
Vasculature Optimization of Actively-Cooled Materials

Gonçalo Ferreira Nunes Gouveia Valente

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisor(s): Prof. Alejandro M. Aragón (TU Delft)

Prof. André Calado Marta (IST)

Examination Committee

Chairperson: Prof. Filipe Szolnoky Ramos Pinto Cunha

Supervisor: Prof. André Calado Marta

Member of the Committee: Prof. João Orlando Marques Gameiro Folgado

June 2016

ii

Dedicated to my beloved family and friends

iii

iv

Acknowledgments

First and foremost, I would like to thank my supervisors Professor Alejandro M. Aragón and Professor

André Calado Marta, the first for the guidance and support that allowed me to reach as far as I did in

this project, the second for the constant feedback and interest in the project and this document as well

as in my concerns, and both for their patience during the months it took me to complete this thesis.

Next, I would like to thank the TU Delft university and more specifically the Mechanical, Maritime

and Materials Engineering (3mE) Department for providing me the research topic and the infrastructure

needed for this project. The feedback provided in my progress presentations was also very helpful.

I would also like to thank my lab mates at TU Delft for being supportive and always up for a brainstorm

session that has always been crucial in solving the issues that appeared during the course of this work.

Finally, I would like to thank all my friends and family for their love and support ever since I needed

it. Their help has been important for my entire academic path but the remote support over the last few

months of completing this thesis was crucial.

Without the help and support from this big group of people, this project and my academic path would

not have been possible. Thank you everyone!

v

vi

Resumo

Com a vontade de explorar todas as possibilidades do imaginário da humanidade surgiu o mundo da

engenharia. Em aplicações de engenharia onde os processos de transferência de calor estão presentes

surgem os materiais vasculares arrefecidos activamente, que fornecem motivação para esta tese.

O objetivo deste trabalho é implementar as ferramentas necessárias para modelar e optimizar

problemas de transferência de calor conjugados (o calor dispersa-se pelo domı́nio não só através de

condução mas também de convecção).

Com o desejo de uma implementação independente da configuração dos canais associado ao pro-

cesso de optimização, é necessário encontrar uma solução de discretização inovadora, técnica que foi

encontrada no Interface-enriched Finite Element Method.

As equações que definem a transferência de calor nas duas fases de materiais vasculares são difer-

entes. Nas regiões dominadas por convecção, as formulações de elementos finitos padrão são inefi-

cazes e é necessário encontrar uma solução diferente, tendo-se escolhido o Streamline Upwind/Petrov-

Galerkin.

Estando integrados num grupo de trabalho na TU Delft, todos os aspectos de implementação fazem

parte de uma ferramenta computacional desenvolvida pelo referido grupo (hybrida).

Seguindo as premissas acima, foi possı́vel comparar resultados com testes de verificação para os

métodos discutidos e também optimizar geometrias vasculares, minimizando a temperatura maxima no

seu domı́nio.

Usando a abordagem e resultados descritos, foi possı́vel concluir que o trabalho desenvolvido re-

sultou na aplicação correcta de cada método e também que a sua combinação é eficiente e eficaz na

modelação e optimização de problemas de transferência de calor conjugados definidos por domı́nios

vasculares arrefecidos activamente.

Palavras-chave: Interface-enriched Finite Element Method, Streamline Upwind/Petrov-Galerkin,

Convecção de Calor, Optimização.

vii

viii

Abstract

Associated with an eagerness to explore every possibility from humankind imagination came the field

of engineering. In engineering applications where heat transfer processes are present arise vascular

actively-cooled materials, which provide motivation for this thesis.

The goal of this work is to implement the tools required to model and optimize conjugated heat

transfer problems (heat disperses through the domain not only via. heat conduction but also convection).

In order to obtain an implementation that is independent of the configuration of the cooling channels

(important for the optimization process), an innovative solution for the discretization method is in order,

which can be found in the Interface-enriched Finite Element Method.

The equations that define heat transfer in the two phases of vascular materials are different. In the

convection dominated regions, the standard finite element formulations are ineffective and it is necessary

to find a different solution, being the Streamline Upwind/Petrov-Galerkin techique the chosen one.

Being developed in a work group at TU Delft, all implementation aspects are integrated in hybrida, a

computational tool developed by said group.

Following this procedure made it possible to match results with verification tests for the discussed

methods and also to optimize vascular geometries by minimizing their maximum domain temperature.

Using the approach and results described above, it has been possible conclude that the developed

work resulted in the correct implementation of each method and also that their combination is effective

and efficient modeling and optimizing conjugated heat transfer problems defined by vascular actively-

cooled domains.

Keywords: Interface-enriched Finite Element Method, Streamline Upwind/Petrov-Galerkin, Heat

Convection, Optimization.

ix

x

Contents

Acknowledgments . v

Resumo . vii

Abstract . ix

List of Tables . xv

List of Figures . xvii

Nomenclature . xix

Glossary . xxi

1 Introduction 1

1.1 Perspective and Motivation . 1

1.1.1 History . 1

1.1.2 Bio-Mimetic Approach . 1

1.1.3 Actively-Cooled Materials and their Applications 2

1.1.4 Interest in the Topic . 4

1.2 Objectives and Work Overview . 4

1.3 Thesis Outline . 6

2 Theoretical Background 7

2.1 Background in Heat Transfer . 7

2.1.1 Heat Conduction in the Solid Phase . 7

2.1.2 Heat Convection in the Fluid Phase . 9

2.1.3 Boundary Conditions . 11

2.2 Mathematical Fundamentals in Solid Mechanics . 12

3 Discretization Method - IGFEM 15

3.1 Finite Element Method Fundamentals . 15

3.2 Requirements . 16

3.3 Interface-enriched Generalized FEM . 17

3.3.1 Formulation . 18

3.3.2 1D Sample Problem . 19

3.4 Implementation . 23

3.4.1 Geometric Engine . 23

xi

3.4.2 Elemental Assembly . 30

3.5 Verification . 33

3.5.1 Error Norms . 33

3.5.2 2D Plate: Patch Test . 33

3.5.3 Eshelby Inclusion Problem . 36

3.6 Other Topics . 39

3.6.1 Enrichment Functions Scaling . 39

4 Weighted Residual Formulation - SUPG 41

4.1 Requirements . 41

4.2 Streamline Upwind/Petrov-Galerkin method . 42

4.2.1 Problem Statement for the Conjugate Heat Transfer Problem 43

4.2.2 Formulation . 44

4.3 Implementation . 45

4.4 Verification . 46

4.4.1 1D Convection Approximation . 46

4.4.2 Convection Skew to the Mesh . 48

5 Test Cases Modeling Results 53

5.1 CPU Cooler Test Case . 53

5.1.1 Problem Description . 53

5.1.2 Implementation Efficiency . 56

5.1.3 Solution . 57

5.2 Engine Cylinder Test Case . 58

5.2.1 Problem Description . 58

5.2.2 Solution . 60

6 Optimization Fundamentals 63

6.1 Problem Formulation . 63

6.2 Optimization Tool . 64

6.3 Optimization Methods . 64

6.4 Selected Method . 66

7 Test Case Optimization Results 67

7.1 Bounds and Constraints . 67

7.2 Enhanced Solution . 68

8 Conclusions 75

8.1 Achievements . 75

8.2 Future Work . 77

Bibliography 79

xii

A Inclusion Problem Convergence 83

A.1 Analytic Derivatives of the Displacement Field . 83

A.1.1 Inside the Inclusion . 83

A.1.2 Outside the Inclusion (matrix) . 83

xiii

xiv

List of Tables

5.1 Computation times vs. number of finite elements. 56

7.1 Test case optimization results. 69

xv

xvi

List of Figures

1.1 Honeycombs from Wahl et al. [4]. 2

1.2 Vascular materials (from Lucas et al. [7], Nilsson [8] and Soghrati and Geubelle [9]). . . . 3

1.3 Active-cooling in a scramjet from Saravanamuttoo et al. [13]. 3

1.4 hybrida’s original structure. 5

1.5 Objectives flowchart. 6

2.1 Illustration of heat conduction. 8

2.2 Concept and classifications of heat convection. 10

2.3 Relevant boundary layer types (from Bergman et al. [6]). 10

2.4 1D linear elastic solid under traction load. 13

3.1 Mesh generation issues. 16

3.2 1D IGFEM sample problem geometry. 19

3.3 Solution of 1D bar IGFEM example. 23

3.4 Modifications to code’s structure due to geometric engine. 24

3.5 Geometric engine result in a square domain. 28

3.6 Geometric engine result in a circular domain. 29

3.7 Preliminary modeling of vascular material. 30

3.8 Modifications to code’s structure due to assembly. 30

3.9 2D bi-material plate problem statement for the convergence study. 34

3.10 2D bi-material plate problem. 36

3.11 2D circular inclusion problem statement. 37

3.12 2D circular inclusion. 38

3.13 Enrichment function scaling. 39

3.14 Condition number. 40

4.1 Temperature distribution solution in 1D bar to point out spurious oscillations. 42

4.2 Sample 2D domain for conjugate heat transfer problem. 43

4.3 1D fluid bar. 46

4.4 Analytic and Galerkin temperature distribution solution in 1D bar for multiple Péclet num-

bers. 47

4.5 Exact and central difference solution for convection in 1D bar. 48

xvii

4.6 Analytic and SUPG temperature distribution solution in a bar. 49

4.7 Convection skew to the mesh problem statement. 49

4.8 Analytic temperature distribution for skew convection from Brooks and Hughes [44]. . . . 50

4.9 Galerkin temperature distribution for skew convection from hybrida. 50

4.10 Galerkin temperature distribution for skew convection from Brooks and Hughes [44]. . . . 50

4.11 SUPG temperature distribution for skew convection from hybrida. 51

4.12 SUPG temperature distribution for skew convection from Brooks and Hughes [44]. 51

5.1 CPU cooler test case baseline geometry and sample mesh. 54

5.2 Hagen–Poiseuille velocity profile from White [18]. 55

5.3 Sample mesh for A = 2mm, nsw = 2 . 55

5.4 Mesh convergence study. 56

5.5 CPU cooler test case baseline geometry solution. 57

5.6 Engine cylinder test case geometry. 59

5.7 Engine cylinder test case solution. 60

5.8 Temperature distribution along exit of cooling channel for engine cylinder test case. 61

7.1 Evolution of relevant optimization data with iteration number. 71

7.2 CPU cooler optimization problem’s result for A = 2mm and nsw = 2. 71

7.3 CPU cooler optimization problem’s result for A = 4mm and nsw = 4. 72

7.4 CPU cooler optimization problem’s result final design in 2D. 72

7.5 CPU cooler optimization problem’s result final design 3D views. 73

7.6 Temperature distribution along bottom boundary of the cooler. 74

xviii

Nomenclature

Greek symbols

α Thermal diffusivity of the material.

σ Stress vector.

ǫ Strain.

λ Second Lamé constant.

µ First Lamé constant.

ν Poisson’s ratio.

ψ Enrichment function.

ρ Volumetric mass density.

τ SUPG stabilization factor.

Roman symbols

a Cooling channel amplitude.

A Cross-sectional area.

b Body force vector.

cp Specific heat at constant pressure.

E Young’s modulus of elasticity.

f Heat source.

k Thermal conductivity of the material vector.

L Domain length.

ṁ Mass flow rate.

N Standard Lagrangian shape function.

nsw Number of sinusoidal waves in the horizontal direction of the domain.

xix

∆p Cooling channel pressure drop due to viscous effects.

Pe Péclet number.

q Heat transfer rate.

q′′

x
Heat flux.

q̇ Rate of energy generation per unit volume.

ri Inclusion radius.

ru Outer radius.

s Scaling factor.

t Traction force.

T Temperature.

u Main variable in finite element problem.

v Coolant velocity in the flow direction at a specified point.

w Finite element method weight function.

Subscripts

θ Azimutal coordinate.

i Evaluated at the ith standard node.

j Evaluated at the jth interface node.

k In the direction of the flow.

r Radial coordinate.

x, y, z Cartesian components.

Superscripts

h Approximated using a finite element method.

T Transpose.

xx

Glossary

1D One-dimensional.

2D Two-dimensional.

3D Three-dimensional.

BC Boundary Condition.

BFGS Broyden-Fletcher-Goldfarb-Shanno is an opti-

mization method from the SciPy library.

BL Boundary Layer.

CCW Counterclockwise.

CFD Computational Fluid Dynamics is a branch of

fluid mechanics that uses numerical methods

to solve problems that involve fluid flows.

CG Conjugated Gradient is an optimization method

from the SciPy library.

CPU Central Processing Unit.

FEM Finite Element Method is a numerical tech-

nique used for finding approximate solutions to

boundary value problems described by partial

differential equations.

GFEM Generalized Finite Element Method is a modifi-

cation of the standard Finite Element Method

that combines desirable features from it and

meshless methods.

IGFEM Interface-enriched Generalized Finite Element

Method is a modification of the Generalized Fi-

nite Element Method.

L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-

Shanno is an optimization method from the

SciPy library.

PDE Partial Differential Equation.

xxi

SLSQP Sequential Least SQuares Programming is an

optimization method from the SciPy library.

SUPG Streamline Upwind/Petrov Galerkin is a stabi-

lization technique used for alleviating the spu-

rious oscillations presented by the Galerkin

method modeling convection dominated flows.

TNC Truncated Newton is an optimization method

from the SciPy library.

XFEM eXtended Finite Element Method is a modifica-

tion of the Finite Element Method.

xxii

Chapter 1

Introduction

This introductory chapter is divided into three sections and intends to report on the motivation to study

vascular actively-cooled materials, to break that interest into explicit objectives and milestones and to

provide a short summary of the chapters that follow.

1.1 Perspective and Motivation

The objective of this section is to situate the topic of vascular actively-cooled materials that is addressed

in this dissertation in the global field of engineering, to introduce some basic concepts associated with

said topic and to conclude about the interest in studying it.

1.1.1 History

As the years are going by, the engineering inventions are getting more advanced and complex, with an

outburst of new technologies and respective applications. With the appearance of advanced applica-

tions, a need for new materials that have certain characteristics has been created. Due to this demand

for new materials and improvement of existing technologies, materials research is an extremely dynamic

field and the field of Materials Science and Engineering, which deals with the discovery and design of

new materials, appeared and developed.

1.1.2 Bio-Mimetic Approach

One of the ways that is used within the field of Materials Science and Engineering to design or improve

materials is to employ nature’s solutions to deal with a certain problem. The materials that arise from this

process can be called bio-mimetic and the chosen solutions being discussed here have already been

time tested by nature through evolution and improved if successful (Bar-Cohen [1]).

Applications for these bio-mimetic materials range from biology and medicine to the more relevant

topic of designing structural materials (with many other in the middle).

1

Before focusing on the topic at hand, it is necessary to take a step back and access the feasibility

of bio-mimetic materials. According to Stone [2] and Fratzl [3], one may conclude that the successful

implementations of bio-mimetic materials (or rather the employment of nature’s solutions in engineering

problems) may not be as straight-forward as imitating nature. The specific limitations that have to be

dealt with in the topic of this thesis are described a few paragraphs below.

Moving from bio-mimetic materials in general to (bio-mimetic) structural materials intended for engi-

neering applications, one can also find a wide range of applications. To provide an example of something

that is probably already familiar to anyone with an engineering background, one can refer to man-made

honeycomb structures, represented in Figure 1.1(b). Man-made honeycomb structures are bio-mimetic

materials (inspired by natural structures such as beehives, Figure 1.1(a), and bone) with the goal of

minimizing the amount of used material to reach minimal weight and minimal material cost. Despite

having been used by men for more than 3000 years, these structures are used in complex applications

in fields such as aerospace, automotive and railway (more information on honeycomb structures can be

found in Wahl et al. [4]).

(a) Beehive honeycomb structure (b) Man-made honeycomb sandwich panel

Figure 1.1: Honeycombs from Wahl et al. [4].

1.1.3 Actively-Cooled Materials and their Applications

As described in the tittle of this dissertation, the main topic to be discussed here is vascular active-

cooled materials. Although the name may be self-explanatory, it is tough to be important to provide

the definitions of (man-made) vascular materials and active-cooling. Man-made vascular materials are

designed using the vascular system found in plants and animals (both shown in Figure 1.2(a) and (b)) for

inspiration and can be used to introduce characteristics such as active-cooling (mimicking a circulatory

system and using a coolant as the circulating fluid) and even self-healing (described in Toohey et al. [5]).

On the other hand, the term active-cooling simply clarifies that the method of cooling makes use of an

external force to drive the coolant in the channels, unlike natural forces such as gravity (Bergman et al.

[6]). Finally, Figure 1.2(c) represents a computational implementation of actively-cooled materials.

When comparing the described vascular approach to cooling against the traditional ones, such as

solid fins (extended surfaces), one key advantage arises. This advantage is the redistribution of heat in

the medium, which reduces the maximum temperature (Soghrati et al. [10]). This heat redistribution is a

2

(a) Plants (b) Animals (c) Implementation

Figure 1.2: Vascular materials (from Lucas et al. [7], Nilsson [8] and Soghrati and Geubelle [9]).

result of the convection within the fluid phase and opens the door for high-temperature applications.

Although high-temperature applications are present in several engineering fields, it is thought to

be interesting to name at least one example in aerospace engineering. This application is lightweight

actively-cooled panels for use in combustors. Having been researched in several academic papers (like

Valdevit et al. [11] or Vermaak et al. [12]), the use of an active-cooling strategy allows for the internal

surfaces of the combustor in a scramjet engine to withstand the combination of combustion heat fluxes

and aerodynamic heating without exceeding the limit temperatures of the composing materials. Figure

1.3 presents a schematic of a block of actively-cooled material and its application in a scramjet engine.

(a) Schematic of actively cooled panel (b) Render of hypersonic vehicle

Figure 1.3: Active-cooling in a scramjet from Saravanamuttoo et al. [13].

Resuming the above paragraph on the possible difficulties of applying a bio-mimetic solution to an

engineering problem and focusing on the problem of active-cooling, one can intuitively think that the

topology of the vascular system will affect the mechanical properties of the designed material and, more

to the case, its thermal performance. Considering this, an interest in the usage of an optimization tool

also arises as a way to check how much the thermal performance of a certain material employed in a

determined test case can be improved.

3

1.1.4 Interest in the Topic

Taking the challenges described in the previous subsections into consideration, the interest to develop

a dissertation on the subject appears as an answer to “how the cooling channels’ configuration affects

the thermal and mechanical performance in a determined test case?” is desired. The work on this

subject has at its core the development of numerical and discretizaton tools that can, effectively and

efficiently, help with the design and optimization of bio-mimetic vascular materials with the objective of

active-cooling by solving the conjugate heat transfer problem (conduction and convection).

The interest in exploring this topic is thought to be clear with what was mentioned so far, as well as

the interest in developing a computational tool that accomplishes the capabilities listed above.

The creation of the described numerical tool is not a simple task due to the large number of de-

sign variables involved (Aragón [14]) and to the particular numerical and discretization techniques that

are needed to accurately model the geometries that need to be studied and represent all the involved

phenomena. One key observation for this is that, in addition to having to deal with different material

properties (solid and coolant), the convection in the coolant (fluid phase) must be considered in the nu-

merical solution, which means that there is a change not only in the material properties but also in the

governing equations (according to Soghrati et al. [10]).

Despite the possible difficulties, coupling the implementation of the required numerical and discretiza-

tion models with an optimization process could lead to interesting results, which provides further moti-

vation to take this project forward.

1.2 Objectives and Work Overview

The goal of this section is to provide a clear plan for the translation of the interest in the topic, which was

thoroughly described in Section 1.1, into a list of explicit objectives and milestones.

Before describing the concise objectives of the work, it is worth mentioning that the topic of this

thesis was introduced by Technische Universiteit Delft as a master thesis proposal and the tools to be

explained are integrated in a project within the Structural Optimization and Mechanics (SOM) group in

the 3mE department called hybrida (see Aragón [15]), a new finite element method (FEM) package that

is being developed by said group. This finite elements tool is being developed with the main goals of

rapid development, performance and complete control and its structure (at least to the date of writing of

this document) is presented in Figure 1.4. In the presented structure schematic, the thicker rectangle

with the title igfem is a completely new module that is introduced during the course of this project and

the boldface dashed line rectangle with the title mesh is a module where modifications are introduced

also during the course of this project.

To get the results that are crucial to the development of a thorough research on the topic for this dis-

sertation, there is an intent in developing an implementation of the numerical and discretization methods

necessary to model a two-dimensional (2D) vascular block of material with active cooling within hybrida

and later on to study ways of optimizing the vascular channels’ distribution.

4

Figure 1.4: hybrida’s original structure.

Not only to make this document easier to analyze and follow but also as a way creating a thread to

help the work to maintain the intended trajectory, it is convenient to start by dividing it into a few key

milestones. These milestones are related to the implementation of the required numerical methods and

programming in general (integrated in hybrida) whereas the analysis and conclusions on the obtained

results are considered to be implicit in these milestones, which are:

1. Implementation of the Interface-enriched Finite Element Method (IGFEM, the discretization model);

2. Verification of IGFEM implementation;

3. Implementation of the Streamline Upwind/Petrov-Galerkin (SUPG, the weighted residual formula-

tion);

4. Verification of SUPG implementation;

5. Using implemented tools to study the optimization of vascular channels’ distribution, with the goal

of obtaining the best geometry for a given set of boundary conditions.

As a way to systematize the objectives listed above and to visualize the main programming mile-

stones, a flowchart containing the main milestones is presented in Figure 1.5.

5

Figure 1.5: Objectives flowchart (programming milestones).

1.3 Thesis Outline

This final section of the introductory chapter presents the dissertation’s structure and the contents of the

chapters that follow. The remaining chapters try to answer all the questions that can arise from the topic

in the best and most complete way.

This thesis is divided into seven chapters: the first (this one) is an introduction and motivation for the

work (where the relevance and the interest in the subject is described).

In Chapter 2, a literature review of heat transfer and solid mechanics is presented in order allow the

reader to understand the physical phenomena behind problems that are going to be analyzed.

Chapters 3 and 4 do an overview of the numerical methods that need to be employed, starting with

the concept of those methods and their formulation and moving on to the topics of implementation,

application examples and verification of the implementation in hybrida.

Chapter 5 showcases the power of the union of IGFEM and SUPG by modeling an actively-cooled

vascular material block with BCs and geometry that mimic a CPU cooler using the developed implemen-

tation.

Chapter 6 is where everything related to the optimization process is presented, from the goals and a

basic explanation of the geometry to the choices made regarding the optimization method and problem

formulation.

Applying all the described methods and tools, Chapter 7 presents extensive results of the optimiza-

tion of the CPU cooler geometry introduced in Chapter 5.

Finally, Chapter 8 is the conclusion of this project and a summary of all the findings in it, also including

some suggestions for future work.

6

Chapter 2

Theoretical Background

The objective of this chapter is to describe the theoretical concepts relevant to the study of actively-

cooled vascular materials. To do this, Section 2.1 introduces the fundamental concepts needed to un-

derstand the phenomenon of heat transfer in these materials. Being a basic concept review, a thorough

mathematical deduction is not the main goal.

On the other hand, Section 2.2 provides a brief overview on the solid mechanics concepts that are

relevant to do the verification of the discretization method to be discussed in Chapter 3. Because solid

mechanics is not a subject directly linked to the subject being studied but more like a tool that helps

implementation verification, this literature review focuses on mathematical concepts instead of physical

ones.

Finally, it is important to understand that the concepts presented here describe the physical phenom-

ena in a qualitative way, while Chapters 3 and 4 approach the solutions to implement them.

2.1 Background in Heat Transfer

2.1.1 Heat Conduction in the Solid Phase

Conduction is the dominant heat transfer process that occurs within the solid phase of a material block

and it should be viewed as the energy transferal process that happens between particles at a greater

temperature, which have more molecular energy, i.e. have a more intense random motion, and particles

at a smaller temperature, which have less molecular energy, i.e. less intense random motion, due to

interaction between them (Bergman et al. [6]). A simple illustration of the process is presented in Figure

2.1, where q′′ is heat flux (concept explained below).

Before introducing and explaining any further concepts, it is important to state the major goal of the

thermal analysis to be implemented in the computational tool that will model the vascular material under

analysis which, like in any normal heat conduction analysis, is to determine the temperature field within

a block of material resulting from the imposed boundary conditions (BCs).

The objective of determining the temperature distribution in a medium comes down to solving the

appropriate form of the heat equation, which can derived from the Fourier’s Law in Bergman et al. [6],

7

Figure 2.1: Illustration of heat conduction within a 1D solid from Bergman et al. [6].

applying the BCs that characterize the problem. Thus, in a one-dimensional (1D) problem, one must get

the T (x) solution, in a 2D problem T (x, y) and, finally, T (x, y, z) for a three-dimensional (3D) problem.

This work focuses on computing temperature distributions on a 2D domain ergo the solution to obtain

has the T (x, y) form.

Although a complete mathematical demonstration of the method used to derive the heat equation

is a little outside the scope of this work, it is thought to be important to provide an explanation of the

fundamental concepts of heat conduction that are required to accomplish this.

The first concept to present when analyzing heat transfer processes is always the heat transfer rate,

which for the case of conduction is called conduction rate. For a simpler understanding of the concepts,

this description begins with the one dimensional case and is then generalized when appropriate. The

rate of conduction in the x direction is given by Equation (2.1) (the equations for the y and z direction

follow the same principle) and the minus sign in it indicates that heat is always transferred in the direction

of decreasing temperature (following the convention presented in Bergman et al. [6] and represented in

Figure 2.1) and is proportional to the temperature gradient in the corresponding direction,

qx = −kA
dT

dx
, (2.1)

where k is the thermal conductivity of the material in the x direction, A is the cross-sectional area and T

is the temperature.

Removing the cross-sectional area from the equation introduces the concept of heat flux,

q′′x = −k
dT

dx
. (2.2)

This time, the appropriate rate equation accounts for the amount of energy being transferred per time

and unit area and is known as Fourier ’s Law, once again proportional to the temperature gradient in the

corresponding direction.

At this moment, it is appropriate to generalize the concepts described thus far. To do this, it is

necessary to realize that in 2D and 3D heat is transferred in all of the available directions, i.e. is a vector

quantity. Consequently, a general form of the Fourier ’s Law can be written

8

q′′q′′q′′ = −k~▽T = −k

(

iii
∂T

∂x
+ jjj

∂T

∂y
+ kkk

∂T

∂z

)

, (2.3)

where the boldface symbols represent vector quantities, being i, j, k the unit vectors along the x, y, z

directions, respectively.

Heat equation

To achieve the major goal of the thermal analysis stated in the beginning of Subsection 2.1.1 (compute

the temperature distribution in a block of material), it is necessary to solve the correct form of the heat

equation. The process of obtaining the heat equation is now going to be briefly described.

Using the above described concepts, one of the methods that can be used to derive the heat equation

is to apply energy conservation to a differential control volume. For this control volume, it is necessary

to identify the relevant energy transfer processes and introduce the appropriate rate equations. This

mathematical demonstration is thoroughly explained in Bergman et al. [6] and the heat equation for

conduction in Cartesian coordinates, simplified for a material with constant thermal conductivity in all

directions, which is suited for the case being studied, yields

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
+
q̇

k
=

1

α

∂T

∂t
, (2.4)

where q̇ is the rate of energy generation per unit volume and α = k/(ρcp) is the thermal diffusivity of

the material, the ability to conduct thermal energy relative to its ability to store thermal energy. For the

definition of α, ρ is the volumetric mass density and cp the specific heat at constant pressure.

The solution of Equation (2.4) yields the temperature distribution T (x, y, z) as a function of time and

is, as mentioned above, the key to conduct an heat conduction analysis.

When applied to a 2D domain in a steady state regime, the heat equation becomes simpler

∂2T

∂x2
+
∂2T

∂y2
+
q̇

k
= 0 , (2.5)

and, resorting to an adequate computational strategy, is adequate to study the temperature distribution

in the solid phase of the type of vascular materials that is under analysis.

In order to solve any differential equation, it is necessary to have the correct BCs. The possible types

of BCs used to solve the heat equation can be found in Subsection 2.1.3.

2.1.2 Heat Convection in the Fluid Phase

Considering that the actively-cooled vascular materials under analysis have a moving fluid phase and

according to Soghgrati et al. [16] and Soghrati and Geubelle [9], the phenomenon of heat advection is

not only non negligible but also dominant in describing the heat transfer process.

In addition to the heat transferred by conduction, which is described above in Subsection 2.1.1, heat

is also transferred via the macroscopic motion of the fluid if a temperature gradient exists. The total

9

heat transferal by convection is thus constituted by the combination of two effects (Bejan [17]): heat

conduction and this newly described process that takes place due to the macroscopic motion of the fluid

(bulk fluid motion), which is often called advection.

The concept of convection is somewhat broader than conduction in the sense that there are various

types of convection, which means that it is convenient to categorize it. Considering the vascular materials

that are being studied, the nature of the flow can be said to be both internal, meaning it is confined by

a surface and forced, with an external driving force. Figure 2.2 provides a clear overview of the relevant

categories that are used to define convection.

Figure 2.2: Concept and classifications of heat convection.

The mathematical concept of convection (the heat equation that defines it) has one more term than

conduction. As the goal here is not a thorough mathematical review and the cases being studied are

simplified (mostly because they are 2D), only a few key concepts are presented.

To study convection (even in a brief approach like this one), it is necessary to have a basic un-

derstanding of the concept of boundary layer (BL). In the case of the internal flow being studied, the

fundamental concepts are those of velocity BL and thermal BL (see White [18]). A velocity BL develops

whenever there is a fluid motion over a body due to the non-slip condition in the surface and the dimen-

sion of this BL is dependent on the presence of velocity gradients and shear stresses within the particles

of the flow. On the other hand, the thermal BL develops if there is a temperature gradient between the

fluid stream and the surface and the dimension depends on the temperature gradient and properties of

the flow. Both types of BLs are represented in Figure 2.3.

(a) Velocity BL (b) Thermal BL

Figure 2.3: Relevant boundary layer types (from Bergman et al. [6]).

The result of the existence of these BLs is translated (when implementing the flow in the cooling

10

channels) into parabolic flow velocity profiles inside them. These velocity profiles are explained in further

detail when needed to model the flow inside the cooling channels. It is important to mention that the

fluid flow is considered to be fully developed throughout the domain, which means that that effects of

both velocity and thermal BLs have spread throughout the fluid in the channel all over the domain.

The added complexity in the energy balance (where, like in what was described for heat conduction,

it is necessary to identify the relevant energy transfer processes and introduce the appropriate rate

equations) due to the existence of a moving fluid in the medium means that it is also necessary for

perform a mass flux analysis.

Considering all that is mentioned above about the temperature distribution resulting from convection

and the fact that it results in an added term to the equations that have to be solved in order to obtain

temperature distributions, these equations are only presented in following chapters, where their terms

can explained in the context of implementation, which is more useful than a vague description here.

Finally, it is worth mentioning that the BCs that are presented in Subsection 2.1.3 also apply to the

more complete heat equations that need to be solved also considering convection within the domain.

2.1.3 Boundary Conditions

To get a solution for the heat equation (resulting in the temperature distribution), the correct BCs must

be used. These correct BCs affect the solution and correspond to physical conditions existing in the

boundaries of block of material being analyzed. If the problem is not steady-state, i.e. is time-dependent,

the initial conditions in the medium also need to be accounted for.

Analyzing Equation (2.5) one logically concludes that, because this equation is second order in

space, it is necessary to enforce two BCs for each coordinate needed to describe the system. On the

other hand, because the type of problems being analyzed is steady-state (stationary problems), there is

no need to specify a temporal BC.

As the name implies, BCs are applied to the boundary of the domain under analysis, which means

that, for the 2D domains being studied, they can be applied to the line edges of the domain. The BCs

relevant to the problem can be divided into three major categories (see Bergman et al. [6]):

1. Dirichlet BC (or BC of the first kind) - the temperature of the edge in question is fixed.

2. Neumann BC (or BC of the second kind) - fixed heat flux, related to the temperature gradient at

the edge in question by Fourier’s law (Equation 2.3)

− k
T

xi

∣
∣
∣
∣
xi=0

= qS” (2.6)

3. Robin BC (or BC of the third kind) - this kind of BC is related to the existence of a convection heat

transfer process at the edge in question and it is not used during the course of this work.

11

2.2 Mathematical Fundamentals in Solid Mechanics

As mentioned, the concepts and equations provided by the field of solid mechanics are used only as a

source of results to check the implementation of the discretization method chosen to model the vascular

materials, which means that this section is short and concise to envision only the basics.

The first step to explore the relevant concepts is to consider a 3D body made of a linear elastic

material, which is subject to point loads, meaning they are applied to a specific point on the domain,

as well as body forces which act throughout the volume of a body, for example gravity. The equilibrium

equation for the body being considered is (from Reddy [19])

∇ · σ + b = 0 , (2.7)

where σ is the stress along the domain and b is the body force. This equation states that the sum of the

point loads (left term) with the body force (right term) is null, which means that the body is in equilibrium.

Although this work focuses on 2D problems and the verification of the discretization method’s imple-

mentation takes place using test cases of this dimension, it is relevant to review the 1D linear elastic

deformation equations of bars under tension because it is also used (in Chapter 3) to present a simple

explanatory example of this discretization method. On the other hand, the analytic solution for one of

the test cases for verification can also be approximated to a 1D field. Taking only the x component in

Equation 2.7, it is possible to obtain the equilibrium equation in 1D with an integration in y and z

dσ

dx
+ b(x) = 0 . (2.8)

Considering the constitutive equation for linear isotropic materials, also known as Hooke’s law (σ =

εE), one obtains the first expression in Equation (2.9). Considering that the extension is nothing more

than the derivative of the axial displacement caused by the applied loads, it is possible to obtain the

second expression. On the other hand, for a material with constant Young’s modulus, one can write the

last expression,

dEAε

dx
+ b(x) = 0 ⇒

d

dx

(

EA
du

dx

)

+ b(x) = 0 ⇒ EA
d2u(x)

dx2
+ b(x) = 0 , (2.9)

where E is the Young’s modulus of the material, ε is the strain and u(x) is the axial displacement.

According to Gould [20], the necessary equations to deal with a linear elastic solid under static

equilibrium like the one in Figure 2.4 have already been combined and obtaining the displacement

solutions now comes down to integration and enforcing BCs.

Returning to the last expression of Equation (2.9) and integrating it twice in space (x), the displace-

ment field solution is obtained as a function of the body force (in this case a distributed load) and of the

BCs (to be obtained for each problem).

Eu(x) +

∫ ∫

b(x) dx = C1x+ C2 . (2.10)

12

F

b(x)

Figure 2.4: 1D linear elastic solid under traction load.

The second test problem that is used to verify the discretization model’s implementation in Chapter

3 is more complex and cannot be solved using an 1D approximation. Because of everything mentioned

so far, it is not within the main topic of this work to derive more complex solid mechanics equations,

which means that the results of the implementation are compared with analytic solutions obtained from

literature (Sukumar et al. [21]) which are presented when necessary.

This ends this chapter on theoretical fundamentals and background, which means that all of the theo-

retical concepts that describe qualitatively the physical phenomena that is computationally implemented

with the techniques discussed in Chapters 3 and 4 have been discussed.

13

14

Chapter 3

Discretization Method - IGFEM

3.1 Finite Element Method Fundamentals

As is mentioned above in the introduction to this chapter, the FEM tool is used in this work to approximate

the solutions of PDEs and get approximate boundary values with adequate levels of accuracy. The

FEM envisions two main aspects, which are the discretization method (being discussed here) and the

weighted residual formulation (which is approached in Chapter 4).

Using just a few lines of text to describe the two main aspects of FEM mentioned (a complete formu-

lation of the FEM is thoroughly presented in Reddy [19]): it divides the problem’s domain into smaller

elements that together form the finite element mesh and uses approximated functions of the governing

equations to create the elemental matrices called stiffness matrices, that contain the coefficients for one

element’s equations. Then, those elemental matrices are assembled into one global stiffness matrix,

resulting in a system of equations that can be solved by enforcing the boundary conditions and that

yields the distribution of a main variable. If more results are needed, they can be obtained in an optional

phase of post processing.

The FEM has, according to Schweitzer [22], proven to be a very versatile numerical tool over the

last decades (the first formulations of this method can be traced back to as far as 1941 in Hrennikoff

[23]). However, to utilize this versatility, the discretization of the domain has to be made in such a way

that a good quality conforming mesh (that accounts for all of the shapes and borders of the domain that

is being studied) is generated, regardless of the underlying physics. Characterized by its refinement

and the aspect ratio of the constituting elements, the finite element mesh has, according to Cuillière

et al. [24], a crucial impact on the accuracy and stability of the approximation. To model physics and

engineering problems, one often deals with with complex geometries, which means that creating a good

quality mesh is not an easy task. Despite the effort placed on creating efficient algorithms to create

meshes that conform to complex geometrical features since the beginning of FEM (Ho-Le [25]), this

process still accounts for a large percentage of the total cost of the analysis.

15

3.2 Requirements

As mentioned in the last paragraph of the previous section, to get accurate solutions using standard

FEMs is only possible using a conforming mesh. In the case of domains where there are at least

two materials, this requirement can only be addressed using a mesh whose elements boundaries are

perfectly aligned with the interface.

This conforming mesh would be relatively cheap and straight-forward to implement for very simple

cases like the one in Figure 3.1(a), where the domain is composed of a square plate made out of two

solid materials with a straight vertical interface. However, generating a conforming mesh could prove

itself to be a complex and computationally heavy or even an impossible task (Yue and Robbins [26]) when

dealing with complex structures. Vascular materials are possibly an example of complex geometries to

mesh, with a phase change that results in both a change in material properties and governing equations.

An example of complex meshing geometries in vascular materials is represented in Figure 3.1(b), where

a square plate is intersected by cooling channels. For a better understanding of the problems in correct

meshing of a geometry, refer to Beall et al. [27], which provides a very complete overview of the topic.

(a) Material interface problem conforming mesh (b) Example of vascular material from Soghrati [28]

Figure 3.1: Mesh generation issues.

Summing up the last few paragraphs, in vascular cooled materials different regions of the mesh have

not only different material properties but also different governing equations, as the heat advection in

the fluid phase is not negligible (Soghgrati et al. [16]). Taking this into account, it is mandatory that the

discretization method is efficient dealing with discontinuities in the gradient field.

On the other hand, optimizing any geometry with a standard discretization method requires the gen-

eration of several conforming meshes, which is potentially computationally very expensive. This means

that choosing a dicretization technique that does not require a full mesh update at each iteration step is

also an advantage.

16

3.3 Interface-enriched Generalized FEM

The limitations of standard FEM in problems that present discontinuities in the gradient field, which is the

case of vascular materials, motivated research for modifications to said method and the discretization

technique that has been chosen for this work is one of the results of that research.

The first developments in modifying the FEM resulted in the Generalized FEM (GFEM, thoroughly

described and explained in Belytschko et al. [29]) / eXtended FEM (XFEM) which, according to Schwe-

bke and Holzer [30], was first introduced by Melenk [31] in 1995. Also according to Schwebke and Holzer

[30], Babuska et al. [32] and Belytschko et al. [29], the GFEM is a direct extension of the standard finite

element method and combines the desirable features of the standard finite element method with mesh-

less methods. This leads to the possibility of obtaining an accurate solution of engineering problems

in complex domains with discontinuities, singularities and localized deformations (using nonconforming

meshes) which could be practically impossible to solve using the standard FEM.

According to Soghrati et al. [10], the potential of this method is obtained by using a priori knowledge

of the solution field in the numerical approximation (using enrichment functions). According to Melnek

and Babuska [33], these enrichment functions are obtained using the partition of unity method and

consequently present the possibility of solving problems with field/gradient discontinuities while using

nonconforming meshes to discretize the problem.

Going one step further in the direction of modeling vascular materials, which is a material or phase

interfaces problem, yet another method that has been developed (this time derived GFEM / XFEM)

must be considered. The Interface-enriched GFEM (IGFEM) was first introduced in 2011 by Soghrati

et al. [10] and intends to improve on the standard GFEM with an easier implementation and handling of

Dirichlet boundary conditions (refer to Chapter 2 for the formulation of the different types of boundary

conditions) and a lower computational cost (among others).

According to Soghrati and Geubelle [34], these new characteristics (improvements) are achieved

using new enrichment functions (which go to zero at the standard nodes of enriched elements (by con-

struction), allowing for a straightforward imposition of Dirichlet boundary conditions on enriched elements

that conform to the Dirichlet boundary) and a different approach for applying them at the interface. In the

latter, instead of applying the generalized degrees of freedom to the nodes of the original mesh, as is

done in the normal GFEM, they are applied to the new nodes on the intersection of the phase interface

with element edges (hence the name Interface-enriched).

Considering all of the advantages of the IGFEM already described, it is chosen to deal with the ge-

ometric modeling challenges resulting from the phase interface(s). According to Tan et al. [35], IGFEM

is very interesting in problems with complex geometries and particularly well suited for this task of de-

signing and optimizing vascular composites, as the same nonconforming mesh can be used to model

several vascular configurations.

Other applications of the IGFEM are, among others, contact mechanics and crack propagation prob-

lems. This work’s implementation of IGFEM has already been adapted into a state-of-the-art imple-

mentation of a crack propagation formulation done in hybrida (see Aragón [15]). Another master thesis

17

project from the TU Delft research group that supported this work in the topic of contact mechanics is

currently being studied and will also use the base provided by the IGFEM implementation developed for

this project.

After conceptually describing IGFEM and before presenting algorithms, it is convenient to clarify on its

additional implementation steps over standard FEMs. Breaking down the method in two big milestones

and specifying for the case of vascular cooled materials results in the following steps:

1. Modifying the original mesh - consists in subdividing the elements that are cut by the phase in-

terface (parent elements) into smaller triangular elements (children or integration elements). The

phase interface should be included in the new elements’ edges. According to Soghrati [28], the

reason for the children or integration elements to be triangular is simply to simplify the computation

of the enrichment functions;

2. Establishing the enrichment functions - this is the task where the differences between IGFEM and

the normal GFEM lie. This step’s description requires a mathematical is the formulation of the

method and is thoroughly described in Subsection 3.3.1. IGFEM is a very recent method and,

because it is still under research in several aspects, modifications to its formulation continue to

appear within the scientific community. Because of this, the presented formulation already presents

one improving modification (that is presented later in this chapter). The latest developments on the

topic can be found in Soghrati [28], Soghrati et al. [36] and Soghrati and Barrera [37].

3.3.1 Formulation

All FEMs are computational tools that use approximate functions to a problem’s governing equations

in the smaller domains that are the finite elements to obtain an approximated solution. To the set of

equations that the solution must satisfy over the domain to define the problem (normally a differential

equation and the boundary conditions required to solve it) is given the name of strong form. On the

other hand, the weak form of the problem states the conditions that the solution must satisfy in an

integral sense and it is the equation to be approximated by FEMs.

Using GFEMs, the aforementioned approximated solutions are obtained using

uh =

n∑

i=1

Np
i ui

︸ ︷︷ ︸

std. FEM

+

nen∑

j=1

sjψjαj

︸ ︷︷ ︸

enriched

, (3.1)

where uh is the approximated solution for the main variable, Np
i is a set of n Lagrangian shape functions

evaluated in the original element (of the nonconforming mesh). According to Zienkiewicz and Taylor

[38], the standard Lagrangian shape functions are a set of standard polynomial functions of the least

degree that at each point xj assume the corresponding value yj and that respect the partition of unity

principle,
∑
Ni = 1. On the other hand, ui represents the main variable of interest at the node labeled

i in the mesh being used and sj is an additional scaling factor that imposes that a well-conditioned

stiffness matrix is constructed. The improvements on the original formulation of IGFEM introduced by

18

the implementation done for this thesis in hybrida are related to this scaling factor and are discussed

in Subsection 3.6.1. Finally, ψj and αj are a set of enrichment functions and the generalized degree

of freedom associated with the jth interface node created from the intersection point of the material

interface with element edges, respectively.

As shown in Equation (3.1), the approximation of the variable field for GFEMs is the sum of the

standard FEM approximation with the contribution of the enrichment functions to capture gradient dis-

continuities (these enrichments vary from one GFEM formulation to another and the method for obtaining

enrichment functions for IGFEM is presented below).

Enrichment functions

The enrichment functions for a certain degree of freedom in the IGFEM formulation are obtained by eval-

uating the standard shape functions in the child element. This means that, after discretizing the parent

element into smaller children elements it is only necessary to combine the standard shape functions

for triangular elements evaluated at the parent and children elements functions in order to obtain the

complete approximation.

Obtaining the enrichment functions for applying IGFEM is described throughout the set of references

already provided in this chapter (Soghrati [28] provides the latest developments in this formulation and

an overview of what has been researched before). However, to clearly understand the procedure, a

sample problem has been solved by hand and is presented below in Subsection 3.3.2.

3.3.2 1D Sample Problem

This subsection aims at providing an example that gives a clear understanding of the IGFEM formulation,

mostly focusing differences from the standard method. A simple 1D bar with an absolute length of

L = 3m and cross-sectional area of A = 1m2 made out of two materials is considered. The material

interface is in the middle of the bar, at xΓ = 1.5m, and the characteristics of both materials are

E1 = 1 Pa if x ≤ 1.5

E2 = 10 Pa if x ≥ 1.5 .
(3.2)

To solve the problem of computing the displacement throughout the considered bar, the boundary

conditions are a fixed left extremity (at x = 0m) and a point load f = 1N at the right extremity (at x = 3m),

as represented in Figure 3.2. To follow this example, basic knowledge in standard FEM concepts is

assumed (the steps that are presented to solve the problem follow, once again, the formulation presented

by Reddy [19] and correspond to the “universal” FEM procedure used to solve problems),

(a) Illustration

I II III

IIa IIb
1 2 3 4

1 10.5 0.5

f

(b) FEM model

Figure 3.2: 1D IGFEM sample problem geometry.

19

The first step in applying any FEM is obtaining the finite element mesh (discretization of the domain)

and in the considered bar, represented in Figure 3.2(b), the standard FEM discretization is defined by

the three finite elements (I, II and III) bounded by two circles. After applying what would be called

the Geometric engine in hybrida’s IGFEM (name given in the implementation to the set of functions that

divide the nonconforming elements into integration element, to explain in Section 3.4.1), the result is that

element II gets split into two smaller integration elements (IIa and IIb).

The stiffness matrices for elements I and III are obtained in the standard way, using the two stan-

dard shape functions for bar elements (shown below) and the standard formulation

k =

∫ l

0

EA
dNT

dx

dN

dx
dx , (3.3)

that yields

E1 A

l
= 1 ⇒ kI =

1 −1

−1 1

E2 A

l
= 10 ⇒ kIII =

10 −10

−10 10

 (3.4)

Regarding element II, obtaining an accurate displacement solution is not possible while using stan-

dard FEM, which can be solved by employing the IGFEM formulation in

uh =
∑

i

N II
i uIIi + ψα =

{

N II
1 N II

2 ψ
}

uII1

uII2

α

, (3.5)

where N II
i are the standard Lagrangian shape functions evaluated in element II and uIIi are the de-

grees of freedom of the original nodes 2 and 3. This means that the term
∑

iNiui corresponds to a

standard FEM formulation. On the other hand, ψ is the enrichment function (that is the standard shape

function evaluated in elements IIa or IIb) and α is the degree of freedom in the node inserted at half

length, in the material interface. The standard 1D Lagrangian shape functions in global coordinates

(being a 1D simple example, there is no need for a coordinate transformation) are

N II
1 =

x2 − x

x2 − x1
=
x2 − x

l
, (3.6) N II

2 =
x− x1
x2 − x1

=
x− x1
l

, (3.7)

where x1 and x2 are the left and right coordinates of element II, respectively, and l is its length.

The enrichment function is a linear combination of the two Lagrangian shape functions

ψ = N IIa
2 +N IIb

1 . (3.8)

The integral definition for the stiffness matrix in a generic finite element with a length of l is again

given by Equation (3.3), which means that obtaining the stiffness matrix of element II comes down to

summing the stiffness matrices of the integration elements, which are obtained by solving the integrals

20

kIIa =

∫ l

0

E1A

(
dNT

dx

)IIa (
dN

dx

)IIa

dx (3.9)

and

kIIb =

∫ l

0

E2A

(
dNT

dx

)IIb (
dN

dx

)IIb

dx . (3.10)

From Equation (3.8), the enrichment function is a linear combination of the standard shape functions

evaluated at the child element and can be obtained using

ψ =

x−x1

xΓ−x1

if x1 ≤ x ≤ xΓ
x2−x
x2−xΓ

if xΓ ≤ x ≤ x2
⇒ ψ =

x−x1

l1
if x1 ≤ x ≤ xΓ

x2−x
l2

if xΓ ≤ x ≤ x2
, (3.11)

where l1 = l2 = 0.5m are the dimensions of the children elements to the left and right of the interface,

respectively.

Recalling the IGFEM formulation in Equation (3.5), the shape function vector is defined by parts by

the shape functions for element II and the correct shape function for the child element,

N =

x2−x
L

x−x1

L

x2−x
l1

if x1 ≤ x ≤ α

x−x1

l2
if α ≤ x ≤ x2

u2

u3

α

⇒
dN

dx
=

{

− 1
L

1
L

1
l1

}

if x1 ≤ x ≤ α
{

− 1
L

1
L − 1

l2

}

if α ≤ x ≤ x2

(3.12)

Having computed all of the necessary terms, it is now possible to determine the stiffness matrices in

element II. The results are

kIIa =

∫ α

x1

E1A
︸︷︷︸

1

− 1
L

1
L

1
l1

{

− 1
L

1
L

1
l1

}

dx⇒

⇒ kIIa =

1
L2 − 1

L2 − 1
Ll1

− 1
L2

1
L2

1
Ll1

− 1
Ll1

1
Ll1

1
l2
1

l1 =

l1
L2 − l1

L2 − 1
L

l1
L2

1
L

sym. 1
l1

=

0.5 −0.5 −1

0.5 1

sym. 2

(3.13)

kIIb =

∫ x2

α

E2A
︸︷︷︸

10

− 1
L

1
L

− 1
l2

{

− 1
L

1
L

1
l2

}

dx = 10

1
L2 − 1

L2

1
Ll2

1
L2 − 1

Ll2

sym. 1
l2
2

=

5 −5 10

5 −10

sym. 20

. (3.14)

The next step is to assemble the elemental stiffness matrices into a global stiffness matrix. The

procedure is similar to a standard FEM (the fifth line and column correspond to α, the degree of freedom

of the inserted interface node). To avoid a a repetitive description of the assembly of matrices kI , kIIa,

kIIb and kIII it is conveniently illustrated by

21

K =

1 −1 0 0 0

−1 1 + 0.5 + 5 −0.5− 5 0 −1 + 10

0 −0.5− 5 10 + 0.5 + 5 −10 1− 10

0 0 −10 10 0

0 −1 + 10 1− 10 0 2 + 20

=

1 −1 0 0 0

−1 6.5 −5.5 0 9

0 −5.5 15.5 −10 −9

0 0 −10 10 0

0 9 −9 0 22

. (3.15)

In order to be able to solve the problem, it is necessary to apply the boundary conditions to the global

stiffness matrix obtained above by eliminating the line and column corresponding to the imposed dis-

placement. Because in the example being considered node 1 is fixed (null displacement), it is necessary

to eliminate the first line and column, resulting in

Kf1 =

6.5 −5.5 0 9

−5.5 15.5 −10 −9

0 −10 10 0

9 −9 0 22

. (3.16)

The displacement within the bar can be computed by

Kf1uf1 = ff1 ⇒ uf1 = K−1
f1
ff1 (3.17)

and the result is given by 3.18

uf1 =

1 1 1 0

1 1.55 1.55 0.225

1 1.55 1.65 0.225

0 0.225 0.225 0.1375

0

0

1

0

⇒ uf1 =

u2

u3

u4

α

=

1

1.55

1.65

0.225

(3.18)

To obtain the modified solution uh, with the correct values at the enriched node, it is necessary to

use the formulation presented in Equation (3.5). Because the materials are both elastic, the plot of the

displacement for the load is linear in the domain with a change in slope at the interface (see Figure 3.3).

In Equation (3.19), the use of the IGFEM formulation is demonstrated by computing the displacement at

the interface location xΓ = 1.5,

uh(xΓ) = N1(xΓ)×1+N2(xΓ)×1.55+1×0.225 ⇒ uh(x = 1.5) =
1

2
×1+

1

2
×1.55+1×0.225 = 1.5 , (3.19)

where N1(xΓ), N2(xΓ) and ψ(u4) are the values of the standard shape functions and the value of the

enrichment function at the interface node, respectively.

In order to verify that this example is correctly solved and that the IGFEM is adequate for this kind

22

Figure 3.3: Solution of 1D bar IGFEM example.

of problem, it is convenient to check the obtained result against the analytic solution. Recalling what is

presented in Section 2.2 and Equation (2.10) and applying the correct BCs,

u(x = 0) = 0 ⇒ C1 × 0 + C2 = 0 ⇒ C2 = 0

E du(x)
dx

∣
∣
∣
∣
x=L

= f ⇒ C1 = f
⇒ u(x) =

fx

EA
(3.20)

Because the domain is composed of two materials, the analytic displacement solution is, as already

seen for the approximated case, defined by parts

u(x) =

fx
E1

= x if 0 ≤ x ≤ L/2,

fL
2E1

+ f(x−L/2)
E2

= 1.5 + (x−1.5)
10 if L/2 ≤ x ≤ L .

(3.21)

From Figure 3.3 and Equation (3.21), it is confirmed that the IGFEM solution and the analytic solution

are exactly the same, which means that there are no mistakes in the process and that the method is

adequate for this interface problem.

3.4 Implementation

3.4.1 Geometric Engine

The “first step” of applying IGFEM is, as described in Section 3.3, to modify a non-conforming finite

element mesh by creating children elements that result of the division of elements from the original

mesh that are intersected by the interface and whose boundaries conform to said interface. This section

describes the mentioned step, which can be referred to as geometric engine, mentioning the difficulties

that need to be overcome and some of the algorithms that are used to do it. Finally, some simple

applications are presented.

To frame the implementation of this functionality, the diagram in Figure 3.4 goes a bit deeper within

the hybrida code structure (recall Figure 1.4) and shows where the involved modules are located. In this

diagram, the module in the rectangle geometric engine is responsible for all mesh related operations

and the rectangle igfem manager is where information is managed for later use in the assembly of the

23

matrices.

Figure 3.4: Modifications to code’s structure due to geometric engine.

As previously stated but worth clearly mentioning again, the only limitation for new children elements

is that their boundaries must conform with discontinuity edges or surfaces of the domain. On the other

hand, unlike in normal FEM elements, their aspect ratio does not affect the accuracy of the solution

(Soghrati et al. [10]).

The reason to devote such attention to this geometric engine in this report is that, when dealing with

finite element meshes, the variety of scenarios that can occur from slicing the finite elements implies

that imaginative solutions must be employed. Being integrated in a larger project (where the geometric

engine is already being used in several other implementations, such as crack propagation, periodicity

problems and contact mechanics), the goal here is to present algorithms that lead to a powerful and

general enough implementation, coping with the possibility of problems with different underlying physics

and various mesh geometries without requiring deep tweaks by the user.

From an implementation point of view, the task of obtaining the integration elements for a material

interface problem is, in the case of this project, facilitated by the fact that it starts from a FEM tool that

already has a lot of basic features implemented (hybrida).

Taking this simplification into account, the geometric engine’s implementation starts by receiving a

set of adequate data structures that already contain all of the information needed to use the original mesh

(types of elements, node mapping, total number of nodes, etc.) and the composing material (initially the

domain is uniform). The last thing needed to run the implementation of IGFEM that is explained below

is information on the interfaces, which must be in the form of level set functions.

From Abbena et al. [39], the level set of a function is a set of values for which the function equals

a given constant. The shape of the level set of a function depends on the dimension that is being

considered (for example, when the number of variables is two, a level set is generically a curve, refer to

the applications presented below in this section for explicit examples). These are used in such a way

that the level set function returns a value dependent on the coordinates of the node being tested and

the sign of that value is used to assess the material characteristics and governing equations.

With all of the premises and requirements listed and described, the most comprehensive algorithm

for the geometric engine is presented in Algorithm 1.

24

Algorithm 1 Geometric engine algorithm

1: Input: FE mesh, interfaces information (list of functions and new material)

2: Output: original data structures modified to envision integration elements and interface nodes

3:

4: for each interface do
5: compute level set value of all mesh nodes using coordinates

6: for each element in the original FE mesh do
7: if same level set sign for all nodes in the element then
8: if negative level set sign then
9: change material of the element

10: continue to next element

11: else
12: continue to next element

13: end if
14: else
15: create line section using the points of zero level set value

16: slice element

17: arrange element connectivity

18: create children elements

19: end if
20: end for
21: end for

Combining the need for further discussion on some of the steps (functions) in Algorithm 1 that do not

justify presenting the complete script with some remarks on the pseudo code:

• For line 7 of the pseudo code, the assertions are made using an user specified precision (can be

changed). In fact, because this is the field of computation, the values obtained always have some

sort of numerical error, which means that for all assertions of the kind from now on the conclusions

are made based on this specified precision;

• In pseudo code lines 14 and 15 is where the actual modification of the mesh begins. To do so,

elements that have nodes with different level set signs are searched for and a line segment object

is created with the two points of zero level set (obtained via linear interpolation);

• Also starting in line 14, geometric algorithms start being employed. For the functions segment,

slice and create children, a combination of algorithms inspired in video game development (Ericson

[40]) and newly introduced ones (that arise from the IGFEM’s formulation needs) are used. These

are thoroughly presented below.

After the processing the mesh with this implementation of the geometric engine, the original data struc-

tures containing all of the relevant information (elements, nodes, materials, etc.) are modified, being

ready for the remaining steps of the finite element method.

The first sub algorithm that is relevant to present here is the slicing of the original mesh element

that is intersected by an interface into two sets of nodes ordered in a counterclockwise (CCW) manner

(convention), depending on the side of the interface on which they lie. The Algorithm 2 has been espe-

cially created for this implementation and is possibly the most elaborate one within the geometric engine

due to the wide range of possible scenarios that can result from the intersection of an interface with the

various types of elements and their orientation.

25

Algorithm 2 Slice element algorithm

1: Input: element data (connectivity and coordinates) and line segment

2: Output: two data structures with nodes to left and right of the interface

3:

4: use first node of the element as current node

5: while current node is not the first one and not currently on first iteration do
6: determine on which side of the interface the current node lies (using level set sign)

7: if current node lies on one of the sides of the interface then
8: add it to appropriate container

9: else
10: add it to both sides

11: end if
12: if side of current node and side of the next one are different and neither is null then
13: find intersection between element’s edge and interface

14: add it to both sides

15: compute scaling factor, sj
16: end if
17: use next node of the element as current node

18: end while

Once again, it is convenient to make some remarks regarding Algorithm 2, since the reason why

some steps need to be taken and how they are taken may not be clear enough:

• Line 6 of the algorithm is fundamental to its functioning. As is stated, it is where the program is

able to determine the side of the interface on which the node being tested is and that is done using

one of the game developing algorithms that is implemented in the segment object called leftTurn.

Despite being fundamental to the slice algorithm, the assertion made by leftTurn is done simply by

comparing the cross product in the z coordinate of two vectors;

• The if-else statement in lines 7-10 deals with the storing the node tested by leftTurn in the appro-

priate container. If this point lies neither to the left or to the right of the line segment (feature of the

leftTurn algorithm, means that one of the nodes in the original mesh is already an interface node)

it is on it and should be added to both the right and left containers because it is an interface node;

• Line 12 on the other hand checks if the sign of the level set changes from the node being tested

to the next one. If it does, that means that the element’s edge formed by those two nodes is

intersected by an interface, which means that the intersection point must be computed (line 13)

and once again added to both containers (line 14);

• The last step in this algorithm is taken care of in line 15 and is the computation of the enrichment

functions’ scaling factor, sj . This scaling factor is one of the aspects that has been investigated

during the implementation of the IGFEM done for this thesis and is briefly discussed in Subsection

3.6.1.

As mentioned above, the functionality of slicing finite elements requires imaginative solutions re-

garding its implementation. Consequently Algorithm 2 is not presented with all of its tests and checks to

ensure that utilizing the resultant data structures can be used successfully later on. Additionally, there

are “degenerate” cases (for example the interface being aligned with the element’s edge) for which the

procedure is not exactly as described.

26

To make the implementation of the assembly routines simpler, namely the computation of parent

element shape functions and enrichment functions, it has been decided that, whatever the quantity of

interface nodes in the integration elements is, they should be in the last positions of the nodes array.

To do that, another algorithm has been created and although it is not completely straightforward, it is

not really relevant to present it in detail here, as the algorithm would be too focused in the way the data

structures are implemented and in the structure of Python code itself.

Following the procedure in Algorithm 1, the next step is to take the groups of nodes to the left and

right of the interface and create triangular assembly elements. This is taken care of by the function

create children, which is presented in Algorithm 3.

Algorithm 3 Integration elements creation algorithm

1: Input: group of nodes ordered in CCW manner

2: Output: connectivity of resulting integration element(s)

3:

4: check number of input nodes and select corresponding rules for creating integration elements

5: for each rule do
6: create integration elements with node indexes (in the input data structure) in the rule

7: add new element to adequate data structure

8: if level set sign of first node in the new integration element is negative then
9: material of integration element is the new one supplied by the interface computational object

10: else
11: material of the integration element is the original material

12: end if
13: end for
14: for each integration element created do
15: store information on corresponding parent element

16: end for

Creating the integration elements is also an important functionality of the geometric engine, as they

need to conform to the requirements already described. It is also in this function (as is documented in

Algorithm 3) that the correct material for each of these integration elements is assigned. Like in the other

algorithms that have already been presented, this one demands some clarification on its procedure:

• The first step is to select the rules for creating the integration elements according to the number of

nodes in the input data structure. These rules consist of the node indexes that must be selected in

the original input data structure in order to obtain integration elements with at least one interface

node and the number of rules is the same as the number of integration elements to create by one

run of this function;

• Lines 8-12 of the pseudo-code take care of selecting and storing information on the material for

the current integration element. The way to do this is similar to what has already been explained

for the standard elements with the difference that the integration elements don’t have an original

material because they have just been created;

• For the purposes of the assembly routines, namely computing the parent shape functions, it is

necessary to store the information on what is the corresponding parent element to the recently

created integration element. This is done in lines 14-16 of the pseudo-code;

27

• As is done for the previous algorithms, not all tests and checks that are used to ensure a successful

discretization are presented here, but they exist in the code.

With this, the implementation of the main features in the geometric engine are presented and ex-

plained in adequate detail, which means it is convenient to present some possible applications.

Applications

In order to show the result of applying the geometric engine, three examples are presented below. In

the first two, the domain is a 2D region composed of two materials divided by a material interface that

is defined by a level set function, while the third is a first example of a vascular material modeled using

hybrida and this implementation of IGFEM. The original meshes are created manually using Gmsh (an

open source finite element mesh generator, see Geuzaine and Remacle [41]).

Aside from exemplifying the use of the geometric engine, the first two applications examples also

intend to prove its element type independence, as it works in 2D all element types, and mesh type

independence, as it works for both structured and unstructured meshes.

Square domain

As mentioned above, the first example consists of a 2D square plate domain (referential placed at the

center of the square). Two meshes have been created for this example (Figure 3.5(a) and (c)), being

one of them formed by quadrangular elements and the other by triangular ones.

The goal here is to observe the result of introducing a vertical interface using the geometric engine.

To do so, it is necessary to create the level set function that describes this interface

f(x) = −x+ 0× y . (3.22)

In the level set function (f(x)) presented Equation (3.22), the return value is a positive number if the

node being tested is to the left of a vertical line that goes trough the center of the rectangle and negative

if it is to the right.

(a) Original quad. mesh (b) Modified quad. mesh (c) Original tri. mesh (d) Modified tri. mesh

Figure 3.5: Geometric engine result in a square domain.

The meshes that result from the intersection of the original meshes with the interface defined by the

level set function are presented in Figure 3.5(b) and (d). In the resulting meshes, all of standard and

28

children elements to the left of the interface have the original material and all of the elements to the right

have the new material, whose properties are passed to the geometric engine in the computational object

that also contains interface information.

It is important to mention that the implementation of the geometric engine being described works

for both types of elements tested (in fact, it works for all 2D element types) in this case for structured

meshes.

Circular domain

The next example has a similar concept to the square plate with a material interface. This time, the

referential is located at the center of a circular domain where there is smaller a circular inclusion centered

at the same referential and made of a different material. To conduct this example, two unstructured

triangular meshes have been created, one coarser than the other to appreciate the different results, as

presented in Figure 3.6(a) and (c).

In this case, the interface is not a straight line segment, it is a circle that can be defined by the level

set function (which is based in the equation of a circumference)

f(x) =
√

x2 + y2 − ri , (3.23)

where ri is the radius of the circular inclusion. In this case, if the node being tested has the level set

function returning a negative value, it is inside the interface and vice-versa.

(a) Original quad. mesh (b) Modified quad. mesh (c) Original tri. mesh (d) Modified tri. mesh

Figure 3.6: Geometric engine result in a circular domain.

The results are presented in Figure 3.6(b) and (d). In the resulting meshes, all elements of the matrix

(outside the inclusion) have the original mesh material and the elements inside the inclusion have the

material supplied by the interface computational object.

Looking at both the square plate example and this one, it is possible to conclude that the geometric

engine is also mesh type independent, since the first example has been presented with structured

meshes and this one with unstructured ones.

29

Vascular material

Finally, and to show some preliminary steps in the way of modeling vascular materials, the geometric

engine has been used on the mesh in Figure 3.7(a) to create a 2D rectangular plate with a vascular

sinusoidal channel intersecting it, which is presented in Figure 3.7(a).

There are two interfaces in this case, which means that two level set functions are needed to model

it. However, the process of creating them is similar to what has been described in the previous examples

and it is further discussed in Chapter 5.

(a) Original quad. mesh (b) Modified quad. mesh

Figure 3.7: Preliminary modeling of vascular material.

3.4.2 Elemental Assembly

In this subsection, the goal is to provide some insight on the modifications that are needed to certain

aspects of the code that are not ready for the complexity needed in this project. These modifications are

mainly needed due to the assembly of the integration elements. This explanation does not have the goal

of going into detail on the theory behind numerical integration or isoparametric mapping of elements, as

they are on the basis of most FEM implementations of this complexity.

These algorithms are located in the mesh module, more specifically in the element module and in

the triangle module, as is presented in Figure 3.8. The modifications to the element module are related

with two aspects: the first is that integration elements need to be separated from standard elements due

different assembly routines (that are implemented in the triangle module), while the second is related to

the fact that the fluid elements have different governing equations (to further discuss in Chapter 4).

Figure 3.8: Modifications to code’s structure due to assembly.

Before going any further, it is important to note that the solution obtained in the end of using the

30

algorithms presented in this chapter is not the final solution to the problem at the interface nodes (some

post processing is required). Due to the formulation of the method, the solution at the interface nodes

is the value of the enrichment and not the actual solution to the problem, which means that some post-

processing is due in order to obtain a continuous solution.

The most generic algorithm for computing the stiffness matrix for one finite element can be found in

the code’s module triangle and is presented in Algorithm 4.

Algorithm 4 Elemental assembly data algorithm

1: Input: information for element being assembled

2: Output: elemental stiffness matrix, force vector and all information needed for global assembly

3:

4: if element type isn’t supported (because it is an integration element) then
5: use “special” assembly routine for integration elements

6: else
7: get data for the element

8: for each quadrature point in the element do
9: compute assembly data

10: add contribution of current quadrature point to the element’s data structures

11: end for
12: if composing material is fluid then
13: assemble convection

14: end if
15: end if

Some further comments are due in order to further explain the steps presented in Algorithm 4:

• A quadrature point is one of the discrete points where the value of the function is numerically

approximated. The contribution of all quadrature points (number depends on the type of element

and quadrature rule) in the finite element allows the stiffness matrix to be built;

• Line 5 mentions the use of a “special” assembly routine for integration elements. This “special”

assembly routine is not the only one already created in the code, as other advanced projects

also require different assembly steps. Some other examples of these functions are the triangu-

lar elements integration elements for the crack propagation implementation already mentioned,

hierarchical elements and mixed-enhanced elements, among others;

• Describing the steps mentioned in lines 7, 9 and 10 would mean going into detail into numerical

integration and isoparametric mapping of elements which means that, for the purpose of this doc-

ument, they are considered standalone functions (the procedure that is described below on the

assembly of integration elements shares some insight on computing assembly data);

• The explanation for line 11 is that the fluid elements’ governing equations are different from the

solid ones, which means that some additional steps and corrections are needed to model them

correctly, which is also done in a standalone function. Because this step is related to the weighted

residual formulation of the FEM and implies the choice of yet another numerical scheme, it dis-

cussed in further detail in Chapter 4.

31

The only differences in the assembling algorithm for standard elements and integration elements are

that in the latter there is no check for unsupported elements (Algorithm 4’s line 5) and the standalone

function that computes the assembly data. Algorithm 5 provides both an explanation on the procedure

of obtaining the assembly data for these integration elements and also some insight on what is done for

standard elements. Just as a clarification, this algorithm would fall under the functionality of computing

assembly data, which means that it happens at a specified quadrature point.

Algorithm 5 Compute assembly data for integration elements algorithm

1: Input: information for element being assembled

2: Output: elemental stiffness matrix, force vector and all data for global assembly

3:

4: get additional information on the current integration element

5: compute standard shape functions for the integration element

6: select enrichment functions from standard shape functions of the integration element

7: scale enrichment functions (optional)

8: compute standard shape functions for the parent element

9: concatenate parent shape functions and enrichment functions into one array

10: compute vectors and matrices for numerical integration

11: return data

Finally, some remarks on the last algorithm (Algorithm 5) of this method’s implementation are needed

for clarification purposes:

• To compute the parent shape functions and enrichment functions, the additional information that is

needed and mentioned in line 4 of the pseudo-code is the corresponding parent and the number

of interface nodes;

• The step of selecting the enrichment functions among the standard shape functions for the inte-

gration element in line 6 is made a lot simpler due to the decision of having the interface nodes in

the last positions of the element’s node array;

• The scaling of the enrichment functions in line 7 is optional (as is mentioned before) and by this

time, its value has already been computed in the geometric engine. Information obtained using

the parent element id and the data structure containing information on scaling of the enrichment

functions;

• Line 9 of the pseudo-code ends the differences in the process of obtaining the assembly data

for integration elements. For these, the shape functions data structures is a concatenation of

the parent standard shape functions with the enrichment functions and from this point on, the

process is the same as in standard FEMs (except for the post-processing step needed to obtain

the continuous solution).

In addition to the assembly routines created for the integration elements, an error function for them

has also been created. This error function is not useful to solve problems per se but it is needed

for the next section for verification purposes. This function basically computes the difference between

approximated value and exact value (that needs to be provided if the goal of the problem is an error

analysis) at each quadrature point and its implementation is similar to the assembly routines.

32

3.5 Verification

To have confidence in any computational results obtained using the implementation of a computational

methods requires some sort of validation or verification and this implementation of IGFEM is no excep-

tion.

Consequently, having described the IGFEM and its implementation, the next step is verification. To

do this is to assess the quality of the finite element approximations obtained using hybrida, which can

be done using sample problems for which the exact solution is known. This involves comparing the

approximated solution for the displacement and its derivative obtained for a set of meshes against the

exact values.

3.5.1 Error Norms

Doing a somewhat short introduction on the topic error analysis in FEMs by summing the information

present in Babuska and Szabo [42], one may point out that there are two main error measurements: the

strain energy and the L2 error norms.

Without getting too specific in the mathematical details of these error metrics, since they are stan-

dard for verifying the implementation finite element methods, the L2 and strain energy error norms are

measures of the error found in the solution field and its derivatives, respectively, when compared to the

corresponding analytic solution.

Both of these are normalized with the exact solution (which is either the derivative of the solution,

in the case of the strain energy error norm or with the actual solution for the L2 error norm) and their

mathematical derivation and description can be found in all introductory books on finite element modeling

(some of which have already been mentioned in this document) or in Babuska and Szabo [42].

The tool for the computational error analysis is a convergence plot (error vs. finite element size) from

which conclusions can be drawn. The data points for this plot are selected from what is computed at

each quadrature point by the error functions mentioned in the previous chapter (the quadrature point

with the largest error is considered) and their slope is the convergence rate. There are optimal values

for these convergence rates depending on the methods being analyzed.

3.5.2 2D Plate: Patch Test

In this subsection, a 2D bi-material square shaped plate problem is used to do a convergence study for

the implementation of IGFEM. An identical example is also used in Ramos et al. [43] with the goal of

proving both a correct implementation and also ideal convergence rates for IGFEM. With this in mind,

the objective here is to match the results obtained in this work with the results obtained from this source.

This square shaped plate, for which a schematic representation can be found in Figure 3.9, has a

side length of L = 2 m and is split by a material interface at x = 0 m. As for the physical properties,

material 1 has (E1 = 10Pa, ν1 = 0) and material 2 (E2 = 1Pa, ν1 = 0). The boundary conditions applied

are also represented in the figure and correspond to a clamped left extremity and a constant traction per

33

unit length applied at the right extremity. Although it is not visible in the figure, a constant body force is

also being applied to the domain of the problem b1 = 2N/m2 (corresponds to a source term in the linear

elasticity equation) because otherwise the obtained solution would be equal to the analytic one even for

a very coarse mesh of only one element (verified with the developed implementation).

L

Figure 3.9: 2D bi-material plate problem statement for the convergence study.

Since the Poisson’s ratio being used for both materials is null (under uniaxial traction and these

boundary conditions the deformation only happens in the x direction), the process of obtaining the

analytic solutions for the displacement and its derivative (necessary for the convergence analysis) starts

from the formulation in Equation (2.10), with the displacement in the x direction being identical to the 1D

solution and the displacement in the y direction being null.

As is shown for the 1D example in Subsection 3.3.2, the next step is to do a first integration and apply

the second order boundary condition (which is translated into EAdu
dx |x=L = t1 = 2N/m), which is taken

care of in Equation (3.24). The difference here is that this time the b1 term in the equation is nonzero

(and corresponds to the constant horizontal body force source term being applied to the domain),

EA
du

dx
= −b1x+ C1 ⇒ t1 = b1L+ C1 ⇔ C1 = t1 + b1L

b1=t1= t1(1 + L) . (3.24)

The next step is another integration and applying the first order boundary condition (which translates

into u|x=0 = 0) considering that, from here on, the numerical values of b1 and t1 are the same,

EAu =
−t1
2
x2 + C1x+ C2 ⇒ C2 = 0 . (3.25)

Having computed all of the integration constants, the mathematical expression to obtain the dis-

placement in a referential centered on the left extremity of the domain (similar to what is used in the 1D

34

example) is easily obtained

ux(x) =
1

EA

−t1
2
x2 + xt1(1 + L) ⇔ ux(x) =

1

EA
t1x(1 + L−

x

2
) . (3.26)

Shifting the referential to the one presented in Figure 3.9 and taking into account a domain com-

posed of two different elastic materials, it is also straightforward to obtain the general expression for the

displacement within the square shaped plate for the loading conditions being used

ux =

(x+1)[2t1−L(x−3)]
2E1

if − L/2 ≤ x ≤ 0

E2(3L+2t1)+E1x[2(t1+L)−Lx]
2E1E2

if 0 < x ≤ L/2

uy = 0 (ν1 = ν2 = 0) .

(3.27)

As mentioned at the beginning of this section, the energy error norm is related to the derivative of

the solution field, which means that it also necessary to obtain the exact solution for the derivative of the

displacement field. Due to the shift in the position of the referential, it is simpler to obtain the derivatives

of the displacement by deriving the expression for the displacement field in Equation (3.27) rather than

directly from its expression in Equation (3.24),

dux
dx

=

−Lx−t1−L
E1

if − L/2 ≤ x ≤ 0

−Lx−t1−L
E2

if 0 < x ≤ L/2

dux
dy

=
duy
dx

=
duy
dy

= 0 .

(3.28)

Having now obtained all the formulas needed to get the analytic solution for the displacement in the

plate, it is time to focus on the type of finite element mesh to use in order to obtain the approximated

solution field. Although the meshes needed only have the requisite of being nonconforming, which

means that the number of horizontal divisions has to be odd (interface in the middle), it is best to create

meshes that are as symmetric as possible because, due to the use of the source term, the existence

of nodes with different stiffness contributions leads to odd results, with deformation in the y direction

even though the Poisson ratio is null and there is no loading in that direction. Taking these aspects into

account, the meshes created for this convergence analysis range from three to one hundred and twenty

seven side divisions of the domain (the coarser mesh, with three side divisions, is presented in Figure

3.10(a).

With everything that has been mentioned thus far, it is possible to plot a graph for the convergence

rates of the error norms mentioned, which is presented in Figure 3.10(b). From this convergence plot

come the following observations:

• The obtained convergence rates are not only equal to the ones found in Ramos et al. [43] but also

the same as the optimal convergence rates for the standard FEM with a conforming mesh, which

35

(a) Sample mesh (b) Convergence plot

Figure 3.10: 2D bi-material plate problem.

would not be possible for the nonconforming meshes that have been used with IGFEM;

• Taking the order of magnitude of the error found for the mesh sizes tested, it is possible to conclude

(in a qualitative way) that the results are very promising even without looking into the rates of

convergence.

Taking all the information in the previous observations, the final conclusion is that the IGFEM imple-

mentation in hybrida has passed its first test case.

3.5.3 Eshelby Inclusion Problem

In the convergence study problem presented in the previous subsection, ideal convergence rates are

shown for a simple 2D bi-material square shaped plate. However, due to the simplicity of that example

and the not so wide range of geometric cases it can generate for the different meshes, it is relevant to

analyze something more complex.

Following once again the procedure used to prove the correct implementation of the method present

in Ramos et al. [43], the second convergence test case that has been chosen is based on the classic

Eshelby inclusion problem. Using a similar problem statement, the objective is once again to match the

results obtained in the implementation for this thesis with the results obtained from this source (optimal

convergence rates).

This inclusion problem consists of the circular 2D domain with a concentric circular inclusion made

out of a different material presented in Figure 3.11. For this convergence analysis, the outer radius

chosen is ru = 2m and the radius of the inclusion is ri = 0.4m. On the other hand, the inclusion is made

out of material 1, with (E1 = 1Pa, ν1 = 0.25), and the matrix out of material 2, with (E2 = 10Pa, ν2 = 0.3).

Regarding the deformation field, plane strain conditions are assumed. The transformation of coordi-

nates from cylindrical (in the figure) to Cartesian and vice versa are

36

Figure 3.11: 2D circular inclusion problem statement.

x = r cos(θ)

y = r sin(θ)

(3.29)

r =
√

x2 + y2

θ = arctan(y/x) .

(3.30)

On the other hand, there is only one BC applied to the domain which is a linear displacement applied

along the outer boundary which is (in cylindrical coordinates),

ur = ru

uθ = 0

⇒

ux(θ) = ru cos(θ)

uy(θ) = ru sin(θ) ,

(3.31)

where θ is obtained using Equation (3.30). Obtaining the exact solution for the displacement field is

not as straightforward as using the bar equation (such as in the previous example). Being a classic

solid mechanics examples, the exact solution for the displacement is available and can be obtained in

cylindrical coordinates from the same source as the results that are trying to be reproduced (Ramos

et al. [43]). To obtain the solution in Cartesian coordinates (as is what is used in this implementation),

it is only necessary to replace the instances of r and θ in the cylindrical solution with the expressions in

Equation (3.30),

ur(r) =

[(

1−
r2u
r2
i

)

α+
r2u
r2
i

]

r if 0 ≤ r ≤ ri
(

r −
r2u
r

)

α+
r2u
r if ri < r ≤ ru

uθ(r) = 0

⇒

ux(x, y) =
r2u+α(ri−ru)(ri+ru)

r2
i

x if 0 ≤ r ≤ ri

uy(x, y) =
r2u+α(ri−ru)(ri+ru)

r2
i

y if 0 ≤ r ≤ ri

ux(x, y) = x
(

α−
(α−1)r2u
x2+y2

)

if ri < r ≤ ru

uy(x, y) = y
(

α−
(α−1)r2u
x2+y2

)

if ri < r ≤ ru ,

(3.32)

where α is computed using

α =
(λ1 + µ1 + µ2)r

2
u

(λ2 + µ2)r2i + (λ1 + µ1)(r2u − r2i) + µ2ru2
(3.33)

37

and is a function of the geometry and Lamé constants for both the matrix and the inclusion (which can

be computed using Equations (3.34) and (3.35)). The displacement solution in Cartesian coordinates is

composed of four equations, two equations for each of the considered regions due to the two directions

being considered.

µi =
Ei

2(1 + νi)
(3.34) λi =

2νiµi

1− 2νi
(3.35)

Having the analytic solution for the displacement in the circular plate, the derivatives of said solution

are still needed in order to compute the energy norm of the error for the implementation. Because the

displacement solution in Cartesian coordinates is composed of four equations, obtaining the derivatives

dux

dx , dux

dy ,
duy

dx and
duy

dy generates eight equations which, despite being straightforward to obtain by hand,

would be a possible source of mistakes. To eliminate this possible source of mistakes, these equations

have been obtained using the symbolic calculus tool Mathematica and can be found in Appendix A.

Unlike in the previous example, it is not possible to create a structured conforming mesh for this

domain (mesh that conforms to the outer circle). However, doing a convergence analysis for an unstruc-

tured mesh is also a relevant test. Taking this into account, the meshes that are used for this study are

similar to the one in Figure 3.12(a), this being the coarser. Using this and the finer meshes made it

possible to obtain the convergence plot of Figure 3.12(b).

(a) Sample mesh (b) Convergence plot

Figure 3.12: 2D circular inclusion.

There is not much to add as in comments to the convergence plot, since the result is identical to what

has been obtained previous one, with optimal convergence rates that are the same as in the inspiring

source.

The obtained optimal convergence rates for both this example and the one in Subsection 3.5.2 prove

a correct implementation of the method, which means that the burden of creating a mesh that conforms

to a possibly intricate geometry or of creating a new mesh for each optimization step can be avoided.

38

3.6 Other Topics

3.6.1 Enrichment Functions Scaling

Now, despite the feature of not needing good quality (reasonable aspect ratio) finite elements as children

elements, initial formulations of IGFEM had a problem in stiffness matrix conditioning (the condition

number of a matrix determines how much the output changes in regard to a small change in the input

argument).

Looking further into this in more recent sources on this kind of method (like Soghrati and Barrera

[37]) reveals that the numerical difficulties appear in situations where an interface node is too close to

an original mesh node and due to the fact that the enrichment functions are Lagrangian shape functions

evaluated at the integration element. The answer to this problem is scaling the method’s enrichment

functions, which is shown in Figure 3.13. This operation does not affect the solution in any way, as it is

accounted for in both creating the enrichment functions and in the post-processing step.

Figure 3.13: Enrichment function scaling from Soghrati et al. [10].

In order to try to fix this issue, a simple test case has been devised that is similar to what has been

used in the square plate verification problem but this time using only one mesh and a tilted interface

(fixed in the centroid of the plate). Varying the tilt angle of the interface made it possible to obtain the

stiffness matrix of the entire model for different distances between the interface nodes and original mesh

nodes. This problem can be used to test the various scaling functions to verify what happens to the

condition number.

Despite having tested a few more scaling functions, the relevant results to present are only obtained

for three of them. They are given by

sj = 1 , (3.36)

sj =
min(d1, d2)

d1 + d2
, (3.37)

sj =
min(d1, d2)

max(d1, d2)
, (3.38)

where d1 and d2 are the distances from the interface to the previous and following original mesh nodes

in the element connectivity data structure, respectively (recall that the nodes in these data structures are

always ordered in a CCW manner). The three scaling functions in Equations (3.36) through (3.38) corre-

spond to a unitary scaling factor (standard), to verify that the method presents in fact an ill-conditioning

39

problem, and the scaling functions from the Soghrati et al. [10] and Soghrati et al. [36], which corre-

spond to the initial IGFEM formulation (original scaling) and an hierarchic adaptive formulation (modified

scaling) of the same method (more advanced).

In order to visualize the results of this study, Figure 3.14 represents the condition number of the

global stiffness matrix vs. the minimum distance between interface nodes and standard mesh nodes

of the tilted interface square plate test case for the different scaling functions that are presented in

Equations (3.36) through (3.38).

Figure 3.14: Condition number vs. minimum distance between interface nodes and original mesh nodes.

Regarding the results obtained for the condition number vs. minimum distance between interface

nodes and original mesh nodes in Figure 3.14, some observations can be pointed out:

• The unitary scaling factor (does not do any scaling, it just serves as reference), represented by the

blue line and diamond shaped markers, clearly points out that the reported ill-conditioning problem

exists when the minimum distance between interface nodes and original mesh nodes decreases,

as the condition number explodes for the last data point of the curve;

• The scaling factor introduced in the original formulation, represented by the red line and square

shaped markers, alleviates this situation but still does not present ideal results, as the condition

number remains approximately constant until the last data point of the curve, where it still diverges,

presenting a value smaller by two orders of magnitude when compared to the unitary scaling;

• Finally, the scaling factor introduced in adaptive IGFEM, represented by the green line and trian-

gular markers, appears to solve the problem, with a conditioning number approximately constant

for any minimum distance between interface nodes and original mesh.

Given that the scaling factor introduced in adaptive IGFEM presents the best results as far as the

conditioning of the stiffness matrix goes, it is used for this implementation of IGFEM. Together with the

innovative algorithms employed for the Geometric engine, this implementation of IGFEM in hybrida is a

development on what was originally presented.

40

Chapter 4

Weighted Residual Formulation -

SUPG

As briefly described in the previous chapter and according to Brooks and Hughes [44], the FEM makes

use of a discretization method and a weighted residual formulation and yields an approximated solution

to the initial boundary value problem. The choice of discretization technique, which is featured in the

IGFEM, has already been described and justified, which means it is now necessary to discuss the choice

of the weighted residual formulation.

4.1 Requirements

The most common weighted residual formulation chosen and used for the FEM (even for IGFEM’s un-

conventional discretization technique) is the Galerkin method (refer to Reddy [19] for a thorough review

on the topic), where weighting functions and interpolation functions are from the same class. Produc-

ing symmetric stiffness matrices, the method is adequate when modeling most structures or conduction

dominated heat transfer processes because it has the ”best approximation” property. Without going into

too much detail, this means that the error between the obtained solution and the analytic one goes to

zero with a certain norm.

However, it is shown both in Brooks and Hughes [44], Donea and Huerta [45] and probably all sources

that approach a FEM perspective to flow problems, that the Galerkin weighted residual formulation is

not adequate to convection dominated problems (like in the cooling channels of the materials being

studied) because this ”best approximation” property is lost, with the matrix associated to the convective

term being non-symmetric. This non-symmetry results in spurious oscillations in the solution field, also

called “wiggles” in the world of computational fluid dynamics (CFD). The appearance of these “wiggles”

for the Galerkin method is shown in detail Section 4.4 for both 1D and 2D cases but is also exemplified

in Figure 4.1, which shows the analytic and Galerkin temperature distribution solutions for a convection

dominated heat transfer problem in a 1D bar with temperature fixed at both ends.

Knowing that the Galerkin method is ineffective dealing with convection dominated heat transfer

41

Figure 4.1: Temperature distribution solution in 1D bar to point out spurious oscillations.

problems, it is necessary to implement a weighted residual formulation that is not.

4.2 Streamline Upwind/Petrov-Galerkin method

The chosen alternative has first been presented in Brooks and Hughes [44] and is the Streamline

Upwind/Petrov-Galerkin (SUPG) method, which is a modified weighted residual formulation that sta-

bilizes the solution for problems that have highly convective effects present. If implemented correctly,

this method must produce stable and accurate results.

Keeping to the essentials needed to explain the concept of SUPG, it is shown in literature (Brooks

and Hughes [44]) that the standard Galerkin weighted residual formulation leads to a central difference

scheme, which is known from CFD to introduce a truncation error in the form of diffusion (or conduction)

operator. In other words, it actually provides a solution with wrong diffusivity (less than the actual). It is

also shown that this negative numerical diffusion is actually the cause of numerical difficulties found in

highly convective transport problems.

The main idea behind the SUPG method comes from earlier stabilization techniques that simply

modified the weight functions used to obtain the solution in the form of added diffusion to counterbalance

the negative numerical diffusion introduced by the Galerkin approximation. However, just introducing

artificial diffusion can produce decreased accuracy in the form of overly diffuse solutions. According to

Donea and Huerta [45], this interpretation has been source of extensive criticism.

From Soghrati [46], the amplitude of the fictitious oscillations or “wiggles” is a function of the direc-

tional grid Péclet number, the dimensionless number evaluated at each finite element in the direction

of the flow that is relevant in the study of transport phenomena in a continuum. The keyword in the

last sentence that dictates that the SUPG method is not merely the introduction of artificial diffusion

is “directional”: in fact, the SUPG method also modifies the weight function to add diffusion (put more

weight on the upstream nodes) but this diffusion is added only in the flow direction, which alleviates the

phenomenon that is target to criticism (excessive crosswind diffusion). The stabilization introduced by

SUPG is also a function of this directional grid Péclet number (presented in Subsection 4.2.2).

42

4.2.1 Problem Statement for the Conjugate Heat Transfer Problem

Differently from what is done for the last chapter where the IGFEM is presented, the SUPG method

requires a generic conjugate heat transfer problem statement to be presented in order to explain its

formulation. The information that is necessary for this explanation are than the strong and weak forms

of an heat transfer process in the generic vascular domain represented in Figure 4.2.

To obtain the temperature distribution field in a vascular actively-cooled material, it is necessary to

solve the convection-diffusion equations (heat equation) on a 2D domain Ω ⊂ R
2, pictured in Figure 4.2,

that has two non-intersecting regions, the solid phase (Ωs) and the fluid phase (Ωf), which is where the

coolant flows in the case of vascular materials. It is also possible to find the designations ΓT , Γq and

Γh (not used in this work), that are the boundaries to which each type of BC is applied, the first being

Dirichlet, the second Neumann and third Robin boundaries.

Figure 4.2: Sample 2D domain for conjugate heat transfer problem from Bergman et al. [6].

The strong form of the convection-diffusion equation for the domain and boundaries shown is:

find the temperature field T : Ω ⇒ R such that

−∇ · (k∇T) = f in Ωs

−∇ · (k∇T) + ρcpv · ∇T = f in Ωf

T = T on ΓT

k∇ · n = q on Γq .

(4.1)

Because the SUPG method is a modification of the weight functions used to obtain the FEM ap-

proximated solution, it is necessary to obtain the weak form of the problem to appreciate where the

stabilization terms affect the governing equations,

∫

Ω

∇wh · k∇uhdΩ+

∫

Ωf

whρcpv · ∇uhdΩ

︸ ︷︷ ︸

Standard convection

=

∫

Γq

whqdΓ , (4.2)

where wh are the trial weighting functions and uh is the approximated solution. It is worth mentioning

that before the work that is being described in this document, hybdrida did not have any formulation

for advection or fluid flows (stabilized or otherwise), so the only term on the left side in Equation (4.2)

implemented thus far was the first one. In the equation, the terms to the left of the equal sign correspond

43

to the diffusion and standard advection (without stabilization) phenomena, respectively. The term to the

right of the equal sign corresponds to the heat source.

The stabilization that is introduced with the SUPG method is obtained with an additional term in the

equation for the problem’s weak form, which is presented in Subsection 4.2.2.

4.2.2 Formulation

As mentioned in the beginning of this section, both the amplitude of the “wiggles” and the stabilization

parameter depend on the grid Péclet number. This dimensionless number is defined as

Pek =
rate of advection

rate of conduction
=

|vk|hk
2kk

, (4.3)

where |vk| is the norm of the vector quantity flow velocity, hk is the element length in the flow direction

and kk is the thermal conductivity of the material in the flow direction.

In 2D domains, the thermal conductivity of a material is actually a tensor, which means that it can

have different values for different directions. Taking this into consideration, the thermal conductivity in

the direction of the flow can be computed as

kk =
||k · vk||

||vk||
. (4.4)

Finally, all of the necessary values are computed in order to evaluate the stabilization parameter.

The formula for this stabilization factor is not element type independent and can be computed, for 2D

elements (Fries and Matthies [47]), using

τ =
hk

2|vk|

(

coth(Pek)−
1

Pek

)

. (4.5)

It is crucial to note (for implementation purposes) that, because the stabilization is dependent on the

flow velocity, it may not the same for all elements composed of a fluid material or even constant inside

the same element if the velocity profile is not constant (in reality, the flow velocity in the channels radially

varies). This means that it has to be evaluated at each quadrature point.

As mentioned in the previous subsection, the SUPG method employs a modification of the weight

functions used to obtain the FEM approximated solution, which means that it can be expressed as an

additional stabilization term in the weak form of the problem as in

∫

Ω

∇wh · k∇uhdΩ+

∫

Ωf

whρcpv · ∇uhdΩ

︸ ︷︷ ︸

Standard convection

+

∫

Ωf

τ(v · ∇wh)(v · ∇uh)dΩ

︸ ︷︷ ︸

Stabilization term

=

∫

Γq

whqdΓ . (4.6)

Concluding this section, the original hybrida code lacks the implementation of the second and third

terms in Equation (4.6) in order to be able to effectively model the vascular cooled materials that are

subject for this thesis.

44

4.3 Implementation

Having described the concept and formulation of the SUPG method, the next step is to present how

it is implemented in the context of this project and in hybrida. As is mentioned above, there was no

implementation of any convection or fluid flow formulation (stabilized or otherwise) in the code until this

project. Having this opportunity to implement a phenomenon without having any previous structure

behind means that some decisions are in order so that the functionality can be integrated in other

projects with adequate level of encapsulation.

As mentioned and shown in the previous sections, the method consists of adding a stabilization term

that alleviates the “wiggles”, which means that its implementation appears at the end of the assembly

routines (for both integration and standard elements) if the element being assembled is composed of a

fluid material (refer to Algorithm 4 in Chapter 3).

The solution to detect the presence of a fluid material is the first decision that needs to be made for

the implementation of convection. The initial thought was to change the element types if the element

being analyzed was in the fluid phase. This solution proved to be to cumbersome and disruptive of the

code’s structure, as it demanded new element types (identical to standard elements but with additional

information). The simplest solution that requires the minimum amount of modifications in other modules

of the code is creating a new type of material, which is attributed to elements whose nodes have negative

or negative and null level set values (refer to Chapter 3’s Algorithms 1 and 3 to review this process), which

is the same as saying that they are located in the fluid phase of the domain. This new type of material

has the property of flow velocity, which is a function of the 2D spatial coordinates x and y.

At the end of both assembly routines that are presented in Chapter 3 (standard elements and in-

tegration elements) but still for each quadrature point is where the material type check takes place. If

the material type created for convection is detected, the element enters a function that has the goal of

adding the contribution of convection to the FEM model. For this process, it is irrelevant if the element is

a standard or an integration element, which means that there is only one function to add the contribution

of convection.

Despite a formulation that is not as simple as what has been found for IGFEM, a bit simplified by

using Donea and Huerta [45], which provides some tips on the simpler 1D formulation for numerical

computation, the algorithm for adding the contribution of convection to the assembly is straightforward,

as it gets most of the matrices for numerical integration computed in the standard assembly function.

In order to simplify the explanation of the procedure and point out some decisions, it is presented in

Algorithm 6.

Fully understanding Algorithm 6 requires some observations in order to justify the decisions and

clarify the necessary steps:

• The variables listed in line 4 are obtained using Equations (4.3) to (4.5) in Section 4.2;

• For implementing the contribution of convection using the standard Galerkin formulation, some

additional matrices are needed (mentioned in line 5 of the pseudo-code). These matrices are

computed in order to implement the second term of Equation (4.6);

45

Algorithm 6 Assemble convection algorithm

1: Input: element and assembly information data structures

2: Output: updated assembly data

3:

4: compute numerical values needed for convection formulations (vk, hk, kk, Pek and τ)

5: compute matrices for Galerkin formulation of convection

6: choose convection formulation (user input)

7: if formulation is SUPG then
8: compute matrix for SUPG formulation of convection

9: end if
10: add convection contribution to assembly data (stiffness matrix, force vector, ...)

• Line 6 mentions choosing the formulation to employ. Despite being mostly about implementation

verification, one of the goals of Section 4.4 is to apreciate the appearance of “wiggles” in the

Galerkin solution field when problems become convection dominated, which means that it is useful

to be able to simply alternate between the two formulations. This feature can also be an advantage

for future projects;

• Only if the formulation chosen is SUPG does the matrix needed to implement the stabilization term

in Equation (4.6) get computed in order to save computational resources. This matrix is computed

based on the stabilization factor and flow velocity vector.

4.4 Verification

Again to gain some confidence in the results obtained using the code developed for this work requires

verification of the implementation. In this section, two test cases are presented to accomplish this

important task.

4.4.1 1D Convection Approximation

The first test case consists of a simple 1D fluid bar of length L = 1 m made out of a material with a

thermal conductivity of k = 10−6 W/m · K and a flow velocity of ~v with the Dirichlet BCs in Equation

(4.7), represented in Figure 4.3. This test case is also useful to appreciate the influence of the flow

velocity (which is related the Péclet number) in the appearance of “wiggles”.

Figure 4.3: 1D fluid bar.

T = 0K @ x = 0m

T = 1K @ x = 1m

. (4.7)

46

Despite this advantage to study the influence of the flow velocity in the appearance of “wiggles”,

the main goal here is to do verification. Consequently, this example has been chosen because there is

a simple analytic solution that can be used for this purpose (from Bergman et al. [6]). The governing

equation for the temperature distribution in a bar, that derives from the convection-diffusion equation, is

T (x) =
1− ePe x/L

1− ePe
. (4.8)

Because this is a 1D problem and the implementation of the SUPG assumes 2D conditions, the

problem has been solved as an extremely sleek rectangular domain of the same length as the bar.

Before verifying the results using the SUPG method, it is interesting to analyze the result using the

standard Galerkin method. With this in mind, the temperature distribution for three Péclet numbers is

presented in Figure 4.4 using a structured finite element mesh with ten rectangular elements and the

analytic solution is sampled at each of the nodes in that mesh to provide better grounds for a comparison.

(a) Pe = 10, Pek = 0.5 (b) Pe = 20, Pek = 1

(c) Pe = 50, Pek = 2.5

Figure 4.4: Analytic and Galerkin temperature distribution solution in 1D bar for multiple Péclet numbers.

The limitations of the standard Galerkin method when modeling convection dominated flows that are

mentioned in Section 4.1 become evident in the plots that are presented in Figure 4.4. For the first

two cases (Pe = 10 and Pe = 20) where order of magnitude of diffusive phenomena is not negligible,

47

the observation is that the approximated solution appears to be under-diffuse when compared to the

analytic ones (more noticeable in the second case). Increasing the Péclet number in the third example

shows the appearance of “wiggles” with an amplitude of the same order of magnitude as the values of

the solution, which renders the approximated results useless, confirming that looking into an alternative

for the Galerkin formulation is necessary in this case. The results can be compared against what has

been found in Brooks and Hughes [44], reproduced in Figure 4.5, and the conclusion is that they look

identical (this comparison should be made taking into account that the temperature distribution is also

a function the grid Péclet number, α in the source article, and that the Galerkin formulation leads to a

central difference scheme).

Figure 4.5: Exact and central difference solution for convection in 1D bar from Brooks and Hughes [44].

Applying the formulation of the SUPG method above gives way to obtain a different set of plots for

the temperature distribution. Figure 4.6 presents these plots, where the conclusion is that the formu-

lation behind them completely solves the appearance of under-diffuse solutions and “wiggles” in the

temperature field, as the approximated solutions match the analytic ones to machine accuracy.

Despite the promising results present in Figure 4.6 regarding the effectiveness of the SUPG method

obtaining the temperature field in a bar, this example is somewhat too simple to proof a correct imple-

mentation on its own.

4.4.2 Convection Skew to the Mesh

Continuing the work started in the previous subsection, this example is a square plate (inspired by an

identical problem from Brooks and Hughes [44]) to add some complexity to the verification process with

a 2D domain. The geometry and BCs that characterize the problem can be found in Figure 4.7, with a

48

(a) Pe = 10, Pek = 0.5 (b) Pe = 20, Pek = 1

(c) Pe = 50, Pek = 2.5

Figure 4.6: Analytic and SUPG temperature distribution solution in a bar.

unitary side length (L = 1m) and flow velocity (|v| = 1m/s and direction θ). The problem is convection

dominated with a negligible thermal conductivity of k = 10−6W/m ·K, which results a Péclet number of

Pe = 106.

Figure 4.7: Convection skew to the mesh problem statement.

The mesh that has been created to model this problem is identical to the mesh that in the source

of this example and consists of a structured uniform mesh of square elements (each side is composed

49

of ten square elements). Despite presenting a representation of the analytic temperature field, that

has been reproduced in Figure 4.4, the source provides neither an explanation on how this solution is

obtained nor its numerical values, which means this analysis has only a qualitative component.

(a) θ = 22.5o (b) θ = 45
o (c) θ = 67.5o

Figure 4.8: Analytic temperature distribution for skew convection from Brooks and Hughes [44].

The procedure for verification here is the same to what has been done in the previous section, start-

ing with the comparison of the Galerkin solutions from the developed implementation and the source.

Analyzing Figures 4.9 and 4.10 qualitatively (using the mesh outline as reference), it is possible to con-

clude that the results of each source are identical for every skew angle represented (refer to Figure 4.7).

On the other hand, it is also observable that the amplitude of the “wiggles” is also related to the skew

angle (flow velocity is the same for all plots).

(a) θ = 22.5o (b) θ = 45
o (c) θ = 67.5o

Figure 4.9: Galerkin temperature distribution for skew convection from hybrida.

(a) θ = 22.5o (b) θ = 45
o (c) θ = 67.5o

Figure 4.10: Galerkin temperature distribution for skew convection from Brooks and Hughes [44].

Moving on to the results using the SUPG method that are obtained with the developed implementa-

tion, represented in Figure 4.11, some observations are in order:

• As is the premise for this method, the results obtained for all skew angles are much smoother and

the resulting “wiggle” amplitude is almost nonexistent;

50

• Using the mesh outline as a reference once again, it is possible to conclude that the results ob-

tained in this implementation agree with the temperature field solution in the source of this example,

reproduced in Figure 4.12.

(a) θ = 22.5o (b) θ = 45
o (c) θ = 67.5o

Figure 4.11: SUPG temperature distribution for skew convection from hybrida.

(a) θ = 22.5o (b) θ = 45
o (c) θ = 67.5o

Figure 4.12: SUPG temperature distribution for skew convection from Brooks and Hughes [44].

Combining the somewhat qualitative conclusions found here with the indisputable results obtained

for the 1D bar (where the approximated solution matches the analytic ones to machine accuracy), it is

possible to claim with confidence that, from what is observed with these examples, the implementation of

the method is correct. Consequently, the path for this work can continue on to combine the advantages

of both numerical tools discussed in this chapter and in Chapter 3 to tackle representative problems

involving actively-cooled vascular materials.

51

52

Chapter 5

Test Cases Modeling Results

This chapter is where the two numerical methods discussed thus far are combined, showcasing the

power of this union by modeling two test cases involving actively-cooled vascular material blocks with

BCs and geometry that mimic a CPU cooler and a car engine cylinder. The CPU cooler test case (its

geometry, BCs, baseline solution) and also an IGFEM efficiency study are presented and discussed in

Section 5.1 while Section 5.2 discusses the car engine cylinder test case.

5.1 CPU Cooler Test Case

As already mentioned in other chapters of this document, the project that constitutes this thesis is being

developed in an academic environment. Due to this and also due to the fact that there was no specific

optimization goal, the problem (geometry subject to BCs) to optimize has to be created with the goal

of showcasing the power of combining the numerical tools that have been implemented. Despite this,

the objective here is not to select a completely random geometry and BCs where the result of the

optimization process cannot be fully appreciated, but instead to get inspiration from a real life problem.

Being inspired by a real life problem, the results of the optimization process can be analyzed in an easier

way, since the order magnitude of the usual temperatures is empirically known.

5.1.1 Problem Description

Before presenting the initial geometry, BCs and remaining data, it is relevant to recall the problem that is

being solved using the IGFEM and SUPG. The problem at hand is a conjugate heat transfer problem with

the generic information that is presented in Subsections 4.2.1 and 4.2.2, namely a domain schematic in

Figure 4.2, the strong form in Equation (4.1) and the weak form in Equation (4.6).

Moving on to the active cooling vascular problem of the CPU cooler that was briefly mentioned before,

the first thing to note is that both the geometry and data are inspired in the real values that can be found

in multiple references for the subject, for example Vogel [48] or Khonsue [49].

The CPU cooler’s initial geometry consists of the 2D rectangular domain intersected by an horizontal

straight cooling channel that is represented in Figure 5.1, where the effect of the IGFEM is clearly visible

53

in the zoomed view of a sample mesh also presented in the figure. The matrix (solid phase) of this cooler

is made out of copper (k = 401W/m ·K, cp = 0.39 J/kg ·K and ρ = 8960 kg/m3) and the circulating

cooling liquid (fluid phase) is water (k = 0.6W/m ·K, cp = 4.182 J/kg ·K and ρ = 998.3 kg/m3).

Figure 5.1: CPU cooler test case baseline geometry and sample mesh (side view).

The BCs pictured in Figure 5.1 consist of uniform heat flux of q at the bottom boundary (CPU’s ther-

mal energy output) and a fixed temperature of T at the top boundary (considered ambient temperature)

as well as at the forced inlet flow. The dimensions and other data represented in the figure are

L = 45mm

D = 0.8mm

ṁ = 10 g/min (5.1)

Tinlet = T = 20 oC

q = 150W (uniform heat flux) ,

where ṁ is the mass flow rate that enters the cooling channel.

The configuration of the cooling channels needs to be defined using some sort of mathematical

functions (the IGFEM’s geometric engine works with level set functions). Because there are at least two

material interfaces for the case of vascular material (one channel is defined by two interfaces), there

need to be at least two level set functions.

One important aspect to consider regarding the modeling of the cooling channels is the velocity

profile inside them. Regardless of the channel configuration, a fully developed flow (this means that

the effects of the velocity boundary layer entering the channel are neglected) with a parabolic Ha-

gen–Poiseuille velocity profile given by Equation (5.2) and exemplified in Figure 5.2 is considered,

v = 1.5
ṁ

ρ A

(

1−
2 r

D

)2

, (5.2)

54

where r is the distance to the channel’s centerline.

Figure 5.2: Hagen–Poiseuille velocity profile from White [18].

For the purpose of this thesis, the considered cooling channel geometry is defined by two offsets to

a sine wave shaped centerline, given by

y = a sin(k x) = a sin

(
2nswπ

L
x

)

(5.3)

The parameters that define the channel geometry and that need to be tweaked are defined in relation

to the centerline and are the amplitude of the channel (A) and number of sine waves in the horizontal

direction of the domain (nsw, related to the wavelength of that sine wave). As an example, Figure 5.3 is

the representation of a mesh where the channel geometry is defined by (A = 2mm, nsw = 2) and the

initial configuration in Figure 5.1 is also considered a sine wave with (A = 0mm, nsw = 0),

Figure 5.3: Sample mesh for A = 2mm, nsw = 2

Before going any further, it is necessary to study the convergence of the solution in relation to the

size of the finite elements. To do this, a random set of parameters of (A = 4mm, nsw = 2) can be used

to obtain value the temperature in the far right bottom corner node (which is also the maximum temper-

ature) for different mesh refinements. Plotting these values for six mesh refinement levels originates the

graph in Figure 5.4, corresponding to the numbers of elements summarized in Table 5.1.

As further discussed in Chapter 7, being the goal to perform an optimization process with the objec-

tive function being the temperature in node four (what is represented in the graph of Figure 5.4), it is

desirable to reduce computation time as much as possible, which means to use a mesh refinement that

provides a result close to the converged value but still with a relatively low processing time. Taking these

premises into consideration, the chosen mesh is the fourth one, with 128134 finite elements. Despite

not presenting exactly the same result considered to be the converged value (data point to the far right

of the plot), it yields a relative error of 1% with only 55% of the computation time, which is considered to

55

Figure 5.4: Mesh convergence study for A = 4mm and nsw = 2.

be adequate for the optimization process. After obtaining the optimized geometry, the maximum temper-

ature value for the chosen mesh is going to be compared against the result for the finer mesh to ensure

that there isn’t an odd discrepancy.

5.1.2 Implementation Efficiency

Another relevant aspect that has not yet been approached is the efficiency of the algorithms implemented

for the chosen numerical methods (IGFEM and SUPG). To do this, Table 5.1 can be used to compare

the computation times between the vascular material geometry that is used in the previous paragraphs

for the mesh convergence study (A = 4mm, nsw = 2) and a similar domain without the cooling channel

(solid copper block with the same dimensions and BCs).

NELEM TIGFEM+SUPG [s] Tsolid [s]
∆t

TIGFEM+SUPG
[%]

8290 13 7 43

38540 43 28 34

72591 96 63 35

128134 163 114 30

197127 255 176 31

231177 294 220 25

Table 5.1: Computation times vs. number of finite elements.

From the values in the last column of Table 5.1, which correspond to the percentage of time that is

used by IGFEM and SUPG to create the vascular cooling channel and add the contribution of convection

to the heat transfer process, some observations can be pointed out:

• The percentage of time that is used by IGFEM and SUPG is reduced as the mesh gets finer;

• Taking into account the complexity that is added to the problem with the introduction of a cooling

channel with circulating fluid, the relatively low time percentages used to do it show the choice of

numerical tools and respective implementation are efficient dealing with this test case, certainly

when compared to the computational effort that would be needed to remesh the problem for each

56

channel geometry. As an example, for the mesh that has been chosen for the optimization, the

time used to implement the vascular active cooling is only 30% of the total time.

Regarding the first point above, profiling a bit deeper in the code (using built-in Python functionality

to check the computation time that each function uses) reveals that the most time consuming step is

not the geometric operations taken care of by the geometric engine but the assembly functions, more

specifically doing the tasks of checking if the “special” assembly function for integration elements is

needed or if the material that constitutes the element is fluid and using the correspondent assembly

functions (refer back to Algorithm 4 in Chapter 3 to recall the location of this functions within the code).

This means that if code optimization is desired it should start in the way these assertions are being

made, which is programming language specific, and not in the operations in themselves.

5.1.3 Solution

The first simulation to run has the goal of obtaining the baseline solution, which is the result that is ob-

tained using the initial geometry. This geometry is represented in Figure 5.1, the CPU cooler intersected

by a straight channel (A = 0mm, nsw = 0). The result of this simulation is presented in Figure 5.5.

(a) (b)

Figure 5.5: CPU cooler test case baseline geometry solution.

From Figures 5.5(a) and (b), it is possible to observe that the maximum temperature in the CPU

cooler’s domain is 102.3oC. This temperature is above 95oC, which is known from experience to be

a threshold above which normal CPUs tend to thermal throttle (reduce computational performance in

order to lower the temperature and avoid damages). This result, obtained using this straight channel

configuration and data from Vogel [48] and Khonsue [49] is consistent with the temperature values found

for real CPUs and fortunate because it gives some growing room to see the effect of the optimization

(check if modifying the configuration of a cooling channel to a configuration as simple as a sinusoidal is

enough to alleviate this issue).

Furthermore, it is possible to observe from Figure 5.5(b) that:

• The temperature in the top boundary of the cooler appears to be constant, which indicates that the

fixed temperature boundary condition is correctly applied;

• The heat source is located at the bottom boundary of the cooler, which indicates that (at least the

location of) the heat flux boundary condition is correctly applied;

57

• Below the cooling channel, there is an increase of the temperature from left to right consistent with

direction of the circulating coolant. Taking the bottom boundary of the domain as the horizontal

reference axis, this increase goes from approximately 94oC in the far left bottom corner to the

maximum temperature of 102.3oC in the far right corner. This is due to the fact that the fluid enters

the channel at a lower temperature and is then warmed as it circulates, increasing its internal

energy and reducing its ability to cool the surroundings;

• A vertical temperature gradient (below the channel as well) it is also noticeable, with the tempera-

tures closer to the cooling channel being lower (fluid absorbs energy from surroundings first);

• Above the cooling channel, the temperature appears to have negligible variation, showing a con-

stant color in the graph.

Having presented the baseline temperature distribution resultant from the straight channel configu-

ration of the CPU cooler and made the comments that are deemed relevant, it is adequate to move on

to the next test case.

5.2 Engine Cylinder Test Case

Much like the test case presented in Section 5.1, the goal is to select a set of geometry and BCs inspired

by a real life problem in order to check if the order of magnitude of the resulting solution makes sense.

5.2.1 Problem Description

Again falling into the same premises as the previous test case, the problem at hand is a conjugate heat

transfer problem with the generic information that is presented in Subsections 4.2.1 and 4.2.2, namely a

domain schematic in Figure 4.2, the strong form in Equation (4.1) and the weak form in Equation (4.6).

This time, the goal is to model the cooling system in a car’s engine using Figure 5.6(a) as inspiration.

Due to symmetry and also with the goal of simplification, the domain to model using the implemented

thermal solver is limited to one cylinder, as can be seen in Figure 5.6(b). This test case also proves that

the developed IGFEM implementation is capable of handling multiple channels.

Using for inspiration the usual values for engine displacement (D) and cylinder bore (B) from a 1600cc

58

(a) Inspiration from Cogniso [50] (b) Simplification

Figure 5.6: Engine cylinder test case geometry.

engine and Patel et al. [51] for information on the mass flow rates, the dimensions and other data are

B = 75mm

D = 90mm

d = 3.2mm

L = 90mm

ṁ = 100 g/min (5.4)

Tinlet = 20 oC

T = 180oC ,

where d is the diameter of the channels, L is the total width of the domain, Tinlet is the temperature

of the fluid entering the cooling channels and T is the fixed temperature in the cylinder. The boundary

conditions applied to this test case are the fixed temperature in the cylinder (red in Figure 5.6(b)) which,

at 180oC, is said in Patel et al. [51] to be the maximum temperature to ensure that the oil film between

the cylinder and cylinder wall does not deteriorate and an external temperature of 90oC on the side walls

of the engine, which is also said to be the average external engine temperature.

Being described similarly to what has been done in the previous test case, the cooling channel’s

configuration is also defined using level set functions and the flow inside them given by a parabolic

Hagen–Poiseuille velocity profile described by Equation (5.2) and exemplified in Figure 5.2.

The mesh refinement choice to model this test case has been inspired by the convergence study

made for the previous test case. The number of elements per unit of area is similar to the one found in

the mesh used for the results of that case, which results in another structured triangular (similar to the

one in Figure 5.1) mesh with 148047 finite elements.

59

5.2.2 Solution

With the additional goal of observing the cooling capacity difference using different coolants, this test

case has been modeled using one material for the solid phase (cast iron, k = 55 W/m · K, cp =

0.46J/kg·K and ρ = 7800kg/m3) and two materials (one at a time) for the coolant (water, k = 0.6W/m·K,

cp = 4.182 J/kg · K, ρ = 998.3 kg/m3 and engine coolant, k = 0.4153 W/m · K, cp = 3.6 J/kg · K,

ρ = 1030 kg/m3, from Patel et al. [51]).

Despite a mesh refinement that does not differ from the ones used for the previous test case, the

geometry modeled here and the nature of the BCs (applying Dirichlet BCs to a surface is equivalent to fix

the temperature in all the nodes that are contained in it, which makes the computation more expensive)

result in a much higher run time. In this case, the computation time is 24m46s and the percentage of

time used by the IGFEM SUPG combined solver is only 17%.

Having covered all relevant aspects, it is now adequate to show the results of the simulation, which

are presented in Figure 5.71. The figure only represents the solution for the case where water is the

coolant, as they visually look the same (only difference is in the temperature of the coolant, which is not

noticeable in the figure and is discussed below).

Figure 5.7: Engine cylinder test case solution.

Analyzing the solution presented in Figure 5.7 does not allow for much quantitative comments on the

result. The only thing that can be said is that the temperature distribution along the vertical direction of

the channel appears to make sense, as it is higher near the top of the channel and lower at the inlet.

Additionally, it is higher near the cylinder and lower in the middle (maximum flow velocity).

In order to compare the results obtained for water and engine coolant as circulating fluid and also to

validate the order of magnitude of the results in obtained solutions, the chosen metric is the temperature

along the outlet of the cooling channels. Being identical for both cooling channels, this temperature

distribution for both water and engine coolant as circulating fluid can be found in Figure 5.8.

1The minimum temperature in the scale does not make sense, as the minimum value of the solution vector has been searched
for computationally and is 20, the temperature of the inlet flow. This mistake could not be fixed in the visualization tool Paraview,
as the scale appears to be automatic.

60

Figure 5.8: Temperature distribution along exit of cooling channel for engine cylinder test case.

Regarding Figure 5.8, the analysis can be summed in the following points:

• The left and right limits are well implemented, 90oC being the temperature of the “engine casing”

and 180oC the temperature emitted by the cylinder;

• The line that corresponds to the simulation done using engine coolant as circulating fluid is lower

than the line correspondent to water which indicates, as expected, a better cooling performance.

The average temperatures in the outlet are 85.6oC for the engine coolant and 95.7oC for the water,

which means a 10oC temperature drop obtained by just changing the coolant;

• The order of magnitude of the average temperature for outlet flows is consistent with real engine

running temperatures of about 90oC known from experience.

With everything that needed to be observed regarding this test case documented, it is possible

to conclude that, apart from the use of multiple channels, the two test cases do not present a lot of

relevant differences. Taking that into account, only the CPU cooler continues to undergo an optimization

process, as it is better defined and has subjectively more growing room to change the geometry (the

cooling channels in the engine cylinder don’t have a lot of room to be shaped differently).

The next chapter approaches the choice of optimization tool and method to obtain an optimal config-

uration for the sinusoidal shaped cooling channel in the CPU cooler test case and Chapter 7 presents

the results of this process.

61

62

Chapter 6

Optimization Fundamentals

Despite being discussed in Chapter 1 as one of the milestones of this thesis, the optimization process

has not yet been approached. This is justified by the fact that first it was necessary to obtain modeling

computational tools that present trustworthy results for problems similar to those that need to be opti-

mized. Now that the IGFEM and SUPG have been presented, their implementation verified and a test

case and baseline solution analyzed, it is adequate to discuss optimization.

Before getting to the optimization relevant aspects, it is important to mention that despite not devel-

oping the optimization loops themselves and using standard optimization packages in the programming

language Python, an explanation of the choice of the optimization technique and some information about

it is presented in Section 6.2.

6.1 Problem Formulation

The general form of a constrained optimization problem (process of minimizing a function with respect

to some variables in the presence of constraints on those variables) is

Minimize: f(x,b)

Subject to: xL < x < xU (6.1)

A x ≤ b (Linear)

h(x) ≤ 0 (Non-Linear) ,

where f(x,b) is the objective function (function that undergoes the optimization process) and the equa-

tions under the category “Subject to:” are the constraints. The first equation under this category repre-

sents the bounds for the variables x. It is also important to mention that constraints are not limited to

linear relations, they can also be non-linear, as exemplified by the last inequality.

For the specific case of this work and the optimization of the conjugate heat transfer problem of the

vascular cooled CPU, the objective function is the maximum temperature in the domain and the variables

63

define the cooling channel’s configuration. All of this is further discussed in Chapter 7.

6.2 Optimization Tool

As mentioned in this chapter’s introductory notes, this project does not envision developing the opti-

mization loops to be used in vascular cooled materials. Instead, it relies on an optimization package

already implemented in a module of the programming language Python. This optimization package is

found under the SciPy module, an open source library of scientific tools, is called optimize.minimize and

does minimization of a scalar function of one or more variables (see Varoquaux [52]).

6.3 Optimization Methods

Now that the formulation for an optimization problem has been presented, it is adequate timing to discuss

the choice of the optimization method for this project. As is mentioned before, the goal is to choose one

of the optimization methods implemented in the SciPy optimize.minimize module, preferably one with

a reduced amount of user input required. The following list provides a basic understanding on the

methods present in the optimize.minimize module, as well as some advantages and disadvantages of

those methods (obtained from the module’s documentation and Bonnans et al. [53]):

• The Nelder-Mead (or simplex) search algorithm is one of the best known algorithms for uncon-

strained optimization without derivatives. Aside from its simplicity and ease of use, its advantages

are related to the fact that the method often gives significant improvements in the first few iterations,

quickly producing satisfactory results. On the other hand, the lack of convergence theory can lead

to it taking an enormous amount of iterations with negligible improvement in the function value,

despite being nowhere near a minimum. This can result in premature termination of iterations;

• The Powell method (or Powell’s conjugate direction method) is an algorithm for finding the local

minimum of a function using a linear search. The objective function does not need to be differ-

entiable and no derivatives are taken. Being simple, this method is useful in calculating the local

minimum of a continuous but complex function, especially one without an underlying mathematical

definition, because it is not necessary to take derivatives. On the other hand, the linear searches

that are used to obtain the position of the local minimum are more complex, requiring additional

methods;

• The Conjugate Gradient (CG) methods are a class of numerical methods that can be used for both

solving linear equations and nonlinear optimization. As optimization is concerned, these methods

present low memory requirements fast convergence. Despite a convergence speed decrease for

ill-conditioned problems, the final result is not affected a great deal by this ill-conditioning. On the

other hand, these methods are more suitable for unconstrained optimization;

64

• The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is the most commonly used update strat-

egy for implementing Quasi-Newton optimization technique, as it is considered the most efficient

one (low number of function evaluations per iteration when compared to similar methods). Unlike

Newton optimization techniques, it does not require computing the second derivatives of the objec-

tive function. The disadvantages lie mostly on the fact that the quadratic convergence of Newton’s

method is lost;

• The Newton-CG method combines the moderate memory requirement of the conjugate gradient

method with the fast convergence of a quasi-Newton method. It has the inconvenience of requiring

the Jacobian (gradient) of the objective function, which is what one of the things trying to be

avoided;

• The Limited-memory BFGS-B (L-BFGS-B) is also an optimization algorithm in the family of quasi-

Newton methods that approximates the BFGS methods by limiting the amount of computer mem-

ory that can be used for parameter estimation and then extends it to handle simple box constraints

on variables (example li ≤ xi ≤ ui). This method is good at evaluating computationally expensive

functions because, as the standard BFGS method, it requires a low amount of function evaluation.

It presents the same problem as the standard BFGS method, which is that it degenerates into

steepest descent method for ill-conditioned problems, requiring a good matrix preconditioner to

remedy this situation;

• The Truncated Newton (TNC) methods are a family of optimization algorithms designed for opti-

mization with a large numbers of variables. The only proved advantages are that it sometimes

converges in fewer iterations than similar methods and requires less parameter tweaking. Looking

at the disadvantages, these methods require that the gradient is suggested and good precondi-

tioning exists in order to work correctly;

• The Constrained optimization by linear approximation (COBYLA) is another optimization method

for constrained problems where the derivative of the objective functions is not known. The ad-

vantages of this method lie in the very few function evaluations needed for convergence and the

disadvantages in the dependency on the starting point (early convergence in local minima when

starting point is far from optimal);

• The Sequential Least SQuares Programming (SLSQP) is an iterative method for nonlinear opti-

mization. This method is considered to be one of the most efficient methods for problem minimi-

sation with equality and inequality constraints. Furthermore, it does not require second derivatives

to be computed and satisfies the bounds in all iterations;

• Finally, the computational package being discussed also provides implementations of the dog-leg

trust-region and of Newton conjugate gradient trust-region algorithms. Because these are meant

for unconstrained optimization, they aren’t really relevant for the problem of optimizing the CPU

cooler’s geometry.

65

6.4 Selected Method

Considering all of the advantages and disadvantages of the optimization algorithms in the list above,

which can be directly applied using the mentioned SciPy module, the method to be used in the opti-

mization of the CPU cooler is the SLSQP as it is the most well-rounded one in the advantages and

disadvantages that matter for the mentioned problem. It may not be the fastest, but it is straightforward

to use and there has been no problem in obtaining reliable results.

The usage of the discussed optimization tool and method in a Python environment is presents no dif-

ficulty very straightforward, which can be demonstrated using a simple example: consider the objective

function and single constraint (bound for variable x)

Minimize: f(x) = sin(x)

Subject to: 0 < x < 3π . (6.2)

The result of this optimization problem is trivial, being −1 the minimum value of f(x) in the indicated

domain for an x value of 3π
2 .

The implementation of this sample optimization problem using the SciPy package in Python can be

illustrated by Algorithm 7 (x0 is the user’s initial guess for the value of the variable that corresponds to

the function minimum in the chosen domain).

Algorithm 7 Sample optimization problem implementation

1: fun = sin(x)
2: guess = x0
3: method = ’SLSQP’

4: bnds = (0, 3π)

5: cons = ()

6: result = minimize(fun, guess, method, bnds, cons)

7: print result (if successful, returns the final value of the variables and function, the number of iterations

and elapsed time)

66

Chapter 7

Test Case Optimization Results

It is in this final results chapter that the ability to model multiphase problems provided by the union of

IGFEM and SUPG is combined with an optimization algorithm provided by the SciPy optimize.minimze

package. While Section 7.1 approaches the specifics of the optimization process (objective, constraints

and design variables), Section 7.2 presents the optimization results (obtained using the optimization

method selected in Chapter 6) that are deemed necessary and interesting.

The goal is to optimize a vascular rectangular domain with a cooling channel that mimics the cool-

ing block of a computer’s processor (central processing unit, CPU). The data is inspired by a real life

problem, namely the heat flux produced by the CPU and the temperatures involved and a first baseline

geometry has already been modeled in Chapter 5. Being a real life problem, the results of the optimiza-

tion process can be analyzed in an easier way, since the order magnitude of the usual temperatures is

empirically known.

7.1 Bounds and Constraints

Before presenting results of the optimization, it is important to formally present its formulation, similarly

to what has been done in Chapter 6 for a general optimization problem. The requirements to identify

are the objective function, bounds and constraints. The objective function is, as already mentioned, the

maximum value of the temperature in the domain. As for the bounds and constraints, they are the first

two expressions in Equation (7.1) and the last expression, respectively, and they regard the optimization

parameters that are the amplitude of the centerline sine wave and number of “waves” in the horizontal

direction of the domain), resulting

Minimize: max[T (a,nsw)]

Subject to: 2 < a < 4 [mm]

2 < nsw < 4 (7.1)

∆p ≤ 1.5×∆pstraight interface ,

67

where ∆p and ∆pstraight interface are the pressure drop in the channel due to viscous effects for the selected

interface and straight interface, respectively. Refering back to White [18] once again, the pressure drop

in a channel due to viscous effects with an Hagen-Poisseuile velocity profile is given by

∆p =
8µsQ

πR4
∝ s⇒ ∆p ≤ 1.5×∆pstraight interface ⇔ s ≤ 1.5× L , (7.2)

where µ is the dynamic viscosity of the fluid, s is the length of the channel, Q is the volumetric flow and R

the radius of the channel. Taking into account that all parameters remain constant but the length of the

channel, the constraint presented in Equation (7.1) is equivalent to the one presented here. The length

of the channel defined by a sine wave shaped centerline is given by the arc length of that same sine

s =

∫ L

0

√

1 + (A k cos(k x))2dx . (7.3)

Choosing these values for the bounds of the optimization parameters has two reasons. The most

relevant reason is geometrical: using two offset curves from a sine wave shaped centerline does not

normally produce a constant width channel. To remedy this situation (too solve it completely the channel

would have to be modeled in some other way, for example using sine generated curves with constant

radius), an empiric scaling function is used, but this function is not effective for very high amplitudes

or very short wavelengths. The second reason is that using high amplitudes for the sinusoidal shaped

centerline leads to uneven cooling, something that might not be desirable in the case of a CPU.

Finally, the pressure drop ratio constraint is introduced to add some real life restriction to the prob-

lem by limiting the required driving force of an hypothetical pump that would have to drive the coolant

through the channel. This constraint is what generates interesting results of the optimization, aside from

the temperature differences resultant for different channel configurations and if it is not introduced, the

result of the optimization is that the parameters take the value of their upper bounds (verified using this

formulation and optimizer without this constraint). This means that the resulting geometry would have

the largest possible amplitude value and number of waves in the domain, as this means more fluid in-

side it, which leads to a higher cooling capacity (via transferring energy from the solid phase to the fluid,

which keeps on being renovated with new fluid at ambient temperature).

7.2 Enhanced Solution

Now that all the premises for the optimization are clearly and formally presented, it is adequate to obtain

the results of the optimization using the developed numerical tools and the chosen built-in package for

optimization method (SLSQP). In order to draw some comments on the effects of the different channel

geometries in the maximum temperature in the CPU cooler, Table 7.1 can be built with the results of

maximum temperature and pressure drop for four different geometries: the straight interface configura-

tion that has already been analyzed in Subsection 5.1.3, the lower and upper limits of the optimization

parameters’ bounds and the optimized result.

Before presenting the graphs for the resulting temperature fields for each geometry, it is convenient

68

a [mm] nsw max[T (A, nsw)] [
oC] ∆p/∆ps.i. Remarks

0 0 102.3 1 Straight channel (baseline)

2 2 84.9 1.1 Design variables at lower bound

4 4 59.4 1.8 Unconstrained result (violated constraint)

3.15 3.7 66.9 1.5 Optimal design (active constraint)

Table 7.1: Results of CPU cooler’s optimization problem.

to draw some observations from the most important metric in this optimization, which is the maximum

temperature within the CPU cooler’s domain:

• The result for the straight channel geometry serves merely to evaluate the results for the remaining

geometries. As would be expected, the ratio between pressure drops is exactly one, as the value

being tested and reference are the same;

• The result in the second data row of the table (for A = 2mm and nsw = 2) corresponds to the case

where both lower bounds of the optimization parameters are used. As is clear with a maximum

temperature of 84.9 oC, the temperature of the domain is now below the aforementioned thermal

throttle threshold of 95oC, which means that any geometries that improve on this result already

complies with the minimum requirements. Presenting a pressure drop due to viscous effects ratio

of 1.1 in relation to the straight channel configuration means that the pressure drop constraint

presented in Equation (7.1) is not yet active and that there is still room for improvement;

• The next row of the table (for A = 4 mm and nsw = 4) corresponds to the upper bounds of

the optimization parameters. With a resulting maximum temperature of 59.4oC, it is the most

favorable geometry for reducing the maximum domain temperature considering the bounds chosen

for the optimization parameters. It is very interesting to observe that changing the geometry from a

straight channel to a simple sinusoidal shaped channel leads to a maximum temperature difference

of 43oC. On the other hand, looking at the last value in this row indicates that the pressure drop

due to viscous effects ratio is higher than 1.5, which means that this constraint is violated and this

result is not valid for this optimization problem (it corresponds to the unconstrained optimization

previously mentioned);

• Finally, the fourth and last data row of the table (for A = 3.15mm and nsw = 3.7) corresponds to

the final result of the optimization. Regarding this result, several comments are in order:

– The maximum temperature resulting from the optimized geometry is 67.1oC and falls, as

expected, between the results obtained for the geometries defined by the lower and upper

bounds;

– It is noticeable that the constraint regarding the pressure drop due to viscous effects is active

since the optimized geometry yields a value of 1.5, the maximum allowed in Equation (7.1);

– The geometry that results from this optimization has been tested with the finest mesh from

the convergence study in Figure 5.4 and the resulting temperature is 66.9oC. This means that

69

the difference between the temperatures obtained for both meshes is approximately 0.15%,

which is considered negligible, reassuring confidence in the results that are presented;

– This optimization’s result is that the temperature of this CPU cooler block under heavy load

goes from a value way above the optimal performance and integral safety threshold to a

very favorable temperature for the same conditions (temperatures under 80oC − 85oC are

considered to be a synonym of adequate cooling performance in various sources such as

computer forums);

– From analyzing the resulting geometry, it is possible to conclude that the maximum tempera-

ture is more sensitive to the parameter nsw than to the amplitude of the sinusoidal centerline,

as the “selected” geometry has a higher value for nsw. This fact cannot be explained by

the sensitivity of the channel’s length to the same parameters, as equal increments for each

parameter produce the same exact result (for example, the length of the channel for the ge-

ometry A = 3mm and nsw = 2 is exactly the same as for A = 2mm and nsw = 3);

– The use of the chosen numerical techniques allowed this geometry to be optimized in just

(about) 1h40 using a personal system running an Intel Core i7 processor clocked at 2.2GHz

with 16GB of memory and on OS X Yosemite, despite the forty two iterations that the optimizer

needed to obtain the result. A special emphasis must be given to IGFEM in problems such

as the one being analyzed here, as it is a very interesting method that efficiently deals with

the discontinuities and without which an optimization process to this problem would be much

more user time consuming and cumbersome (with a constant need for remeshing).

With all the comments deemed necessary regarding the concrete result of the maximum domain

temperatures, it is also interesting to look at the evolution of relevant optimization data with iteration

number. The evolution of the maximum domain temperature, pressure drop due to viscous effects ratio

and design variables evolution with the iteration number is represented in Figure 7.1. Rounding up the

observations regarding Figures 7.1(a) and (b), it is necessary to point out that there are iterations with a

lower maximum domain temperature than the final result of the optimization. These values correspond

to the pressure drop ratios that are above the dashed line limit in Figure 7.1(b). On the other hand,

the dashed lines labeled as xL and xU in Figure 7.1(c) correspond to the lower and upper bounds,

respectively, of the design variables a and nsw.

It is now adequate to analyze the domain temperature distributions for the geometries that are being

considered. The result for the first geometry, which corresponds to the design variables at their lower

bounds (A = 2mm, nsw = 2), is represented in Figure 7.2.

When comparing the temperature distribution obtained in Figure 7.2(b) with what has been obtained

for the straight interface in Figure 5.5, it is noticeable that:

• Below the cooling channel, the difference between far right and far left bottom corner nodes’ tem-

peratures is 10.5oC, which is higher than the resulting 8.2oC from the straight interface geometry.

This means that the greater quantity of fluid in the channel and the added contact area contributes

70

(a) Maximum domain temperature (b) Pressure drop due to viscous effects ratio

(c) Design variables

Figure 7.1: Evolution of relevant optimization data with iteration number.

(a) (b)

Figure 7.2: CPU cooler optimization problem’s result for A = 2mm and nsw = 2.

to a more efficient cooling (lower maximum temperature) but also to a bigger temperature gradient

in the bottom boundary of the domain;

• Despite not being entirely translated into vertical temperature gradients, the stratification of the

temperature below the cooling is much more visible in this geometry when compared to the straight

interface. This is noticeable due to the well defined color zones, with the transitions happening near

the regions of the peaks and valleys of the sinusoidal channel;

• Above the cooling channel, close to the flow outlet, it is possible to identify a higher temperature

71

zone with a slightly different color (this is even more noticeable in the geometries presented below).

Before presenting the temperature field for the optimized geometry, it is also interesting to show the

result of the unconstrained optimization (Figure 7.3), which means a geometry with A = 4 mm and

nsw = 4.

(a) (b)

Figure 7.3: CPU cooler optimization problem’s result for A = 4mm and nsw = 4.

Commenting the resulting temperature field falls in the same topics that have already been ap-

proached for the previous geometries:

• The temperature gradient along the bottom boundary of the domain is once again bigger than in

the previous geometry (Figure 7.2), revealing a value of 10.8oC;

• Under the cooling channel, the different temperature zones are even more noticeable in this case,

as there is clear stratification of the temperature depending on the position under which “wave”

that is being considered;

• The warming of the upper part of the domain is also more noticeable for this geometry, as is clearly

observable that the temperature above the cooling channel tends to be clearly higher starting on

the second “wave”.

Furthermore, it is possible to conclude that the bigger is the length of channel inside the cooler, the

better distributed will the heat be within the domain (zones that are clearly at a higher temperature and

zones clearly colder tend to vanish).

Finally, it is time to present the temperature field for the optimized geometry, which can be found in

Figure 7.4. In order to better evaluate this temperature distribution, four different perspective 3D views

have been obtained and are presented in Figure 7.5.

(a) (b)

Figure 7.4: CPU cooler optimization problem’s result final design in 2D.

72

Presenting an optimized geometry that is not a lot different from what is presented for the previous

case in Figure 7.3, the comments that have been made for it generally apply to the current case of Figure

7.4, except for the bottom interface temperature gradient which is slightly bigger here, 11.7oC, perhaps

due to the smaller amplitude of the sinusoidal channel.

(a) (b)

(c) (d)

Figure 7.5: CPU cooler optimization problem’s result final design 3D views.

Regarding the 3D extrusion of the temperature field for the resulting optimized geometry, the intuitive

observations that can be listed are:

• The IGFEM proves once again to be a very powerful tool. It is very advantageous to be able to

use nonconforming structured mesh such as the ones being used here and obtain the smooth

resolution on the interface that can be observed in the figure for any desired channel geometry;

• The assertion above regarding the constant temperature in the top boundary of the cooler is now

obvious, confirming that the fixed temperature BC is applied correctly;

• Analyzing the horizontal slope of the temperature distribution decrease in the part of the domain

below the cooling channel clearly leads to the conclusion that the cooling capacity of the fluid

reduces (the temperature tends to stabilize). This is due to the increase in temperature of the

coolant. On the other hand, even if less noticeable, this slope in the area above the cooling

channel tends to increase due to the same reason, which is the higher temperature of the fluid that

this time warms its colder surroundings;

• The vertical temperature gradient for different x positions follows the same trend that is reported

in the previous bullet point and due to the same reasons: it decreases with x in the area below

73

the cooling channel and increases with x in the area above it, both due to the increase in the

temperature of the flow.

One thing to note again is that if the maximum temperature result obtained with the considered mesh

has a negligible difference to the finer mesh of the convergence analysis, the temperature distributions

(Figures 7.4 and 7.5) are indistinguishable regardless of the mesh used.

As a complement, it is also interesting to observe the temperature distribution along the bottom

boundary of the cooler, which would be the temperature of the CPU. In Figure 7.6, this graph is plotted

for both the tested geometries and an alternative geometry with A = 5mm and nsw = 4, where the goal

is to point out the uneven cooling mentioned in Section 7.1.

(a) Tested geometries (b) Alternative geometry with A = 4mm and nsw = 3

Figure 7.6: Temperature distribution along bottom boundary of the cooler.

Due to the moderate amplitudes of the sinusoidal channels from the geometries that fall in the bounds

and constraints of the optimization problem, the resulting temperature distributions along the bottom

boundary of the cooler depicted in Figure 7.6(a) have a linear trend, which means that the proximity of

the cooling channel to the boundary doesn’t affect the temperature distribution.

On the other hand, 7.6(b) represents a zoomed view of the same temperature distribution for a geom-

etry with a a larger sinusoidal channel amplitude where, despite the even lower maximum temperature

obtained, the influence of the proximity of the cooling channel to the boundary clearly affects the tem-

perature distribution. This happens due to the different conductivity of the materials: the fact that the

cooling channels do not have a negligible diameter and the thermal conductivity of the coolant is much

lower than the one in the solid leads to a greater difficulty in the heat transferal process, which results

in a temperature “increase” when the channel gets close to the boundary. To avoid this is one of the

reasons to choose a conservative upper bound for the amplitude of the cooling channel as this might

not be desired if the cooler is going to be used for several CPU models. If the position of the computing

cores of the CPU was constant, the geometry could be optimized with this considerations to obtain an

even temperature distribution.

74

Chapter 8

Conclusions

8.1 Achievements

The work presented in this master thesis has been developed in the Structural Optimization group of TU

Delft and all computational implementations done within their recent finite element computational tool

hybrida. This means that all progress has been done with careful organization considerations and had

to follow the previous code’s structure and implementation techniques. If using the already implemented

functionality of the computational tool simplified implementation, taking all of that is mentioned above

and the fact that the code developed in this work is also meant for other applications (it is already being

used in the domain of crack propagation and contact mechanics) into account means that the list of

achievements below required not only the understanding of the computational methods but also a lot of

“design” thinking:

• The basic formulation of a state-of-the-art discretization technique described by the Interface-

enriched Generalized Finite Element Method (IGFEM) has successfully been implemented for

efficient mesh-independent modeling of 2D problems with discontinuous gradient fields. This ef-

ficiency is shown not only in terms of low computational cost but also in the ease of use, the

implementation of a problem’s boundary conditions and interface(s) is straightforward and does

not require extensive knowledge on the computational tool being used (it can almost be used as a

black box);

• Modifying the original method by using modifications studied in different literature sources, the de-

veloped computational tools have the potential to be very helpful in optimization studies, removing

the burden and computational cost of creating conforming finite element meshes. Furthermore, the

implementation of this method is advantageous over standard Generalized Finite Element Meth-

ods (GFEM), since it is said to have lower computational cost and easier enforcing of Dirichlet

boundary conditions and evaluation of enrichment functions;

• Even though the formulation of the IGFEM proved to be straightforward to understand and even

implement for simple situations, the variety of geometries resultant from slicing the various 2D

75

finite elements that are intersected by the interfaces demands a general implementation to avoid

problems. This has required imaginative solutions compatible with the remaining code’s structure

and an iterative process to obtain algorithms up to the task of dealing with these solutions;

• The implementation of these computational tools has proved to be successful by verification using

test cases from literature where optimal convergence rates have been obtained;

• The IGFEM solver that has been implemented in this work has been used to solve the problem

of creating models of the vascular actively-cooled materials that serve as motivation to this thesis

using level set functions to describe the material interfaces and nonconforming meshes. This

process would have otherwise been more computationally expensive and required much more

user intervention;

• Having solved the geometrical problem, the IGFEM still presents oscillatory solution fields for con-

vection dominated problems (characteristic of the methods that use a Galerkin formulation of con-

vection). As a solution for this problem, the Streamline Upwind Petrov-Galerkin (SUPG) method

has been implemented for heat transfer processes where heat convection is not negligible, stabi-

lizing the solution and reducing the amplitude of fictitious oscillations;

• Regarding the complete process of understanding and implementing the SUPG, the situation is

opposite to what is reported for the IGFEM: the method does not require much additional imple-

mentation related effort, with almost all required variables and matrices already computed for the

standard Galerkin technique (the SUPG adds a correction term to it), but its formulation is theo-

retically demanding and not quite so straight-forward, especially for two dimensions (3D should

present some additional complexity, but this case has not been investigated in this thesis);

• The implementation of SUPG has proven once again to have been successful, with results for

identical problems matching the ones found in literature for the initial method’s formulation;

• Combining both the IGFEM and SUPG results in an efficient and stable IGFEM solver that can

be used to solve the conjugate heat transfer problems of vascular actively-cooled materials. The

use of this thermal solver in a vascular material with convection in its channel only results in a

computation time that is (on average) 30% slower when compared to the solution of a solid material

block where only conduction is present;

• The stable IGFEM thermal solver has been used to optimize a 2D vascular CPU cooler with a uni-

form heat flux boundary condition and fixed temperature boundary condition. Without the need to

remesh and using a nonconforming structured mesh, a standard Python optimizer has been used

to obtain a geometry that reduced the temperature of the CPU cooler from 102.3oC for a straight

line channel geometry (clearly above the limits for optimal performance and physical integrity) to

66.9oC for a sinusoidal shaped channel (good running maximum temperature under load) with a

pressure drop due to viscous 1.5 times bigger;

76

8.2 Future Work

As of future work that can be developed in the subject of this thesis, there are a few interesting ideas

that might provide inspiration for additional results:

• Implement specially developed optimization routines for the problems being solved. The optimiza-

tion method that has been combined with the stable IGFEM solver is contained in the standard

optimization packages of Python and, not having a lot of information on the objective function it

is optimizing, it is not as fast as it could be. Developing special optimization routines can help

improve this and even lead to interesting academic results, as there is not a lot of research on the

topic;

• Generalize methods implemented to enable 3D modeling and optimization. This topic can lead

to very promising results in a finite element computational tool such as hybrida (that does not

have mesh generating capabilities), as it has the potential of helping to solve complex geometries

without conforming meshes. However, slicing 3D elements is even more computationally demand-

ing than 2D elements and coming up with the algorithms for this implementation would probably

constitute an entire master thesis;

• Finally, the last suggestion for future work is to apply the developed tools to real optimization

problems that have well defined bounds, constraints and goals. With this, one would also be

accessing the validity of what has been implemented.

77

78

Bibliography

[1] Y. Bar-Cohen. Biomimetics—using nature to inspire human innovation. Institute of Physics Pub-

lishing, 1 (2006):1–12, Apr. 2006. doi: 10.1088/1748-3182/1/1/P01.

[2] M. Stone. Applications of biomimetics. The Bridge, 36(4):14–18, 2006. USPS 551-240.

[3] P. Fratzl. Biomimetic materials research: what can we really learn from nature’s structural materi-

als? Journal of the Royal Society, 4 (2007):637–642, July 2007. doi: 10.1098/rsif.2007.0218.

[4] L. Wahl, S. Maas, D. Waldmann, A. Zurbes, and P. Freres. Shear stresses in honeycomb sand-

wich plates: Analytical solution, ,finite element method and experimental verification. Journal of

Sandwich Structures and Materials, 14(4):449–468, July 2012. doi: 10.1177/1099636212444655.

[5] K. Toohey, N. Sottos, J. Lewis, J. Moore, and S. White. Self-healing materials with microvascular

networks. Nature Materials, 6:581–585, Aug. 2007. doi: 10.1038/nmat1934.

[6] T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt. Fundamentals of Heat and Mass

Transfer. John Wiley and Sons, 7th edition, 2011. ISBN: 0470501979.

[7] W. Lucas, A. Groover, R. Lichtenberger, K. Furuta, S.-R. Yadav, Y. Helariutta, X.-Q. He, H. Fukuda,

J. Kang, S. Brady, J. Patrick, J. Sperry, A. Yoshida, A.-F. López-Millán, M. Grusak, and P. Kachroo.

The plant vascular system: evolution, development and functions. Journal of Integrative Plant

Biology, 55(6):294–388, Mar. 2013. doi: 10.1111/jipb.12041.

[8] A. Nilsson. Blood flow, temperature and heat loss of skin exposed to local radiative and convective

cooling. Journal for Investigative Dermatology, 88:586–593, 1987.

[9] S. Soghrati and P. Geubelle. A 3D interface-enriched generalized finite element method for weakly

discontinuous problems with complex internal geometries. Computational Methods Applied to Me-

chanical Engineering, 217-220:46–57, Jan. 2012. doi: 10.1016/j.cma.2011.12.010.

[10] S. Soghrati, A. M. Aragón, C. A. Duarte, and P. H. Geubelle. An interface-enriched generalized

FEM for problems with discontinuous gradient fields. International Journal of Numerical Methods in

Engineering, 89:991–1008, Aug. 2011. doi: 10.1002/nme.3273.

[11] L. Valdevit, N. Vermaak, F. Zok, and A. Evans. A Materials Selection Protocol for Lightweight

Actively Cooled Panels. Journal of Applied Mechanics, 75, Nov. 2008. doi: 10.1115/1.2966270.

79

[12] N. Vermaak, L. Valdevit, and A. Evans. Materials property profiles for actively cooled panels: An

illustration for scramjet applications. The Minerals, Metals and Materials Society Journal, 40:877–

890, Apr. 2009. doi: 10.1007/s11661-008-9768-y.

[13] H. Saravanamuttoo, G. Rogers, H. Cohen, and P. Straznicky. Gas Turbine Theory. Prentice Hall,

6th edition, Sept. 2008. ISBN: 0132224372.

[14] A. Aragón. Computational Design of Microvascular Biomimetic Materials. PhD thesis, University of

Illinois at Urbana-Champaign, 2010.

[15] A. Aragón. Website, May 2016. https://svn.3me.tudelft.nl/trac/hybrida.

[16] S. Soghgrati, P. Thakre, S. White, N. Sottos, and P. Geubelle. Computational modeling and design

of actively-cooled microvascular materials. International Journal of Heat and Mass Transfer, 55:

5309–5321, June 2012. doi: 10.1016/j.ijheatmasstransfer.2012.05.041.

[17] A. Bejan. Convection Heat Transfer. John Wiley & Sons, 4th edition, 2013. ISBN: 0470900376.

[18] F. White. Fluid Mechanics. McGraw-Hill, 4th edition, Dec. 1998. ISBN: 007069673.

[19] J. Reddy. An Introduction to the Finite Element Method. McGraw-Hill, 3rd edition, 2006. ISBN:

0071244735.

[20] P. Gould. Introduction to linear elasticity. Springer, 2nd edition, 1994. ISBN: 1461287285.

[21] N. Sukumar, D. Chopp, N. Moes, and T. Belytschko. Modeling holes and inclusion by level sets in

the extended finite element method. Computer Methods in Applied Mechanics and Engineering,

190(46-47):6183–6200, 2001.

[22] M. Schweitzer. Meshfree and Generalized Finite Element Methods. PhD thesis, Mathe-

matisch–Naturwissenschaftlichen Fakultät der Rheinischen Friedrich–Wilhelms–Universität Bonn,

2008.

[23] A. Hrennikoff. Framework Method and its technique for solving plane stress problems. IVBH Ab-

handlungen, 9:217–248, 1949.

[24] J. Cuillière, V. Francois, and J. Drouet. Automatic mesh generation and transformation for topology

optimization methods. Computer-Aided Design, 45(12):1489–1506, Dec. 2013.

[25] K. Ho-Le. Finite element mesh generation methods: a review and classification. Computer Aided

Design, 20(1):27–38, Jan. 1988. doi: 0010-4485/88.

[26] Z. Yue and D. Robbins. Adaptive superposition of finite element meshes in non-linear transient solid

mechanics problems. International Journal for Numerical Methods in Engineering, (72):1063–1094,

May 2007. doi: 10.1002/nme.2067.

[27] M. Beall, J. Walsh, and M. Shephard. Accessing CAD geometry for mesh generation. Proceedings,

12th International Meshing Roundtable, pages 33–42, Sept. 2003.

80

https://svn.3me.tudelft.nl/trac/hybrida

[28] S. Soghrati. Hierarchical interface-enriched finite element method: An automated technique for

mesh-independent simulations. Journal of Computational Physics, 275:41–52, July 2014. doi:

10.1016/j.jcp.2014.06.016.

[29] T. Belytschko, R. Gracie, and G. Ventura. A Review of Extended Generalized Finite Element Meth-

ods for Material Modelling. Modeling and Simulation in Materials Science and Engineering, 17

edition, 2009. 043001.

[30] K. Schwebke and S. Holzer. Some Remarks on Generalized Finite Element Methods (GFEM) in

Solid Mechanics. WCCM V - Fifth World Congress on Computational Mechanics, July 2002.

[31] J. Melenk. On Generalized Finite Element Methods. PhD thesis, The University of Maryland, 1995.

[32] I. Babuska, U. Banerjee, and J. Osborn. Generalized Finite Element Methods: Main Ideas, Re-

sults, and Perspective. International Journal of Computational Methods, 01(67), June 2004. doi:

10.1142/S0219876204000083.

[33] J. Melnek and I. Babuska. The partition of unity finite element method: basic theory and applica-

tions. Computer Methods in Applied Mechanics and Engineering, 139:289–314, 1996.

[34] S. Soghrati and P. Geubelle. A 3D interface-enriched generalized finite element method for weakly

discontinuous problems with complex internal geometries. Comput. Methods Appl. Mech. Engrg.,

217(220):46–57, Jan. 2012. doi: 10.1016/j.cma.2011.12.010.

[35] M. Tan, M. Safdari, A. Najafi, and P. Geubelle. A NURBS-based interface-enriched generalized

finite element scheme for the thermal analysis and design of microvascular composites. Computer

Methods in Applied Mechanics and Engineering, 283:1382–1400, 2015.

[36] S. Soghrati, C. Duarte, and P. Geubelle. An adaptive interface-enriched generalized FEM for the

treatment of problems with curved interfaces. International Journal for Numerical Methods in Engi-

neering, 102:1352–1370, Jan. 2015. doi: 10.1002/nme.4860.

[37] S. Soghrati and J. Barrera. On the application of higher-order elements in the hierarchical interface-

enriched finite element method. International Journal for Numerical Methods in Engineering, 105

(6):403–415, June 2015. doi: 10.1002/nme.4973.

[38] O. Zienkiewicz and R. Taylor. The Finite Element Method, volume Volume 1 The Basis. Butterworth

Heinemann, 5th edition, 2000. ISBN: 0750650494.

[39] E. Abbena, S. Salamon, and A. Gray. Modern Differential Geometry of Curves and Surfaces

with Mathematica. Textbooks in Mathematics. Chapman and Hall, 3rd edition, June 2006. ISBN:

1584884487.

[40] C. Ericson. Real Time Collision Detection. Elsevier Inc., 2005. ISBN: 1558607323.

[41] C. Geuzaine and J. Remacle. Gmsh: A three-dimensional finite element mesh generator with

built-in pre- and post-processing facilities. Website, May 2016. http://gmsh.info/.

81

http://gmsh.info/

[42] I. Babuska and B. Szabo. On the rates of convergence of the finite element method. International

Journal for Numerical Methods in Engineering, 18:323–341, 1982.

[43] A. Ramos, A. M. Aragón, S. Soghrati, P. H. Geubelle, and J. Molinari. A new formulation for im-

posing Dirichlet boundary conditions on non-matching meshes. International Journal of Numerical

Methods in Engineering, 2015. doi: 10.1002/nme.4898.

[44] A. Brooks and T. Hughes. Stramline Upwind/Petrov-Galerkin formulations for convection dominated

flows with particular enphasis on the incompressible Navier-Stokes equations. Computer Methods

in Applied Mechanics and Engineering, 32:199–259, 1982. doi: 0045-7825/82/0000-0000/02.75.

[45] J. Donea and A. Huerta. Finite element methods for flow problems. John Wiley and Sons, Ltd,

2003. ISBN: 0471496669.

[46] S. Soghrati. An Interface-enriched Generalized Finite Element Method for the design of actively-

cooled microvascular composites. PhD thesis, University of Illinois at Urbana-Champaign, 2013.

[47] T. Fries and H. Matthies. A review of Petrov-Galerkin stabilization approaches and an extension to

meshfree methods. Scientific Computing, 2004.

[48] M. Vogel. Low profile heat sink cooling for next generation CPU thermal designs. Electronics

Cooling, Feb. 2005.

[49] O. Khonsue. Experimental on the liquid cooling system with thermoelectric for personal computer.

Heat Mass Transfer, 48:1767–1771, June 2012. doi: 10.1007/s00231-012-1022-x.

[50] A. Cogniso. How an engine cooling system works. Website, May 2016. http://www.

howacarworks.com/basics/how-an-engine-cooling-system-works.

[51] B. Patel, A. Modi, and P. Rathod. Analysis of engine cooling waterpump of car and significance

of its geomtery. International Journal of Mechanical Engineerging and Technology, 4(3):100–107,

June 2013. ISSN: 09766340.

[52] G. Varoquaux. scipy.optimize.minimize. Website, May 2016. http://docs.scipy.org/doc/

scipy-0.17.0/reference/generated/scipy.optimize.minimize.html.

[53] J. Bonnans, J. Gilbert, C. Lemaréchal, and C. Sagastizábal. Numerical Optimization: Theoretical

and Practical Aspects. Springer, 2nd edition, 2006. ISBN: 354035445.

82

http://www.howacarworks.com/basics/how-an-engine-cooling-system-works
http://www.howacarworks.com/basics/how-an-engine-cooling-system-works
http://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.optimize.minimize.html
http://docs.scipy.org/doc/scipy-0.17.0/reference/generated/scipy.optimize.minimize.html

Appendix A

Inclusion Problem Convergence

A.1 Analytic Derivatives of the Displacement Field

A.1.1 Inside the Inclusion

dux
dx

=
r2u + α(ri − ru)(ri + ru)

r2i
(A.1)

dux
dy

= 0 (A.2)

duy
dx

= 0 (A.3)

duy
dy

=
r2u + α(ri − ru)(ri + ru)

r2i
(A.4)

A.1.2 Outside the Inclusion (matrix)

dux
dx

= α+
2(−1 + α)r2ux

2

(x2 + y2)2
−

(α− 1)r2u
x2 + y2

(A.5)

dux
dy

=
2(α− 1)r2uxy

(x2 + y2)2
(A.6)

duy
dx

=
2(α− 1)r2uxy

(x2 + y2)2
(A.7)

duy
dy

= α+
2(−1 + α)r2uy

2

(x2 + y2)2
−

(α− 1)r2u
x2 + y2

(A.8)

83

84

	Acknowledgments
	Resumo
	Abstract
	List of Tables
	List of Figures
	Nomenclature
	Glossary
	1 Introduction
	1.1 Perspective and Motivation
	1.1.1 History
	1.1.2 Bio-Mimetic Approach
	1.1.3 Actively-Cooled Materials and their Applications
	1.1.4 Interest in the Topic

	1.2 Objectives and Work Overview
	1.3 Thesis Outline

	2 Theoretical Background
	2.1 Background in Heat Transfer
	2.1.1 Heat Conduction in the Solid Phase
	2.1.2 Heat Convection in the Fluid Phase
	2.1.3 Boundary Conditions

	2.2 Mathematical Fundamentals in Solid Mechanics

	3 Discretization Method - IGFEM
	3.1 Finite Element Method Fundamentals
	3.2 Requirements
	3.3 Interface-enriched Generalized FEM
	3.3.1 Formulation
	3.3.2 1D Sample Problem

	3.4 Implementation
	3.4.1 Geometric Engine
	3.4.2 Elemental Assembly

	3.5 Verification
	3.5.1 Error Norms
	3.5.2 2D Plate: Patch Test
	3.5.3 Eshelby Inclusion Problem

	3.6 Other Topics
	3.6.1 Enrichment Functions Scaling

	4 Weighted Residual Formulation - SUPG
	4.1 Requirements
	4.2 Streamline Upwind/Petrov-Galerkin method
	4.2.1 Problem Statement for the Conjugate Heat Transfer Problem
	4.2.2 Formulation

	4.3 Implementation
	4.4 Verification
	4.4.1 1D Convection Approximation
	4.4.2 Convection Skew to the Mesh

	5 Test Cases Modeling Results
	5.1 CPU Cooler Test Case
	5.1.1 Problem Description
	5.1.2 Implementation Efficiency
	5.1.3 Solution

	5.2 Engine Cylinder Test Case
	5.2.1 Problem Description
	5.2.2 Solution

	6 Optimization Fundamentals
	6.1 Problem Formulation
	6.2 Optimization Tool
	6.3 Optimization Methods
	6.4 Selected Method

	7 Test Case Optimization Results
	7.1 Bounds and Constraints
	7.2 Enhanced Solution

	8 Conclusions
	8.1 Achievements
	8.2 Future Work

	Bibliography
	A Inclusion Problem Convergence
	A.1 Analytic Derivatives of the Displacement Field
	A.1.1 Inside the Inclusion
	A.1.2 Outside the Inclusion (matrix)

