with mean 3 minutes.

The network manager has six servers at her disposal. How many servers should be

stationed at each station so that the expected number of customers in the network is

minimized in the long run? •
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6.10.3 Closed Jackson networks

Closed queueing networks are suitable models for population studies, multiprogrammed

computer systems,96 etc. (Kulkarni, 1995, p. 369).

Let us remind the reader that in a closed Jackson network there are

• no external arrivals to the system and

• no departures from the system,

therefore the total number of customers remains constant (Kulkarni, 1995, p. 369).

Furthermore, ri = 0 and
Pk

i=1 Pij = 1, for all i = 1, . . . , k (Prabhu, 1997, p. 103).

We suppose, from now on, that:

• there is a finite number of customers, say N , who continuously travel inside the

network from station to station (Prabhu, 1997, p. 103);

• when there are ni customers in station i (i = 1, . . . , k), the service rate at this station

is equal to µi ⌘ µi(ni), with µi(0) = 0 and µi(ni) > 0, ni = 1, . . . , N (Kulkarni,

1995, p. 369);

• when a customer completes service at station i, he/she joins station j with

probability Pij (Kulkarni, 1995, p. 369);

• the routine matrix P = [Pij]i,j=1,...,k is irreducible and aperiodic (Prabhu, 1997, p.

103).97

Proposition 6.251 — Characterizing the state vector of a closed Jackson

network (Kulkarni, 1995, p. 369)

Let N(t) = (N1(t), . . . , Nk(t)) represent the state vector of the closed Jackson network at

time t.

Then {N(t) : t � 0} is CMTC with state space given by S = {n = (n1, . . . , nk) 2 Nk
0 :

Pk
i=1 ni = N}. •

96In the early days of computing, central processing unit (CPU) time was expensive, and peripherals
were very slow. When the computer ran a program that needed access to a peripheral, the CPU would
have to stop executing program instructions while the peripheral processed the data. This was deemed
very ine�cient. [...] The use of multiprogramming was enhanced by the arrival of virtual memory and
virtual machine technology, which enabled individual programs to make use of memory and operating
system resources as if other concurrently running programs were, for all practical purposes, non-existent
and invisible to them. (http://en.wikipedia.org/wiki/Computer multitasking#Multiprogramming)

97Irreducible and non absorbing, according Gross and Harris (1998, p. 184). But note that if k is finite
and larger than 1 and the DTMC is irreducible then there cannot be an absorbing state.
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Proposition 6.252 — Tra�c equations for a closed Jackson network

In a closed Jackson network,

• the input to station j is only due to routing from stations i = 1, . . . , k, at rate
Pk

i=1 �i Pij.

Therefore, in the steady state, �j can be obtained as the solution of the following tra�c

equations:

�j =
k
X

i=1

�i Pij, j = 1, . . . , k (6.226)

(Gross and Harris, 1998, p. 183). These equations have a positive solution, unique up to

a multiplicative constant (Prabhu, 1997, p. 101) and can be written in matrix form,

� = �P , �⇥ (I�P) = 0, (6.227)

where:

(i) � = [�j]j=1,...,k denotes the row vector with the input rates;

(ii) I is the identity matrix with rank k;

(iii) 0 = [0 · · · 0] is a row vector with k zeroes. •

Remark 6.253 — Solving the tra�c equations for a closed queueing network

• (6.227) remind us of the matrix representation of the equations that define the

unique stationary distribution of a irreducible and positive recurrent DTMC. In

fact, if we let

(i) P = [Pij]i,j=1,...,k be a k ⇥ k TPM of an irreducible DTMC with finite state

space {1, . . . , k} (thus, a positive recurrent DTMC) and

(ii) ⇡ = [⇡j]j=1,...,k be the row vector denoting its stationary distribution,

then

⇡j =
X

i=1,...,k

⇡iPij, j = 1, . . . , k , ⇡ ⇥ (I�P) = 0. (6.228)

• Recall that the proviso that
P

j=1,...,k ⇡j = 1, enables us to provide a solution in

matrix form to (6.228). It is given by

⇡ = 1⇥ (I�P + ONE)�1, (6.229)

where:
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(i) 1 = [1 · · · 1] is a row vector with k ones;

(ii) ONE is the k ⇥ k matrix all of whose entries are equal to 1.

• Technically, � is the left eigenvector of P that corresponds to the eigenvalue 1

(Gautam, 2012, p. 341).

Understandably, being an eigenvector, � is not unique, however, we have �
i

�
j

a

constant for every pair i and j, regardless of the solution � we have considered,

and for that reason the � values are also called visit ratios (Gautam, 2012, p. 341).

Consequently, it is wiser to alternatively consider

� = ⇡

= 1⇥ (I�P + ONE)�1. (6.230)

•

The closed Jackson networks we are dealing with have a product-form stationary

distribution (http://en.wikipedia.org/wiki/Queueing theory#Queueing networks) for the

state vector N(t) = (N1(t), . . . , Nk(t)).

Proposition 6.254 — Steady state behaviour of N(t), closed Jackson network

(Kulkarni, 1995, p. 370; Gross and Harris, 1998, pp. 184, 178)

This is the product-form solution for

lim
t!+1

P [N(t) = n] = P (N = n), n 2 S, (6.231)

where

S =

(

n = (n1, . . . , nk) 2 Nk
0 :

k
X

i=1

ni = N

)

, (6.232)

while dealing with a closed Jackson network in steady state, with k:

• single-server stations

P (N = n) =
1

G(N)
⇥

k
Y

i=1

✓

⇡i

µi

◆n
i

, n 2 S, (6.233)

where the normalising constant G(N) is chosen such that
P

n2S P (N = n) = 1, that

is, G(N) =
P

n2S
Qk

i=1

⇣

⇡
i

µ
i

⌘n
i

;
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• mi server stations

P (N = n) =
1

G(N)
⇥

k
Y

i=1

⇡n
i

i
Qn

i

j=1 µi(j)
, n 2 S, (6.234)

where G(N) =
P

n2S

h

Qk
i=1

⇡
n

i

i

Q

n

i

j=1

µ
i

(j)

i

. •

Remark 6.255 — State space and the calculation of G(N)

• For arbitrary N and k, there are
�

N+k�1
N

�

possible ways to allocate the N customers

among the k stations (Gross and Harris, 1998, p. 186).

• It is essential to calculate G(N) to determine the steady state probabilities. This is

only feasible with a calculator for relatively small values of N and k (Ross, 2003, p.

502), as illustrated by Example 6.256.

• An e�cient algorithm to calculate G(N), for large N and k, was developed by Buzen

(1973). This algorithm can also be found in Gross and Harris (1998, pp. 186–188)

and http://en.wikipedia.org/wiki/Buzen’s algorithm. •

Example 6.256 — Closed Jackson network with 2 customers and 3 stations

(Gross and Harris, 1998, pp. 184–186, Example 4.4)

Consider a closed Jackson network with:

• N = 2 customers;

• k = 3 stations (station 1 has 2 servers, whereas 2 and 3 are single-server stations);

• exponentially distributed services provided with rates µ1 = 2, µ2 = 1 and µ3 = 3 by

the servers from stations 1, 2 and 3, respectively;

• routing matrix

P =

2

6

4

0 3
4

1
4

2
3

0 1
3

1 0 0

3

7

5

.

(a) Identify the state space.

• State space

Since we are dealing with N = 2 customers and k = 3 stations, the state space

has
�

2+3�1
2

�

= 6 elements and
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S =

(

n = (n1, n2, n3) 2 N3
0 :

3
X

i=1

ni = 2

)

= {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

(b) Write and solve the tra�c equations.

• Tra�c equations

Having in mind that the routing matrix is equal to

P =

2

6

4

0 3
4

1
4

2
3

0 1
3

1 0 0

3

7

5

,

the tra�c equations �j =
Pk

i=1 �i Pij, j = 1, . . . , k, read as follows:
8

>

<

>

:

�1 = �2 ⇥ 2
3

+ �3

�2 = �1 ⇥ 3
4

�3 = �1 ⇥ 1
4

+ �2 ⇥ 1
3
.

• Solving the tra�c equations

� = 1⇥ (I�P + ONE)�1

= [1 1 1]⇥

0

B

@

2

6

4

1 0 0

0 1 0

0 0 1

3

7

5

�

2

6

4

0 3
4

1
4

2
3

0 1
3

1 0 0

3

7

5

+

2

6

4

1 1 1

1 1 1

1 1 1

3

7

5

1

C

A

�1

= [1 1 1]⇥

2

6

4

2 1
4

3
4

1
3

2 2
3

0 1 2

3

7

5

�1

Mathematica
= [1 1 1]⇥

2

6

4

40
81

1
27

�16
81

� 8
81

16
27

�13
81

4
81

� 8
27

47
81

3

7

5

=



4

9

1

3

2

9

�

.

(c) Check that the steady state probabilities are:

(i) p2,0,0 ' 0.0962, p0,2,0 ' 0.4332, p0,0,2 ' 0.0214,

(ii) p1,1,0 ' 0.2888, p1,0,1 ' 0.0642, p0,1,1 ' 0.0962.
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• Steady state probabilities

Considering that

(i) station 1 has 2 servers, whereas 2 and 3 are single-server stations, and

(ii) the services last for exponentially distributed times with rates µ1 = 2, µ2 = 1

and µ3 = 3 by the servers from stations 1, 2 and 3,

we can add that

[µ1(1) µ1(2)] = [µ1 2 µ1] = [2 4]

[µ2(1) µ2(2)] = [µ2 µ2] = [1 1]

[µ3(1) µ3(2)] = [µ3 µ3] = [3 3] ;

G(N) =
X

n2S

"

k
Y

i=1

⇡n
i

i
Qn

i

j=1 µi(j)

#

=

�

4
9

�2

µ1(1)⇥ µ1(2)
⇥ 1⇥ 1 + 1⇥

�

1
3

�2

µ2(1)⇥ µ2(2)
⇥ 1

+1⇥ 1⇥
�

2
9

�2

µ3(1)⇥ µ3(2)
+

4
9

µ1(1)
⇥

1
3

µ2(1)
⇥ 1

+
4
9

µ1(1)
⇥ 1⇥

2
9

µ3(1)
+ 1⇥

1
3

µ2(1)
⇥

2
9

µ3(1)

=
16
81

8
+

1

9
+

4
81

9
+

4
27

2
+

8
81

6
+

2
27

3

=
2

81
+

1

9
+

4

729
+

2

27
+

4

243
+

2

81

=
187

729
;

P (N = n) =
1

G(N)
⇥
"

k
Y

i=1

⇡n
i

i
Qn

i

j=1 µi(j)

#

=

8

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

:

2

81

187

729

= 18
187
' 0.0962, n = (2, 0, 0)

1

9

187

729

= 81
187
' 0.4332, n = (0, 2, 0)

4

729

187

729

= 4
187
' 0.0214, n = (0, 0, 2)

2

27

187

729

= 54
187
' 0.2888, n = (1, 1, 0)

4

243

187

729

= 12
187
' 0.0642, n = (1, 0, 1)

2

81

187

729

= 18
187
' 0.0962, n = (0, 1, 1).

•
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Exercise 6.257 — Closed Jackson network with 3 stations and 5 customers

(Gautam, 2012, p. 343, Problem 57)

Consider a closed Jackson network with 3 stations and 5 customers who behave in the

following fashion.

• Upon completing service at:

– station 1, a customer rejoins station 1 with probability 0.5, or joins station 2

(resp. 3) with probability 0.1 (resp. 0.4);

– stations 2 and 3, a customer always joins station 1.

• When it comes to the nodes:

– station 1 has a single server that serves at rate i if there are i customers at the

station;

– station 2 has two servers each with service rate 1;

– station 3 has one server with service rate 2.

(a) Identify the routing matrix.

(b) Write and solve the tra�c equations.98

(c) Compute the joint and the marginal probabilities of the number of customers at each

station in steady state.99

(d) Find the average number of customers in each station in steady state.

(Gautam, 2012, pp. 343–346, Problem 57.) •

Exercise 6.258 — Closed Jackson network model of a computer system with

multiprogramming (Kulkarni, 1995, pp. 372–373, Example 7.9)

Consider the following model of a multiprogramming computer system consisting of 3

stations:

(i) a CPU (main computing device, station 1);

98� = [�1 �2 �3] =
⇥

10
15

1
15

4
15

⇤

.
99Marginal probabilities in steady state for: station 1, [0.0129 0.0642 0.1597 0.2611 0.3013 0.2009];

station 2, [0.7051 0.2521 0.0379 0.0045 0.0004 0.000015]; station 3,
[0.3247 0.2945 0.2140 0.1167 0.0424 0.0077].
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(ii) a printer (station 2);

(iii) a disc drive (station 3).

A program starts in the CPU. Furthermore:

(i) when its computing part is done it goes to the printer (resp. disc drive) with

probability ↵ (resp. 1� ↵);

(ii) from the printer the program terminates (resp. goes back to the computing phase)

with probability � (resp. 1� �);

(iii) similarly, after the disc drive, the program goes back to the computing phase with

probability 1;

(iv) when a program terminates, a new program is instantaneously admitted to the CPU

queue, so that the total number of programs in the system remains constant, equal

to N .100

Model this system as a closed Jackson shown in the figure below:

(a) Obtain the steady state probabilities.

(b) Compute these probabilities when ↵ = � = 1
2

and N = 2. •

Definition 6.259 — Cyclic queue (Gross and Harris, 1998, p. 166)

Consider a closed Jackson network such that

Pij =

8

>

<

>

:

1, i = 1, . . . , k � 1, j = i + 1

1, i = k, j = 1

0, otherwise,

(6.235)

100N is usually called the level of multiprogramming.
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that is, the routing matrix equals

P = [Pij]i,j=1,...,k =

2

6

6

6

6

6

6

6

6

6

6

4

0 1 0 · · · · · · 0

0 0 1
. . .

... 0

0 0 0
. . . . . . 0

...
...

. . . . . . . . . 0

0 0 · · · · · · 0 1

1 0 · · · · · · 0 0

3

7

7

7

7

7

7

7

7

7

7

5

. (6.236)

Then this closed Jackson network is referred to as a cyclic queue, essentially because

customers flow in a circle always from station i to station i + 1 (i = 1, . . . , k � 1), and

then back to station 1, and so on. •

Remark 6.260 — Applications of cyclic queues (Koenigsberg, 1982)

• The concept of a cyclic queue was introduced by Taylor and Jackson in the

Operational Research Quarterly in 1954. The paper dealt with the “flow” of aircraft

engines from operation to maintenance to available for operation.

• Since then cyclic queue models have been applied to many other production and

service industry problems, such as: computer design and control; ship operations;

production processes; communications flow; etc. •

Exercise 6.261 — Cyclic queue with k single-server stations and one job

(Kulkarni, 1995, pp. 370–372, Example 7.8)

Consider a cyclic queue with a single job/customer (i.e., N = 1) and k single-server

stations with service rate µi, i = 1, . . . , k.

(a) Write and solve the tra�c equations.

(b) After having identified the state space, obtain the steady state probabilities. •

Exercise 6.262 — Cyclic queue with k single-server stations and 2 customers

(Ross, 2003, pp. 504–506, Example 8.6)

Consider a cyclic queue with N = 2 customers and k single-server stations with service

rate µi, i = 1, . . . , k.

After having identified the state space, and written and solved the tra�c equations,

obtain the steady state probabilities. •
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Exercise 6.263 — Cyclic queue with k single-server stations and N customers

(Gross and Harris, 1998, pp. 199-200)

Consider a cyclic queue with N customers and k single-server stations with service rate

µi, i = 1, . . . , k.

(a) Write and solve the tra�c equations.

(b) Obtain the steady state probabilities. •

Exercise 6.264 — Cyclic queue with two single-server stations and N

customers (Jain, 2008, Example 32.1)

Consider a closed queueing network with two single-server queues and N jobs circulating

among the queues. Admit servers 1 and 2 provide exponentially distributed service times

with means 2 and 3, respectively.

Show that, in the steady state, the probability of having n1 jobs in the first queue and

n2 = N � n1 jobs in the second queue is equal to

P (N1 = n1, N2 = N � n1) =
1

G(N)
⇥ 2n

1 ⇥ 3N�n
1 , n1 = 0, 1, . . . , N,

where the normalizing constant G(N) can be shown to be 3N+1 � 2N+1. •

Exercise 6.265 — Cyclic queue with two single-server stations and N

customers (Kleinrock and Gail, 1996, p. 91, Problem 3.12)

Consider a cyclic queue in which N customers circulate around through two single-server

stations. Servers 1 and 2 are of exponential type with rates µ1 and µ2, respectively.

Let pi = limt!+1 P (i customers at station 1 and N � i at station 2 at time t).

(a) Draw the associated rate diagram.101

(b) Write down the balance equations for pi, i = 0, 1, . . . , N .

(c) Find the p.g.f. P (z) =
PN

i=0 zi pi.

(d) Obtain pi.

(Kleinrock and Gail, 1996, pp. 92–93.) •
101Note that this turns out to be exactly the rate diagram associated to a M/M/1/N system, where

� = µ1 and µ = µ2. Use this fact throughout this exercise.
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Now, it is time to provide results for

• E[L(i)
s (N)], the average number of customers at station i, and

• E[W (i)
s (N)], the average time spent at station i,

in a closed Jackson network with N customers and k single-server stations.

The mean value analysis (MVA) enable us to determine recursively these two

performance measures without computing the normalizing constant G(N) (Ross, 2003, p.

502).

This approach relies on the Arrival Theorem stated next. This theorem is due to

Reiser and Lavenberg (1980), according to http://en.wikipedia.org/wiki/Arrival theorem,

and its proof can be also found in Ross (2003, pp. 502–503).

Proposition 6.266 — Arrival theorem (Ross, 2003, p. 503)

In a closed Jackson network with N customers, the system in steady state as seen by an

arriving customer to station j is distributed as the stationary distribution in a similar

closed Jackson network with only (N � 1) customers. •

We now proceed with the derivation of the MVA.

Firstly, recall that the average time an arriving customer spends in a single-server

system, with exponentially distributed interarrival and service times, is equal to the sum

between the expected service time of the arriving customer, say 1
µ

i

, and the sum of the

expected service times of all the customers found in the system by this arriving customer.

Consequently, upon conditioning on the number of customers found at server i by an

arrival to that station i (i = 1, . . . , k), it follows that

E[W (i)
s (N)] =

1

µi

+
1

µi

⇥ E(no. of customers at station i as seen by an arrival)

=
1

µi

+
1

µi

⇥ E[L(i)
s (N � 1)], (6.237)

where the last equality follows from the arrival theorem (Ross, 2003, p. 5003–504).

Secondly, the MVA also relies on:

• the principle that Little’s formula is applicable throughout the queueing network

(Gross and Harris, 1998, p. 189), therefore

E[L(i)
s (N � 1)] = �i(N � 1)⇥ E[W (i)

s (N � 1)], (6.238)
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where �i(N � 1) denotes the arrival rate for station i in a closed Jackson network

with N � 1 customers (Gross and Harris, 1998, p. 190);

• the fact that the arrival rate to station i, �i(N � 1), can be obtained by multiplying

the throughput rate102

�?(N � 1) =
k
X

j=1

�j(N � 1) (6.239)

and the steady state probability ⇡i, that is,

�i(N � 1) = �?(N � 1)⇥ ⇡i. (6.240)

Thirdly, plugging equation (6.238) and (6.240) in (6.237) leads to:

E[W (i)
s (N)] =

1

µi

+
1

µi

⇥
�

�?(N � 1)⇥ ⇡i ⇥ E[W (i)
s (N � 1)]

 

, (6.241)

where the throughput rate of the closed Jackson network with N � 1 customers can be

obtained by recalling that the number of customers is fixed in a closed Jackson network,

i.e.,

k
X

i=1

E[L(i)
s (N � 1)] = N � 1

k
X

i=1

�i(N � 1)⇥ E[W (i)
s (N � 1)] = N � 1

k
X

i=1

�?(N � 1)⇥ ⇡i ⇥ E[W (i)
s (N � 1)] = N � 1

�?(N � 1) =
N � 1

Pk
i=1 ⇡i ⇥ E[W (i)

s (N � 1)]
. (6.242)

Finally, we get the recursion:

E[W (i)
s (N)] =

1

µi

+
1

µi

⇥ (N � 1)⇥ ⇡i ⇥ E[W (i)
s (N � 1)]

Pk
j=1 ⇡j ⇥ E[W (j)

s (N � 1)]
. (6.243)

(Ross, 2003, p. 504).

The next proposition is actually an algorithm to obtain E[W (i)
s (N)] and E[L(i)

s (N)]

via MVA.
102The throughput rate is the average service completion rate of the entire system, also known as the

throughput rate of the closed Jackson network (Ross, 2003, p. 502).
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Proposition 6.267 — Calculating E[W (i)
s (N)] and E[L(i)

s (N)] via MVA

E[W (i)
s (N)] and E[L(i)

s (N)] can be obtained as follows:

• Step 1 — Obtain the vector of the steady state probabilities using the equality

⇡ = [⇡i]i=1,...,k = 1⇥ (I�P + ONE)�1.

• Step 2 — Set

E[W (i)
s (1)] =

1

µi

, i = 1, . . . , k.

• Step 3 — Determine E[W (i)
s (2)], E[W (i)

s (3)], . . ., E[W (i)
s (N)] by using the recursion

E[W (i)
s (N)] =

1

µi

+
1

µi

⇥ (N � 1)⇥ ⇡i ⇥ E[W (i)
s (N � 1)]

Pk
j=1 ⇡j ⇥ E[W (j)

s (N � 1)]
.

• Step 4 — Set

�?(N) =
N

Pk
i=1 ⇡i ⇥ E[W (i)

s (N)]
.

• Step 5 — Set

E[L(i)
s (N)] = �?(N)⇥ ⇡i ⇥ E[W (i)

s (N)].

•

Exercise 6.268 — Calculating E[W (i)
s (N)] and E[L(i)

s (N)] via MVA, for a cyclic

queue with N = 2 customers

Consider a cyclic queue with k single-server stations and N = 2 customers.

Determine E[W (i)
s (N)] and E[L(i)

s (N)], for i = 1, . . . , k, by using the MVA (Ross, 2003,

pp. 504–505, Example 8.6). •

Exercise 6.269 — Calculating E[W (i)
s (N)] and E[L(i)

s (N)] via MVA, for a closed

Jackson network with N = 2 customers and 3 stations

Consider the closed Jackson network with N = 2 customers and k = 3 stations from

Example 6.256, but now assume all the stations have just one server.

Determine E[W (i)
s (N)] and E[L(i)

s (N)], for i = 1, . . . , k, by using the MVA (Gross and

Harris, 1998, pp. 191–192, Example 4.5). •
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Exercise 6.270 — Closed Jackson network with seven single-server stations

and 35 customers (Gross and Harris, 1998, p. 207, Exercise 4.17C)

Write a program in Mathematica to find the average number of customers and the average

time spent at each station, for a closed Jackson network with N = 35 customers circulating

between k = 7 single-server stations according to the routing matrix

P =

2
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and assuming the same service rates as in Exercise 6.242, that is:

• stations 1 and 2 have service rates of 85/min;

• stations 3 and 4 have service rates of 120/min;

• station 5 has a service rate of 70/min;

• stations 6 and 7 have service rates of 20/min. •

For a modification of the MVA algorithm for multiple-server stations, the reader is

referred to Gross and Harris (1998, pp. 193–194).
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6.10.4 Tandem queues with blocking and a few other networks

The main purpose of this very short section is to briefly introduce the reader to other

(not necessarily Markovian) queueing networks.

Let us start by addressing tandem queues with blocking (Gross and Harris, 1998, pp.

172-174). The probabilistic analysis of this sort of queue is rather complex, essentially

because of the blocking e↵ect. These are tandem queues with the following characteristics:

• no queue is allowed to form in any of the stations (Gross and Harris, 1998, pp. 172),

that is, none of the stations has a waiting area;

• if a station downstream comes up to capacity then any further processing at

upstream stations, which feeds it, is prevented (Gross and Harris, 1998, pp. 172).

The next exercise is actually an unnumbered example taken from Gross and Harris

(1998, pp. 172–174); it details how a tandem series with two single-server stations operates.

Exercise 6.271 — Tandem queues with blocking (and no waiting room)

Suppose two M/M/1 stations are set in series and interact as follows:

• all customers require service at both stations 1 and 2, in this specific order;

• if a customer is being served at station 2 and a service is completed at station 1,

the station 1 customer must wait there until the service of the station 2 customer is

completed; moreover, in this case the system is blocked and any arrivals to station 1

are rejected (namely because this station is not empty and it has no waiting area);

• if a customer is being served at station 1 then, even if station 2 is empty, any arriving

customers to station 1 are turned away;

• arrivals to the system (i.e., to station 1) are governed by a Poisson process with

parameter �.

Finally, services at stations 1 and 2 are independent and exponentially distributed with

parameters µ1 and µ2, respectively.

After having considered the following possible system states, essentially referring to

the number of customers in each station,
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(n1, n2) Description
(0, 0) empty system
(1, 0) customer in process at station 1; no customer in station 2
(0, 1) no customer in station 1; customer in process at station 2
(1, 1) two customers in process, one at each station
(b, 1) customer finished at station 1 but waiting for the completion of the

service of the customer at station 2 (system is blocked)

(a) draw the associated rate diagram;

(b) write the balance equations for this multidimensional CTMC;103

(c) obtain the steady state probabilities when µ1 = µ2 = µ.104

(Gross and Harris, 1998, pp. 172–174.) •

Tackling tandem queues, with a (positive and) finite waiting room and blocking, is

far more complex than the system described in Exercise 6.271. The complexity results

from having to write a balance equation for each possible state (Gross and Harris, 1998,

p. 173).

For more detailed accounts on this sort of tandem queues, the reader is referred to:

• Hunt (1956), who treated a two station tandem queue in which the waiting room of

station 1 is unlimited but no waiting is allowed between stations (Gross and Harris,

1998, p. 173);

• Perros (1994), a good general reference on queueing networks with blocking (Gross

and Harris, 1998, p. 173).

As for other types of Jackson networks, open Jackson networks with multiple customer

classes are briefly addressed by Gross and Harris (1998, pp. 182-183).

For extensions of open Jackson networks with state-dependent service105 and state-

dependent arrival rate, the reader is referred to Kulkarni (1995, pp. 367–369, sections 4.1

103According to Gross and Harris (1998, p. 173) they are: 0 = �� p(0,0) + µ2 p(0,1); 0 = �µ1 p(1,0) +
µ2 p(1,1) + � p(0,0); 0 = �(� + µ2) p(0,1) + µ1 p(1,0) + µ2 p(b,1); 0 = �(µ1 + µ2) p(1,1) + � p(0,1); 0 =
�µ2 p(b,1) + µ1 p(1,1).

104They can be found in Gross and Harris (1998, p. 173): p(0,0) = 2µ

2

3�

2+4�µ+2µ

2 ; p(1,0) = �(�+2µ)
2µ

2 ⇥p(0,0);
p(0,1) = �

µ

⇥ p(0,0); p(1,1) = �

2

2µ

2 ⇥ p(0,0); p(b,1) = �

2µ

2 ⇥ p(0,0).
105Actually, when we are dealing with a M(�

i

)/M(µ
i

)/m
i

station with m
i

> 1, the service rate at this
station is equal to min{m

i

, n}⇥µ
i

when there are n customers at that node, thus state dependent. Thus,
what Kulkarni (1995, p. 367, Section 4.1) proposes is to further extend this model.
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and 4.2). However, it is worth mentioning that these two extensions of Jackson networks

have been originally treated by Jackson himself in his 1963 paper (Gross and Harris, 1998,

p. 200). Interestingly, the open Jackson networks with state-dependent service considered

by Kulkarni (1995, p. 367) admit a product-form solution involving independent r.v., and

so does an open Jackson networks with state-dependent arrival rate; however, the queues

at various nodes are not associated to independent r.v. (Kulkarni, 1995, p. 368).

Finally, Gross and Harris (1998, pp. 200-204) has an interesting discussion on these

and other queueing networks.
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