(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 10.3' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 183773, 3663] NotebookOptionsPosition[ 181815, 3596] NotebookOutlinePosition[ 182243, 3615] CellTagsIndexPosition[ 182200, 3612] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell["\<\ Ilustra\[CCedilla]\[ATilde]o do Teorema do Limite Central\[AliasDelimiter] - Distribui\[CCedilla]\[ATilde]o comum Uniforme (0, 1)\ \>", "Subsection", CellChangeTimes->{{3.668587474855124*^9, 3.6685874872856283`*^9}, 3.668587648634202*^9, {3.668588284207905*^9, 3.668588285794319*^9}, 3.66875193192451*^9}, FontSize->14], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Print", "[", "\"\\ \"", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "=", RowBox[{"Input", "[", "\"\\"", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"rep", "=", "1000"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dist", "=", RowBox[{"UniformDistribution", "[", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"i", "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"vecmean", "=", RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"While", "[", RowBox[{ RowBox[{"i", "<", "rep"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"vecmean", "=", RowBox[{"Append", "[", RowBox[{"vecmean", ",", RowBox[{"Mean", "[", RowBox[{"RandomVariate", "[", RowBox[{"dist", ",", "n"}], "]"}], "]"}]}], "]"}]}], ";", RowBox[{"i", "++"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"stvecmean", "=", FractionBox[ RowBox[{"vecmean", "-", RowBox[{"Mean", "[", "dist", "]"}]}], SqrtBox[ FractionBox[ RowBox[{"Variance", "[", "dist", "]"}], "n"]]]}], ";"}], "\[IndentingNewLine]", RowBox[{"Print", "[", RowBox[{ "\"\\"", ",", "n", ",", "\"\< v.a. i.i.d. a Uniforme(0,1) com a f.d.p. da normal-padr\[ATilde]o\>\ \""}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"Histogram", "[", RowBox[{"stvecmean", ",", "Automatic", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"PDF", "[", RowBox[{ RowBox[{"NormalDistribution", "[", RowBox[{"0", ",", "1"}], "]"}], ",", "x"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "]"}]}], "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Print", "[", RowBox[{ "\"\\"", ",", "n", ",", "\"\< v.a. i.i.d. a Uniforme(0,1) (azul) com a f.d. da normal-padr\ \[ATilde]o (laranja)\>\""}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"F", "[", "x_", "]"}], "=", RowBox[{ FractionBox["1", "rep"], "\[Times]", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"j", "=", "1"}], "rep"], RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{"stvecmean", "[", RowBox[{"[", "j", "]"}], "]"}], "\[LessEqual]", "x"}], ",", "1", ",", "0"}], "]"}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"F", "[", "x", "]"}], ",", RowBox[{"CDF", "[", RowBox[{ RowBox[{"NormalDistribution", "[", RowBox[{"0", ",", "1"}], "]"}], ",", "x"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{ 3.668586301561016*^9, {3.668586468084743*^9, 3.6685864793117237`*^9}, 3.668586538184286*^9, {3.6685866020957203`*^9, 3.668586602523486*^9}, { 3.6685866507302237`*^9, 3.6685866518204937`*^9}, 3.668586685842518*^9, { 3.6685870938152323`*^9, 3.6685870949391108`*^9}, {3.668587201174423*^9, 3.668587201579802*^9}, {3.6685872397292347`*^9, 3.668587323125421*^9}, { 3.668587353456046*^9, 3.6685874099641657`*^9}, {3.668587470582295*^9, 3.668587482348723*^9}, 3.668587596559668*^9, {3.6685877564353867`*^9, 3.668587775299589*^9}, 3.6685878075546293`*^9, {3.6685881585014133`*^9, 3.668588162403961*^9}, 3.668588268301621*^9, {3.668589020944556*^9, 3.6685890468526583`*^9}}, FontSize->10], Cell[CellGroupData[{ Cell[BoxData["\<\"a) Simula\[CCedilla]\[ATilde]o de uma amostra de rep=1000 m\ \[EAcute]dias padronizadas de n v.a. i.i.d. a Uniforme(0,1), com n igual \ a\"\>"], "Print", CellChangeTimes->{ 3.668587636781447*^9, {3.668587796893434*^9, 3.668587812428146*^9}, 3.668588050221328*^9, 3.668588177006489*^9, 3.668589048226318*^9, 3.6685893388580437`*^9, 3.668751921011428*^9, 3.668752046575933*^9}, FontSize->10], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"b) Compara\[CCedilla]\[ATilde]o do histograma da amostra de m\ \[EAcute]dias padronizadas de n=\"\>", "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" v.a. i.i.d. a Uniforme(0,1) com a f.d.p. da \ normal-padr\[ATilde]o\"\>"}], SequenceForm[ "b) Compara\[CCedilla]\[ATilde]o do histograma da amostra de m\[EAcute]dias \ padronizadas de n=", 2, " v.a. i.i.d. a Uniforme(0,1) com a f.d.p. da normal-padr\[ATilde]o"], Editable->False]], "Print", CellChangeTimes->{ 3.668587636781447*^9, {3.668587796893434*^9, 3.668587812428146*^9}, 3.668588050221328*^9, 3.668588177006489*^9, 3.668589048226318*^9, 3.6685893388580437`*^9, 3.668751921011428*^9, 3.6687520486019487`*^9}, FontSize->10] }, Open ]], Cell[BoxData[ GraphicsBox[{{ {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.616], Thickness[Small]}], {}, {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.616], Thickness[Small]}], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-2.5, 0}, NCache[{-2., Rational[9, 250]}, {-2., 0.036}], "RoundingRadius" -> 0]}, ImageSizeCache->{{46.643314651721425`, 113.35988791032833`}, { 146.60707085299282`, 183.1122331253297}}], StatusArea[#, 0.036]& , TagBoxNote->"0.036"], StyleBox["0.036`", {}, StripOnInput -> False]], Annotation[#, Style[0.036, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-2., 0}, NCache[{-1.5, Rational[37, 250]}, {-1.5, 0.148}], "RoundingRadius" -> 0]}, ImageSizeCache->{{112.35988791032833`, 179.0764611689352}, { 36.14656600572255, 183.1122331253297}}], StatusArea[#, 0.148]& , TagBoxNote->"0.148"], StyleBox["0.148`", {}, StripOnInput -> False]], Annotation[#, Style[0.148, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-1.5, 0}, NCache[{-1., Rational[103, 500]}, {-1., 0.206}], "RoundingRadius" -> 0]}, ImageSizeCache->{{178.0764611689352, 244.79303442754207`}, {-21.056195433042433`, 183.1122331253297}}], StatusArea[#, 0.206]& , TagBoxNote->"0.206"], StyleBox["0.206`", {}, StripOnInput -> False]], Annotation[#, Style[0.206, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-1., 0}, NCache[{-0.5, Rational[7, 25]}, {-0.5, 0.28}], "RoundingRadius" -> 0]}, ImageSizeCache->{{243.79303442754207`, 310.5096076861489}, {-94.03902899284603, 183.1122331253297}}], StatusArea[#, 0.28]& , TagBoxNote->"0.28"], StyleBox["0.28`", {}, StripOnInput -> False]], Annotation[#, Style[0.28, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-0.5, 0}, NCache[{0., Rational[183, 500]}, {0., 0.366}], "RoundingRadius" -> 0]}, ImageSizeCache->{{309.5096076861489, 376.2261809447558}, {-178.85691664342855`, 183.1122331253297}}], StatusArea[#, 0.366]& , TagBoxNote->"0.366"], StyleBox["0.366`", {}, StripOnInput -> False]], Annotation[#, Style[0.366, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0., 0}, NCache[{0.5, Rational[179, 500]}, {0.5, 0.358}], "RoundingRadius" -> 0]}, ImageSizeCache->{{375.2261809447558, 441.9427542033627}, {-170.96688058290923`, 183.1122331253297}}], StatusArea[#, 0.358]& , TagBoxNote->"0.358"], StyleBox["0.358`", {}, StripOnInput -> False]], Annotation[#, Style[0.358, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.5, 0}, NCache[{1., Rational[71, 250]}, {1., 0.284}], "RoundingRadius" -> 0]}, ImageSizeCache->{{440.9427542033627, 507.65932746196955`}, {-97.98404702310566, 183.1122331253297}}], StatusArea[#, 0.284]& , TagBoxNote->"0.284"], StyleBox["0.284`", {}, StripOnInput -> False]], Annotation[#, Style[0.284, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1., 0}, NCache[{1.5, Rational[47, 250]}, {1.5, 0.188}], "RoundingRadius" -> 0]}, ImageSizeCache->{{506.65932746196955`, 573.3759007205764}, {-3.3036142968740023`, 183.1122331253297}}], StatusArea[#, 0.188]& , TagBoxNote->"0.188"], StyleBox["0.188`", {}, StripOnInput -> False]], Annotation[#, Style[0.188, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1.5, 0}, NCache[{2., Rational[13, 125]}, {2., 0.104}], "RoundingRadius" -> 0]}, ImageSizeCache->{{572.3759007205764, 639.0924739791833}, { 79.54176433857873, 183.1122331253297}}], StatusArea[#, 0.104]& , TagBoxNote->"0.104"], StyleBox["0.104`", {}, StripOnInput -> False]], Annotation[#, Style[0.104, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2., 0}, NCache[{2.5, Rational[3, 100]}, {2.5, 0.03}], "RoundingRadius" -> 0]}, ImageSizeCache->{{638.0924739791833, 704.8090472377902}, { 152.5245978983823, 183.1122331253297}}], StatusArea[#, 0.03]& , TagBoxNote->"0.03"], StyleBox["0.03`", {}, StripOnInput -> False]], Annotation[#, Style[0.03, {}], "Tooltip"]& ]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, \ {{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw1mnk4VV/Ux80zVyVJEiISZchMaxMhQ5IyUzKWClEZM2dIlCFDVGYZSgkh Z2siQ8bLvZKxMiaV/DK/932e9/3nnOfzrHXO3met7zpr/bFFna6YuzDQ0dEd oF3+934Q+Gc2N0k468Dv3Iw4UbC4IBmzvELCWqfWpUerRSEgVXXfn78kfOiH tkvihCg0z9o4fZ8l4cTj45EHjojB2fSHg+0DJLxKNI5f/ScGd39JtWU8JeEr 1dQH/OHiUCuk7pH8hIQL+ELcLV+Kw7C+EWtCAQn/fCDEyTstDtI5l46GZpGw qLXP6NxJCXhz/Hm96y0S5htmiPHevw8W8zTKFB1JmDS0apC8IAmCncbHZW1I 2KPd49+nA1KAVuyn9p0mYVbt4dRkNylIMAsVFzQi4VOPu/c3jErBvvV3D+hU SFj9xKJAKXU/WJ4xTejgIeEeDY1gjskDUMd27rJbIw+uvbzrkKmmHHSMnKEs 1vJgqUqZig1XORitNtYJf8GDj1hYv95xTw5YXFT5s4t58MpbUdVb03Jg3kRq 7LnHg8+we9b7ZcvDrH8j9xE3HsyyL4LZXVARNsyqrred48EDqaL3thkrwlap J2NWdjyYXBGlrhKiCKr9qS+vnuTB3fMMLLMTihCpcMm+RIP2/l/r3GIvD4PQ 7K5yPl4e/DZKYxZfUYZDb7bsyOXgweOj67uvlCiDTgZr2CFmHtxrQb9eOKEM 7vp/LI6vcGNehdortdYq8DKvde3mV25sO/vVL8JYFUzt/I1na7mx3a5/TO0m 6nCzo3+26Rw3Hjy9g3q45QiMUiJwqR033vVnd70zL4DOV7nUVEtu3LZrSU3e GoBlNe6Ihwk3nut5PZI/B3BbCu7yqnHj264NwbcTEGRGFCk78nLjlaFvXoVt 2rB2x4LTkJMbq1+cafyxqA32mfSjCizc+CVLoX+CsA6IVNrGsqxxYYtbbBMU Hx0oGiYNlU9y4eb2I1HP9xyFKrUbYWuNXHhktKuNK14X+PUkznx/xYWffXv9 WLZOF66b9Uh3VXHhKV9b0efTuqDuJtOX94QLq8978k8b6kFTyug+ozQuTM+0 bWYv6Rh8+mnQnnGJCwfQ6475l+vDdMHOHSpCXLhsOn3pBBjBJ6fxa+o7uPDG 3LiVeqARVO0p7dfayoV9Oi9WZ9cYQUiGZpouGxe+YOXR2SNvDFsTHLebL3Li 9zKZtTwyJqDuW7DtUjsnDo9l/JSsegL2yF++6tXMidcrwep60AlgmlfuvfqG E++JXZIexyfgk1vLvYBaTpyl3VRdLGEGTrazW2LyObHCqGmM1QsziNOR580L 4sR/oxw8JYdOwpXN5SuF1znxifidFxIYzMGi4U1niQ8nlszxnTyy3xyElS0S n7lz4oY4snf0dXN4vv86T6MFJ2YOinGp3nEKBnlfc1FlOLG7RpzFFjcLkB4x YCd94cA5KoZWGXqWsKa/dLhwgAMPe81eLAqwhE/P8s5q9XDgYvO9D/c+swSf 8I2ai80cmLHe97aHkBW8kqhybankwMGtlGHtFSsw8NzzLiyaA8/YDh393GYD guT2nwJhHPhoiX2MDJstzGkF7HoWSPMfLBRc1rWFJBLZZ9iLA2eYtD1kxbZA eR4nqmHLgbcHNlZvbbADt+W/IYuHOHAV3c2yknYHUHXKexIvzYGZecV9Bbc4 AkebWb+YBAd+anNune+MI1Q8KJU9KciBpW5zi5SOOcISnBsqZ+LAPsKi2vU3 z0J0dLuaG5Udx+Q/SFQoPQf52/IWqeHs2KXF4ux5TWd494w1viOYHavOCJzW dnGGbyaeok032PGn7x65HnecYV+MkmnxZXYsJfh6V9aYMxSvNRdds2HH3X/v B92Jd4Gyb3M22xTY8eJrMX+ReVeoqlFuMh5jw18ukWztfnlAn0WWJRpiwzFc rg+uil+Av782fygOsGGnqS/rXy0vgLLMR8FdHWz47rZnOhTiAtQ+svWdrmXD dwSOjJFSLkJDbKhkdBIbls33ntMyvQRvbVsTCGDDFwh6zffRXtCVv23hmDob vlXtryRZ4gXDP+zMPx1mw0iCf6ilzQv+3fzJ/2U/Gy7QjcbtW7zhYD7fo5Vt bDixym9+7JE3ZM45PFeaYsXBwtfzstp8wCv4T39pEiuemUvkVjzjByEfNNUU 41nxp8TmrafD/CCeFJ1VF8WKr7xK2feuzA8KHwuc/RjAinOLWvTima7B5/da 09+dWbFG1zne1pprcIwnZlVUjRVXS9ZTvGRvgNBDIZH0MRa8NltbVGUVCOUZ YdxqQyxYdL31l3NCIBxJ+b5C7WfBfDn7NS+/CQTH2GfkXe0sOOhgPJEgGwS5 V3XjH1azYOOcC4I8bMEgZeC5VBhP80eEe/inEDj8q779pRILtvWPLztnHgbv Z0Xqzsix4GFZm4r3PmFw5ntU0X/SLLjhx8nTDslhcP3ziXA1ERZ8aNWh8CA5 DOreT6i85mDBptXvZ8xtwwFlcua9G2HGTKeSnCe9I8DoqK1/bywzZjeYbVdu jQJpn+vdXZHMeCWX2Y30Mwo4Hifv/3STGafz2hTu5ouGlo02aosfMz7XXMUx 5BANx+o01RvPMWN1dx7ZyaVoQPLCq8VqNHuCh/cl+RhQ2jMWFDLNhDv5VeuW uuOAz3S9L/ArEw66XMqxsR4Hi0E7Zf1HmPCkTsKKjnQ8PB88+eUqmQlfdi5q io6IB7m0N1oeTUx4q6zW4XXV2yDNnb9xKoMJx7WInx59mgB7Vl1D9xsy4akr qp/L3ZJgjuyWX3eUCRe8d8xniEyC2mfuLUZHmPDpHR1PQx8lgZnrBd7Likz4 W2YLWqYmQWj3pUfPdzPhn0LPlcdM78J4kS/W+M2IVXgHOKvQPSi0CKczzWLE FKkt7wv0UsDnUIT4SCoj9jJKYA90S4EjHJEGXkmM2KXHzfhmbAoMEFFJ96IY 8cjaq5jtn1KA7UCsyMAVRlx7fttmsHUqXKBPQmd1GbElo62Yu38ayFZkh/r8 YMDWog1Hfwyng8Hr06SzUwzY04CzxZwpA5zauXNMJhgwA8OGx/f9GZA+E1wv RWXAM+vPc9P9MoBJ0mFp+B0DjkgWPiBLyoTBh8KeRg8Y8FEDzXpVoyyIvvvQ UtyIAfeWb1uamcyGx48sv285xoDZ2o2w47YcaHhK8ttEDHiuOeQWK+TAr46b 9waVGXBQztbihbQcsOM425EkxoB17ayvyBo+BMUIkaPry/RYKKbL75XtIxj1 fXywv5geW3pOHd09/BhClPwMvuTR41Rd/RMVS49BaMnA6WsOPTZfSJK0IeXS mshC6u8Uemy4pzCKQTsXuv1hnSeMHrNtTf12vyAX3oR8adO3psf2REXs16t5 kB+z0+MVOz0e2/nmRIhEAegY/gjHTPRYVCS0ME67AEbZmx40b9LhbmnhhRf2 BSAU795F/kuHd5Tz59inFUBqQo3K7zE6rJssKk9iL4Toe6dZDtTRYS6WrxeX /xSCx4O7eQ8u0OEggZ9y1qPFsMh2PFbFhQ7/4nMRpTCUQKgfw5UeRzpc/or3 RqBECaSZXlVnO02HFRJV8w5dLIE3dKe7rwIdttTtXj7xrwQEXQQ2j/PRYW2e oJzQnaWQanvk5e/ATeLdlVBGoRvlYBVivbdMbINw6Tf0IFtUAidWfZcpsEEo cE4HuntUQiO9gEsszwbRJbeXhzukEiSi+gtdV9YJmeOtb+KKKuF3/Clp0Z51 wjB194TVaiXczjCRTwtbJ3YsdAUdLXwOuEobQkfXiIaNpDsX2KtAana/rUXO KrHLdkE8lrkGXkb2JF9IXiX8hndkVIjUgI5wYHtozCqREFCKpjVqwO5ku1a5 zyrxMkRLKsenBpJqLouw6K8Sg7H+eixjNbAc8eJbzc8Volh/svpTUy20Cml5 7dJeIb6z1P2WT66Di6ZmUeMT/wiZL94Hz/k2gs3VE1rKykvEnFkht1vgW0gm psyI6j8Ef8+0rcNkMwAD5cxB+l+Ex1vWl89ZO+AC5Y1XwZ85YkeCJO+PxS7Q zAgTqLsxSdy6NuKWF94LJjaJ9w+fnyTuhlM1tW/3gsOubP6nJpNEvca5P4Op vXAzu5YvX2ySaGnWHKQv6YU3j3/y3mn/TjyyOXxeqLMX9J/YszuJfCdKrBmZ AwX7wLxebYW95SvxiV94OLm8D9y//PpsvWOcWMm2qvn2hgwvrgwxH2McJ1ap H75ktpJhg775kMLPMcK+dFXyeA8ZUvY9iOBoHiNU5LVZ74+RAV85dqD+2hih ib/wTG+SQYAhK0Cof5RYyS3WctPohySTGIXG/SOEh+ed6ZTyftjnYx+dRj9C PE3hEb9Z1Q8NaQqDl6nDRAdr4C2n+n6YGhkK2xM7TEhx7y7l+9gPyEe+O3Tq C/HlxY8Uia/9sJA2eOVo0RBBZZ4L+yMwACdGZcpbxAeJ6b/ycdzBA2DsLHkW lqkEnDSZTYwYgONTotuqO6hEYtMTJfa4AdBd4PfPu0Ylik6qOY+mDYAqHb1e SAuFiDx6XEvk2QCIiZCHFD0HiFkek6Lh0QHYk9+Z+AQNEPJxLLVt3wdASKpV R3T7AGHLSTr0dG4AdsgRxTyN/YSqVa+c9b8B4EIlvtOkfoLMJliqSqLAX8dg rocv+ojgtyWjwhoU+D1xndge00eY+xLvLyMKLLj5+Ny26yP0dyZnVOlRYOaK G8WfuY+YUVf9JWpGgeGbJ/MtLHuJbYkp2eHOFGh5KKHJsdpN1FhprJ+Op4Ay kTUwE/mJ2H7ZbrdANwUEuZimcxQ/EXtKA2+Q+yiwbuW5Yj7eQdQc5neIpVDg 3W/N3fXQQcx3HKrpG6HAqX3DTvErbcTQ4etSyz8o4JUgMn/A6yOxOGvr5sdG BYvBmM0R4Y9EeQbyyeCkgorkL96Ujhaiw8r5wwseKmzgJsU16RYihPWRRhsf FW4vOvm3f/tAnIz6uhgpQoUS2wKmS7bvCFMtzkciyjR7MTe/KMc7AjQXM4tU qeD110+SXPuWOJgrVSKuQQXVxGPHtfjfEkMut//QISp8eDOZyN3dRPTF3Pyp bUiFJySzx003mwhcVKnob0SFBLva534Hmwg9UrJvoQltv0sx5C/xmDhStDQ2 fpL2/CkLZbuERqI9fEx8wprm/0Pc+t3Ma4Jk9Zm11Zbmf+tvoIzBa0Kbe6y3 0J4KE3VpTWsMDYSqp5iwzjkq0IlRjbNvvCKq0h7DphsVmutLrjD31xL6/a0H Uz2ocOd0wL1LirXE/V2OSyIXqSAUu4uiNV9NrM45sApepoLagv354fNVBLNL +Obdq1TwrMufvv7uBaFnd1S9y5cKOZGzV7ZIvCAcQ0MLmK5RgXGnf5Du90rC Kmac1ewGFZQnCIbhY5WEwyX7NVd/KriXs8ReL3pGVEXTCfkGUCEjQurA6e4K YiFoasAriJaPHdUqMffKCe0Lw95ng6ngVHZUt/5UGaFS6aBwLIQKMmQHe9H+ EmL+7xexxZtUuOsx52Fxv5gYt5k2awilwtK6/7VbVkVEwez9xwFhVMD7UhN/ DOYTmVp+RdRwKkjUiz0QeZBHaC5z2gZEUCHuxLPiU/a5RD5l+8EtkVT4OaH1 Mlr4MdEWMbEnh8ZFC2kRV4mHRLZQ9yHRKFq+dz5/QNXOJo6iY/aZNFbX6XgJ 7zIJTbbqIvZoKjBdnPpUcCydCOF8yHOFxp+SGac4P6YSTo7xd1tpnN4gTO9j lEwkp/PKCd2ifd83NUFKRxLR39Y5fZ7GlkJPXIMe3Saa7/g1PqbxzKXRdIOC W8S1f6/KyTQOIfjb+J6EE38fn63ZpLGYWOZKk30g0V6o+nlPDBUM37M42rh5 EzYFQjuVaYwfd3C3vbUnBInfXjo0NsjbxIUHdIGSXjauS+PIXNfJ2v/cod1G /7IWjXdVHCPp+lyD7Gdt22RoHMB8iXz6cCic/mjSy0vj7y+U82IPRYGS5Y+y Wdr6p5zovF9Lx0FwIvlRA40xb+uRXxKJsE1a62kEjdNGDKPv8d6DXedcKYjG 7dUHL8ncSYEbCzlCi7R4MNzZZvGB8z4obEdB2TRWdfmnfjY2A9pvV/ynSeMr ml9EV1geQFiKTWIPLd6F296wpUTmgNsUcdSBxpf9ev/jD3sEkW9cto/S8pVv XDv8bCMXhs5+3PqBll+ole4J1sqH3cydIE3jwb3Z748HFYDkj/zbkTQ98K6G lX1dLgIz/86YXTS9lLouPqxULYHrDc1qVjQ9HetxTQ65/gT0Qwa442l6Cy4x ChD4WwbKJQx7e2n6FNjeeOmbYgUkae12naLptypU7txzn6cgnWfS9SeQCn9L OcT3/XsG8r0XhX/Q9H8g4icH9nsBfxNuvvXwo4Kdxja2crEqoFMfPb2dVk+3 /ygzZ3ZWwcJtL/uXPlSYPx+yeXV/NcTMPe/tuUKF57rci5JfauGZxaHUCFr9 TqzJ/eKLewU7f5DYe2n1zffSYp5epQ5+Rwwx7HClgp/Eg6nPSfVQL4nvBjnR 4sty4EuibiPIKLx1arShgkej6WDQr0ZIyik2em5FhcxrPgMeOQTsTNnZmXmG prc/Q1OiQRhujm2tNDSnwsh58YlVchOcMZo/vIf2P8vVfTHwNPYd8Cw/4Cg7 TIU6Eb0z+0bfgUxh8LZZeSr0rvX3PVB+DyFxj2eFD9Hq4+VKd+zEe1Bs/ing sp8KLhI67ee1mqEk5A754m4qSLF04x2/PsLmFrdrroxUQONOcEe/FVS1xG0X Nylg3bj4mimnFfybsfn1NQrEXROo/3W8DUZdAhLs/lJg7rvjy7b8dvh4Uqs2 /zsFnjbPl9y06gT2ikIjuWZaP3LgDj5U0gkZ6TYBVm8pwLN0wGxkuRO8sw54 Xido/eje4cCHJl1Q9dm4NKOGAinYW3Rzvgt0zMcEvIoocHL33KVG+R5IKzz8 xT2KAq39oyxaNX1QoXjYu1ydAk5iXgspI30wvP9rfI0SBZYvbVLnWMlg+riL +5UcBaSYhcsfWJFh5J6DQ+4+CtxStD21tkyGWHEdMs9WCugmkR/Wa9L6/Gyr qcXkALw2bFVVf0OFPfHPBhriB2Be6fDbPz+oYBTU8P5I1AAIi+WYlO8cBIbx R9E1IQMQsuLtJOI9CBOv4vISvAcAle68zSLyGVbZjh/pODMA77g8RnqCh6Cr Cdc/3jMArZ2s0RfVRkBg/M3CyJN+mH2S62FqNQ6HvHxtPpWQYWnQneH9pXHo 4m8ouPaYDHSch7I0IsYhRnurl0AGGfgv1rdLVYyDqumOJwYxZNA50HeIkWkC 4oxaO+xcyZBeyrxU83QCti2+r7ITJYNumXu4KOs3KHAy/cyQ3AfZ5QezFl9O wrWN/6zk3Xqh4Vz0drmaOVDrxekTW7ohgC+DfGLrL/h2QsOm7Hs7tHf16fZk /oEjsowfKYIt4N2msi+Rfwlky89bcla+hfxO3e2uLf9g7eroDOOHRhDIupfl 2/MPbhz6mMNf3AjxrqOiEUP/4I9HgJ16XCP4rAcefLTwD/4Lm+V9adoI2gde 6A8KLMPQo52CNyivYThaNMDUYxnQ60Rl9Z8NIHBkY1iZYwVQuVkAeX893C6r KWY1XgVfvvudRn01sE9E8/78mVVwoUTO59bWAE7GUeRzqyAeNC9Pyq6BPwEf nfKur4Jo5n/7JV1rwMbwsxDkrcJTy/jfFsvVsP/7RtK1lVXQy24SKd5bDR/2 HPP/VrwGw/1+3VIxVUCf3Gf4lnkDGM1QpUBSJWxkzzj9Im2AkPXa+P7ASlgp pgvaI7gBbZTkNWPXSlhslKkIPLgBctMK5BbNSvg+E7n1sOUGyFrUZKTNPIN2 HaXP+cUb0PR2i1S04TNI/53qGW20CeECk2t79ldA6nppVNXpTaBr9wwqZqyA e2xvcsYdN+GIQuSVU8PlEC8833XEdxNGLcKDeVPKIeT4MaX/HmzCdqv+TxL0 5XA+d2ndbX4TboznFlSOlcKOktLmfAM6FDJGaMzVl8DWdUHDXBM61MFianki qwS4Tsa1PjSnQ2jJ4Ut3QAkwLLt3ZNrRoV+C7vOH1Utg3mBfb5IXHdrS2hHl XVcMH6YeDQel06EgRRXHGlwE16TS/lpM0SFP0tRO9q8F4B3EfN38Bx3KGOz7 ptFcAJ5dvv9O/KZDL1N8pW4/KQCnG6dWj6/RoSf7UzojvQvAtIWXXpuXHl0K FOjtoyuAfe7xXLKq9EhJqH9pVDwf+otC9zLH0KNAYfE6+fBc+HqCk3o5gR5x hqfqd7nmwu//Uu9Q7tGjDQ29pTtGucBjULpcmk2P/ohG2Hluz4VjU+RO8xf0 aN0Ufcp/8hhqpA4EPRqmR0nsV5X/DT6C9BJyn4YSA4o783CKuyAHCk+ejStQ Z0DWNs9YV/xyoGp5BkiIAcWKfHggop8DXYZ0pePHGVCQipOn0Ew2sM9Ih8We ZUAZ9Levf1TIhgDpUNmBeAZkZh031PkpC2xLpaN9xhnQz0BFCR25DBDcs9F1 c5IBrXWSO9s5MmDwXveuhDkGZKp0UjvqWzrYBNyoLFpiQCy95OGQrHSwMvww NMTBiCpjKZ+S2NPBYvKcor4iIxr7fekb93waGO/NGN0VyYg4vc7znhtIAa77 ngf2xzKi2c4nFjY1KdDGga4p32FEZca3M4Lup8Dx3985T6YzItmLanc0rFLA oOmwSnQZI3Ia3Mb88HMy6Dp2JSz0MSKhxlSrz9P3QDOLVeO9BBOS0Uq0k9h7 F3jOL706coAJ2bN591Yy34Ux6W+qtXJMyEjObc19Kgmi694ol2owob+csmVn KpKgmxqscPckEzpP+hgkrZkErgKL++2DmVD72+HvO4g7kJQ6KvC3jwkNvVHx XboVD072nfcvDzKhqdOHL3BZxoOSRCP/1AgT4t269a7nvngYrMri+zzDhI4b nd3B8SEOJPrO8DbRMaME9qXMZ2xxULe1gzVBhhmBqm3H2awYmEh8tSQeyYzk eLIMGBejQKHw9kxkLDPaV+uwfK09CsIbHIe/3mFGltTsvVIFUSAyzfwhP4MZ UXvbq7Uto8BBxzxV/CkzIna75hk2RgJlcUZRfJAZ+T42zLt4PwLarYW898qx oGa5gr+rV8Ngl9dP5wglFpRkqV+VdCoMLkS/sZpQZ0EHQ4QnrRXDgP2FO8rT Y0FOilfvx/wJhWNcL0l7bVnQA9GLlSeuhQJuNKkQi2ZBquk9/5I5bkLV3puz okMs6HnawRyDO4HwkjnLV2KMBclmuvDx2wdC9WT1utR3FpTArF8lJxMINaXz JLkFFuSX+3fcqC0A6hQdDh9hYkXthlUyJO4AII5qBdvIsCI+uLvDN+cGtJ5f 5UkOYkWM1Tp+wkt+0Ka3Iz0tjBUJGJE+9nf4QbukomhmNCs6Y8YQ3FXgBx2z FxQfJ7EixeK13OgzftB1ddDyaT4raihIMlys8wVyxKtHbe2syKbC6GBs4lUY zbuuwLSbDSm/JBsau3jDIrXi51UxNuTfcO9fq7Y3sPF+L5uQZENScYwqccLe cCjIQvKtAhtaJ3LILRQvCLGQFwo3YENe07vIGmZeIMQ8y0zny4asQi7ZGqRe BmtXB+pqKxvarpPxfIR8ATwfpKZd7GJDYY+MapKyL0BoT/upz2Q2xKG17Xmp ywUoPqLxqW6UDbEYHh0W+s8D/vELvPVfYkMhZgl3qMIekNbcXfafKDu6IRDw SzrMDXqk9EL/3GBHiRUq6R23neG+9PselhB25Mx2YrvXeWewk9GTEIxgRxFv 3lfaqzvD5CG9VpoYkcJIxxWB6fOwpqzHd+cxO7ovWSC/aXgeJPT0iqVa2ZHr qRQ12Z1OcOOcXpf9Lg50bzPvKVufI2idfy/mLcKB0o0/47P3HIHBRc8vUoID XSzvK1Q86QgJ7nqCpYc4kJ4gtf1YlwPkXtFz/neUA215ZNvI1WcP7cF6/+55 ciBZm+Zoz1+2sCdTT6TlNQe67DpqaxtiBWdnSiab3nAgw8smxg+NrCBXnedp fTMHejjxh+7oTivY97lf62k3B1qwWlYtemkJB4XcbdO+caDfZl653b/PgGZO XJozNydyySzYKRlyGkLm5+0dtnIi8S2CJ4RPngZ85JSE1Q5OtLDi+OKi+GnQ HdlVZSTKiRR4dmGWdgswEinvVlDiRF0vqnYf3GMBNrmdXPT2nMho95m9H/rM 4cFvxb6Vc5zoorHOtS9l5jCsk5616MqJULWJok6UOThNnJWe8uJEr8s/k38p m4OH+G/9zkhOxFG9YPI5+yTcKOSLyC7jRDXymSyu/maQ9sR6WW2NE/Vwabn/ ajaGWVPq4kN6LsTXrxJ+PNIY0B+rBWZWLnR0fvKtkrYxzGhYTXZv4ULbU5FF Y4MR0IY4sockF0pg+yDpX3ccvv08VZlhzoWSzcavFnUagHpKb9mmJReiK7tr nptiAHdUTxW72HOhyennN4VtDEA1zPyhvDsXOsUy2pb2XR9ubz2Z8DGYC6lX s9deZNaHw0q0aaeYC9kp3ivrstaDWGqHs2MFF8qIpCvy3KcHw8EmZ9+/oPmf 0voY8EcXYj4YW95t5EItFpF/pu/owpClkd7+Ptr6Tm7qq61HITLAQNR6kwvt vfmf835LHegldKi1p7lRqonx/c2rAIOHOC+8seFGc+TW/PIDAKMPe1faHGn2 Syv1fyeOwNxNZ6ERD24U6SDvdOLMEWBB0Y7MIdxIhXP3dTYdLVDDH7+dLORG bWUD9vcPawCSu3fNtpQbcZNTnjj8VYdjj2xYXZ5xo91T749XVKuDeeis1I06 bnSsW9l6XF0dPBG3Z84nbsTfg4dCDdXgITb7PbPEjaRFlOqrQ1SgUG5nxOIq Nxojhmtj9VWg7NHYtg06HiS9VCBO5lWB2lAfpS2cPChXZCqmO18ZelDKDZU9 PGiI7+6zYz1KwNw0sBGhz4PmiXZJa53DcLHJgXN3Og+SfRueJ+EtD04PqWkN 2TzohCCfd7COPNgEW4jZ5fGgPW9/PzDkkwcDteNqWRU8yNnXZlr9lRyIVyq5 7XzPg3QvMxHObHK0OZXr7fbfPEitWG1i3k8WekNumb78jwf19GV+VdsnC612 DIMW6zwof+6+semADNQK/FtIZiMhYsGGuV1DBlKSJoS37iGhG3xrI1PcB8A4 tC6Ax5iERpReRYqRpeCogxJLxUkS8scveuTuSoG65rO7JpYklB16gvmHiRRI /Ssovu1EQqo/ml+4f5QEJq+7/Rz+JDRew6qg3bIPXju6K7AW0ux3T7mIfhWH Kq2J14WlJHRZh53n9BNxKNvlYHiskoTql82ihL3FIXPg1NmoBhL6GBxrcIlO HK6dgDuMvSS00/Rsca/EXrgkW7czj0JC0iHzyokLYuDMqVSgM0xCtoY2L8j1 YmDeLN0QNk1CS35fNTdOiYFhQYG+6E8Salx6UvVFRAxQhEgvXiSh+KSUnzrz oqByLsvh7AoJGXn+K5FpEIX/O5+C/v98yv8AMBF4TQ== "]]}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{-2.6, 0}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], PlotRange->{{-2.5, 2.5}, {All, All}}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.66858763687895*^9, {3.6685877969975147`*^9, 3.668587821863983*^9}, 3.6685880592211313`*^9, 3.668588183617058*^9, 3.66858905139554*^9, 3.668589340714983*^9, 3.668751940598906*^9, 3.6687520487237*^9}, FontSize->10], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"c) Compara\[CCedilla]\[ATilde]o da f.d. emp\[IAcute]rica da \ amostra de m\[EAcute]dias padronizadas de n=\"\>", "\[InvisibleSpace]", "2", "\[InvisibleSpace]", "\<\" v.a. i.i.d. a Uniforme(0,1) (azul) com a f.d. \ da normal-padr\[ATilde]o (laranja)\"\>"}], SequenceForm[ "c) Compara\[CCedilla]\[ATilde]o da f.d. emp\[IAcute]rica da amostra de m\ \[EAcute]dias padronizadas de n=", 2, " v.a. i.i.d. a Uniforme(0,1) (azul) com a f.d. da normal-padr\[ATilde]o \ (laranja)"], Editable->False]], "Print", CellChangeTimes->{ 3.668587636781447*^9, {3.668587796893434*^9, 3.668587812428146*^9}, 3.668588050221328*^9, 3.668588177006489*^9, 3.668589048226318*^9, 3.6685893388580437`*^9, 3.668751921011428*^9, 3.6687520487319193`*^9}, FontSize->10], Cell[BoxData[ GraphicsBox[{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJxN3Hk8Ff0XB3AhCaFFhGwVQlqU0nZUlhKlRSGVtCmUJCJJkVL2UpIoa0mS pSQ1yJZ9D9n3a7nIkt0PM889v/tPr/fr4TZ3Zr7nc75n7pO40dXD55mZmJgO sTIxzfwpD0s7pqZ4kpmo19HLUg9HRtG2Plsk+wfRmZ36Rq2daEPfwKrc32iv PumcFx/RA8HbIhVOoxPZz1y5+IOb4Tt55Z0pZxYwTAtdxr9ZmIthmbq983lq OBgOWRw8UHlvPsM/T2S7EcDOsHCgsJhvAxvD+/ecsClxmcuw6NgFh9X7WBle E/XKwaKbmeG933V4DNvRRrkLArSa0L4dt79JV6JZpU4N1aahRRWX3s8l0FtV 8xcnJjInj7/rK9Yy0oajR52DwuPRV8/uXO8TjQ65G3XAPAxdFShiut8frVo9 GTbnITpaoK7hy3V0jtRz89Ar6FbFg1Pel/6zITCpzXN3OIcW0iGEr5xGO3sF Hl+5nzl51P5ykuUTY3jz+njrQjV00keeG1PK6PIfmSzd2/77fXPoy7vjXaWI luzq+RgvhzbgMMzzlEBnqSmzq3OjFRzF9kyMzGGYY7w+4VIRut7yjXz5W7T9 pht7a4LRwkN7jZoD0Imfhe06X6B1rXt9/j6dk3xrSZR6g60lPB1+/ovpMbrI Bia476I17NzPyZqhU+1rctT10JNTTlM6B9Fb78opnFNFV+xi0jJRnkOdr5tg xVx6wWIbesnPcAcbRXSs4y0/h/Vzkm1okuvZI+2gl3VFvrsUWs45e86r5ehs tQChEAG08TyLTe8Xo9myVA/GcKNDHi679HX+f+fDAernp/hnTjExLPzYuLBs EJ24f3tHdS9al4uXtbkTPZTbtLyzFe3j9mXz3wam5G11B92eX7kHGw88PjRS jS7mPm3CVIE2L9hwf14JmtuTLZA7n4k6f06gsTCqWDgN7eytwyabiF55ZLXY hnh06uIJJaVotGFp4RHl90zJifu4mGUfOMPU0xAz9TB0gM7NBwfeMFHn/yFs X6r5RscfffN5f+lZb6Zkpbgsqx+Bj2Cpbib9shs6TuAlu8VDJur8usLhyisS No7o3he7tzvYo931lx57YIOWE+q46m7JlJwgcr/zUII7ZP/57uJzFX3J3yvY /zLa4Qbz1eLT6GcHrm9l10GLf5MVCz743/XwhEip5rk7NdCbn/p3VqigU5l0 iq4DWstswRfurUzJ/mli0RbGXlBRme7/biP6rJr9PZW1aHqMonHdarSNaI+W 7Uo0q2u4Ap/of9fXGzyGTy+LXoYWPC8wpbEEvW6nS7bDfLSr/ICs2cQU8Z+D 5p3/F/QXnVBfllrRNkX8GZm9YJD/Vc2duwbd7P1FT6UYPWoivco2E82r+qL3 YxJaUoQjqeXTFCG0tmYl210f2P7P9oFQOPpwYefhQ/5TBHn/PAPjdwYiD7zQ 9vfyaEnOU4T+udkjBJ8TO+P/3kJHbvzoIH0NnbpATPPUBXRFqyf/0xNoOjGn 6Zf2FEHej76gtjKd982qKcLvxewLhrr2mx4smCQq8/8daQp9CRKBa1i+fUUf OMTjJxmCPifjcN7gBdqWpW+dt/skQd6P/uBZfWY80xEdHl+cOXET/cN9zxOF K+jSi3GnLp1FdyivkgnURTMJPhss1ZoklrEe414T8wqW9rOlcOyZJMj7NQDk cq1dlbdMErrkgoLdoe3Hrdagde31VkRKoDmTt6T5CUwS5P36Gn7METjvwj1J aG522WXY8hos9vybe5MVvep+ediF0QmGKzLi1XV6Jwjy/nwDruw+7Xta0aBh 6bKhGv338REZ8eL/+/kXWuuf3Z0gHpu2jb3rCwL4I1fsZI3+K8x1/brZBHU/ BUPYqc7FRmcnCNkHS6dPeTDovc6O09ZDczW+04GD6OQVLkNrVNHXzxs/F96G lgxX38K5foIg61sIVLZLVo5Iol1l2GzbhdHKpi2CvxdNEDlvVD/3T4RA/4e0 b+nsE9T9HAphPcEGcZPjDOuvd5wIGhgnZu42AdYwWHDdKMCrA50ctwsc6tFu 336kbk1A66duUxv0+L/fZxVqa7r/f7+vOvqg+Bba8kGldMo1tNSvhF8fL44T HL+DzXdwhIO7pjWn2xH0QMEmrcuADl/IR9fdhNY/MuCuLjtORMzcHrxvgdun ZK2i+Di1ft5CSnlM4Ur+cUJjZrkufQeWAt7XFi9AS+tfW8TMgv7zUju2d3iM YfeatUfr6GPU+nsHu0R5BvOa0QOGdJ+kKvTboDzF94XoE82Rv19kjBGzy0M4 ArglXW8+TEKnXjRZZh0zRpC3ewTceKeReP4tWrpz9YmjAeh4p+Inl5+MUev5 PewWuZXr8BBd8GXF3Oe30QaHcnd8sBgjVht4pA5KRwKtw9Lq58Uxar1GgpXT 8o+VBmgWkYy2nkNozy9XxNjU0REdhNeG9ei05QtZTguhD335uu0G7xi1/j9A rbaR5eO5aNMOjg9vRkepehAFI46xLV960M7LDUTym9FLvrAeb65Ev9H+4DGa P0ocnS5m00sU5Dt0snjT0N8cJ5mkvqL3Lg9X2hE1StWPaCj7fNDiSDDaSHs4 4pIvuof2uumOG9rOcZ/ws3vo+cv/Ho20Rj/77OeWajpKhEzfjb+Do2GF9p6M ijOjVP2Jhmha5yT9GHqH49PNczXR2cI7zIV2oU0OaN9vbBqm1m8c6F8/uENR cYi4NvP25t/hCdGuTXzuJ2Z/vDAVgLnimPycPmo9ZEKr1Kl23n+9xKnZgMoE d61mm/4utOL1y5zljb1EzKue8Iz9mVDr2+ufUNFL5U8mOP+wkn+Zj5ZvHidu p/USzLMFKRPK5zseMkzsJWare08m2K+d37Q7Gi2p42G5KqyXWo9ZkG/Lx8bu j7Z6/fJ5hxd6eYb46rwH6LTO8MSPt3uJydKb03dUFpgulNf0vo5esjmuxvIS Oslg69Xjp3uJw7M3SBacu5fMtFWnl1r/WcD1Vs1beH8vccCIdyZSIC4vd8WU Mtqg/3B8gyKadVmlWpocOnLn6YowCfTRcy2XXATQYy4mYybcvUTQzOUqzYLg j32uB1h7iSHpmQWXBc8ierYbDfQw3Do4dlqqHr1pF7tjVw7ayXVJ2KcvPUTA zOXZ/AtKf4v9sgpGr1yxpmubRw9VX36B5RUlnjm3egi6HWw6lfgL0r6qbsi4 gF4y97DO48M9xO7pu0Xizy84p33qpvZOdOzLyy/5ZNDMbVY/qvh6iGd7ZhLu Fxze4NgQOKeHqlfZEHTbg/V8N53hv1kvpWQq6cTs7bkjG3YveavRk0YnvLpn DiAbvE7HmcVF04mZdx+xz4b6iGRPG3/0uqHc2J0P6VR9ywaHXZXlLJboQteW kazTdGK6+VvkmJwNYhV9wu770VdXTMKRzego7bW5F1u7Ge66bahr54Pe/sv0 1q673USD7UxgZoPrEpsANjN09en7KTm6aNn3Xs2eKmjboVfzjq1DZ++KkBES Rgu6fdaqn4e+XJFqHtrfRcx2k3tywKzkzM+vNWjzfKal+ZldxMzZ1D+XA5a/ Ao0bP3URa2YXaA5Yp+38NvQSbUvULOB0Rtsn2hmKmncR0282fcFy4G68UKyC fhdV73PBKTpx7l4V9IP3eroG8uhHYcMR5gJo9zfPJ5yYu4iimctzORe8/BW1 X3R1EqtmDvdxLjx9Xhb0obyTyMudfYGvt+VgSnInIT7T/Xfnwku3xXvLIzqJ X9NXT3BtHgQ8jPHreIp+43ioe9IeHWLfC4svdRLLZwtOHry3lG/ZtqOTqnd5 EHU1b7O2FDrmsumjcws7qTzJg/jznDU3xzoYTjCMWOvWgk46se/em4IOwmym XSvOA+JYe2n8V3TqoQdS2cEdREr2TMHNgwxNSdtaN/Qv9fTcv9YdhPHsDZ0P ubvPic4z6iBm25dj+VC4g8VCSLODmK0GVvlQsiUoba1iB0G28/lQrrCLX0Ws g8qvfKiSr7+ky9FBcJEFFWpW30kyHaARs8tvJB/qV4rw3K1FN4t+P+OThW4T NIh7F0MjZpeHYAF08I2x/fBH03n99IqdacTs7bStAPo4lSJbzWnE7OU1KIAB torJUX0aMXu57ApgeI71IR5VGtVvF8DYOF/IirU0YvbX6wpg8l/c0OZlNIKc bhUCc/+RfZosNKr+FsJc+t+Xht3tDLPTvOiWv9Gczet2uaSguesKnrx63068 na5mLrsKYVHVldZPPmi+sgVKGXfQAoWRj6suoYVz9tfSj7RT+VsIohkd61h2 oiVSXBz5pduJsJn0tyiEVUnS5bKL0NJfMqWVx9sYlou5cOtoaxuhPVsgCmHt h7n5xoXoDW9DxG4ntlF5UgiKwXuue4WglQIa00Pd26j8L4TtL+4KJN5Ea+l7 PN94to0Yntl9pRXCKaFXSz9qtVF5UQhXqiN8Vm9po/K/EO68SlgSIoH2PJXx RGQB+rVo6aIX/1qpvCiET/UNXosb0alvenjdc9HFRhMe7F9aideCMw1/ETSt 4ORxfNNKDEzMXJAiGGgWcJ943ErlSxGwhkkuuGmF5ru40fWvYSu1HyoCSend nGb7W4nemf/sUgSKtIOP2ja1UnlUBOoRJ+cbibUSKrMbpCLQNTF5WM3RSuVR ERjL2cw7PtjCsE23s3NRHfpR1NO5mtlov6tBThlxLYTvbPkugvfroll2BaKT +r7f++bSQnQdmllhRZAbkzNH0RJdc73SIfpUC5VXxUDf2DYls6+FyqtimBwc sA9VaCFmy4FWMfB8YZ4UFUGL3eS97ceOXqckMr6kv5nKt2LYNSp7y6MGffib 0uj8rGYq34rhrJ26jVNMM5U/xWC5Q2d40h/tNGlkbfMA7UOYD/VfQ4c52N+4 YtBM9XvF8HmX60C7WjO1/yyGTGa/62fXNxOz45FFJVDxM/xvjVAzMfvjEiXQ 7hR/TZcNPaL6s7e4t4lQmH2VAMe8oqtaf9CCWbX0zPQmKp9KQNaly2x3dBMx ux09UgLbNUa7kvyaqP1uCWhysptuvt9ETF+M6YJZAidz+To/XW0iZtvR3yVw xW3FZTl9tP2B9bQwlSYqr0rAgweMxdeiXxdqtr1cho720r+wlBWdcti4xZPe SNyZ3UCWQvFiq3OclejGUsem+z/R/T5eRkxRjVS+lQLr8cAGW1/0EoEPhoP3 GokSrZmGrhRWVSbWXTVrJKRmA7kUFP2yTnUcb6TysBTUTpTXnNuNPi7cbFAn 10jlYykY1/T90eNHH6yX+5C1soogxyG/QfOclCGMVBIzu/UlUb9Bo1188ee8 Sqr+/gZ1U+EMuaBKqp/+DSq9S22CrSqp/rgCdlkulBPcj945zFnnKVpJ7Xcq YJsdm/e8gQqGtzDNUbXPqqDqbwVschr7N+BfQdXLCtjAPhRhcq2CqncVsM61 92SjKnoNbyevnmAFVe8qQOZpy88C+m+GpQXqrdR+olf5V63+/vw31R9XgIRY WbWCKVo0pMAjQhktLJ29W5zvN1UfK0AwMm3wOa2cYf51xFvuH+VUvayAJXFf T9z3LqfqWSUs2hLHPX4BzZMUlWKxrZzav1cCl/I7SxoPen5asJRhcxlV/yqB bW9AVXlCGVXvKoEl19dNy62M2DvbwFUCk/YT5bQzZcTfmdOtWwkTJW79WxXL qHpYCaPHH4Z94kAPnr7NFRhbSqjNHO7NSvjbZE3wPSyl6mUl9F60sHA1QHd3 mq5iWV9K1btK6Lh6scJmLrqt/8zj3soShputDXZejCqh6l8lNIwd66u5h669 cyjk6HH0HxbN4zmyJVQ9rISKB2ocu5lKqP6+Eso5d31PKC0mZt59H1cVlHhs M1/7rpiql1WQFbhqO8dYETV/rYL0FWI9DgXo1HDBoH/BRVS/XgXJsnw6V24W EeT2uwq+f+Rhb9EsoupZFSQqcHw7IY5O+MJ6pXiwkOH4bVNi+7ILqXpXBTHE SAkRUEj101Xwcc+As+J1dGQmXemDOvrdflrXCuFCqj5WgVZgJmxqKGB4b3hS qMSjAmL24zL/gd0fP3HyKhRQ9fEPbP8Sdm3iTz5VD/+AIvHyd4cTWpCLlRag gJ7QNR093JjHcH1oKec8L3Ta3+3Lv0EeVU//wFsIlb9Kz6X6/T/g6rpAecWr XGKmOxS5/wfMK28c+r0ffUSy1ujxaA5BjqOnj+e6miW8y6Hq6fTxJEfd7z+O nuTifx7OlkPVyz/QqHfn7Yn4bKJsZvmzV0NGWNtXnnPZVH2shnf9B3N+Lsom bs/eANXgqpxQbZ3yi2FzNzG6rPkvqh5Ww9Gqh1N1IujNUn28T/OyGBa01JPY a5dF1cdqmExOURiXyaLmk9XQuEBGNboyk6qP1ZCu733s3MNMan5UDW/DRy8K bM4kVswGzPTxDBjZ5LZkUPuN6ePZlfPI4WkGcWOm/eaugSPuCv4b92QQ12cb 9BpQ/PPyQ3tfOrWfqAFBaVbC/zV60tK0UPtgOpE5004a1kBjSmkD62QakT77 +KIGMrh39CdEot+dCGU1O4F2fbtgqTgH2nzwhlRZwk/i6sxye1MDWzzUNHYs /UntP2pAuDrqRF9aKrXfqIEpaX6z0Ovoxht37PUk0BmpbR4LilIYjuDRfpNy B+1mkBBzQx5t/k4sbXVNMjVPrYWjQw/Lah4nEzO7q5qVtbBlT1+r19ZkYvbw VGths1hs7+Nigrgw+6qFya+OiwfWEtT+pRYyjhxVNHD7Qe1XasGte6VeWsd3 ho8+GLwltxctLJ4R8DQ0ieGmxGcp48xJ1P6mFiKOXmw+Z/iNmk/VgQV987y8 74kMKz1kl9kklEjtX+qASaJS89XNrwxnfnt3dW55AsPuOrbeZgponR6N+DLP L9R8qw6EXYQqdtA/U/OtOmiS6BoN3f+Z2v/UQURS0nLud/EMWxxzU7ZiQyv1 njxbezaOmL09TevANDGEZp0WS83D6iDAqfPqwlWxVJ7XQeGBDUMR92MYZllm Y6fS+olhxSaCuVbtE5XvdWD8gc3FOjyamqfVgZ+1Fs9C9mgq7+vghaO0rE5R FMOT/J83P/T+QO2/6sEoco/KtyORDMuVnTopXv6OWt/1kCzp49FdFUKt73pY 9U3CX8w/mOoH6uHRwei3R04GMdzTtCPeWeQN1Q/VQ3jvM8frRCDD5sti/Ct3 vaL6o3rYujsvHtL8GGY1ac8PVfNlOP8JSzvnLx9qHlcPvkkicyz2P6Hqw/Tx tygJVuR5MnxcOOKC3WtXqh+phw6zet+9oQ+o/Vk92BNLc5ZE3KP6kXqQkPAb TTl5i+F96Wyn9S9eYzj5Td6CnJ8nqfpSD3uDp5LDZFWA7E/qwSnoQlvCP2OG haLUeFQsrBi2nWtWprPRgeHWWMVgl7X3oWD28Vk9HDFiuvZd5hHDybzZO/tW eQC536uHZ3X7nL15vRnO/SxvJuf+FMh+px6Y3RcfzeB8DmR9q4ct54e3Grq8 YPjq9hrxUTZ/IPufeghbnMr+1CkAyPpXD1dulPxbevc1w/MbVDubiDdA9kf1 EKKZUBs9GQTkfrEeIEGm+PaOEIarVrxK17ALBXJeUw83PHi+8n8LY5h37G5k 80g4w+8vDAR+2vIOyP1kPagVX3hibx0B5Hy6Hm6/228rMBgJZD1uAAG+H2Yt ClEgOhtgDRDnsO5MjMVHhqWtDkUQutEMD77nWCk5jE5t+PnK9fknIPuzBvDk v83frxgD5LyoAU5pKXrplccA2a81gKxjD0fyjVgg+7UGMNi2mP2DRByQ/VoD uPYrzvUriAOy3jfA9/f6zA/s4oHs1xqAftZ+6vrqzwyLCgeNG5Z/BrJ/awDt 0vQRLccvQD4va4C7rrShresSGI5RWTAgVZMAZB40wBY22RoPlR/AP/sApgEu /ThQZdf3A8h5UgP4WVn8vhRAAFmvG+EC//7L71clM2zfX90ubpcMZD/WCM8K rlz0LU6G2fhc0ghR75lauVenANmfNULd2ZVNY2UpMHv61zTCMHw+YyGXCuS8 qhF4hffWt99LBXK/2wjSw5WnTlemApkHjaBcalJTtvYnkPvbRtCNnjih6Yy+ 5upRlVqNfmQsrqekkAbk/KsRglRif390SQMyPxohUUz1mGR9GpD730YoGS8v 9VdMB/J5eSN0VRgfWeyWDrPl1qMRWONHi1ya0oGclzWCsJerNtPWDCDzpBE2 mokUWHlmADlubwTNfdFa3a0ZQF7uRji/anfu2R2ZMHu5aNPnb06pRtWTTCD7 venzV3P+l3YHOurrP/VM5SyGM3xcMnY8R9deE1KN60b/0/rwU0blF8O8MrD7 jd8v8vIwN4E0W1Eyf98vIPOsCZQbjcBdPZthvR8D31kD0BZ+zttvDWQDuV9v gkdWAt/6NHKAzLMmCDocoWT8JgfIfrQJvslvT6j9lwNkvjVBKUe+os6BXCDn e03Q1Xo6PicEzfqzT2H3GHp5oGNMwqE8IPvPJjhwPPxj6GQekPnYBBcUlOSF dfIZtufJifR+nw/kfr8JnnUayM5nLmD4Yyb93R3dAiDzsgm+78vesjW1klqv LdAZEXTpgG4j9XnbYKjKmDndrJH6vG3AxLn25TbHRurztgHntkGFGN9G6vO1 wVKTb7nSUWjxl3fPB/5Ey+WoT/JVNgLZX7fB5rEFz13p6N2ypWtZWJuoz98G Wif8smyWoXUfG57plW+iPm8bGH2THL2g0gRkP94GZp1d3jV66JtCsbJHrzYB 2Q+0wb39NmnZTmi3W3Byl18TkPOQNvB9P3foy8cmIPv3NlCJNL4nPq8FyLxu h4PV8kK+wi1A7t/bQZ9rMJZ7QwuQed0O57Z/07yv3gJkPrfDVdO7LWMGLUDm cTvY+qvbW1i0ADkPbQen3AX8tActQOZpO3iMl3w8/QrtJ+e3tzymBch8bYdQ A8MGzSx0tKuk7c8adGJS16Kt/S1A5m87pHfFvI9mb2W4UNhGRUoEXaUJNa8U WoHs79uhxW6u1ZJ9rUDmcTv0RuZwPz7VSuVlO4xVe4XPsWwFst9vB7YFuso3 XdC8O0Qq6QGtVF62g5BZ87XzcWjJVxEc1b9aqbxsh3V55sGH61qpvGwHtTUT pTB935F52A6HTv40+yzaBtazDXE7GLi5sK3Z1EblYTtc/H4wMFgDbdHNt0XQ sI3Kv3a4vby60PNGG5V37fBQK+jSvMdtQM4baOB925jZ/nUbkPMFGrz6IP9y IL6NyjMaXOEScBn5hd5pMsd6sgbNnd1xjuVvG7V+aFArXXqYna2d4agH35UX CKLvtIbJL5Jvp/KQBtqqnsL8u9upPKSBWIgNh/AxdC/z2WGxy+1UPtIg5Yxm 6yr7diofp48/eVOpjDfaSFQ0dW0YeoM9e/TGxHYgn7/QgKWm75VSPrp025/H OxvbqbykQYhfms2eIbTlyIeLezmmj2N23kEDVd3nOloi6KVfHPYc3kCj8pMG rXyX1x9XQ3+2PCJqoI9+ULJ9wZkraN0NkmPn79GAnD/TQNqLh3b5GXq4Z7j8 agT614HGNMsfaL8POTE2xejLXPGv7VtpQO7naLDVJMDdcRTNmf3A7iF3B5Dz bRpEPtDX9VbsAHK/RwO71j1qzzXQWqprNvqf6gByfkMDkZClEm8sOuDnTPyl 0oDOzMQb5twB5H6OBh7JxZ0fo9Dr7EMzv5aji7bdDP45ibYY0biTJ9nJ8G7d jWbFW9GLvyw/8fsAuplv3r5qI3ScZa9ig1UnkM9/aeBUUrmy9VEn1b/QQGfD z0WdAWhJr0im3hj0UI8PfSCjE8j5Eg0yDtypHqnqpPodGjz/YJw9SUcbcx1O YGHpAnL+RIMtJtvC2Pm7qH6nAyqlue8tArRta/1J4YtoDdXs/eK30EIhsUqS Hugu5ldSssFdVH/UAUlnnPnWfekCcj88/X5LXpQdXNRH5Vkn5BaWqhT79QM5 7+iCzwb6W1JC0G/a62Sjo9CuludFAxP6gdzfdIEVU+ci91S0oas52+1c9H6B oRGTcrRiyK1u/Xq02Lo5Dfs6+ql63QUcSc6lWwb6gZyfdMGgOleW1CS6vsTr 21L2AYazT/N/nLsIHd/pHzQghH5tLfGsadUAVa+74BHLW5fitQNA7o+6pvv/ NbdTlNCGQrHm0XvQGuFbzgVqoTcp/DjufnyA2h9NHz+xZ//tM2iO/b92mpoM UPV8+vjLD2w4cQNdb1S6SuPOAFXPp4+frrdMyWWAquddEGdbxyX9BB3Idp6J /9UAVd+nj9+7o39u+ABV37vAUsS8bSAavU/xVn5xGlrkgHN8dAWavYrzXWDj AJUHXdB/3svfvWuAqv9dUNu31PP20ABV/7sg67a/oynTIMOx8yWsT3CgA3zC L2ssQT8UX3NKSWSQ2i91wfUPMYekpdGnlLao8m9A703/voVt+yCVL12gcGiP 3KAqWqQmS7T5IJr90oHFJXro/oESttSzg1QedUOtg95otBk6i6uuO9B6kMqn bni1sqP09mO0xfbBbycC0QZZth813qHVjzIFK8UOUvnTDRvq7z+T/o4WNuV8 xJ+JZhv2vM1WNEjlTzf0OS69Nlg1COR8rhuqefzPNTejM16K65bQ0Z+kwven DqP9Y+XgE/MQw84Qs+E1F/pazmZJj6VDVL51w72p/rvHxNHeCtE1y+WGqDzr huCLpkotikPUfrAb4l5K+0TuGqL2f92QXtDce10TXc7yRnPbcXTb5pNvmY2G qPzrhmGTZazZpuj5r8tOe1kPUfvDbhAs9fqmew8tw36AX8wNvW07x/W252hN 84z8qKAhKo+mr0fIPRmrD2izip3OOxLQ9lxjDaw/h6h86obXltdfPKlAp1R3 akvQ0cW8byNpw+hGlXPsn1j+Mdx/U+zcTW4064dqApb9o/KuG/gafIXmrfxH 5Vs3SPLpWOfLoxX3LSzxUUKr386TP6mC1v3k8mjlQbRxi2prpx7aZhnz7thz 6EdaP17ZXv1H5Wc3vLxrO7LL9h+Qzze6ITJeUWf+fXQS7W90oQc6b/lHLl8/ dO0hE+PToWj6fak0yeh/VB52w9TXJlF6IpqXHngrPh0tLmHw267wH5WX0+vh mICCyh/0nkel7pyt6KM/PDuKe9Hn/2qq+Y2hrSTnB51hG2bYWT99QnrhMJWv 3fDc/a5erxA6YWiE9856dNUpi6wF6uhOb/mVZYfQ4xkdd/wNhql87oYFY2F/ zl5Ei6w9u1nWAn1m6kjY3lfokAIVvgtZ6McX6sUdq9EWE7fkX/eiW7N+xUWN ovWf8m/7zjpC5X835J8+n5LDPULlfzfsko1VrxJAxw0x5bdLjFDzEDpIpx44 +k9uhMp3Ovi7+VfN3Yzm1eswXLILXessbnvg0giV/3Q4fPgq08nr6PTl351N bo9Q/QAdttA4Ftg+GKHmJ3SIjNN98tAL/XT/QGBoKPpWo0dk6le0kY3s17o8 tAZvZvp4A/rHnyWanF3o9eFGxcuGRqj5DB1CLKJ1pZlGGRbYOVmryDFKzWvo 4Dpf87zqEvRU6YvOIyJoi9dt14ykR6n5DB1aTTYNm28YpeYzdNDf7Gh/Zzs6 n7mI1V1tFMj5Px1254s89tdGx78wXfheHy19PvH513OjQD7vmz7/69hFsq6g ecd1Qspvop0yg2Va7o1S8yA6DHv3Rfe7jlLzIDqYnILNzM/RtavdvvO+QR8e rNoj+h6t5GqlvZ1Ai61YdFKvBP2UfrrpYg2aPfHDJas2tN39sR6nvlFq/kSH Hu19Vk/G0EbCz8ffzB1juLyt+V40zxg1n5q+nrEb5hPLxqj51PT1tHfwyFuB 3qCRz1e9Bh3KJ+zfsRkt0HBJYmQX2jXyy9t5mmNAPi+lQ7/tL6Nga7T+vj/C EIweSDrNKRmFdl/XPML1FS0dYtze/3MMZh8XhNMhlb+7vCp/DMjnr3QweHwt PaUSPTQ5GPu2Ge1pYRvk0TNGzdvosLp10tNqFJ2q53jn5Nxxhg3y5l1R4R0H 8nnt9PspuxrICqE943j3L5JEy0j7KI2sG6fmd3RIe7lMun4b+hRPwNJMNfTw PYm5UYfQ3kNh/U8NxoF8HkwHucuyjbcuojNqPhYaWaBPH9pI7LuNHk5L+LDu Idp7yw5//if/936RKY8mX40D+bxq+v1E1Wxa3o5T80Q6GD7Jvpgbix5lO3gs 9sc4NQ+kgzz9uMLd0nEgv59Hh6wz1eLGdePUfLAHjMoMeQ92oH2SLnULM01Q 87EekF9H/8PCOUHNx3ogK9giu4MPbcT/L6FIDD3+6FZ4guwENT/rgXUWTk7O u9Dn9NzOHD2OnsxdqL3NCO2r/GynhBl6Q5zgmvk3J6h5Yw/kSAUK9d6boOZt 0+/3cgXHb7cJar42/X7cb4e/+6J978m1hQSjNwxFlz2OQl+o+Rqjl4b2S0v1 kKpCb9yibs/dgs5/n2M62DNBzet6wFhU+0T1KHrOk9J9P+dOMjz5qsOojwc9 +pbJTlQQ/S92qY/WSvTAD7moW/KT1Dy0B7pLdet/70a3djgt2ngc3TToJ2t0 Bl3P9EnF0wRdzZl58scNdOXSGquuO5PUfLEHysX7PQQfoYvl5r/b+xRdsFk0 1SoAnbt705+Qt5PU/rQHiCtucLIIHePXEsw3iv4YOpa0h3WKmsf2QGT0wvJr 3Oi336R6AgWmqHlmD4Rm7GDPl0AHVF/aKrMZ7fvXx9R5P9pn4v39OB20N3tq QONptPviii+8l9GPReiFOy2nqPloDzhtFGR5+RBtr6G26Z8/2lbH4MCqcLS1 ocXFI5/QliYPHe5+Q5tbBbz4mD4F5PdXe+Cya3YOZxX6bNDQxEU62vADF/+z 4SlqHju93gwWChjNYVL+z5Fn/FfasKFlL0qt9+RER5jG7AjnRUtb7ND4wYcO s846ViaIXnn7yNkuUSZl8nlxD4g/vGQnKIMWeXLHZ+9GtL8vR9BpJbRggE+U 1U60b7DYN7c9aP537zND9jIpk98H6QGuQ4+yAw+jmUeM8/wM0BOaFQd8z6CH X6sX+lxA9w98PvTEhEmZfF7dA/S9kiWe5ujmXtbyx7boKt+mCmcndFnXYX0n FyZl8vtsPVConPrnrjs65+n6k3eeMCmT3w/sgYz217V2vuiU7byGtq/QSZ53 GqyD0F+a6UY3wtExW041W0QyKZPP06fv7/rtbWaf0QEPhTqMk9GPKip6TpWi raSfDR5tR1+zm2t9uBttWmg5fPAv+uLKZhutf2ijm0fGNMaZlMnv3/eArtiG SVW2OQwfyOKds4sXvVUgn23zSrSk8WOuNVvQ4kmjbjI70MK8l3mkd6P5z1V6 rlKfo0x+X6AHFiXsXbRCE72AK+GJ2CE0u6EUn8gxNEvcs2dCJ+Yok98Pmq6X 89gElhmiO47/XM5jiS4Pd1gx9yFarb2s4HAs+ou0rN3rWnTpTeW26zR0b5bO YfWB//v7zOvnfRpBcy0z+S44hRZMGbRwYmVmWPqSgzR9PrMy+f3zHlD56vMk ZQnacP77yaei6CufNsVNrkTb6SVfMpZhViYfz0xf/zn7RYvXon3flZVu24Qu 3Mf0vlEDPb9D5q6LIVrAO16x/zxacqtyl4EJemNj9psMc2Zlcjn0wO5HOsfX WaFPVV1OZbmLtpVxWPP7MfrEexlni0ZmZfL/95w+H6KThXfamJXJ50W9UOVd JOTWhfZjC73g14fWt735KXwIXXlGVD2ViYVh3X0Z1dUc6GMCS9gXiaKPtp1R UFdAa9+fcPl0Aq254kW9kBNa5XShW28pevvLedvSV7Ey7OlTLzBYim7y+Dq0 0mkuw3Er7nSKV7MxXB9svYF1OTvDxdKqDv035zMs6qcqlvWdg+FnEXojSuOc DJcQuysTdBYwbJJyinO5Lzcev0OiLbcmD8PUv3/C8P8ADTomsg== "]]}, {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwt2Xk4VN8bAPDBjBlmzFhahCwVCZUlyvoesqZE2bKEFkupRCVrlpAsSSFU 1kRUylKh5lBaKRUVlUQky0yW7Mvvfp/n99d9Ps+5533O8573vPfe58rtO7br IC+JROrhIZH+u26AZQOLiyysFBhq9yWLBLaH1p6bnmHhW9k79qx6QYLgtC0K Y/9Y2P3aEulvYyR4Mei0r2+Qhd3UjgkVWPGA+5WcjqbPLHzWvnciW4AXLo4o vsm8y8JbFOs11qfzwUMpHZ9Lt1j47qUkxfFXfNBpZklNusHCWE8/SG+BD5Su H9kakc3CtimGA3beZGjYdr/WM46Fu/J2PWk2osB4gW6ZhhsLRzRUev8WoYLE u+3b1jux8PGmkwkOVlRAM679CnYsLLNRT8U1gQpJ1hFrJCxZuGoi0XoDlQYK 88+ukjYT6zHkKWDyC4CDvVVSM5OFLZKtJCmr6FBD8zjq9YSJRbRovnu+s6D5 h/2X8YdM7HXpWaWMpDB0VW83iqpg4q+UZ+eo5sLAf3DLsmvFTOxwTFtZp0AY dtWznnxIZeLXD4KMLN1EYDDoiZCBFxPH+NWFruGKwoJ1ZeAbDyZeinVj/FaL gajirZ+OLkyML94PMXYUgy2f0qoCbJg4XSLbIf6pGJxVP+JaokvEb31/tDR3 CUgNSt5eIszEfBcqW86cWgYbG0SW5wsy8cp10ssHK5aBUSY1ciOFiZ0yRzeN jywDb7Mx220zQriacvBb77HlUFXweu7MLyEc55rV5hcgDlYuQdsHHwrh1kYX 6YgsCTjT/Gmw3kMIt0cxupgnZKDrSzQudRHCm25LGVc2yIDRL9W0NAchXFAc xCcgIAv8s+cNfHYI4ePS906G75GFREW4KKwthK+ZFdt3LshCVvRNLTdhIZwf mKe6zmUVzCXb0i3oQvif49X5nPhV4JrF06XOL4ThWrVWxINVIHvPOZ5/joH7 z4ydjFiyGm52sr7d/s3Arn/dTTI/roZK7dORc08Y2KT99rsZT3lYZiJv3/eI ga27fRdPZstDoPUHpZZKBr6yXv+8T4s86HiptBbcYmBK2fWyx7oKUH+5S8Ey nYEbcgePaYmvhbdc86bMIwwsr89/Z9cfRfhzY8XyzVIM7JtpIt83pgJv93Wf 0lnOwIUlpUy5LeuhUqb0k74oA59Zljk2EroewjP10o1pDLy5mHnEibYBRJPc lu4ap+OON731XgobQefEDbEjTXSsm8cra4xVQUbtaIDfCzq+d8jiudNvVSBz tD4GNNAxdXFs/3OmGrz1epka/JBwRJZyzl412Oc8KHKukI6933g+8uFVh/NG asIFoXTcZHRcZd5JA44tTh8rCqTjcnK3XlWcBtjWNbwr8afj+3nxPs2VGiCt ZXuh3JuOa8YdGHLCm+D+ukDmE1s6Xldy3v/Qm03QIfyY0a5Cxworrw+q2WmB 0g9zAdZ3Qezafb9Gr1Yb5swmNhV9FsTlymLKp2a04W15gbv+B0EcIGFYDjo6 4B+18ODwC0Gsdu5zUVytDjySr/R8eU8QW+1eFs5o1AVzX5lnkbGC+D6r7+3M uD5ItDVxxSMFMXXz7NHn+gYwpB8sWR4iiPs+7ezQjDOAFFabf6efIJ5637CT IgXw5f55OV1nQWz7vGi0UQGB1/S/8PGNgvg8r3JSpbchbNlXcCtBiRhv3dgY n2oIgm+sP62SF8Qhmzr7a+sM4c7V0vU2EoJ4sAp1aYsawQR4fLtNFsTJk5W7 7tUbQWxsk7ZXuwAe7HhRsUXDGArFCsbbowSwb9r0VmNPM3hWTk1oDhPA+x// dUjMNIPeHb5y9acF8BoLpVHdZjNQOKdpVXxUAB9rjS1t1TSH4rkXN085CeDG ihkRHoYFlPUOOYmpC+C1i5zkv03boCnKZoR/vQDOEpj6RKdawrBMddzMWgGM jplNZhlawganM5U/VwrguAuvFpc/tITytyLMcgEBbGUpp1p4aztUPtCq3/6T ho1/6+jWF1lBq222A/pGw5p83xnh/Vbwb2RxWOMzDVeSnc3qlHaClsorCclm GpZTHzmHy3fCw1znE38e0vDbhM3PIjysoS4+Ym1sCg2XT5utyYqwgafOr5PY QMNhJTZ3k//thpZCsb+mOjRsRskzGltlC53DLrvebqLhwaJjutXWtjB1hrvs +zoadvaPWuF02xY2FC7JnRGj4VzG4d8qh+0ga2jvfc1+Kh533uh6bdoeijWL lzzupuLcWpkLeusdoCp85JTxdypOMdiSZuLhAC3CZ3V3f6Bi+/Qa2SuvHYCi WfLMr46KRzmJ8bb5juAXNvapNIWK2e9hZbunE4Q/19PWSKDiL5U0G/88J0hg xWbXxBD+7jsU+c0JivLE3V8FU/GC4q9iqq0zfG3U/9N3gIqzvtTfeGbuAqbM c7Ny2lTslTmo8cxiL0jlSMle+cmPGeb7LzEcPeB2ZqSQ9jd+rLx4sbE/1AMM LvfNtH/ix+bOcuP0fA9wiy9vk2zix3aLHgrrhj0gP8A4IaeaH/dUfF7dFLsP FM19J4oS+LFhZO1b2Zf7YdNIbVOVJj+mGlAyzsd6QuOgbI29Kj/OuJXhrVvl CfZ9MTcnlfhx5tXE8K2/PCHw684obVlivN7+rvNWL6hp7Nn8WJAfi5lKf6yl eAPKohc8+0HBYv3/SLXZPmC51TnoYzwFJ6bGynwVPgJK/oHvW85SsMZRbkWO 2REQzLu07u0ZCnaKG2rH4Ufg5cKb9pcnKbi/hHdCgnMETGv0dJ54UHCkgIC1 /vujgNSkZ4u1KTj2tuCbdls/0JT5GRr+h4y5t3ozbu72hyVW860hv8hYQPWZ l/NJfxgPXbE+6AcZN0ldPmua4Q/3O2y+B7SR8Wh3fcfTr/6gmt6g71NPxnbL rkXv9woAJaHChd2ZZHxK2EclNP4EyMx6RqyzIOPfiaGeO2dPwVCbV2HNVjJ+ fOOrK79iIDws935paUDGfofTogXtAsHa85DwUQ0y7n31RXLubiBEvD+Se38l GR/fcaEvxec0dN88gXVH+bBDf9Od3sEgKLKNIlll8+GFPM2GENUw8N8YveZH Gh/murw6VesVBgaCZ839UviwjMft3Q45YfCZHZOSGsOHm03iYm+wwoGmHC/7 +RgfDundMVwyHg6HeFKQuzERPyGzcJ93BKy/cy3Cf5gX96U1nAg+FAXmj+1Y 7v28mK10M0jyfBTsaxK6vqOHF29tWEodKomCKwNhtYrtvNisn14kNRAF5LV7 Jzqf8WLJrnPeDb7R0JEj7Wt5lRfHa57eahtyFmIv5jisseTF0gPul/XZsZCX 69AnYsqLd9/y/2XcGwt1d1knFxEvNp5XORZNj4OR5jOpHVq8+KFh0+abjnHg IujenLKKuN+7uTrlXxxoRMtunZ/mwfXxeUvldeKh60Tehk/FPLg60rNY6W8C hGueNP9ewIOXt12iVEklgtSE+b5f13mwe/rxjFCLRHAM/Js2epkHt/wxPfCs IBHeB8E8M5IH5/ttmNZ3ToKG8O9vzPbw4Knsn3ZLPiVD4bkVPo8EeLBl/V7/ KwspYGQxHIXJPNizZFhtTPwidAnUX32xSMJy5RI//TQuglSCd0vbPxIeuBx2 vc37IqQlPdg8+pOEl11SSDBvuwixqXb8yjUkHGOaIjVemQo+Vy8WXD1EwvYR pIcHUy7DOG1b/OaDxLjksJLg/csQcZL32Ac3Ev7cP6n3/eNlSLcK0KHZkXCp vRifsHgaNJDs3gcACZtPpobdzk8DiYPii9uWkPC7mqQ7Yzgd0pwNqkZDFtln r+kvCq3OhLJNdyMUjy+y1bv2HPi9LRMahGS37/VcZC+PTar9558JHDZPzyvr RfbsRIDw/aeZYLqmUThPfpH9gWer4F2vLJgYsvTd+W6BrXZYfWP/o2xwDN+z umzVAvsqPfv663PXgY63PMsSX2DvNqloj668Dk94xA/GMxfYFQtfxvy6roN8 zKciz5l5ttiPzJO/t+TAaMJuJbkP8+zD5w9GbxvKgcTMHWrpkfPsr/rlz+Pu 5AKuNISIrjm2+s/6yj6NfAiYkO06+mmOndQcbKOyIx8UtpAiXZvm2I+D8M1k z3xIqn3SoPNwju1spPK1JDMfnBp0Tf9dmGNveFnepsdTAOPvNHccgjn2o30n uvvbCkBxcJ2z7fVZ9sf50IXJtBtQdfbDpUOXZtnZw0eU/KtugJF0SFPEuVn2 EZNhX5G2G+Bi06R/23+WzbhhXMJeUgQpD47K8pvNsg+87VXsTCuC6eiK3gfc Gfb25vkEvZyb8FpK30/ScIZN/nO+0PxdCThU9xarac2wFx4GxF4bK4FfO5N/ minPsB1Yn5dLit+Chagfu04snWG/nROpTfG4Bep/IjWb/0yzl/Msk/WZuAVZ Vc9nwlOn2bd7gzV+ry2Dw1bWMd09U2w+esrO77fuwMI21Vbl9il2i5BeTO3H O5BqJrz65NspttinJ9bP5u5ADWrB1EdT7AjfL8L2O+8CTcN6TiV5iu3miqlh E3ehaLl1QOCWKfbAvxfXAovKobtrpwcjaZJ9TcKy7LzQfXAK2KmvpTXBvlzS zP0mWwUJX655bFGZYK+I/xarp10FdfpDMTqrJtiCUi8N7tlUgTQt/q0Bc4Jd u01xU0dUFfy82uBm1vePbWX/YK1yXxV4P9eMckz/xx4R4S1pKa+GUyukXgRP jLNtp1vf7rd/CJfY/dbs6jH2Ce3eFrtftXA9lCT0p3SM3ezG+/QZuQ6KtcVf ieaNsYMfnm2wkq+DJxVmhp4JY+xlNSRapWcd9N8sUhNyH2Pz7K0OfTZQBwYp B0SdBcbYTPOXO/imHsMf966PE86j7O3FO8wuiWEA3i/2G3hG2FvGGgozfBvg 0JcGvxtjQ2wTIytHfs8XoJcZKV5z+jfbpGduULSoGby/j3zds7ybHZLxpzFo +wfY2aVy++WaDrapmvU5z4420GJnfx44+5ate0IrXnWqHbT/uu7v3F/JPvRq yZmRye+gHM0VxCcrILD6R7rqVBfcfcEpOeP4DgxdKL6e4j3w2OL1Fp2GdhjP kd54j9QLg7fyfawcu8HRODigidsH125vyB6v+g1aX29FiJf0Q51H7FLVB0OQ fqCW7LtsAIKXZLbtFB2BC76K/Vm+g3CYz/7HcakRwOrbn6scHwSXUdE/lxRG QENdPqn25CBAS+LcZ50R+C1N//QufBDIiRGr3fePgPD5SpePKYOQzOd93K9y BOIk9sSYVg5CwaiW0EX7UTAMEZ78MTUITS2txh+yxuBg7Uzf7OkhqHZx2lJf OAafer+gh6FDkNf/Q7n8zhjs3drRcDxiCE6RBkWTG8bA203L6FvcEMiq8vy0 GBiDV4b6Wy+kD8HJC+vD6rXHYdcqgdkjFUMgbRVbVf5lnDgnRRNig0Nw/M1m hQvLJqDwkmL4pl3DELU4FmkvNwHDBsvHo+2GIVWj/PtKlQnwvvjOrsVxGCqz FdPKDCdg8LNkt5vbMEwdXkF+7TsBhvrDxk6+wxDOmP1JfjoBsd3xRx/HDMP5 HU+uBR+bBFPuKX+z6mHIjgyeNgyehMG2a/KbHw1DWZWWnUDMJGicWj22um4Y mlfeZVzJIlzu1zNePwzCnJyQqsZJSM5wND7RPAwZyZF7/kpOQVHD7IGBnmEo fGe81PPlFJzwu2DIZnJAPDs1+8SHKfCj1QmuE+FAgmeXXPS3KdDNKwxOEeOA /3zIhty/UzBgxG/rKM4BQ+UKsw7xabBWKRdtkuNAZ6xcsJXPNCgp+XGMNxHx DBY6tQRnQLR3450YBw4kCmw/aLJkBrYb1fwt2sOBxdbMwd3SM7DR7hnluTMH +g5rTvmpz0C8yp+yeTcOVGX6ipQ6zQCPacSy3d4c2PWvY6tM6QxMugunZJwm 4pU9KKZun4Wu1NUjKRkcUJDVy+DYz4JRlZ5DRiYH8CUc0+YxC1fx6v3Z2RwY C361ryBwFh68uRBwNYcDThZfpaBgFtYwbEqibnJgXd9CyqmZWfAtlZ3rqubA cxnToN7iOSj8/atj5CMH3C+99mqqmAPxGInT5W0cmOHfaV/xZA4mqVXjvp85 sIHjoBHZOgci+7Ze+tHBgbQ6n2Ep0jykfevOKP3JgQN7kjxsHebhgJrBzi4O B3gutVo8pSxA//PMvpdULixcG9g3wlqAenS+aL0AF2aKSaEyEgsQS1qsSxHk wvgTlTshGxYgNUxhzEaIC30DZ0U3OSzA9yVqZViUC01Gml8Lixdg5rRwsvVK LlwZTfONtVyEo6DavVWNC2nzpTGVdouQqzihckqdC6m0huvdbotQbcUzW6TB hQRpTovBiUXoKnNXIGtxIXybqebk1UXgpJ7uKtPhwv78iXkvziL0Ws+JPNrK heUlpS8KzUloXcCK5kZbLojOS1jk7yAhy3pxnud2XGDYnH+ds4uEVIu1/j6z 5wLvtHdzlgsJ7a69T2Y7coFjrvAxxY+E3q9+o1jowoXn/bmdoVdISPJooq/G AS6cUkz/Z9tPQsEXXHSP+nPheCglcNcwMT/qroJ5ABd8W05M7RwloTg1uTHZ E1zYd3r37LY5EkpfOqnx7iQXrF4K8xgK86DFnwdOSgdxQcE7gbF+Cw/6Pdk9 fu4MFz7djFhNOceDdqq5l6clcInnIb39aBIP0mmgh7gmcmF0Mi35SyoPArGZ lWuSuMA0L50uvcaDNH3oo7eTuWDa3/ZuVwUPkpFvmKq4yIUHisqhuZ08KHXe pfR8BpH/krZWXU1e9PAO9+XhfC4U2bifv6HDi063SyuJFHChcnoAWIgXze4X T6oi3GJBKu3exouC9u1xnS3kgsCAUmS8Oy/6WrbPIuQmF4KVItZ/TuBFEgYv 9+4o44JzqVKsfzcvqiXPPDWq4oKEzELLmd+8qM54/416wh2p7yWThniRRQHf a6jmglPw6Xs3J3iRz5mzXdoPuOBo8fzbN0E+dPRshrP8Iy7Y/vbQMNPgQ9rS DOuOOi5sX53ZJXmWD7kcfa7T8JTYzwxf5XXxfGhQpU5D+RkX3giiU1rJfOjz BquES4S3jfbRba7wIZZN5J59jVwwr9+0ObaMDw09Sj039ZwLxm4tSX9b+VD+ uHc39TUX9LKpuo3yZNS/JrDvwTsiv/snHhkokxH56FWvpS1c+KnUu+WhKhnZ vJgx8yccW9OgVapLRpJl/EpK77nwvj1M/aINGVlp5CamfuCCp/j4OtcwMtJT bEo1beNCSlqX+L9WMrq+4/1Nww6iPlzfZRztIKNIpFyfSFhT/smy/h9kNGzO b/eZcEdl9pKvA2S0TtGHe+grF+Rb7YXrSRTU5fienPiNCzWizdQkFQqi6xTu re7kQs+FRxNrzlJQ82PMe6+bC+pFiQNn4ymom/GhaZBwVJ1b569kCtrcM6yi 0MMF2T+U54WZFKSW+fleJuG9RrvS1tyloHg5866QX1z4Mj6gsaaDguBQpfP6 PuI875E6vlqVHx1QlKJY/OGCpB/3QLQmP8o59wYHEj4U2+DYo8OPjk/nyRcR FqjwRgUm/Cge/xviGSDqk1HFWu3Mj6IrfSOrCOMnO+6siuVHOKJni9AQUX+r zwzKfSPmX+4KjOJwoYqSfUL+Jz+SVtPuKSRc/bt6XrGPH/1IWC7ygvCDUg5L 9S8/sujrqxLkEvnQ2LvJgExFnGGDDRcIs7fqhzmpUNFy3QfKSX+58Hr/LPNS KBXFvdRtcRsl6sVk+ZX0SCoaf04xCCHctFZDLiuWiv6lhQSlE24ePKSRl0JF 6rL3nJoItwR0ONwtpCJp0RXvNMe40Bb9KPdNExV1Zss0LhLuKghUJ6+kIdt1 pjPH/xH9sf0ON2AVDd10uhsbT5gm3FfWs5aGVOZ5e3IJbwy1XftUnYZ65p4z 3hEOt1WTijKnoY1O6hvWTXBBijJIIZ2gobpxr9FWwqq6q54eC6Khxf0ON/4Q Nj6+J+JHOA2VLzu8foHw4e8vZp7E09CQrN4ThUkiH1WF3LAcGgoJFRs8SXiP 59722dc0lDcRVMmYIvrV1bT0wy00VCTY8l2acMSHpt1f22gowZr/pyrhYgPd tzVdNHRISv2ULeGpZeJPgyaI+SuNezIJp794XzYpJ4BOa78kS09z4YOiScTY aQE0t8FXXWiGCxlKjR/4wwXQrvbBDRKEXVRM5CWiBdAUn4nIWsK/N5q8RkkC SPqa4TlEeE7LZElyngDK64k29icsb2JSrPhaAG1Yoif9nvCAaeOM7jsBlCg6 lfSNcLm5yY6drQJI4OT+vt+EdbabjJ7sFEBsuXGbBcJWu030no4KoAfKueJK s1w47WHS4iopiJwPuJ4LI6y/v3HVcVlBdLszPz2OMO9Bk5Nn5QWR8lLFlIuE k7xNJEo3CqLDHxJNbhDOP2ZyYGqrIJI5wX38hnBTmMlUqq8gGhdroiyd44JM lonsy8dEE+KRHMwk7D5Q8ru+QRCFRyhH5hHO12HerX0hiH58i6aWEFb4+kn/ 7ntBxHwU1fuA8AYpb+f0XkEkRxv600pY7/r59ANCdNR6xHM9Y56oDw7Hda8o HZ31O9EmShgb7JZ3XE5HfbnJx1YQNv4hWWkpR0fvtXYFKxC2lL39Xl2Tji4I TQ4BYaf8dwweVzryqlBx9SN8dVSjdcaDjphX5NRPEe40upI97klHSxwfzYQQ 3tfjrtTvR0cftNW84gj7rBk1e3eWjozXf7l7jfDpoiXR18royN5OeclLwum3 9kxrz9FRWYhiw5IFLgxatY/n8DBQ80XvjBWE0ZjjXwqVgSJtLD2kCQ/oOv5+ L8JAxzudPq4lbNBs3+azloEObjfV0CHcy919L3MXA0kFfp5wIaxz+WPZogMD VT11k/MgnLxld/FBVwZqWbZgeJDwlshdOWreDCR28ePBI4QTRW2SXoUxkPHr zTphhDdpEm+DxQyUZMRQzCYc3958wO0OA61se/n4OuHOsB3ujRUMdLKgZ1s+ 4XPPtztcfMJA7XERliWEvzlYmqxrZaDQVV791YTPBpvL7VlkoHPJA7kthD+y jdof2gmhg5fOxSwQ7thIP9TgJIQW9vvPkRaJ/pDzceaNmxDaK3zvCB/hoTMH pH74CCFjTVegEeZHsW6UcCH0ad3jXBHC2vhVr02RECrhrTq4mjBSTT3lXCqE Yv7uj5MnbJrrRD1YLoQyXKQL1xLeFTGoeLpGCL127nqrTNgXCflefyuE1KTZ AxqEc7D16MCEEJLn+2S8lXCR6oro8VkhFJImKmVCuCz3p9gCiYn2rp7jmBJ+ GOGvKUJnoss9s3HbCH9Al09vlmGiTXX34mwIU+o/L0SbMZEFvb1xL+HD9Xvp K68wkcyvlNOnCO/LaU+vu8ZEr1zaFgIJO4XZrnIpYKKiCEpkEGFz7W3a2XeY qMrHJiiU8Jp7ml4rGpkoT+SuThThb7mMp0tHmchpzygtifDH8Dirqkkm6tkd syuZ8GsX3g7beSYSsLl65cJ/6xWf+nuJxkIPgoIkUglfTumRFpVhoXa57n/p hLdH1AQzt7NQ/seHormEt+7V5L9jw0I3zCMV8wjr6JVf3OHAQi+O2ejmE1ac ulGcuI+FZNevdSwkTPa7+EkwiIXahk4fKyb82M1bnVrEQnUckmQ54Ur9nsdF pSz05v0d8r3/8im518L0HgvtmWkb/M9Zn3e7x9Sx0C+4db+C8KmdxCfkRxYK UpNe/YDwkfU1Kwq+sNA3423T//kAXfOGUScLadqtan743/6+UKqL/MNCMbc4 R2oIW9y4YSbHJdbzh6NT+199RMt+xOMsJCJZQakjvNkje6/7DAsFLDd8+5// /38YMW9dv/yY8P8AD32+kA== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->{{-4, 4}, {0., 1.}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.66858763687895*^9, {3.6685877969975147`*^9, 3.668587821863983*^9}, 3.6685880592211313`*^9, 3.668588183617058*^9, 3.66858905139554*^9, 3.668589340714983*^9, 3.668751940598906*^9, 3.668752049855641*^9}, FontSize->10] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Ilustra\[CCedilla]\[ATilde]o do Teorema do Limite Central - Distribui\[CCedilla]\[ATilde]o comum Exponencial (\[Lambda]=1)\ \>", "Subsection", CellChangeTimes->{{3.668587474855124*^9, 3.6685874872856283`*^9}, 3.668587648634202*^9, {3.668587694771872*^9, 3.668587700238492*^9}, { 3.668588290541705*^9, 3.66858829179067*^9}, {3.668589270430835*^9, 3.668589271302596*^9}}, FontSize->14], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Print", "[", "\"\\"", "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"n", "=", RowBox[{"Input", "[", "\"\\"", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"rep", "=", "1000"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dist", "=", RowBox[{"ExponentialDistribution", "[", "1", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"i", "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"vecmean", "=", RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"While", "[", RowBox[{ RowBox[{"i", "<", "rep"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"vecmean", "=", RowBox[{"Append", "[", RowBox[{"vecmean", ",", RowBox[{"Mean", "[", RowBox[{"RandomVariate", "[", RowBox[{"dist", ",", "n"}], "]"}], "]"}]}], "]"}]}], ";", RowBox[{"i", "++"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"stvecmean", "=", FractionBox[ RowBox[{"vecmean", "-", RowBox[{"Mean", "[", "dist", "]"}]}], SqrtBox[ FractionBox[ RowBox[{"Variance", "[", "dist", "]"}], "n"]]]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Print", "[", RowBox[{ "\"\\"", ",", "n", ",", "\"\< v.a. i.i.d. a Exponencial(1) com a f.d.p. da normal-padr\[ATilde]o\>\ \""}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"Histogram", "[", RowBox[{"stvecmean", ",", "Automatic", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"PDF", "[", RowBox[{ RowBox[{"NormalDistribution", "[", RowBox[{"0", ",", "1"}], "]"}], ",", "x"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "]"}]}], "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Print", "[", RowBox[{ "\"\\"", ",", "n", ",", "\"\< v.a. i.i.d. a Exponencial(1) (azul) com a f.d. da normal-padr\ \[ATilde]o (laranja)\>\""}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"F", "[", "x_", "]"}], "=", RowBox[{ FractionBox["1", "rep"], "\[Times]", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"j", "=", "1"}], "rep"], RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{"stvecmean", "[", RowBox[{"[", "j", "]"}], "]"}], "\[LessEqual]", "x"}], ",", "1", ",", "0"}], "]"}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"F", "[", "x", "]"}], ",", RowBox[{"CDF", "[", RowBox[{ RowBox[{"NormalDistribution", "[", RowBox[{"0", ",", "1"}], "]"}], ",", "x"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{ 3.668586301561016*^9, {3.668586468084743*^9, 3.6685864793117237`*^9}, 3.668586538184286*^9, {3.6685866020957203`*^9, 3.668586602523486*^9}, { 3.6685866507302237`*^9, 3.6685866518204937`*^9}, 3.668586685842518*^9, { 3.6685870938152323`*^9, 3.6685870949391108`*^9}, {3.668587201174423*^9, 3.668587201579802*^9}, {3.6685872397292347`*^9, 3.668587323125421*^9}, { 3.668587353456046*^9, 3.6685874099641657`*^9}, {3.668587470582295*^9, 3.668587482348723*^9}, 3.668587596559668*^9, {3.6685876830616703`*^9, 3.668587708586883*^9}, {3.668588090595935*^9, 3.668588106648532*^9}, { 3.668588174027021*^9, 3.6685882109368877`*^9}, {3.6685889471203127`*^9, 3.6685889515186863`*^9}, {3.668589280945203*^9, 3.668589303119075*^9}}, FontSize->10], Cell[CellGroupData[{ Cell[BoxData["\<\"a) Simula\[CCedilla]\[ATilde]o de uma amostra de rep=1000 m\ \[EAcute]dias padronizadas de n v.a. i.i.d. a Exponencial(1), com n igual a\"\ \>"], "Print", CellChangeTimes->{ 3.66858768792309*^9, 3.668588108083576*^9, 3.66858821444597*^9, 3.6685883356753893`*^9, 3.668589365442946*^9, {3.668752131123149*^9, 3.668752147888599*^9}, {3.668752180722344*^9, 3.668752208695616*^9}}, FontSize->10], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"b) Compara\[CCedilla]\[ATilde]o do histograma da amostra de m\ \[EAcute]dias padronizadas de n=\"\>", "\[InvisibleSpace]", "31", "\[InvisibleSpace]", "\<\" v.a. i.i.d. a Exponencial(1) com a f.d.p. da \ normal-padr\[ATilde]o\"\>"}], SequenceForm[ "b) Compara\[CCedilla]\[ATilde]o do histograma da amostra de m\[EAcute]dias \ padronizadas de n=", 31, " v.a. i.i.d. a Exponencial(1) com a f.d.p. da normal-padr\[ATilde]o"], Editable->False]], "Print", CellChangeTimes->{ 3.66858768792309*^9, 3.668588108083576*^9, 3.66858821444597*^9, 3.6685883356753893`*^9, 3.668589365442946*^9, {3.668752131123149*^9, 3.668752147888599*^9}, 3.668752180722344*^9, 3.6687522138518267`*^9}, FontSize->10] }, Open ]], Cell[BoxData[ GraphicsBox[{{ {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.48299999999999993`], Thickness[Small]}], {}, {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.48299999999999993`], Thickness[Small]}], RectangleBox[{-2.6, 0}, NCache[{-2.4, Rational[1, 100]}, {-2.4, 0.01}], RoundingRadius->0], RectangleBox[{-2.4, 0}, NCache[{-2.2, Rational[1, 100]}, {-2.2, 0.01}], RoundingRadius->0], RectangleBox[{-2.2, 0}, NCache[{-2., Rational[1, 25]}, {-2., 0.04}], RoundingRadius->0], RectangleBox[{-2., 0}, NCache[{-1.8, Rational[3, 40]}, {-1.8, 0.075}], RoundingRadius->0], RectangleBox[{-1.8, 0}, NCache[{-1.6, Rational[3, 40]}, {-1.6, 0.075}], RoundingRadius->0], RectangleBox[{-1.6, 0}, NCache[{-1.4, Rational[19, 100]}, {-1.4, 0.19}], RoundingRadius->0], RectangleBox[{-1.4, 0}, NCache[{-1.2, Rational[39, 200]}, {-1.2, 0.195}], RoundingRadius->0], RectangleBox[{-1.2, 0}, NCache[{-1., Rational[1, 4]}, {-1., 0.25}], RoundingRadius->0], RectangleBox[{-1., 0}, NCache[{-0.8, Rational[49, 200]}, {-0.8, 0.245}], RoundingRadius->0], RectangleBox[{-0.8, 0}, NCache[{-0.6, Rational[71, 200]}, {-0.6, 0.355}], RoundingRadius->0], RectangleBox[{-0.6, 0}, NCache[{-0.4, Rational[37, 100]}, {-0.4, 0.37}], RoundingRadius->0], RectangleBox[{-0.4, 0}, NCache[{-0.2, Rational[77, 200]}, {-0.2, 0.385}], RoundingRadius->0], RectangleBox[{-0.2, 0}, NCache[{0., Rational[12, 25]}, {0., 0.48}], RoundingRadius->0], RectangleBox[{0., 0}, NCache[{0.2, Rational[81, 200]}, {0.2, 0.405}], RoundingRadius->0], RectangleBox[{0.2, 0}, NCache[{0.4, Rational[13, 40]}, {0.4, 0.325}], RoundingRadius->0], RectangleBox[{0.4, 0}, NCache[{0.6, Rational[13, 40]}, {0.6, 0.325}], RoundingRadius->0], RectangleBox[{0.6, 0}, NCache[{0.8, Rational[63, 200]}, {0.8, 0.315}], RoundingRadius->0], RectangleBox[{0.8, 0}, NCache[{1., Rational[41, 200]}, {1., 0.205}], RoundingRadius->0], RectangleBox[{1., 0}, NCache[{1.2, Rational[19, 100]}, {1.2, 0.19}], RoundingRadius->0], RectangleBox[{1.2, 0}, NCache[{1.4, Rational[29, 200]}, {1.4, 0.145}], RoundingRadius->0], RectangleBox[{1.4, 0}, NCache[{1.6, Rational[1, 8]}, {1.6, 0.125}], RoundingRadius->0], RectangleBox[{1.6, 0}, NCache[{1.8, Rational[1, 10]}, {1.8, 0.1}], RoundingRadius->0], RectangleBox[{1.8, 0}, NCache[{2., Rational[1, 25]}, {2., 0.04}], RoundingRadius->0], RectangleBox[{2., 0}, NCache[{2.2, Rational[1, 25]}, {2.2, 0.04}], RoundingRadius->0], RectangleBox[{2.2, 0}, NCache[{2.4, Rational[1, 20]}, {2.4, 0.05}], RoundingRadius->0], RectangleBox[{2.4, 0}, NCache[{2.6, Rational[1, 40]}, {2.6, 0.025}], RoundingRadius->0], RectangleBox[{2.6, 0}, NCache[{2.8, Rational[1, 100]}, {2.8, 0.01}], RoundingRadius->0], RectangleBox[{2.8, 0}, NCache[{3., Rational[3, 200]}, {3., 0.015}], RoundingRadius->0], RectangleBox[{3., 0}, NCache[{3.2, Rational[1, 200]}, {3.2, 0.005}], RoundingRadius-> 0]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw1mnk4VV/Ux80zVyVJEiISZchMaxMhQ5IyUzKWClEZM2dIlCFDVGYZSgkh Z2siQ8bLvZKxMiaV/DK/932e9/3nnOfzrHXO3met7zpr/bFFna6YuzDQ0dEd oF3+934Q+Gc2N0k468Dv3Iw4UbC4IBmzvELCWqfWpUerRSEgVXXfn78kfOiH tkvihCg0z9o4fZ8l4cTj45EHjojB2fSHg+0DJLxKNI5f/ScGd39JtWU8JeEr 1dQH/OHiUCuk7pH8hIQL+ELcLV+Kw7C+EWtCAQn/fCDEyTstDtI5l46GZpGw qLXP6NxJCXhz/Hm96y0S5htmiPHevw8W8zTKFB1JmDS0apC8IAmCncbHZW1I 2KPd49+nA1KAVuyn9p0mYVbt4dRkNylIMAsVFzQi4VOPu/c3jErBvvV3D+hU SFj9xKJAKXU/WJ4xTejgIeEeDY1gjskDUMd27rJbIw+uvbzrkKmmHHSMnKEs 1vJgqUqZig1XORitNtYJf8GDj1hYv95xTw5YXFT5s4t58MpbUdVb03Jg3kRq 7LnHg8+we9b7ZcvDrH8j9xE3HsyyL4LZXVARNsyqrred48EDqaL3thkrwlap J2NWdjyYXBGlrhKiCKr9qS+vnuTB3fMMLLMTihCpcMm+RIP2/l/r3GIvD4PQ 7K5yPl4e/DZKYxZfUYZDb7bsyOXgweOj67uvlCiDTgZr2CFmHtxrQb9eOKEM 7vp/LI6vcGNehdortdYq8DKvde3mV25sO/vVL8JYFUzt/I1na7mx3a5/TO0m 6nCzo3+26Rw3Hjy9g3q45QiMUiJwqR033vVnd70zL4DOV7nUVEtu3LZrSU3e GoBlNe6Ihwk3nut5PZI/B3BbCu7yqnHj264NwbcTEGRGFCk78nLjlaFvXoVt 2rB2x4LTkJMbq1+cafyxqA32mfSjCizc+CVLoX+CsA6IVNrGsqxxYYtbbBMU Hx0oGiYNlU9y4eb2I1HP9xyFKrUbYWuNXHhktKuNK14X+PUkznx/xYWffXv9 WLZOF66b9Uh3VXHhKV9b0efTuqDuJtOX94QLq8978k8b6kFTyug+ozQuTM+0 bWYv6Rh8+mnQnnGJCwfQ6475l+vDdMHOHSpCXLhsOn3pBBjBJ6fxa+o7uPDG 3LiVeqARVO0p7dfayoV9Oi9WZ9cYQUiGZpouGxe+YOXR2SNvDFsTHLebL3Li 9zKZtTwyJqDuW7DtUjsnDo9l/JSsegL2yF++6tXMidcrwep60AlgmlfuvfqG E++JXZIexyfgk1vLvYBaTpyl3VRdLGEGTrazW2LyObHCqGmM1QsziNOR580L 4sR/oxw8JYdOwpXN5SuF1znxifidFxIYzMGi4U1niQ8nlszxnTyy3xyElS0S n7lz4oY4snf0dXN4vv86T6MFJ2YOinGp3nEKBnlfc1FlOLG7RpzFFjcLkB4x YCd94cA5KoZWGXqWsKa/dLhwgAMPe81eLAqwhE/P8s5q9XDgYvO9D/c+swSf 8I2ai80cmLHe97aHkBW8kqhybankwMGtlGHtFSsw8NzzLiyaA8/YDh393GYD guT2nwJhHPhoiX2MDJstzGkF7HoWSPMfLBRc1rWFJBLZZ9iLA2eYtD1kxbZA eR4nqmHLgbcHNlZvbbADt+W/IYuHOHAV3c2yknYHUHXKexIvzYGZecV9Bbc4 AkebWb+YBAd+anNune+MI1Q8KJU9KciBpW5zi5SOOcISnBsqZ+LAPsKi2vU3 z0J0dLuaG5Udx+Q/SFQoPQf52/IWqeHs2KXF4ux5TWd494w1viOYHavOCJzW dnGGbyaeok032PGn7x65HnecYV+MkmnxZXYsJfh6V9aYMxSvNRdds2HH3X/v B92Jd4Gyb3M22xTY8eJrMX+ReVeoqlFuMh5jw18ukWztfnlAn0WWJRpiwzFc rg+uil+Av782fygOsGGnqS/rXy0vgLLMR8FdHWz47rZnOhTiAtQ+svWdrmXD dwSOjJFSLkJDbKhkdBIbls33ntMyvQRvbVsTCGDDFwh6zffRXtCVv23hmDob vlXtryRZ4gXDP+zMPx1mw0iCf6ilzQv+3fzJ/2U/Gy7QjcbtW7zhYD7fo5Vt bDixym9+7JE3ZM45PFeaYsXBwtfzstp8wCv4T39pEiuemUvkVjzjByEfNNUU 41nxp8TmrafD/CCeFJ1VF8WKr7xK2feuzA8KHwuc/RjAinOLWvTima7B5/da 09+dWbFG1zne1pprcIwnZlVUjRVXS9ZTvGRvgNBDIZH0MRa8NltbVGUVCOUZ YdxqQyxYdL31l3NCIBxJ+b5C7WfBfDn7NS+/CQTH2GfkXe0sOOhgPJEgGwS5 V3XjH1azYOOcC4I8bMEgZeC5VBhP80eEe/inEDj8q779pRILtvWPLztnHgbv Z0Xqzsix4GFZm4r3PmFw5ntU0X/SLLjhx8nTDslhcP3ziXA1ERZ8aNWh8CA5 DOreT6i85mDBptXvZ8xtwwFlcua9G2HGTKeSnCe9I8DoqK1/bywzZjeYbVdu jQJpn+vdXZHMeCWX2Y30Mwo4Hifv/3STGafz2hTu5ouGlo02aosfMz7XXMUx 5BANx+o01RvPMWN1dx7ZyaVoQPLCq8VqNHuCh/cl+RhQ2jMWFDLNhDv5VeuW uuOAz3S9L/ArEw66XMqxsR4Hi0E7Zf1HmPCkTsKKjnQ8PB88+eUqmQlfdi5q io6IB7m0N1oeTUx4q6zW4XXV2yDNnb9xKoMJx7WInx59mgB7Vl1D9xsy4akr qp/L3ZJgjuyWX3eUCRe8d8xniEyC2mfuLUZHmPDpHR1PQx8lgZnrBd7Likz4 W2YLWqYmQWj3pUfPdzPhn0LPlcdM78J4kS/W+M2IVXgHOKvQPSi0CKczzWLE FKkt7wv0UsDnUIT4SCoj9jJKYA90S4EjHJEGXkmM2KXHzfhmbAoMEFFJ96IY 8cjaq5jtn1KA7UCsyMAVRlx7fttmsHUqXKBPQmd1GbElo62Yu38ayFZkh/r8 YMDWog1Hfwyng8Hr06SzUwzY04CzxZwpA5zauXNMJhgwA8OGx/f9GZA+E1wv RWXAM+vPc9P9MoBJ0mFp+B0DjkgWPiBLyoTBh8KeRg8Y8FEDzXpVoyyIvvvQ UtyIAfeWb1uamcyGx48sv285xoDZ2o2w47YcaHhK8ttEDHiuOeQWK+TAr46b 9waVGXBQztbihbQcsOM425EkxoB17ayvyBo+BMUIkaPry/RYKKbL75XtIxj1 fXywv5geW3pOHd09/BhClPwMvuTR41Rd/RMVS49BaMnA6WsOPTZfSJK0IeXS mshC6u8Uemy4pzCKQTsXuv1hnSeMHrNtTf12vyAX3oR8adO3psf2REXs16t5 kB+z0+MVOz0e2/nmRIhEAegY/gjHTPRYVCS0ME67AEbZmx40b9LhbmnhhRf2 BSAU795F/kuHd5Tz59inFUBqQo3K7zE6rJssKk9iL4Toe6dZDtTRYS6WrxeX /xSCx4O7eQ8u0OEggZ9y1qPFsMh2PFbFhQ7/4nMRpTCUQKgfw5UeRzpc/or3 RqBECaSZXlVnO02HFRJV8w5dLIE3dKe7rwIdttTtXj7xrwQEXQQ2j/PRYW2e oJzQnaWQanvk5e/ATeLdlVBGoRvlYBVivbdMbINw6Tf0IFtUAidWfZcpsEEo cE4HuntUQiO9gEsszwbRJbeXhzukEiSi+gtdV9YJmeOtb+KKKuF3/Clp0Z51 wjB194TVaiXczjCRTwtbJ3YsdAUdLXwOuEobQkfXiIaNpDsX2KtAana/rUXO KrHLdkE8lrkGXkb2JF9IXiX8hndkVIjUgI5wYHtozCqREFCKpjVqwO5ku1a5 zyrxMkRLKsenBpJqLouw6K8Sg7H+eixjNbAc8eJbzc8Volh/svpTUy20Cml5 7dJeIb6z1P2WT66Di6ZmUeMT/wiZL94Hz/k2gs3VE1rKykvEnFkht1vgW0gm psyI6j8Ef8+0rcNkMwAD5cxB+l+Ex1vWl89ZO+AC5Y1XwZ85YkeCJO+PxS7Q zAgTqLsxSdy6NuKWF94LJjaJ9w+fnyTuhlM1tW/3gsOubP6nJpNEvca5P4Op vXAzu5YvX2ySaGnWHKQv6YU3j3/y3mn/TjyyOXxeqLMX9J/YszuJfCdKrBmZ AwX7wLxebYW95SvxiV94OLm8D9y//PpsvWOcWMm2qvn2hgwvrgwxH2McJ1ap H75ktpJhg775kMLPMcK+dFXyeA8ZUvY9iOBoHiNU5LVZ74+RAV85dqD+2hih ib/wTG+SQYAhK0Cof5RYyS3WctPohySTGIXG/SOEh+ed6ZTyftjnYx+dRj9C PE3hEb9Z1Q8NaQqDl6nDRAdr4C2n+n6YGhkK2xM7TEhx7y7l+9gPyEe+O3Tq C/HlxY8Uia/9sJA2eOVo0RBBZZ4L+yMwACdGZcpbxAeJ6b/ycdzBA2DsLHkW lqkEnDSZTYwYgONTotuqO6hEYtMTJfa4AdBd4PfPu0Ylik6qOY+mDYAqHb1e SAuFiDx6XEvk2QCIiZCHFD0HiFkek6Lh0QHYk9+Z+AQNEPJxLLVt3wdASKpV R3T7AGHLSTr0dG4AdsgRxTyN/YSqVa+c9b8B4EIlvtOkfoLMJliqSqLAX8dg rocv+ojgtyWjwhoU+D1xndge00eY+xLvLyMKLLj5+Ny26yP0dyZnVOlRYOaK G8WfuY+YUVf9JWpGgeGbJ/MtLHuJbYkp2eHOFGh5KKHJsdpN1FhprJ+Op4Ay kTUwE/mJ2H7ZbrdANwUEuZimcxQ/EXtKA2+Q+yiwbuW5Yj7eQdQc5neIpVDg 3W/N3fXQQcx3HKrpG6HAqX3DTvErbcTQ4etSyz8o4JUgMn/A6yOxOGvr5sdG BYvBmM0R4Y9EeQbyyeCkgorkL96Ujhaiw8r5wwseKmzgJsU16RYihPWRRhsf FW4vOvm3f/tAnIz6uhgpQoUS2wKmS7bvCFMtzkciyjR7MTe/KMc7AjQXM4tU qeD110+SXPuWOJgrVSKuQQXVxGPHtfjfEkMut//QISp8eDOZyN3dRPTF3Pyp bUiFJySzx003mwhcVKnob0SFBLva534Hmwg9UrJvoQltv0sx5C/xmDhStDQ2 fpL2/CkLZbuERqI9fEx8wprm/0Pc+t3Ma4Jk9Zm11Zbmf+tvoIzBa0Kbe6y3 0J4KE3VpTWsMDYSqp5iwzjkq0IlRjbNvvCKq0h7DphsVmutLrjD31xL6/a0H Uz2ocOd0wL1LirXE/V2OSyIXqSAUu4uiNV9NrM45sApepoLagv354fNVBLNL +Obdq1TwrMufvv7uBaFnd1S9y5cKOZGzV7ZIvCAcQ0MLmK5RgXGnf5Du90rC Kmac1ewGFZQnCIbhY5WEwyX7NVd/KriXs8ReL3pGVEXTCfkGUCEjQurA6e4K YiFoasAriJaPHdUqMffKCe0Lw95ng6ngVHZUt/5UGaFS6aBwLIQKMmQHe9H+ EmL+7xexxZtUuOsx52Fxv5gYt5k2awilwtK6/7VbVkVEwez9xwFhVMD7UhN/ DOYTmVp+RdRwKkjUiz0QeZBHaC5z2gZEUCHuxLPiU/a5RD5l+8EtkVT4OaH1 Mlr4MdEWMbEnh8ZFC2kRV4mHRLZQ9yHRKFq+dz5/QNXOJo6iY/aZNFbX6XgJ 7zIJTbbqIvZoKjBdnPpUcCydCOF8yHOFxp+SGac4P6YSTo7xd1tpnN4gTO9j lEwkp/PKCd2ifd83NUFKRxLR39Y5fZ7GlkJPXIMe3Saa7/g1PqbxzKXRdIOC W8S1f6/KyTQOIfjb+J6EE38fn63ZpLGYWOZKk30g0V6o+nlPDBUM37M42rh5 EzYFQjuVaYwfd3C3vbUnBInfXjo0NsjbxIUHdIGSXjauS+PIXNfJ2v/cod1G /7IWjXdVHCPp+lyD7Gdt22RoHMB8iXz6cCic/mjSy0vj7y+U82IPRYGS5Y+y Wdr6p5zovF9Lx0FwIvlRA40xb+uRXxKJsE1a62kEjdNGDKPv8d6DXedcKYjG 7dUHL8ncSYEbCzlCi7R4MNzZZvGB8z4obEdB2TRWdfmnfjY2A9pvV/ynSeMr ml9EV1geQFiKTWIPLd6F296wpUTmgNsUcdSBxpf9ev/jD3sEkW9cto/S8pVv XDv8bCMXhs5+3PqBll+ole4J1sqH3cydIE3jwb3Z748HFYDkj/zbkTQ98K6G lX1dLgIz/86YXTS9lLouPqxULYHrDc1qVjQ9HetxTQ65/gT0Qwa442l6Cy4x ChD4WwbKJQx7e2n6FNjeeOmbYgUkae12naLptypU7txzn6cgnWfS9SeQCn9L OcT3/XsG8r0XhX/Q9H8g4icH9nsBfxNuvvXwo4Kdxja2crEqoFMfPb2dVk+3 /ygzZ3ZWwcJtL/uXPlSYPx+yeXV/NcTMPe/tuUKF57rci5JfauGZxaHUCFr9 TqzJ/eKLewU7f5DYe2n1zffSYp5epQ5+Rwwx7HClgp/Eg6nPSfVQL4nvBjnR 4sty4EuibiPIKLx1arShgkej6WDQr0ZIyik2em5FhcxrPgMeOQTsTNnZmXmG prc/Q1OiQRhujm2tNDSnwsh58YlVchOcMZo/vIf2P8vVfTHwNPYd8Cw/4Cg7 TIU6Eb0z+0bfgUxh8LZZeSr0rvX3PVB+DyFxj2eFD9Hq4+VKd+zEe1Bs/ing sp8KLhI67ee1mqEk5A754m4qSLF04x2/PsLmFrdrroxUQONOcEe/FVS1xG0X Nylg3bj4mimnFfybsfn1NQrEXROo/3W8DUZdAhLs/lJg7rvjy7b8dvh4Uqs2 /zsFnjbPl9y06gT2ikIjuWZaP3LgDj5U0gkZ6TYBVm8pwLN0wGxkuRO8sw54 Xido/eje4cCHJl1Q9dm4NKOGAinYW3Rzvgt0zMcEvIoocHL33KVG+R5IKzz8 xT2KAq39oyxaNX1QoXjYu1ydAk5iXgspI30wvP9rfI0SBZYvbVLnWMlg+riL +5UcBaSYhcsfWJFh5J6DQ+4+CtxStD21tkyGWHEdMs9WCugmkR/Wa9L6/Gyr qcXkALw2bFVVf0OFPfHPBhriB2Be6fDbPz+oYBTU8P5I1AAIi+WYlO8cBIbx R9E1IQMQsuLtJOI9CBOv4vISvAcAle68zSLyGVbZjh/pODMA77g8RnqCh6Cr Cdc/3jMArZ2s0RfVRkBg/M3CyJN+mH2S62FqNQ6HvHxtPpWQYWnQneH9pXHo 4m8ouPaYDHSch7I0IsYhRnurl0AGGfgv1rdLVYyDqumOJwYxZNA50HeIkWkC 4oxaO+xcyZBeyrxU83QCti2+r7ITJYNumXu4KOs3KHAy/cyQ3AfZ5QezFl9O wrWN/6zk3Xqh4Vz0drmaOVDrxekTW7ohgC+DfGLrL/h2QsOm7Hs7tHf16fZk /oEjsowfKYIt4N2msi+Rfwlky89bcla+hfxO3e2uLf9g7eroDOOHRhDIupfl 2/MPbhz6mMNf3AjxrqOiEUP/4I9HgJ16XCP4rAcefLTwD/4Lm+V9adoI2gde 6A8KLMPQo52CNyivYThaNMDUYxnQ60Rl9Z8NIHBkY1iZYwVQuVkAeX893C6r KWY1XgVfvvudRn01sE9E8/78mVVwoUTO59bWAE7GUeRzqyAeNC9Pyq6BPwEf nfKur4Jo5n/7JV1rwMbwsxDkrcJTy/jfFsvVsP/7RtK1lVXQy24SKd5bDR/2 HPP/VrwGw/1+3VIxVUCf3Gf4lnkDGM1QpUBSJWxkzzj9Im2AkPXa+P7ASlgp pgvaI7gBbZTkNWPXSlhslKkIPLgBctMK5BbNSvg+E7n1sOUGyFrUZKTNPIN2 HaXP+cUb0PR2i1S04TNI/53qGW20CeECk2t79ldA6nppVNXpTaBr9wwqZqyA e2xvcsYdN+GIQuSVU8PlEC8833XEdxNGLcKDeVPKIeT4MaX/HmzCdqv+TxL0 5XA+d2ndbX4TboznFlSOlcKOktLmfAM6FDJGaMzVl8DWdUHDXBM61MFianki qwS4Tsa1PjSnQ2jJ4Ut3QAkwLLt3ZNrRoV+C7vOH1Utg3mBfb5IXHdrS2hHl XVcMH6YeDQel06EgRRXHGlwE16TS/lpM0SFP0tRO9q8F4B3EfN38Bx3KGOz7 ptFcAJ5dvv9O/KZDL1N8pW4/KQCnG6dWj6/RoSf7UzojvQvAtIWXXpuXHl0K FOjtoyuAfe7xXLKq9EhJqH9pVDwf+otC9zLH0KNAYfE6+fBc+HqCk3o5gR5x hqfqd7nmwu//Uu9Q7tGjDQ29pTtGucBjULpcmk2P/ohG2Hluz4VjU+RO8xf0 aN0Ufcp/8hhqpA4EPRqmR0nsV5X/DT6C9BJyn4YSA4o783CKuyAHCk+ejStQ Z0DWNs9YV/xyoGp5BkiIAcWKfHggop8DXYZ0pePHGVCQipOn0Ew2sM9Ih8We ZUAZ9Levf1TIhgDpUNmBeAZkZh031PkpC2xLpaN9xhnQz0BFCR25DBDcs9F1 c5IBrXWSO9s5MmDwXveuhDkGZKp0UjvqWzrYBNyoLFpiQCy95OGQrHSwMvww NMTBiCpjKZ+S2NPBYvKcor4iIxr7fekb93waGO/NGN0VyYg4vc7znhtIAa77 ngf2xzKi2c4nFjY1KdDGga4p32FEZca3M4Lup8Dx3985T6YzItmLanc0rFLA oOmwSnQZI3Ia3Mb88HMy6Dp2JSz0MSKhxlSrz9P3QDOLVeO9BBOS0Uq0k9h7 F3jOL706coAJ2bN591Yy34Ux6W+qtXJMyEjObc19Kgmi694ol2owob+csmVn KpKgmxqscPckEzpP+hgkrZkErgKL++2DmVD72+HvO4g7kJQ6KvC3jwkNvVHx XboVD072nfcvDzKhqdOHL3BZxoOSRCP/1AgT4t269a7nvngYrMri+zzDhI4b nd3B8SEOJPrO8DbRMaME9qXMZ2xxULe1gzVBhhmBqm3H2awYmEh8tSQeyYzk eLIMGBejQKHw9kxkLDPaV+uwfK09CsIbHIe/3mFGltTsvVIFUSAyzfwhP4MZ UXvbq7Uto8BBxzxV/CkzIna75hk2RgJlcUZRfJAZ+T42zLt4PwLarYW898qx oGa5gr+rV8Ngl9dP5wglFpRkqV+VdCoMLkS/sZpQZ0EHQ4QnrRXDgP2FO8rT Y0FOilfvx/wJhWNcL0l7bVnQA9GLlSeuhQJuNKkQi2ZBquk9/5I5bkLV3puz okMs6HnawRyDO4HwkjnLV2KMBclmuvDx2wdC9WT1utR3FpTArF8lJxMINaXz JLkFFuSX+3fcqC0A6hQdDh9hYkXthlUyJO4AII5qBdvIsCI+uLvDN+cGtJ5f 5UkOYkWM1Tp+wkt+0Ka3Iz0tjBUJGJE+9nf4QbukomhmNCs6Y8YQ3FXgBx2z FxQfJ7EixeK13OgzftB1ddDyaT4raihIMlys8wVyxKtHbe2syKbC6GBs4lUY zbuuwLSbDSm/JBsau3jDIrXi51UxNuTfcO9fq7Y3sPF+L5uQZENScYwqccLe cCjIQvKtAhtaJ3LILRQvCLGQFwo3YENe07vIGmZeIMQ8y0zny4asQi7ZGqRe BmtXB+pqKxvarpPxfIR8ATwfpKZd7GJDYY+MapKyL0BoT/upz2Q2xKG17Xmp ywUoPqLxqW6UDbEYHh0W+s8D/vELvPVfYkMhZgl3qMIekNbcXfafKDu6IRDw SzrMDXqk9EL/3GBHiRUq6R23neG+9PselhB25Mx2YrvXeWewk9GTEIxgRxFv 3lfaqzvD5CG9VpoYkcJIxxWB6fOwpqzHd+cxO7ovWSC/aXgeJPT0iqVa2ZHr qRQ12Z1OcOOcXpf9Lg50bzPvKVufI2idfy/mLcKB0o0/47P3HIHBRc8vUoID XSzvK1Q86QgJ7nqCpYc4kJ4gtf1YlwPkXtFz/neUA215ZNvI1WcP7cF6/+55 ciBZm+Zoz1+2sCdTT6TlNQe67DpqaxtiBWdnSiab3nAgw8smxg+NrCBXnedp fTMHejjxh+7oTivY97lf62k3B1qwWlYtemkJB4XcbdO+caDfZl653b/PgGZO XJozNydyySzYKRlyGkLm5+0dtnIi8S2CJ4RPngZ85JSE1Q5OtLDi+OKi+GnQ HdlVZSTKiRR4dmGWdgswEinvVlDiRF0vqnYf3GMBNrmdXPT2nMho95m9H/rM 4cFvxb6Vc5zoorHOtS9l5jCsk5616MqJULWJok6UOThNnJWe8uJEr8s/k38p m4OH+G/9zkhOxFG9YPI5+yTcKOSLyC7jRDXymSyu/maQ9sR6WW2NE/Vwabn/ ajaGWVPq4kN6LsTXrxJ+PNIY0B+rBWZWLnR0fvKtkrYxzGhYTXZv4ULbU5FF Y4MR0IY4sockF0pg+yDpX3ccvv08VZlhzoWSzcavFnUagHpKb9mmJReiK7tr nptiAHdUTxW72HOhyennN4VtDEA1zPyhvDsXOsUy2pb2XR9ubz2Z8DGYC6lX s9deZNaHw0q0aaeYC9kp3ivrstaDWGqHs2MFF8qIpCvy3KcHw8EmZ9+/oPmf 0voY8EcXYj4YW95t5EItFpF/pu/owpClkd7+Ptr6Tm7qq61HITLAQNR6kwvt vfmf835LHegldKi1p7lRqonx/c2rAIOHOC+8seFGc+TW/PIDAKMPe1faHGn2 Syv1fyeOwNxNZ6ERD24U6SDvdOLMEWBB0Y7MIdxIhXP3dTYdLVDDH7+dLORG bWUD9vcPawCSu3fNtpQbcZNTnjj8VYdjj2xYXZ5xo91T749XVKuDeeis1I06 bnSsW9l6XF0dPBG3Z84nbsTfg4dCDdXgITb7PbPEjaRFlOqrQ1SgUG5nxOIq Nxojhmtj9VWg7NHYtg06HiS9VCBO5lWB2lAfpS2cPChXZCqmO18ZelDKDZU9 PGiI7+6zYz1KwNw0sBGhz4PmiXZJa53DcLHJgXN3Og+SfRueJ+EtD04PqWkN 2TzohCCfd7COPNgEW4jZ5fGgPW9/PzDkkwcDteNqWRU8yNnXZlr9lRyIVyq5 7XzPg3QvMxHObHK0OZXr7fbfPEitWG1i3k8WekNumb78jwf19GV+VdsnC612 DIMW6zwof+6+semADNQK/FtIZiMhYsGGuV1DBlKSJoS37iGhG3xrI1PcB8A4 tC6Ax5iERpReRYqRpeCogxJLxUkS8scveuTuSoG65rO7JpYklB16gvmHiRRI /Ssovu1EQqo/ml+4f5QEJq+7/Rz+JDRew6qg3bIPXju6K7AW0ux3T7mIfhWH Kq2J14WlJHRZh53n9BNxKNvlYHiskoTql82ihL3FIXPg1NmoBhL6GBxrcIlO HK6dgDuMvSS00/Rsca/EXrgkW7czj0JC0iHzyokLYuDMqVSgM0xCtoY2L8j1 YmDeLN0QNk1CS35fNTdOiYFhQYG+6E8Salx6UvVFRAxQhEgvXiSh+KSUnzrz oqByLsvh7AoJGXn+K5FpEIX/O5+C/v98yv8AMBF4TQ== "]]}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{-2.716, 0}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], PlotRange->{{-2.6, 3.2}, {All, All}}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.668587688071389*^9, 3.668588112341818*^9, 3.668588218381155*^9, 3.668588340493945*^9, 3.668589370465515*^9, {3.668752133786422*^9, 3.668752151371066*^9}, {3.668752185384499*^9, 3.668752213976431*^9}}, FontSize->10], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"c) Compara\[CCedilla]\[ATilde]o da f.d. emp\[IAcute]rica da \ amostra de m\[EAcute]dias padronizadas de n=\"\>", "\[InvisibleSpace]", "31", "\[InvisibleSpace]", "\<\" v.a. i.i.d. a Exponencial(1) (azul) com a f.d. \ da normal-padr\[ATilde]o (laranja)\"\>"}], SequenceForm[ "c) Compara\[CCedilla]\[ATilde]o da f.d. emp\[IAcute]rica da amostra de m\ \[EAcute]dias padronizadas de n=", 31, " v.a. i.i.d. a Exponencial(1) (azul) com a f.d. da normal-padr\[ATilde]o \ (laranja)"], Editable->False]], "Print", CellChangeTimes->{ 3.66858768792309*^9, 3.668588108083576*^9, 3.66858821444597*^9, 3.6685883356753893`*^9, 3.668589365442946*^9, {3.668752131123149*^9, 3.668752147888599*^9}, 3.668752180722344*^9, 3.668752213985073*^9}, FontSize->10], Cell[BoxData[ GraphicsBox[{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJxN3Hc8Vv/7B3AroYyPhEpIJSQZpZS6VEZRomUmSUtaSCgjJJVsDWkSWqg0 NBwrJMne221zu+2tH8753dfXP5/H86FHnfuc9/u63q/r3I/PMqvz+46zsbCw OHCwsMz8VwGEO/79409hoX4O2KzyHR1Du4RtlO4fRGd1mlq1dKIt7z+pzC1D B/XK/H4Qjx6I3PxG5Qj6K9fRcyeT+Zh2/1PamXqUl+n2F4tENojNZ1qubic3 fw0P01ELIgcqPLmZTjfLuUMAF9NiT8Qk7zdwMq23w8y56OYc/PvsLhfke6N5 noXI5rmjs6d+V2RfQmt/Vd+UfBStoSQ+HquGXi/RcNWtnYNpIf3J4is09MDV RWuc69DvKw1r7EvQinfTtpxORcvxRk3tf4DmVk85ZBiKbrOpjtMPQMdkCx3Z dR29wvs6sfUimuPDMxF1W3RTw4/zaifRz2FIYt1h9LVzgk5KxmjLRwr5Cvs5 UiZe9hbusTIAjVxdGXl9tMT4CQ/ZXeiukpNRX3f8vy3hS8KpbL2taO/bp7uq N6INTtgInFNBty2xNQ6UQXsUnH36fin6nfpFxeG56MYYh5TNfexMa7pdqc/I REcf8GTRf4jmWn1Tsuw82oY1UMNSE832OcjXUw390DYkP0oBfUondGC9LHqd VJho1nL2lDE3m+8OIaeAZTJM3VgcnVt217JdFD2xPZyxhh29Ju6Rh103G9NW ubyP9zSh73e4fpOpQH8YXa8rXIzO46KXs/9Ft4tEn+z9xUZd3wXgWGUxVJuB Pn9sq1JYArryibitXgQ6QbSu4bM92ifoidEKPbSKl+SOyVFWpusdnimUxqLF hnZa0R6jjS8zwvpC0UMbMuJHA9ChI/d+sdxmTbkiFKfT4OIAyklnmub6oAuc YZLvGppvvEVx6WW07lV/69Vn0W3qVm7Kp9A+k+vvqx1jpe6PE6xI5n6vYYFO c6v5rWOCnl5hzfoH/v/6PGDqn/e/g3vRESnGiw7rojddk1ex1kKXb2PZc0aD NWVz3d479855giNb8Qm7zWih9BgPZ1X0B68r4R5KaHmfHNZHS9FRvotOJ3Gj w+583tDXwMK0T/BBztVf0f9Co87qRKOd7vUXHwtGJ4o+5LLzRTMebFf3cEP7 mwofuuGMll/Scd7fAZ1T9eNm2HkW6v56w+mIoMgIG/RdfftNXAfRaSwHC+wB XV7xM+LlOjT9veqpOlm0s0TPHpcVaA6/GJWFEiwpX3fNZ1t9wwcCRo4sSljE Qj0vX1h8XPSfrhCaFvzZRLPwH/H/DjPb+rHvCvrNungPmYvoNF7J3RYn0OUt gSKhZv8ItcRsx+Qnt4BOsDb9MkAvtmtyXr8Zrb3ip8CzlWi70uiY+QLox76+ W53GpphOPDrKHdczRTi3SytxvfGDnE02JU00dP2CqqeLKtFDXXq2e/+i52d+ 33A9Ay31ZA37tyT0RqfHeYy4KeKL+PVOwy/+oG/IHy4dhY75WJg16TRFkOs1 EIzdTJa/kZoiyOcbDPNSNmaEi04RVaOzNwSSWUWP3+RD2+0YnuPEgV55vTT6 xNgkQT6vUPDjCmvb0YLuu71fblnh//z+wR6lu9cmCfJ53gWoki/0vozuE5tv b392kjC1nr0iiLboXGB1DG3yNCfRwASdsvzm0BottHSMzsZ5SuiKNumKUelJ 6vneBz85Tpc2MbSGbfPiMsFJ6vmEQ//bjG8/udCmSl6TzwcmmE5J3AYe9Wj7 Icn6c6Vo6Y0s1w7nThAVecP7m148hErnumW709B3viWnbfqC1ph8dEw2boJ6 fhEwsNWVQzQKHeNh/oIzfIJYxHGIb837R2Catll7MAC96teXX/En0QN/1++x gf/58/sH/HVWo1NL3+evEEE7iAZfXMCLljG9KMjGjq56aPCBMTJOrZ/H4F+z 9kAdHW1Ge1P2IBMt0ylrduAxerv4lVwPX7S5Ye6Wt3bo9g4Hx/STaEfvpfEV 5uOEMXlDgV08s7XHEB34+Zwkpw56qaGIiZg6+lUHEaSsNE6t76ewwftUzk7p cWL3hpvbLJufQsbS/9iPLEEbfk7afEkAXWtg5XB7Dtq2g+fts7ExIiJDMsHu 1DMY9frQ/LkHLfSZw4hWgVboOJgtkIH+5jXFsippjNpfz2Hn0hi1LXHokk97 7fZHoq0MRl6dvo/uaX/a5H4HfdVrl9hdTzT30r4Dby6j734Kv5NmO0bctm0d f9n7HBLaO6foh9A5YlsuLNmGpu31b9BZjZ7yrNvnsBB9W8z39i0etOgnxYyn /0ap/R8Jyu3X1v9pHyVW3xCeXtKRQHjKnWuqHaX2exTsFiuKHi1CV3y8Usf/ C31i7wpR6WR0f1uugfqHUeL3M61P/ZNR4OF56ea+WDSvmHjaqUejxJK1NSs4 r72A8I+ZY27B6FV7z6uE3RglZna3KEc0JLaJ2L6+OkrVl2jY5pkSlXoRnbfk dE3ZiVGCpyzywhaeGGjT/6rPYYhm85yXorgZHbAkcURbES320Vzp8Er0S/05 NvaLR6n6EwOqbW+f3+RHn9E3uN7YNEK8mlmeArEwpatYvLpihKpHsRCsI7D8 Uh5aWpNxMTkd/VUjP2VuElp/SwK/YRy6QS3QIjwS7aB64W3T/RFCd+bjCr8E LhWDCXl/dMRaRT1HL7SivEA44YTOkGG0cZ0bIcIfzPy8BKOV+Rv2HRshZsuT 2CvoWJbg89B4hKp/r8BNPLCEtgctuOTCCoUdI4SseUDaoMwbiBYxsL+8Eb1J SDEtZQ06T0DgP57laCtexpH9oiNUPXwDg9z5cRG8I1R9egu+nAmTzWwjxKmg 7quwPg7E2AN3rx0ZpupJHCT8O//QqXuYmL7Y6UcQD5oTeztSG9HlI2vV5pWj bQf5fQ/8GabqSTyE0P+ubP08TByYLtbTWxoa6/cenX9nmIiaftplkQlgar93 i6rqELU+EyGEaDMgPvUTBVKzOwQeX2XhbX+NjlUT/SX4rJ/6PN/hw9Da6+p3 0ckfdLaduI3OvnBkMsADXbTmclLSJXRth/+lJpt+Ytl0tQnq/g5tMdFKvJb9 xMWZy7vwA/qtk7tVD/ZT9+sHTC0rfWmp20+k5sxc8A/gqus+fgvQCyLmSCWu 6ycEyBsA4iZLa2tk+6n7mQwywuvD50r0E5bN+dOfKBlUinYfUhJCbw20FjTj Ru/aczXPe6qPur8EHOAJvRXX30fMXu5VAiyyXmuXt6FPe6ezsdWiHbZVJa8u QrtN9bkczEbf/Mazwf0HOtRJqj/2fR/1/Ah4vH5TfGEM+mWf4ZmJCHRi/OlV 0sF9BJl2UyDZ9lrT3hvo4pYEs8iL6HbL+qIhM/RUJf9uXW200EHIeKSIFhc0 8shaiZb9e069d3EftZ5SYOuux4mac/qI2Ey96Y6TArs4P104N9bL9IH0P/L3 e3qpfpYCFh7Nbam0Xmr9pcDpLZNRnRVohzGhowv/9lL9KwXcPssvhYxe4uni mQKZCjcdNCtOJfUSA5PFTu3SqRCqZB4WHNdL7Gxwma7AqfCEbm/4PRL96vVt 3pb7vVQ/S4XEU5G/+P17CUbMzAWmArHy23U1L3ROY+G2Y07o4icdk35n0XXm bF8/WfUSmrMNJRU6Fi12rDdCD5QqKfPsQf8L2UVX2Y7mMTz66vAGtBCf84kb 8r3E/XOCXik5qSDxO1Dq3bJeostwZsWmgpxvbG2lMHqdVko4x/xeAtZbTLeA NAC28kMKrL3EdLOY3iBp0LLKok1gmMG0/x6ac38XWtXeZl5pI4Pqt2lQe58R 8aWcQcxUq+mSBT7JjgoP8xjE7K8F00GBNkG4ZqBLub0MLb8yiNl2uT8d3NZy N21PYFD9NB2kDwY4rIxG57ks5OSKQDs+fXivIwi9NHOZ7J8bDGL6w09v4HTI 6Iz5Gu/KINxnG2AG2P6nsDvYHi20IbHG4TSDWDVTvk0z4Lv5pvNGRxhU/80A a88Ulk0HGcTy2X8gA+bHageL6aHN+/d9bFBlUPUuAzgWVWhnyDMI+9kC/BPe bD1SHi2FPmDdfPqmKIPqzz9h/OaZ8TN86Mj4Xj99DgZxfubxPfsJd1/1qFsN 9DDdMjh+ZFV9D5E+e3t/wvptXF5dv9HefkLR7z73ECKzB+qfUFwm+csxsodI fjKz4DNhxfI1XZsDeojZv04rExzOqfGzXkFnJGkpZ57oIU7M/mSC0Jx9B2/v Q1sbWDgZbEV/eGjzcKFcDzFzOO6JyQS2VsfkyoXofcpeDU9Ye6ZbwMwGy4Tn rgEcx7vpxOxv9bKgL/vhKrkKdNCRxLOJCWjFodwPW33RHtsqStkd0Pl+zaPZ R+gE57WwHbdts0CyvFfMX49OnS+y4PzyKdi/gU7MPE2huCzg+yrsU8OHjjNY m3uypZvpqYebe+QL0XtadQT7fqAjlA+s//wS3eVqaXw1rJuYTQc9WaD+y/bK tmvd1HkmG/yEnB9znkVXH7me+tsYvfp1EC1QE+0y9GjuIUV0zrZXckvE0Ivv fNpTP7ebmJopV0rZYFOeduFFfxfT6g+uiX51aqXq+V/YYxpwb92xVmK23dT9 BYslj4Tj96DPVb8Kk92Idn/0RShKCh1okRkizttK1ed8eCpRLPhguIXpd/UN QQsaW4h9sw0xH9Ke9Qj457ZQ9TkfCq0mA7g+txDRM6cFu3xoWj6P3+sZeoAm 6j95u4U6n+UDR7Q0r5NjC1W/82HhyXV+fZZoaZnt887qoVXb995qXY/WeXWY 20qyhdC3munY+WB85oxvNU8LMTKTLjPy4ZS881yjwWamnbt9fArq0LfiQufs zkG/Vkxg3/YEnfv+N6uqA7rGvsIjwaKZ6i/5QF/X+k9uF3pqcMDthUozMTSz PQfzgf8z25SEOFrSScA1nAutqCY+IdRPo86bBbBtbPWVgBoa8XhmuW8ogH3f 1Ma4s9HHruo4e7+nEX0zy8O4ABy2HByZiqBR/akAvKesLjvfQIcRF4b6L9II 7dkNWQDRHm6XzpnTqPNsAXza5jfQpk2j+kkBZLGF2x9TQpenx/TVLKFR/aUA Ducu7Hx3vomYSUOFewrh3J3lNvKmTVQ/KAQ3faX2aM0mYvb441YIAfxwatla 9NP83a0PF6ETgkxPCHM0Uf2jEFL3nWoOpDcyXbjA0XpeRSNBHj8LobHYq+l6 Oro/LMiKJQ7NYfSkweV+IzHTbbxSCkFI9K3loCd6ZcXXuvNnGwnycRWCani2 RYdRI9WfikDbrLTGensjMftrqSIwEqOZ18mjT9X0VpmINBIz1TtsRxF8OF89 R5sdPcWatVa5p4GYbS/WRbAr9J2JeBU6VDrCiycLXffF5+3Qe7Sc3sWyxscN xMxpU/x6EVyqMWP9ewudcl579TfHBmp+UgTz2JQOxlg1UP2vCA6FLnEP0W8g ZstjaxE8k+Z86b6pgcoTxdD1hVF4Rhq9Qa9qwkgQ7VnzU1pzqp5wnT0gFMOf 8wkGih1oUbaHLmKl9VT/LIZjodejuNLqqfN9McRJX8gbeFtPrJwt0MUw+sV0 pP5BPfF3dtxTDJp6WlJ/rtdT5/diCKhZuzvpYj3VX4uh8vxixxeH0SvZ5jwN 2oW+ENrzy3U9+pt0Zf/pZfVUPy4GzqSMpYd40c/vWgR499UxvfGbSpN5Th0h MXtDSyCvjmvD+ud1xC/HmY5ZAtYctbd4XeqIrJnjp2UJjMl8qG02rKPyRAkE 7vFVTpatI37ObK+gEpC2O+xzlxX9/a5y5bmKWqp/l0zv37kKOu/QbXXV1yRu 1lJ5pATcON6XDFuihWRvyOZvRL/aY+4aK4DWsFMq8Girofp/CZTe5VxpkoK2 /VblpHS/hjg7u0FLgK0+IZf7Avo+h49ko04NlXdKQEHWzOGrRA01LyiFjD2K 2cHD1Uyb2s0RO/O3mpg9HgmVAuNu5fkdMdXU+aIUfL7Fpy9xr6bOE6UgVu8t MnComjovlMJ7DtMzuQronbJriShOdO0ejgWutVVMO9hVnDj4Cc1zL+7rGn/0 029efJwnqqh8Vgqq9cZWtVuqqHlGKeRyKHz6tBBtJcvOE9BdSZDj0FIY2VN+ +ORPtL/d23fwqJI6v5TCinuec0QvVRKz5biiFL5+MzJh7K6k8lwp7K2Xf5u9 opKYjfeLy2C39SpLGK0gLGb/wTLQbVu24NOfCirvlYGOrVim/HO0JkPYOdIR vc3hP/nFehVUfiuDrSPz6gIlKghy/FgGm69yBs8dKGd6Iwurllt2OXUeKYP1 3uPDAxHlVP8vA2WuoVdnLpZT/bwMFP0Yhxu1yqnzShmsEegUMFlcTvXzcpAL bU7/Sy+jzhPlICNa76idjl4ZUSn7414ZlcfKQUqypFrFtozq/+UgEfU34JVG GdX/y0FMJmf7soVlVL8vh8VvMgbvtZcSBrMFuBxEFIlYvmS0UGKS2fVgtODG RL6JE2j+73GpdptLieez27cc5mu8dGjnR3PufFxZ+qWEaRaDEI2Mo+jJojv9 m1RLqPxXAWNGvtHveNAjVZ4mMnXFTA8ecZ3/5EMx1Y8rQJV4WNbhnUfV9ypY PJ+j/bEKetLYdmxf4x8qz1RB/YvieXOD0Bl96ku/wR8qr1RBLLxQOE/PZdrP j1dj+aNcqr5XwYWKS4ZlerlUfa+C/dK1VrfHfjOtaq/tAC9/U/V++npS4q73 G/0myON3FUzNF7kXw4luNHGPNfuYQ/WDKsiMbk3it86h5pVV8LJ/7+90QbSf xpfqy6m/qH5QDRfuSNJXX/hFFM0cN9Sq4UCl77868V9UP6iGDat6BUL/ZFP5 qRoWO5hI7byaTdX/aphKSVWZkMum6nU1NPLKaSVUZBGXZwtINfw0DT5k7ZtF XJoNmDUQGzN2UnRDFlWfa8BvwMo5tzmT6Qvbft/yCM2k6nUN7PdXiVi3I5Oq 1zWgWvXwbVvvTypf1cBiGQ4i4ulPqj7XwJSDbb7B3p9UvayBxtTiBo6pDCo/ 1UAm35b+L28yqPpXCy/NXnCcNcug6l0t+MXyCi/jQV8YvLSq5Es6NX+rhQPb azfePJlO1cNa2BigrbtFOJ2qV7UgVh1n1puRRtWnWvgnI3L2hX0aVY9qofGS u5uJVBoxe5zNroXMtNYA3oJUpl/xGzxLdU+l6lMt3DH/8v6SAvrCS8kM2ZoU Kn9NX8+Qb0nN7RSqfk1fz47elqBN6A2SHxi3CwlqflsHU0leCwbWojP3H1A1 v5PMtBrj8LHaY4lUPamD1V49PCmXPgA5X2iA+Cz6S3fjv0DmFxrUWvC6rn05 nTNmbygN+IZWG9SNoh9rvwjSWZnPtGrwuitP9uQDuf5okFeTbj18CX1cdr/+ 3sf5QK5HGkw4NG6IycwHcj3SIDTl4rJ/dLT8fNZ5RiIFTKcbBQ7EAdo0UqKW c/qcTNYvGvTR47IsAtG3Nm199+lLAZDrmwZSPn/C+RoKgKxPNPhaYO59gnv6 XDm73mlguLTrbLISuu3UFSNh00Ig8w4NPBJ5tp3zRIuyhMtlvkIn6MkKiReh d977MnlpHF3XqNP6Z3kR044KZfkrdxcBeb6avr8uJ766OqCjfw5GlkQUAXne osGW/67fWfOzCMi8RINic6HL17uLgMw3NLCNjbSsWTh97sud+aEBx4Cy7vqt 6IeQpnLnxPS5ara+0iCntJ5zy+diIPczDaykLjBC69CjZ/9VdM0tATIf0SAw yT9dU7EEyHktDWTmiL+NMEanGLy9O+CBNo5Q99j9sgTIvEQDRuvv01EF6Bsq ZvsnRkuArB/NIO7eoX5AqhTI+t0Mn3Kcpd/olgJZP5pBX5hbgMO+FMj60Qwt R++Pmj0sBTJfNYPb21VNH9JLYensQKEZFo5+yp3XVQpkfWmGN5ran44JlTGt GVjy5Jt6GZB5qxmqq6xvLjiOtl81YHfmDprH3ss8/WMZkOfJZnieLKi9pBa9 ief5WnvOciDzWjMUHFRa9FuhHMh61gynnqWwLTcqB3Ke2Aws3Xu7XNzLgcxz zfBjV87GTWkVQJ73moG+fl16f3cFbJ/d8NP3R+rxnreLKoGsd9P3g4+r/IRW JdydaQ/j059/7KKV5MVKIOtfC8S1VHVVRKDrCrUuh2RXAjk/bAEBIp51z0Al kO9DWkDj9SI/Tskqpi/c8xJO0UM/8+p+6nwZXXjeaLVKZBXMfvwtLcBmnvqx Kw+tvHO1RvRYFZD1tAWOrQvLOSJdDWT+bIFQyX8HFu2rBvJ82AIZ80/XFbqi B0YKT/u9RK9sVh/QKkEfKoh2+8dSw7TPDwHuJPkaIOt1C3x66RJiZ4xuCaMt lfeuATK/toCwp35sczxa59wX5SdVaCdTqR/Gc2uBzLMtEKvtpyOoUgtkvW+B cuWhgt8WtUC+L2oBLglL8+u30Bvn5bRs/VQL5Pm0BU4Pq1wcaUCHNz0af8db x3TO37k+Z9TQna+en9Y3bgRyXtYKj94qPBz42Eqt93Y4N1/05uivViDn3e2w 9Qzr5amaViDnC+3Al9Nhzd7XSq33dqiVKd7HxdlGred2iLvxQ4N3Mdq9JVpB UKGNWs/tYKAVKCayHS0Z5cwjdqiNWt/twGA7NiJpg049urtlpVsbkP26HYJT 1hfLBbdR67sdrCQk0tZGtwGZp9pB2Y0rYd3XNiDzUTuw1/Q+UstDR4VnOO8Y agOy37eDw+jbkzt52oGcZ7SDlvG9g3vE26n90g7Cnz127FNGtyy0UTLSbqf2 Tzt8ctgvYW6KvlGkznv0XDu1n9pBJoi/3eZuO9UP22GkZ6T0/Cv0L/3GDIfk 6c85m7/aIfzt7/fOhWib+R+furW0U/uxHTadeezvNdZO7b8OmJdz46ovXwe1 /zrgzQ1T42DVDmo/dcDVlh3a93Q7gJzXd8AerTXrIizQ4lHCUs/s0HQ2FoFo H3Ty0fbJV+HogJTCzvi4DiDPNx2g6PYiK6m0g9qfHcBS4/8xuaOD2p8dULDZ KTJ9Cv08/GhQtmAn03ajuu5/pDth9q+bvq7txuvOFm7qpPZfByz4vNSsTB9N Wzh3V7VVJ5DzpQ5IdGCoNjiivYsqVrTc6gTyPNUBB5XTBTsfo6WD3rAw3qOH esLoA5md1H7sgEx99+rRSvS9t6dypuid1P6c/tzz931hZ+9ieuOZzdFcIugK GT5PQUC7tNQfFjuJ1tXK0Vt2pYvazx2wJOqDmnQAuovt0arVkV3Ufu2A70d9 Fip+RlcI1BQ156KHCJXgh41dQL6PnL5f528ZGI6gFcUb+ObydTO958+GP9+X o22u+t+2U0P7rG7eJbMXHVm5mavWuhvIeVkHpNwMzgxxQVdvbPfeFYgebYUd /150A3k+7QDhe3dZP35Dq2h3EzYFaIPBHW6Srd1Anlc74GxUuHrpBPrW/t6x 24J0mC1HDR0Qw7YzaZsMOuPd48vDW9ANloPr3+5HT/HvHrA6TQeynEzfb+L5 e1F3OpDf35h+fudGL+SFog8sNVjr/Qp9MTe6Wy0F7X9l8nVPCfqV3AGbF53o rIpXMmasPeR2ZOsEmi9rq4AImnWj8YtM+R4g54udIN4ad+zqdvTmu3OklI3R xlrm9a1n0ZcG3j9+5NUD5LyhE4IjuQ/vf9AD5DyyE+L3WS7hju8BldmfTshl /VyRnIFuT+C971CJ5rS0PiTHQAffOMzDYGMAmWc7QbLOtz2HFx2nmpj9QpQB 5PuXTtjiXxfjsRyd28xzw0yBAWTe7QTTLaonVNUYMHtcN++EttCjWv9poh27 /FZ06aM5NL+wZ5mgQx42NT6zZgA5D+0EqX6+tKvn0Qm6m54ZuaC3Pj/uoXwd nTsaeIQ3kAFkvp6+HsPvW9vCGUDOV6bvR2zr0vQXDCDfF3WCE8uCyUcJDCDz 9fT9Md5a7fSNAWS+7oTQ+NPf9mcygJyvdMLyuWHhCgUMIPN1J7y3SHHmrkZr fOo0prWg83hFNhK96MPHt4uET6C7vp8dcpjby7SL0IOSvYK9QM5vOgHy/SbK NqE5/DyWWx5DD7psWeN5thfI9t4JLafHVKMuo8uNP2tkXkP/0nHQbbvdC2R+ m66LqkoHeO72Apn/O+HNSvph+afoR0KvT+q/6gXy/X0X+LOfunghsRdKZsZD XF3g3rfiSnAy+kJDg3diNtoq/7F/aWEvle+6YD9hdn+kGq0ZJ/p8cSta9VHJ a/Ve9Cq/4I8W42jRK3sJjzl9QM6vuoDHZv6v5/zoceNfhRmL0F06PtUty/uo /NgFtao7WrgU+oCcb3VBitCP0d3b0ZF9qrxBh9ChDf3CHyzRPvkJkiU26MvE WblhB/SpOLl1i9z7qHzaBXp+UTqHQ9AKNuJmz2LQAjvvn2v+hu5fKegpm4+m Cf29rVfZB+T8rQtK2f3CztL6qPzaBVl9O58E0PuAnMdN94GGOS/fjaBf5qe9 L2LrZzqccP8+OL8fyPl9F/jFqWeKiPRTebcLXB+N/lVb1g/k/K4Lzvl9qjBb jba8Yt/kuh5taKPY/QT6qXzcBdtNuodSd6FVdr5ioe1Hr9hwkofTop/Kp10g LL1CSOZUP5Dv87pg7sKGpbp26BH2x6tsr6I7+kyV/H36qTzbBVUNIpsTAtG5 +cWaheH9VL7tAkeWTkH/NLSkImvDrg70oM787FVT6JwjIvFzBAeY/tgZ8Xxg yQCQ86sueHpZ6m7TSvQt9tibhWvRlwLWuKaqoSWJHXquR9E5dJNFajfRiS51 82VC0E84j7OIPPqfvz+4o39ODNpB/ELrQMIAlde7wOLVYGXTV/Qu1St5hRkD VF7vgnVpLGmpeWhxfZ+PCeVorsp5L580DlB5fnr9HQ+K8O9C1/YKB7oODVB5 vguyXSO8bFkGmf7ALXXZjGeQyutd8DgsxkZXCO27bI2Fmvgglde7wP7te0MZ mUEg38dMX7/aRi0RZfTOnz82cqqjVQx3yA9qDQI5n+0G8ZpsCdpedPb8uu4n lwep/N8N7+9bN/hfQz9a0VHsehvtm3A+2zZskJoPdIOd+uA3sydonQMskWof 0GK2826JZKE5RwJdOQvQvV7CFwcrB6n5QjdU80dY02jozIfLjIvo6HerYvTS Rgap+UM3RHyQh3dsQ1Qe6wYfeK/8dP4QkN8f6YaLvzdIBwijPf/1Xzu0DB2s klCzVH6Imld0Q+RJW7VmVXTiQ5mwN9uGqDzXDT//0hj2u9Gl7M92bzYaovJd N7RuOBzLZoUeObOII8d2iMp33cD9tORI0GX04uKgb8aeaDkufRHJO0NU3uuG zeo89q330OZRnnKOb9Fu88cbONLRARqft+T+GaLyYDc8dbB/EFKOTohdO2ja NETNP7ohtbrTQIo+ROXFbigUiH3TPoJu1LTmesc+zHS/k6S1E98wlSe7geNt NQGL0Asb7i+ZuwItvfDg5TwFtOqu/4rC1Iap/Dm9Xlz/KBzWRBu/u3lrxV70 qWatlk6TYSDfp3eD8yK27R+sh6l82g239iQ/cjmPfnjNZXSbyzDQZ+LR1254 81H1IPf1YSq/dsP39r6E/AD0n6Xx8++HD1N5tRtqDc+cOvJimMqn3UC/vipD OgH9L6lJgv4VLUB/cuXjT/QyKfOyq/nDVJ7tBuVDoiqaVegDyYEdhYxhKs92 wz3/ayaMJSNUXu2G2LQtHz9Lj1B5lQ5fhkYF3JXQv+Q+2Wqrj1D5lQ6VFnbZ vDroicwO9whztPjaYxtW26HXHpMI6buK1rhXRU+6gTb4fU/3WvAIkO8r6XD0 3/7onY/QnidzD5e9R0f91Vx4Iht9+0T9Mq9qtN3kFYWnDHRL9q/EuDG0aajI 5h8co0znHTme+psPvW31B51K0VEqn9NBJk3/wLA8WsCkw1JoG9p7xcZWKT30 cM/1s0oHR4F830AHm29F/XAEXeuzzEX/NHrfvvMsh+3RP5f+8Dnjit7YzsPr cgP9JtE4xDdolMr7dJD0iF507yE6VG/gyYsXo1T+pwOXyHbpxHj0lcaAN2lJ o9Q8gA70tzXKBeloK+fVSXV/0KWazkAvQ+sKZP2caBil5gN0UIqxKlw0hBbd OlWryjPGtB/37uNaQuh/xQ8694uj7Z62XrSSGaPmg9PP68z6kQvKaNMNXm7u 6ug8tgIOf2309jzx2xEG6I8PbP97bToGs8v30PTzO/71XpL1GDW/oEOEIpd4 9jm0wMTBqFIntHdWpFyzJ/qMBWxgu4feN1i5Q+I1OjNFJmfNxzFq/kEHNT9H A3UC/cYoo1T3F1pyueBhkyJ0KP1I08kaNNfXt6cdW9FXr4/3ePeOUfMTOvQY 7HIMGUdbid2beDZnnOnSVppnAv84Nf+cfl4flLmJRePUfJMOyW4eAX+Wo5V1 8xZWrxmn5i10eLFQLKJjA1q04bTU6Da035vPsXN3o6Ul1e/RD6FTQlKulxwd p+Yz089vrpbDd1t0v8svq8jL//P7XVViEDlOzV/oINsyFeg4Nk7NT+iQZuLl fnjOBNPmf+ae0xSYAPL7Q3QY0vAzX71kgpqH0CEwUUBPUBotJxOmNqqIzni4 SKZ+M9qC/7FwljZ6xFNqTpzhBDUvoUPwUHR/qPkENQ+hg7zN6sYrJ9GZNfH5 VnboI4briF2u6OCNWyJEQv7nz0toOzfHoi1Dck7mfpgA8vtNdBjj3HvoQzI6 1KVIM/wXWoFupHKtGG1VYimwtwMd9v10txjLJNMTt67EfFmNtja5c/SAEfr3 qidLGJ5o5aGEkttx6BM1Se9NMtDhGWkBqyrR6zbquPE1T1LzoOn9+fq37WAP +pSEgVn1GJo1pHhX+pwppkVevs6K2smiQc5LeqA0xmP5HF9WDXI+0QN9w2H+ 5cFovp2vR18/Qosx1scvjETL3U+xdo9Fb9TQW9z+llWDnFf0gHZbyd99H1g1 yPlDDxwItLz+/QvaamPnJulk9IX6S4yAdLSbL0v0aDarBjmf74Hw8oX//SlC f5ZZffVpLToz/6MSD41Vg5xv9ECxk0arfTu6UfJ3RA0dzcg+uE9nAD1/0Zkf i/+hZU57yNC52ZhW/W9erRE/WjMpLCRVCL3vqOSu1YvRltyvp0Il2DTI+UoP nHu3PnFqBfqqScrpU3LoW6x6EoVr2TTI7zv0wP2XJcWb16OjDS1vvdiEThzt AH4NNg1yXtMDac8uDTppofN3sbxu1GXTmH09FtYDXQ8WCn86iObukLt20xK9 /dZBI0VHtIucx5qy2+gOm5KKFZ/RZq/lfOwa0aYuTu9ihtDGuzKrq3nYmS5T PGs3LIQ+JCrEJSiBFvZr3SexAl3y7+sjeVl0qL1/m5oCuwb5fZ/p9dR6VEVH hV2DnE/1gMH1yZvvzNC7lz+oX+KN1u1rmWd4H70zdd0GnzdorvVcniHv2DXI 7w/1QFZsVe7TT2gfsXiRuG9o7UBPq28p6J+XZUdKctCaR/LvMIrRHEWR5ZMV 6HTty8vn1aE9v+qeE6Wxa5DztennoSCetLIdnbrwp75GP1pj8gzNdBLNchHW nmLjYJqgCbpcmot2M27J8JzPoUHO63pga24Sf+B/6Cm4Y/pIGP3jg+WLV0vQ V1etY3yWRKs/nLv550oODXI+1wMFFa7KQYboE6IDsodd0Qkb4lfuCEGPH7JZ JvsS/bRFR0IsEa3tuHIpP4EW3SoU4ZvBoTFbzvJ6oHMO+xK2HHTyn94HV/6i A8PqRQeL0U0BSUMrvOdozH5do2x6/yx371xWzalBzv+m79eOLa6m8nOZzjk2 zhdyFZ27SmVZuA/6T6eNyrNAdN4fn+9RYf/j+OdaseHov0HJea+fzNUgl+/0 /rSvNIqPQheO77r64wu6xCvp6e9cdOnxEtm/BXM1yPnjtHV63xeWostkedVL q9Dl82R/VtSjK/5altV3oCtD7re3DqBrlnDxDXFxMV0feVmZYyna7YCSmOdO tNiczjksDugzNVljyTfRXz9G9bg+Qed1Vr3pjkI3Lltgc/gVlwY5P2XAkJHu qj/xaB7/azT1j2jlsR4LsRS0yQmLivEc9N2sgjfDy7iZLpTR8uh3Qjsd1co/ vISHaYlwLcnsH+i7r0xG1SbmMV1EbK/4cpCX6TOpFvOW3udjerfHVxe+3fxM U/+/HKb/D2jUMpY= "]]}, {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwt2Xk4VN8bAPDBjBlmzFhahCwVCZUlyvoesqZE2bKEFkupRCVrlpAsSSFU 1kRUylKh5lBaKRUVlUQky0yW7Mvvfp/n99d9Ps+5533O8573vPfe58rtO7br IC+JROrhIZH+u26AZQOLiyysFBhq9yWLBLaH1p6bnmHhW9k79qx6QYLgtC0K Y/9Y2P3aEulvYyR4Mei0r2+Qhd3UjgkVWPGA+5WcjqbPLHzWvnciW4AXLo4o vsm8y8JbFOs11qfzwUMpHZ9Lt1j47qUkxfFXfNBpZklNusHCWE8/SG+BD5Su H9kakc3CtimGA3beZGjYdr/WM46Fu/J2PWk2osB4gW6ZhhsLRzRUev8WoYLE u+3b1jux8PGmkwkOVlRAM679CnYsLLNRT8U1gQpJ1hFrJCxZuGoi0XoDlQYK 88+ukjYT6zHkKWDyC4CDvVVSM5OFLZKtJCmr6FBD8zjq9YSJRbRovnu+s6D5 h/2X8YdM7HXpWaWMpDB0VW83iqpg4q+UZ+eo5sLAf3DLsmvFTOxwTFtZp0AY dtWznnxIZeLXD4KMLN1EYDDoiZCBFxPH+NWFruGKwoJ1ZeAbDyZeinVj/FaL gajirZ+OLkyML94PMXYUgy2f0qoCbJg4XSLbIf6pGJxVP+JaokvEb31/tDR3 CUgNSt5eIszEfBcqW86cWgYbG0SW5wsy8cp10ssHK5aBUSY1ciOFiZ0yRzeN jywDb7Mx220zQriacvBb77HlUFXweu7MLyEc55rV5hcgDlYuQdsHHwrh1kYX 6YgsCTjT/Gmw3kMIt0cxupgnZKDrSzQudRHCm25LGVc2yIDRL9W0NAchXFAc xCcgIAv8s+cNfHYI4ePS906G75GFREW4KKwthK+ZFdt3LshCVvRNLTdhIZwf mKe6zmUVzCXb0i3oQvif49X5nPhV4JrF06XOL4ThWrVWxINVIHvPOZ5/joH7 z4ydjFiyGm52sr7d/s3Arn/dTTI/roZK7dORc08Y2KT99rsZT3lYZiJv3/eI ga27fRdPZstDoPUHpZZKBr6yXv+8T4s86HiptBbcYmBK2fWyx7oKUH+5S8Ey nYEbcgePaYmvhbdc86bMIwwsr89/Z9cfRfhzY8XyzVIM7JtpIt83pgJv93Wf 0lnOwIUlpUy5LeuhUqb0k74oA59Zljk2EroewjP10o1pDLy5mHnEibYBRJPc lu4ap+OON731XgobQefEDbEjTXSsm8cra4xVQUbtaIDfCzq+d8jiudNvVSBz tD4GNNAxdXFs/3OmGrz1epka/JBwRJZyzl412Oc8KHKukI6933g+8uFVh/NG asIFoXTcZHRcZd5JA44tTh8rCqTjcnK3XlWcBtjWNbwr8afj+3nxPs2VGiCt ZXuh3JuOa8YdGHLCm+D+ukDmE1s6Xldy3v/Qm03QIfyY0a5Cxworrw+q2WmB 0g9zAdZ3Qezafb9Gr1Yb5swmNhV9FsTlymLKp2a04W15gbv+B0EcIGFYDjo6 4B+18ODwC0Gsdu5zUVytDjySr/R8eU8QW+1eFs5o1AVzX5lnkbGC+D6r7+3M uD5ItDVxxSMFMXXz7NHn+gYwpB8sWR4iiPs+7ezQjDOAFFabf6efIJ5637CT IgXw5f55OV1nQWz7vGi0UQGB1/S/8PGNgvg8r3JSpbchbNlXcCtBiRhv3dgY n2oIgm+sP62SF8Qhmzr7a+sM4c7V0vU2EoJ4sAp1aYsawQR4fLtNFsTJk5W7 7tUbQWxsk7ZXuwAe7HhRsUXDGArFCsbbowSwb9r0VmNPM3hWTk1oDhPA+x// dUjMNIPeHb5y9acF8BoLpVHdZjNQOKdpVXxUAB9rjS1t1TSH4rkXN085CeDG ihkRHoYFlPUOOYmpC+C1i5zkv03boCnKZoR/vQDOEpj6RKdawrBMddzMWgGM jplNZhlawganM5U/VwrguAuvFpc/tITytyLMcgEBbGUpp1p4aztUPtCq3/6T ho1/6+jWF1lBq222A/pGw5p83xnh/Vbwb2RxWOMzDVeSnc3qlHaClsorCclm GpZTHzmHy3fCw1znE38e0vDbhM3PIjysoS4+Ym1sCg2XT5utyYqwgafOr5PY QMNhJTZ3k//thpZCsb+mOjRsRskzGltlC53DLrvebqLhwaJjutXWtjB1hrvs +zoadvaPWuF02xY2FC7JnRGj4VzG4d8qh+0ga2jvfc1+Kh533uh6bdoeijWL lzzupuLcWpkLeusdoCp85JTxdypOMdiSZuLhAC3CZ3V3f6Bi+/Qa2SuvHYCi WfLMr46KRzmJ8bb5juAXNvapNIWK2e9hZbunE4Q/19PWSKDiL5U0G/88J0hg xWbXxBD+7jsU+c0JivLE3V8FU/GC4q9iqq0zfG3U/9N3gIqzvtTfeGbuAqbM c7Ny2lTslTmo8cxiL0jlSMle+cmPGeb7LzEcPeB2ZqSQ9jd+rLx4sbE/1AMM LvfNtH/ix+bOcuP0fA9wiy9vk2zix3aLHgrrhj0gP8A4IaeaH/dUfF7dFLsP FM19J4oS+LFhZO1b2Zf7YdNIbVOVJj+mGlAyzsd6QuOgbI29Kj/OuJXhrVvl CfZ9MTcnlfhx5tXE8K2/PCHw684obVlivN7+rvNWL6hp7Nn8WJAfi5lKf6yl eAPKohc8+0HBYv3/SLXZPmC51TnoYzwFJ6bGynwVPgJK/oHvW85SsMZRbkWO 2REQzLu07u0ZCnaKG2rH4Ufg5cKb9pcnKbi/hHdCgnMETGv0dJ54UHCkgIC1 /vujgNSkZ4u1KTj2tuCbdls/0JT5GRr+h4y5t3ozbu72hyVW860hv8hYQPWZ l/NJfxgPXbE+6AcZN0ldPmua4Q/3O2y+B7SR8Wh3fcfTr/6gmt6g71NPxnbL rkXv9woAJaHChd2ZZHxK2EclNP4EyMx6RqyzIOPfiaGeO2dPwVCbV2HNVjJ+ fOOrK79iIDws935paUDGfofTogXtAsHa85DwUQ0y7n31RXLubiBEvD+Se38l GR/fcaEvxec0dN88gXVH+bBDf9Od3sEgKLKNIlll8+GFPM2GENUw8N8YveZH Gh/murw6VesVBgaCZ839UviwjMft3Q45YfCZHZOSGsOHm03iYm+wwoGmHC/7 +RgfDundMVwyHg6HeFKQuzERPyGzcJ93BKy/cy3Cf5gX96U1nAg+FAXmj+1Y 7v28mK10M0jyfBTsaxK6vqOHF29tWEodKomCKwNhtYrtvNisn14kNRAF5LV7 Jzqf8WLJrnPeDb7R0JEj7Wt5lRfHa57eahtyFmIv5jisseTF0gPul/XZsZCX 69AnYsqLd9/y/2XcGwt1d1knFxEvNp5XORZNj4OR5jOpHVq8+KFh0+abjnHg IujenLKKuN+7uTrlXxxoRMtunZ/mwfXxeUvldeKh60Tehk/FPLg60rNY6W8C hGueNP9ewIOXt12iVEklgtSE+b5f13mwe/rxjFCLRHAM/Js2epkHt/wxPfCs IBHeB8E8M5IH5/ttmNZ3ToKG8O9vzPbw4Knsn3ZLPiVD4bkVPo8EeLBl/V7/ KwspYGQxHIXJPNizZFhtTPwidAnUX32xSMJy5RI//TQuglSCd0vbPxIeuBx2 vc37IqQlPdg8+pOEl11SSDBvuwixqXb8yjUkHGOaIjVemQo+Vy8WXD1EwvYR pIcHUy7DOG1b/OaDxLjksJLg/csQcZL32Ac3Ev7cP6n3/eNlSLcK0KHZkXCp vRifsHgaNJDs3gcACZtPpobdzk8DiYPii9uWkPC7mqQ7Yzgd0pwNqkZDFtln r+kvCq3OhLJNdyMUjy+y1bv2HPi9LRMahGS37/VcZC+PTar9558JHDZPzyvr RfbsRIDw/aeZYLqmUThPfpH9gWer4F2vLJgYsvTd+W6BrXZYfWP/o2xwDN+z umzVAvsqPfv663PXgY63PMsSX2DvNqloj668Dk94xA/GMxfYFQtfxvy6roN8 zKciz5l5ttiPzJO/t+TAaMJuJbkP8+zD5w9GbxvKgcTMHWrpkfPsr/rlz+Pu 5AKuNISIrjm2+s/6yj6NfAiYkO06+mmOndQcbKOyIx8UtpAiXZvm2I+D8M1k z3xIqn3SoPNwju1spPK1JDMfnBp0Tf9dmGNveFnepsdTAOPvNHccgjn2o30n uvvbCkBxcJ2z7fVZ9sf50IXJtBtQdfbDpUOXZtnZw0eU/KtugJF0SFPEuVn2 EZNhX5G2G+Bi06R/23+WzbhhXMJeUgQpD47K8pvNsg+87VXsTCuC6eiK3gfc Gfb25vkEvZyb8FpK30/ScIZN/nO+0PxdCThU9xarac2wFx4GxF4bK4FfO5N/ minPsB1Yn5dLit+Chagfu04snWG/nROpTfG4Bep/IjWb/0yzl/Msk/WZuAVZ Vc9nwlOn2bd7gzV+ry2Dw1bWMd09U2w+esrO77fuwMI21Vbl9il2i5BeTO3H O5BqJrz65NspttinJ9bP5u5ADWrB1EdT7AjfL8L2O+8CTcN6TiV5iu3miqlh E3ehaLl1QOCWKfbAvxfXAovKobtrpwcjaZJ9TcKy7LzQfXAK2KmvpTXBvlzS zP0mWwUJX655bFGZYK+I/xarp10FdfpDMTqrJtiCUi8N7tlUgTQt/q0Bc4Jd u01xU0dUFfy82uBm1vePbWX/YK1yXxV4P9eMckz/xx4R4S1pKa+GUyukXgRP jLNtp1vf7rd/CJfY/dbs6jH2Ce3eFrtftXA9lCT0p3SM3ezG+/QZuQ6KtcVf ieaNsYMfnm2wkq+DJxVmhp4JY+xlNSRapWcd9N8sUhNyH2Pz7K0OfTZQBwYp B0SdBcbYTPOXO/imHsMf966PE86j7O3FO8wuiWEA3i/2G3hG2FvGGgozfBvg 0JcGvxtjQ2wTIytHfs8XoJcZKV5z+jfbpGduULSoGby/j3zds7ybHZLxpzFo +wfY2aVy++WaDrapmvU5z4420GJnfx44+5ate0IrXnWqHbT/uu7v3F/JPvRq yZmRye+gHM0VxCcrILD6R7rqVBfcfcEpOeP4DgxdKL6e4j3w2OL1Fp2GdhjP kd54j9QLg7fyfawcu8HRODigidsH125vyB6v+g1aX29FiJf0Q51H7FLVB0OQ fqCW7LtsAIKXZLbtFB2BC76K/Vm+g3CYz/7HcakRwOrbn6scHwSXUdE/lxRG QENdPqn25CBAS+LcZ50R+C1N//QufBDIiRGr3fePgPD5SpePKYOQzOd93K9y BOIk9sSYVg5CwaiW0EX7UTAMEZ78MTUITS2txh+yxuBg7Uzf7OkhqHZx2lJf OAafer+gh6FDkNf/Q7n8zhjs3drRcDxiCE6RBkWTG8bA203L6FvcEMiq8vy0 GBiDV4b6Wy+kD8HJC+vD6rXHYdcqgdkjFUMgbRVbVf5lnDgnRRNig0Nw/M1m hQvLJqDwkmL4pl3DELU4FmkvNwHDBsvHo+2GIVWj/PtKlQnwvvjOrsVxGCqz FdPKDCdg8LNkt5vbMEwdXkF+7TsBhvrDxk6+wxDOmP1JfjoBsd3xRx/HDMP5 HU+uBR+bBFPuKX+z6mHIjgyeNgyehMG2a/KbHw1DWZWWnUDMJGicWj22um4Y mlfeZVzJIlzu1zNePwzCnJyQqsZJSM5wND7RPAwZyZF7/kpOQVHD7IGBnmEo fGe81PPlFJzwu2DIZnJAPDs1+8SHKfCj1QmuE+FAgmeXXPS3KdDNKwxOEeOA /3zIhty/UzBgxG/rKM4BQ+UKsw7xabBWKRdtkuNAZ6xcsJXPNCgp+XGMNxHx DBY6tQRnQLR3450YBw4kCmw/aLJkBrYb1fwt2sOBxdbMwd3SM7DR7hnluTMH +g5rTvmpz0C8yp+yeTcOVGX6ipQ6zQCPacSy3d4c2PWvY6tM6QxMugunZJwm 4pU9KKZun4Wu1NUjKRkcUJDVy+DYz4JRlZ5DRiYH8CUc0+YxC1fx6v3Z2RwY C361ryBwFh68uRBwNYcDThZfpaBgFtYwbEqibnJgXd9CyqmZWfAtlZ3rqubA cxnToN7iOSj8/atj5CMH3C+99mqqmAPxGInT5W0cmOHfaV/xZA4mqVXjvp85 sIHjoBHZOgci+7Ze+tHBgbQ6n2Ep0jykfevOKP3JgQN7kjxsHebhgJrBzi4O B3gutVo8pSxA//PMvpdULixcG9g3wlqAenS+aL0AF2aKSaEyEgsQS1qsSxHk wvgTlTshGxYgNUxhzEaIC30DZ0U3OSzA9yVqZViUC01Gml8Lixdg5rRwsvVK LlwZTfONtVyEo6DavVWNC2nzpTGVdouQqzihckqdC6m0huvdbotQbcUzW6TB hQRpTovBiUXoKnNXIGtxIXybqebk1UXgpJ7uKtPhwv78iXkvziL0Ws+JPNrK heUlpS8KzUloXcCK5kZbLojOS1jk7yAhy3pxnud2XGDYnH+ds4uEVIu1/j6z 5wLvtHdzlgsJ7a69T2Y7coFjrvAxxY+E3q9+o1jowoXn/bmdoVdISPJooq/G AS6cUkz/Z9tPQsEXXHSP+nPheCglcNcwMT/qroJ5ABd8W05M7RwloTg1uTHZ E1zYd3r37LY5EkpfOqnx7iQXrF4K8xgK86DFnwdOSgdxQcE7gbF+Cw/6Pdk9 fu4MFz7djFhNOceDdqq5l6clcInnIb39aBIP0mmgh7gmcmF0Mi35SyoPArGZ lWuSuMA0L50uvcaDNH3oo7eTuWDa3/ZuVwUPkpFvmKq4yIUHisqhuZ08KHXe pfR8BpH/krZWXU1e9PAO9+XhfC4U2bifv6HDi063SyuJFHChcnoAWIgXze4X T6oi3GJBKu3exouC9u1xnS3kgsCAUmS8Oy/6WrbPIuQmF4KVItZ/TuBFEgYv 9+4o44JzqVKsfzcvqiXPPDWq4oKEzELLmd+8qM54/416wh2p7yWThniRRQHf a6jmglPw6Xs3J3iRz5mzXdoPuOBo8fzbN0E+dPRshrP8Iy7Y/vbQMNPgQ9rS DOuOOi5sX53ZJXmWD7kcfa7T8JTYzwxf5XXxfGhQpU5D+RkX3giiU1rJfOjz BquES4S3jfbRba7wIZZN5J59jVwwr9+0ObaMDw09Sj039ZwLxm4tSX9b+VD+ uHc39TUX9LKpuo3yZNS/JrDvwTsiv/snHhkokxH56FWvpS1c+KnUu+WhKhnZ vJgx8yccW9OgVapLRpJl/EpK77nwvj1M/aINGVlp5CamfuCCp/j4OtcwMtJT bEo1beNCSlqX+L9WMrq+4/1Nww6iPlzfZRztIKNIpFyfSFhT/smy/h9kNGzO b/eZcEdl9pKvA2S0TtGHe+grF+Rb7YXrSRTU5fienPiNCzWizdQkFQqi6xTu re7kQs+FRxNrzlJQ82PMe6+bC+pFiQNn4ymom/GhaZBwVJ1b569kCtrcM6yi 0MMF2T+U54WZFKSW+fleJuG9RrvS1tyloHg5866QX1z4Mj6gsaaDguBQpfP6 PuI875E6vlqVHx1QlKJY/OGCpB/3QLQmP8o59wYHEj4U2+DYo8OPjk/nyRcR FqjwRgUm/Cge/xviGSDqk1HFWu3Mj6IrfSOrCOMnO+6siuVHOKJni9AQUX+r zwzKfSPmX+4KjOJwoYqSfUL+Jz+SVtPuKSRc/bt6XrGPH/1IWC7ygvCDUg5L 9S8/sujrqxLkEvnQ2LvJgExFnGGDDRcIs7fqhzmpUNFy3QfKSX+58Hr/LPNS KBXFvdRtcRsl6sVk+ZX0SCoaf04xCCHctFZDLiuWiv6lhQSlE24ePKSRl0JF 6rL3nJoItwR0ONwtpCJp0RXvNMe40Bb9KPdNExV1Zss0LhLuKghUJ6+kIdt1 pjPH/xH9sf0ON2AVDd10uhsbT5gm3FfWs5aGVOZ5e3IJbwy1XftUnYZ65p4z 3hEOt1WTijKnoY1O6hvWTXBBijJIIZ2gobpxr9FWwqq6q54eC6Khxf0ON/4Q Nj6+J+JHOA2VLzu8foHw4e8vZp7E09CQrN4ThUkiH1WF3LAcGgoJFRs8SXiP 59722dc0lDcRVMmYIvrV1bT0wy00VCTY8l2acMSHpt1f22gowZr/pyrhYgPd tzVdNHRISv2ULeGpZeJPgyaI+SuNezIJp794XzYpJ4BOa78kS09z4YOiScTY aQE0t8FXXWiGCxlKjR/4wwXQrvbBDRKEXVRM5CWiBdAUn4nIWsK/N5q8RkkC SPqa4TlEeE7LZElyngDK64k29icsb2JSrPhaAG1Yoif9nvCAaeOM7jsBlCg6 lfSNcLm5yY6drQJI4OT+vt+EdbabjJ7sFEBsuXGbBcJWu030no4KoAfKueJK s1w47WHS4iopiJwPuJ4LI6y/v3HVcVlBdLszPz2OMO9Bk5Nn5QWR8lLFlIuE k7xNJEo3CqLDHxJNbhDOP2ZyYGqrIJI5wX38hnBTmMlUqq8gGhdroiyd44JM lonsy8dEE+KRHMwk7D5Q8ru+QRCFRyhH5hHO12HerX0hiH58i6aWEFb4+kn/ 7ntBxHwU1fuA8AYpb+f0XkEkRxv600pY7/r59ANCdNR6xHM9Y56oDw7Hda8o HZ31O9EmShgb7JZ3XE5HfbnJx1YQNv4hWWkpR0fvtXYFKxC2lL39Xl2Tji4I TQ4BYaf8dwweVzryqlBx9SN8dVSjdcaDjphX5NRPEe40upI97klHSxwfzYQQ 3tfjrtTvR0cftNW84gj7rBk1e3eWjozXf7l7jfDpoiXR18royN5OeclLwum3 9kxrz9FRWYhiw5IFLgxatY/n8DBQ80XvjBWE0ZjjXwqVgSJtLD2kCQ/oOv5+ L8JAxzudPq4lbNBs3+azloEObjfV0CHcy919L3MXA0kFfp5wIaxz+WPZogMD VT11k/MgnLxld/FBVwZqWbZgeJDwlshdOWreDCR28ePBI4QTRW2SXoUxkPHr zTphhDdpEm+DxQyUZMRQzCYc3958wO0OA61se/n4OuHOsB3ujRUMdLKgZ1s+ 4XPPtztcfMJA7XERliWEvzlYmqxrZaDQVV791YTPBpvL7VlkoHPJA7kthD+y jdof2gmhg5fOxSwQ7thIP9TgJIQW9vvPkRaJ/pDzceaNmxDaK3zvCB/hoTMH pH74CCFjTVegEeZHsW6UcCH0ad3jXBHC2vhVr02RECrhrTq4mjBSTT3lXCqE Yv7uj5MnbJrrRD1YLoQyXKQL1xLeFTGoeLpGCL127nqrTNgXCflefyuE1KTZ AxqEc7D16MCEEJLn+2S8lXCR6oro8VkhFJImKmVCuCz3p9gCiYn2rp7jmBJ+ GOGvKUJnoss9s3HbCH9Al09vlmGiTXX34mwIU+o/L0SbMZEFvb1xL+HD9Xvp K68wkcyvlNOnCO/LaU+vu8ZEr1zaFgIJO4XZrnIpYKKiCEpkEGFz7W3a2XeY qMrHJiiU8Jp7ml4rGpkoT+SuThThb7mMp0tHmchpzygtifDH8Dirqkkm6tkd syuZ8GsX3g7beSYSsLl65cJ/6xWf+nuJxkIPgoIkUglfTumRFpVhoXa57n/p hLdH1AQzt7NQ/seHormEt+7V5L9jw0I3zCMV8wjr6JVf3OHAQi+O2ejmE1ac ulGcuI+FZNevdSwkTPa7+EkwiIXahk4fKyb82M1bnVrEQnUckmQ54Ur9nsdF pSz05v0d8r3/8im518L0HgvtmWkb/M9Zn3e7x9Sx0C+4db+C8KmdxCfkRxYK UpNe/YDwkfU1Kwq+sNA3423T//kAXfOGUScLadqtan743/6+UKqL/MNCMbc4 R2oIW9y4YSbHJdbzh6NT+199RMt+xOMsJCJZQakjvNkje6/7DAsFLDd8+5// /38YMW9dv/yY8P8AD32+kA== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->{{-4, 4}, {0., 1.}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.668587688071389*^9, 3.668588112341818*^9, 3.668588218381155*^9, 3.668588340493945*^9, 3.668589370465515*^9, {3.668752133786422*^9, 3.668752151371066*^9}, {3.668752185384499*^9, 3.6687522151455593`*^9}}, FontSize->10] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Ilustra\[CCedilla]\[ATilde]o do Teorema do Limite Central - Distribui\[CCedilla]\[ATilde]o comum Bernoulli (p)\ \>", "Subsection", CellChangeTimes->{{3.668587474855124*^9, 3.6685874872856283`*^9}, 3.668587648634202*^9, {3.668587694771872*^9, 3.668587728780151*^9}, { 3.6685883022648706`*^9, 3.668588303985671*^9}, {3.668588422450406*^9, 3.668588426454064*^9}}, FontSize->14], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Print", "[", "\"\\"", "]"}], "\[IndentingNewLine]", RowBox[{"n", "=", RowBox[{ "Input", "[", "\"\\"", "]"}]}], "\[IndentingNewLine]", RowBox[{"p", "=", RowBox[{ "Input", "[", "\"\\"", "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"rep", "=", "1000"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dist", "=", RowBox[{"BernoulliDistribution", "[", "p", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"i", "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"vecmean", "=", RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"While", "[", RowBox[{ RowBox[{"i", "<", "rep"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"vecmean", "=", RowBox[{"Append", "[", RowBox[{"vecmean", ",", RowBox[{"n", "\[Times]", RowBox[{"Mean", "[", RowBox[{"RandomVariate", "[", RowBox[{"dist", ",", "n"}], "]"}], "]"}]}]}], "]"}]}], ";", RowBox[{"i", "++"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"stvecmean", "=", FractionBox[ RowBox[{"vecmean", "-", RowBox[{"n", "\[Times]", RowBox[{"Mean", "[", "dist", "]"}]}]}], SqrtBox[ RowBox[{"n", "\[Times]", RowBox[{"Variance", "[", "dist", "]"}]}]]]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Print", "[", RowBox[{ "\"\\"", ",", "n", ",", "\"\< v.a. i.i.d. a Bernoulli(p=\>\"", ",", "p", ",", "\"\<) com a f.d.p. da normal-padr\[ATilde]o\>\""}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"Histogram", "[", RowBox[{"stvecmean", ",", "Automatic", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"PDF", "[", RowBox[{ RowBox[{"NormalDistribution", "[", RowBox[{"0", ",", "1"}], "]"}], ",", "x"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "]"}]}], "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Print", "[", RowBox[{ "\"\\"", ",", "n", ",", "\"\< v.a. i.i.d. a Bernoulli(p=\>\"", ",", "p", ",", "\"\<) \n(azul) com a f.d. da normal-padr\[ATilde]o (laranja)\>\""}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"F", "[", "x_", "]"}], "=", RowBox[{ FractionBox["1", "rep"], "\[Times]", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"j", "=", "1"}], "rep"], RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{"stvecmean", "[", RowBox[{"[", "j", "]"}], "]"}], "\[LessEqual]", "x"}], ",", "1", ",", "0"}], "]"}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"F", "[", "x", "]"}], ",", RowBox[{"CDF", "[", RowBox[{ RowBox[{"NormalDistribution", "[", RowBox[{"0", ",", "1"}], "]"}], ",", "x"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.668588450429278*^9, 3.668588535559444*^9}, 3.668588566766817*^9, {3.668588635054368*^9, 3.668588668410041*^9}, { 3.668588770315382*^9, 3.668588772778721*^9}, {3.6685889370853252`*^9, 3.668588941416099*^9}, {3.668589308620483*^9, 3.668589320995533*^9}, { 3.668589417093355*^9, 3.668589474613927*^9}}, FontSize->10], Cell[BoxData["\<\"a) Simula\[CCedilla]\[ATilde]o de uma amostra de rep=1000 \ somas padronizadas de n v.a. i.i.d. a Bernoulli(p), com n e p iguais a\"\>"], \ "Print", CellChangeTimes->{{3.6685885398546*^9, 3.6685885689111347`*^9}, { 3.668588673244617*^9, 3.668588695079238*^9}, 3.668588774161582*^9, { 3.668589378168522*^9, 3.668589391863082*^9}, {3.668589443608777*^9, 3.668589493428822*^9}, 3.668752244726324*^9}, FontSize->10], Cell[BoxData["25"], "Output", CellChangeTimes->{{3.668588546558909*^9, 3.668588571777183*^9}, { 3.668588676810728*^9, 3.668588697543497*^9}, 3.6685887780942917`*^9, { 3.66858938068674*^9, 3.668589393747299*^9}, {3.668589445188478*^9, 3.6685894989818563`*^9}, 3.668752270793709*^9}, FontSize->10], Cell[BoxData["0.3`"], "Output", CellChangeTimes->{{3.668588546558909*^9, 3.668588571777183*^9}, { 3.668588676810728*^9, 3.668588697543497*^9}, 3.6685887780942917`*^9, { 3.66858938068674*^9, 3.668589393747299*^9}, {3.668589445188478*^9, 3.6685894989818563`*^9}, 3.6687522782347507`*^9}, FontSize->10], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"b) Compara\[CCedilla]\[ATilde]o do histograma da amostra de \ somas padronizadas de n=\"\>", "\[InvisibleSpace]", "25", "\[InvisibleSpace]", "\<\" v.a. i.i.d. a Bernoulli(p=\"\>", "\[InvisibleSpace]", "0.3`", "\[InvisibleSpace]", "\<\") com a f.d.p. da normal-padr\[ATilde]o\"\>"}], SequenceForm[ "b) Compara\[CCedilla]\[ATilde]o do histograma da amostra de somas \ padronizadas de n=", 25, " v.a. i.i.d. a Bernoulli(p=", 0.3, ") com a f.d.p. da normal-padr\[ATilde]o"], Editable->False]], "Print", CellChangeTimes->{{3.6685885398546*^9, 3.6685885689111347`*^9}, { 3.668588673244617*^9, 3.668588695079238*^9}, 3.668588774161582*^9, { 3.668589378168522*^9, 3.668589391863082*^9}, {3.668589443608777*^9, 3.668589493428822*^9}, 3.66875227830648*^9}, FontSize->10], Cell[BoxData[ GraphicsBox[{{ {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.588], Thickness[Small]}], {}, {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.588], Thickness[Small]}], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-3.5, 0}, NCache[{-3., Rational[1, 500]}, {-3., 0.002}], "RoundingRadius" -> 0]}, ImageSizeCache->{{46.643314651721425`, 94.58372412215488}, { 180.13972411019992`, 183.11223312532974`}}], StatusArea[#, 0.002]& , TagBoxNote->"0.002"], StyleBox["0.002`", {}, StripOnInput -> False]], Annotation[#, Style[0.002, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-2.5, 0}, NCache[{-2., Rational[1, 100]}, {-2., 0.01}], "RoundingRadius" -> 0]}, ImageSizeCache->{{140.52413359258838`, 188.46454306302186`}, { 172.2496880496806, 183.11223312532974`}}], StatusArea[#, 0.01]& , TagBoxNote->"0.01"], StyleBox["0.01`", {}, StripOnInput -> False]], Annotation[#, Style[0.01, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-2., 0}, NCache[{-1.5, Rational[37, 250]}, {-1.5, 0.148}], "RoundingRadius" -> 0]}, ImageSizeCache->{{187.46454306302186`, 235.40495253345534`}, { 36.14656600572255, 183.11223312532974`}}], StatusArea[#, 0.148]& , TagBoxNote->"0.148"], StyleBox["0.148`", {}, StripOnInput -> False]], Annotation[#, Style[0.148, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-1.5, 0}, NCache[{-1., Rational[21, 100]}, {-1., 0.21}], "RoundingRadius" -> 0]}, ImageSizeCache->{{234.40495253345534`, 282.34536200388885`}, {-25.001213463302065`, 183.11223312532974`}}], StatusArea[#, 0.21]& , TagBoxNote->"0.21"], StyleBox["0.21`", {}, StripOnInput -> False]], Annotation[#, Style[0.21, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-1., 0}, NCache[{-0.5, Rational[153, 500]}, {-0.5, 0.306}], "RoundingRadius" -> 0]}, ImageSizeCache->{{281.34536200388885`, 329.2857714743223}, {-119.68164618953375`, 183.11223312532974`}}], StatusArea[#, 0.306]& , TagBoxNote->"0.306"], StyleBox["0.306`", {}, StripOnInput -> False]], Annotation[#, Style[0.306, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-0.5, 0}, NCache[{0., Rational[7, 20]}, {0., 0.35}], "RoundingRadius" -> 0]}, ImageSizeCache->{{328.2857714743223, 376.2261809447558}, {-163.07684452238993`, 183.11223312532974`}}], StatusArea[#, 0.35]& , TagBoxNote->"0.35"], StyleBox["0.35`", {}, StripOnInput -> False]], Annotation[#, Style[0.35, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0., 0}, NCache[{0.5, Rational[83, 250]}, {0.5, 0.332}], "RoundingRadius" -> 0]}, ImageSizeCache->{{375.2261809447558, 423.1665904151893}, {-145.32426338622156`, 183.11223312532974`}}], StatusArea[#, 0.332]& , TagBoxNote->"0.332"], StyleBox["0.332`", {}, StripOnInput -> False]], Annotation[#, Style[0.332, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.5, 0}, NCache[{1., Rational[69, 250]}, {1., 0.276}], "RoundingRadius" -> 0]}, ImageSizeCache->{{422.1665904151893, 470.10699988562277`}, {-90.09401096258637, 183.11223312532974`}}], StatusArea[#, 0.276]& , TagBoxNote->"0.276"], StyleBox["0.276`", {}, StripOnInput -> False]], Annotation[#, Style[0.276, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1., 0}, NCache[{1.5, Rational[83, 500]}, {1.5, 0.166}], "RoundingRadius" -> 0]}, ImageSizeCache->{{469.10699988562277`, 517.0474093560563}, { 18.39398486955409, 183.11223312532974`}}], StatusArea[#, 0.166]& , TagBoxNote->"0.166"], StyleBox["0.166`", {}, StripOnInput -> False]], Annotation[#, Style[0.166, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1.5, 0}, NCache[{2., Rational[81, 500]}, {2., 0.162}], "RoundingRadius" -> 0]}, ImageSizeCache->{{516.0474093560563, 563.9878188264897}, { 22.33900289981375, 183.11223312532974`}}], StatusArea[#, 0.162]& , TagBoxNote->"0.162"], StyleBox["0.162`", {}, StripOnInput -> False]], Annotation[#, Style[0.162, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2., 0}, NCache[{2.5, Rational[7, 250]}, {2.5, 0.028}], "RoundingRadius" -> 0]}, ImageSizeCache->{{562.9878188264897, 610.9282282969232}, { 154.49710691351217`, 183.11223312532974`}}], StatusArea[#, 0.028]& , TagBoxNote->"0.028"], StyleBox["0.028`", {}, StripOnInput -> False]], Annotation[#, Style[0.028, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2.5, 0}, NCache[{3., Rational[1, 125]}, {3., 0.008}], "RoundingRadius" -> 0]}, ImageSizeCache->{{609.9282282969232, 657.8686377673567}, { 174.22219706481042`, 183.11223312532974`}}], StatusArea[#, 0.008]& , TagBoxNote->"0.008"], StyleBox["0.008`", {}, StripOnInput -> False]], Annotation[#, Style[0.008, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{3., 0}, NCache[{3.5, Rational[1, 500]}, {3.5, 0.002}], "RoundingRadius" -> 0]}, ImageSizeCache->{{656.8686377673567, 704.8090472377902}, { 180.13972411019992`, 183.11223312532974`}}], StatusArea[#, 0.002]& , TagBoxNote->"0.002"], StyleBox["0.002`", {}, StripOnInput -> False]], Annotation[#, Style[0.002, {}], "Tooltip"]& ]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}}}, {{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw1mnk4VV/Ux80zVyVJEiISZchMaxMhQ5IyUzKWClEZM2dIlCFDVGYZSgkh Z2siQ8bLvZKxMiaV/DK/932e9/3nnOfzrHXO3met7zpr/bFFna6YuzDQ0dEd oF3+934Q+Gc2N0k468Dv3Iw4UbC4IBmzvELCWqfWpUerRSEgVXXfn78kfOiH tkvihCg0z9o4fZ8l4cTj45EHjojB2fSHg+0DJLxKNI5f/ScGd39JtWU8JeEr 1dQH/OHiUCuk7pH8hIQL+ELcLV+Kw7C+EWtCAQn/fCDEyTstDtI5l46GZpGw qLXP6NxJCXhz/Hm96y0S5htmiPHevw8W8zTKFB1JmDS0apC8IAmCncbHZW1I 2KPd49+nA1KAVuyn9p0mYVbt4dRkNylIMAsVFzQi4VOPu/c3jErBvvV3D+hU SFj9xKJAKXU/WJ4xTejgIeEeDY1gjskDUMd27rJbIw+uvbzrkKmmHHSMnKEs 1vJgqUqZig1XORitNtYJf8GDj1hYv95xTw5YXFT5s4t58MpbUdVb03Jg3kRq 7LnHg8+we9b7ZcvDrH8j9xE3HsyyL4LZXVARNsyqrred48EDqaL3thkrwlap J2NWdjyYXBGlrhKiCKr9qS+vnuTB3fMMLLMTihCpcMm+RIP2/l/r3GIvD4PQ 7K5yPl4e/DZKYxZfUYZDb7bsyOXgweOj67uvlCiDTgZr2CFmHtxrQb9eOKEM 7vp/LI6vcGNehdortdYq8DKvde3mV25sO/vVL8JYFUzt/I1na7mx3a5/TO0m 6nCzo3+26Rw3Hjy9g3q45QiMUiJwqR033vVnd70zL4DOV7nUVEtu3LZrSU3e GoBlNe6Ihwk3nut5PZI/B3BbCu7yqnHj264NwbcTEGRGFCk78nLjlaFvXoVt 2rB2x4LTkJMbq1+cafyxqA32mfSjCizc+CVLoX+CsA6IVNrGsqxxYYtbbBMU Hx0oGiYNlU9y4eb2I1HP9xyFKrUbYWuNXHhktKuNK14X+PUkznx/xYWffXv9 WLZOF66b9Uh3VXHhKV9b0efTuqDuJtOX94QLq8978k8b6kFTyug+ozQuTM+0 bWYv6Rh8+mnQnnGJCwfQ6475l+vDdMHOHSpCXLhsOn3pBBjBJ6fxa+o7uPDG 3LiVeqARVO0p7dfayoV9Oi9WZ9cYQUiGZpouGxe+YOXR2SNvDFsTHLebL3Li 9zKZtTwyJqDuW7DtUjsnDo9l/JSsegL2yF++6tXMidcrwep60AlgmlfuvfqG E++JXZIexyfgk1vLvYBaTpyl3VRdLGEGTrazW2LyObHCqGmM1QsziNOR580L 4sR/oxw8JYdOwpXN5SuF1znxifidFxIYzMGi4U1niQ8nlszxnTyy3xyElS0S n7lz4oY4snf0dXN4vv86T6MFJ2YOinGp3nEKBnlfc1FlOLG7RpzFFjcLkB4x YCd94cA5KoZWGXqWsKa/dLhwgAMPe81eLAqwhE/P8s5q9XDgYvO9D/c+swSf 8I2ai80cmLHe97aHkBW8kqhybankwMGtlGHtFSsw8NzzLiyaA8/YDh393GYD guT2nwJhHPhoiX2MDJstzGkF7HoWSPMfLBRc1rWFJBLZZ9iLA2eYtD1kxbZA eR4nqmHLgbcHNlZvbbADt+W/IYuHOHAV3c2yknYHUHXKexIvzYGZecV9Bbc4 AkebWb+YBAd+anNune+MI1Q8KJU9KciBpW5zi5SOOcISnBsqZ+LAPsKi2vU3 z0J0dLuaG5Udx+Q/SFQoPQf52/IWqeHs2KXF4ux5TWd494w1viOYHavOCJzW dnGGbyaeok032PGn7x65HnecYV+MkmnxZXYsJfh6V9aYMxSvNRdds2HH3X/v B92Jd4Gyb3M22xTY8eJrMX+ReVeoqlFuMh5jw18ukWztfnlAn0WWJRpiwzFc rg+uil+Av782fygOsGGnqS/rXy0vgLLMR8FdHWz47rZnOhTiAtQ+svWdrmXD dwSOjJFSLkJDbKhkdBIbls33ntMyvQRvbVsTCGDDFwh6zffRXtCVv23hmDob vlXtryRZ4gXDP+zMPx1mw0iCf6ilzQv+3fzJ/2U/Gy7QjcbtW7zhYD7fo5Vt bDixym9+7JE3ZM45PFeaYsXBwtfzstp8wCv4T39pEiuemUvkVjzjByEfNNUU 41nxp8TmrafD/CCeFJ1VF8WKr7xK2feuzA8KHwuc/RjAinOLWvTima7B5/da 09+dWbFG1zne1pprcIwnZlVUjRVXS9ZTvGRvgNBDIZH0MRa8NltbVGUVCOUZ YdxqQyxYdL31l3NCIBxJ+b5C7WfBfDn7NS+/CQTH2GfkXe0sOOhgPJEgGwS5 V3XjH1azYOOcC4I8bMEgZeC5VBhP80eEe/inEDj8q779pRILtvWPLztnHgbv Z0Xqzsix4GFZm4r3PmFw5ntU0X/SLLjhx8nTDslhcP3ziXA1ERZ8aNWh8CA5 DOreT6i85mDBptXvZ8xtwwFlcua9G2HGTKeSnCe9I8DoqK1/bywzZjeYbVdu jQJpn+vdXZHMeCWX2Y30Mwo4Hifv/3STGafz2hTu5ouGlo02aosfMz7XXMUx 5BANx+o01RvPMWN1dx7ZyaVoQPLCq8VqNHuCh/cl+RhQ2jMWFDLNhDv5VeuW uuOAz3S9L/ArEw66XMqxsR4Hi0E7Zf1HmPCkTsKKjnQ8PB88+eUqmQlfdi5q io6IB7m0N1oeTUx4q6zW4XXV2yDNnb9xKoMJx7WInx59mgB7Vl1D9xsy4akr qp/L3ZJgjuyWX3eUCRe8d8xniEyC2mfuLUZHmPDpHR1PQx8lgZnrBd7Likz4 W2YLWqYmQWj3pUfPdzPhn0LPlcdM78J4kS/W+M2IVXgHOKvQPSi0CKczzWLE FKkt7wv0UsDnUIT4SCoj9jJKYA90S4EjHJEGXkmM2KXHzfhmbAoMEFFJ96IY 8cjaq5jtn1KA7UCsyMAVRlx7fttmsHUqXKBPQmd1GbElo62Yu38ayFZkh/r8 YMDWog1Hfwyng8Hr06SzUwzY04CzxZwpA5zauXNMJhgwA8OGx/f9GZA+E1wv RWXAM+vPc9P9MoBJ0mFp+B0DjkgWPiBLyoTBh8KeRg8Y8FEDzXpVoyyIvvvQ UtyIAfeWb1uamcyGx48sv285xoDZ2o2w47YcaHhK8ttEDHiuOeQWK+TAr46b 9waVGXBQztbihbQcsOM425EkxoB17ayvyBo+BMUIkaPry/RYKKbL75XtIxj1 fXywv5geW3pOHd09/BhClPwMvuTR41Rd/RMVS49BaMnA6WsOPTZfSJK0IeXS mshC6u8Uemy4pzCKQTsXuv1hnSeMHrNtTf12vyAX3oR8adO3psf2REXs16t5 kB+z0+MVOz0e2/nmRIhEAegY/gjHTPRYVCS0ME67AEbZmx40b9LhbmnhhRf2 BSAU795F/kuHd5Tz59inFUBqQo3K7zE6rJssKk9iL4Toe6dZDtTRYS6WrxeX /xSCx4O7eQ8u0OEggZ9y1qPFsMh2PFbFhQ7/4nMRpTCUQKgfw5UeRzpc/or3 RqBECaSZXlVnO02HFRJV8w5dLIE3dKe7rwIdttTtXj7xrwQEXQQ2j/PRYW2e oJzQnaWQanvk5e/ATeLdlVBGoRvlYBVivbdMbINw6Tf0IFtUAidWfZcpsEEo cE4HuntUQiO9gEsszwbRJbeXhzukEiSi+gtdV9YJmeOtb+KKKuF3/Clp0Z51 wjB194TVaiXczjCRTwtbJ3YsdAUdLXwOuEobQkfXiIaNpDsX2KtAana/rUXO KrHLdkE8lrkGXkb2JF9IXiX8hndkVIjUgI5wYHtozCqREFCKpjVqwO5ku1a5 zyrxMkRLKsenBpJqLouw6K8Sg7H+eixjNbAc8eJbzc8Volh/svpTUy20Cml5 7dJeIb6z1P2WT66Di6ZmUeMT/wiZL94Hz/k2gs3VE1rKykvEnFkht1vgW0gm psyI6j8Ef8+0rcNkMwAD5cxB+l+Ex1vWl89ZO+AC5Y1XwZ85YkeCJO+PxS7Q zAgTqLsxSdy6NuKWF94LJjaJ9w+fnyTuhlM1tW/3gsOubP6nJpNEvca5P4Op vXAzu5YvX2ySaGnWHKQv6YU3j3/y3mn/TjyyOXxeqLMX9J/YszuJfCdKrBmZ AwX7wLxebYW95SvxiV94OLm8D9y//PpsvWOcWMm2qvn2hgwvrgwxH2McJ1ap H75ktpJhg775kMLPMcK+dFXyeA8ZUvY9iOBoHiNU5LVZ74+RAV85dqD+2hih ib/wTG+SQYAhK0Cof5RYyS3WctPohySTGIXG/SOEh+ed6ZTyftjnYx+dRj9C PE3hEb9Z1Q8NaQqDl6nDRAdr4C2n+n6YGhkK2xM7TEhx7y7l+9gPyEe+O3Tq C/HlxY8Uia/9sJA2eOVo0RBBZZ4L+yMwACdGZcpbxAeJ6b/ycdzBA2DsLHkW lqkEnDSZTYwYgONTotuqO6hEYtMTJfa4AdBd4PfPu0Ylik6qOY+mDYAqHb1e SAuFiDx6XEvk2QCIiZCHFD0HiFkek6Lh0QHYk9+Z+AQNEPJxLLVt3wdASKpV R3T7AGHLSTr0dG4AdsgRxTyN/YSqVa+c9b8B4EIlvtOkfoLMJliqSqLAX8dg rocv+ojgtyWjwhoU+D1xndge00eY+xLvLyMKLLj5+Ny26yP0dyZnVOlRYOaK G8WfuY+YUVf9JWpGgeGbJ/MtLHuJbYkp2eHOFGh5KKHJsdpN1FhprJ+Op4Ay kTUwE/mJ2H7ZbrdANwUEuZimcxQ/EXtKA2+Q+yiwbuW5Yj7eQdQc5neIpVDg 3W/N3fXQQcx3HKrpG6HAqX3DTvErbcTQ4etSyz8o4JUgMn/A6yOxOGvr5sdG BYvBmM0R4Y9EeQbyyeCkgorkL96Ujhaiw8r5wwseKmzgJsU16RYihPWRRhsf FW4vOvm3f/tAnIz6uhgpQoUS2wKmS7bvCFMtzkciyjR7MTe/KMc7AjQXM4tU qeD110+SXPuWOJgrVSKuQQXVxGPHtfjfEkMut//QISp8eDOZyN3dRPTF3Pyp bUiFJySzx003mwhcVKnob0SFBLva534Hmwg9UrJvoQltv0sx5C/xmDhStDQ2 fpL2/CkLZbuERqI9fEx8wprm/0Pc+t3Ma4Jk9Zm11Zbmf+tvoIzBa0Kbe6y3 0J4KE3VpTWsMDYSqp5iwzjkq0IlRjbNvvCKq0h7DphsVmutLrjD31xL6/a0H Uz2ocOd0wL1LirXE/V2OSyIXqSAUu4uiNV9NrM45sApepoLagv354fNVBLNL +Obdq1TwrMufvv7uBaFnd1S9y5cKOZGzV7ZIvCAcQ0MLmK5RgXGnf5Du90rC Kmac1ewGFZQnCIbhY5WEwyX7NVd/KriXs8ReL3pGVEXTCfkGUCEjQurA6e4K YiFoasAriJaPHdUqMffKCe0Lw95ng6ngVHZUt/5UGaFS6aBwLIQKMmQHe9H+ EmL+7xexxZtUuOsx52Fxv5gYt5k2awilwtK6/7VbVkVEwez9xwFhVMD7UhN/ DOYTmVp+RdRwKkjUiz0QeZBHaC5z2gZEUCHuxLPiU/a5RD5l+8EtkVT4OaH1 Mlr4MdEWMbEnh8ZFC2kRV4mHRLZQ9yHRKFq+dz5/QNXOJo6iY/aZNFbX6XgJ 7zIJTbbqIvZoKjBdnPpUcCydCOF8yHOFxp+SGac4P6YSTo7xd1tpnN4gTO9j lEwkp/PKCd2ifd83NUFKRxLR39Y5fZ7GlkJPXIMe3Saa7/g1PqbxzKXRdIOC W8S1f6/KyTQOIfjb+J6EE38fn63ZpLGYWOZKk30g0V6o+nlPDBUM37M42rh5 EzYFQjuVaYwfd3C3vbUnBInfXjo0NsjbxIUHdIGSXjauS+PIXNfJ2v/cod1G /7IWjXdVHCPp+lyD7Gdt22RoHMB8iXz6cCic/mjSy0vj7y+U82IPRYGS5Y+y Wdr6p5zovF9Lx0FwIvlRA40xb+uRXxKJsE1a62kEjdNGDKPv8d6DXedcKYjG 7dUHL8ncSYEbCzlCi7R4MNzZZvGB8z4obEdB2TRWdfmnfjY2A9pvV/ynSeMr ml9EV1geQFiKTWIPLd6F296wpUTmgNsUcdSBxpf9ev/jD3sEkW9cto/S8pVv XDv8bCMXhs5+3PqBll+ole4J1sqH3cydIE3jwb3Z748HFYDkj/zbkTQ98K6G lX1dLgIz/86YXTS9lLouPqxULYHrDc1qVjQ9HetxTQ65/gT0Qwa442l6Cy4x ChD4WwbKJQx7e2n6FNjeeOmbYgUkae12naLptypU7txzn6cgnWfS9SeQCn9L OcT3/XsG8r0XhX/Q9H8g4icH9nsBfxNuvvXwo4Kdxja2crEqoFMfPb2dVk+3 /ygzZ3ZWwcJtL/uXPlSYPx+yeXV/NcTMPe/tuUKF57rci5JfauGZxaHUCFr9 TqzJ/eKLewU7f5DYe2n1zffSYp5epQ5+Rwwx7HClgp/Eg6nPSfVQL4nvBjnR 4sty4EuibiPIKLx1arShgkej6WDQr0ZIyik2em5FhcxrPgMeOQTsTNnZmXmG prc/Q1OiQRhujm2tNDSnwsh58YlVchOcMZo/vIf2P8vVfTHwNPYd8Cw/4Cg7 TIU6Eb0z+0bfgUxh8LZZeSr0rvX3PVB+DyFxj2eFD9Hq4+VKd+zEe1Bs/ing sp8KLhI67ee1mqEk5A754m4qSLF04x2/PsLmFrdrroxUQONOcEe/FVS1xG0X Nylg3bj4mimnFfybsfn1NQrEXROo/3W8DUZdAhLs/lJg7rvjy7b8dvh4Uqs2 /zsFnjbPl9y06gT2ikIjuWZaP3LgDj5U0gkZ6TYBVm8pwLN0wGxkuRO8sw54 Xido/eje4cCHJl1Q9dm4NKOGAinYW3Rzvgt0zMcEvIoocHL33KVG+R5IKzz8 xT2KAq39oyxaNX1QoXjYu1ydAk5iXgspI30wvP9rfI0SBZYvbVLnWMlg+riL +5UcBaSYhcsfWJFh5J6DQ+4+CtxStD21tkyGWHEdMs9WCugmkR/Wa9L6/Gyr qcXkALw2bFVVf0OFPfHPBhriB2Be6fDbPz+oYBTU8P5I1AAIi+WYlO8cBIbx R9E1IQMQsuLtJOI9CBOv4vISvAcAle68zSLyGVbZjh/pODMA77g8RnqCh6Cr Cdc/3jMArZ2s0RfVRkBg/M3CyJN+mH2S62FqNQ6HvHxtPpWQYWnQneH9pXHo 4m8ouPaYDHSch7I0IsYhRnurl0AGGfgv1rdLVYyDqumOJwYxZNA50HeIkWkC 4oxaO+xcyZBeyrxU83QCti2+r7ITJYNumXu4KOs3KHAy/cyQ3AfZ5QezFl9O wrWN/6zk3Xqh4Vz0drmaOVDrxekTW7ohgC+DfGLrL/h2QsOm7Hs7tHf16fZk /oEjsowfKYIt4N2msi+Rfwlky89bcla+hfxO3e2uLf9g7eroDOOHRhDIupfl 2/MPbhz6mMNf3AjxrqOiEUP/4I9HgJ16XCP4rAcefLTwD/4Lm+V9adoI2gde 6A8KLMPQo52CNyivYThaNMDUYxnQ60Rl9Z8NIHBkY1iZYwVQuVkAeX893C6r KWY1XgVfvvudRn01sE9E8/78mVVwoUTO59bWAE7GUeRzqyAeNC9Pyq6BPwEf nfKur4Jo5n/7JV1rwMbwsxDkrcJTy/jfFsvVsP/7RtK1lVXQy24SKd5bDR/2 HPP/VrwGw/1+3VIxVUCf3Gf4lnkDGM1QpUBSJWxkzzj9Im2AkPXa+P7ASlgp pgvaI7gBbZTkNWPXSlhslKkIPLgBctMK5BbNSvg+E7n1sOUGyFrUZKTNPIN2 HaXP+cUb0PR2i1S04TNI/53qGW20CeECk2t79ldA6nppVNXpTaBr9wwqZqyA e2xvcsYdN+GIQuSVU8PlEC8833XEdxNGLcKDeVPKIeT4MaX/HmzCdqv+TxL0 5XA+d2ndbX4TboznFlSOlcKOktLmfAM6FDJGaMzVl8DWdUHDXBM61MFianki qwS4Tsa1PjSnQ2jJ4Ut3QAkwLLt3ZNrRoV+C7vOH1Utg3mBfb5IXHdrS2hHl XVcMH6YeDQel06EgRRXHGlwE16TS/lpM0SFP0tRO9q8F4B3EfN38Bx3KGOz7 ptFcAJ5dvv9O/KZDL1N8pW4/KQCnG6dWj6/RoSf7UzojvQvAtIWXXpuXHl0K FOjtoyuAfe7xXLKq9EhJqH9pVDwf+otC9zLH0KNAYfE6+fBc+HqCk3o5gR5x hqfqd7nmwu//Uu9Q7tGjDQ29pTtGucBjULpcmk2P/ohG2Hluz4VjU+RO8xf0 aN0Ufcp/8hhqpA4EPRqmR0nsV5X/DT6C9BJyn4YSA4o783CKuyAHCk+ejStQ Z0DWNs9YV/xyoGp5BkiIAcWKfHggop8DXYZ0pePHGVCQipOn0Ew2sM9Ih8We ZUAZ9Levf1TIhgDpUNmBeAZkZh031PkpC2xLpaN9xhnQz0BFCR25DBDcs9F1 c5IBrXWSO9s5MmDwXveuhDkGZKp0UjvqWzrYBNyoLFpiQCy95OGQrHSwMvww NMTBiCpjKZ+S2NPBYvKcor4iIxr7fekb93waGO/NGN0VyYg4vc7znhtIAa77 ngf2xzKi2c4nFjY1KdDGga4p32FEZca3M4Lup8Dx3985T6YzItmLanc0rFLA oOmwSnQZI3Ia3Mb88HMy6Dp2JSz0MSKhxlSrz9P3QDOLVeO9BBOS0Uq0k9h7 F3jOL706coAJ2bN591Yy34Ux6W+qtXJMyEjObc19Kgmi694ol2owob+csmVn KpKgmxqscPckEzpP+hgkrZkErgKL++2DmVD72+HvO4g7kJQ6KvC3jwkNvVHx XboVD072nfcvDzKhqdOHL3BZxoOSRCP/1AgT4t269a7nvngYrMri+zzDhI4b nd3B8SEOJPrO8DbRMaME9qXMZ2xxULe1gzVBhhmBqm3H2awYmEh8tSQeyYzk eLIMGBejQKHw9kxkLDPaV+uwfK09CsIbHIe/3mFGltTsvVIFUSAyzfwhP4MZ UXvbq7Uto8BBxzxV/CkzIna75hk2RgJlcUZRfJAZ+T42zLt4PwLarYW898qx oGa5gr+rV8Ngl9dP5wglFpRkqV+VdCoMLkS/sZpQZ0EHQ4QnrRXDgP2FO8rT Y0FOilfvx/wJhWNcL0l7bVnQA9GLlSeuhQJuNKkQi2ZBquk9/5I5bkLV3puz okMs6HnawRyDO4HwkjnLV2KMBclmuvDx2wdC9WT1utR3FpTArF8lJxMINaXz JLkFFuSX+3fcqC0A6hQdDh9hYkXthlUyJO4AII5qBdvIsCI+uLvDN+cGtJ5f 5UkOYkWM1Tp+wkt+0Ka3Iz0tjBUJGJE+9nf4QbukomhmNCs6Y8YQ3FXgBx2z FxQfJ7EixeK13OgzftB1ddDyaT4raihIMlys8wVyxKtHbe2syKbC6GBs4lUY zbuuwLSbDSm/JBsau3jDIrXi51UxNuTfcO9fq7Y3sPF+L5uQZENScYwqccLe cCjIQvKtAhtaJ3LILRQvCLGQFwo3YENe07vIGmZeIMQ8y0zny4asQi7ZGqRe BmtXB+pqKxvarpPxfIR8ATwfpKZd7GJDYY+MapKyL0BoT/upz2Q2xKG17Xmp ywUoPqLxqW6UDbEYHh0W+s8D/vELvPVfYkMhZgl3qMIekNbcXfafKDu6IRDw SzrMDXqk9EL/3GBHiRUq6R23neG+9PselhB25Mx2YrvXeWewk9GTEIxgRxFv 3lfaqzvD5CG9VpoYkcJIxxWB6fOwpqzHd+cxO7ovWSC/aXgeJPT0iqVa2ZHr qRQ12Z1OcOOcXpf9Lg50bzPvKVufI2idfy/mLcKB0o0/47P3HIHBRc8vUoID XSzvK1Q86QgJ7nqCpYc4kJ4gtf1YlwPkXtFz/neUA215ZNvI1WcP7cF6/+55 ciBZm+Zoz1+2sCdTT6TlNQe67DpqaxtiBWdnSiab3nAgw8smxg+NrCBXnedp fTMHejjxh+7oTivY97lf62k3B1qwWlYtemkJB4XcbdO+caDfZl653b/PgGZO XJozNydyySzYKRlyGkLm5+0dtnIi8S2CJ4RPngZ85JSE1Q5OtLDi+OKi+GnQ HdlVZSTKiRR4dmGWdgswEinvVlDiRF0vqnYf3GMBNrmdXPT2nMho95m9H/rM 4cFvxb6Vc5zoorHOtS9l5jCsk5616MqJULWJok6UOThNnJWe8uJEr8s/k38p m4OH+G/9zkhOxFG9YPI5+yTcKOSLyC7jRDXymSyu/maQ9sR6WW2NE/Vwabn/ ajaGWVPq4kN6LsTXrxJ+PNIY0B+rBWZWLnR0fvKtkrYxzGhYTXZv4ULbU5FF Y4MR0IY4sockF0pg+yDpX3ccvv08VZlhzoWSzcavFnUagHpKb9mmJReiK7tr nptiAHdUTxW72HOhyennN4VtDEA1zPyhvDsXOsUy2pb2XR9ubz2Z8DGYC6lX s9deZNaHw0q0aaeYC9kp3ivrstaDWGqHs2MFF8qIpCvy3KcHw8EmZ9+/oPmf 0voY8EcXYj4YW95t5EItFpF/pu/owpClkd7+Ptr6Tm7qq61HITLAQNR6kwvt vfmf835LHegldKi1p7lRqonx/c2rAIOHOC+8seFGc+TW/PIDAKMPe1faHGn2 Syv1fyeOwNxNZ6ERD24U6SDvdOLMEWBB0Y7MIdxIhXP3dTYdLVDDH7+dLORG bWUD9vcPawCSu3fNtpQbcZNTnjj8VYdjj2xYXZ5xo91T749XVKuDeeis1I06 bnSsW9l6XF0dPBG3Z84nbsTfg4dCDdXgITb7PbPEjaRFlOqrQ1SgUG5nxOIq Nxojhmtj9VWg7NHYtg06HiS9VCBO5lWB2lAfpS2cPChXZCqmO18ZelDKDZU9 PGiI7+6zYz1KwNw0sBGhz4PmiXZJa53DcLHJgXN3Og+SfRueJ+EtD04PqWkN 2TzohCCfd7COPNgEW4jZ5fGgPW9/PzDkkwcDteNqWRU8yNnXZlr9lRyIVyq5 7XzPg3QvMxHObHK0OZXr7fbfPEitWG1i3k8WekNumb78jwf19GV+VdsnC612 DIMW6zwof+6+semADNQK/FtIZiMhYsGGuV1DBlKSJoS37iGhG3xrI1PcB8A4 tC6Ax5iERpReRYqRpeCogxJLxUkS8scveuTuSoG65rO7JpYklB16gvmHiRRI /Ssovu1EQqo/ml+4f5QEJq+7/Rz+JDRew6qg3bIPXju6K7AW0ux3T7mIfhWH Kq2J14WlJHRZh53n9BNxKNvlYHiskoTql82ihL3FIXPg1NmoBhL6GBxrcIlO HK6dgDuMvSS00/Rsca/EXrgkW7czj0JC0iHzyokLYuDMqVSgM0xCtoY2L8j1 YmDeLN0QNk1CS35fNTdOiYFhQYG+6E8Salx6UvVFRAxQhEgvXiSh+KSUnzrz oqByLsvh7AoJGXn+K5FpEIX/O5+C/v98yv8AMBF4TQ== "]]}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{-3.64, 0}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], PlotRange->{{-3.5, 3.5}, {All, All}}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.668588546558909*^9, 3.668588571777183*^9}, { 3.668588676810728*^9, 3.668588697543497*^9}, 3.6685887780942917`*^9, { 3.66858938068674*^9, 3.668589393747299*^9}, {3.668589445188478*^9, 3.6685894989818563`*^9}, 3.668752278435194*^9}, FontSize->10], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"c) Compara\[CCedilla]\[ATilde]o da f.d. emp\[IAcute]rica da \ amostra de somas padronizadas de n=\"\>", "\[InvisibleSpace]", "25", "\[InvisibleSpace]", "\<\" v.a. i.i.d. a Bernoulli(p=\"\>", "\[InvisibleSpace]", "0.3`", "\[InvisibleSpace]", "\<\") \\n(azul) com a f.d. da normal-padr\[ATilde]o \ (laranja)\"\>"}], SequenceForm[ "c) Compara\[CCedilla]\[ATilde]o da f.d. emp\[IAcute]rica da amostra de \ somas padronizadas de n=", 25, " v.a. i.i.d. a Bernoulli(p=", 0.3, ") \n(azul) com a f.d. da normal-padr\[ATilde]o (laranja)"], Editable->False]], "Print", CellChangeTimes->{{3.6685885398546*^9, 3.6685885689111347`*^9}, { 3.668588673244617*^9, 3.668588695079238*^9}, 3.668588774161582*^9, { 3.668589378168522*^9, 3.668589391863082*^9}, {3.668589443608777*^9, 3.668589493428822*^9}, 3.668752278443524*^9}, FontSize->10], Cell[BoxData[ GraphicsBox[{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJxF13k01HsbAHD7Mtd2SkhCll4lVDRMxU+uSSIjqTBZpygpS65EIWVSKJSS 9bVElrjeaESZKWszQ0hRqcYoFe4wliHrezv39n2ec57zPZ/zPOf7/PmcZ51P oNMxESEhoem/8+driCkNLy/LM4T+DWf//8T/mANHpJmtn5wGt464+QyNgL3S c9+xe8EpfD3W3UrwVMGOcmNPcJ2U92m/Bjnk6PY3I8+8ZZG/31utbKomg7zx 0x5p+Q845AUbgUlRL7jjzwIv825wSOwS7WQr+LFutW9bFXhPgEbTRSrY78d0 1JQR2MynoDRhI46xUMLv3ufjiOFYjm+0dMH9xkvCdRrgiqwyg/2qYKfTEnHR 8mAB5t3/QAxsMaiUgBuTRqZS2QS/t+BV7aZ3NCvAhSsLpt7Ggqtp+Gf2A1LI jWRmEh0Dq+WqaaYPSCDb/U4+9+qqOLLGvG/MBlsxZG5xKGPHhChykXOskEMm WEr/qmZvINhfONnSyxqM708+yrcAi9BS4mMJ4I6U1PKVJuDMgJudhYaijLko /yehN8MxE600lVZtMLv3ttd3FfCCVca4gSjYoCI7JuQvEWRqSu5hHTswJzTP 8M19YeQTWSkFWf5CyKrHVJb3KoLTyBY1E5HL9F8uN6mM0QsGP5fVtPfwXabX qseN7K/NwfqGkpVvkcE8uvDgC0ewasjguW07wLt1mhXydME58fEW4XNLyIJR uwDSS3BxTXfrYjjYJcpVu1wLzKjehcVwFpD1RjaQnXPmkU86OMZxB2eR6yw7 GZKPwVLGjgubroOzjDbbhV0Cb96kkEEPBzfpjX+TOj1Lj1SssBmIqMYO63aa OlHAUerJrz/vAxcpO545awa2XiANP+POIHM5JG+ZJLB6KYmUNyBAdjtDMsfj wWGr1VojBFPIN+nfHOmPJpEtko+uIEuDv3txXgnIE1C3zam2Fgff2nIkLbWC j1xaliA7lA6m69bHES6BmdzuXZRwcE/u8GLiKT79pxQrWrFPR0TqHvmAh1er hnEOgxXlzvle2QTGRPoOGQqDQ08T5IUjx5D9+54H3ZscRX5llt9khB9G3nn3 okpd+Ffk53ljCtfZQ8g2pe7SPprgaxW3xO2ZX5DZ/2MJ40PBPJOvyxttwfI0 kSUNdbBmuMKFDCnwZoL6guLkZ+Rdc/qRNz58pgeuuMRg5r3GnOoJc9JtYHf2 qpGqwEHk4x/4712VucjJ++K3Nmz4hEzibHrQpvMOedrzgkzuwx5kPD2zd/hy B3LTxM619Vg78oH1H30S5ljQf2Z3KFbCondpvf8R5c/BVBkVcZOHwUsyyneK JcBc1+j75BomcskkidW4AhyUpMnTD3qBnDjlc479pQX6yffETpGbkFsOOOOP JDUgE8bdKR8p1ciMvHZZVqM7sv6lMRzjj4fYL5tJ6H+4Yd2AnG/9sLfyahPy MV0rNsW8FVlPoouhzH+B7Now9VQsh4l8LUylnr+XBf85lRKO54HrDXfWfpxh Ybzz2DaPui9YD64Df9CBjTw65FnDKgQ7HC6uvLfUjlzZyiuJdnmJzHzDkTCn 9SA/tWWabX/+FuovJaknCZ+QR0rzTzi4cJGt9HuMRMUGkdPLxAW0SnDjSXXX VPHPyDx90ycBZLBYYuNfrlTw6lGShk0VWEdNqfZpC9jQvt/RpB9MOJ//vZQP ti4/HrtO8gvWkKtq9EFnGBsvZ8kleAwhZz8wzJyq+YpcfsXNJRU/jPzEm7pq M20U2YV4hPP11BhyhOLd16QVfGSsM3GhdztYLDFG24sCno4wN4g9BR46MYcv PMvH2tk/YxTrc6FZtlwEv7AJ3fstAVyuy3Pf9F/wddHjwUHVYJVIEj1GfAK5 YAIvm3IIXDsgXlI1C2Z39lh3Z0wiqztQa/7sm0IOZpmuv6EkQI6SmR8QawRf 29eQHRE4g6zAy42saQbfuX7RdXzNLMwX/FCI3gJ+5xHSJmsDHkk11Hm9H7zQ MhyddQQsO1/0nuIHVjeimOqHzGL/7D8e5r18oGhPNrjwpfUq3zawisXSRzxu DjmxnHZf0n4eWfhmj22j+BIy22rb+8L74PSJtACq3TJy2mJZXPVBcKrU8xyu J/j6yj6agj84QZ3XaRG6jG2RKldzOzqGXTZRFc2MB0ft3b1tJgscFJZzt7IZ TMkXLPrxwDoXDlBGNYQsf1m5pKy1cA84TO/2tPM38JviGG3xeGFkctlGaghX BNnFtqW/HyeK7PzV29jGGKxI3hblbCZq2VsQZI7rHcNedUi98DYHp1r1rwy0 Ajs9qvQ4bwPuyj40dXs/2DFu8WoVGezgbFczFAi2177LWXMZbO3ZmTTeA96Z KbmjWVcMOTmNozLdAx688Vigc1kcuW9q2FjnHZjtqhasvVkCebdMjbw2Gcxo 2FehRQUvKmdcyM8Ebw8esteqAl+98tgy9pGEpf4VpbcdM3/Py0404daD9ao9 9ayegc8yt6rlt4CVZvpEfbrA1drRI+v6wUzKvNzN85LInIKzW8XWSiF36xFj JsOlkXWJxPt6THC4N7HTfQ0O2ZzSrBWsCRY5Rvzjsi64zbe59c5GcNJxomqZ Ec7yn+trHFMJINK7COD8QOLR2d/BtDBiBdEFzL5AnE0NAAsSiIkGaWCNDKJm 21OwW/5LGWH335Bvl7r+ICyAX9Gt3tYelEU++czjt7Xpcsj2MXURcvbyyP/e z8j/B2E6lmU= "]]}, {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwt2Xk4VN8bAPDBjBlmzFhahCwVCZUlyvoesqZE2bKEFkupRCVrlpAsSSFU 1kRUylKh5lBaKRUVlUQky0yW7Mvvfp/n99d9Ps+5533O8573vPfe58rtO7br IC+JROrhIZH+u26AZQOLiyysFBhq9yWLBLaH1p6bnmHhW9k79qx6QYLgtC0K Y/9Y2P3aEulvYyR4Mei0r2+Qhd3UjgkVWPGA+5WcjqbPLHzWvnciW4AXLo4o vsm8y8JbFOs11qfzwUMpHZ9Lt1j47qUkxfFXfNBpZklNusHCWE8/SG+BD5Su H9kakc3CtimGA3beZGjYdr/WM46Fu/J2PWk2osB4gW6ZhhsLRzRUev8WoYLE u+3b1jux8PGmkwkOVlRAM679CnYsLLNRT8U1gQpJ1hFrJCxZuGoi0XoDlQYK 88+ukjYT6zHkKWDyC4CDvVVSM5OFLZKtJCmr6FBD8zjq9YSJRbRovnu+s6D5 h/2X8YdM7HXpWaWMpDB0VW83iqpg4q+UZ+eo5sLAf3DLsmvFTOxwTFtZp0AY dtWznnxIZeLXD4KMLN1EYDDoiZCBFxPH+NWFruGKwoJ1ZeAbDyZeinVj/FaL gajirZ+OLkyML94PMXYUgy2f0qoCbJg4XSLbIf6pGJxVP+JaokvEb31/tDR3 CUgNSt5eIszEfBcqW86cWgYbG0SW5wsy8cp10ssHK5aBUSY1ciOFiZ0yRzeN jywDb7Mx220zQriacvBb77HlUFXweu7MLyEc55rV5hcgDlYuQdsHHwrh1kYX 6YgsCTjT/Gmw3kMIt0cxupgnZKDrSzQudRHCm25LGVc2yIDRL9W0NAchXFAc xCcgIAv8s+cNfHYI4ePS906G75GFREW4KKwthK+ZFdt3LshCVvRNLTdhIZwf mKe6zmUVzCXb0i3oQvif49X5nPhV4JrF06XOL4ThWrVWxINVIHvPOZ5/joH7 z4ydjFiyGm52sr7d/s3Arn/dTTI/roZK7dORc08Y2KT99rsZT3lYZiJv3/eI ga27fRdPZstDoPUHpZZKBr6yXv+8T4s86HiptBbcYmBK2fWyx7oKUH+5S8Ey nYEbcgePaYmvhbdc86bMIwwsr89/Z9cfRfhzY8XyzVIM7JtpIt83pgJv93Wf 0lnOwIUlpUy5LeuhUqb0k74oA59Zljk2EroewjP10o1pDLy5mHnEibYBRJPc lu4ap+OON731XgobQefEDbEjTXSsm8cra4xVQUbtaIDfCzq+d8jiudNvVSBz tD4GNNAxdXFs/3OmGrz1epka/JBwRJZyzl412Oc8KHKukI6933g+8uFVh/NG asIFoXTcZHRcZd5JA44tTh8rCqTjcnK3XlWcBtjWNbwr8afj+3nxPs2VGiCt ZXuh3JuOa8YdGHLCm+D+ukDmE1s6Xldy3v/Qm03QIfyY0a5Cxworrw+q2WmB 0g9zAdZ3Qezafb9Gr1Yb5swmNhV9FsTlymLKp2a04W15gbv+B0EcIGFYDjo6 4B+18ODwC0Gsdu5zUVytDjySr/R8eU8QW+1eFs5o1AVzX5lnkbGC+D6r7+3M uD5ItDVxxSMFMXXz7NHn+gYwpB8sWR4iiPs+7ezQjDOAFFabf6efIJ5637CT IgXw5f55OV1nQWz7vGi0UQGB1/S/8PGNgvg8r3JSpbchbNlXcCtBiRhv3dgY n2oIgm+sP62SF8Qhmzr7a+sM4c7V0vU2EoJ4sAp1aYsawQR4fLtNFsTJk5W7 7tUbQWxsk7ZXuwAe7HhRsUXDGArFCsbbowSwb9r0VmNPM3hWTk1oDhPA+x// dUjMNIPeHb5y9acF8BoLpVHdZjNQOKdpVXxUAB9rjS1t1TSH4rkXN085CeDG ihkRHoYFlPUOOYmpC+C1i5zkv03boCnKZoR/vQDOEpj6RKdawrBMddzMWgGM jplNZhlawganM5U/VwrguAuvFpc/tITytyLMcgEBbGUpp1p4aztUPtCq3/6T ho1/6+jWF1lBq222A/pGw5p83xnh/Vbwb2RxWOMzDVeSnc3qlHaClsorCclm GpZTHzmHy3fCw1znE38e0vDbhM3PIjysoS4+Ym1sCg2XT5utyYqwgafOr5PY QMNhJTZ3k//thpZCsb+mOjRsRskzGltlC53DLrvebqLhwaJjutXWtjB1hrvs +zoadvaPWuF02xY2FC7JnRGj4VzG4d8qh+0ga2jvfc1+Kh533uh6bdoeijWL lzzupuLcWpkLeusdoCp85JTxdypOMdiSZuLhAC3CZ3V3f6Bi+/Qa2SuvHYCi WfLMr46KRzmJ8bb5juAXNvapNIWK2e9hZbunE4Q/19PWSKDiL5U0G/88J0hg xWbXxBD+7jsU+c0JivLE3V8FU/GC4q9iqq0zfG3U/9N3gIqzvtTfeGbuAqbM c7Ny2lTslTmo8cxiL0jlSMle+cmPGeb7LzEcPeB2ZqSQ9jd+rLx4sbE/1AMM LvfNtH/ix+bOcuP0fA9wiy9vk2zix3aLHgrrhj0gP8A4IaeaH/dUfF7dFLsP FM19J4oS+LFhZO1b2Zf7YdNIbVOVJj+mGlAyzsd6QuOgbI29Kj/OuJXhrVvl CfZ9MTcnlfhx5tXE8K2/PCHw684obVlivN7+rvNWL6hp7Nn8WJAfi5lKf6yl eAPKohc8+0HBYv3/SLXZPmC51TnoYzwFJ6bGynwVPgJK/oHvW85SsMZRbkWO 2REQzLu07u0ZCnaKG2rH4Ufg5cKb9pcnKbi/hHdCgnMETGv0dJ54UHCkgIC1 /vujgNSkZ4u1KTj2tuCbdls/0JT5GRr+h4y5t3ozbu72hyVW860hv8hYQPWZ l/NJfxgPXbE+6AcZN0ldPmua4Q/3O2y+B7SR8Wh3fcfTr/6gmt6g71NPxnbL rkXv9woAJaHChd2ZZHxK2EclNP4EyMx6RqyzIOPfiaGeO2dPwVCbV2HNVjJ+ fOOrK79iIDws935paUDGfofTogXtAsHa85DwUQ0y7n31RXLubiBEvD+Se38l GR/fcaEvxec0dN88gXVH+bBDf9Od3sEgKLKNIlll8+GFPM2GENUw8N8YveZH Gh/murw6VesVBgaCZ839UviwjMft3Q45YfCZHZOSGsOHm03iYm+wwoGmHC/7 +RgfDundMVwyHg6HeFKQuzERPyGzcJ93BKy/cy3Cf5gX96U1nAg+FAXmj+1Y 7v28mK10M0jyfBTsaxK6vqOHF29tWEodKomCKwNhtYrtvNisn14kNRAF5LV7 Jzqf8WLJrnPeDb7R0JEj7Wt5lRfHa57eahtyFmIv5jisseTF0gPul/XZsZCX 69AnYsqLd9/y/2XcGwt1d1knFxEvNp5XORZNj4OR5jOpHVq8+KFh0+abjnHg IujenLKKuN+7uTrlXxxoRMtunZ/mwfXxeUvldeKh60Tehk/FPLg60rNY6W8C hGueNP9ewIOXt12iVEklgtSE+b5f13mwe/rxjFCLRHAM/Js2epkHt/wxPfCs IBHeB8E8M5IH5/ttmNZ3ToKG8O9vzPbw4Knsn3ZLPiVD4bkVPo8EeLBl/V7/ KwspYGQxHIXJPNizZFhtTPwidAnUX32xSMJy5RI//TQuglSCd0vbPxIeuBx2 vc37IqQlPdg8+pOEl11SSDBvuwixqXb8yjUkHGOaIjVemQo+Vy8WXD1EwvYR pIcHUy7DOG1b/OaDxLjksJLg/csQcZL32Ac3Ev7cP6n3/eNlSLcK0KHZkXCp vRifsHgaNJDs3gcACZtPpobdzk8DiYPii9uWkPC7mqQ7Yzgd0pwNqkZDFtln r+kvCq3OhLJNdyMUjy+y1bv2HPi9LRMahGS37/VcZC+PTar9558JHDZPzyvr RfbsRIDw/aeZYLqmUThPfpH9gWer4F2vLJgYsvTd+W6BrXZYfWP/o2xwDN+z umzVAvsqPfv663PXgY63PMsSX2DvNqloj668Dk94xA/GMxfYFQtfxvy6roN8 zKciz5l5ttiPzJO/t+TAaMJuJbkP8+zD5w9GbxvKgcTMHWrpkfPsr/rlz+Pu 5AKuNISIrjm2+s/6yj6NfAiYkO06+mmOndQcbKOyIx8UtpAiXZvm2I+D8M1k z3xIqn3SoPNwju1spPK1JDMfnBp0Tf9dmGNveFnepsdTAOPvNHccgjn2o30n uvvbCkBxcJ2z7fVZ9sf50IXJtBtQdfbDpUOXZtnZw0eU/KtugJF0SFPEuVn2 EZNhX5G2G+Bi06R/23+WzbhhXMJeUgQpD47K8pvNsg+87VXsTCuC6eiK3gfc Gfb25vkEvZyb8FpK30/ScIZN/nO+0PxdCThU9xarac2wFx4GxF4bK4FfO5N/ minPsB1Yn5dLit+Chagfu04snWG/nROpTfG4Bep/IjWb/0yzl/Msk/WZuAVZ Vc9nwlOn2bd7gzV+ry2Dw1bWMd09U2w+esrO77fuwMI21Vbl9il2i5BeTO3H O5BqJrz65NspttinJ9bP5u5ADWrB1EdT7AjfL8L2O+8CTcN6TiV5iu3miqlh E3ehaLl1QOCWKfbAvxfXAovKobtrpwcjaZJ9TcKy7LzQfXAK2KmvpTXBvlzS zP0mWwUJX655bFGZYK+I/xarp10FdfpDMTqrJtiCUi8N7tlUgTQt/q0Bc4Jd u01xU0dUFfy82uBm1vePbWX/YK1yXxV4P9eMckz/xx4R4S1pKa+GUyukXgRP jLNtp1vf7rd/CJfY/dbs6jH2Ce3eFrtftXA9lCT0p3SM3ezG+/QZuQ6KtcVf ieaNsYMfnm2wkq+DJxVmhp4JY+xlNSRapWcd9N8sUhNyH2Pz7K0OfTZQBwYp B0SdBcbYTPOXO/imHsMf966PE86j7O3FO8wuiWEA3i/2G3hG2FvGGgozfBvg 0JcGvxtjQ2wTIytHfs8XoJcZKV5z+jfbpGduULSoGby/j3zds7ybHZLxpzFo +wfY2aVy++WaDrapmvU5z4420GJnfx44+5ate0IrXnWqHbT/uu7v3F/JPvRq yZmRye+gHM0VxCcrILD6R7rqVBfcfcEpOeP4DgxdKL6e4j3w2OL1Fp2GdhjP kd54j9QLg7fyfawcu8HRODigidsH125vyB6v+g1aX29FiJf0Q51H7FLVB0OQ fqCW7LtsAIKXZLbtFB2BC76K/Vm+g3CYz/7HcakRwOrbn6scHwSXUdE/lxRG QENdPqn25CBAS+LcZ50R+C1N//QufBDIiRGr3fePgPD5SpePKYOQzOd93K9y BOIk9sSYVg5CwaiW0EX7UTAMEZ78MTUITS2txh+yxuBg7Uzf7OkhqHZx2lJf OAafer+gh6FDkNf/Q7n8zhjs3drRcDxiCE6RBkWTG8bA203L6FvcEMiq8vy0 GBiDV4b6Wy+kD8HJC+vD6rXHYdcqgdkjFUMgbRVbVf5lnDgnRRNig0Nw/M1m hQvLJqDwkmL4pl3DELU4FmkvNwHDBsvHo+2GIVWj/PtKlQnwvvjOrsVxGCqz FdPKDCdg8LNkt5vbMEwdXkF+7TsBhvrDxk6+wxDOmP1JfjoBsd3xRx/HDMP5 HU+uBR+bBFPuKX+z6mHIjgyeNgyehMG2a/KbHw1DWZWWnUDMJGicWj22um4Y mlfeZVzJIlzu1zNePwzCnJyQqsZJSM5wND7RPAwZyZF7/kpOQVHD7IGBnmEo fGe81PPlFJzwu2DIZnJAPDs1+8SHKfCj1QmuE+FAgmeXXPS3KdDNKwxOEeOA /3zIhty/UzBgxG/rKM4BQ+UKsw7xabBWKRdtkuNAZ6xcsJXPNCgp+XGMNxHx DBY6tQRnQLR3450YBw4kCmw/aLJkBrYb1fwt2sOBxdbMwd3SM7DR7hnluTMH +g5rTvmpz0C8yp+yeTcOVGX6ipQ6zQCPacSy3d4c2PWvY6tM6QxMugunZJwm 4pU9KKZun4Wu1NUjKRkcUJDVy+DYz4JRlZ5DRiYH8CUc0+YxC1fx6v3Z2RwY C361ryBwFh68uRBwNYcDThZfpaBgFtYwbEqibnJgXd9CyqmZWfAtlZ3rqubA cxnToN7iOSj8/atj5CMH3C+99mqqmAPxGInT5W0cmOHfaV/xZA4mqVXjvp85 sIHjoBHZOgci+7Ze+tHBgbQ6n2Ep0jykfevOKP3JgQN7kjxsHebhgJrBzi4O B3gutVo8pSxA//PMvpdULixcG9g3wlqAenS+aL0AF2aKSaEyEgsQS1qsSxHk wvgTlTshGxYgNUxhzEaIC30DZ0U3OSzA9yVqZViUC01Gml8Lixdg5rRwsvVK LlwZTfONtVyEo6DavVWNC2nzpTGVdouQqzihckqdC6m0huvdbotQbcUzW6TB hQRpTovBiUXoKnNXIGtxIXybqebk1UXgpJ7uKtPhwv78iXkvziL0Ws+JPNrK heUlpS8KzUloXcCK5kZbLojOS1jk7yAhy3pxnud2XGDYnH+ds4uEVIu1/j6z 5wLvtHdzlgsJ7a69T2Y7coFjrvAxxY+E3q9+o1jowoXn/bmdoVdISPJooq/G AS6cUkz/Z9tPQsEXXHSP+nPheCglcNcwMT/qroJ5ABd8W05M7RwloTg1uTHZ E1zYd3r37LY5EkpfOqnx7iQXrF4K8xgK86DFnwdOSgdxQcE7gbF+Cw/6Pdk9 fu4MFz7djFhNOceDdqq5l6clcInnIb39aBIP0mmgh7gmcmF0Mi35SyoPArGZ lWuSuMA0L50uvcaDNH3oo7eTuWDa3/ZuVwUPkpFvmKq4yIUHisqhuZ08KHXe pfR8BpH/krZWXU1e9PAO9+XhfC4U2bifv6HDi063SyuJFHChcnoAWIgXze4X T6oi3GJBKu3exouC9u1xnS3kgsCAUmS8Oy/6WrbPIuQmF4KVItZ/TuBFEgYv 9+4o44JzqVKsfzcvqiXPPDWq4oKEzELLmd+8qM54/416wh2p7yWThniRRQHf a6jmglPw6Xs3J3iRz5mzXdoPuOBo8fzbN0E+dPRshrP8Iy7Y/vbQMNPgQ9rS DOuOOi5sX53ZJXmWD7kcfa7T8JTYzwxf5XXxfGhQpU5D+RkX3giiU1rJfOjz BquES4S3jfbRba7wIZZN5J59jVwwr9+0ObaMDw09Sj039ZwLxm4tSX9b+VD+ uHc39TUX9LKpuo3yZNS/JrDvwTsiv/snHhkokxH56FWvpS1c+KnUu+WhKhnZ vJgx8yccW9OgVapLRpJl/EpK77nwvj1M/aINGVlp5CamfuCCp/j4OtcwMtJT bEo1beNCSlqX+L9WMrq+4/1Nww6iPlzfZRztIKNIpFyfSFhT/smy/h9kNGzO b/eZcEdl9pKvA2S0TtGHe+grF+Rb7YXrSRTU5fienPiNCzWizdQkFQqi6xTu re7kQs+FRxNrzlJQ82PMe6+bC+pFiQNn4ymom/GhaZBwVJ1b569kCtrcM6yi 0MMF2T+U54WZFKSW+fleJuG9RrvS1tyloHg5866QX1z4Mj6gsaaDguBQpfP6 PuI875E6vlqVHx1QlKJY/OGCpB/3QLQmP8o59wYHEj4U2+DYo8OPjk/nyRcR FqjwRgUm/Cge/xviGSDqk1HFWu3Mj6IrfSOrCOMnO+6siuVHOKJni9AQUX+r zwzKfSPmX+4KjOJwoYqSfUL+Jz+SVtPuKSRc/bt6XrGPH/1IWC7ygvCDUg5L 9S8/sujrqxLkEvnQ2LvJgExFnGGDDRcIs7fqhzmpUNFy3QfKSX+58Hr/LPNS KBXFvdRtcRsl6sVk+ZX0SCoaf04xCCHctFZDLiuWiv6lhQSlE24ePKSRl0JF 6rL3nJoItwR0ONwtpCJp0RXvNMe40Bb9KPdNExV1Zss0LhLuKghUJ6+kIdt1 pjPH/xH9sf0ON2AVDd10uhsbT5gm3FfWs5aGVOZ5e3IJbwy1XftUnYZ65p4z 3hEOt1WTijKnoY1O6hvWTXBBijJIIZ2gobpxr9FWwqq6q54eC6Khxf0ON/4Q Nj6+J+JHOA2VLzu8foHw4e8vZp7E09CQrN4ThUkiH1WF3LAcGgoJFRs8SXiP 59722dc0lDcRVMmYIvrV1bT0wy00VCTY8l2acMSHpt1f22gowZr/pyrhYgPd tzVdNHRISv2ULeGpZeJPgyaI+SuNezIJp794XzYpJ4BOa78kS09z4YOiScTY aQE0t8FXXWiGCxlKjR/4wwXQrvbBDRKEXVRM5CWiBdAUn4nIWsK/N5q8RkkC SPqa4TlEeE7LZElyngDK64k29icsb2JSrPhaAG1Yoif9nvCAaeOM7jsBlCg6 lfSNcLm5yY6drQJI4OT+vt+EdbabjJ7sFEBsuXGbBcJWu030no4KoAfKueJK s1w47WHS4iopiJwPuJ4LI6y/v3HVcVlBdLszPz2OMO9Bk5Nn5QWR8lLFlIuE k7xNJEo3CqLDHxJNbhDOP2ZyYGqrIJI5wX38hnBTmMlUqq8gGhdroiyd44JM lonsy8dEE+KRHMwk7D5Q8ru+QRCFRyhH5hHO12HerX0hiH58i6aWEFb4+kn/ 7ntBxHwU1fuA8AYpb+f0XkEkRxv600pY7/r59ANCdNR6xHM9Y56oDw7Hda8o HZ31O9EmShgb7JZ3XE5HfbnJx1YQNv4hWWkpR0fvtXYFKxC2lL39Xl2Tji4I TQ4BYaf8dwweVzryqlBx9SN8dVSjdcaDjphX5NRPEe40upI97klHSxwfzYQQ 3tfjrtTvR0cftNW84gj7rBk1e3eWjozXf7l7jfDpoiXR18royN5OeclLwum3 9kxrz9FRWYhiw5IFLgxatY/n8DBQ80XvjBWE0ZjjXwqVgSJtLD2kCQ/oOv5+ L8JAxzudPq4lbNBs3+azloEObjfV0CHcy919L3MXA0kFfp5wIaxz+WPZogMD VT11k/MgnLxld/FBVwZqWbZgeJDwlshdOWreDCR28ePBI4QTRW2SXoUxkPHr zTphhDdpEm+DxQyUZMRQzCYc3958wO0OA61se/n4OuHOsB3ujRUMdLKgZ1s+ 4XPPtztcfMJA7XERliWEvzlYmqxrZaDQVV791YTPBpvL7VlkoHPJA7kthD+y jdof2gmhg5fOxSwQ7thIP9TgJIQW9vvPkRaJ/pDzceaNmxDaK3zvCB/hoTMH pH74CCFjTVegEeZHsW6UcCH0ad3jXBHC2vhVr02RECrhrTq4mjBSTT3lXCqE Yv7uj5MnbJrrRD1YLoQyXKQL1xLeFTGoeLpGCL127nqrTNgXCflefyuE1KTZ AxqEc7D16MCEEJLn+2S8lXCR6oro8VkhFJImKmVCuCz3p9gCiYn2rp7jmBJ+ GOGvKUJnoss9s3HbCH9Al09vlmGiTXX34mwIU+o/L0SbMZEFvb1xL+HD9Xvp K68wkcyvlNOnCO/LaU+vu8ZEr1zaFgIJO4XZrnIpYKKiCEpkEGFz7W3a2XeY qMrHJiiU8Jp7ml4rGpkoT+SuThThb7mMp0tHmchpzygtifDH8Dirqkkm6tkd syuZ8GsX3g7beSYSsLl65cJ/6xWf+nuJxkIPgoIkUglfTumRFpVhoXa57n/p hLdH1AQzt7NQ/seHormEt+7V5L9jw0I3zCMV8wjr6JVf3OHAQi+O2ejmE1ac ulGcuI+FZNevdSwkTPa7+EkwiIXahk4fKyb82M1bnVrEQnUckmQ54Ur9nsdF pSz05v0d8r3/8im518L0HgvtmWkb/M9Zn3e7x9Sx0C+4db+C8KmdxCfkRxYK UpNe/YDwkfU1Kwq+sNA3423T//kAXfOGUScLadqtan743/6+UKqL/MNCMbc4 R2oIW9y4YSbHJdbzh6NT+199RMt+xOMsJCJZQakjvNkje6/7DAsFLDd8+5// /38YMW9dv/yY8P8AD32+kA== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->{{-4, 4}, {0., 1.}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.668588546558909*^9, 3.668588571777183*^9}, { 3.668588676810728*^9, 3.668588697543497*^9}, 3.6685887780942917`*^9, { 3.66858938068674*^9, 3.668589393747299*^9}, {3.668589445188478*^9, 3.6685894989818563`*^9}, 3.668752278516404*^9}, FontSize->10] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["\<\ Ilustra\[CCedilla]\[ATilde]o do Teorema do Limite Central - Distribui\[CCedilla]\[ATilde]o comum Poisson (\[Lambda]=1)\ \>", "Subsection", CellChangeTimes->{{3.668587474855124*^9, 3.6685874872856283`*^9}, 3.668587648634202*^9, {3.668587694771872*^9, 3.668587728780151*^9}, { 3.6685883022648706`*^9, 3.668588303985671*^9}, {3.668588422450406*^9, 3.668588426454064*^9}, {3.668588612070018*^9, 3.668588615129196*^9}, { 3.668588748330874*^9, 3.668588748397769*^9}, {3.668588822801331*^9, 3.668588823414196*^9}}, FontSize->14], Cell[CellGroupData[{ Cell[BoxData[{ RowBox[{"Print", "[", "\"\\"", "]"}], "\[IndentingNewLine]", RowBox[{"n", "=", RowBox[{ "Input", "[", "\"\\"", "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"rep", "=", "1000"}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"dist", "=", RowBox[{"PoissonDistribution", "[", "1", "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"i", "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"vecmean", "=", RowBox[{"{", "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{"While", "[", RowBox[{ RowBox[{"i", "<", "rep"}], ",", "\[IndentingNewLine]", RowBox[{ RowBox[{"vecmean", "=", RowBox[{"Append", "[", RowBox[{"vecmean", ",", RowBox[{"Mean", "[", RowBox[{"RandomVariate", "[", RowBox[{"dist", ",", "n"}], "]"}], "]"}]}], "]"}]}], ";", RowBox[{"i", "++"}]}]}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"stvecmean", "=", FractionBox[ RowBox[{"vecmean", "-", RowBox[{"Mean", "[", "dist", "]"}]}], SqrtBox[ FractionBox[ RowBox[{"Variance", "[", "dist", "]"}], "n"]]]}], ";"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Print", "[", RowBox[{ "\"\\"", ",", "n", ",", "\"\< v.a. i.i.d. a Poisson(\[Lambda]=1) com a f.d.p. da normal-padr\ \[ATilde]o\>\""}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Show", "[", RowBox[{ RowBox[{"Histogram", "[", RowBox[{"stvecmean", ",", "Automatic", ",", "\"\\""}], "]"}], ",", "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"PDF", "[", RowBox[{ RowBox[{"NormalDistribution", "[", RowBox[{"0", ",", "1"}], "]"}], ",", "x"}], "]"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "]"}]}], "]"}], "\[IndentingNewLine]"}], "\[IndentingNewLine]", RowBox[{"Print", "[", RowBox[{ "\"\\"", ",", "n", ",", "\"\< v.a. i.i.d. a Poisson(\[Lambda]=1) (azul) com a f.d. da normal-padr\ \[ATilde]o (laranja)\>\""}], "]"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"F", "[", "x_", "]"}], "=", RowBox[{ FractionBox["1", "rep"], "\[Times]", RowBox[{ UnderoverscriptBox["\[Sum]", RowBox[{"j", "=", "1"}], "rep"], RowBox[{"If", "[", RowBox[{ RowBox[{ RowBox[{"stvecmean", "[", RowBox[{"[", "j", "]"}], "]"}], "\[LessEqual]", "x"}], ",", "1", ",", "0"}], "]"}]}]}]}], ";"}], "\[IndentingNewLine]", RowBox[{"Plot", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"F", "[", "x", "]"}], ",", RowBox[{"CDF", "[", RowBox[{ RowBox[{"NormalDistribution", "[", RowBox[{"0", ",", "1"}], "]"}], ",", "x"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "4"}], ",", "4"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.668588450429278*^9, 3.668588535559444*^9}, 3.668588566766817*^9, {3.668588750851095*^9, 3.668588761943591*^9}, { 3.668588806416545*^9, 3.668588878991248*^9}, {3.6685889248348217`*^9, 3.6685889296037693`*^9}, {3.6685893254619427`*^9, 3.66858932953424*^9}}, FontSize->10], Cell[BoxData["\<\"a) Simula\[CCedilla]\[ATilde]o de uma amostra de rep=1000 \ somas padronizadas de n v.a. i.i.d. a Poisson(\[Lambda]=1), com n igual \ a\"\>"], "Print", CellChangeTimes->{ 3.668588869566538*^9, 3.668588904610647*^9, 3.668589519692934*^9, { 3.6687523504171762`*^9, 3.6687523711979856`*^9}}, FontSize->10], Cell[BoxData["41"], "Output", CellChangeTimes->{3.668588874048527*^9, 3.668588908176969*^9, 3.668589529506112*^9, 3.6687523582642403`*^9, 3.6687523956463547`*^9}, FontSize->10], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"b) Compara\[CCedilla]\[ATilde]o do histograma da amostra de \ somas padronizadas de n=\"\>", "\[InvisibleSpace]", "41", "\[InvisibleSpace]", "\<\" v.a. i.i.d. a Poisson(\[Lambda]=1) com a f.d.p. \ da normal-padr\[ATilde]o\"\>"}], SequenceForm[ "b) Compara\[CCedilla]\[ATilde]o do histograma da amostra de somas \ padronizadas de n=", 41, " v.a. i.i.d. a Poisson(\[Lambda]=1) com a f.d.p. da \ normal-padr\[ATilde]o"], Editable->False]], "Print", CellChangeTimes->{3.668588869566538*^9, 3.668588904610647*^9, 3.668589519692934*^9, 3.6687523504171762`*^9, 3.668752395820421*^9}, FontSize->10], Cell[BoxData[ GraphicsBox[{{ {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.476], Thickness[Small]}], {}, {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.476], Thickness[Small]}], RectangleBox[{-3., 0}, NCache[{-2.8, Rational[1, 200]}, {-2.8, 0.005}], RoundingRadius->0], RectangleBox[{-2.8, 0}, NCache[{-2.6, Rational[1, 100]}, {-2.6, 0.01}], RoundingRadius->0], RectangleBox[{-2.6, 0}, NCache[{-2.4, Rational[1, 50]}, {-2.4, 0.02}], RoundingRadius->0], RectangleBox[{-2.4, 0}, NCache[{-2.2, Rational[1, 40]}, {-2.2, 0.025}], RoundingRadius->0], RectangleBox[{-2.2, 0}, NCache[{-2., Rational[9, 200]}, {-2., 0.045}], RoundingRadius->0], RectangleBox[{-2., 0}, NCache[{-1.8, Rational[3, 50]}, {-1.8, 0.06}], RoundingRadius->0], RectangleBox[{-1.8, 0}, NCache[{-1.6, Rational[11, 200]}, {-1.6, 0.055}], RoundingRadius->0], RectangleBox[{-1.6, 0}, NCache[{-1.4, Rational[9, 40]}, {-1.4, 0.225}], RoundingRadius->0], RectangleBox[{-1.4, 0}, NCache[{-1.2, Rational[3, 20]}, {-1.2, 0.15}], RoundingRadius->0], RectangleBox[{-1.2, 0}, NCache[{-1., Rational[27, 200]}, {-1., 0.135}], RoundingRadius->0], RectangleBox[{-1., 0}, NCache[{-0.8, Rational[47, 200]}, {-0.8, 0.235}], RoundingRadius->0], RectangleBox[{-0.8, 0}, NCache[{-0.6, Rational[97, 200]}, {-0.6, 0.485}], RoundingRadius->0], RectangleBox[{-0.6, 0}, NCache[{-0.4, Rational[7, 25]}, {-0.4, 0.28}], RoundingRadius->0], RectangleBox[{-0.4, 0}, NCache[{-0.2, Rational[13, 40]}, {-0.2, 0.325}], RoundingRadius->0], RectangleBox[{-0.2, 0}, NCache[{0., Rational[33, 100]}, {0., 0.33}], RoundingRadius->0], RectangleBox[{0., 0}, NCache[{0.2, Rational[33, 50]}, {0.2, 0.66}], RoundingRadius->0], RectangleBox[{0.2, 0}, NCache[{0.4, Rational[11, 50]}, {0.4, 0.22}], RoundingRadius->0], RectangleBox[{0.4, 0}, NCache[{0.6, Rational[13, 50]}, {0.6, 0.26}], RoundingRadius->0], RectangleBox[{0.6, 0}, NCache[{0.8, Rational[12, 25]}, {0.8, 0.48}], RoundingRadius->0], RectangleBox[{0.8, 0}, NCache[{1., Rational[43, 200]}, {1., 0.215}], RoundingRadius->0], RectangleBox[{1., 0}, NCache[{1.2, Rational[19, 100]}, {1.2, 0.19}], RoundingRadius->0], RectangleBox[{1.2, 0}, NCache[{1.4, Rational[13, 100]}, {1.4, 0.13}], RoundingRadius->0], RectangleBox[{1.4, 0}, NCache[{1.6, Rational[11, 50]}, {1.6, 0.22}], RoundingRadius->0], RectangleBox[{1.6, 0}, NCache[{1.8, Rational[1, 25]}, {1.8, 0.04}], RoundingRadius->0], RectangleBox[{1.8, 0}, NCache[{2., Rational[17, 200]}, {2., 0.085}], RoundingRadius->0], RectangleBox[{2., 0}, NCache[{2.2, Rational[1, 20]}, {2.2, 0.05}], RoundingRadius->0], RectangleBox[{2.2, 0}, NCache[{2.4, Rational[1, 50]}, {2.4, 0.02}], RoundingRadius->0], RectangleBox[{2.4, 0}, NCache[{2.6, Rational[1, 40]}, {2.6, 0.025}], RoundingRadius->0], RectangleBox[{2.6, 0}, NCache[{2.8, Rational[1, 100]}, {2.8, 0.01}], RoundingRadius->0], RectangleBox[{2.8, 0}, NCache[{3., Rational[1, 100]}, {3., 0.01}], RoundingRadius-> 0]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, {{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw1mnk4VV/Ux80zVyVJEiISZchMaxMhQ5IyUzKWClEZM2dIlCFDVGYZSgkh Z2siQ8bLvZKxMiaV/DK/932e9/3nnOfzrHXO3met7zpr/bFFna6YuzDQ0dEd oF3+934Q+Gc2N0k468Dv3Iw4UbC4IBmzvELCWqfWpUerRSEgVXXfn78kfOiH tkvihCg0z9o4fZ8l4cTj45EHjojB2fSHg+0DJLxKNI5f/ScGd39JtWU8JeEr 1dQH/OHiUCuk7pH8hIQL+ELcLV+Kw7C+EWtCAQn/fCDEyTstDtI5l46GZpGw qLXP6NxJCXhz/Hm96y0S5htmiPHevw8W8zTKFB1JmDS0apC8IAmCncbHZW1I 2KPd49+nA1KAVuyn9p0mYVbt4dRkNylIMAsVFzQi4VOPu/c3jErBvvV3D+hU SFj9xKJAKXU/WJ4xTejgIeEeDY1gjskDUMd27rJbIw+uvbzrkKmmHHSMnKEs 1vJgqUqZig1XORitNtYJf8GDj1hYv95xTw5YXFT5s4t58MpbUdVb03Jg3kRq 7LnHg8+we9b7ZcvDrH8j9xE3HsyyL4LZXVARNsyqrred48EDqaL3thkrwlap J2NWdjyYXBGlrhKiCKr9qS+vnuTB3fMMLLMTihCpcMm+RIP2/l/r3GIvD4PQ 7K5yPl4e/DZKYxZfUYZDb7bsyOXgweOj67uvlCiDTgZr2CFmHtxrQb9eOKEM 7vp/LI6vcGNehdortdYq8DKvde3mV25sO/vVL8JYFUzt/I1na7mx3a5/TO0m 6nCzo3+26Rw3Hjy9g3q45QiMUiJwqR033vVnd70zL4DOV7nUVEtu3LZrSU3e GoBlNe6Ihwk3nut5PZI/B3BbCu7yqnHj264NwbcTEGRGFCk78nLjlaFvXoVt 2rB2x4LTkJMbq1+cafyxqA32mfSjCizc+CVLoX+CsA6IVNrGsqxxYYtbbBMU Hx0oGiYNlU9y4eb2I1HP9xyFKrUbYWuNXHhktKuNK14X+PUkznx/xYWffXv9 WLZOF66b9Uh3VXHhKV9b0efTuqDuJtOX94QLq8978k8b6kFTyug+ozQuTM+0 bWYv6Rh8+mnQnnGJCwfQ6475l+vDdMHOHSpCXLhsOn3pBBjBJ6fxa+o7uPDG 3LiVeqARVO0p7dfayoV9Oi9WZ9cYQUiGZpouGxe+YOXR2SNvDFsTHLebL3Li 9zKZtTwyJqDuW7DtUjsnDo9l/JSsegL2yF++6tXMidcrwep60AlgmlfuvfqG E++JXZIexyfgk1vLvYBaTpyl3VRdLGEGTrazW2LyObHCqGmM1QsziNOR580L 4sR/oxw8JYdOwpXN5SuF1znxifidFxIYzMGi4U1niQ8nlszxnTyy3xyElS0S n7lz4oY4snf0dXN4vv86T6MFJ2YOinGp3nEKBnlfc1FlOLG7RpzFFjcLkB4x YCd94cA5KoZWGXqWsKa/dLhwgAMPe81eLAqwhE/P8s5q9XDgYvO9D/c+swSf 8I2ai80cmLHe97aHkBW8kqhybankwMGtlGHtFSsw8NzzLiyaA8/YDh393GYD guT2nwJhHPhoiX2MDJstzGkF7HoWSPMfLBRc1rWFJBLZZ9iLA2eYtD1kxbZA eR4nqmHLgbcHNlZvbbADt+W/IYuHOHAV3c2yknYHUHXKexIvzYGZecV9Bbc4 AkebWb+YBAd+anNune+MI1Q8KJU9KciBpW5zi5SOOcISnBsqZ+LAPsKi2vU3 z0J0dLuaG5Udx+Q/SFQoPQf52/IWqeHs2KXF4ux5TWd494w1viOYHavOCJzW dnGGbyaeok032PGn7x65HnecYV+MkmnxZXYsJfh6V9aYMxSvNRdds2HH3X/v B92Jd4Gyb3M22xTY8eJrMX+ReVeoqlFuMh5jw18ukWztfnlAn0WWJRpiwzFc rg+uil+Av782fygOsGGnqS/rXy0vgLLMR8FdHWz47rZnOhTiAtQ+svWdrmXD dwSOjJFSLkJDbKhkdBIbls33ntMyvQRvbVsTCGDDFwh6zffRXtCVv23hmDob vlXtryRZ4gXDP+zMPx1mw0iCf6ilzQv+3fzJ/2U/Gy7QjcbtW7zhYD7fo5Vt bDixym9+7JE3ZM45PFeaYsXBwtfzstp8wCv4T39pEiuemUvkVjzjByEfNNUU 41nxp8TmrafD/CCeFJ1VF8WKr7xK2feuzA8KHwuc/RjAinOLWvTima7B5/da 09+dWbFG1zne1pprcIwnZlVUjRVXS9ZTvGRvgNBDIZH0MRa8NltbVGUVCOUZ YdxqQyxYdL31l3NCIBxJ+b5C7WfBfDn7NS+/CQTH2GfkXe0sOOhgPJEgGwS5 V3XjH1azYOOcC4I8bMEgZeC5VBhP80eEe/inEDj8q779pRILtvWPLztnHgbv Z0Xqzsix4GFZm4r3PmFw5ntU0X/SLLjhx8nTDslhcP3ziXA1ERZ8aNWh8CA5 DOreT6i85mDBptXvZ8xtwwFlcua9G2HGTKeSnCe9I8DoqK1/bywzZjeYbVdu jQJpn+vdXZHMeCWX2Y30Mwo4Hifv/3STGafz2hTu5ouGlo02aosfMz7XXMUx 5BANx+o01RvPMWN1dx7ZyaVoQPLCq8VqNHuCh/cl+RhQ2jMWFDLNhDv5VeuW uuOAz3S9L/ArEw66XMqxsR4Hi0E7Zf1HmPCkTsKKjnQ8PB88+eUqmQlfdi5q io6IB7m0N1oeTUx4q6zW4XXV2yDNnb9xKoMJx7WInx59mgB7Vl1D9xsy4akr qp/L3ZJgjuyWX3eUCRe8d8xniEyC2mfuLUZHmPDpHR1PQx8lgZnrBd7Likz4 W2YLWqYmQWj3pUfPdzPhn0LPlcdM78J4kS/W+M2IVXgHOKvQPSi0CKczzWLE FKkt7wv0UsDnUIT4SCoj9jJKYA90S4EjHJEGXkmM2KXHzfhmbAoMEFFJ96IY 8cjaq5jtn1KA7UCsyMAVRlx7fttmsHUqXKBPQmd1GbElo62Yu38ayFZkh/r8 YMDWog1Hfwyng8Hr06SzUwzY04CzxZwpA5zauXNMJhgwA8OGx/f9GZA+E1wv RWXAM+vPc9P9MoBJ0mFp+B0DjkgWPiBLyoTBh8KeRg8Y8FEDzXpVoyyIvvvQ UtyIAfeWb1uamcyGx48sv285xoDZ2o2w47YcaHhK8ttEDHiuOeQWK+TAr46b 9waVGXBQztbihbQcsOM425EkxoB17ayvyBo+BMUIkaPry/RYKKbL75XtIxj1 fXywv5geW3pOHd09/BhClPwMvuTR41Rd/RMVS49BaMnA6WsOPTZfSJK0IeXS mshC6u8Uemy4pzCKQTsXuv1hnSeMHrNtTf12vyAX3oR8adO3psf2REXs16t5 kB+z0+MVOz0e2/nmRIhEAegY/gjHTPRYVCS0ME67AEbZmx40b9LhbmnhhRf2 BSAU795F/kuHd5Tz59inFUBqQo3K7zE6rJssKk9iL4Toe6dZDtTRYS6WrxeX /xSCx4O7eQ8u0OEggZ9y1qPFsMh2PFbFhQ7/4nMRpTCUQKgfw5UeRzpc/or3 RqBECaSZXlVnO02HFRJV8w5dLIE3dKe7rwIdttTtXj7xrwQEXQQ2j/PRYW2e oJzQnaWQanvk5e/ATeLdlVBGoRvlYBVivbdMbINw6Tf0IFtUAidWfZcpsEEo cE4HuntUQiO9gEsszwbRJbeXhzukEiSi+gtdV9YJmeOtb+KKKuF3/Clp0Z51 wjB194TVaiXczjCRTwtbJ3YsdAUdLXwOuEobQkfXiIaNpDsX2KtAana/rUXO KrHLdkE8lrkGXkb2JF9IXiX8hndkVIjUgI5wYHtozCqREFCKpjVqwO5ku1a5 zyrxMkRLKsenBpJqLouw6K8Sg7H+eixjNbAc8eJbzc8Volh/svpTUy20Cml5 7dJeIb6z1P2WT66Di6ZmUeMT/wiZL94Hz/k2gs3VE1rKykvEnFkht1vgW0gm psyI6j8Ef8+0rcNkMwAD5cxB+l+Ex1vWl89ZO+AC5Y1XwZ85YkeCJO+PxS7Q zAgTqLsxSdy6NuKWF94LJjaJ9w+fnyTuhlM1tW/3gsOubP6nJpNEvca5P4Op vXAzu5YvX2ySaGnWHKQv6YU3j3/y3mn/TjyyOXxeqLMX9J/YszuJfCdKrBmZ AwX7wLxebYW95SvxiV94OLm8D9y//PpsvWOcWMm2qvn2hgwvrgwxH2McJ1ap H75ktpJhg775kMLPMcK+dFXyeA8ZUvY9iOBoHiNU5LVZ74+RAV85dqD+2hih ib/wTG+SQYAhK0Cof5RYyS3WctPohySTGIXG/SOEh+ed6ZTyftjnYx+dRj9C PE3hEb9Z1Q8NaQqDl6nDRAdr4C2n+n6YGhkK2xM7TEhx7y7l+9gPyEe+O3Tq C/HlxY8Uia/9sJA2eOVo0RBBZZ4L+yMwACdGZcpbxAeJ6b/ycdzBA2DsLHkW lqkEnDSZTYwYgONTotuqO6hEYtMTJfa4AdBd4PfPu0Ylik6qOY+mDYAqHb1e SAuFiDx6XEvk2QCIiZCHFD0HiFkek6Lh0QHYk9+Z+AQNEPJxLLVt3wdASKpV R3T7AGHLSTr0dG4AdsgRxTyN/YSqVa+c9b8B4EIlvtOkfoLMJliqSqLAX8dg rocv+ojgtyWjwhoU+D1xndge00eY+xLvLyMKLLj5+Ny26yP0dyZnVOlRYOaK G8WfuY+YUVf9JWpGgeGbJ/MtLHuJbYkp2eHOFGh5KKHJsdpN1FhprJ+Op4Ay kTUwE/mJ2H7ZbrdANwUEuZimcxQ/EXtKA2+Q+yiwbuW5Yj7eQdQc5neIpVDg 3W/N3fXQQcx3HKrpG6HAqX3DTvErbcTQ4etSyz8o4JUgMn/A6yOxOGvr5sdG BYvBmM0R4Y9EeQbyyeCkgorkL96Ujhaiw8r5wwseKmzgJsU16RYihPWRRhsf FW4vOvm3f/tAnIz6uhgpQoUS2wKmS7bvCFMtzkciyjR7MTe/KMc7AjQXM4tU qeD110+SXPuWOJgrVSKuQQXVxGPHtfjfEkMut//QISp8eDOZyN3dRPTF3Pyp bUiFJySzx003mwhcVKnob0SFBLva534Hmwg9UrJvoQltv0sx5C/xmDhStDQ2 fpL2/CkLZbuERqI9fEx8wprm/0Pc+t3Ma4Jk9Zm11Zbmf+tvoIzBa0Kbe6y3 0J4KE3VpTWsMDYSqp5iwzjkq0IlRjbNvvCKq0h7DphsVmutLrjD31xL6/a0H Uz2ocOd0wL1LirXE/V2OSyIXqSAUu4uiNV9NrM45sApepoLagv354fNVBLNL +Obdq1TwrMufvv7uBaFnd1S9y5cKOZGzV7ZIvCAcQ0MLmK5RgXGnf5Du90rC Kmac1ewGFZQnCIbhY5WEwyX7NVd/KriXs8ReL3pGVEXTCfkGUCEjQurA6e4K YiFoasAriJaPHdUqMffKCe0Lw95ng6ngVHZUt/5UGaFS6aBwLIQKMmQHe9H+ EmL+7xexxZtUuOsx52Fxv5gYt5k2awilwtK6/7VbVkVEwez9xwFhVMD7UhN/ DOYTmVp+RdRwKkjUiz0QeZBHaC5z2gZEUCHuxLPiU/a5RD5l+8EtkVT4OaH1 Mlr4MdEWMbEnh8ZFC2kRV4mHRLZQ9yHRKFq+dz5/QNXOJo6iY/aZNFbX6XgJ 7zIJTbbqIvZoKjBdnPpUcCydCOF8yHOFxp+SGac4P6YSTo7xd1tpnN4gTO9j lEwkp/PKCd2ifd83NUFKRxLR39Y5fZ7GlkJPXIMe3Saa7/g1PqbxzKXRdIOC W8S1f6/KyTQOIfjb+J6EE38fn63ZpLGYWOZKk30g0V6o+nlPDBUM37M42rh5 EzYFQjuVaYwfd3C3vbUnBInfXjo0NsjbxIUHdIGSXjauS+PIXNfJ2v/cod1G /7IWjXdVHCPp+lyD7Gdt22RoHMB8iXz6cCic/mjSy0vj7y+U82IPRYGS5Y+y Wdr6p5zovF9Lx0FwIvlRA40xb+uRXxKJsE1a62kEjdNGDKPv8d6DXedcKYjG 7dUHL8ncSYEbCzlCi7R4MNzZZvGB8z4obEdB2TRWdfmnfjY2A9pvV/ynSeMr ml9EV1geQFiKTWIPLd6F296wpUTmgNsUcdSBxpf9ev/jD3sEkW9cto/S8pVv XDv8bCMXhs5+3PqBll+ole4J1sqH3cydIE3jwb3Z748HFYDkj/zbkTQ98K6G lX1dLgIz/86YXTS9lLouPqxULYHrDc1qVjQ9HetxTQ65/gT0Qwa442l6Cy4x ChD4WwbKJQx7e2n6FNjeeOmbYgUkae12naLptypU7txzn6cgnWfS9SeQCn9L OcT3/XsG8r0XhX/Q9H8g4icH9nsBfxNuvvXwo4Kdxja2crEqoFMfPb2dVk+3 /ygzZ3ZWwcJtL/uXPlSYPx+yeXV/NcTMPe/tuUKF57rci5JfauGZxaHUCFr9 TqzJ/eKLewU7f5DYe2n1zffSYp5epQ5+Rwwx7HClgp/Eg6nPSfVQL4nvBjnR 4sty4EuibiPIKLx1arShgkej6WDQr0ZIyik2em5FhcxrPgMeOQTsTNnZmXmG prc/Q1OiQRhujm2tNDSnwsh58YlVchOcMZo/vIf2P8vVfTHwNPYd8Cw/4Cg7 TIU6Eb0z+0bfgUxh8LZZeSr0rvX3PVB+DyFxj2eFD9Hq4+VKd+zEe1Bs/ing sp8KLhI67ee1mqEk5A754m4qSLF04x2/PsLmFrdrroxUQONOcEe/FVS1xG0X Nylg3bj4mimnFfybsfn1NQrEXROo/3W8DUZdAhLs/lJg7rvjy7b8dvh4Uqs2 /zsFnjbPl9y06gT2ikIjuWZaP3LgDj5U0gkZ6TYBVm8pwLN0wGxkuRO8sw54 Xido/eje4cCHJl1Q9dm4NKOGAinYW3Rzvgt0zMcEvIoocHL33KVG+R5IKzz8 xT2KAq39oyxaNX1QoXjYu1ydAk5iXgspI30wvP9rfI0SBZYvbVLnWMlg+riL +5UcBaSYhcsfWJFh5J6DQ+4+CtxStD21tkyGWHEdMs9WCugmkR/Wa9L6/Gyr qcXkALw2bFVVf0OFPfHPBhriB2Be6fDbPz+oYBTU8P5I1AAIi+WYlO8cBIbx R9E1IQMQsuLtJOI9CBOv4vISvAcAle68zSLyGVbZjh/pODMA77g8RnqCh6Cr Cdc/3jMArZ2s0RfVRkBg/M3CyJN+mH2S62FqNQ6HvHxtPpWQYWnQneH9pXHo 4m8ouPaYDHSch7I0IsYhRnurl0AGGfgv1rdLVYyDqumOJwYxZNA50HeIkWkC 4oxaO+xcyZBeyrxU83QCti2+r7ITJYNumXu4KOs3KHAy/cyQ3AfZ5QezFl9O wrWN/6zk3Xqh4Vz0drmaOVDrxekTW7ohgC+DfGLrL/h2QsOm7Hs7tHf16fZk /oEjsowfKYIt4N2msi+Rfwlky89bcla+hfxO3e2uLf9g7eroDOOHRhDIupfl 2/MPbhz6mMNf3AjxrqOiEUP/4I9HgJ16XCP4rAcefLTwD/4Lm+V9adoI2gde 6A8KLMPQo52CNyivYThaNMDUYxnQ60Rl9Z8NIHBkY1iZYwVQuVkAeX893C6r KWY1XgVfvvudRn01sE9E8/78mVVwoUTO59bWAE7GUeRzqyAeNC9Pyq6BPwEf nfKur4Jo5n/7JV1rwMbwsxDkrcJTy/jfFsvVsP/7RtK1lVXQy24SKd5bDR/2 HPP/VrwGw/1+3VIxVUCf3Gf4lnkDGM1QpUBSJWxkzzj9Im2AkPXa+P7ASlgp pgvaI7gBbZTkNWPXSlhslKkIPLgBctMK5BbNSvg+E7n1sOUGyFrUZKTNPIN2 HaXP+cUb0PR2i1S04TNI/53qGW20CeECk2t79ldA6nppVNXpTaBr9wwqZqyA e2xvcsYdN+GIQuSVU8PlEC8833XEdxNGLcKDeVPKIeT4MaX/HmzCdqv+TxL0 5XA+d2ndbX4TboznFlSOlcKOktLmfAM6FDJGaMzVl8DWdUHDXBM61MFianki qwS4Tsa1PjSnQ2jJ4Ut3QAkwLLt3ZNrRoV+C7vOH1Utg3mBfb5IXHdrS2hHl XVcMH6YeDQel06EgRRXHGlwE16TS/lpM0SFP0tRO9q8F4B3EfN38Bx3KGOz7 ptFcAJ5dvv9O/KZDL1N8pW4/KQCnG6dWj6/RoSf7UzojvQvAtIWXXpuXHl0K FOjtoyuAfe7xXLKq9EhJqH9pVDwf+otC9zLH0KNAYfE6+fBc+HqCk3o5gR5x hqfqd7nmwu//Uu9Q7tGjDQ29pTtGucBjULpcmk2P/ohG2Hluz4VjU+RO8xf0 aN0Ufcp/8hhqpA4EPRqmR0nsV5X/DT6C9BJyn4YSA4o783CKuyAHCk+ejStQ Z0DWNs9YV/xyoGp5BkiIAcWKfHggop8DXYZ0pePHGVCQipOn0Ew2sM9Ih8We ZUAZ9Levf1TIhgDpUNmBeAZkZh031PkpC2xLpaN9xhnQz0BFCR25DBDcs9F1 c5IBrXWSO9s5MmDwXveuhDkGZKp0UjvqWzrYBNyoLFpiQCy95OGQrHSwMvww NMTBiCpjKZ+S2NPBYvKcor4iIxr7fekb93waGO/NGN0VyYg4vc7znhtIAa77 ngf2xzKi2c4nFjY1KdDGga4p32FEZca3M4Lup8Dx3985T6YzItmLanc0rFLA oOmwSnQZI3Ia3Mb88HMy6Dp2JSz0MSKhxlSrz9P3QDOLVeO9BBOS0Uq0k9h7 F3jOL706coAJ2bN591Yy34Ux6W+qtXJMyEjObc19Kgmi694ol2owob+csmVn KpKgmxqscPckEzpP+hgkrZkErgKL++2DmVD72+HvO4g7kJQ6KvC3jwkNvVHx XboVD072nfcvDzKhqdOHL3BZxoOSRCP/1AgT4t269a7nvngYrMri+zzDhI4b nd3B8SEOJPrO8DbRMaME9qXMZ2xxULe1gzVBhhmBqm3H2awYmEh8tSQeyYzk eLIMGBejQKHw9kxkLDPaV+uwfK09CsIbHIe/3mFGltTsvVIFUSAyzfwhP4MZ UXvbq7Uto8BBxzxV/CkzIna75hk2RgJlcUZRfJAZ+T42zLt4PwLarYW898qx oGa5gr+rV8Ngl9dP5wglFpRkqV+VdCoMLkS/sZpQZ0EHQ4QnrRXDgP2FO8rT Y0FOilfvx/wJhWNcL0l7bVnQA9GLlSeuhQJuNKkQi2ZBquk9/5I5bkLV3puz okMs6HnawRyDO4HwkjnLV2KMBclmuvDx2wdC9WT1utR3FpTArF8lJxMINaXz JLkFFuSX+3fcqC0A6hQdDh9hYkXthlUyJO4AII5qBdvIsCI+uLvDN+cGtJ5f 5UkOYkWM1Tp+wkt+0Ka3Iz0tjBUJGJE+9nf4QbukomhmNCs6Y8YQ3FXgBx2z FxQfJ7EixeK13OgzftB1ddDyaT4raihIMlys8wVyxKtHbe2syKbC6GBs4lUY zbuuwLSbDSm/JBsau3jDIrXi51UxNuTfcO9fq7Y3sPF+L5uQZENScYwqccLe cCjIQvKtAhtaJ3LILRQvCLGQFwo3YENe07vIGmZeIMQ8y0zny4asQi7ZGqRe BmtXB+pqKxvarpPxfIR8ATwfpKZd7GJDYY+MapKyL0BoT/upz2Q2xKG17Xmp ywUoPqLxqW6UDbEYHh0W+s8D/vELvPVfYkMhZgl3qMIekNbcXfafKDu6IRDw SzrMDXqk9EL/3GBHiRUq6R23neG+9PselhB25Mx2YrvXeWewk9GTEIxgRxFv 3lfaqzvD5CG9VpoYkcJIxxWB6fOwpqzHd+cxO7ovWSC/aXgeJPT0iqVa2ZHr qRQ12Z1OcOOcXpf9Lg50bzPvKVufI2idfy/mLcKB0o0/47P3HIHBRc8vUoID XSzvK1Q86QgJ7nqCpYc4kJ4gtf1YlwPkXtFz/neUA215ZNvI1WcP7cF6/+55 ciBZm+Zoz1+2sCdTT6TlNQe67DpqaxtiBWdnSiab3nAgw8smxg+NrCBXnedp fTMHejjxh+7oTivY97lf62k3B1qwWlYtemkJB4XcbdO+caDfZl653b/PgGZO XJozNydyySzYKRlyGkLm5+0dtnIi8S2CJ4RPngZ85JSE1Q5OtLDi+OKi+GnQ HdlVZSTKiRR4dmGWdgswEinvVlDiRF0vqnYf3GMBNrmdXPT2nMho95m9H/rM 4cFvxb6Vc5zoorHOtS9l5jCsk5616MqJULWJok6UOThNnJWe8uJEr8s/k38p m4OH+G/9zkhOxFG9YPI5+yTcKOSLyC7jRDXymSyu/maQ9sR6WW2NE/Vwabn/ ajaGWVPq4kN6LsTXrxJ+PNIY0B+rBWZWLnR0fvKtkrYxzGhYTXZv4ULbU5FF Y4MR0IY4sockF0pg+yDpX3ccvv08VZlhzoWSzcavFnUagHpKb9mmJReiK7tr nptiAHdUTxW72HOhyennN4VtDEA1zPyhvDsXOsUy2pb2XR9ubz2Z8DGYC6lX s9deZNaHw0q0aaeYC9kp3ivrstaDWGqHs2MFF8qIpCvy3KcHw8EmZ9+/oPmf 0voY8EcXYj4YW95t5EItFpF/pu/owpClkd7+Ptr6Tm7qq61HITLAQNR6kwvt vfmf835LHegldKi1p7lRqonx/c2rAIOHOC+8seFGc+TW/PIDAKMPe1faHGn2 Syv1fyeOwNxNZ6ERD24U6SDvdOLMEWBB0Y7MIdxIhXP3dTYdLVDDH7+dLORG bWUD9vcPawCSu3fNtpQbcZNTnjj8VYdjj2xYXZ5xo91T749XVKuDeeis1I06 bnSsW9l6XF0dPBG3Z84nbsTfg4dCDdXgITb7PbPEjaRFlOqrQ1SgUG5nxOIq Nxojhmtj9VWg7NHYtg06HiS9VCBO5lWB2lAfpS2cPChXZCqmO18ZelDKDZU9 PGiI7+6zYz1KwNw0sBGhz4PmiXZJa53DcLHJgXN3Og+SfRueJ+EtD04PqWkN 2TzohCCfd7COPNgEW4jZ5fGgPW9/PzDkkwcDteNqWRU8yNnXZlr9lRyIVyq5 7XzPg3QvMxHObHK0OZXr7fbfPEitWG1i3k8WekNumb78jwf19GV+VdsnC612 DIMW6zwof+6+semADNQK/FtIZiMhYsGGuV1DBlKSJoS37iGhG3xrI1PcB8A4 tC6Ax5iERpReRYqRpeCogxJLxUkS8scveuTuSoG65rO7JpYklB16gvmHiRRI /Ssovu1EQqo/ml+4f5QEJq+7/Rz+JDRew6qg3bIPXju6K7AW0ux3T7mIfhWH Kq2J14WlJHRZh53n9BNxKNvlYHiskoTql82ihL3FIXPg1NmoBhL6GBxrcIlO HK6dgDuMvSS00/Rsca/EXrgkW7czj0JC0iHzyokLYuDMqVSgM0xCtoY2L8j1 YmDeLN0QNk1CS35fNTdOiYFhQYG+6E8Salx6UvVFRAxQhEgvXiSh+KSUnzrz oqByLsvh7AoJGXn+K5FpEIX/O5+C/v98yv8AMBF4TQ== "]]}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{-3.12, 0}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], PlotRange->{{-3., 3.}, {All, All}}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.668588874048527*^9, 3.668588908176969*^9, 3.668589529506112*^9, 3.6687523582642403`*^9, 3.668752395978168*^9}, FontSize->10], Cell[BoxData[ InterpretationBox[ RowBox[{"\<\"c) Compara\[CCedilla]\[ATilde]o da f.d. emp\[IAcute]rica da \ amostra de somas padronizadas de n=\"\>", "\[InvisibleSpace]", "41", "\[InvisibleSpace]", "\<\" v.a. i.i.d. a Poisson(\[Lambda]=1) (azul) com a \ f.d. da normal-padr\[ATilde]o (laranja)\"\>"}], SequenceForm[ "c) Compara\[CCedilla]\[ATilde]o da f.d. emp\[IAcute]rica da amostra de \ somas padronizadas de n=", 41, " v.a. i.i.d. a Poisson(\[Lambda]=1) (azul) com a f.d. da normal-padr\ \[ATilde]o (laranja)"], Editable->False]], "Print", CellChangeTimes->{3.668588869566538*^9, 3.668588904610647*^9, 3.668589519692934*^9, 3.6687523504171762`*^9, 3.6687523959935007`*^9}, FontSize->10], Cell[BoxData[ GraphicsBox[{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJxN2Hk0lV0XAPBLrildkgyRuYhSEpmPoqSQSmUqUwkNhkKZMqfXnPQKRahM STJlutdQhCSuRJEomefxCl+99Z3d889Zv/Wcs9ZZa59n7/0cESuHo2fpCQTC VToC4dcog7gHV1bYKYQ/j6G9RPACDeweo7h5agZcM2Ri1TcEtohN7GhoA0dN SNbffQqeTlHJkjMHFzNbXjpXTsK+/ub9UIXlGuyBh3w8uwXYsKU+H2Bh72TF Tl2XMt3ux4JdZVoXRkbM2E2p68b3K4O7RsyONu4Cz18f4+7cApZJ5UqirQPH DZ/Ole9nwk6TT+Mq6wHne0+4anWCmzgCVI41gzuN39zraAAPJnMTrGrA80Pm VgMVYKJ8erVjKRPlR/pEs56VAVI2btQLfwR29Jp6nxkJ3k8KXhRRAgskCgjH fmHE3jVR0pAvDz6kaXqt5SYRu3a5vr3WBby/WFW53BLMwOsyWHQSXOXyJO65 Hjg59fVkzgGwX8u3g9maYEt6+pRMdbCGrOBimhKRQvO2L70SbYuU01ZKoteC 5YW+eHoPMGBLrUldPnYXLLRo47NFB2xgY89xSQ7s8+5iUu5GMO8Nh34qJ/iZ qtOOOSawN4+zYTA9+OCk81W+pVWUawObZZmzPBH3m8sJGXPgnsdXKCqTYC1v j+7qV+BHhn4E/XiwPV2khoUWeFv2PR/nEXrs2EGvEsl2MIPE6dmuarCQAndg AxmsvK9xXXEx/Z/9BiNDw6Dkx/lgB2t12ZgccKpvtr7jI3BHouCFQwngHN7P Xwovg4OiEk+KHwLL+QtrLi3QYXdfeSDzPg1s5DYeM3kb/O4aWiL5gh2V1/Fw e9JRigQDh44UhSPSYt+OjW7grJLig+LO4IOe4WekL4KDluRjlazBld6d9drG 4Of+HnE+suDUYD67Fyx/rb91nFG6mIBtlxCVkmAPvqN/WZn5OLiScPzdZQTW u7imkKRMoPBv7xRn9I1BH9pfJqTvAlvv9/bT2g4ezVWw/bwFzBD6WG69EHjD Wd6Vg1zgr7cKjbWaV8j/d4ypev6kB3h2+NCFw2+XsY28jcWyRMGrKYrVcbzg cjreszdJYGfNOeJVBvCmwPePbGhLZN3dN/dYfEtCocwx/Zp94MmQY1IizWDy raYnH9P/mn9XT/aOL3jzY23F1bJgSt4e5NP9A3v6rbyePQJLDm0xNby/iJ0f 0BxtHw3eK+jR4BMMflsoRvzXC2x2pEHtifMiuViHjV76xiPkGrDxabsZOLLw kjCjNrh649pV5vzgBf/n3wrHaNhWBvMZdrHgOgE1R/494J0DvvJvBhaw4/Jf 0bxvgRv57TrbbMD0fqspO1TAAvlmsqc2gRX6nyTfZAdX+Z74mMgANuBfWVew ME+2jRrxRPLZqCvvsW7DKPi8vkFgTy/Y5PJhNQWFWbIVh5FSXm0Bsn0l72d0 ZwbblU+gxn12Gntpb8RAyCNwwAV6tnsnwAfoVO89lAGz3XGRyWYEqy1WHc35 MUX+j67l6JIFp1vuJDjxpUV8Xj+4SeopuaALvHPmEHNJHTia3G9ALgCrR57h NGUBD1h0t8yaTsJ7nft5WkTwbVmzmFvZE9gZmSFr+mLB5E0lgUr+4Lqe5j3W VyfIvQ/jq4VzKhE1cXAp9CL4sxl9cYEVeJBvg2v3STAX6ZrNja1gRP/hhAwd uNRM2eGk+Tj2lUtK7HQeY9iTtfESUu2j2A5iy+jYbnD5JVZrXjEwqZg7qJME Pk0US0+mjZD1fwcEZRtsbzjXB9b7rs05WQYe9rIw8owBS2dGfY3UAtt/qHR8 ODWMfT84N27w9hB2i2Jy9XaFQexucUF2364B7FGOOOPmIPA044dlmgl48cf6 VLHt4OW5vNndfGD6qWM6uqvAxNHJeIuRfnJF3YN9BVNvEPNA1OiVNrBoxU1/ Hkmw6l1f3uKr37G1M06xWAn3YR8tUaKx1H7FjiE7zk45gT9UPZ7s5Af3B+Q7 GTGCF/ZVjTeP95IjKmckzSKaESvTOwe9j+ANtV2jNS/Bqgdpw6Vx4FMN64ee OYB7qP69gVU92LadEx+NecCHu7c+qRXvIJcnbviZsd8jBXJ822BAI/n74q8G qgMpjZ+y7rLO+5MvupC0/xgrxeU5Svh5Opxtv6BcrTXTEp1F2IqM0p0RWuXY 3lOf+kU8KdifrcV7F1srsDkEDnT3+1Via1DPd7Zur8I2ylky1Q0CO4VGdFR+ Av9jK2KsJFeNfuJnhupFyVrP257eBEsyvqPwTLzGflozmn7d6C32bYqTyMpo E/aRjcMXy2WbsXMObeESbAGT3G2Kva60YD96OZPSmgBWWxsYtu0lmGrG5RY4 Ar6QlmLRuZ6KfteXrygeVcqF2YDr3nczqhWCtSJbE0tU27DLdOoUlSvbsYcy ku30jXrQ73j2oXtPZOKn87+jZerVnx1cPyq1DFq/o3AYOXD6U+oeDCB3rrut hzknkPzpXxEdQqgp9EebMpgh1EfMwho84662ze8iuM+OppDqBv5gVKjxyncC tej9+qCG0WvtKwf7Q8BZm0ZPbU0Ch6+ydXLMA/N6HCb7ECexUyYV1kSdABd9 IaY/mwc3NFG1muOmsF0JQ5zhlWDhHXRfdAbBrKVBVMVp8Iw2W63E8hRyieZl OEEaQd0tUSXczNPYdeY8T4mc4CQ30Tu9m8AuEdu8KpT+mj9qzKd0EyyoH5Sf 8wFcy/Z5JNFtBtupfvfmCO5Z7Lx4yZisPeD583wMdRfALEmt5lFu4A3UqBIj v1nE0944d6x3BEkx6/MIh4FVVFkvf/8XbJbqJ+X6BOzNtviFoQrM8OQTGfHN Yf+jV37P3QH8b7iv8Tj/PHbqW631NrXgEJtuEf9PYOclD5mkcXBf7eu8bBrY 5DaPShnDAvpdH0dRo/nZinoSeI/0c+0OXjCH8aAF1x5wV5CIu74d2KMnIqvy BZhXfblLgZWGfXSmQ1MoExyaVZjGpLuITYmmBLZagqfcX1uluIFDR/WO/OO3 iH7356Nos1UzcgoDU1pPyBjFgk10PgqgFHAlz8j7jkbwlr7lSFcaeN5PlJh9 5Af2K6H9176lgWNK7UYECEvYZ4zDLA1PguslEvnH/cA7Z3NaQ7LBNp0vco2r wXHVlRESHeBditrepG/gxsz6CzNjYFshA9NPNDBdNFWniriM/uvuNcdQw175 j6lp4NjJmAtBh1awvQ/ul59LAFsnzy6dGwVLn5OQjVxN0Pi/xb2OWQ8LgUWC 7Tw3SIEFo6/HHNgFTohlTTZXAm+4H5Ptqk7Q+KWQCz/3kyJcEqYJ5knPrEk9 AH7Vn9TlGQt2lbwzY9gP1q/loNvDQYe92TaEbZsimLPoAKeYLniZiZGXzwI8 /fTrBi578ODJqo3sV8DfMncmsl0Dd688EGb1ptP4/fs0hj4eW5vM5A9+/9hH jBgMLpSU9kzqAsemt1JV5OmxWQalfG9agN2lfLa1hYBz6zJWeT8AD9q3tosX guc5LSLCS8GMJYNa8xX0Gr+qyb6CMcRl7UKzrAGLribk1DeA1U3X8ye2gU0z pYKce8CG3y3ltOVWYeuK3e3mDwAfqNi1OygLrGXeFDZOBe+VEXyxaQCssXT+ q8kSmOCEttvSM2hkCZicUfk8hshfOd1dmMDeRn3Vfmxg9YYX7JFrwWXPLR5m 8INV45lUXm4C2/BObznlBY6M6eadoYI3UU9wVBCI2MWcb5jCtoJDO0qCGHeC zZMziD67wTvt7wYsqIIZdgavuryXqHGCtC333tgYSq84S2ejB9Y/orliZASO dVymqV8C90a8mBUPAH+YHpQT7wA3GAs4ie1gxGZ5bquRsg+8ny2fXcwU/FXR dK7nLNj/LN3nZEdwswe1md4VLHrr8SsrD7BTmntxpQ+jhvQN7p8VYgxRyvWy RYPAyk59uqLPwHli14dEPoHJmmpeJluZsOusF0nRnuA3Q/ZyDyLBTZc7Tj5N Bb/bzWlfkA1uXtTxLCsCt3SeJVaUMWn8vi0dR1Syb3h15V9+cI+ntgbc6v8i qb4B3BEdO/B9Gtyd4raTYSMztrHN6fbFOnCz5D6fqass2EJx+4Rry1ix72QY Lyj9WI3dQt7bXnR8Dfb5itOrN8aSsHV9it1JuuzYf+7bsf8H61gXiQ== "]]}, {RGBColor[0.880722, 0.611041, 0.142051], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJwt2Xk4VN8bAPDBjBlmzFhahCwVCZUlyvoesqZE2bKEFkupRCVrlpAsSSFU 1kRUylKh5lBaKRUVlUQky0yW7Mvvfp/n99d9Ps+5533O8573vPfe58rtO7br IC+JROrhIZH+u26AZQOLiyysFBhq9yWLBLaH1p6bnmHhW9k79qx6QYLgtC0K Y/9Y2P3aEulvYyR4Mei0r2+Qhd3UjgkVWPGA+5WcjqbPLHzWvnciW4AXLo4o vsm8y8JbFOs11qfzwUMpHZ9Lt1j47qUkxfFXfNBpZklNusHCWE8/SG+BD5Su H9kakc3CtimGA3beZGjYdr/WM46Fu/J2PWk2osB4gW6ZhhsLRzRUev8WoYLE u+3b1jux8PGmkwkOVlRAM679CnYsLLNRT8U1gQpJ1hFrJCxZuGoi0XoDlQYK 88+ukjYT6zHkKWDyC4CDvVVSM5OFLZKtJCmr6FBD8zjq9YSJRbRovnu+s6D5 h/2X8YdM7HXpWaWMpDB0VW83iqpg4q+UZ+eo5sLAf3DLsmvFTOxwTFtZp0AY dtWznnxIZeLXD4KMLN1EYDDoiZCBFxPH+NWFruGKwoJ1ZeAbDyZeinVj/FaL gajirZ+OLkyML94PMXYUgy2f0qoCbJg4XSLbIf6pGJxVP+JaokvEb31/tDR3 CUgNSt5eIszEfBcqW86cWgYbG0SW5wsy8cp10ssHK5aBUSY1ciOFiZ0yRzeN jywDb7Mx220zQriacvBb77HlUFXweu7MLyEc55rV5hcgDlYuQdsHHwrh1kYX 6YgsCTjT/Gmw3kMIt0cxupgnZKDrSzQudRHCm25LGVc2yIDRL9W0NAchXFAc xCcgIAv8s+cNfHYI4ePS906G75GFREW4KKwthK+ZFdt3LshCVvRNLTdhIZwf mKe6zmUVzCXb0i3oQvif49X5nPhV4JrF06XOL4ThWrVWxINVIHvPOZ5/joH7 z4ydjFiyGm52sr7d/s3Arn/dTTI/roZK7dORc08Y2KT99rsZT3lYZiJv3/eI ga27fRdPZstDoPUHpZZKBr6yXv+8T4s86HiptBbcYmBK2fWyx7oKUH+5S8Ey nYEbcgePaYmvhbdc86bMIwwsr89/Z9cfRfhzY8XyzVIM7JtpIt83pgJv93Wf 0lnOwIUlpUy5LeuhUqb0k74oA59Zljk2EroewjP10o1pDLy5mHnEibYBRJPc lu4ap+OON731XgobQefEDbEjTXSsm8cra4xVQUbtaIDfCzq+d8jiudNvVSBz tD4GNNAxdXFs/3OmGrz1epka/JBwRJZyzl412Oc8KHKukI6933g+8uFVh/NG asIFoXTcZHRcZd5JA44tTh8rCqTjcnK3XlWcBtjWNbwr8afj+3nxPs2VGiCt ZXuh3JuOa8YdGHLCm+D+ukDmE1s6Xldy3v/Qm03QIfyY0a5Cxworrw+q2WmB 0g9zAdZ3Qezafb9Gr1Yb5swmNhV9FsTlymLKp2a04W15gbv+B0EcIGFYDjo6 4B+18ODwC0Gsdu5zUVytDjySr/R8eU8QW+1eFs5o1AVzX5lnkbGC+D6r7+3M uD5ItDVxxSMFMXXz7NHn+gYwpB8sWR4iiPs+7ezQjDOAFFabf6efIJ5637CT IgXw5f55OV1nQWz7vGi0UQGB1/S/8PGNgvg8r3JSpbchbNlXcCtBiRhv3dgY n2oIgm+sP62SF8Qhmzr7a+sM4c7V0vU2EoJ4sAp1aYsawQR4fLtNFsTJk5W7 7tUbQWxsk7ZXuwAe7HhRsUXDGArFCsbbowSwb9r0VmNPM3hWTk1oDhPA+x// dUjMNIPeHb5y9acF8BoLpVHdZjNQOKdpVXxUAB9rjS1t1TSH4rkXN085CeDG ihkRHoYFlPUOOYmpC+C1i5zkv03boCnKZoR/vQDOEpj6RKdawrBMddzMWgGM jplNZhlawganM5U/VwrguAuvFpc/tITytyLMcgEBbGUpp1p4aztUPtCq3/6T ho1/6+jWF1lBq222A/pGw5p83xnh/Vbwb2RxWOMzDVeSnc3qlHaClsorCclm GpZTHzmHy3fCw1znE38e0vDbhM3PIjysoS4+Ym1sCg2XT5utyYqwgafOr5PY QMNhJTZ3k//thpZCsb+mOjRsRskzGltlC53DLrvebqLhwaJjutXWtjB1hrvs +zoadvaPWuF02xY2FC7JnRGj4VzG4d8qh+0ga2jvfc1+Kh533uh6bdoeijWL lzzupuLcWpkLeusdoCp85JTxdypOMdiSZuLhAC3CZ3V3f6Bi+/Qa2SuvHYCi WfLMr46KRzmJ8bb5juAXNvapNIWK2e9hZbunE4Q/19PWSKDiL5U0G/88J0hg xWbXxBD+7jsU+c0JivLE3V8FU/GC4q9iqq0zfG3U/9N3gIqzvtTfeGbuAqbM c7Ny2lTslTmo8cxiL0jlSMle+cmPGeb7LzEcPeB2ZqSQ9jd+rLx4sbE/1AMM LvfNtH/ix+bOcuP0fA9wiy9vk2zix3aLHgrrhj0gP8A4IaeaH/dUfF7dFLsP FM19J4oS+LFhZO1b2Zf7YdNIbVOVJj+mGlAyzsd6QuOgbI29Kj/OuJXhrVvl CfZ9MTcnlfhx5tXE8K2/PCHw684obVlivN7+rvNWL6hp7Nn8WJAfi5lKf6yl eAPKohc8+0HBYv3/SLXZPmC51TnoYzwFJ6bGynwVPgJK/oHvW85SsMZRbkWO 2REQzLu07u0ZCnaKG2rH4Ufg5cKb9pcnKbi/hHdCgnMETGv0dJ54UHCkgIC1 /vujgNSkZ4u1KTj2tuCbdls/0JT5GRr+h4y5t3ozbu72hyVW860hv8hYQPWZ l/NJfxgPXbE+6AcZN0ldPmua4Q/3O2y+B7SR8Wh3fcfTr/6gmt6g71NPxnbL rkXv9woAJaHChd2ZZHxK2EclNP4EyMx6RqyzIOPfiaGeO2dPwVCbV2HNVjJ+ fOOrK79iIDws935paUDGfofTogXtAsHa85DwUQ0y7n31RXLubiBEvD+Se38l GR/fcaEvxec0dN88gXVH+bBDf9Od3sEgKLKNIlll8+GFPM2GENUw8N8YveZH Gh/murw6VesVBgaCZ839UviwjMft3Q45YfCZHZOSGsOHm03iYm+wwoGmHC/7 +RgfDundMVwyHg6HeFKQuzERPyGzcJ93BKy/cy3Cf5gX96U1nAg+FAXmj+1Y 7v28mK10M0jyfBTsaxK6vqOHF29tWEodKomCKwNhtYrtvNisn14kNRAF5LV7 Jzqf8WLJrnPeDb7R0JEj7Wt5lRfHa57eahtyFmIv5jisseTF0gPul/XZsZCX 69AnYsqLd9/y/2XcGwt1d1knFxEvNp5XORZNj4OR5jOpHVq8+KFh0+abjnHg IujenLKKuN+7uTrlXxxoRMtunZ/mwfXxeUvldeKh60Tehk/FPLg60rNY6W8C hGueNP9ewIOXt12iVEklgtSE+b5f13mwe/rxjFCLRHAM/Js2epkHt/wxPfCs IBHeB8E8M5IH5/ttmNZ3ToKG8O9vzPbw4Knsn3ZLPiVD4bkVPo8EeLBl/V7/ KwspYGQxHIXJPNizZFhtTPwidAnUX32xSMJy5RI//TQuglSCd0vbPxIeuBx2 vc37IqQlPdg8+pOEl11SSDBvuwixqXb8yjUkHGOaIjVemQo+Vy8WXD1EwvYR pIcHUy7DOG1b/OaDxLjksJLg/csQcZL32Ac3Ev7cP6n3/eNlSLcK0KHZkXCp vRifsHgaNJDs3gcACZtPpobdzk8DiYPii9uWkPC7mqQ7Yzgd0pwNqkZDFtln r+kvCq3OhLJNdyMUjy+y1bv2HPi9LRMahGS37/VcZC+PTar9558JHDZPzyvr RfbsRIDw/aeZYLqmUThPfpH9gWer4F2vLJgYsvTd+W6BrXZYfWP/o2xwDN+z umzVAvsqPfv663PXgY63PMsSX2DvNqloj668Dk94xA/GMxfYFQtfxvy6roN8 zKciz5l5ttiPzJO/t+TAaMJuJbkP8+zD5w9GbxvKgcTMHWrpkfPsr/rlz+Pu 5AKuNISIrjm2+s/6yj6NfAiYkO06+mmOndQcbKOyIx8UtpAiXZvm2I+D8M1k z3xIqn3SoPNwju1spPK1JDMfnBp0Tf9dmGNveFnepsdTAOPvNHccgjn2o30n uvvbCkBxcJ2z7fVZ9sf50IXJtBtQdfbDpUOXZtnZw0eU/KtugJF0SFPEuVn2 EZNhX5G2G+Bi06R/23+WzbhhXMJeUgQpD47K8pvNsg+87VXsTCuC6eiK3gfc Gfb25vkEvZyb8FpK30/ScIZN/nO+0PxdCThU9xarac2wFx4GxF4bK4FfO5N/ minPsB1Yn5dLit+Chagfu04snWG/nROpTfG4Bep/IjWb/0yzl/Msk/WZuAVZ Vc9nwlOn2bd7gzV+ry2Dw1bWMd09U2w+esrO77fuwMI21Vbl9il2i5BeTO3H O5BqJrz65NspttinJ9bP5u5ADWrB1EdT7AjfL8L2O+8CTcN6TiV5iu3miqlh E3ehaLl1QOCWKfbAvxfXAovKobtrpwcjaZJ9TcKy7LzQfXAK2KmvpTXBvlzS zP0mWwUJX655bFGZYK+I/xarp10FdfpDMTqrJtiCUi8N7tlUgTQt/q0Bc4Jd u01xU0dUFfy82uBm1vePbWX/YK1yXxV4P9eMckz/xx4R4S1pKa+GUyukXgRP jLNtp1vf7rd/CJfY/dbs6jH2Ce3eFrtftXA9lCT0p3SM3ezG+/QZuQ6KtcVf ieaNsYMfnm2wkq+DJxVmhp4JY+xlNSRapWcd9N8sUhNyH2Pz7K0OfTZQBwYp B0SdBcbYTPOXO/imHsMf966PE86j7O3FO8wuiWEA3i/2G3hG2FvGGgozfBvg 0JcGvxtjQ2wTIytHfs8XoJcZKV5z+jfbpGduULSoGby/j3zds7ybHZLxpzFo +wfY2aVy++WaDrapmvU5z4420GJnfx44+5ate0IrXnWqHbT/uu7v3F/JPvRq yZmRye+gHM0VxCcrILD6R7rqVBfcfcEpOeP4DgxdKL6e4j3w2OL1Fp2GdhjP kd54j9QLg7fyfawcu8HRODigidsH125vyB6v+g1aX29FiJf0Q51H7FLVB0OQ fqCW7LtsAIKXZLbtFB2BC76K/Vm+g3CYz/7HcakRwOrbn6scHwSXUdE/lxRG QENdPqn25CBAS+LcZ50R+C1N//QufBDIiRGr3fePgPD5SpePKYOQzOd93K9y BOIk9sSYVg5CwaiW0EX7UTAMEZ78MTUITS2txh+yxuBg7Uzf7OkhqHZx2lJf OAafer+gh6FDkNf/Q7n8zhjs3drRcDxiCE6RBkWTG8bA203L6FvcEMiq8vy0 GBiDV4b6Wy+kD8HJC+vD6rXHYdcqgdkjFUMgbRVbVf5lnDgnRRNig0Nw/M1m hQvLJqDwkmL4pl3DELU4FmkvNwHDBsvHo+2GIVWj/PtKlQnwvvjOrsVxGCqz FdPKDCdg8LNkt5vbMEwdXkF+7TsBhvrDxk6+wxDOmP1JfjoBsd3xRx/HDMP5 HU+uBR+bBFPuKX+z6mHIjgyeNgyehMG2a/KbHw1DWZWWnUDMJGicWj22um4Y mlfeZVzJIlzu1zNePwzCnJyQqsZJSM5wND7RPAwZyZF7/kpOQVHD7IGBnmEo fGe81PPlFJzwu2DIZnJAPDs1+8SHKfCj1QmuE+FAgmeXXPS3KdDNKwxOEeOA /3zIhty/UzBgxG/rKM4BQ+UKsw7xabBWKRdtkuNAZ6xcsJXPNCgp+XGMNxHx DBY6tQRnQLR3450YBw4kCmw/aLJkBrYb1fwt2sOBxdbMwd3SM7DR7hnluTMH +g5rTvmpz0C8yp+yeTcOVGX6ipQ6zQCPacSy3d4c2PWvY6tM6QxMugunZJwm 4pU9KKZun4Wu1NUjKRkcUJDVy+DYz4JRlZ5DRiYH8CUc0+YxC1fx6v3Z2RwY C361ryBwFh68uRBwNYcDThZfpaBgFtYwbEqibnJgXd9CyqmZWfAtlZ3rqubA cxnToN7iOSj8/atj5CMH3C+99mqqmAPxGInT5W0cmOHfaV/xZA4mqVXjvp85 sIHjoBHZOgci+7Ze+tHBgbQ6n2Ep0jykfevOKP3JgQN7kjxsHebhgJrBzi4O B3gutVo8pSxA//PMvpdULixcG9g3wlqAenS+aL0AF2aKSaEyEgsQS1qsSxHk wvgTlTshGxYgNUxhzEaIC30DZ0U3OSzA9yVqZViUC01Gml8Lixdg5rRwsvVK LlwZTfONtVyEo6DavVWNC2nzpTGVdouQqzihckqdC6m0huvdbotQbcUzW6TB hQRpTovBiUXoKnNXIGtxIXybqebk1UXgpJ7uKtPhwv78iXkvziL0Ws+JPNrK heUlpS8KzUloXcCK5kZbLojOS1jk7yAhy3pxnud2XGDYnH+ds4uEVIu1/j6z 5wLvtHdzlgsJ7a69T2Y7coFjrvAxxY+E3q9+o1jowoXn/bmdoVdISPJooq/G AS6cUkz/Z9tPQsEXXHSP+nPheCglcNcwMT/qroJ5ABd8W05M7RwloTg1uTHZ E1zYd3r37LY5EkpfOqnx7iQXrF4K8xgK86DFnwdOSgdxQcE7gbF+Cw/6Pdk9 fu4MFz7djFhNOceDdqq5l6clcInnIb39aBIP0mmgh7gmcmF0Mi35SyoPArGZ lWuSuMA0L50uvcaDNH3oo7eTuWDa3/ZuVwUPkpFvmKq4yIUHisqhuZ08KHXe pfR8BpH/krZWXU1e9PAO9+XhfC4U2bifv6HDi063SyuJFHChcnoAWIgXze4X T6oi3GJBKu3exouC9u1xnS3kgsCAUmS8Oy/6WrbPIuQmF4KVItZ/TuBFEgYv 9+4o44JzqVKsfzcvqiXPPDWq4oKEzELLmd+8qM54/416wh2p7yWThniRRQHf a6jmglPw6Xs3J3iRz5mzXdoPuOBo8fzbN0E+dPRshrP8Iy7Y/vbQMNPgQ9rS DOuOOi5sX53ZJXmWD7kcfa7T8JTYzwxf5XXxfGhQpU5D+RkX3giiU1rJfOjz BquES4S3jfbRba7wIZZN5J59jVwwr9+0ObaMDw09Sj039ZwLxm4tSX9b+VD+ uHc39TUX9LKpuo3yZNS/JrDvwTsiv/snHhkokxH56FWvpS1c+KnUu+WhKhnZ vJgx8yccW9OgVapLRpJl/EpK77nwvj1M/aINGVlp5CamfuCCp/j4OtcwMtJT bEo1beNCSlqX+L9WMrq+4/1Nww6iPlzfZRztIKNIpFyfSFhT/smy/h9kNGzO b/eZcEdl9pKvA2S0TtGHe+grF+Rb7YXrSRTU5fienPiNCzWizdQkFQqi6xTu re7kQs+FRxNrzlJQ82PMe6+bC+pFiQNn4ymom/GhaZBwVJ1b569kCtrcM6yi 0MMF2T+U54WZFKSW+fleJuG9RrvS1tyloHg5866QX1z4Mj6gsaaDguBQpfP6 PuI875E6vlqVHx1QlKJY/OGCpB/3QLQmP8o59wYHEj4U2+DYo8OPjk/nyRcR FqjwRgUm/Cge/xviGSDqk1HFWu3Mj6IrfSOrCOMnO+6siuVHOKJni9AQUX+r zwzKfSPmX+4KjOJwoYqSfUL+Jz+SVtPuKSRc/bt6XrGPH/1IWC7ygvCDUg5L 9S8/sujrqxLkEvnQ2LvJgExFnGGDDRcIs7fqhzmpUNFy3QfKSX+58Hr/LPNS KBXFvdRtcRsl6sVk+ZX0SCoaf04xCCHctFZDLiuWiv6lhQSlE24ePKSRl0JF 6rL3nJoItwR0ONwtpCJp0RXvNMe40Bb9KPdNExV1Zss0LhLuKghUJ6+kIdt1 pjPH/xH9sf0ON2AVDd10uhsbT5gm3FfWs5aGVOZ5e3IJbwy1XftUnYZ65p4z 3hEOt1WTijKnoY1O6hvWTXBBijJIIZ2gobpxr9FWwqq6q54eC6Khxf0ON/4Q Nj6+J+JHOA2VLzu8foHw4e8vZp7E09CQrN4ThUkiH1WF3LAcGgoJFRs8SXiP 59722dc0lDcRVMmYIvrV1bT0wy00VCTY8l2acMSHpt1f22gowZr/pyrhYgPd tzVdNHRISv2ULeGpZeJPgyaI+SuNezIJp794XzYpJ4BOa78kS09z4YOiScTY aQE0t8FXXWiGCxlKjR/4wwXQrvbBDRKEXVRM5CWiBdAUn4nIWsK/N5q8RkkC SPqa4TlEeE7LZElyngDK64k29icsb2JSrPhaAG1Yoif9nvCAaeOM7jsBlCg6 lfSNcLm5yY6drQJI4OT+vt+EdbabjJ7sFEBsuXGbBcJWu030no4KoAfKueJK s1w47WHS4iopiJwPuJ4LI6y/v3HVcVlBdLszPz2OMO9Bk5Nn5QWR8lLFlIuE k7xNJEo3CqLDHxJNbhDOP2ZyYGqrIJI5wX38hnBTmMlUqq8gGhdroiyd44JM lonsy8dEE+KRHMwk7D5Q8ru+QRCFRyhH5hHO12HerX0hiH58i6aWEFb4+kn/ 7ntBxHwU1fuA8AYpb+f0XkEkRxv600pY7/r59ANCdNR6xHM9Y56oDw7Hda8o HZ31O9EmShgb7JZ3XE5HfbnJx1YQNv4hWWkpR0fvtXYFKxC2lL39Xl2Tji4I TQ4BYaf8dwweVzryqlBx9SN8dVSjdcaDjphX5NRPEe40upI97klHSxwfzYQQ 3tfjrtTvR0cftNW84gj7rBk1e3eWjozXf7l7jfDpoiXR18royN5OeclLwum3 9kxrz9FRWYhiw5IFLgxatY/n8DBQ80XvjBWE0ZjjXwqVgSJtLD2kCQ/oOv5+ L8JAxzudPq4lbNBs3+azloEObjfV0CHcy919L3MXA0kFfp5wIaxz+WPZogMD VT11k/MgnLxld/FBVwZqWbZgeJDwlshdOWreDCR28ePBI4QTRW2SXoUxkPHr zTphhDdpEm+DxQyUZMRQzCYc3958wO0OA61se/n4OuHOsB3ujRUMdLKgZ1s+ 4XPPtztcfMJA7XERliWEvzlYmqxrZaDQVV791YTPBpvL7VlkoHPJA7kthD+y jdof2gmhg5fOxSwQ7thIP9TgJIQW9vvPkRaJ/pDzceaNmxDaK3zvCB/hoTMH pH74CCFjTVegEeZHsW6UcCH0ad3jXBHC2vhVr02RECrhrTq4mjBSTT3lXCqE Yv7uj5MnbJrrRD1YLoQyXKQL1xLeFTGoeLpGCL127nqrTNgXCflefyuE1KTZ AxqEc7D16MCEEJLn+2S8lXCR6oro8VkhFJImKmVCuCz3p9gCiYn2rp7jmBJ+ GOGvKUJnoss9s3HbCH9Al09vlmGiTXX34mwIU+o/L0SbMZEFvb1xL+HD9Xvp K68wkcyvlNOnCO/LaU+vu8ZEr1zaFgIJO4XZrnIpYKKiCEpkEGFz7W3a2XeY qMrHJiiU8Jp7ml4rGpkoT+SuThThb7mMp0tHmchpzygtifDH8Dirqkkm6tkd syuZ8GsX3g7beSYSsLl65cJ/6xWf+nuJxkIPgoIkUglfTumRFpVhoXa57n/p hLdH1AQzt7NQ/seHormEt+7V5L9jw0I3zCMV8wjr6JVf3OHAQi+O2ejmE1ac ulGcuI+FZNevdSwkTPa7+EkwiIXahk4fKyb82M1bnVrEQnUckmQ54Ur9nsdF pSz05v0d8r3/8im518L0HgvtmWkb/M9Zn3e7x9Sx0C+4db+C8KmdxCfkRxYK UpNe/YDwkfU1Kwq+sNA3423T//kAXfOGUScLadqtan743/6+UKqL/MNCMbc4 R2oIW9y4YSbHJdbzh6NT+199RMt+xOMsJCJZQakjvNkje6/7DAsFLDd8+5// /38YMW9dv/yY8P8AD32+kA== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None}, PlotRange->{{-4, 4}, {0., 1.}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{3.668588874048527*^9, 3.668588908176969*^9, 3.668589529506112*^9, 3.6687523582642403`*^9, 3.668752396102489*^9}, FontSize->10] }, Open ]] }, Open ]] }, WindowSize->{1082, 1290}, WindowMargins->{{0, Automatic}, {Automatic, 0}}, PrintingCopies->1, PrintingPageRange->{1, Automatic}, Magnification->2, FrontEndVersion->"10.3 for Mac OS X x86 (32-bit, 64-bit Kernel) (October 9, \ 2015)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 339, 7, 108, "Subsection"], Cell[CellGroupData[{ Cell[944, 33, 4091, 108, 813, "Input"], Cell[CellGroupData[{ Cell[5060, 145, 419, 7, 64, "Print"], Cell[5482, 154, 760, 15, 64, "Print"] }, Open ]], Cell[6257, 172, 20101, 432, 499, "Output"], Cell[26361, 606, 814, 16, 89, "Print"], Cell[27178, 624, 25321, 429, 505, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[52548, 1059, 406, 8, 108, "Subsection"], Cell[CellGroupData[{ Cell[52979, 1071, 4139, 108, 838, "Input"], Cell[CellGroupData[{ Cell[57143, 1183, 420, 7, 64, "Print"], Cell[57566, 1192, 760, 15, 64, "Print"] }, Open ]], Cell[58341, 1210, 16028, 283, 505, "Output"], Cell[74372, 1495, 812, 16, 89, "Print"], Cell[75187, 1513, 25531, 433, 505, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[100767, 1952, 397, 8, 108, "Subsection"], Cell[CellGroupData[{ Cell[101189, 1964, 3926, 109, 796, "Input"], Cell[105118, 2075, 441, 7, 64, "Print"], Cell[105562, 2084, 307, 5, 73, "Output"], Cell[105872, 2091, 311, 5, 73, "Output"], Cell[106186, 2098, 843, 16, 64, "Print"], Cell[107032, 2116, 22323, 494, 499, "Output"], Cell[129358, 2612, 903, 17, 89, "Print"], Cell[130264, 2631, 14026, 244, 505, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[144339, 2881, 551, 10, 108, "Subsection"], Cell[CellGroupData[{ Cell[144915, 2895, 3632, 101, 860, "Input"], Cell[148550, 2998, 327, 6, 64, "Print"], Cell[148880, 3006, 181, 3, 73, "Output"], Cell[149064, 3011, 658, 14, 64, "Print"], Cell[149725, 3027, 15999, 282, 499, "Output"], Cell[165727, 3311, 712, 14, 64, "Print"], Cell[166442, 3327, 15345, 265, 505, "Output"] }, Open ]] }, Open ]] } ] *) (* End of internal cache information *)