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Resumo

A investigação das drogas psicadélicas encontra-se numa fase de renascença devido ao potencial

destas substâncias no tratamento de pacientes com doenças do foro psicológico, como a depressão

e o transtorno obsessivo-compulsivo. Os resultados mostram que os psicadélicos conduzem os pa-

cientes a terem experiências profundas, que podem catalisar mudanças psicológicas duradouras. No

entanto, ainda existe uma enorme lacuna quando se trata de relacionar as interações neurofarma-

cológicas destas substâncias com alterações na atividade de populações neuronais, com os efeitos

subjetivos que estas provocam e ainda com os resultados positivos observados na psicoterapia assis-

tida por psicadélicos (PAP). Investigar modelos computacionais, no âmbito da neurociência cognitiva,

poderá ser um passo essencial para a melhor compreensão do funcionamento destas drogas.

Nesta tese, propomos um método computacional baseado num modelo de Bayesian Program Learn-

ing (BPL) que pretende simular o efeito dos psicadélicos no cérebro. Tendo encontrado inspiração na

hipótese de que, durante a experiência psicadélica, os modelos internos que as pessoas têm do mundo

passam por algum tipo de modulação, ainda não completamente compreendida, permitindo-lhes formu-

lar ”novas perspectivas” após a experiência, este trabalho aborda a experiência psicadélica como uma

experiência internamente conduzida. A metadologia desenvolvida estabelece uma analogia entre os

efeitos das drogas psicadélicas e uma pipeline de programação probabilı́stica, através 1) do aumento

de dados de treino por meio de um procedimento de perturbações difusivas num espaço latente gen-

erativo e 2) da avaliação do seu impacto na performance do modelo na realização de uma tarefa de

classificação. Para ilustrar o impacto da perturbação difusiva na tarefa de classificação, foram utilizados

diferentes hiperparâmetros.

Os resultados mostram que a framework desenvolvida resulta num ligeiro melhoramento da per-

formance do modelo em comparação com a experiência de controlo realizada, sugerindo que a abor-

dagem conceptualizada deve ser futuramente explorada e refinada não apenas no contexto de modelos

de machine learning (ML), mas também nos domı́nio da investigação dos psicadélicos e da ciência

cognitiva.

Palavras-chave: Drogas psicadélicas, Psicoterapia assistida por psicadélicos, Modelos in-

ternos, Bayesian Program Learning, Perturbações difusivas, Aumento de dados.
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Abstract

Psychedelic drugs are now undergoing a renaissance in research for their potential therapeutic appli-

cations. For the past years, numerous studies have demonstrated their effectiveness in treating mental

health disorders such as depression and obsessive-compulsive disorders, leading to profound expe-

riences that catalyze lasting psychological change. However, there is still an enormous gap when it

comes to linking psychedelic neuropharmacological interactions to large-scale changes in neural pop-

ulations activity, network connectivity, reported subjective effects, and the positive observed outcomes

in psychedelic-assisted psychotherapy (PAP). Investigating computational models in cognitive neuro-

science could be a promising research avenue to pursue in this domain.

In this thesis we propose a computational framework based on a Bayesian Program Learning (BPL)

model that attempts to simulate the psychedelic action on the brain. Inspired by the hypothesis that

people’s internal models go through some, not yet understood, modulation allowing them to formulate

”new perspectives” about the world post experience, this work approaches the psychedelic experience

as internally driven. Our method establishes an analogy between psychedelic drug effects and a proba-

bilistic program induction pipeline by 1) performing data augmentation through a generative latent space

diffusion-based perturbation procedure and 2) evaluating its impact on the model’s performance in a

one-shot classification task. To illustrate the impact of the diffusive perturbation in the classification task,

different hyperparameters were used.

Results show that the developed framework results in slightly improved model performance compar-

ing to a control computational experiment, nevertheless, suggesting that our approach is worthwhile for

exploration not only within the field of machine learning (ML), but also in the domains of psychedelic and

cognitive research.

Keywords: Psychedelic drugs, Psychedelic-assisted psychotherapy, Internal models, Bayesian

Program Learning, Diffusion-based perturbations, Data augmentation.
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Chapter 1

Introduction

1.1 Motivation

Psychoactive drugs, including psychedelics, have been used by humans for thousands of years,

dating back to its indigenous use for traditional medical practices [1]. Though they remain a controlled

substance in nearly all legal jurisdictions, psychedelics have recently attracted much clinical research

interest due to at least three factors. First, political campaigns have successfully led to a more relaxed

regulatory framework, allowing for the use of psychedelics in public research [1]. Second, developments

in synthetic pharmacology have facilitated the systematic generation and study of psychoactive drugs.

Third, many common psychiatric diseases and depressive disorders, which are increasingly present in

the general population and constitute one of the three leading causes of years lived with disability world-

wide [2], remain resistant to current pharmacological intervention despite decades of clinical research

and drug prescriptions. In particular, psychedelic compounds have attracted much interest in their po-

tential therapeutic benefits for depression, anxiety and post-traumatic stress disorder (PTSD), resulting

from a series of phase 2 clinical trials that have shown potential long-term outcomes in positively im-

pacting the symptomatology of patients that carry these psychological disorders [2–4]. However, the

neuro-computational effects of psychedelics remains poorly understood despite a wealth of knowledge

regarding their molecular action in the brain. Researchers around the world are engaged in an effort

to understand how these substances impact the computations, algorithms, and biological mechanisms

of the human brain. This work focuses on understanding the influence of psychedelics within the con-

text of internal models and neural simulation of the psychedelic experience. In psychedelic-assisted

psychotherapy (PAP), in quiet and dark settings with minimal sensory input, a wide variety of strikingly

rich and seemingly nonsensical internal visualizations have been reported, sometimes leading to long-

term conceptual re-organization of the individuals’ perspectives [5]. Computationally, these experiences

can be interpreted as a dynamical simulation process associated with the sampling-based generative

modeling of prior experiences and knowledge (i.e. episodic, semantic, and procedural memories), in an

effort to produce novel explanatory interpretations of reality for consolidation and thus future reuse. This

is pertinent to the proposed role of psychedelics in therapy, since aberrant beliefs usually associated
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with disorders like depression or PTSD can be revised or even eradicated [5]. The focus of this work

is trying to simulate the internal psychedelic experience through an adequate computational framework

[6, 7] and separately model the sleep and wake phases [8, 9], while simultaneously exploring it in the

context of machine learning (ML) model performance enhancement.

1.2 Overview and problem formulation

1.2.1 The history of psychedelics

“Psychedelic” is a neologism that combines the words psych (Ψυχή ,“soul”) and deloun (δηλoυ̃ν, “to

make visible, to reveal”), to denote “mind-revealing” [10]. The history of use of and interest in these drugs

can be traced back to ancient times, when indigenous cultures, especially in America, began exploring

the effects of the hallucinogenic brew ayahuasca. This ceremonial use of psychedelics has historically

placed a strong focus on environmental context and psychological factors such as having a clear aim

and an open, inquisitive mindset, as well as the importance of ceremony and rituals when using these

drugs [1].

After lysergic acid diethylamide (LSD) was first synthesized in 1943 [10], reports on the subjective

effects of the drug started to emerge, resulting in the first wave of interest from psychologists and psy-

chiatrists into the therapeutic potential of these drugs [11]. Subsequently, this led to an active discussion

around psychedelic research in the 1950s, despite the socio-political issues that have surrounded the

subject. Since then, psychedelic drugs keep to rise interest in a wide range of fields such as molecu-

lar biology [12], neurophysiology and neuropharmacology [13], cognitive neurosciences [14], chemistry

[15], anthropology [16], philosophy [17], psychology [18], sociology and arts [19].

1.2.2 A renewed interest in psychedelics in the modern era

A huge impact of these drugs was felt during the 1950s and 1960s in Western culture [1]. This was

the first phase of sustained psychedelic scientific research, however, as more mainstream and counter-

cultural forces embraced drugs, their societal impact grew exponentially, leading to the popularization of

these drugs and resulting in LSD and related drugs to be classified as Schedule I in the United States

(Controlled Substances Act, 1970) and in a similar category in most other countries [1], making them

illegal.

Following a 25-year interregnum [10], research into psychedelics has been revived, with some re-

ferring to the present renaissance as the “third wave” [20]. A modern psychiatric view has emerged

focusing on the potential mechanisms through which psychedelics might exert therapeutic effects [21],

when used in an assisted-therapy environment [10] within the framework of psychological disorders

such as depression, addiction and anxiety [22], as well as alcohol and other drug abuse disorders that

present a large burden on individuals, families and country’s healthcare systems [11]. After 15 years

of small clinical trials providing evidence for the efficacy of these drugs in treating the above mentioned

disorders [23, 24], a significant effort continues to be made aimed at understanding the neurobiological
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and neuropharmacological mechanisms underlying psychedelic action [21, 25], and how it can lead to

structural and functional changes in cortical neurons, e.g. via its neural plasticity-promoting properties

[26]. More fundamentally, psychedelics are now viewed as a research tool for molecularly perturbing the

normal functioning brain in order to understand its functional properties [27].

1.2.3 Modern experimental neuroscience tools in psychedelic research

Investigations regarding how psychedelics affect large-scale brain activity and connectivity profiles

amongst different brain regions have been performed in order to characterize the atypical states of con-

sciousness in which these substances result [28, 29]. Neuroimaging techniques such as arterial spin

labeling (ASL) functional magnetic resonance imaging (fMRI) [27, 30], blood-oxygen-level-dependent

(BOLD) fMRI, resting-state fMRI [14, 27, 29], as well as magnetoencephalography (MEG) [14, 27], have

revealed alterations in whole brain organization that may be responsible for the acute psychedelic experi-

ence, namely variability of spontaneous brain activity fluctuations and connectivity, decreased functional

connectivity and decreased oscillatory power in brain regions that are normally highly metabolically ac-

tive, functionally connected and synchronous in their activity [28, 29]. These tools play a relevant role in

analysing and characterizing brain networks in the temporal domain (dynamic functional connectivity),

including resting-state networks (RSNs) (see Section 2.2.3 for details) [31, 32], during the psychedelic

experience.

1.2.4 Computational hypothesis

To date, the above mentioned studies have suggested decreases in the activity and connectivity in

brain’s key connector hubs [30], proposing a “disintegration” [27] of central brain networks and enabling

a state of unconstrained cognition [14, 27], leading to higher-level computational theories regarding how

psychedelics might be affecting the brain, namely the RElaxed Beliefs Under pSychedelics (REBUS)

framework [5].

The REBUS model aims to explain a wide range of phenomena associated with the psychedelic ex-

perience, based on the fundamental idea that, under psychedelics, there is a sensitization of high-level

belief priors to bottom-up signaling1, i.e there is a flattening of top-down belief priors with respect to

perceptual expectations, and this occurrence enables the potential revision of this priors [5]. Depres-

sion, obsessive-compulsive disorder, end-of-life existential distress, addictions and eating disorders, are

examples of psychiatric disorders that manifest implicit beliefs or biases that have become overly domi-

nant and resistant to revision [33], which can be referred to pathological priors [5]. For instance, patients

with a diagnosis of depression often show a negative cognitive bias, characterized by pessimism, low

cognitive flexibility, inflexible thought patterns, and negative fixations regarding the “self” and the future,

triggering depressive episodes, which can be interpreted as “attractor states” (stereotyped cognitive

states with “gravitational pull”) [28]. Considering this framework of thought, psychedelic therapy has in

view to take advantage of this belief-relaxation opportunity to achieve a healthy revision of problematic

1Bottom-up signaling corresponds to processing of external sensory inputs [5].
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beliefs [33]. Overall, not only classic psychedelics, but also dissociative psychedelics are known to have

rapid onset antidepressant and anti-addictive effects [26]. Accordingly, it has been shown that seroton-

ergic psychedelics increase neuritogenesis, spinogenesis and synaptogenesis [25], promoting dendritic

branching and dendritic spine formation, representing the addition of new synapses neuronal circuitry,

that might even compete with old, ”aberrant” synapses [22] existing in psychiatric disorders. It is hypoth-

esized that psychedelics initiate a cascade of neurobiological changes that manifest at multiple scales

and ultimately culminate in the relaxation of high-level beliefs [33], however, a big question remains,

concerning whether the subjective effects of psychedelics are actually necessary for their therapeutic

effects [25] or if the latter relies only on the biological mechanisms of these drugs.

Inspired by this high-level psychedelic computational theory and motivated by the idea that psychedelic

drugs when administered in a assisted-therapy context might induce alterations in one’s internal models

of the world, we aim to conceptualize and then explore a probabilistic induction computational framework

establishing an analogy with psychedelic action at a high cognitive level.

1.3 Objectives and Contributions

The main contributions of this thesis work are:

• Development of a comprehensive state-of-the-art review on psychedelic drugs, covering several

levels of abstraction regarding the action and therapy utilization of these substances.

• Conception of a theoretical computational model framework analogous to the psychedelic action

on the brain by leveraging a program induction model. The framework consists of a data augmen-

tation procedure done by implementing diffusive perturbations in a generative latent space and of

a one-shot classification task.

1.4 Thesis Outline

The document is organized as follows. Chapter 1 provides the Introduction, depicting the motivation

of the work and overview of the problem; Chapter 2 contains an extensive review of psychedelic drugs

exploring from their molecular mechanisms of action to high-level computational theories about these

substances. Chapter 3 details the proposed computational approach for the simulation of psychedelic

action. We introduce key machine learning concepts, formalizing the computational framework and

establishing an analogy between the work pipeline and the action of psychedelic drugs. In Chapter 4

we describe, analyse and discuss the performed computational experiments and resort to an alternative

pipeline after facing some study limitations. Chapter 5 concludes the thesis work by summarizing the

main take-aways and pointing out directions for future research.
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Chapter 2

The neuroscience of psychedelics: a

state-of-the-art review

2.1 Circuit-level mechanisms of psychedelic action

What is happening in our brains when psychedelic substances are administered? The pharmaco-

logical and physiological impacts of psychedelic drug molecules on neurons and networks of neurons

have been studied for some years now [34]. Although some of these effects at a molecular level are

well understood, there is still a deep lack of knowledge when it comes to understanding how these in-

duce the phenomena that people experience. In particular, these drugs have the capacity to produce

intense acute experiences, and long-term alterations in neurobiology, by activating many neuromodula-

tory systems simultaneously. In doing so, a wide range of neural circuits which underpin fundamental

perceptual and cognitive brain functions such as memory and executive decision-making are impacted

[35]. Furthermore, it has been suggested that these mechanisms may be leveraged for unique thera-

peutic approaches to psychiatric disorders [26]. Therefore, the development of an understanding of the

neuronal targets and causal effects of psychedelics, as well as establishing connections to higher cog-

nitive functionality, is of great interest. This Section will explore the molecular properties of psychedelic

drugs, as well as the circuit-level mechanisms of their action.

2.1.1 Classification of psychedelic compounds according to their action and

subjective effect

Psychedelic drugs are classified (Figure 2.1a) into classic psychedelics and atypical/non-traditional/non-

classic psychedelics based on their neuro-receptor affinities and chemical structure (Figure 2.1b), which

together determine the primary mode of action of psychedelics [26]. Classic psychedelics can be further

decomposed into three broad classes [37, 38]:

• phenylethylamines such as 3,4,5-trimethoxy-phenethylamine (derived from the peyote cactus and

more commonly known as mescaline) and 2,5-dimethoxy-4-iodoam-phetamine (DOI),
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(a) Psychedelic drugs’ classification.

(b) Psychedelic drugs’ chemical structure.

Figure 2.1: Psychedelic drugs’ classification and chemical structure. (a) Classification of
psychedelic drugs according to their neuro-receptor affinity, chemical structure and subjective effects.
(b) Chemical structure of some hallucinogenic drugs compared to the serotonin chemical structure.
Adapted from Vollenweider (2022) [36].

• tryptamines such as 5-methoxy-dimethytryptamine (5-MeO-DMT), N,N-dimethyltryptamine (N,N-

DMT, that can be found in the plant ayahuasca), N,N-dimethyl-4-phosphoryloxy-tryptamine (from

the psilocybe genus of mushroom, where psilocybin, a naturally occurring plant alkaloid, can be

found [39]), and

• ergolines such as lysergic acid diethylamide (LSD), which is derived from lysergic acid extracted

from ergot fungus [26].

The latter two classes are collectively referred to as indolamines.

Atypical psychedelics can be further categorized into dissociative psychedelics, which are N-methyl-

D-aspartate receptor NMDA antagonists1, including arylcyclohexylamines [36], such as phencyclidine

(PCP), ketamine and ibogaine, as well as cannabinoid agonists (e.g., ∆9-tetrahydrocannabinol), mus-

carinic receptor antagonists (e.g., scopolamine), and entactogens (e.g., 3,4-methylendioxymethampheamine

[MDMA], also known as ”ecstasy”) [26].

Indolamines and phenylethylamines are also called serotonergic hallucinogens, since they have been

1A receptor antagonist is a class of receptor ligand or drug that binds to a receptor and inhibits it rather than activating it like an
agonist would. This stops or dulls a biological response.
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proven to act upon the serotonergic system, as well as to induce hallucinations when taken [36]. Aryl-

cyclohexylamines are the only compounds in the atypical psychedelics class that have also shown hal-

lucinogenic properties. Entactogens, structurally resembling serotonergic hallucinogens, also induce

psychedelic-like symptoms, however, do not cause hallucinations [36].

2.1.2 Psychedelics and the serotonergic system

Following the discovery of LSD and the identification of serotonin (5-HT), the observation that this

strong psychoactive chemical had the capacity to interact with 5-HT systems sparked a great deal of

interest in its role in psychedelic action [35]. Indeed, it has been shown that LSD modulates the sero-

tonergic system via several different pathways [40]. More generally, serotonergic hallucinogens have

been demonstrated to act upon serotonin receptors 5-HT1, 5-HT2 (namely 5-HT2A, 5-HT2B and 5-HT2C

receptors), 5-HT6, and 5-HT7 receptors, and partly upon adrenergic α2 receptors and dopamine (DA)

receptors D1 and D2 [36].

Glennon et al. (1983) [41] proposed the hypothesis that hallucinogenic drugs acted specifically at

5-HT2 receptor sub-types based on drug discrimination studies in rats, which showed that the 5-HT2

antagonists ketanserin and pirenperone blocked the discriminative stimulus effects of phenethylamine

and tryptamine hallucinogens, including LSD [42–44]. Combined with early investigation showing that 5-

HT [45, 46] antagonists inhibit 5-HT2 receptors suppressing the discriminative stimulation of mescaline,

a consistent picture emerged that the most critical mechanism in mediating the psychedelic effects is

agonist or partial agonist activity at 5-HT2A receptors (5-HT2AR) [47].

Some of the most compelling evidence that hallucinogens have agonist activity at 5-HT2AR, was

obtained from two clinical studies. The first investigation, showed that 5-HT2A and 5-HT2C antagonist

cyproheptadine antagonized the subjective effects of N,N-DMT in certain patients [48]. In the second

study Vollenweider et al. (1998) [49] reported that the relatively 5-HT2A-selective antagonists ketanserin

and ritanserin prevented the hallucinatory effects of psilocybin as measured by the standardized psycho-

metric assessment scale (APZ-OAV)2 of Dittrich’s altered states of consciousness (ASC) questionnaire

[50], where ketanserin significantly reduced the psilocybin-induced increase in the the APZ-OAV score,

leading to the conclusion that 5-HT2AR blockade reduces most of the effects of psilocybin in human

subjects.

The 5-HT2A receptor

The 5-HT2AR is a G protein-coupled receptor (GPCR) and one of the fourteen different 5-HT recep-

tor sub-types that are expressed in the mammalian brain [51]. It is distinguished by being the main

excitatory GPCR of the serotonin receptor family [52]. Remarkably, 5-HT2AR antagonists have shown

to substantially reduce or abolish the subjective effects of psilocybin, LSD, and N,N-DMT in humans

[53–59]. Furthermore, in rodents, head twitch responses3 induced by the administration of DOI were
2The use of questionnaire-based reports to access human subjective experiences of altered states of consciousness will further

be explored in future sections.
3Fast head side-to-side movements considered to be a behavioural marker of an experience homologous to a human halluci-

nation [60, 61].
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also reduced by 5-HT2AR blockage [62].

In humans 5-HT2AR are highly expressed in the apical dendrites of excitatory glutamatergic layer

5 pyramidal (L5p) neurons in the cortex [63], being a predominantly cortical receptor and the most

abundant 5-HT receptor in the cortex [64]. Moreover, it is particularly enriched in the prefrontal cortex

(PFC), considered to be a high-level associative cortex region, with most of its cells in expressing 5-

HT2AR mRNA [65–67], and adjacent cortical regions. Other brain regions belonging to the default mode

network (DMN) [68], whose importance for the problem’s context is explained later, also exhibited a

high expression of these receptors. Expression in these regions overcomes 5-HT2AR expression in

sub-cortical structures such as the basal ganglia, the thalamus and hippocampus [69].

In vitro electrophysiological recordings, after the administration of DOI or LSD in rat, have demon-

strated an increase in the frequency and amplitude of spontaneous excitatory postsynaptic potentials

(EPSPs) and excitatory postsynaptic currents in L5p neurons in the medial PFC, and also in other cor-

tical regions by activating 5-HT2AR [70, 71]. 5-HT2AR activation has been shown to have depolarizing

effects on neurons, turning it into a more excitable state [47, 52], however, it is not defining that this will

have an overall excitatory effect on the brain, especially if the excited neurons are inhibitory.

In vivo studies in rodent’s PFC, DOI had a significant net-excitatory effect on most pyramidal neurons

studied, however a smaller proportion of L5p neurons were also suppressed via activation of GABAergic

interneurons [72]. Moreover, another notable study, has shown that in the rat orbitofrontal cortex and

anterior cingulate cortex, a smaller dosage of DOI elicited a significant activation of neuronal populations,

but greater doses tended to suppress these regions [73, 74]. It seems reasonable to suggest that

depending on the dose, the specific drug administered, and, possibly, on the density of 5-HT2AR in

distinct neuronal populations, psychedelics appear to have diverse modulatory effects across the brain’s

cortical areas [21].

It is evident that 5-HT2AR activation serves as a necessary (if not sufficient) intermediary of the dis-

tinctive subjective effects of classic psychedelic substances, but this does not imply that its activation is

the only neurochemical cause of all subjective effects. The activation of this serotonergic receptor has

also revealed to be implicated in changes in glutamate transmission, as well as in influencing thalamo-

cortical networks and neuroplasticity.

2.1.3 Alterations on cortical glutamate transmission

Glutamate is the most abundant neurotransmitter in our brain. The belief that hallucinogens en-

hance glutamatergic transmission in the cortex, is an overarching narrative that has been evolving for

the past years [71], however, the intricacies of the process by which hallucinogens enhance cortical

glutamate following 5-HT2AR activation remain a source of debate. Research based on the suggestion

that the presynaptic action of 5-HT involved glutamate release, have concluded that treatment with LSD

or DOI increased L5p neuron activity in the PFC and was mediated by an increase in glutamate release

and subsequent activation of postsynaptic a-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)
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receptors4 [70, 74–76].

The PFC L5p neurons receive excitatory glutamatergic input from different cortical regions, as well

as from thalamic projections, and send output to both the cortex and the thalamus. According to re-

cent research, activation of presynaptic 5-HT2AR on these thalamocortical afferents also contributes to

psychedelic-induced glutamatergic transmission regulation in the PFC [70], which has been supported

by showing that stimulation of presynaptic 5-HT2AR in thalamocortical synapses by DOI promotes N-

methyl-D-aspartate (NMDA)5 receptor-mediated transmission [78].

Furthermore, L5p neurons are known to couple bottom-up cortico-thalamic and top-down cortico-

cortical loops of informational streams [79, 80], suggesting that alterations in these might lead to changes

in these loops. Recent electrophysiological and neuroimaging studies of the human brain in its resting

state suggest psychedelic-induced alterations in thalamic gating.

2.1.4 Alterations in thalamic gating

Psychedelic drugs are known to affect the neurons comprised in central brain networks responsi-

ble for bottom-up sensory input via the thalamus to the cortex and top-down cortico-striato-thalamic,

cortico-thalamic and/or cortico-cortical control of information [21]. It has been proposed that hallucino-

gens disrupt information processing in cortico-striato-thalamo-cortical (CSTC) feedback loops, which are

circuits linking information between the basal ganglia, thalamus, and cortex [81]. These feedback loops

are known to be involved in memory, learning, and self–nonself discrimination by linking cortically pro-

cessed exteroceptive perception with internal stimuli such as proprioceptive information [36]. Within this

circuitry, the thalamus, highly modulated by serotonergic afferents, is essential in the gating of internal

and external sensory and cognitive information flow to the cortex [81, 82], thus, the psychedelic-induced

disruption would lead to an inability to screen out, i.e. to “gate”, extraneous stimuli and to selectively

focus on significant elements of the environment [81].

Thalamic gating is influenced by glutamatergic cortico-striatal and cortico-thalamic pathways that

project to particular and non-specific nuclei of the thalamus, as well as serotonergic and dopaminer-

gic neurons in the raphe and ventral tegmentum, which project to multiple CSTC loop components

[83]. Several lines of evidence suggest that disruptions of thalamic gating, such has the one evoked by

psychedelics, happens by stimulating 5-HT2AR in various locations of the CSTC loop [81], resulting in a

neurotransmitter imbalance [36] and leading to an overload of the feedforward information of the cortex,

consequently disrupting cortico-cortical integration of distributed neuronal activity [81, 82].

The sensory information processed by the thalamus would typically cause mediodorsal thalamic pro-

jections to fire. Hallucinogens acting directly on these terminals cause glutamate release in the absence

of sufficient sensory input. Furthermore, the effects of extracellular glutamate would be amplified since

pyramidal cells would now be hyperexcitable. As a result, hallucinogens might dramatically increase

the sensitivity/excitability of cortical processing while also stimulating glutamate release from thalamic

4AMPA receptors are responsible for the bulk of fast excitatory synaptic transmission throughout the central nervous system
and underlie much of the plasticity mechanisms of excitatory transmission that is expressed in the brain [70].

5Critical receptors for establishing, maintaining, and modifying glutamatergic synapses [77].
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afferents, which generally indicate the processing of incoming sensory information. That is, for incoming

sensory inputs from the thalamus, the signal-to-noise ratio in the cortex would be extremely low. Such

logic is often compatible with empirical findings that hallucinogens cause highly magnified or distorted

incoming sensory inputs [35]. These changes in sensory processing, might be underlying cognitive dis-

turbances and even “ego-dissolution”6 that are usually experienced during psychedelic states [81, 82].

Additionally, negative symptoms such as emotional and social disengagement might also be the out-

come, being seen as efforts to protect the brain against input overload [36].

Several studies on LSD, MDMA [85] and DOI in animals [86], in addition to some other studies regard-

ing the actions of LSD in humans [87–90], have allowed to construct a framework on how psychedelics

affect cortico-cortical and cortico-thalamic circuits. Enhancing extracellular glutamate levels in the PFC

by stimulating postsynaptic 5-HT2AR on L5p and L6p (projecting to L5p) neurons, as well as presy-

naptic 5-HT2AR on thalamocortical afferents, has a net excitatory impact on L5p neurons and pro-

motes synaptic plasticity via AMPA and NMDA receptor-dependent pathways, and therefore affecting

the thalamo-cortical broadcasting system, and thus consciousness as a whole, by simultaneously pro-

ducing sensory “flooding” due to reduced thalamic gating of interoceptive and enteroceptive inputs, and

by altering the meaning of percepts due to disrupted cortical–cortical interactions [21]. Neuroimaging

studies, as well as studies studying startle response and prepulse inhibition in humans7, have been sup-

porting this framework by investigating the functional and effective connectivity of major connector hubs

of the CSTC model. A phenomenon know as hyperfrontality, which describes an increased cerebral

glucose metabolism in the PFC region, specifically in prefrontal and tempomedial areas, that has been

identified in the previous mentioned studies, has also been shown to correlate with altered thalamic-

cortical circuitry, under the influence of psychedelics, and recognized to be underlying symptoms of the

psychedelic state such as hallucinations and distorted perception, such as “visionary restructuralization”

and “auditory alterations” [21, 34].

Alterations in thalamic gating, however, may not be a specific signature of the psychedelic state,

since functional alterations in the organization of these loops have also been seen in psychotic disor-

ders like schizophrenia [81]. Nevertheless, these alterations may be a significant part of the observed

subjective effects of these substances, which, in combination with alterations in the functional architec-

ture and connectivity of the cortex, which is explored in Section 2.2, leads to psychedelic experiences.

Further research is needed to understand if psychedelic experience characteristics are attributable to a

disruption of more particular thalamo-cortical projections and cortico-cortical interactions [21].

2.1.5 Neuroplasticity

A confluence of activity in a diversity of neuronal circuits scattered across the brain ultimately controls

behavior. Circuits that drive disruptive behaviour are potentiated in disease states, whereas circuits that

drive more constructive behaviors are downregulated [91]. It is not by chance that disorders such as de-

6Experience of a compromised sense of “self” [84].
7Prepulse inhibition, happens when a weak prepulse stimulus comes before the startle stimulus, and is the suppression of a

startle reflex response, a reflectory reaction, to a startle stimulus.It is used to evaluate sensorimotor gating in a variety of species,
including rodents and humans.
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pression, PTSD and addiction are all associated to imbalances in similar brain circuits [92–94] and have

a high comorbidity rate [95]. Adding to this, the neurotrophic hypothesis of depression proposes that the

loss of trophic support (provided by trophic factors, i.e. protein molecules that support cell survival) in

brain regions such as the PFC and the hippocampus, causes atrophy, such as the retraction of dendrites

and loss of dendritic spines and synapses, fundamental components of neurons, which crucially affects

mood-regulating circuits, leading to the behavioral characteristics of the disease [92, 94]. Moreover, PFC

atrophy has been shown to culminate in an inability to weaken and/or strengthen pathologic and bene-

ficial circuits, respectively [92, 94, 96, 97]. Compounds capable of promoting structural and functional

neural plasticity, promoting the reorganization of neural circuits to produce positive behavior in the PFC

can potentially counteract these structural changes, such as neurite retraction, loss of dendritic spines,

and synapses elimination, and therefore be a promising solution for these type of disorders [98–100].

New pathways for psychobiological therapy

Psychoplastogens are a novel family of fast-acting medicines that have been shown to promote

structural and functional neural plasticity in the brain. Psychedelics, ketamine, and numerous other

recently identified fast-acting antidepressants are examples of psychoplastogenic substances. Their

application in psychiatry signifies a paradigm shift in existent approaches to treating brain illnesses, as

a greater emphasis is placed on attaining targeted regulation of neuronal circuits rather than correcting

“chemical imbalances” [91].

Psychedelics have proven to be a great promise in this field. Changes in mood [101] and brain func-

tion [10] have been known to occur after the initial effects of classic serotonergic psychedelics. Research

has shown that serotonergic psychedelics have rapid and long-lasting antidepressant and anxiolytic ef-

fects in clinical trials after a single dose [10, 102, 103] including trials in treatment-resistant patients

[10, 39, 104]. N,N-DMT, LSD, DOI and psilocybin were shown to be capable of boosting neuritogenesis

and all have induced similar effects, such as increase dendritic arbor complexity and dendritic spine

density in the PFC and hippocampus [25].

Neurotrophism

Studies have revealed that psychedelics raising glutamate levels in the brain [35] boosts brain derived

neurotrophic factor (BDNF) expression, a key molecule involved in brain plasticity changes related to

learning and memory, which encourages growth and differentiation of new neurons and synapses [105],

as well as immediate-early genes linked with plasticity gene expression in vivo [106, 107].

The significance of BDNF in neuritogenesis and spinogenesis is well understood [108], therefore,

understanding how BDNF signaling pathways play a role in the plasticity-promoting effects of classic

psychedelics is of great interest. BDNF’s high-affinity receptor tropomyosin receptor kinase B (TrkB)

activation is known to enhance signaling via mTOR (the mammalian target of rapamycin) [109], which

is important for structural plasticity [110], the production of synaptogenesis-related proteins [111], and

already shown to be implicated in psychedelic effects [112]. The mTOR inhibitor rapamycin was demon-
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strated to prevent psychedelic-induced neuritogenesis, indicating that mTOR activation is also involved

in the plasticity-promoting effects of classic serotonergic psychedelics. Besides this, the discovery that

LSD and DOI enhance glutamate [113] and BDNF [114] levels in the rat cortex has led to the idea that

psychedelics can also improve neuroplasticity by increasing AMPA receptor activation [115], which itself

has been demonstrated to stimulate the release of BDNF, in both animals and humans [116].

Given that N,N-DMT, LSD, and DOI, as well as ketamine, all seem to stimulate dendritic branching

and dendritic spine formation. It may be possible to conclude that psychedelics’ therapeutic effects are

at least partially mediated by neural network reconfiguration, since the addition of new synapses to the

neural circuitry is represented by the creation of new dendritic spines [117]. The new synaptic connec-

tions will survive or vanish in response to activity, and their existence or absence will influence the activity

patterns of the neurons on which they sit [118]. Some new synapses may eventually outcompete old

aberrant synapses, and the neural circuit may stop the abnormal firing that underpins mental diseases

as a result of such reciprocal structural and functional alterations. It is hypothesized that the durability of

clinical improvements might be explained by this physical shift in neural circuit connectivity [22].

Despite this, more clinical study is needed to investigate if the neuroplastic effects of psychedelics

found in animal studies can be repeated in humans and are responsible for the long-term symptom re-

ductions [21]. The debate about whether or not the ingestion of the psychedelics alone is responsible for

not only the clinical outcomes, but also for the acute subjective experience in the psychedelic treatment

remains [119–121].

Critical periods

An interesting recent perspective on neuroplasticity in the context of the psychedelic-assisted psy-

chotherapy (PAP), proposes that advances in psychiatric treatment may result from understanding the

implicated interventions that “release the brakes that retard” adult neuroplasticity [122], which produce

the heightened sensitivity to the environment found during particular times of earlier development.

It is clear that “neuroplasticity” is a broad word that encompasses a wide range of phenomena. One

specific type of neuroplasticity that should be taken into consideration in the context of PAP is critical

period plasticity (CPP) [119]. A critical period is a period of time during which environmental input is

required for the proper development of a brain circuit. During a critical period, the brain’s plasticity

is increased, and experiences have a strong impact on developing stable neurocircuitry. The brain’s

malleability generates both a sensitivity to environmental shocks or deprivations as well as a remarkable

ability to swiftly and robustly learn abilities throughout this developmental phase. Neuronal alterations

are still conceivable when crucial periods close, although they are more limited [119]. CPP represents

periods in which the brain is the most receptive to external stimuli, more prone to be impacted in a lifetime

manner [123, 124] and to develop sensitive stages of higher-order functioning, such as attachment,

emotion regulation, and social cognition [125].

The fact that during well-defined temporal windows of opportunity, targeted enrichment in develop-

mental domains is most successful, contributes to the belief that in a CPP framework, psychedelics’

therapeutic mechanism could be understood as the pharmacological properties of psychedelics putting
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the brain in a critical period “open state”, while the psychotherapeutic aspect might retrieve appropriate

engrams, such as traumatic memories [25], and whose clinical and effectiveness outcomes have been

linked to the type and level of psychological support provided during the event [126].

CPP may be the starting point in future work to a different level of observation missing from psychedelic

research. Studies in rodents have corroborated that psychedelics might reopen a psychosocial CPP

[127], but more research is needed. Adding to this, 5-HT2AR might be a bridge to connect psychedelics

and CPP, since, as previously mentioned, the synaptic plasticity have been found to be dependent of

5-HT2AR signaling [21, 25, 91], and was recently found to be related in key development periods [40].

However, there is now competing evidence that psychedelic induced plasticity might be independent of

5-HT2AR [128]. More studies are required to fully assess the contribution of neuroplasticity and CPP

re-opening to the mechanism of PAP, and understand how the the adult’s brain can approximate to a

child’s one during the psychedelic experience, leading to one’s opening to the surrounding environment

and learning and exploration attitude towards it [119].

2.1.6 Psychological and clinical implications

Unlike every other central nervous system drug class, where the action is usually predictable regard-

less of circumstance, the effects of classic psychedelics are strongly reliant on the user’s expectations

(referred as the set) and the context (referred as the setting) in which the usage occurs, the psychedelic

experience can therefore be interpreted as a subjective experience. While the set comprises factors

such as personality, previous experiences and the pre-dose mood, the setting is defined by the session

environment and the external stimuli presented during the session, for instance, the light and music. PAP

sessions are oriented by professionals and always built taking into consideration all these determining

factors for the therapy’s success [20].

Figure 2.2: Extra-pharmacological model. Extra-pharmacological factors which can influence the
course of the psychedelic experience. Traits are characteristic of the subject and might not only be
biological, but also psychological, such as personality. Pre-state, also referred to as set, refers to the
previous moments regarding the experience, including management of the anticipatory anxiety, of expec-
tations and the mind set pre-experience. State refers to the quality of the psychedelic experience, which
might be measured using neuroimaging tools and via subjective rating scales. Dose means the drug
dosage, which might strongly influence not only the moment of the experience, but also the long-term
outcomes. The environment or setting is dictated by the environment variables, such as the light, music
and room decoration. Finally, the long-term outcomes translate the psychiatric condition symptoms of
the subject, assessed through rating-scales, and also factors such as personality and perspective [20].
Adapted from Carhart-Harris (2017) [40].
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Evaluating the impact of psychedelics on the human experience

Despite their chemical differences, classic psychedelics produce strikingly similar subjective effects

[60]. Some examples of the cognitive, perceptual, emotional, and social relatedness effects of the

psychedelics, as well as their primary pharmacological mechanisms of action, are provided in Figure 2.3.

Figure 2.3: Primary pharmacological mechanisms of action of the psychedelic compounds and their
cognitive, perceptual, emotional, and social relatedness effects. Adapted from Reiff (2020) [4] (and
references therein).

Several research have used psychometrically validated questionnaires to compare the effects of

hallucinogens and other drug types, such as the Altered States of Consciousness questionnaire (APZ),

an instrument that has been widely used to assess the subjective response to hallucinogens, and other

variations of the same such as APZ-OAV and the 5-Dimension Altered States of Consciousness (5D-

ASC).

The common core of drug-induced ASC, according to Dittrich [50], may be defined by three di-

mensions of the APZ and APZ-OAV questionnaire [60]: Oceanic Boundlessness (OB), which reflects

a pleasant state of positive depersonalization and derealization, a positive mood, a mania-like experi-

ence and an altered sense of time; Anxious Ego Dissolution (AED) that measures dysphoric effects, like

“ego-dissolution”, delusions, loss of self control and anxiety; Visionary Restructuralization (VR), which

represents the existence of elementary hallucinations and pseudohallucinations, synesthesia, changed

meaning of percepts, facilitated recollection and imagination.

Most classic psychedelics have shown to increase OB, AED and VR scores significantly [60]. People

going through PAP clinical studies usually report alteration in perceptual (visual and auditory hallucina-

tions), emotional (intensified feelings, euphoria and an increase in consciousness of their emotions) and

cognitive (thought disorder, increased creativity) domains. Usual reports of more strong experiences,

also called peak experiences, include pleasant feelings of ego-disintegration. However, ego disintegra-

tion may also be associated with negative feelings associated with loss of autonomy, self-control, and

thought disorder [36]. This evidences that psychedelics impact on fundamental aspects of the expe-

rienced sense of self [129], often conceptualized as a loosening of self-boundaries, oneness, unity or
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ego-dissolution [130]. Increased both positive and negative mood, emotional excitation and sensitiv-

ity, leading to emotional breakthroughs (overcoming challenging emotions or memories and thus the

experience of emotional release) [53, 89, 130, 131] are also typically reported.

Overall, PAP clinical studies have been showing that psychedelics have been proven to function

quickly and have long-lasting effects after only a few sessions/doses in people with psychological disor-

ders, such as treatment-resistant depression, anxiety, addiction, PTSD or obsessive compulsive disor-

der (OCD), which exhibit a negative cognitive bias, characterized by pessimism, poor cognitive flexibility,

rigid thought patterns and negative fixations regarding “self” and the future [28]. The administration of

psychedelics in a controlled setting, and after careful attention to the set, has shown to reduce peo-

ple’s symptoms, making them potentially useful therapeutic agents and a revolutionary therapy model

in psychiatry [10, 23, 28, 39, 132]. These substances show significant potential for reducing depressive

symptoms at various time points (1 day, 1 week, 3 weeks, or even 6 months) after the therapy sessions

[3, 133], even though at time points further away from the session the results are less conclusive and

the percentage of patients in symptom remission decreases [133]. Psychedelic therapy also has lim-

itations and there is a need to be cautious when generalizing findings, highlighting the need for more

rigorous and controlled research [3, 133, 134]. Multiple confounders and biases have been identified in

psychedelic trials, including difficulty in blinding, patient biases and expectancy, highly selected patient

populations, and exclusion of patients with known risk factors. Besides this, the actual processes un-

derpinning any therapeutic benefits of psychedelics remain mysterious, and promising clinical outcomes

must be repeated in studies with larger cohorts [2–4, 133]. In particular, it is unclear whether these

observed therapeutic benefits stem from the direct impact of psychedelics on brain activity or from the

cognitive and psychological consequences of being in a different state of awareness. To put it another

way, it is still uncertain if conscious awareness of psychedelic-induced subjective experiences is required

for therapeutic success [21].

Despite these limitations, the potential benefits of psychedelic drugs in treating mental health disor-

ders cannot be ignored. Unlike traditional antidepressant drugs, which often require weeks or months to

take effect, psychedelic drugs can produce rapid and long-lasting improvements in mood and behavior

after just one or a few doses [2, 133, 134]. Moreover, potential side-effects of psychedelics are well-

tolerated and generally occur immediately following treatment [4]. In addition, PAP provides a unique

therapeutic experience that can help patients gain new insights and perspectives on their lives and their

mental health [3]. Future research should focus on addressing the limitations of previous studies, includ-

ing the need for more rigorous methodology and controlled settings, more diverse and representative

patient populations, more studies focusing on the abuse potential of psychedelics, and a better under-

standing of the mechanisms underlying the therapeutic effects of these substances [2–4, 133, 134].

With continued research and development, psychedelic drugs might have the potential to revolutionize

the treatment of mental health disorders and provide new hope for patients who have not found relief

with traditional therapies .
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2.1.7 Summary

Classic psychedelics have been shown to stimulate 5-HT2AR thus modulating brain’s neuroplasticity

and the way in which the cortex processes information. However, rodent studies, despite unraveling

the molecular mechanisms by which psychedelic drugs seem to act, have little impact in understanding

what are the brain circuit phenomena underlying psychedelic subjective effects in humans reported in

PAP. The use of modern neuroimaging technology may be a potential starting point to help unravel how

these compounds work at a higher brain level and bring to light their emerging potential in therapeutic

efficacy.

2.2 Alterations in whole-brain functional organization

The neuromodulatory effects of psychedelics explored in the previous sections manifest changes

in brain connectivity, which can be measured with neuroimaging techniques such as functional mag-

netic resonance imaging (fMRI). In the past years, numerous different neuroimaging approaches have

been used for the measurement of brain area’s connectivity [14, 28–30], showing relevant alterations in

whole-brain functional organization and dynamics under the influence of psychedelics. Different analytic

approaches reveal distinct aspects of the whole-brain cross-regional communication patterns. For exam-

ple, functional connectivity approaches provide correlations between signals of different brain regions,

while effective connectivity techniques, such as dynamical causal modelling, facilitate the inference of

the influence that a neural region exerts over another [135].

Several neuroimaging and electrophysiological studies of the human brain in its resting state have re-

vealed alterations in its normal functioning. Psychedelic-induced system-level alterations have spawned

several of the hypotheses about the neural foundations of psychedelic states [21], such as the thalamic

gating hypothesis explored in Section 2.1.4. Other studies indicate a reduced functional segmentation

of large-scale brain networks and increasing global functional connectivity, shifting the brain towards a

more global functional integration [14, 30, 54, 136] and to a more entropic state [27, 137].

2.2.1 The wake state and the psychedelic state: primary and secondary con-

sciousness

According to the ideas of Sigmund Freud, there exist two distinct modes of cognition, namely the pri-

mary and secondary processes [138]. He described a form of cognition defined by a primitive, animistic

style of thinking in some non-ordinary situations such as dreaming and psychosis, in which the flow of

“neural energy” is generally “free”, and dubbed it the primary process. Similarly, Freud observed the lack

of specific functions in non-ordinary states that are typically present in waking cognition. He attributed

these duties to the ego that gives rise to the secondary process of the mind [138].

It is proposed that the distinguishing feature of primary states is high entropy (uncertainty) in specific

elements of brain function, entropy that is suppressed in the normal waking consciousness, conferring

it characteristics associated with meta cognitive functions, such as the capacity for the formation of a
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mature ego, self-reflection, theory-of-mind and mental time-travel [139]. In this line of thought, accord-

ing to Karl Friston’s free-energy principle [140] the mind is believed to have developed (by secondary

consciousness sustained by the ego) to analyze the environment as accurately as possible by finessing

its representations of the world such that surprise and uncertainty (i.e., entropy) are reduced, process

that depends on the brain’s capacity to organize itself into coherent, hierarchically structured systems

[140, 141].

One example of a considered primal or fundamental state of consciousness that preceded the emer-

gence of contemporary, adult, human, normal waking consciousness, is the psychedelic state [138].

Primary states, such as the psychedelic state, may exhibit “criticality”, which is the property of being

poised at a “critical” point in a transition zone between order and disorder state. It is believed that the

brain can explore the widest range of its potential dynamical states in this critical zone [27]. Therefore,

it has been suggested that the psychedelic state is fundamentally distinct from healthy adult humans’

typical waking consciousness [27].

A number of large-scale intrinsic brain networks have been discovered in fMRI research during un-

constrained “resting” states (usually lying quietly with eyes closed or fixating on a cross) [31, 142]. The

so-called default-mode network (DMN) is a brain network that is particularly significant in the context of

our work. It is thought that to reach primary states, the organization of this network must collapse and,

additionally, there must be a decoupling between it and the medial temporal lobes, which are usually

significantly coupled [27].

2.2.2 The Default Mode Network

The DMN was first proposed in a work by Marcus Raichle (2001) [143], which looked at a pattern of

blood flow, glucose metabolism, and oxygen consumption in the resting state that consistently decreased

during goal-directed cognition, representing a default mode of brain operation. In other words, the DMN

is a high-level distributed system whose activity is inversely connected to activity in cortical regions that

support task or stimulus-bound processing, referred as task positive networks (TPNs), whose activity

increases during consistent task performance, implying great focus and relative decrease in off-task

attentional lapses [144]. It has been shown that the DMN’s implicated regions receive higher blood flow

[145] and expend more energy [143] than other brain regions, supporting the known fact that these are

densely connected [146] hubs for high-level information integration and routing [147], hosting the highest

number of cortico-cortical connections in the brain.

The medial prefrontal cortex (mPFC), posterior cingulate cortex (PCC) and medial temporal lobes

(MTL) are some of the implicated brain regions in the DMN [144, 148]. The implication of MTL is of

special importance since this region comprises key structures , such as the hippocampus, the amygdala,

the parahippocampal gyrus and the entorhinal cortex, which play an important role in memory and

emotional processing [138].

A coherent sense of “self” or “ego” [138] has been suggested to originate from the development

of self-organized activity in the DMN [27]. Furthermore, it has been hypothesized that coupling within
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the DMN, especially between the MTL and DMN, is necessary for the sense of self and for secondary

consciousness8, and, consequently, that the decoupling between these networks will result in a pre-

dominance of primary consciousness9 [27]. The fact that DMN resting-state functional connectivity is

implicated in introspective thought [149, 150] led to the suggestion that hyper-activity and connectivity

in the DMN can be related to a style of concerted introspection, typically seen in depression [138].

L5p neuron cells where 5-HT2AR are located are known to fire with an inherent alpha frequency [151].

These alpha oscillations are thought to be related to temporal framing in perceptual processing [152],

but, more intriguingly, a positive relationship has been found between self-reflection and alpha power

[153], as well as alpha synchronization during rest [154]. Decreases in alpha power in the PCC following

psilocybin administration have been discovered, showing a positive association with assessments of the

subjective experience reporting “I experienced a disintegration of my ego”. Although alpha frequencies

accounted the most variance, scores on this item also linked favorably with decreases in delta, theta,

beta, and low gamma power. Therefore, DMN has been related to self-reflective and introspective

functions [155], leading to the hypothesis that psychedelics induce the primary state of consciousness

by letting go of the ego’s customary grip on reality [156], inducing an increase in brain’s entropy.

In summary, the DMN is composed of a collection of high-level cortical nodes, which exchange

neuronal impulses with sub-cortical systems and other association and poly-modal cortex, particularly

those involved in emotional learning and memory. The effects of psychedelics in this network and in the

inverse coupling of DMN-TPNs will be discussed in the next section. The main result being the decrease

in the activity and connectivity of the DMN consistent with unconstrained and explorative thinking as

observed in the psychedelic state.

2.2.3 Resting state brain studies: the effects of psychedelics in whole-brain

functional organization

The study of fast changes in brain dynamics and functional connectivity10 (FC) is of great interest in

neuroimaging. It has been hypothesized that the neural correlates of the psychedelic experience can

be derived from the dynamics and variability of spontaneous brain connectivity and activity fluctuations,

which can be measured using tools such as fMRI, magnetoencephalography (MEG) and electroen-

cephalogram (EEG). Several studies reporting an increase in the integration of sensory and somato-

motor brain networks, as well as the disintegration of networks implied in associative brain regions have

been linked to LSD and psilocybin administration.

A study using psilocybin and a task-free ASL and BOLD fMRI protocol was performed in humans

in order to capture the transition from normal waking consciousness to the psychedelic state [30]. As

expected, psilocybin caused substantial alterations in consciousness, showing especially relevant de-

clines in cerebral blood flow (CBF) and BOLD signal in high-level association regions, such as PCC, the

8Secondary consciousness is the proeminent mode of cognition in the normal waking cousciousness. It respects reality by
attentively observing and gaining knowledge from its interactions [140].

9Primary consciousness can be defined as a mode of cognition characterized by the so called “primary states”, such as REM
sleep, the on-set phase of psychosis, and the psychedelic state [27].

10Functional global brain connectivity is a data-driven approach, defined as the statistical relationships between different brain
regions’ signals over time, measuring connectivity between each voxel and the rest of the brain [21].
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anterior cingulate cortex (ACC) and the mPFC, being strongly correlated with the strength of the subjec-

tive effects people reported afterwards [30]. Furthermore, a FC analysis showed that psilocybin induced

a relevant decrease in the positive coupling between the mPFC and PCC, consequently implying that

the felt subjective effects of the drug resulted from the decrease in the activity and connectivity of these

brain’s key connector hubs, promoting a state of unconstrained cognition [30]. Decreases in gamma

power11, involved in resting-state brain activity, already reported in rat studies after psilocybin infusion,

have also been supportive of these results [158, 159].

Notably, the regions which showed the most consistent decrease in activity after psilocybin admin-

istration, such as the PCC and mPFC, are the ones that exhibit disproportionately high activity under

normal conditions, as it has been previously mentioned [143], having an important role in conscious-

ness and in high-level constructs, such as the “ego” [138]. Findings suggest that reciprocal connectivity

between these two association regions is disrupted after psilocybin intake, implying a rebalancing of

hierarchical activity in high-level modes [30]. Besides this, activity in [160] and connectivity [161] with

mPFC are known to be enhanced in depression and have been shown to return to normal following

successful therapy [162]. Psilocybin deactivating the mPFC consistently, as a result of 5-HT2AR activa-

tion, has shown improvements in subjective well-being and trait openness, reducing depression ratings,

months after an intense experience in psilocybin therapy [163].

Furthermore, another study developed under resting state conditions used three complementary

neuroimaging techniques - ASL, BOLD and MEG - to conclude about alterations in brain activity under

the influence of LSD [14]. The results revealed alterations in visual brain regions, all strongly correlated

with visual hallucination ratings. Additionally, decreased RSFC between the parahippocampus and the

retrosplenial cortex were associated with perceptions of “ego-dissolution” and “altered meaning”, show-

ing that this circuit is also critical for the preservation of sense of self and its processing of meaning [14].

Besides this, the MEG results showed decreased oscillatory power under LSD in four frequency bands

in the PCC, in lower-frequency bands (i.e., 1–30 Hz), making it possible to establish not only a rela-

tion between ”ego-dissolution” effects and decreased delta and alpha power, but also between simple

hallucinations and decreased alpha power [14], also supported by previous studies [30, 164, 165].

Given this, it seems plausible to assume that the action of psilocybin, LSD, and other psychedelics

can be underlying the desynchrony and the loss of oscillatory power in higher-level cortical regions,

most likely through 5-HT2AR excitation of deep L5p neurons in those same brain regions [14, 30, 164],

thus contributing to the reduced stability and integrity of well-established brain networks [30], and, at

the same time, causing network breakdown and desegregation by concurrently reducing the degree

of separateness or segregation between them [166]. For instance, coupling between the MTL and

the other cortical regions of the DMN, showed to be necessary for the maintenance of adult normal

waking consciousness, is disrupted leading to desynchronization in DMN’s activity [27]. Importantly,

these results are consistent with the more general premise that psychedelics cause cortical brain activity

to become more “entropic” [27].

Two psilocybin trials in treatment-resistant depression patients [28, 167] demonstrated functional dy-
11Gamma power is involved in sensitive drive and in a large range of cognitive phenomena such as attention, learning and

working memory [157].
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namics changes in DMN, and in other two brain networks impaired in depression, the executive network

(EN) and salience network (SN), suggesting that decreased modularity or increased flexibility of these

networks following psilocybin therapy might be a key component of its therapeutic mechanism of action

[28].

An even more recent FC study administrating psilocybin and LSD, concluded that these might induce

alterations in cortical information processing [168], being these results coherent with what we have seen

in Section 2.1.4 regarding psychedelic-induced alterations in thalamic gating. Two other neuroimag-

ing investigations demonstrated enhanced thalamic FC following LSD treatment, especially between

the thalamus and the sensory and sensory somato-motor cortical areas [54, 169]. Another research

studying the CSTC model’s primary hubs [170], showed that LSD improves ’bottom-up’ thalamo-cortical

information flow to some cortical areas, it decreases information flow to others, supporting the concept

that psychedelics somehow disturb thalamic gating [170].

Summing up, research has demonstrated alterations in FC between nodes of different intrinsic brain

networks after the administration of psychedelics, as well as changes in regional and interregional en-

tropy/complexity [24, 29, 54, 136, 164], even though results have often shown some inconsistencies

[29, 171], concluding that more investigation is needed. Reduced functional connectivity in or between

regions of the DMN has been the most consistent finding in all of the different studies that have explored

FC within the nodes of intrinsic brain networks [14, 30, 54, 136, 164, 172]. Overall, findings suggest

that psychedelic administration shifts the brain towards an increased global functional integration, as

reflected by an increase in between-network functional connectivity, brain networks that usually show

anti-correlation become active simultaneously (act as “one”). Furthermore, an expansion of the overall

repertoire of explored functional connectivity motifs (increased the number of possible states to find the

brain in) is also observed in the brain under psychedelic drugs, which can be interpreted as an increase

in the brain’s entropy [14, 30, 54, 136, 164, 171, 172]. This seem to be in consensus with the reported

subjective effects during the psychedelic experience, such as altered perceptual, emotional and self

processing.

2.2.4 Summary

To date, previous studies’ results suggesting decreases in the activity and connectivity in the brain’s

key connector hubs, proposing a “disintegration” of central brain networks and enabling a state of uncon-

strained cognition and desynchronized cortical activity, could be the kernel for brain’s approximation to

criticality, potentially dismantling reinforced patterns of negative thought and behavior by breaking down

the stable spatio-temporal patterns of brain activity upon which they rest, when in the psychedelic state

[5, 27]. The next section will address how such psychedelic neural correlates and psychological findings

can be unified in a computational theoretical framework substantiated on hierarchical predictive coding

and the free energy principle [5, 27, 140].
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2.3 Computational-level psychedelic action theories

Recent hypotheses in cognitive neuroscience postulate that psychedelics interfere with the integrity

of neurobiological information-processing systems in order to produce their effects. An unifying frame-

work has been developed in order to formulate the action of psychedelics by integrating theoretical

frameworks such as the entropic brain, the free-energy principle and predictive processing [5]. Relaxed

beliefs under psychedelics (REBUS) and the anarchic brain is a unifying model, based on the principle

that psychedelics affect spontaneous cortical-activity, leading to the relaxation of the precision weight-

ing of one’s high-level priors, i.e beliefs, liberating bottom-up information flow and constricting top-down

information flow [5].The next sections will cover the important concepts to understand this model, culmi-

nating in its explanation and relevance in the therapeutic context.

2.3.1 Free energy principle

The free-energy principle, introduced by Friston in 2007, states that self-organizing systems in bal-

ance with their surroundings must decrease their free energy, which is a measure of uncertainty. Bi-

ological systems, like animals and brains, resist disorder and minimize entropy to maintain stability.

Free energy is a function of sensory states and recognition density, which represents the causes of

the sensory input. Suppressing free energy can be achieved by changing sensory input or altering the

recognition density by changing internal states. This explanation of systems is based on their innate

need to enhance their internal probabilistic models and the sampling of their environments [140]. Hi-

erarchical predictive coding is an important brain theory to understand the free energy principle and

REBUS.

2.3.2 Hierarchical Predictive Coding and the Bayesian Brain

Helmholtz’s proposal that the brain functions as an inference machine has inspired many theories in

neuroscience, including the free energy principle [140], predictive coding [173], and the Bayesian brain

[174]. Hierarchical Predictive Coding (HPC) suggest that the brain reduces prediction errors [175] or free

energy by using internal hierarchical models to forecast sensory input. Top-down signals from higher-

order cortical structures provide a ”best guess” about hidden causes. High-level areas try to ”explain”

lower-level states by blocking lower-level activity until they receive top-down feedback signals that fit the

bottom-up evidence [176], however, until they do so, lower levels won’t ”shut up”. Prediction errors signal

when expectation and evidence are out of sync and are sent upward to be ”explained away” by higher

levels of cortical processing [177]. This method of processing is similar to Bayesian inference.

The concept of hierarchy is crucial for the brain to create top-down expectations regarding sensory

inputs. As the hierarchy progresses, the complexity of representations also increases (e.g. from sensa-

tions, through perceptions, and then to concepts) [138]. The brain associates multiple sets of potential

causes with physiological effects and chooses the set that explains them the most effectively [178]. This

process is based on internal or generative models that use Bayesian probability theory (further explored
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in Section 3.1.3 and 3.1.4), where the brain has a model of the world and improves it through sen-

sory inputs [140]. The prior constraints in this process that allow narrowing down the hypothesis space

are called inductive biases or priors, representing one’s beliefs about the world [178, 179]. The basic

assumption is that the brain has a model of the world (internal models) [180, 181] and that it tries to

improve through sensory inputs [140, 176].

The main idea underlying HPC is that the brain is considered an inference engine and a neural

generative model, trying to optimize probabilistic representations of sensory input by updating beliefs.

This idea has been used to explain various subjective and behavioral occurrences, including visual

illusions and psychopathological disorders [182]. The process involves maximizing the internal model of

the sensorium and the world over different spatial and temporal scales. The free-energy principle, which

involves a bound on surprise, underlies the Bayesian brain hypothesis and can be implemented using

various schemes in this field [140].

Psychedelics affect the high-level functionality of the brain’s functional structure, including top-down

predictive function (as seen in Section 2.2). This suggests that psychedelics dysregulate the brain’s

highest levels, which can affect its ability to constrain emotion and perception [5]. The REBUS framework

combines this idea with the entropic brain hypothesis. [5]

2.3.3 Entropic brain

The entropic brain theory and the free-energy principle both use information theory metrics related

to Shannon’s entropy. The entropic brain hypothesis, initially theoretical [27], has now been supported

by empirical neuroimaging investigations and behavioral complexity/entropy measurements [14, 24, 30],

which augment its neurobiological evidence [5]. This theory suggests that the entropy of spontaneous

brain activity reflects the richness of subjective experience in any given state of consciousness, charac-

terizing the difference between psychedelic and normal waking states [27, 183].

Psychedelics disrupt brain functions that maintain sub-critical brain dynamics, bringing the brain

closer to criticality (see Section 2.2.1), which is related to the hypothesis that a lower-entropy brain state

is sustained via the ego. The entropic brain theory proposes that this ego function is characterized by

the intrinsic functional connectivity of the DMN and its coupling with the MTLs [27, 138], which maps

onto the subjective experience of ego-dissolution induced by psychedelics, as supported by previous

neuroimaging studies (see Section 2.2.3).

2.3.4 Relaxed Beliefs Under Psychedelics and the Anarchic brain model

It has been reviewed how psychedelic substances activate 5-HT2ARs on deep-layer pyramidal neu-

rons in high-level brain regions, leading to dysregulation of high-level components. This is supported

by evidence of psychedelics’ effect on high-level cellular, oscillatory, and network features, which are

important for top-down predictive functions. The REBUS model aims to provide a unified framework for

these mechanisms of action in the brain [5].

REBUS posits that one of classic psychedelics’ main effects is to decrease the precision weighting
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of one’s beliefs, i.e high-level priors, and, consequently, their ability to exert hierarchical control over

and be resistant to the impact of lower-level brain regions. It is suggested that the precision weighting

encoded by the highest levels of the brain’s functional hierarchy and their related dynamics become

less precise as a result of the dysregulatory effect that psychedelics have in the brain. Precision is

equivalent to inverse variance and represents felt confidence. The closer data aligns with a model, the

smaller prediction errors, leading to greater confidence. The theory suggests that relaxation of precision

is strongest at the highest levels of the brain’s architecture, particularly the ones connected to self-hood,

identity, or ego [5], and the effect of relaxing high-level priors will have an impact on making these priors

less confident, subsequently on the correct functioning of the rest of the hierarchy compromising its

structure and integrity [5].

Hierarchical predictive coding suggests that high-level beliefs restrict the rest of the brain’s hierarchy,

suppressing lower components. Under psychedelics, relaxing these high-level priors enables lower-

level prediction errors to impact higher levels (that are normally unable to update beliefs due to the

top-down suppressive influence of heavily-weighted priors), resulting in a decrease in top-down control

and potential increase in bottom-up information flow from intrinsic systems like the limbic system. The

”anarchic brain” concept arises from this hypothesis [5].

It is argued that this simple model can account for the entire range of subjective phenomena as-

sociated with psychedelic experiences, including: ego dissolution [84], the unitive and largely synony-

mous peak experience [184], near-death-like experiences [185], a sense of anxiety and uncertainty [27],

heightened suggestibility [186], sensitivity to context [20], emotional lability [39], insight [187], paranoid

and delusional thinking [39], psychological age regression and vivid autobio-graphical recollection, re-

course to magical thinking [27], altered time perception, a sense of the ineffable [1], entity encounters

and sensed presence [185], eyes-closed dreamlike visions, geometric hallucinations [188], and more.

Another way to put things is that the model proposes that psychedelics work by flattening or open-

ing up the brain’s energy landscape, making attracting brain states that encode beliefs less stable and

influential. This leads to greater freedom for the brain to spontaneously transition between states in

an uncertain way, narrowing down the number of usual dominating “attractor” states. This increased

randomness and unpredictability results in an increase in brain entropy and synaptic effectiveness and

plasticity [25], and also seems to reflect on the subjective experience. Empirical evidence supports this

idea by demonstrating a flattened energy landscape under psychedelics [189] and an enhanced reper-

toire of connection motifs [29]. This altered brain activity can be experienced subjectively as a widened

global state of awareness or a sensation of the mind expanding [189]. However, it can also be aversive

and disconcerting, as small perturbations to the system can have large repercussions in a flattened

energy landscape, as evidenced by related themes of context sensitivity [20, 39]. Furthermore, it is

proposed that psychedelics when used in the right therapeutic context, can help to relax pathologically

overweighted and aberrant priors associated with mental illness, such as depression or PTSD, which are

strongly attached with ruminant thoughts. By revising these beliefs during the psychedelic experience,

the revised priors can resonate more harmoniously with suppressed knowledge, resulting in a broader

perspective of the inner and outer world [5]. This recalibration of beliefs may have long-term benefits

23



Figure 2.4: Effect of psychedelics on hierarchical predictive coding. ”Sensory input arrives at the
sensory epithelia and is compared with descending predictions. The ensuing prediction error (blue
circles; e.g., neuronal populations of superficial pyramidal cells) is then passed forward into hierarchies,
to update expectations at higher levels (blue arrows). These posterior expectations (teal circles; e.g.,
deep pyramidal cells) then generate predictions of the representations in lower levels, via descending
predictions (teal arrows). The recurrent neuronal message passing (i.e., neuronal dynamics) tries to
minimize the amplitude of prediction errors at each and every level of the hierarchy, thereby providing the
best explanation for sensory input at multiple levels of hierarchical abstraction. Crucially, this process
depends upon the precision (ascribed importance or salience) afforded to the ascending prediction
errors (surprise) and the precision (felt confidence) of posterior beliefs. The basic idea pursued is that
psychedelics act preferentially via stimulating 5-HT2ARs on deep pyramidal cells within the visual cortex
as well as at higher levels of the cortical hierarchy. Deep-layer pyramidal neurons are thought to encode
posterior expectations, priors, or beliefs. The resulting disinhibition or sensitization of these units lightens
to precision of higher-level expectations so that (by implication of the model) they are more sensitive to
ascending prediction errors (surprise/ascending information), as indicated by the thick blue arrow in the
lower panel. Computationally, this process corresponds to reducing the precision of higher-level prior
beliefs and an implicit reduction in the curvature of the free-energy landscape that contains neuronal
dynamics. Effectively, this can be thought of as a flattening of local minima, enabling neuronal dynamics
to escape their basins of attraction and—when in flat minima—express long-range correlations and
desynchronized activity”. Adapted from Carhart-Harris et al. (2019) [5].

for mental health if handled correctly and may be the fundamental foundation of successful psychedelic

therapy, resulting in changes in personality towards increased openness [5, 190].

In summary, REBUS hypothesizes that global brain function can be viewed as entering a mode or

state under psychedelics that: (1) features a lightening or relaxation of precision weighting on priors, and

(2) allows for a potentially lasting revision of such priors, via the release of prediction error that impacts

on the sensitized priors [5]. This framework defends that psychedelics alter system functioning at a level

that encodes the precision of priors, beliefs, or assumptions. Subjective effects may be most tangibly

felt at the perceptual level, particularly within the visual domain, but as the functioning of higher levels

of the global hierarchy becomes significantly disrupted, effects will become more profound, potentially

accounting for phenomena such as the dissolution of ego boundaries and potential long-term revision

of high-level priors, which might lead to long-term reduced symptoms in the case of people with psy-

chological and psychiatric disorders [5]. Even though at the end of the psychedelic experience the brain

reverts to its default mode of efficient free-energy minimization, it might not happen as previously did
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[25].

2.3.5 Summary

Within the existing computational theories that have been developed over the years, the REBUS

model tries to capture the concepts of some of the best known cognitive neuroscience theories and

incorporate them with the evidence resulting from studies at the molecular, circuit and whole-brain func-

tional organization level, as well as clinical studies’ evidence regarding the subjective effects reported by

people. However, some consider the model to be too bold, and several criticisms have been made, evi-

dencing missing pieces of the puzzle that is the functioning of psychedelic drugs in the brain [191, 192].

REBUS in the context of this work will further be discussed in Section 3.2.2.

This review has tried to capture the big picture of what is the action of psychedelics in the brain.

We have looked into the molecular mechanisms, into the whole brain functional organization, focusing

on high-level association networks that underlie metacognition and consciousness. We then have es-

tablished the bridge between what is believed to be happening in brain circuitry and a unifying model

that tries to coherently link these alterations to the psychedelic subjective experience. Nevertheless, the

understanding of psychedelic action still has a lot of gaps. How can psychedelic drugs produce such a

broad diversity of subjective effects? What bridges the pharmacological interactions at neuronal recep-

tors with large-scale changes in the activity of neural populations, changes in brain network connectivity

and systems-level of global brain dynamics? Is the underlying cause of the observed clinical improve-

ments after PAP a result of the evoked pharmaco-neurophysiological cascade or the lived subjective

experience? All these questions remain to be answered and are, somehow, limitations of the REBUS

model.

The next chapter focuses on describing our methodological approach that takes an analogy of the

psychedelic action on the brain, focusing on the high-level internal narrative rather than perceptual mod-

ulation during the psychedelic experience, and models it as a program induction model.
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Chapter 3

Methods

This Chapter describes the concepts, tools, and methods used in our approach to the presented

problem. First, the cognitive concept of internal models is described as well as its computational formal-

ization in terms of probabilistic models, then Bayesian inference, and generative models. Second, the

Bayesian Program Learning (BPL) framework, which forms the basis for our computational approach, is

described. Third, this Chapter culminates in a proposed analogy between our innovative adaptation of

BPL and the high-level action of psychedelics in the brain. Finally, a detailed elaboration of our proposed

model is presented.

3.1 Internal models within the probabilistic framework

How does a human guide behavior and their decisions? The hypothesis that the nervous system

builds predictive models of the physical world is a core focus of cognitive neuroscience. One can in-

terpret the organism’s internal models like “small-scale models” of external reality which facilitate the

imagination of numerous behavioral options and their consequences in a given environment, and thus

conclude which one is the best course of action without having to actually commit any such actions

[193]. However, it is not yet completely clear what comprises an internal model. Internal models have

been described in different branches of neuroscience research motivated by diverging computational

approaches and, moreover, it is believed that the brain maintains a panoply of internal models and that

there are a variety of complex interactions between them [193]. In the present study, we will investi-

gate the structure of internal models in the nervous system from a computational cognitive perspective

[194]. Therefore, this section will provide a broad view on what an internal model comprises within a

probabilistic framework and how this is relevant for the study of our problem.

3.1.1 What is an internal model?

Internal models of one’s body or environments are envisioned in a variety of theories that explain how

the brain understands, predicts, and influences the outside world. We summarize the representational
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components that can be considered part of an internal models and embed them within the probabilistic

framework as follows:

• Prior models: the statistical structure of the world is far from uniformly distributed and therefore

animals and humans learn internal models which comprise prior distributions p(y) over sensory

signals y; priors p(u) motor signals u; and priors p(x) over states x of the world.

• Perceptual inference models: When sensory input, p(z|y), is provided, a class of internal mod-

els known as recognition models compute latent world states z. Generative models, in turn, are

models that explain how sensory data is produced. A generative model can be generated from the

product of a state prior p(z) and the conditional distribution of sensory inputs given latent world

states, p(y|z), or it can be represented by the joint distribution between sensory input and latent

variables, p(y, z). In order to determine the probability over the latent states that may have pro-

duced the observed input, the generative model can be inverted using Bayes’ rule given sensory

input (see Section 3.1.3 for a complete contextualized description of Bayesian inference.).

• Forward dynamical models: A forward dynamical model is typically thought of as a neural net-

work that can take the current estimated state, x0, and forecast future states. This may simulate

the system’s passive dynamics, p(x|x0), or it could use the motor’s current output to forecast the

state development, p(x|x0, u).

• Cognitive maps, latent structure representations and mental models: The conditional prob-

ability distributions p(zn|z1, ..., zn−1) of a graphical model can be used to compactly represent

abstract relational structures between state variables (potentially related to different objects in the

real world) [193].

In Chapter 2, we reviewed how psychedelics act on the brain at multiple levels of resolution. Based on

this, we built our computational approach revolving around the question of how our internal projections

of the world at a cognitive level can be altered in the psychedelic experience.

In the presented cognitive perspective, internal models will be conceptualized as abstract semantic

and knowledge representations. By developing a Bayesian Program Learning (BPL) model applied to

such internal representations, this work will focus on what happens to one’s internal models, specifically

the structure of it’s generative and inference phases, in an analogy to the psychedelic experience, at-

tempting to establish some computational intuitions about it. In the next few sections, some important

concepts required for contextualizing and understanding of the BPL model used are introduced.

3.1.2 Probabilistic models

The probabilistic framework in machine learning (ML) infers (learns) models to explain observable

data, enabling machines to predict future data and make decisions based on those predictions [195].

One can distinguish a probabilistic model from a deterministic one.

Considering features x (independent variables) and a response y (dependent variable). A model with

parameters θ denoted by gθ(x) is a function predicting the unobserved data based on input features and
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can be learned by finding the parameters that minimize an error between the model predictions and the

observed data. Considering a data generating distribution F , the model gθ(x) can be trained by finding

θ to minimize the squared error (for example) taking the expectation over the random variables drawn

from F

θ∗ = argmin
θ

Ex,y∼F [(gθ(x)− y)2] (3.1)

The model prediction gθ(x) will ideally be close to the target value of y given the observed features

x. This model can be classified as deterministic and can be used in order to make predictions [196].

However, this model does not describe the distribution of the target variable. On the contrary, a prob-

abilistic model expresses a probability distribution. Considering the above described variables, instead

of being a deterministic function, a probabilistic model would be a probability distribution pθ(y|x) (i.e. a

predictive probabilistic model). This model can be trained from data by maximizing the likelihood of the

observations,

θ∗ = argmax
θ

Ex,y∼F [log pθ(y|x)] (3.2)

Following training, the model pθ would be closer to the conditional distributions of y given the features

x in the data generating distributions [196]. Note that a key distinction that plays a fundamental role in

probabilistic models is the uncertainty of the target variable estimates. To infer the unobserved quantities

knowing the observed data, basic rules of probability theory are applied transforming the prior probability

distributions (defined before observing the data) into posterior distributions (after observing the data).

This process is known as Bayesian learning [195].

3.1.3 The Bayesian Framework

The idea behind Bayesian modeling is simple, yet powerful. There are two main rules underlying

probability theory. The sum rule:

P (x) =
∑
yϵY

P (x, y) (3.3)

and the product rule:

P (x, y) = P (x)P (y|x) = P (y)P (x|y) (3.4)

Where x and y correspond to observed and uncertain quantities, taking values in some sets X and

Y , respectively. P (x) expresses to the probability of x, which can be a statement about the frequency

of observing a particular value or a subject belief about it. P (x, y) represents the joint probability of

observing x and y, while P (y|x) is the probability of y conditioned on the observation of the value x.

The marginal probability of x can be obtained summing the joint over the variable y, or integrating in the

case of y being continuous. On the other side, according to the product rule, the joint may be broken

down into its component parts, the marginal and the conditional. A consequence of these two laws is

the Bayes’ rule as a corollary:
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P (y|x) = P (x|y)P (y)
P (x)

=
P (x|y)P (y)∑
yϵY P (x, y)

(3.5)

In order to apply Bayesian theory to ML: replacing x with D to represent observed data, y with θ to

represent unknown parameters of a model, and conditioning all terms on m, the class of probabilistic

models that is being considered. To perform learning, we therefore get:

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)
(3.6)

P (D|m) expresses the likelihood of the parameters θ in the model m, P (θ|m) the prior probability

of θ and P (θ|D,m) the posterior of θ given the data D. But what is exactly learning? Learning is

the process of converting existing prior knowledge or presumptions about the parameters P (θ|m) into

posterior knowledge about the parameters P (θ|D,m) via the use of dataD. This posterior will now serve

as the prior for new data. By only using the sum and product rule to obtain the prediction, a learned

model may be used to forecast or predict fresh test data, Dtest [195, 197–200]:

P (Dtest|D,m) =

∫
P (Dtest|θ,D,m)P (θ|D,m)dθ (3.7)

3.1.4 Bayesian inference

Modeling requires data, a model, and a probabilistic inference algorithm. We want to understand

how the above presented mathematical framework enables optimal decision making under uncertainty.

The inference problem involves computing conditional probabilities of variables of interest, given some

observed variables, whilst marginalizing out all other variables. Filling in missing data, computing pa-

rameter posteriors, and evaluating expectations can all be framed as inference problems [197].

In Bayesian inference each possible value of a latent state variable z is assigned to a probability,

the latter representing how strong is one’s beliefs that a given z value corresponds to the true state

of the world [200]. For example, with respect to the Bayesian brain hypothesis (see Section 3.1.1)

suggests that the brain encodes a prior p(z) corresponding to one’s believes about the state z, before

receiving any sensory information. It is also hypothesized that the brain encodes a probabilistic internal

model translating the dependency of the sensory signals y and the latent state z, this is known as the

generative model (in the next section we will go further into explaining what a generative model consists

of) [8]. This probabilistic model is used to compute the likelihood p(y|z) once the sensory information is

received, quantifying the probability of observing the signals (the data) y if a certain state z is true [193].

Then, as it was previously seen, using Bayes’ rule it is possible to compute the posterior probability

distribution p(z|y) = p(y|z)p(z)
p(y) , combining the prior and the likelihood in a statistically optimal manner

[193].

Bayesian principles apply to complex cognitive models, allowing normative accounts of of how people

generalize from small samples of a variable [201], world’s causal structure inference [202], and concep-

tual regulation of connections between state and sensory variables [203]. However, Bayesian learning
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poses computational challenges, since it involves marginalizing all the variables in the model except

for the variables of interest, requiring inference approximations such as Markov Chain Monte Carlo

(MCMC), variational approximations, expectation propagation, and sequential Monte Carlo [204–207].

3.1.5 Generative Models

Generative models are a class of models that can generate synthetic data points in the input space,

learning to closely resemble observed data distribution [208]. Producing data from a probabilistic model

provides insight into the model’s prior assumptions and learning process [195]. A generative model

is defined by specifying a joint probability distribution over all variables (observations and parameters)

of a model. Considering the simple case where y is the observation and z the set of latent variables

the generative model is given by P (y, z) = P (y|z)P (z) [208]. Generative models have two main goals:

finding the ideal causes to represent a specific piece of data Di, and identifying the optimal model

M to describe the entire collection of data D = D1, D2, ..., Dn. This type of unsupervised learning

estimates probabilistic models for the input data and then generates new samples from it; it attempts

to learn abstract representations of the input, being the high-level representations a self-organization of

the input into “disentangled” concepts and their relationships [209].

The Bayesian brain hypothesis suggests that the cerebral cortex contains a generative model, with

one issue being perception/inference and the other being adaptation/learning [210]. Learning involves

lossy compression of data to prioritize generalization over retention, and humans are interested in high-

level abstract concepts underlying perceived data. Internal models allow us to reason, play with ideas,

and imagine hypothetical outcomes [209]. This motivates the next section introducing Bayesian Program

Learning model.

3.2 Bayesian Program Learning

Children learn about the world through unsupervised learning, searching for patterns and structure

in unlabeled information [209]. Interacting with the world allows them to test their beliefs, update their

internal models, and improve their predictions. Embodied cognition through interactive play is likely

a crucial component of human intelligence, presenting a significant challenge in approximating ML to

human cognitive processes. Studying probabilistic generative models can provide insight into basic cog-

nitive processes [194]. The way people bridge prior experiences to learn new things suggests they build

rich causal, compositional, and hierarchical models of the world [6, 7]. Unlike ML algorithms, that usu-

ally require tens or hundreds of examples in order to learn and perform with similar accuracy as people

do, people can reproduce and explain concepts, parse objects into parts and relations, and create new

abstract categories with just a handful of examples [6, 7]. Causality, compositionality, and hierarchy can

be explained using a Form-Structure-Data framework, which models human learning by discovering the

underlying structure in data [211]. It has been proposed that discoveries regarding structural form can

be understood computationally using Hierarchical Bayesian Models (HBMs) which perform probabilistic
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inferences about the organizing principles of a data set, with higher levels representing graph structures

and lower levels corresponding to observable data. This framework can be extended to multiple lev-

els of abstraction, corresponding to applying a probabilistic model on top of this symbolic structure, i.e

developing generative models of generative models [6, 211].

(a) (b) (c)

Figure 3.1: Perception to cognition. (a) A generative model. M correlates causes α in order to
generate new data D. Inference uncovers the latent causes α in the observed data D. Adapted from
Olshausen 2006 [210]. (b) Hierarchical Bayesian model. A Helmholtz machine is a type of hierarchical
Bayesian model. It is a neural network that is designed to learn and generate sensory data by minimiz-
ing the difference between the predicted and actual sensory inputs. The Helmholtz machine includes
a hierarchical structure, with each layer modeling increasingly abstract features of the sensory input,
similar to other hierarchical Bayesian models. It incorporates both a bottom-up recognition network that
generates predictions of sensory input, and a top-down generative network that generates sensory data
from abstract features. The model is based on the idea that the brain is constantly predicting and updat-
ing its expectations about the sensory input it is receiving, and that the best explanation for the sensory
input is a combination of these predictions and the actual sensory data. Adapted from Hinton 1995 [8].
(c) Form-Structure-Data framework. A hierarchical model where a tree is an example of a structural
form, an abstract principal in an hypothesis space of structural forms. A sample from the hypothesis
space of trees is shown, representing a model/structure that best describes the data. Adapted from
Kemp and Tenenbaum 2008 [211]. This figure illustrates the concept of hierarchical models, going from
a perception-based (generative/inference (recognition)) modeling, on the left, to a higher level cognitive
modeling perspective, describing the process of underlying the form and structure of data, approximat-
ing these models to human learning, on the right.

There is a basic common sense understanding that differ people from machines, our view on the

brain cannot simply correspond to a pattern-recognition device but as an explanation engine. To com-

putationally understand the mind, we need to consider how knowledge is causally and compositionally

constructed and how it changes over time [212]. Probabilistic programs like HBMs, which are hypothe-

ses spaces of hypotheses spaces, priors on priors, capture general beliefs that apply across objects

and situations, generating hypotheses and models for specific cases [212]. Higher-level inferences ex-

plain how priors guide future learning and can themselves be learned, allowing for abstract knowledge

construction and fast inferences about new instances, the ability to perform one-shot learning of new

concepts and also learn how to learn [179], representing how humans continue to learn and change

their perspectives over time [212].

The Bayesian Program Learning (BPL) framework introduced by Lake et al. in 2015 [6] is a HBM

computational model that tries to better capture the above mentioned human learning abilities for a large

class of visual concepts - handwritten characters from different alphabets. In the context of this work, we

extend these characters to a more abstract level, such as more broad concepts, structured knowledge.
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The BPL model learns abstract, rich and flexible representations of concepts (handwritten characters)

from just a few examples, by representing them as simple programs that best explain observed exam-

ples under a Bayesian criterion [6]. This model incorporates compositionality1, causality2, and learning

to learn3 to construct a good representation of new concepts from existing primitive elements. It outper-

formed numerous deep learning models and achieved human-level performance on a difficult one-shot

classification problem [6]. The model represents concepts as simple probabilistic programs, probabilis-

tic generative models that are expressed as structured procedures in an abstract description language

[6, 195, 214]. The next section describes BPL as a starting point for this thesis work implementation.

3.2.1 Bayesian Program Learning model

The BPL model learns stochastic programs for creating new character concepts, which can be ob-

served in Figure 3.2. Characters are composed by strokes (parts) that themselves are comprised by

sub-strokes (sub-parts), which are connected by spatial relations between them. BPL describes a gen-

erative model that is able to sample new character “types” by combining parts and sub-parts in new

ways. Creating a new character type corresponds to levels i-iv of Figure 3.2. The character type is

itself a procedure for generating new exemplars of the correspondent concept producing new “tokens”

of that same concept. This process is illustrated in levels v-vi of Figure 3.2. Hierarchical BPL can then

be thought of as a generative model of generative models since it specifies a process for producing

concepts, where each one of this concepts is a structured generative model in and of itself. The token-

level variables are rendered in the raw data (images) format in the last stage, represented in level vi of

Figure 3.2 [6, 7]. Constructing character types involves sampling primitive structures, which are shared

and re-utilized across the different characters as sub-strokes and strokes.

The model’s joint distribution, which provide a summary of the uncertainty associated with each one

of the variables [208], on types Ψ, a set of M tokens of the corresponding type θ(1), ..., θ(M) and binary

images I(1), ..., I(M) can be written as

P (Ψ, θ(1), ..., θ(M), I(1), ..., I(M)) = P (Ψ)

M∏
m=1

P (I(m)|θ(m))P (θ(m)|Ψ) (3.8)

Data set and Learning

Training BPL model was performed using the omniglot data set, which comprising 1623 different char-

acters belonging to 50 different alphabets, and 20 different examples of each one of those characters

[6]. The alphabets include writing systems from historically significant and currently spoken natural lan-

guages (such as Hebrew, Korean, and Greek), as well as imagined writing systems created for television

series and video games. The alphabets were transformed into handwritten form using human partici-

pants, that were asked to draw at least on alphabet using the computer mouse on Amazon Mechanical

1Model captures abilities like conceptual combination and imagination, capturing key notions of parts and relations that may
play important roles in perception, learning and organization of concepts [7].

2Model’s knowledge of the underlying causal process that produces examples of a certain concept category [7].
3Having previously learned about parts and relations common to many similar type of concepts (inductive biases [213]), might

help the model to construct a good representation of new concepts from existing primitive elements [7].

33



Turk.

The model was trained using a random split out of omniglot, comprising 30 alphabets (964 charac-

ters), referred to as the background set. The background set included the six most common alphabets

(determined by Google hits): Latin, Greek, Japanese, Korean, Hebrew and Tagalog. The remaining 20

alphabets from omniglot were used as the evaluation set in a one-shot classification task that we will

later explore.

In a method known as learning-to-learn, the model hyperparameters, including the library of prim-

itives (first level i of Figure 3.2), as well as the empirical distributions over the other model variables,

were learned when learning related concepts. Learning-to-learn can be thought of as, if given a task, a

training experience and a performance measure a computer program is able to learn if with experience

it enhances its performance at that task [215, 216].

Training the BPL model involved learning the models of primitives, starting positions, relations, to-

ken variability, and image transformations, however, we will only review the learning process for the

primitives. For further information regarding other variables in this task, see [6, 7] as a reference.

The data collected from the human participants was composed of a set of time series with [x, y, time]

Figure 3.2: Bayesian Program learning generative model. Illustration of the generative process un-
derlying handwritten characters. New types are generated by choosing primitive actions from a learned
library (i), combining these sub-parts (sub-strokes) (ii) to make parts (strokes)(iii), and combining parts
to define simple programs/character ”types” (iv). These programs can generate different tokens, which
are different examples of the same concept (v). Exemplars are finally rendered as binary images (vi).
Adapted from Lake et al. (2015) [6].

Figure 3.3: Some character examples from the omniglot data set. Adapted from Lake et al. (2015) [6].
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coordinates that demonstrate how the artwork was made, as well as how the strokes are segmented.

Using the drawing data, data was standardized, all pen trajectories were normalized in time to have

50 millisecond sampling interval as approximated by linear interpolation. A pause was indicated when

the pen moved less than one pixel between two places. Importantly, the segments that were taken

out between pairs of pauses were designated as sub-strokes. The result was about 55, 000 sub-stroke

trajectories. After this, each sub-stroke was fit by a spline and represented by its five control points in

R10. Sub-strokes were divided into 1212 primitive components using a diagonal Gaussian Mixture Model

fitted with expectation maximization, and minor mixture components were eliminated. The parameters

that define each primitive z, µz,
∑

z, αz and βz could then be fit into a maximum likelihood estimation.

The transition probabilities between primitives (transition probabilities that define the transitions between

primitives when defining the sequence of primitives that is generated in order to create a character type,

and, consequently, a character token and a character image) P (zij |zi(j−1)) were estimated by smoothed

empirical counts. Finally, the assignment of the sub-strokes to the most likely primitive was done, and

the regularization was determined using cross-validation by omitting 25% of the characters from the

background set as validation data [6].

Generating character types

A character type Ψ is described by: the set of κ strokes (parts) S = S1, ..., Sκ and the set of spatial

relations between them R = R1, ..., Rκ. It is possible then to define a character type by Ψ = κ, S,R. A

character type Ψ is then an abstract set of parts, sub-parts and relations that work towards to define the

causal structure of the handwritten process of a person. The joint distribution of the character types can

be written as

P (Ψ) = P (κ)

κ∏
i=1

P (Si)P (Ri|S1, ..., Si−1) (3.9)

The generative process that defines the probability distribution P (Ψ) for a character type is shown in

Algorithm 1.

Algorithm 1 Generative process of a character type

1: procedure GENERATETYPE ▷ Generate a new character type
2: κ← P (κ) ▷ Sample the number of strokes
3: for i = 1...κ do
4: ni ← P (ni|κ) ▷ Sample the number of sub-strokes
5: Si ← GENERATESTROKE(i, ni) ▷ Sample stroke
6: ξi ← P (ξi) ▷ Sample relation to previous strokes
7: Ri ← P (Ri|ξi, S1, ..., Si−1) ▷ Sample relation details
8: end for
9: Ψ← κ,R, S

10: return @GENERATETOKEN(Ψ) ▷ Return handle to stochastic program
11: end procedure

In order to generate a new character type it is also necessary to sample the number of strokes

κ, sampled from a normal distribution P (κ) learned from the empirical frequencies counted during the
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training of the model. Conditioned on κ, the number of sub-strokes ni is sampled for each stroke

i = 1, .., κ, also from their empirical distributions resultant from measures from the training (background)

set. After sampling these hyperparameters, a stroke is generated.

Generating Strokes

In the handwritten characters, used in BPL, a stroke is considered to be initiated by pressing the pen

down and finished when the pen is lifted. A stroke is then a motor routine comprising simple movements-

the sub-strokes - Si = si1, ..., sini . Sub-strokes are separated by brief pauses of the pen, without lifting

it up [6].

Each one of the sub-strokes is modeled by an uniform cubic b-spline and can be described by three

variables sij = zij , xij , yij . The joint distribution of strokes is then

P (Si) = P (zi)

ni∏
j=1

P (xij |zij)P (yij |zij) (3.10)

where ni is the number of sub-strokes and zijϵN is a discrete class representing the indexes of each

character primitive in the library of primitives, described by the distribution

P (zi) = P (zi1)

ni∏
j=2

P (zij |zi(j−1)) (3.11)

representing a first-order Markov Process which has been previously learned from empirical data

(see Section 3.2.1).

It is defined that each sub-stroke has five control xijϵR10 points which are sampled from a Gaussian

distribution P (xij |zij) = N (µzij ,
∑

zij
) and live in an abstract space which is not embedded in the image

frame. Other relevant variable is the type-level scale yij , which is relative to the image frame and

sampled from the distribution P (yij |zij) = Gamma(αzij , βzij ).

It is possible to conclude that a template for a certain stroke Si is built first by sampling a sequence

of discrete primitive actions, learned from the background data (resulting in a sequence of indexed

primitives), taking into consideration that the probability of the next sampled primitive depends on the

previous one, and then strokes are parameterized as splines by sampling the control points and the

scale parameters for each one of the sub-strokes’ primitive [6]. The process of sampling the primitive

indexes that comprise a stroke will be the one we will further explore in this thesis work. The algorithm

to generate a stroke is demonstrated in Algorithm 2.

Another important variable regarding character types Ψ are relations Ri which describe how the

beginning parts are positioned relatively to the previous sampled parts, and can be of the type indepen-

dent (resulting in parts that are not connected to each other), along (part is attached to some coordinate

of the previous sampled part), start and end (part is attached to the start or end, respectively, of the

previous sampled part). This model variable will not be explored deeply since it is not the focus of the

implementation of this thesis work. For more details about stroke relations see references [6, 7].
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Algorithm 2 Generate the ith stroke with ni sub-strokes

1: procedure GENERATESTROKE(i, ni) ▷ Generate a character stroke
2: zi,1 ← P (zi1) ▷ Sample the identity of the first sub-stroke
3: for j = 2...ni do
4: zij ← P (zij |zi(j−1)) ▷ Sample the identities of the other sub-strokes
5: end for
6: for j = 1...ni do
7: xij ← P (xij |zij) ▷ Sample sub-stroke’s control points
8: yij ← P (yij |zij) ▷ Sample sub-stroke’s scale
9: sij ← xij , yij , zij

10: end for
11: Si ← si1, ..., sini

▷ Complete stroke definition
12: return Si

13: end procedure

Figure 3.4: Examples of likely primitive sequences. The leftmost column shows the start seed, which
are individual primitives in image space. The next five columns show the most likely continuations when
the next primitive is sampled and added to the character. Adapted from Lake B.(2014) [7].

Generating character tokens

The second level of abstraction of BPL corresponds to the generation of tokens, which emerge by

running the simple programs of character types. Character tokens θ(m) are originated by executing

the parts and the relations and modeling the way the ink flows from the pen to the page, resembling

the process of handwriting. There are several steps to go through when generating a character token.

In order to create a token-level stroke trajectory S(m), motor noise is added to the control points and

to the scale of the sub-strokes, then the precise start location, L(m), is sampled, as well as global

transformations including an affine warp, A(m), and adaptive noise parameters that will later facilitate

the probabilistic inference. The last step consists of creating a binary image, I(m), by a stochastic

rendering function, done by lining the stroke trajectories with grey scale ink and interpreting each pixel

value as an independent Bernoulli probability distribution [6, 7].

The token-level variables θ(m) = {L(m), x(m), y(m), R(m), A(m), σ
(m)
b , ϵ(m)}, where x(m), y(m), R(m) are

token-level control points, scale and relations, respectively and σ(m)
b , ϵ(m) are the amount of image’s blur

and pixel noise, respectively, are described by the distribution

P (θ(m)|ψ) = P (L(m)|θ\L(m) , ψ)
∏
i

P (R
(m)
i |Ri)P (y

(m)
i |yi)P (x(m)

i |xi)P (A(m), σ
(m)
b , ϵ(m)) (3.12)
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The pseudo-code for the generation of character tokens is given by Algorithm 3.

Algorithm 3 Run the stochastic program of type Ψ to originate an image

1: procedure GENERATETOKEN(ψ) ▷ Generate a character token
2: for i = 1...κ do
3: R

(m)
i ← Ri ▷ Directly copy the type-level relation

4: if ξ(m)
i = “along′′ then

5: τi ← P (τ
(m)
i |τi) ▷ Add variability to the attachment along the spline

6: end if
7: L

(m)
i ← P (L

(m)
i |R(m)

i , T
(m)
1 , ..., T

(m)
i−1 ) ▷ Sample stroke´s starting location

8: for j = 1...ni do
9: x

(m)
ij ← P (x

(m)
ij |xij) ▷ Add variability to control points

10: y
(m)
ij ← P (y

(m)
ij |yij) ▷ Add variability to the sub-stroke scale

11: end for
12: T

(m)
i ← f(L

(m)
i , x

(m)
i , y

(m)
i ) ▷ Compose a stroke’s pen trajectory

13: end for
14: A(m) ← P (A(m)) ▷ Sample global image transformation
15: ϵ(m) ← P (ϵ(m)) ▷ Sample the amount of pixel noise
16: σ

(m)
b ← P (σ

(m)
b ) ▷ Sample the amount of blur

17: I(m) ← P (I(m)|T (m), A(m), σ
(m)
b , ϵ(m)) ▷ Render and sample the binary image

18: return I(m)

19: end procedure

The exploration of stroke relations Ri, stroke trajectories T (m)
i and image transformations A(m) goes

beyond the scope of this work. See references [6, 7] for more information.

(a) (b) (c)

Figure 3.5: BPL hierarchical generative model. (a) Generative process. (b) Character images. Four
examples of character images of different types deriving from the BPL generative process. (c) Character
tokens. Four examples of character images of the same type but different tokens deriving from the BPL
generative process.

3.2.2 Why and How? A Psychedelic Analogy

A state-of-the-art cognitive model based on probabilistic program induction principles known as the

BPL model was described. This leads to a critical juncture questioning the following: “Why is this model

a suitable computational analogy for characterizing the cognitive implications of psychedelic action on

the brain?”. This section is devoted to addressing this question.

The structure of thought is determined by the inferred relationships that underlie the connections

between a set of entities. Entities and their connections may be, for example, physical objects and their
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interactive properties (see Figure 3.1c), or people and their idiosyncratic relationships. Recognizing

these underlying connections supports an essential cognitive computation, namely it potentiates rapid

inferences when facing new, and unseen situations [201, 203]. That is, new entities are interpreted

through the lens of previously learned internal models of the external world.

The unavoidable reliance on subjective reports is one of many challenges faced in understanding

what happens to a person’s internal models during the psychedelic experience. Despite this, such

reports suggest modifications to the underlying structure of thought which apparently have a positive

impact on people with mental health issues [4, 133] (see Section 2.1.6). People with disorders such as

depression, anxiety, PTSD and OCD, were seen to have significant symptom improvements, as well as

reporting “new perspectives on life” and “new ways of seeing things”, after having a psychedelic expe-

rience in the therapy context [1], seemingly suggesting that something is happening in the domain of

people’s beliefs. Moreover, in Section 2.3.4, REBUS computational theory was described [5], suggest-

ing that during the psychedelic experience people are less restricted from their a priory beliefs, being

more susceptible to access mental states that in their normal waking state they would not access. This

phenomenon leads us to hypothesize that previously held rigid beliefs about the structure of the world

become more flexible i.e., the relationships that held together a specific set of entities in a given model

of the world might become less strict, more interconnected with other entities and, from these interac-

tions, completely new objects and entities might be inferred. Together, this motivates the question ”Can

psychedelic experience be a door to formulating new concepts and perspectives, resulting in new pri-

ors and have a permanent influence on how people do inference on the world?”. We try to gain some

intuition about this by leveraging a computational model.

The BPL framework was chosen to study this, since it makes an effort to approximate the learning

and subsequent generation and inference processes of a human, being capable of generalize in ways

that are mainly indistinguishable from people [6]. Besides this, the model primitives can be interpreted

as concepts that themselves form new concepts (characters). The present study aims to integrate the

aforementioned analogy into a machine learning pipeline, with the objective of harnessing the potential

benefits of data augmentation via diffusive perturbations in BPL performance. The proposed approach

seeks to enhance the generalizability and robustness of the BPL model by incorporating perturbations in

its probabilistic program generative model, thereby not only simulating real-world variability, but also the

psychedelic experience, attempting to increase the diversity of the training data. Through this method,

we aim to improve the model’s generalization performance on a one-shot classification task. Four main

phases were therefore defined within this thesis’ pipeline:

• Perturbation phase: One can think of the psychedelic action in the brain as the ”perturbation”

of people’s priors. The perturbation phase will correspond to perturbing the high hierarchy level

of the BPL’s generative model, altering its prior knowledge. The hypothesis surrounds the idea

that this perturbation will lead to a change on how new character concepts will be generated,

i.e, on which primitive connections will be sampled when originating new concepts, comparing to

the original data set. The perturbed model will be designated as “Diffusive latents for Bayesian

Program Learning” (DL-BPL).
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• Generative phase: The generative phase will correspond to the generation of a new data set

leveraging the perturbed model. The new perturbed generative DL-BPL model will be used to gen-

erate a new ensemble of perturbed characters/images organized in the same way as omniglot, in

groups of different alphabets. The generative phase can be understood as the simulation of one’s

experience under the influence of psychedelic drugs, representing the concepts/ideas/thoughts

that one’s brain generates.

• Inference phase: After generating a new data set, it will be used to augment the omniglot data

set. The inference phase corresponds to invert the generative model and perform inference on

the character images of the augmented data set. The inferred latent variables will then be used to

update the DL-BPL model priors. Applying this to the psychedelic realm, the inference phase will

correspond to the constructed perceptions following the psychedelic experience, and the conse-

quent experience consolidation arising from it (prior’s revision/update). This step can be thought

of as perceptual inference.

• Classification phase: As a last step, a one-shot classification task will be performed on a val-

idation data set, in order to evaluate the DL-BPL’s performance. We hope this phase will bring

elucidation to a few questions such as how does inference performance of the original model differ

from the perturbed model inference? How does perturbing the highest hierarchy level of the model

influence its classification performance when faced with something it has never seen? These

questions can be projected into the plan of our study: How can a person’s high-level priors be

influenced after the psychedelic experience? How different is the person’s generalization about

the world and about life?

Psychotherapy and its possible benefits for mental health patients is one of the major motivations

behind the investment and research that has existed around psychedelic drugs. Our hypothesis resides

in the thought: a better generalization of the model may correspond to less rigid high-level priors, to a

decreasing in the weighting of people’s high-level priors, representing a wider perspective on the world,

resulting from formulation of new perspectives and revision of older ones, all of this allowing a recovery

of the symptomatology that is characteristic of this people. Figure 3.6 describes the pipeline.

Comparing REBUS and DL-BPL

Here we discuss the similarities and differences between REBUS and DL-BPL. REBUS is grounded

in the hierarchical predictive coding theory, which is based on Bayesian learning and perceptual theory,

suggesting that psychedelic substances induce a state of heightened flexibility, relaxing higher-level pri-

ors and increase sensitivity to bottom-up information. This state could provide a window of opportunity

for patients to modify rigid behaviors and thoughts during PAP. In contrast, DL-BPL aims to navigate

towards a higher-level cognitive theory of the psychedelic experience. Our work focuses on perturb-

ing/altering cognitive structures, leading to the generation of new programs or entities that can generate

new data under the same ”umbrella” structure, modeling this cognitive mechanism in terms of program
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Figure 3.6: Thesis pipeline. Thesis work pipeline describing the psychedelic analogy with the method’s
implementation leveraging the BPL model.

induction. Our interpretation is that both REBUS and our approach share a common foundation in

Bayesian theory and the fundamental difference resides on the idea of perspective modulation. While

DL-BPL allows the generation of new concept programs themselves giving rise to different concepts,

which can be interpreted as the formulation of new perspectives to be applied in several contexts post

PAP, REBUS does not formalize how new cognitive structures might appear and consolidate after the

psychedelic experience. The next section describes the pipeline phases in detail.

3.3 Implementation

3.3.1 Perturbation phase: Model perturbation

The first step of the above described pipeline consisted in perturbing the BPL generative model. As

it has been previously described, the model consists of a set of probability distributions that in form of a

joint distribution give a specification of the BPL’s generative model.

Accordingly to the psychedelic analogy we are trying to make, this first step represents the perturba-

tion of our priors of the world when under the influence of psychedelics. The idea we are here reinforcing

is that, when under the influence of these substances, one’s mind is able to build new perspectives, nav-

igating through a journey of uncertainty, turning away from usual patterns of thought and exploring new

mental constructs, sometimes, resulting in the rearrangement of one’s priors.

Transferring this idea to the universe of the BPL model, this would correspond to modulate the gen-

erative model’s priors, in order to introduce some novelty into the stochastic process of generating new

character images, new data. This novelty can be represented by introducing new transitions/connections

between character primitives that were not frequently seen in the generated character images, or on the

other side by removing certain transitions that were more frequent to be observed during this generative

process. Therefore, the change we are pursuing is restricted to the way the primitives relate to each

other in the original model. We are not altering the existing model library of primitives and other existing

hyperparameters, but inducing an update in the model’s priors regarding primitive’s transitions, which
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might correspond to an update in one’s beliefs about certain known concepts.

Figure 3.7: Form vs. structure. Referring to the Form-Structure-Data framework previously mentioned
[211], the induced perturbation in BPL model will not influence the concept’s form, the hyper parameters
of BPL will remain unchanged, including the already existent 1212 model primitives. However, the goal
is that, by perturbing the model, the potential structures under this form can be altered, giving rise to
concepts/cognitive objects can emerge, or, on the other side, remove other concepts, as the connections
within these concepts are modified.

The process describing the transition probabilities between the available library of primitives is part

of the generative process of sampling a new character stroke as it was seen in Section 3.2.1. This

process, described in Equation 3.13, was perturbed causing a change in the way primitives (which

themselves can be interpreted as concepts) are sampled during the generation of new data, originating

new correlations between these, and giving rise to new character concepts.

P (zi) = P (zi1)

ni∏
j=2

P (zij |zi(j−1)) (3.13)

The joint distribution in Equation 3.13 represents a first-order Markov Process and depends on two

probability distributions:

• P (zi1) : a probability distribution from where the first primitive index zi1 of each stroke is sampled,

that will be referred as s matrix. This is in fact a 1× 1212 vector comprising the probabilities of first

sampling the 1212 existent primitives.

• P (zij |zi(j−1)) : a probability distribution from where the primitive indexes zij of the following stroke

primitives, corresponding to the sub-strokes, are sampled, which will be referred as the pT matrix.

The sampling of the indexes exclusively depends on the previous sampled index. The pT matrix is

the normalization of a 1212× 1212 Markov matrix, describing the probabilities of transitioning from

one primitive to the other only depending on the previous state. The Markov matrix version of pT

will be referred as pTM .

Both of these matrices describe the model prior on which sampled character primitives and transi-

tions between these are the most and less probable to happen when generating new character types

and, therefore, both probability distributions were taken in consideration when implementing the per-
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turbation. The process by which the perturbation of the process represented in Equation 3.13 was

implemented is described in the next section.

Diffusion-based perturbations

The implemented perturbation took inspiration from the existing computational theories about the

psychedelic effect in the brain [5], from state-of-the-art diffusion-based approaches to generative mod-

eling [217, 218], and also referencing to statistical thermodynamics, drawing ideas from the diffusion

heat kernel as well as from Boltzmann statistics. Specifically, a mathematical framework was developed

in order to incorporate the perturbation of the process in Equation 3.13, as well as the context of the

computational theories behind psychedelic drugs.

Understanding the structure of the primitive space is a huge part of understanding how we can

perturb this space. A kernel provides a global similarity metric which specifies the local geometry of the

considered data [219], expressing the prior beliefs about the existent correlations in a data space [220].

On the other side, a Markov chain describes the directions of propagation based on the kernel values

[219].

Setting

v(x) =

∫
X

k(x, y)dµ(y) (3.14)

as the local measure of volume (or degree in a graph) and

p(x, y) =
k(x, y)

v(x)
(3.15)

one can define p(x, y) as the transition kernel of a Markov chain on a space X [219].

Taking this into consideration, the different model primitives can be interpreted as data points in a

space. s can be understood as a prior on the characters generative process and pT matrix as the

adjacency matrix that defines a Markov process between primitives [221]. That being said the s and pT

matrices can be thought of weight functions, kernels, the latter translating the transitions between the

primitives x and y, i.e the probability of the stochastic generative process to make a step from x to y.

s(x) ∝ k(x)

v(x)
(3.16)

pT (x, y) ∝ k(x, y)

v(x)
with pTM (x, y) ∝ k(x, y) (3.17)

A kernel over the discrete structure of primitives following the matrix exponentiation idea was con-

structed, resorting to a class of exponential kernels, based on the heat equation, referred as diffusion

kernels [220].

Considering the primitive space a discrete space of finite dimension 1212, the kernel can be repre-

sented by an 1212× 1212 matrix with rows and columns indexed by the elements of the space [220].
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The exponentiation of a square matrix L is

eβL = lim
n→∞

(
1 +

βL

n

)n

(3.18)

where the limit always exists [220] and its given by

eβL = I + βL+
β2

2!
L2 +

β3

3!
L3 + ... (3.19)

It has been shown that any infinitely divisible kernel can be expressed in this exponential form [220]

k(x, y) = eβL (3.20)

Differentiating Equation 3.20 with respect to β results in the differential equation

d

dβ
k = Lk (3.21)

Equation 3.21 is also known as the heat or diffusion equation, describing how heat or gases diffuse

in time through a continuous medium, and the resulting kernels are called diffusion or heat kernels [220].

L can be defined as a close relative of the adjacency matrix and β a parameter defining the extent of

the diffusion, to specify the length scale [222], which can also be thought of as a temperature constant,

making the analogy with Boltzmann statistics. Consequently, one can now make a relation between the

BPL’s model distributions defining the sampling of the primitive’s indexes sequences of strokes and the

diffusion kernel.

s(x) ∝ e−Ls(x) with β = 1 (3.22)

pTM (x, y) ∝ e−L(x,y) with β = 1 (3.23)

pT (x, y) ∝ e−L(x,y)∑
x′,y′ e−L(x′,y′)

(3.24)

Where Ls(x) and L(x, y) can be interpreted as distance matrices in the primitive space, closely

resembling s and pTM matrices, respectively.

Ls(x) := − log(s) (3.25)

L(x, y) := − log(pTM ) (3.26)

The perturbation of the original transition matrices resides in altering these by the β factor. The
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perturbed matrices, which will be defined from now on as ρstart and ρpT , are therefore defined as

ρstart(β, x) ∝
e−βLs(x)∑
x′ e−βLs(x′)

(3.27)

ρpT (β, x, y) ∝
e−βL(x,y)∑

x′,y′ e−βL(x′,y′)
(3.28)

The β parameter is what shapes the perturbation. As it has been mentioned above, the β parameter

can be interpreted as the temperature constant of the system, being a based scale for the calculated

distance L and, consequently,it is what will determine the distance/attention landscape between the

different existent primitives.

The effect of this parameter in the sampled primitive transitions between primitives when generating

a new character can be thought as of the effect of temperature in a room’s air particles. A higher β

value (lower temperature value) will result in a higher attention to the original distances existing between

primitives, contributing to a stiffening of the original prior (corresponding to air particles transitioning to

the nearest energy level). On the other hand, a lower β value (higher temperature value) will translate in

a decrease in the attention to those original distances, resulting in a flattening of the prior landscape and

making more likely to observe rare primitive transitions in stroke samples (corresponding to the increase

in entropy of the air particles in the room, being more energy states available) when comparing to the

original model samples.

Taking REBUS theory into consideration, the regime that will be explored when perturbing s and pT

matrices is the one where β < 1 resulting in a flattening of the model’s priors.

(a) (b)

Figure 3.8: Effect of perturbation hyperparameter β. (a) Heat kernel illustration. The concentration of
distributional data decreases with decreasing β. (b) β parameter effect in the priors’ landscape.

Note that, the original pT distribution does not comprise any probability value equal to zero, however

the s distribution does, therefore, in order to be able to perturb these distribution values, all of the zero

values in s were changed to have the small value of 1e− 20.

In order to try to establish a trend line between the above β value spectrum and the classification

phase results, four perturbations were made for β = 1e− 3, 0.2, 0.5, 0.8.
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3.3.2 Generative phase: data augmentation via a generative alphabet proce-

dure

The second phase of the illustrated pipeline in Figure 3.6 corresponds to generating a new group of

characters for every different perturbation, i.e, for every β value mentioned at the end of Section 3.3.1

a DL-BPL model perturbation was induced, generating a new perturbed set of new character images

organized in the form of alphabets.

In this context, an alphabet can be defined by a group of related concepts/characters. One way

of thinking about these alphabets of character images, besides being an attempt to maintain a similar

organization to the original data set, is that sets of related concepts may also be an effort to mimic what

happens in our minds, representing mental constructs that are related to each other. This connection

might arise because they were part of the same experience, part of the same memory, or context,

suggesting some kind of underlying structure to our thoughts and ideas, even if subtle, when having a

psychedelic experience.

The generation of a new alphabet requires an additional change in BPL’s generative model, corre-

sponding to adding an additional hierarchy layer to it [6]. The main change resides in the fact that an

alphabet is firstly generated and only afterwards the new character types are generated from that alpha-

bet, as it is illustrated in Figure 3.9. After the generation of new character types, generating tokens of

the same type corresponds to the same exact process described in Algorithm 3. The additional alphabet

level corresponds to adding a prior on top of the already existing ones. By introducing this level the model

will be biased to re-use the structural components within a set of characters that are related. In other

words, the generated character strokes will be memorized and stored for successive stroke samplings,

reflecting a bias to re-use the parts that have already been sampled instead of of generating completely

new parts. It is then possible to conclude that the new prior will favor re-using existing strokes [6].

Figure 3.9: Generative procedure for originating characters from a particular alphabet. New
strokes (parts) are generated by choosing primitives from the library (level i) and by combining these
sub-strokes (sub-parts) (level iii) create parts (level iv). Characters from the same alphabet are pro-
duced by re-combining parts to define simple character types (level v). The model to generate tokens
and images are the same as in original BPL (level vi-vii). Adapted from Lake et al. 2015 [6].
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Generating a set of related concepts does not require the sampling of concrete variables but rather

defines the transformations that links the various programs within an alphabet together using a useful

tool in ML and statistics called the Dirichlet Process (DP) [223, 224].

Dirichlet Process

The DP is a stochastic process that is applied to Bayesian non-parametric models of data. It is a

distribution over distributions, meaning that each draw from a DP is a distribution in and of itself [225]. Its

parameters include a base distribution P0, which is a distribution across a space Θ and a concentration

parameter α > 0. A random distribution P taken from a DP is represented by P ∼ DP (α, P0) [226].

In Ferguson (1973) [223] the DP was first established, using its limited dimensional distributions to

demonstrate its existence. Taking a quantifiable partition of Θ, i.e, a collection of subsets whose union

is Θ, {T1, T2, ..., TK}, then every measurable partition of Θ is Dirichlet-distributed if P ∼ DP (α, P0)

(P (T1), ..., P (TK)) ∼ Dir(αP0(T1), ..., αP0(TK)) (3.29)

This implies that if we sample a random distribution from the DP and add the probabilities of mass in

a location TϵΘ, and, consequently, there will typically be P0(T ) mass in that region. The concentration

parameter α serves as an inverse variance, causing the random probability mass P (T ) to cluster more

closely around P0(T ) for increased values of α [226].

One of the Dirichlet process’s properties identified by Ferguson [223] links the Chinese Restaurant

Process (CRP) metaphor and the DP. Taking a random distribution sample from a DP proceeded by

repeated draws from that same random distribution,

P ∼ DP (α, P0) (3.30)

θj ∼ P jϵ{1, .., J}. (3.31)

By examining θ1:J joint distribution, obtained by marginalizing out the random distribution P ,

p(θ1, ..., θJ |α, P0) =

∫  J∏
j=1

p(θj |P )

 dP (P |α, P0), (3.32)

it was demonstrated that θi displays a clustering property under this joint distribution, sharing re-

peated values with positive probability. A partition of the integers from 1 to J is defined by the shared

value structure, and its distribution is determined by a CRP with the parameter α. It has also been

demonstrated that each variable’s unique value of θj is drawn independently from P0 [223].

The CRP is a metaphor to a Chinese restaurant where a new customer J +1 comes into the restau-

rant where J customers are already seated around a set of tables. All customers at a given table share

the same value of θj . The new customer joins a previous table l with probability equal to ml/(J + α),

where ml are the number of customers at that table. The new customer can also sit at a new table with
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probability α/(J + α) where a new value for θJ+1 is sampled from the base distribution P0 [226].

Generating a new data set

In order to generate an alphabet of related concepts, a DP taking a concentration parameter α and

a base distribution P (.) as inputs was implemented. The result is a new distribution, here defined

as P − mem(.), a ”memoized” transformation of the original distribution which induces dependencies

between samples that were previously independent.

Conditional samples dJ+1|d1, ..., dJ ∼ P −mem(.) have the form

dJ+1|d1, ..., dJ ∼
J∑

j=1

δ(dJ+1 − dj)
J + α

+
αP (dJ+1)

J + α
, (3.33)

where δ(.) is representing the delta function and the distribution encourages the re-use of previous

values [6].

The new algorithm is an adaptation of Algorithm 1, where the conditional probability distributions

used to sample the number of strokes κ and the strokes themselves, using Algorithm 2, were passed

through the higher-procedure DP (α, .) in order to result in the new procedures P −mem(.).

The novel ”memoized” [6, 227] techniques define a set of probability distributions with the CRP

clustering property, which are used to learn the number of strokes κ, the quantity of sub-strokes ni,

sample the strokes Si, and relation types ξi that are distinctive of a specific alphabet [6].

Algorithm 4 Generate a new alphabet

1: procedure GENERATEALPHABET
2: P −mem(κ)← DP (α, P (κ))
3: for κ = 1...10 do
4: P −mem(ni|κ)← DP (α, P (ni|κ))
5: end for
6: for i = 1...10 do
7: for ni = 1...10 do
8: P −mem(Si|ni)← DP (α,GENERATESTROKE(i, ni))
9: end for

10: end for
11: P −mem(ξi)← DP (α, P (ξi)
12: A← {P −mem(κ);∀κ : P −mem(ni|κ);∀i, ni : P −mem(Si, ni)}
13: return GENERATETY PE(A)
14: end procedure

The new generated alphabet is passed to Algorithm 5 in order to link the generation of new character

types together, which means that the generated character will be dependent on each other, on the

contrary of what happens in Algorithm 1.

The joint probability of the J character types ψ(1), ..., ψ(J) with M character tokens of each type

θ(1,1), ..., θ(1,M), ..., θ(J,1), ..., θ(J,M), and, finally, the binary images I(j,m) has now a new form
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Algorithm 5 Generate a new character type from alphabet A

1: procedure GENERATETYPE(A)
2: κ← P −mem(κ) ▷ Sample the number of strokes
3: for i = 1...κ do
4: ni ← P −mem(ni|κ) ▷ Sample the number of sub-strokes
5: Si ← P −mem(Si|ni) ▷ Sample a stroke with ni sub-strokes
6: ξi ← P −mem(ξi) ▷ Sample the type of stroke’s relation
7: Ri ← P (Ri|ξi, S1..., Si− 1) ▷ Sample the details of the relation
8: end for
9: ψ ← {κ,R, S}

10: return GENERATETOKEN(ψ) ▷ Return program handle
11: end procedure

P (ψ(1), ..., ψ(J), θ(1,.), ..., θ(J,.), ..., I(1,.), ...., I(J,.)) =

J∏
j=1

P (ψ(j)|ψ(1), ..., ψ(j−1))

M∏
m=1

P (I(j,m)|θ(j,m))P (θ(j,m)|ψ(j))

(3.34)

where θ(j,.) is short for all of the M examples of the specific type j: θ(j,1), ..., θ(j,M).

After the implementation of the alphabet construction using the Dirichlet Process the new data sets

were generated. For every different β value perturbation, each new data set was generated with a similar

organization to omniglot. Each data set is comprised by 30 different alphabets, each one consisting of 25

different character images and of 20 different exemplars (tokens) of each character image. After having

the new data set generated by each DL-BPL model, the inference phase was initialized.

Figure 3.10: Generative phase. After the model perturbation with a certain β value, 30 alphabets each
one with 25 character types, and each character type comprising 20 different examplars (tokens) are
generated. Every new data set, for every β perturbation value, comprises 15000 new character images.
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3.3.3 Inference phase: Learning a new model prior

After the generative phase, posterior inference was performed on the images of the augmented data

set, including the images of the omniglot background data set, as well as the images of the 30 new

generated alphabets, for each model perturbation.

The goal of this phase is to simulate one’s perception of the psychedelic experience, and conse-

quently its consolidation, resulting in new priors of DL-BPL, corresponding to the process described in

Equation 3.13. For this reason, the inferred latent variables of interest to our problem correspond to the

number of strokes, the number of sub-strokes, as well as the indexes of the primitives, to build a new

model’s prior from these. In order to achieve this, firstly, the data set images were processed to the

correct format, explained in Section 3.3.3, and subsequently the inference model was applied to it.

Figure 3.11: Inference phase. The resulting augmented data set from the generative phase was pre-
processed before applying the BPL’s inference algorithm to it. The inferred primitive indexes for every
character image of the data set were used to compute the new model’s prior regarding primitive sam-
pling.

Image processing

Image processing consisted of transforming the 105 × 105 pixel data set images to an inference

algorithm readable format. Image processing comprised the following steps: (1) Converting the gener-

ated and omniglot images to binary images, monochromatic images consisting of pixels that can only

be black or white, stored as a single bit, with values 0 or 1; (2) Transforming each binary image to its

negative; (3) When generated an image from BPL’s generative model it usually has some pixel noise.

For those images, the isolated noise pixels were removed, as well as ”holes” in the character image ink

were corrected; (4) The image edges were smoothed out by using a Gaussian kernel.

Inferring latent variables from images

Posterior inference in BPL model correspond to parse an image I(m) in its parts (strokes) and sub-

parts (sub-strokes), which is a very challenge task, since it requires the exploration of a broad space of

different numbers and types of strokes, sub-strokes, and relations [6]. In order to tackle this, taking inspi-
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ration from fast human perception and from approaches for faster inference in the context of probabilistic

programs [228], the BPL model uses bottom-up methods to perform fast inference.

In summary, posterior inference consists in finding a set of possible motor programs (a motor program

is the set of latent variables that define a character type and token, a concept) which is an approximate

fit to the inferred image, by parsing the image. The most promising motor programs are selected and

improved using MCMC and continuous optimization. The final result is a set of K high probability

motor programs, ψ[1], θ(m)[1], ..., ψ[K], θ(m)[K]. These are the K most promising set of latent variables

candidates that were found by the inference algorithm [6].

When performing inference in the data set, K was set to 1, obtaining the best parse for each image.

The motor programs approximation to the posterior is given by the equation

P (ψ, θ(m)|I(m)) ≈
K∑
i=1

wiδ(θ
(m) − θ(m)[i])δ(ψ − ψ[i]) (3.35)

in which each weight wi is inversely proportional to the motor program score, marginalizing over the

type-level shape variables x and attachment points τ and restricting
∑

i wi = 1,

wi ∝ w̃i = P (ψ[i]
x,τ , θ

(m)[i], I(m)). (3.36)

The approximation can be improved if incorporating local variance surrounding type-level (the token-

level variables closely track the image and allow for very little variability). This can be done without

increasing computational cost, since it is not necessary to evaluate the likelihood of the image when es-

timating to produce conditional samples from the type-level P (ψ|θ(m)[i], I(m)) = P (ψ|θ(m)[i]). N samples

for each motor program defined by θ(m)[i], are produced by a Metropolis Hastings algorithm, designated

by ψ[i,1], ..., ψ[i,N ].

The approximation is now

P (ψ, θ(m)|I(m)) ≈ Q(ψ, θ(m), I(m)) =

K∑
i=1

wiδ(θ
(m) − θ(m)[i])

1

N

N∑
j=1

δ(ψ − ψ[ij]) (3.37)

BPL performs inference by using fast bottom-up search followed by discrete selection and continu-

ous optimization, which will be briefly explored. For more details see references [6, 7]. The inference

algorithm in Lake et al. (2015) [6] consists of: (1) The first step consists of searching for the best can-

didate parses by leveraging fast bottom-up methods. Inference search starts by extracting the character

skeleton of the image. By applying a thinning algorithm to the raw data, and defining edges tracing the

image and nodes placed at fork points, critical points in the images are identified and a character image

undirected skeleton graph is built. To generate a candidate motor program, a random walk is taken in

the image skeleton, visiting nodes until each edge has been transversed at least one time. The number

of proposed candidate parses are usually between 10 and 150 parses; (2) The second step is defining

stroke order and directions. After finding the candidates, strokes are sub-divided into sub-strokes by

running an exhaustive greedy search using the prior P (ψ). After classifying the sub-strokes accord-
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ing to its primitive indexes zi the parses decomposition are scored by the stroke’s generative model

in equation 3.38, with yi equal to y
(m)
i ; (3) The prior score P (θ(m)|ψ)P (ψ) is finally used to select the

K best parses. As mentioned, K = 1 is used when doing inference in the new augmented data set;

(4) The fourth step consists in maximizing the entire joint density P (ψ, θ, I) described in equation 3.8,

by dividing each parse into type and token characters {ψ, θ}, and optimizing the continuous type-and

token-level variables via gradient descent; (5) At the last step, having K best motor program candidates

ψ[1], θ(m)[1], ..., ψ[K], θ(m)[K] a run of MCMC is run to estimate type-level local variance.

P (x
(m)
i , y

(m)
i , zi) = P (zi)

ni∏
j=1

P (y
(m)
ij |yij)P (yij |zij)

∫
P (x

(m)
ij |xij)P (xij |zij)dxij (3.38)

Constructing a new prior

In order to construct a new prior on the process to sample stroke’s primitives when generating a new

character image, posterior inference was done in the 19280 images of the omniglot background data set

and for the new 15000 images generated by the perturbed model.

The inferred sub-stroke primitive indexes were stored and the transition between primitive indexes

empirical countings were calculated in order to compute the updated and final ρ∗start and ρ∗pT distribu-

tions.

The computation of the new distributions consisted of, firstly, computing a frequency matrix describing

the frequency of each existent transition in the universe of the total inferred sub-stroke transitions and,

secondly, normalizing the matrices. The first indexes of every stroke, correspondent to the first sampled

sub-stroke in each stroke, were taken into consideration to compute ρstart, while every other existent

transition between the following sub-strokes in each stroke were considered in ρpT ’s calculation.

P (zi1)← ρ∗start(β) (3.39)

P (zij |zi(j−1))← ρ∗pT (β) (3.40)

This process was repeated for every β perturbation value. The new prior distributions were updated

in the DL-BPL’s library along with the remaining hyper-parameter model priors for the classification

phase.

3.3.4 Classification phase: Evaluating the model’s performance

In the last step of this work’s pipeline a one-shot classification task from Lake et al. (2015) [6] was

performed to evaluate the perturbed DL-BPL model’s performance and inference scoring comparing it

with the original BPL model.

The one-classification task entails the evaluation of the probability of a test image I(T ) given one sin-

gle training image of a new character I(c) correspondent to one of c = 1, ..., C classes. An approximate

solution for this can be computed through a Bayesian classification rule
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argmax
c

logP (I(T )|I(c)) (3.41)

BPL’s inference algorithm is leveraged in order to get K = 5 best motor programs, each one with N

samples translating type-level variability in these motor programs, of image I(c). The maximum score

over token-level continuous parameters θ(T ) is obtained by running K gradient-based optimization pro-

cedures to re-fit θ(c) to the test image I(T ). When re-fitting a training image I(c) to a test image I(T ),

the K best I(c) parses are optimized with fixed type-level ψ parameters to best map the token-level θ(T )

variables to the test image I(T ). The approximation of the Bayesian score is given by

logP (I(T )|I(c)) ≈ log

∫
P (I(T )|θ(T ))P (θ(T )|ψ)Q(θ(c), ψ, I(c))dψdθ(c)dθ(T )

≈ log

K∑
i=1

max
θ(T )

P (I(T )|θ(T ))
1

N

N∑
j=1

P (θ(T )|ψ[ij])

(3.42)

with Q(., ., .) and wi referencing back to 3.35.

We follow Lake et al. (2015) [6] and employ a two-way Bayesian score that also takes parses of I(T )

re-fitted to I(c). Consequently, the used classification rule was

argmax
c

logP (I(T )|I(c)) = argmax
c

logP (I(T )|I(c))2 = argmax
c

log

[
P (I(c)|I(T ))

P (I(c))
P (I(T )|I(c))

]
(3.43)

with P (I(c)) ≈
∑

i w̃i. From this, it is possible to conclude that the model classifies a test image by

choosing the training image class that re-fits it with the highest Bayesian score.

Classification was performed in images that the model has never seen, using the evaluation omniglot

data set, which is demonstrated in the supplementary materials A.1, consisting of the 20 remaining om-

niglot alphabets. The task involved 20 runs of 20 within-alphabet images classification series. Correctly

classifying an image consists in classifying a training image as the correspondent test image of the same

character type. Each run comprises 20 different training images and 20 different test images, from the

same alphabet, and only one right correspondence between each one of the images. Each one of the

classification run episodes consisted of feeding the inference model with one training example from the

20 training character images. Furthermore, the model has to re-fit the training image to each one of the

20 test images. Every run yields 20 episodes in total, therefore representing 400 task trials. For each

of the perturbed models, the classification scores were obtained for every run episode, as well as the

average classification error per run and the average classification error for the 20 runs.

Additional performed analysis are described in supplementary material A.2.
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(a)

(b)

Figure 3.12: Classification phase. (a) Example of a classification task. The model tries to classify
the image surrounded in red as one of the 20 images below. (b) One-shot classification can be divided
into two phases. One classification run consists of the fitting phase that corresponds to infer the 5 best
motorprograms of every training and test images (above). The second step corresponds to the re-fitting
phase, where each training image is re-fitted to the test images, and vice-versa. For every culminating
pipeline resulting from the perturbation with β = 1e− 3, 0.2, 0.5, 0.8, this process was repeated 20 times
(20 runs).
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Chapter 4

Experimental analysis

4.1 Diffusion-based perturbations

4.1.1 Original model priors analysis

The first step of the presented computational analysis consisted in trying to understand the structure

of the original model priors that determine which primitive indexes are sampled when generating a

character, namely s and pT matrices. In order to achieve this, the priors were visualized and statistically

analysed to give us an understanding of where the mass of each of the priors is concentrated revealing,

for example, the range of probability magnitudes and frequencies in the given distributions. Recall

(see Section 3.3.1) the process of sampling which primitive indexes will give rise to the new generated

character is recurrently determined by

P (zi) = si1

ni∏
j=2

pTi(j−1),ij

= P (zi1)

ni∏
j=2

P (zij |zi(j−1))

The s matrix, with components si1 = P (zi1) in Equation 3.13, represents the probability distribution from

where the first primitive index zi1 of each stroke is sampled. Analysing Figure 4.1, we can conclude that

the mass of the matrix is highly concentrated within the smaller probability values.

The pT matrix, P (zij |zi(j−1)) in Equation 3.13, represents the probability distribution from where the

indexes zij of the following stroke primitives (the ones after the first sub-stroke primitive), are sampled.

Note that the maximum magnitude value in pT is smaller than the one in s, since it is a probability

distribution of higher dimensions. Besides this, similarly to what we can observe for the s matrix, the pT

matrix has its mass concentrated in the smaller probability values.

From this visualization it is possible to conclude that the highest probability values referring, in the

case of the s matrix to the first primitive sampled in a stroke, and in the case of the pT matrix to

the transitions between one primitive and another in the remaining character sub-strokes of a stroke,

correspond to a very low number of primitives and transitions between primitives, respectively. This
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(a) Original s matrix. (b) Histogram s matrix.

Figure 4.1: Original s matrix (a) structure and (b) histogram. On the left, it is possible to observe
the original 1 × 1212 s matrix structure, showing the probabilities, on the y-axis, of each one the 1212
existent model primitives, on the x-axis, being the first one to be sampled in the beginning of generating
a character stroke. The probability magnitudes in s distribution vary within a minimum value of 0 and a
maximum value of 0.0286. On the right histogram, a higher occurring frequency of probabilities between
0 and 0.005 values within the 1212 entries of the s matrix is shown.

(a) Original pT matrix. (b) Histogram pT matrix.

Figure 4.2: Original pT matrix (a) structure and (b) histogram. On the left panel, it is possible to
observe the structure of the 1212×1212 pT matrix. On the x-axis of the plot, the primitive transition pairs
(corresponding to the matrix entries) are ordered by matrix row, totaling the 1212 × 1212 = 1468944 pT
matrix entries, and on the y-axis the probabilities of each one of these primitive transitions to happen
when generating a character are shown. The probabilities’ magnitudes expressed in the pT matrix,
concerning the transitions between character’s primitives, vary between a minimum value of 8.5130e− 8
and a maximum value of 0.0002.It is possible to conclude from the histogram on the right side that the
mass of the matrix is mainly found within probability values between 1e− 7 and 7e− 7.
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leads us to assume that these primitives and transitions will then be the ones which are most likely to

observe in the generative process of a character.

As discussed in Section 3.3.1, our fundamental motivation for applying a diffusion-based perturbation

on these priors is to generate a “flattening” effect [5]. Our hypothesis is that this “flattening” effect, corre-

sponding to a relaxation of the existent model priors, will weaken expectations regarding the primitives

that will be sampled when generating a new character, observing a particular effect in the generative

phase within our modeling framework (Section 3.3.2) such that novel primitives and primitive transitions

will be generated. We expect that this will lead to more flexible inference and higher classification per-

formance in the evaluation omniglot dataset. This computational mechanism can be seen as analogous

to what is believed to happen in human perceptual processing under the influence of psychedelics [5],

albeit at a higher level of cognition in contrast to previous work (see Section 3.2.2).

In the next section, we confirm our computational hypotheses by interrogating the restructured priors

resulting from the diffusion-based perturbation framework.

4.1.2 Perturbed model priors analysis

Intuitively, we seek to perturb the probability distribution in the latent space of characters such that

the essential structure is preserved but the probability mass becomes less concentrated [217, 218].

We propose to accomplish this with diffusive perturbations in the latent space of character primitives

(specifically determined by the model priors s vector and pT matrix). Our hypothesis is that this approach

will extrapolate new and distributionally-consistent combinations of character primitives with a relatively

low incidence of characters inconsistent with the character data generating process.

Figure 4.3: Conceptual representation of latent spaces hierarchy. We are hoping to induce novelty in
the characters space through diffusive perturbations in the space of character primitives, by preserving
its essential structure but flattening the probability density landscape. This figure represents our hypoth-
esis that perturbations in the primitive layer will manifest as more complex and multimodal changes in
the character layer.

The first step in obtaining the new perturbed priors ρstart and ρpT (see equations 3.27 and 3.28)

was the intermediate step of computing the distance function Ls(x) and L(x, y) for the s and pT priors,

respectively (see equations 3.25 and 3.26).

In order to approximately implement diffusion-based perturbations, we interpret L as a “distance”

between character primitives, describing the relationship between pairs of these primitives in terms of
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(a) Distance function s matrix (b) Distance function pT matrix

Figure 4.4: Distance functions in primitive space for original model priors.

their connectivity. Note that pT is not a symmetric matrix and therefore L does not induce a Euclidean

embedding of the character primitives [219, 221]. We employ an analogous approach to perturbing the

s prior.

Observing Figure 4.4a and 4.4b and making a comparison with the original priors’ plots in Fig-

ures 4.1a and 4.2a, respectively, it is possible to establish a structural similarity between these plots,

where higher probabilities in figures 4.1a and 4.2a correspond to smaller values in the distance function

plots, and vice-versa. Accordingly, smaller distance values in Figure 4.4b plot, for instance, represent a

higher connectivity between two primitive states, and vice-versa. In the case of Figure 4.4a, the distance

function can be thought of as an initial generative process prior.

After having a better comprehension of the priors’ structure and relations within primitives, in order to

understand the diffusion-based perturbation effect on both priors, different β parameters were simulated.

As mentioned in Section 3.3.1 the spectrum of interest for the β parameter is 0 < β < 1. Figure A.2

in supplementary material shows the effect each diffusion-based perturbation had on the original priors

while varying the β parameter. This effect is summarized in Figure 4.5 in the Probability-Probability

(P-P) plots for both priors, in which the cumulative distribution functions (CDFs) of the two distributions

(perturbed and original) are plotted against each other. Any evaluation point on the plot indicates what

percentage of data lies at or below that point in both original and perturbed distributions (as per definition

of CDF). To compare the distributions, the deviation of the points from the 45-degree line (x = y) is

analyzed.

We can see that the points for β = 1 (no perturbation) lie within x = y, and, with decreasing β the

degree of deviation from the linear function increases, and therefore more different the distributions are

from the original priors. Furthermore, observing the structure plots (Figure A.2), one can conclude that

with a decreasing β parameter value, both ρstart and ρpT distributions’ mass becomes concentrated in

a smaller probability value range as seen in Figure 4.6 where this effect is demonstrated across the β

parameters 0.8, 0.5, 0.2, 1e− 3.
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(a) P-P plot s and ρstart. (b) P-P plot pT and ρpT .

Figure 4.5: P-P plots of (a) s and (b) pT distributions and respective distribution perturbations, for
different β values.

This analysis reflects and confirms our hypotheses regarding the effect on the original model priors.

One can observe a decrease in the priors’ concentration as the value of β also decreases. However, it is

also possible to observe that for the lowest β values, such as β = 1e−15, the structure of the distribution

begins to disintegrate, seemingly converging on a uniform distribution.

(a) Histogram ρstart and ρpT for β = 0.8. (b) Histogram ρstart and ρpT for β = 0.5.

(c) Histogram ρstart and ρpT for β = 0.2. (d) Histogram ρstart and ρpT for β = 1e− 3.

Figure 4.6: New perturbed priors ρstart (on the left) and ρpT (on the right) histograms for β = (a) 0.8, (b)
0.5, (c) 0.2, (d) 1e− 3.
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4.1.3 Additional analysis

The computation of Shannon entropy, Kullback-Leibler divergence (KLD) and Jensen Shannon dis-

tance (JSD), with respect to the original model priors and to the perturbed priors was additionally ana-

lyzed.

The Shannon entropy of both new distributions ρstart and ρpT for the different β parameter values was

computed. One can interpret the entropy value as ”the minimum number of bits it would take to encode

the distribution’s information”. In Figure 4.7 we can observe the decreasing value of the distributions’

Shannon entropy with increasing β for both prior’s analysis, confirming once again our intuition that a

diffusion-based perturbation with a β value closer to zero corresponds to a higher entropy distribution

state.

(a) (b)

Figure 4.7: Shannon entropy H (in bits) measure of the new perturbed priors (a) ρstart and (b) ρpT for
β = 1e− 15, 1− 6, 1e− 3, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9.

Referencing to Section 2.2.1, while keeping in mind the psychedelic’s action in the brain analogy,

one can also think of entropy applied to the context of states of consciousness and their dynamics, and

how the psychedelic state has shown to disrupt certain aspects of brain function, such as the repertoire

of functional connectivity motifs [27]. Taking the original model priors as a baseline, analogous to the

normal waking consciousness (see Section 2.2.1), one can conclude that perturbing the model’s s and

pT distributions is approximating them to a state of increasing disorder, of higher entropy [20, 27]. An

increase in entropy in neuronal circuits may indicate that the brain is exploring a wider range of patterns

of activity, potentially departing from its normal repertoire of states, i.e. attractors [229, 230]. Perturbing

and flattening one’s attractor landscape is believed to increase the probability of the system’s state to

move between attractors and hence promoting more flexible, and adaptive dynamics [231]. In fact, in

the context of psychedelic therapy, it has been proposed that mental illnesses are underpinned by ex-

cessively reinforced attractors [232], which lead to rigid patterns of thinking and behaving, psychedelics

may have the potential induce this flatenning effect, ultimately leading to a breaking of these reinforced

patterns of thought and behavior [233, 234]. Analogously, perturbing the model primitive space might
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fundamentally change the ”attractor landscape” in the space of characters, hopefully originating a modi-

fied latent space with new attracting poles, as illustrated in Figure 4.3.

Figure 4.8: Generative priors perturbation. The original non-perturbed BPL model distributions s and
pT are perturbed through a diffusion-based perturbation method originating the new distributions ρstart
and ρpT , and, consequently a new perturbed DL-BPL model, which will be the one to be used in the
generative phase. KLD and JSD measures were computed in order to compare the original and new
distributions.

KLD is another measure that has its origins in information theory, in which the primary goal is to

quantify how much information is in data. Analysing KLD values allows us to identify the differences

in two data distributions. This is a relevant measure to understand how much change we are inducing

when replacing the model’s prior for the new perturbed priors. Besides this, JSD, a symmetrized and

smoothed version of KLD was also explored, as a better metric for comparing two data distributions. Both

KLD and JSD were computed, comparing the original s distributions and the differently parameterized

ρstart and, similarly, comparing the original pT distribution and the differently parameterized ρpT , allowing

a comparison regarding the original generative model priors with the new generative priors, which will

be replaced in BPL’s library,in order to generate new perturbed datasets.

(a) (b)

Figure 4.9: (a) Kullback–Leibler divergence and Jensen-Shannon distance between original smatrix and
perturbed ρstart matrix for different β parameter values. (b) Kullback–Leibler divergence and Jensen-
Shannon distance between original pT matrix and perturbed ρpT matrix for different β parameter values.
The threshold equaled to one represents the upper bound of JSD.
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In Figure 4.9, for both plots, it is possible to see a decrease in KLD and JSD values with an increasing

β value, once again leading to the confirmation that there is a higher information1 loss between the

novel distributions compared to the original ones when β gets closer to zero, and a recovering of the

original distributions when β gets closer to one. The higher effect that the perturbation has on the ρstart

distributions than on the ρpT distributions is also evidenced, which can be due to the dimension of s

distribution and its higher probability magnitude values.

In order to proceed to the next phase of the thesis pipeline, four β parameter values were chosen.

The selection criterion took into consideration a trade-off between structure and entropy, working towards

the goal of increasing the probability of seeing characters with not so likely primitives to emerge during

the generative process sampling, without completely lesioning the priors’ structure, avoiding uniformity.

Even though psychedelics are believed to lead the brain closer to criticality, this does not represent a

state of full disorder. The next pipeline steps were explored by perturbing the model with parameters

β = 1e − 3, 0.2, 0.5, 0.8, trying to cover the range 0 < β < 1 but also taking into account the above

described aspects. For the generative phase, the original priors in BPL’s library were replaced by the

computed perturbed priors ρstart and ρpT , resulting in a new perturbed model for each value of β, that

will be referred as DL-BPL.

Figure 4.10: Diffusion-based perturbation spectrum for s (above) and pT (below) matrices.

Before proceeding onto the next phase, it is important to emphasize our core innovation in applying

diffusive perturbations to do data augmentation in the context of probabilistic program induction. Based

on the broad concept of diffusion processes, our data augmentation framework can be related to other

pieces of work such as diffusion models [235]. Diffusion probabilistic models emerged as a class of

generative models inspired by non-equilibrium thermodynamics [217]. The idea behind these models is

to systematically and slowly destroy structure in a data distribution through an iterative forward diffusion

process2, and then to learn a reverse diffusion process that restores structure in data, yielding a gen-

erative model of the data [217, 235–237]. Besides this, state-of-the-art work [218, 236], bridging both

score-based generative modeling3 and diffusion probabilistic modeling into an unified framework, has
1The information contained in a probability distribution refers to the statistical properties of the distribution.
2The diffusion process is typically modeled using stochastic differential equations or partial differential equations. The resulting

model is trained by maximizing the likelihood of the observed data under the diffusion process, which is done using stochastic
gradient descent or other optimization algorithms.

3Score-based generative models are a class of generative models that do not explicitly model the probability density function of
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implemented perturbations to data points with noise and train score-based models on the noisy data

points instead, in order to increase model performance and overcome limitations in modeling complex

distributions with sharp or discontinuous changes in density. Taking this into consideration, our ap-

proach introduces and explores how diffusion-based perturbations can be applied to data augmentation

in a probabilistic induction model and how such perturbations manifest at distinct levels in a program

hierarchy.

4.2 Generative phase

The second phase of our modeling pipeline consisted in generating an augmented dataset of per-

turbed characters. This generative phase was executed for each beta parameter value of the diffusive

perturbation separately. Each DL-BPL model generated 30 new perturbed alphabets, as explained in

Section 3.3.2.

Before generating the alphabets, the DP concentration parameter, α, had to be chosen to be used

in their generation. Section 3.3.2 explored the role of the α parameter in the DP, emphasizing that it

can be understood as an inverse variance, such as a larger α value results in a higher concentration of

mass around the mean of the DP. After implementing the DP within the DL-BPL’s generative process,

the concentration parameter α was optimized based on small-scale sampling tests, the objective being

to select the parameter that best suited the desired features in the set of characters that will form an

alphabet.

Firstly, using the original non-perturbed BPL model and different DP parameter values α = 0.01, 0.1,

0.3, 0.5, 1, 3, 5, 10, an alphabet with 25 characters was generated. Secondly, the distribution of the num-

ber of strokes in one character was computed and analysed for each one of the generated alphabets.

Furthermore, the percentage of primitive indexes which were repeated in the sampling process across

characters in each one of the alphabets was also assessed. The resulting analysis can be seen in

Figures 4.11a and 4.11b.

An important objective in the perturbed alphabet generation is the preservation of the essential struc-

ture across the characters it comprises, including the number of strokes and the primitive indexes that

make up these strokes. However, while this structure is something to be preserved, some variability

among the characters of an alphabet is desirable for flexible inference. Accordingly to this, it is observ-

able that the α values that originate alphabets which most resemble the above requirements are α = 3

and α = 5, showing not only variability across characters regarding the number of strokes, but also

preserving around 30% and 50%, respectively, of the primitives across the alphabet characters, which

was considered a balanced trade-off between novelty and similarity for our purposes.

Subsequently, the interval between these α values was further explored, repeating the same sam-

pling test, but this time for α = 3, 3.5, 4, 4.5, 5, and generating five alphabets for each value. Figures 4.11c

the data but instead model its gradient or score function. The score function is the gradient of the log-probability density function
with respect to the data, and it is used to estimate the likelihood of a given sample via Langevin sampling. Score-based models
are typically trained by maximizing the log-likelihood of the data, which can be done using gradient-based optimization algorithms
such as stochastic gradient descent [218, 236].
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(a) Number of character strokes (ns) distribu-
tion across the alphabet characters generated
with different concentration parameters α =
0.01, 0.1, 0.3, 0.5, 1, 3, 5, 10.

(b) Percentage of repeated sampled primitive
ids across the alphabet characters generated
with different concentration parameters α =
0.01, 0.1, 0.3, 0.5, 1, 3, 5, 10.

(c) Number of character strokes (ns) distribu-
tion across across the alphabet characters gener-
ated with different concentration parameters α =
3, 3.5, 4, 4.5, 5. Error bars represent the standard
deviation between analysis’ runs.

(d) Percentage of repeated sampled primitive
ids across the alphabet characters generated
with different concentration parameters α =
3, 3.5, 4, 4.5, 5.Error bars represent the standard
deviation between analysis’ runs.

Figure 4.11: Dirichlet Process concentration parameter analysis.

and 4.11d show the obtained results. The standard deviation between the obtained results for the five

alphabets generated with each α parameter were also computed, evidencing the inherent stochasticity

of the generative process. It is noticeable that the latter results did not show any significant difference

given the criteria expressed above. Given that, it was decided to use α = 4.5 in the generation of every

alphabet. After defining the α parameter, 30 alphabets were generated for each one of the perturbed

models with β = 1e− 3, 0.2, 0.5, 0.8. Figure 4.12 shows some examples of the generated alphabets.

During alphabet generation, character type parameters were optimized using gradient descent, in

order to maximize the likelihood score under the prior P (Ψ) = P (κ)
∏κ

i=1 P (Si)P (Ri|S1, ..., Si−1).

For each of the four different DL-BPL models, a new dataset were generated each one consisting of

30 new alphabets (15000 new characters). The omniglot dataset was then augmented with the 30 new

alphabets (note that this process was also separately repeated for each one of the different perturbations
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parameterized with β = 1e− 3, 0.2, 0.5, 0.8).

(a) Generated alphabets by DL-BPL with β = 1e− 3. (b) Generated alphabets by DL-BPL with β = 0.2.

(c) Generated alphabets by DL-BPL with β = 0.5. (d) Generated alphabets by DL-BPL with β = 0.8.

Figure 4.12: Generated DL-BPL alphabets. Some examples of the generated alphabets by the per-
turbed models with (a) β = 1e− 3, (b) β = 0.2, (c) β = 0.5, (d) β = 0.8.

Figure 4.13: Data augmentation. Each one of the generative perturbed models with β = 1e −
3, 0.2, 0.5, 0.8 originated a new dataset consisting of 30 alphabets, which itself comprises 15000 new
characters, that were augmented to the omniglot dataset, resulting in four different datasets. The in-
ference phase was repeated four times for each one of these four different datasets correspondent to
perturbed data with the above β parameterizations.

The stochastic process of generating a new alphabet has shown some limitations in the context of this

work. Despite the sampling tests that were performed and choosing a concentration parameter of α =
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4.5, it was observable that some characters within the same alphabet were still very similar, contributing

to decreased variability within the entire dataset. Besides this, there are some evident differences when

comparing omniglot characters with the ones generated by BPL. The generative process of BPL with

no constraints is noticeably far way from the human process, seeming to represent mostly nonsensical

doodles, sometimes even showing overlapping strokes. In contrast, omniglot characters have been

drawn by humans, presenting a more structured representation. Moreover, it was also noticed that the

ink of some character images was out of the frame. These are all factors which may later influence the

inference process of inferring the latent primitive indexes of the alphabet characters.

The omniglot dataset was augmented with perturbed data. Then, the augmented omniglot dataset

was used to infer a new generative model with the aim of establishing new priors ρ∗start and ρ∗pT assigning

a higher probability to transitions that were previously relatively unlikely.

Note that data augmentation has been widely used in ML and Deep Learning as an approach to

increase the size and diversity of training datasets without having to directly collect new data by boot-

strapping from the original data. It has many applications within ML e.g. it acts as a regularizer and

helps to avoid overfitting [238, 239]. Typical data augmentation algorithms in computer vision include

geometric transformations (rotations, translations, flipping), color space augmentations, kernel filters ap-

plications, mixing images and random erasing. These are now being extended with the usage of deep

learning approaches comprising adversarial training, generative adversarial networks, neural style trans-

fer, and meta-learning search algorithms [238]. Other domains, such as natural language processing,

can also benefit from data augmentation methodologies including swapping, deletion, random insertion,

interpolation techniques among others [239]. Our methodology deviates from existing approaches as it

involves the utilization of a diffusion-based perturbation framework on a generative latent space. This

is achieved by embedding BPL primitives and subsequently applying a heat kernel to them, ultimately

generating novel data. Within the context of this work, the execution of data augmentation necessitates

an inference step that involves updating the model priors to account for new perturbed data. Our objec-

tive is to investigate the efficacy of diffusive perturbations, hyperparameter tuning, and inference-based

data augmentation as a viable strategy for enhancing model performance.

4.3 Inference phase

In the inference phase of our pipeline, latent variables were inferred from the augmented datasets,

with a particular focus on capturing the constitutent primitives of the dataset characters. The new prob-

ability distributions regarding the first sampled primitive in each character stroke (ρ∗start) and the transi-

tions between character sub-strokes (ρ∗pT ) were constructed by normalizing the empirical counts of the

inferred primitives in the augmented omniglot data. Conceptually, this can be understood as a learning

step, corresponding to learning of new priors ρ∗start and ρ∗pT for classification inference. The inference

phase was run four times for the four generated datasets, each one of them corresponding to a distinct

DL-BPL model perturbation. The BPL model received the processed character images and approxi-

mated them to their posterior, inferring the best parse for each one of the images, as was explained in
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Section 3.3.3.

Figure 4.14: Inference phase steps. The augmented dataset character images (left column) were
processed and fed to the original BPL model. A preprocessing algorithm is applied to the processed
image (second column) as explained in 3.3.3, followed by thinning and cleaning process (third column).
The final result of the inference process is a set of the model’s latent variables, from which the inferred
character primitive indexes are the ones of our interest. The inference result visualization (fourth column)
consists of the character image parsing, where each color represents a different inferred stroke.)

During the inference process some of the generated character images of the perturbed datasets

were excluded from the process, for various reasons, including cases such as (1) characters with only

one stroke and sub-stroke, (2) produced on an extremely small scale, or (3) characters whose image

ink went out of range of the image frame making them illegible. Ultimately, the number of characters,

generated by each of the perturbed models and used to compute the new priors was stable and is

described in Table 4.1.

Table 4.1: Number of inferred characters for the different β parameterized perturbations.

β parameter Inferred perturbed images
1e− 3 14715
0.2 14647
0.5 14788
0.8 14664

After inferring the four different omniglot augmented datasets and computing the primitive indexes’

empirical countings, the final model priors ρ∗start and ρ∗pT were obtained.

The novel learned priors ρ∗start and ρ∗pT showed significant differences with respect to their sparsity,

not only with respect to s and pT , but also with respect to ρstart and ρpT , respectively. In this situation,

sparsity is a measure that describes the percentage of a distribution which has a zero value. The

approximate sparsity value of the original s distribution is 0.004, while the sparsity value of pT is 0. One

may state that we are taking a strict perspective on sparsity, implying that a sparse matrix corresponds

to have many of its entries equal to zero. However, it is significant to note that many entries in both

of BPL original priors, specially in pT , are close to zero which can lead to considered it is ”effectively”

sparse from a finite sampling perspective.

It was possible to conclude that the sparsity values for ρ∗start are one order of magnitude higher than

67



the original distribution. Besides this, the largest difference is evidenced in ρ∗pT ’s sparsity values, which

are very close to a distribution sparsity of 100%, being the distribution mainly composed of zero values

(Figure A.3 in supplementary material). These distribution differences are also evidenced in KLD and

JSD measures, which are demonstrated in Figure 4.16.

Figure 4.15: Prior’s scheme.After perturbing the original priors (perturbed priors in orange), the gen-
erative and, subsequently, the inference phase led to the computation of the final distributions (final
computed priors in blue), which were used in the classification task. In Figure 4.16 one can compare
the KLD and JSD measures comparing the original prior distributions with the perturbed priors (in or-
ange), resulting from the perturbation phase, and with the new learned priors (in blue), resulting from
the inference phase.

KLD and JSD values regarding s and ρ∗start distributions don’t show any significant differences across

β values. This leads us to the conclusion that the effect of the diffusive perturbations for the different

β values was lost in the inference step. In other words, after the inference phase, when individually

inferred, the different augmented datasets generated with the different β parameterized DL-BPL models,

gave rise to new computed priors ρ∗start that equally differ from the original s distribution. Additionally,

the KLD and JSD measures seem to have a value at an approximate intermediate level of the range of

the previous values measured for ρstart and s as seen in Figures 4.16e and 4.16f, thus showing a bigger

difference from s than some perturbed priors ρstart (β = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) and on the contrary, a

lower difference than others (β = 1e− 15, 1e− 6, 1e− 3, 0.1, 0.2, 0.3).

On the other hand, the differences in KLD and JSD measures relative to pT and ρ∗pT distributions

have shown to be more significant. In Figures 4.16g and 4.16h it is possible to observe that these

measures have much higher values than the comparison between pT and ρpT , due to the fact that the

new computed ρ∗pT are highly sparse distributions, and, therefore, significantly differ from the original pT

prior. Furthermore, similar to the analysis done for ρstart and s, we can observe that the effect of the

perturbation on the distribution for different values of β was also lost.

The observed sparsity in the originated ρ∗pT distributions can be problematic regarding the model’s

classification task performance, jeopardizing it. For instance, the intuition is that the model might opt for

inferring strokes with only one sub-stroke since there are not many ”available” primitive transitions in ρ∗pT .

We investigated the problem of sparsity in ρ∗pT . To understand the origin of this sparsity, we analyzed the

statistics of the number character strokes, as well as the number of sub-strokes in each of those strokes,

in both generated and inferred characters. Note that the statistics regarding the inferred characters do

not include the excluded characters (see Table 4.1), however, working with these character numbers,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.16: (a) KL(s||ρ∗start). (b) JSD(s||ρ∗start). (c) KL(pT ||ρ∗pT ). (d) JSD(pT ||ρ∗pT ). (e) Compar-
ing KL(s||ρstart) and KL(s||ρ∗start). (f) Comparing JSD(s||ρstart) and JSD(s||ρ∗start). (g) Comparing
KL(pT ||ρpT ) and KL(pT ||ρ∗pT ). (h) Comparing JSD(pT ||ρpT ) and JSD(pT ||ρ∗pT ).

still allows us to get some idea of what might be happening.

(a) Statistics for β = 1e− 3 (b) Statistics for β = 0.2

(c) Statistics for β = 0.5 (d) Statistics for β = 0.8

Figure 4.17: Comparing stroke and sub-stroke statistics of the generated character primitive indexes
with the inferred character primitive indexes of the generated perturbed dataset for the different DL-BPL
models. Despite statistical differences, the generative and inference process seem to be following the
same ”behaviour”.

Our understanding of this problem led us to believe that, when inferring the character’s latent vari-
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ables, the percentage of character strokes with more than one sub-stroke was inferior to the percentage

of character strokes with only one sub-stroke. This is because if strokes only have one sub-stroke, the

counting of that one sub-stroke primitive will be accounted for the computation of ρ∗start, and not for the

computation of ρ∗pT , since there is no transition to be considered.

The performed analysis came to confirm this, revealing that, for the four different β parameterized

perturbations, the majority of generated characters had only one stroke and a prominent number of sub-

strokes per stroke of one. Interestingly, we were able to conclude that the problem of sparsity originated

in the generative phase, which produced an increased number of characters with only one stroke, as

well as an increased number of strokes with only one sub-stroke. Even though the generative phase

seems to be the problem seed, in Figure 4.17 these probabilities seem to be even more increased after

the inference phase, evidencing some discrepancies between the statistics of generated and inferred

characters. It is important to note that this issue could have been addressed by conditioning the gener-

ative phase to only generate characters with more than one stroke, and more than one sub-stroke per

stroke. However, this conditioning was not part of our objectives in this study. Additionally, this is in

agreement with our expectations of finding a higher frequency of one and two stroke characters, based

on the statistics of the original model (see references [6, 7] for details). Nevertheless, the obtained sub-

stroke statistics does not seem to be in such agreement, with higher number of one stroke characters;

we would be expecting to see a higher number of two sub-strokes per stroke.

In summary, our analysis highlights the importance of examining the stroke and sub-stroke statistics

of both generated and inferred characters, leading us to a clear view of how these negatively influenced

the computation of ρ∗pT and, on the other side, why ρ∗start most closely resembles the original prior.

These findings informed posterior work developing an alternative pipeline explored in Section 4.5. De-

spite these observations and the understanding that inference followed by empirical primitive frequency

countings are strongly influenced by sample variance, we proceeded to use the newly computed distri-

butions in the last phase of the pipeline, the classification task.

4.4 Classification phase

The ability of a model to adapt and appropriately respond to novel, previously unobserved data

is referred to as generalization. Generalization evaluates how effectively a model can process new

data to produce accurate predictions following trained. The final phase of our pipeline was a 20-way

classification task (see Section 3.3.4 for a complete description). The classification task was used to

test the generalization capabilities of each of the updated DL-BPL models we trained with different β

parameter values. The classification step in our pipeline was applied to each of these DL-BPL models

separately. As explored in Section 3.2.2, this one-shot classification task is interpreted as a measure

of a model’s generalization after a computational experiment analogous to a psychedelic experience.

From this perspective, a lower one-shot classification error corresponds to better model generalization

with respect to the evaluation dataset.

Considering the previous results’ analysis, our first intuition was that the structure, namely the high
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ρ∗pT distribution sparsity, of the new model priors will hinder the classification task relative to the original

model results. Nevertheless, for the purposes of completion, this analysis was performed. Each run

of the 20-way classification task corresponded to classifying 20 test images into one of the classes of

20 training images (images showed in Appendix A.1). This classification consisted of a fitting step, in

which both the 20 test images’ and the 20 training images’ latent motor programs were inferred, and a

second re-fitting step, where test images were re-fitted to the training images, resulting this the decision

Bayesian classification score seen in Equation 3.43 (see Section 3.3.4 for details). In the next sections,

each one of these intermediate steps’ results will be explored and analysed.

4.4.1 Fitting test and train images

Fitting the test and training images in each run corresponded to performing inference on these im-

ages and getting the corresponding inference score i.e. log-likelihood (Equation 3.35) of each image.

Note that a control classification task was run utilizing the non-perturbed original BPL model (β = 1).

Inference was done on every test and training image for the 20 runs, using the four different diffusion-

perturbed models. A few examples of the obtained fitting results are shown in Figure 4.18a.

Figure A.4 in the supplementary material shows a complete example for all the perturbed models.

By visual inspection, it is possible to observe a much more accurate representation of the image parses

done by the original model than by the perturbed models, which seem to show greater difficulty in

representing all of the K = 5 best image parses in an accurate way, getting further away from the

image representation in the last parses. This effect might be explained by the ρ∗pT ’s sparsity observed

in every model perturbation, which will have a big impact on characters with strokes with more than one

sub-stroke.

In order to have a better understanding of how the inference results of each model will influence

the final Bayesian classification score and how the inference performance of each model, the average

inference scores of all of the evaluation dataset images used in the classification task were assessed,

as demonstrated in Figure 4.18b.

It is possible to conclude that the average fitting score is much higher for the original BPL model,

having a value of −493.35, while the obtained average fitting scores for the models resulting from the

perturbations with β = 1e − 3, 0.2, 0.5, 0.8, were −2508.28, −2504.91, −2506.85, −2502.58, respectively,

showing very similar score results. The similarity observed in the inference scores, obtained by the

perturbed models, indicates that the effect of the perturbation was lost in the inference process, which

is in agreement with the conclusions drawn after the inference phase.

4.4.2 Re-fitting test and training images

The second step of the classification task was re-fitting. Individually leveraging the four different

DL-BPL models, the 20 runs were executed, where the 20 training images were re-fitted to the 20 test

images, and vice-versa (the Bayesian classification score is a two-way score) resulting in 20 classification

matrices, as the one example in Appendix A.6, where rows are the test image examples, columns are

71



(a) (b)

Figure 4.18: (a) Few examples of fitting results of the run 1 test images leveraging the original model (on
the right) and the perturbed models (on the left) with β = 1e − 3. (b) Average fitting score of evaluation
dataset images for the different perturbation β parameters and for the original BPL model.

training examples and the matrix entries correspond to the final re-fitting score given by Equation 3.43.

Remember that, in every run, the corresponding test images and training image classes have the same

number (i.e., test image 1 belongs to training image class 1, test image 2 belongs to training image class

2, etc.). Figure 4.19 shows two examples, one with correct classification and one misclassified, using

the DL-BPL perturbed with β = 1e− 3 .

4.4.3 One-shot classification results

The one-shot classification results for every run and every model perturbation are represented in

Figure A.5 in the supplementary material. The average errors for the different model perturbations are

illustrated in Figure 4.20. Lake et. al (2015) [6] performed a one-shot classification task leveraging BPL,

obtaining an error of 3.3%. After studying BPL in detail and trying to replicate every step of the one-shot

classification running simulation, we were not able to reproduce the author’s paper results, achieving

a 9% error. For the purposes of this work, we will take our control experiment as the baseline result.

That being said, from these results, it is possible to conclude that the classification performance of the

perturbed models was significantly worse than the original model’s performance 9% classification error.

It is possible to identify several factors that may have led to these poor results across the various

stages of the pipeline. After the perturbation phase and subsequent generative phase, it was possible

to observe that, for the four explored perturbations, the high number of perturbed characters which

mainly consisted of strokes with only one sub-stroke had a deleterious effect on the inference phase,

resulting in problems when computing ρ∗pT . Consequently, the sparsity of the obtained ρ∗pT distributions,

might have been the main problem in the fitting and re-fitting process that led to high classification

error. Even though, in the fitting process it was possible to conclude that the ρ∗start distribution still

shows a similar structure to the original distribution, it was observed that the model experienced some
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(a)

(b)

Figure 4.19: Classification examples. The two examples illustrate two different training images being
re-fitted to a test image. The top-three first posterior parses of two different training images are shown in
the top row, and their re-fits to the same test image are shown in the second row. (a) Correctly re-fitting
classified example, the correct correspondent training image reports a higher final classification score,
indicating that I(T ) is well-explained by the motor programs of I(c). (b) Misclassified re-fitting example,
this time the higher classification score does not correspond to the right training image class. Note that
the higher Bayesian classification scores logP (I(T )|I(c)) are indicated in bold.

β parameter Average one-shot classification error

1e− 3 50.2%
0.2 50%
0.5 50%
0.8 49.2%
1 9%

Figure 4.20: Average one-classification error for each perturbed DL-BPL model and control (original
non-perturbed BPL).

difficulties when inferring character motor programs after inferring the first and second best parses.
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Under those circumstances, the fact that the computation of the ρ∗start parameter vector obtained a

reasonable structure was not enough for good classification performance in the model. Furthermore, it

was noticed that, similarly and accordingly to what happened in the inference phase after the new prior’s

computation, the model’s performance was significantly close for the four different model perturbations,

evidencing the loss of the diffusion-perturbation effect. In light of these results, an alternative pipeline

was developed to try to overcome what we identified as the major bottleneck in this pipeline.

4.5 Alternative pipeline

The second exploratory step in this work consisted of adapting the first developed pipeline and specif-

ically redesigning the inference phase in order to circumvent the issue that was identified and described

in the previous section. To do this, all phases of the originally developed pipeline were repeated starting

from the inference phase.

An alternative method for the inference phase was developed, where the main difference consisted

in not feeding the inference model with the augmented dataset, comprising the omniglot plus the 30 gen-

erated perturbed alphabets, but only with the latter. Under these circumstances, the priors ρ∗start and

ρ∗pT were computed only with data resulting from inference of the new perturbed data, using the same

previously utilized method of empirical countings and, secondly, an integrative estimation combining the

computed priors and the original priors was calculated, in order to arrive at the final priors, now desig-

nated by estart and epT , which were then used in the classification task. This estimate took into account

the original priors, learned from the omniglot dataset [6], but also the “intermediate” distributions ρ∗start

and ρ∗pT . Although some limitations regarding the generative phase have been previously identified,

with this alteration in the inference phase, it was decided to proceed with the same data generated in

the generative phase, placing no constraints on the model’s generative process, other than the DP. We

suggest that the development of new computational mechanisms in the generative phase of our pipeline

may provide fruitful avenues for future work (see Section 5.2 for further discussion).

Given these aspects, the inference phase was performed for each of the sets of new alphabets

generated with the model perturbations parameterized with β = 1e − 3, 0.2, 0.5, 0.8. The estimation of

estart and epT consisted of:

• The entries of the matrices with a non-zero value were selected, in the case of the ρ∗start corre-

sponding to the first sampled primitives in a character stroke with probability different from zero,

and, in the case of the ρ∗pT , to the transitions between the primitives of the remaining sub-strokes

in a stroke, with a probability of occurring different from zero.

• From these selected entries, those considered to be novel were identified. Novelty in the gener-

ated characters was defined as the observation of character primitives that showed a low sampling

probability in the original priors. To define the ”low sampling probability in the original priors”, a

range including the five lowest probability values for the stroke’s first sampled primitives, corre-

sponding to the interval of 0 to 1.3319e − 4 in s distribution as well as the five lowest probability
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values for the following stroke’s primitive transitions ranging from 8.5130e − 8 to 1.6140e − 7 in

the pT distribution, corresponding to the following stroke’s primitive transitions. Besides this, to

consider a first sampled stroke primitive or a primitive transition as being novel the thresholds

ρ∗start(x) > 1.3319e− 4 and ρ∗pT (x, y) > 1.6140e− 7, respectively, were defined.

• After the identification of novel entries, the integrative estimation combining the original priors and

the computed priors was performed, which consisted of: (1) The values of the entries considered

as novel in the computed priors were replaced in the corresponding entries of the final priors’

estimation; (2) The values of the entries of the original priors, corresponding to the entries of

the computed priors with value zero, were substituted in the corresponding entries of the final

priors’ estimation; (3) Lastly, the values of the remaining entries in the final priors’ estimation were

obtained by a weighted sum between the values of the original and computed priors, where the

weights were calculated proportionally to the number of characters in the omniglot and the number

of characters in the perturbed alphabets, respectively.

• Finally, the estimated priors were normalized.

Figure 4.21: Alternative pipeline.

The following equations 4.1 and 4.2 represent the process described above.

estart(x)←



ρ∗start(x), if 0 < s(x) < 1.3319e− 04

and ρ∗start(x) > 1.3319e− 04

s(x), if ρ∗start(x) = 0

w1s(x) + w2ρ
∗
start(x), otherwise

(4.1)

epT (x, y)←



ρ∗pT (x, y), if 8.5130e− 08 < pT (x, y) < 1.6140e− 07

and ρ∗pT (x, y) > 1.6140e− 07

pT (x, y), if ρ∗pT (x, y) = 0

w1pT (x, y) + w2ρ
∗
pT (x, y), otherwise

(4.2)

The resulting weights are shown in Table A.2 in supplementary material, where w1 is the original prior

weight and w2 the new computed prior weight. It is important to notice that the number of inferred images
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are the same as the ones describes in Section 4.3. The definition of novelty and the hyperparameters it

involves are a subject that should be further explored.

To explore the new alternative pipeline the data set generated with the DL-BPL models parameterized

with β = 0.8, 0.5, 0.2, 1e − 3. What is intended with this estimation is to get the priors that will be used

in the classification task to capture the novel primitives and novel primitive transitions observed in the

perturbed characters, while simultaneously retaining the structure of the original priors. When compared

to the first pipeline learned priors ρ∗start and ρ∗pT , the new estimated priors estart and epT demonstrate

a higher similarity to the original priors, with lower KLD and JSD values. On one side, distribution

comparison between s and estart exhibited decreasing KLD and JSD values with increasing β, showing

that the effect of the perturbation was preserved. On the other hand, distribution comparison between

pT and epT show relatively stable KLD and JSD values across β parameters, as shown in Figure 4.22.

These results seem to reflect what was desired.

(a) (b)

Figure 4.22: (a) KL(s||estart) and JSD(s||estart). (b) KL(pT ||epT ) and JSD(pT ||epT )
.

From Figure 4.23a it is possible to conclude that the average fitting scores of the evaluation images

leveraging the DL-BPL are very close to the control score, without a significant difference between scores

across β values. Figure 4.23b shows that the best classification average error was 7% for β = 0.8, slightly

lower than the control 9% result. The average error for β = 1e− 3 was 7.5%, for β = 0.2 was 8% and for

β = 0.5 the obtained error was 9.5%.

The omniglot dataset was developed in the context of the work by Lake et. al (2015) [6], with the ob-

jective of studying how humans and machines perform one-shot learning. Seven years after its release,

progress has been made in performing a one-shot classification task using this dataset [240]. Different

study approaches, including the usage of different models and augmented datasets, have tried to tackle

the challenge of obtaining a smaller one-shot classification error than BPL.

Results of this one-shot classification task include human participants which have shown to achieve

an error rate of 4.5%, BPL has demonstrated comparable performance to humans, achieving an error
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(a) (b)

Figure 4.23: Classification results alternative pipeline. (a) Average fitting score of evaluation dataset
images for the differently β parameterized DL-BPL models resulting from the alternative pipeline and
for control (original non-perturbed BPL). (b) Average one-shot classification error for each perturbed
DL-BPL and control.

rate of 3.3% 4. In addition, Lake and colleagues (2015) [6] trained a basic convolutional neural network

(ConvNet) for the identical task, which achieved a one-shot error rate of 13.5%. However, the most

effective neural network model at the time was a deep Siamese ConvNet, which obtained an error

rate of 8.0% after being trained with considerable data augmentation [240, 241]. Nonetheless, this

error rate is still approximately twice that of human performance and Bayesian program learning (BPL).

Adapted from the omniglot “3-year progress report”, Figure 4.24 shows some other interesting results

obtained since the omniglot release [240] by models such as matching networks (Matching Net) [242],

prototypical networks (Prototypical Net) [243], model-agnostic meta-learning (MAML) [244], recursive

cortical networks (RCNs) [245], variational homoencoder (VHE) [246], graph neural networks (Graph

Nets) [247] and attentive recurrent comparators (ARCs) [248].

The majority of models do not integrate the compositional or causal architecture of character for-

mation beyond implicit learning through numerous instances of character discrimination. Additionally,

alternative forms of this task make it arduous to directly compare their performance with the original

BPL results. A more recent result consists in the attempt of a generative neuro-symbolic (GNS) model

[249] 5 to perform ”within alphabet” one-shot classification, obtaining a test error rate of 5.7%, with no

data augmentation, outperforming all other models that received the same background training, except

for BPL [249]. This thesis work was also an attempt to improve performance on this one-shot classifica-

tion task under an analogy of how psychedelics act on the brain. One important thing to mention is that

we did not train the model from scratch with the augmented dataset, but instead we developed a different

pipeline design. As previously mentioned, we wanted to take advantage of BPL model architecture and

exclusively perturbed the priors which define primitive sampling, through an innovative diffusion-based

4Note that this is outcome reported in Lake’s (2015) [6] scholarly work ; however, our attempts to replicate the outcome did not
yield the same result.

5GNS is a model of handwritten character concepts, based on BPL framework.
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Figure 4.24: One-shot classification error rate across models. ”One-shot classification error rate for
both within-alphabet classification [6] and between-alphabet classification [242], either with the ‘ “Origi-
nal” background set or with an “Augmented” set that uses more alphabets (# alphabets) and character
classes for learning to learn (# classes). The best results for each problem formulation are in bold , and
the results for “minimal” setting are the average of two different splits.” * Results used additional four-
fold class augmentation by applying 90 degree rotations and additional random augmentations such as
scaling, shearing, translations, etc. [249]. Adapted from Lake et al., (2019) [240].

perturbation process, ultimately augmenting the omniglot dataset in 750 new character classes, totaling

1714 classes (# characters). Besides this, all characters classes in a task episode come from the same

alphabet as originally proposed [6]. The best obtained result was 7%, resulting from the perturbation

with β = 0.8, showing a promising result when compared to other models that augmented the dataset in

approximately twice the character classes we used and to the control test.

Concluding, our psychedelic analogy hypothesis resulted in a positive result, possibly being a first

step towards high-level computational modeling of psychedelics, but also showing a promising avenue

in the investigation of diffusive data augmentation in the probabilistic induction field. It is, nevertheless,

imperative to emphasize that the omniglot one-shot classification task challenge involves more than

just learning from a significant amount of background training and minimal inductive biases to tackle a

single task. Instead, the challenge lies in learning from a limited amount of background training while

considering the inductive biases that humans bring to the domain (whatever those biases may be) [240].

In addition to the conclusions drawn above, it is worth mentioning that the task of identifying novelty

in the augmented data sets was found to be challenging. To gain insight into this, we adopted the

definition of affinity proposed by Gontijo-Lopes et al. (2020) [250] for a post pipeline analysis. This metric

measures the extent to which an augmentation alters the training data distribution learned by the model,

being sensitive to properties of both the model and data distribution. Specifically, affinity is defined as

the difference between the validation accuracy of a model trained on the original data set and evaluated

on the original evaluation data set, and the accuracy of the same model evaluated on an augmented

evaluation set (see Section A.8). We generated an evaluation data set of the same size as the omniglot

evaluation data set with the DL-BPL model perturbed with a β value of 0.8, and performed the one-shot

classification task on it. The resulting one-shot classification error for the DL-BPL evaluation set was

22.2%, indicating an affinity of −13.2%. These results suggest that the data generated by the diffusively

perturbed model contains novelty that is out-of-distribution for the BPL model. Further analyses are
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necessary to investigate the remaining beta parameterized perturbations, as well as additional analysis

to explore the diversity metric (also introduced in [250]), which together could be useful in optimizing the

beta parameterized diffusive augmentation.

4.5.1 Computational modeling in psychedelic research

The application of machine learning models to investigate the impact of psychedelic drugs on cog-

nitive processes represents a relatively underexplored research area, lacking in literature. This can be

attributed in part to the challenges of developing accurate computational models that reflect the complex

biological mechanisms underlying the effects of these drugs.

Studies simulating the visual hallucinations phenomenology that happens during the psychedelic

experience have been the most explored, including the “Deep Dream” algorithm [251] and the “Hallu-

cination Machine” [252] that have shown to simulate biologically plausible and ecologically valid visual

hallucinations, and provide a powerful tool to complement the recent resurgence of research into altered

states of consciousness [252]. Inspired by these studies, more recent work presented the output of

two deep convolutional neural network architectures resulting in visual features reminiscent of descrip-

tions of psychedelic-induced visual imagery, exemplifying a psychedelic perturbation via N,N-DMT [253],

moving towards the conceptualization of potential biological mechanisms of the balanced integration of

exogenous and endogenous information into conscious experience/visual perception mediated by the

serotonergic system [253] (see Sections 2.1.2 and 2.1.4).

The existing work on psychedelic drugs focuses on simulating visual hallucinations, but this new

modeling approach aims to explore higher-order cognitive hierarchies by perturbing internal represen-

tations at abstract levels of knowledge integration and concept formulation. We develop an expansive

multi-phase framework for cognitive processing (i.e. estimation, generation inference, and classification)

such that the impact of psychedelic perturbations on each phase may lead to distinct and interacting ef-

fects on the subjective experience. More specifically, we propose a novel data augmentation approach,

namely diffusive latent space perturbations in the context of probabilistic program models as an alterna-

tive approach to computationally formalizing how psychedelics might lead to new perspectives in PAP.
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Chapter 5

Conclusions

5.1 Summary

This thesis introduced a novel framework to explore the high-level computational theories of psychedelic

action in the brain based on probabilistic program induction. Our proposed pipeline has four different

phases, namely diffusion-based perturbations, generative, inference and classification, that work to-

gether with the objective of improving BPL model’s performance in a classification task through a data

augmentation procedure originated by diffusively perturbing in the latent space of the generative com-

ponent of our model.

Due to the exploratory nature of this work, comprising new perspectives in both ML and psychedelic

phenomenology, our pipeline design initially encountered some limitations, namely in the inference

phase, resulting in some poor classification results. Nevertheless, a detailed analysis was performed in

order to identify the main bottleneck and an alternative pipeline was developed to bypass the problem.

The computational experiments corroborated our theoretical hypothesis regarding the diffusion per-

turbation effect on the model priors. By differentially parameterizing the diffusive perturbations we were

to observe the effects of β hyperparameter value in the classification task results, despite not being able

to establish a positive correlation between decreasing β and increased model performance. We were

not able to reproduce the results in the original BPL paper [6], and, therefore, the control classification

test using the original model served as our baseline error. With respect to this baseline, our DL-BPL

pipeline obtained a lower error classification result for the highest β value, β = 0.8, evidencing how the

stochasticity of the generative character process, as well as finite sampling is intrinsically related to the

induced data set novelty. We believe these results, nevertheless, show this methodology is a promising

avenue of investigation to further refine and explore in the context of probabilistic induction.

5.2 Limitations and future work

The present findings highlight the importance of conducting detailed analysis to improve pipeline

design and hyperparameter choices. To optimize the exploration of the β perturbation parameterization,
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Bayesian optimization using Gaussian processes could be employed, as testing the entire pipeline with

different hyperparameters is computationally and time expensive. The process of updating the new

model priors also further requires careful consideration. One idea is to condition the generative process

to only produce characters with more than one stroke and more than one sub-stroke per stroke, which

can help avoid problems encountered during the inference phase. Additionally, exploring the direct

computation of priors from the generated alphabets without the need for inference could be an interesting

avenue to pursue. Defining novelty in the perturbed alphabets proved to be a significant challenge. To

address this, quantile analysis could be employed to define probability thresholds for Equations 4.1 and

4.2 and new methods to define novelty should be investigated. Furthermore, in addition to updating

primitive sampling priors, training the model with the augmented dataset should also be considered.

Another potential area of exploration is diffusion-based perturbations in the context of recent work

such as the GNS framework [249] that incorporates the hierarchy of BPL and neural networks. Besides

this, exploring models with different types of data can be another area of investigation.

In the realm of computational modeling and psychedelic research, neural networks offer a promising

avenue for exploring the action of psychedelic drugs at the circuit level in the brain,by approximating

models to biology. Neural networks have been inspired by biological neural networks and can be more

easily mathematically analyzed than their natural counterparts at the neuronal level [254]. One poten-

tial application of machine learning in this area is to mathematically model neuroplasticity, modeling the

pharmacodynamic effects of psychoactive drugs on spiking neural network plasticity. By experimenting

with network behavior before and after these modifications and comparing them to human neural net-

work behavior, researchers can explore the effects of psychedelic drugs on the brain [254]. Another

possible area of investigation is the hippocampus, which is thought to be involved in cognitive abilities

related to past experience, spatial mapping, planning and imagination [255]. By modeling hippocampal

circuits and the generative process underlying these circuits [256], researchers might be able to better

understand the cognitive effects of psychedelic substances.

While psychedelics have shown tremendous potential to revolutionize therapy, the reasons behind

their positive long-term outcomes are not fully understood. One possibility is that the strong subjective

experiences people have during PAP sessions play a substantial role in this (see Section 2.1.6). In fact,

some novel work has attempted to quantitatively map people’s reports of psychedelic experiences to

drug receptor binding affinities, gene transcription profiles, and brain structure, translating a person’s

experience into the molecular profiles responsible for that experience, allowing researchers to identify

which specific psychedelic compounds could benefit specific patients [257]. In addition, we believe that

putting more effort in modeling psychedelic action not only at the circuit, but also, at the high cognitive

level (and not on simple visual hallucinatory phenomenology) should be taken into consideration when

trying to fill the gaps in the research field.

We conclude that these types of studies may be a path to explore when it comes to improved psy-

chiatric treatment [257] and precision medicine.
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bin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action. Neuroreport,

9(17):3897–3902, 1998.

[58] K. H. Preller, T. Pokorny, A. Hock, R. Kraehenmann, P. Stämpfli, E. Seifritz, M. Scheidegger, and
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Appendix A

Supplements

A.1 Omniglot evaluation data set

Figure A.1: Evaluation data set. Each two rows correspond to the training (above) and test (below) of
one run. From top to bottom, and left to right, it is possible to observe the images utilized in the one-shot
classification task, from run 1 to run 20.

A.2 Additional analyses

A.2.1 Shannon entropy

Shannon entropy is a measure of the amount of uncertainty or surprise in a set of data. It was intro-

duced by Claude Shannon in 1948 [258] as a way to quantify the amount of information in a message.

The entropy of a message or data set is defined as the average number of bits needed to represent

each possible outcome.

The formula for Shannon entropy is given by:

H(X) = −
n∑

i=1

p(xi) log p(xi) = E[−logp(X)] (A.1)
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where H(X) is the entropy of the data set X, n is the number of possible outcomes, and p(xi) is

the probability of outcome xi. The entropy is measured in bits and ranges from 0 (when there is no

uncertainty) to log n (when all outcomes are equally likely). Entropy in information theory is directly

analogous to the entropy in statistical thermodynamics, both capturing increased ”randomness”.

Shannon entropy can also be thought as a measure of the amount of uncertainty in a probability

distribution. In this case, the entropy is a measure of the average amount of information contained in

each event in the distribution. The formula for Shannon entropy of a probability distribution is similar to

the formula for entropy of a data set, but it is given by:

H(P ) = −
n∑

i=1

pi log pi (A.2)

where this time P is a probability distribution.

While this is a useful measure of uncertainty in a data set or probability distribution, it does not take

into account the structure or relationships between the outcomes. Other information measures, such as

mutual information and Kullback-Leibler divergence (KLD), can be used to quantify the amount of infor-

mation shared between two data sets or to measure the difference between two probability distributions.

A.2.2 Kullback–Leibler divergence

Kullback-Leiber divergence (KL divergence) was introduced by Kullback and Leibler in 1951 [259]

and it is an information-based measure of divergence between two probability distributions.

Given two distributions P and Q defined over X, with Q continuous with respect to P . The Kullback-

Leibler divergence (KLD) can be interpreted as the existent cross-entropy difference for Q on P defined

by H(P,Q) = −
∑

xϵX P (x) logQ(x) for discrete distributions and the self-entropy [258] of P H(P ) =

H(P, P ) = −
∑

xϵX logP (x). Therefore, DKL(P,Q) = H(P )−H(P,Q) is the expected difference, from

the standpoint of P , between the information encoded in P and the information encoded in Q. As a

result of H(P,Q) being the P -expectation of the number of bits of information, beyond those encoded in

Q.

Equally, KLD can be understood as the anticipated excess surprise when P is the actual distribution

and Q is used as the model. A value of DKL(P,Q) = 0 represents that the two distributions have

identical quantities of information. It is important to notice that is KLD is unbounded, but always positive.

For discrete probability distribution KLD is given by the equation

DKL(P,Q) = −
∑
xϵX

P (x) log
Q(x)

P (x)
(A.3)

This measure was computed between the original distributions P (zi1) and P (zij |zi(j−1)), and ρstart

and ρpT , obtained after the perturbation phase, respectively, as well as between the original distribution

and ρstart and ρpT , obtained after the inference phase.

It should be clearly stated that KL-divergence is not a true metric since it contradicts the triangle

inequality and is not symmetric. As a result, the Kullback-Leibler ”distance” concept is erroneous [260].
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For that reason the Jensen-Shannon distance (JSD) has also been computed.

A.2.3 Jensen-Shannon distance

The general Jansen-Shannon divergence is given by

H(
∑
v

αvPv)−
∑
v

H(Pv) =
∑
v

αvDKL(Pv, P̄ ) (A.4)

where
∑

v αvPv is a mixture of probability distributions with P̄ =
∑

v αvPv) and
∑

vH(Pv) < ∞.

Giving to the involved distributions various weights αv based on their relative importance is one of the

key characteristics of the Jensen-Shannon divergence.

The symmetrized and smooth version of KLD is called the specific Jansen-Shannon divergence and

it is given by

JSD(P,Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M) with M =

1

2
(P +Q) (A.5)

where M corresponds to the uniform mixture of the two probability distributions [261–264]. The

square root of the JSD is a metric often referred to as Jensen–Shannon distance and it was computed for

the same combination of probability distributions mentioned in section A.2.2. JSD is bounded between

0 and 1.

A.3 Diffusion-based perturbations effect

Diffusion-based perturbation effect on the model priors across different β simulation values.

(a) ρstart and ρpT for β = 0.9 (b) ρstart and ρpT for β = 0.8
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(c) ρstart and ρpT for β = 0.7 (d) ρstart and ρpT for β = 0.6

(e) ρstart and ρpT for β = 0.5 (f) ρstart and ρpT for β = 0.4

(g) ρstart and ρpT for β = 0.3 (h) ρstart and ρpT for β = 0.2

(i) ρstart and ρpT for β = 0.1 (j) ρstart and ρpT for β = 1e− 3

(k) ρstart and ρpT for β = 1e− 6 (l) ρstart and ρpT for β = 1e− 15

Figure A.2: Diffusion-based perturbations of the original model priors for different β parameters resulting
in the new perturbed priors ρstart and ρpT . 106



A.4 Novel priors sparsity

(a) ρ∗start matrix sparsity for the different β values. (b) ρ∗pT matrix sparsity for the different β values.

Figure A.3: New prior’s sparsity values.

A.5 Fitting examples

(a) Fitting results of model resulted from β = 1e − 3 perturba-

tion.

(b) Fitting results of model resulted from β = 0.2 perturbation.
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(c) Fitting results of model resulted from β = 0.5 perturbation. (d) Fitting results of model resulted from β = 0.8 perturbation.

Figure A.4: Comparing a few examples of fitting results of the run 1 test images leveraging the original
model (on the right) and the perturbed models (on the left) with (a) β = 1e− 3, (b) β = 0.2, (c) β = 0.5 ,
(d) β = 0.8.

A.6 One-shot classification results

The one-shot classification results for every classification task run.

(a) (b) (c)

108



(d) (e) (f)

(g) (h) (i)

Figure A.5: One-shot classification errors for each run leveraging (a) the original BPL model (control)
and the DL-BPL models which resulted from the the first pipeline with (b) β = 0.8, (c) β = 0.5, (d)
β = 0.2, (e) β = 1e − 3 and from the alternative pipeline (f) β = 0.8, (g) β = 0.5, (h) β = 0.2, (i)
β = 1e− 3.

Table A.1 shows an example of a scoring matrix of the Bayesian score classification rule for the

classification run 1 from the pipeline using the perturbed model parameterized with β = 1e − 3. In bold

the highest scores are indicated corresponding to the selected classification between images.

A.7 Weight computation for prior estimation.

Weight computation for the integrative estimation between the original model priors and the inferred

priors.

Table A.2: Weight computation for prior estimation.

Diffusion-based perturbation Omniglot images Generated perturbed images Total images w1 w2

1e− 3 19280 14715 33995 0.567143 0.432857

0.2 19280 14647 33927 0.568279 0.431721

0.5 19280 14788 34068 0.565927 0.434073

0.8 19280 14664 33944 0.567995 0.432005
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Table A.1: Bayesian scores table of Run 1 of perturbed model with β = 1e− 3.

Images Train 1 Train 2 Train 3 Train 4 Train 5 Train 6 Train 7 Train 8 Train 9 Train 10
Test 1 -1126,42 -1489,67 -977,87 -1223,25 -1849,87 -1620,51 -1542,58 -268,19 -698,98 -1586,17
Test 2 -4676,68 -3025,68 -3172,52 -3694,57 -4800,64 -3884,89 -4164,34 -3530,07 -3431,27 -4289,11
Test 3 -4131,01 -3693,66 -1894,29 -3519,90 -4522,39 -3461,97 -4408,65 -3172,11 -3445,96 -4317,21
Test 4 -3974,11 -4202,36 -3728,05 -3449,01 -3369,16 -4266,92 -4188,85 -3692,19 -3529,56 -4337,47
Test 5 -4188,71 -4426,61 -3013,72 -4606,27 -3600,96 -4600,87 -4614,06 -3738,29 -4194,97 -4937,44
Test 6 -3712,21 -3515,48 -2678,81 -3332,03 -4311,32 -1896,47 -3893,88 -3116,25 -2955,43 -4043,00
Test 7 -3998,61 -3869,27 -3129,06 -3855,39 -4126,50 -3342,03 -2822,74 -3442,76 -3556,73 -4417,61
Test 8 -3578,03 -3629,15 -3392,48 -3542,44 -4135,11 -4032,38 -3717,32 -2295,60 -2823,72 -4073,84
Test 9 -3740,08 -3933,54 -3288,67 -3352,27 -4282,95 -3824,87 -4155,47 -3659,97 -2595,22 -4270,09
Test 10 -4072,40 -3363,09 -3286,26 -3269,76 -3935,15 -3650,91 -3806,92 -3166,99 -3346,93 -2604,12
Test 11 -4134,65 -4215,72 -3390,42 -3554,45 -5042,86 -3587,02 -4225,83 -3639,29 -3158,38 -4703,88
Test 12 -1472,98 -1499,73 -1420,89 -900,75 -2230,47 -1598,73 -1862,37 -1400,92 -761,62 -2182,96
Test 13 -1536,12 -1824,92 -1590,25 -983,75 -2272,38 -2189,29 -2467,57 -1475,29 -1175,68 -2324,52
Test 14 -4103,54 -4480,14 -3556,24 -4071,75 -4159,55 -4524,73 -4568,29 -3529,54 -3948,66 -4270,81
Test 15 -3821,21 -3277,18 -2701,51 -3126,36 -4000,59 -3928,81 -3954,90 -2794,65 -3199,07 -3790,72
Test 16 -2524,95 -1878,28 -1532,61 -2427,64 -2624,19 -2441,47 -2175,67 -1176,41 -1713,66 -2441,82
Test 17 -3989,27 -3433,68 -3584,02 -3764,48 -5126,45 -4050,96 -4097,19 -3771,23 -3342,92 -4546,89
Test 18 -2340,70 -2313,40 -1803,00 -2150,18 -2471,58 -1708,98 -1923,37 -1787,15 -1611,09 -2392,44
Test 19 -4789,59 -4435,20 -3602,61 -4117,18 -5214,68 -4259,30 -4909,20 -3377,52 -3801,09 -5075,79
Test 20 -1772,34 -1255,46 -421,98 -1498,88 -1756,07 -1519,69 -1678,38 -473,26 -674,96 -2070,61

Images Train 10 Train 12 Train 13 Train 14 Train 15 Train 16 Train 17 Train 18 Train 19 Train 20
Test 1 -1299,48 -952,67 -1790,04 -1749,64 -2001,17 -758,41 -1774,98 -1482,92 -598,29 -1280,12
Test 2 -3901,05 -4134,85 -4105,40 -4800,37 -4555,22 -3890,82 -4336,16 -4555,31 -3737,69 -4402,91
Test 3 -2860,51 -2938,24 -4507,07 -4194,97 -4513,57 -3914,64 -4202,47 -4394,92 -3822,13 -3781,84
Test 4 -4573,95 -4440,63 -3766,49 -4214,69 -4821,50 -4204,59 -4348,32 -4683,85 -3832,42 -4307,90
Test 5 -4205,35 -5062,43 -4178,98 -4457,46 -5076,14 -4291,66 -4866,91 -5101,13 -4187,69 -4536,48
Test 6 -3061,04 -3069,84 -3936,28 -4347,60 -4142,93 -3227,98 -4141,90 -3658,53 -3246,68 -4113,64
Test 7 -3806,79 -3950,11 -3400,57 -4416,78 -4679,62 -3581,16 -4161,47 -3784,07 -3095,61 -4069,85
Test 8 -4006,18 -3540,14 -4188,34 -4081,01 -4565,39 -3251,22 -3806,39 -3907,73 -2899,35 -3822,81
Test 9 -4104,41 -3175,36 -4255,07 -4810,34 -4306,57 -4357,37 -4244,23 -4045,27 -3517,17 -4380,32
Test 10 -3546,62 -3942,45 -3272,75 -4243,72 -4703,08 -3500,39 -4337,97 -3529,75 -3890,52 -4328,76
Test 11 -2655,43 -2697,30 -5002,38 -4588,00 -5082,75 -4226,39 -4124,68 -4365,07 -3543,98 -4408,71
Test 12 -1592,54 -1226,27 -2389,50 -2636,37 -2529,87 -1891,90 -2221,07 -1821,89 -951,89 -2227,48
Test 13 -2256,29 -2028,95 -2159,92 -2871,38 -2776,18 -2205,83 -3115,72 -2255,25 -1805,07 -2315,02
Test 14 -4504,51 -4335,85 -4417,52 -2229,64 -5079,31 -4192,51 -4872,72 -5160,81 -3989,57 -4859,46
Test 15 -4044,01 -3623,64 -3486,29 -3586,59 -3467,59 -2971,26 -3873,07 -4291,77 -3305,63 -3731,74
Test 16 -2228,08 -2337,92 -2332,01 -2103,64 -3132,99 -1258,45 -2737,58 -2686,35 -1695,18 -2181,40
Test 17 -3434,02 -3632,11 -4135,30 -4795,53 -4817,60 -4320,73 -3366,17 -3817,68 -3757,79 -4883,62
Test 18 -2062,01 -1646,04 -2233,22 -2599,06 -2489,90 -2114,47 -2304,55 -1598,71 -1698,12 -2602,78
Test 19 -3977,71 -3876,06 -5010,37 -5005,38 -4783,03 -3512,68 -5315,18 -4990,50 -3065,23 -4246,53
Test 20 -1578,34 -1219,71 -1668,72 -1437,68 -1709,06 -841,13 -2221,25 -1988,06 -1030,52 -1236,78

A.8 Affinity analysis

Following [250] affinity definition: Let Dtrain and Dval be training and validation datasets drawn

IID from the same clean data distribution, and let D
′

val be derived from Dval by applying a stochastic

augmentation strategy, a, once to each image in Dval, D
′

val = (a(x), y) : ∀(x, y) ∈ Dval. Furthermore,

let m be a model trained on Dtrain and A(m,D) denote the model’s accuracy when evaluated on data

set D. The Affinity, T [a;m;Dval], is given by T [a;m;Dval] = A(m,D′
val) − A(m,Dval). The metric of

affinity offers several benefits, including ease of measurement as it only requires clean training of the

model. Additionally, it is not affected by any potential interaction between data augmentation and training

because augmentation is only utilized on the evaluation set. Furthermore, affinity serves as a distance

measurement that is responsive to characteristics of both the model and data distribution.

A.9 Code

The code for this thesis purpose was developed in Python and Matlab, recurring to [265] and [6]

repositories, mainly consisting of the implementation of diffusion-based perturbation framework, Dirichlet

Process, image processing algorithm, integrative estimation pipeline and adaptation of BPL generative,

inference, refitting and classification algorithms.
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