
Title of the MsC Thesis

Name of author
author.name@ist.utl.pt

Instituto Superior Técnico, Lisboa, Portugal

December 2011

Abstract

Transport Layer Security (TLS) is one of the most used communication security protocols in the
world. Through its use, it is possible to create a communication channel that provides important
security services, such as confidentiality, integrity, authentication, key establishment and Perfect
Forward Secrecy (PFS). The services are implemented through the use of algorithms defined in TLS
ciphersuites. Executing the TLS protocol requires lots of resources due to the nature of its operations,
making it unsuited for Internet of Things (IoT) devices. However, it is possible to select the algorithms
that will be used and thus the services will be provided. If configured properly, TLS can even be
utilized in constrained IoT environments. This work aims to create a system that will allow its users to
select proper TLS configurations, enabling their devices to execute TLS and optimize it. This system
will make use of the Mbed TLS library as its study target, thus an extensive analysis of this library
is present in this work. This system will allow its users to add cost metrics and use various tools to
perform the measurements. This system will implement basic metrics, such as execution time and
the number of CPU cycles. This system will allow the use of alternate algorithms implementations
to further optimize the TLS protocol. In the end, the capabilities of the system will be tested, by
analysing the performance of the Handshake protocol and the impact of using an alternate AES
implementation, that makes use of the AES-NI instruction set.
Keywords: TLS, SSL, Mbed TLS, IoT, Security Services

1. Introduction

The Internet of Things (IoT) is a system composed
of computing devices, as well as mechanical and dig-
ital machines, that are connected with each other.
Each device or machine has a unique identifier and
the ability to transfer data over a network. These
devices or machines are usually referred to as IoT
devices.

Nowadays, the use of IoT devices is becoming
more common, since they can be used to perform a
wide variety of tasks. They can also be embedded
in various environments, such as mobile devices, in-
dustrial equipment, environmental sensors, or med-
ical devices. IoT devices also play an important
role in the concept and execution of smart home
technologies.

Since IoT devices are connected to a network,
they are susceptible to various attacks. Unsecured
IoT devices can also be used as a backdoor into
a secure network. As such, secure communication
protocols were created with the intent of securing
commutation channels and preventing such things
from happening.

TLS, or Transport Layer Security, is one of those
protocols. Currently, it is used in many applica-

tions, such as web browsing, email, instant messag-
ing, and voice over IP, to secure communication.
Although effective if used properly, TLS requires
the execution of many heavy and costly operations
to serve its purpose.

IoT devices are usually built to be portable and
simple to use, as such they can be composed of spe-
cific hardware components, that provide the desired
functionality but limit the resources available to the
device. Manufacturers also need to consider costs
for the mass production of those devices and can opt
for the use of cheaper and, in turn, weaker compo-
nents, further constraining the resources available
to the devices.

To be able to use TLS, IoT devices usually must
compromise between having weaker security or hav-
ing worse performance. Nevertheless, it is still pos-
sible to achieve a desirable trade-off between secu-
rity and performance. This is done by efficiently
using the resources available to a device and by
carefully configuring the TLS session.

With this idea in mind, this work will create a
system that can provide the desired trade-off be-
tween security and performance and enable the use
of safer and/or more efficient TLS sessions, by se-

1



lecting the best available TLS configurations. The
system will also support alternate algorithm imple-
mentations that take advantage of hardware accel-
eration techniques, such as the use of the AES-NI
instruction set in Intel and AMD processors.

This system will allow its users to get a detailed
analysis of the TLS protocol. The analysis consists
of a breakdown of the performance of the algorithms
used during the session, as well as the security ser-
vices provided in it. The system provides a dynamic
performance analysis as it implements an interface
that allows new metrics to be easily integrated and
also allows choosing which metrics will be used.

This work contains an extensive analysis of the
TLS implementation provided by the Mbed TLS
2.16.5 library, which was used as a research target
since it is one of the most popular TLS implemen-
tation libraries used in embedded systems.

The TLS protocol is comprised of the handshake
protocol and the record protocol. Figure 1 shows
the establishment of a TLS session.

Figure 1: TLS protocol, with the TCP handshake
in blue, the handshake protocol in orange and the
record protocol in gray

In the handshake protocol, the parties negotiate
the settings that will be used for the duration of the
session. These settings define which cipher, message
authentication and key distribution algorithm will
be used, along with other configurations. During
this phase, the parties will agree on a session key.
In the record protocol, the parties will start securely
exchanging messages, using the settings defined in
the handshake.

This work demonstrates the capabilities of the
developed system by using it to analyse the per-
formance of the TLS protocol in two different sce-
narios. This work also demonstrates the benefits of
integrating hardware acceleration techniques, such
as the use of the AES-NI instruction set, to optimize
the performance of the TLS session.

2. Background
2.1. Cryptography and Security Services
Cryptography is the practice and study of tech-
niques for securing communication from third par-
ties, which involves the creation and analysis of pro-
tocols that accomplish this objective.

Cryptography can be used for many purposes [2].
To better group these purposes, cryptography can
be divided into security services. These services are
confidentiality, integrity, authentication, and non-
repudiation.

Confidentiality is used to hide the content of the
information from all, except the entities allowed
to access it. Typically, confidentiality is assured
through ciphering information using cryptographic
algorithms and keys.

Integrity is used to preserve the consistency of
the information and to prevent unauthorized mod-
ifications to it. Cryptographic hash functions are
used to achieve this service.

Authentication assures the identity of the sender
or the origin of a received message. To as-
sure authentication, MACs (Message Authentica-
tion Codes) are used. MACs can be created by
hashing a message to get a digest and then cipher-
ing that digest using a symmetric cipher algorithm.

Finally, Non-repudiation is a service that pre-
vents an entity from denying its previous commit-
ments or actions. Non-repudiation is achieved using
digital signatures.

2.2. TLS Protocol
The TLS protocol is composed of the handshake
protocol and the record protocol.

The handshake protocol is responsible for making
the entities agree on the specifications that will be
used to protect the communication [6]. These spec-
ifications include the algorithms that will be used.

The handshake protocol has an initial negotiation
phase, where the specifications are agreed upon. Af-
ter agreeing on those specifications, the entities ex-
change a final record, to assure that both are using
the same specifications.

To make the negotiation easier, TLS created ci-
phersuites. A ciphersuite is a set of algorithms that
will be used during the session. Since SSL 3.0, this
set of algorithms is composed of three algorithms:
a key exchange algorithm, a cipher algorithm, and
a MAC algorithm.

The key exchange algorithm defines the session
keys that will be used for cryptographic operations,
while the cipher and MAC algorithms define how
the exchanged data will be protected and validated.
A ciphersuite can also include a signature and an
authentication algorithm. Each cipersuite has a
unique name that indicates its algorithmic contents.

The record protocol starts as soon as the hand-
shake protocol ends. Only now do the client and

2



server start exchanging application data between
themselves [6].

All data exchanged in a TLS session is framed in
well-defined structures, called records. The records
are used in both the handshake and the record pro-
tocol. The records have a content type field that is
used to differentiate its purpose and structure, al-
though all record types use a similar structure [6].

By default, the records use a MAC-then-encrypt
technique to provide confidentiality and integrity
and the size of their content cannot be bigger than
16KB.

2.3. Computing Platforms

A computing platform is an environment in which
a piece of software is executed. Computing plat-
forms are important tools for software development
since they can either constrain or assist in the per-
formance of the software.

Intel implemented the Advanced Encryption
Standard New Instructions (AES-NI) instruction
set. AES-NI improves the speed and security of ap-
plications that use the AES algorithm to perform
encryption or decryption operations.

AES-NI is currently supported by many different
processors, mainly Intel and AMD ones. The AES-
NI is comprised of six new instructions that perform
several computational intensive parts of the algo-
rithm [3]. The new instructions are AESENC, AES-
ENCLAST, AESDEC, AESDECLAST, AESKEY-
GENASSIST and AESIMC.

These new instructions combine various steps of
the algorithm in a single instruction. This not only
improves the performance of the algorithm, but it
also prevents recently discovered side-channel at-
tacks on the algorithm.

2.4. Mbed TLS

Mbed TLS 2.16.5 supports TLS 1.0 to 1.2, DTLS
1.0 and 1.2, and SSL 3.0. It is divided into vari-
ous modules, each with its own purpose. The mod-
ules are the following: TCP/IP communication,
SSL/TLS communication, X.509 (a certificate for-
mat), random number generation (RNG), hashing,
and encryption/decryption.

The encryption/decryption and hashing modules
use a generic structure that serves as a wrapper for
algorithms they implement. The generic structures
contain a vtable (virtual table) and data fields that
are necessary for characterizing the behaviour and
specifications of an algorithm.

By using vtables, it is possible to implement the
functions necessary to perform each algorithm sep-
arately and save the pointers to each function in a
wrapper structure. That structure represents the
implemented algorithm and is then added to a list
of wrappers of the same algorithm type.

3. Proposed Solution
3.1. System Architecture
This system will mainly consider the configurations
available to TLS 1.2. In the TLS context, the con-
figuration refers to the ciphersuite that will be used
during a session.

The ciphersuite specifies which security services
will be guaranteed in the session since the services
are achieved through the use of algorithms. Table
1 shows all security services and the respective al-
gorithms, implemented in Mbed TLS, that provide
them. The table does not include the use of AEAD
modes for symmetric cipher algorithms.

Security Service List of implemented algorithms
Authentication ECDSA, PSK, RSA

Confidentiality
AES, ARIA, CAMELLIA,

DES, RC4, 3DES-EDE
Integrity MD5, SHA, SHA256, SHA384

Key Establishment DHE, ECDH, ECDHE, PSK, SHA256
Perfect Forward

Secrecy
DHE, ECDHE

Table 1: List of security services and the respective
algorithms that provide them.

The system is composed of two major modules,
the data acquisition module and the data analysis
module. After generating the data, the system will
produce plots and statistics from it. The analysis of
the data can be done using two approaches: focus-
ing on individual algorithms or focusing on security
services.

3.2. Data Acquisition Module
This module is composed of three components: the
measurement component, the TLS component and
the communication component.

The measurement component is the one responsi-
ble for implementing all the behaviour, data struc-
tures and functionality that is needed to make mea-
surements. For this work, a metric refers to a type
of data that is measured using a specific measure-
ment tool.

This component must allow the users to use mul-
tiple measurement tools at the same time, to mea-
sure all the enabled metrics and to allow a measure-
ment tool to measure different metrics, if possible.

In order to meet all of these requirements, it was
decided that this component needed to use a struc-
ture similar to the one present in Mbed TLS.

All the metric modules follow a specific structure,
consisting of a data structure where two measured
values will be stored and all the relevant functions
needed to enable the measuring process.

The main module of this component contains all
the functions needed to perform the measurements
and save the acquired values in a file. It also con-
tains a list of generic pointers that can be converted

3



into the metrics data structure.

It is necessary to perform two measurements to
get the values of the metrics. One before a function
call and another after the call. The metric value
is then calculated by subtracting both values. The
calculated values are all saved in CSV files.

The currently implemented metrics are: number
of virtual CPU cycles measured using the PAPI li-
brary, time using the PAPI library, in microseconds,
and time using the time.h standard library from C.

The TLS component is the one responsible for
implementing the TLS protocol as well as all the
cryptographic algorithms that it uses, through the
use of the Mbed TLS library.

After analysing the workflow of the library, the
SSL/TLS communication module was instrumented
with measurement functions from the measurement
component. This module is the central point of
this library, making use of the cipher, hashing and
public key module to implement the TLS specific
behaviour.

A premaster secret is formed during the hand-
shake and each key exchange algorithm uses differ-
ent cryptographic materials to form it. The mes-
sages exchanged by the communication peers also
vary depending on the chosen key exchange algo-
rithm [6, 7, 5, 4].

Cipher and hashing algorithms are only evalu-
ated during the record protocol. The SHA-2 algo-
rithms are also evaluated in the handshake protocol,
as they are used to generate the master secret and
to derive the keys that will be used in the record
protocol.

The public key module implements two types of
algorithms: signing algorithms and key exchange al-
gorithms. The former makes of use wrapper struc-
tures, while the latter does not follow a specific
structure.

The instrumentation of the algorithms in the ci-
pher and hashing module and the signing algo-
rithms in the public key module was done by finding
the calls from the wrapper structures. In turn, the
key exchange algorithms and the SHA-2 function
calls were found by analysing the stack of functions
calls.

This work also aims to enable the use of hard-
ware accelerators to improve the execution of the
TLS protocol. The method chosen for this task was
utilizing the alternative implementation mechanism
of the Mbed TLS library.

The communication component is the one respon-
sible for implementing a server-client architecture
and for creating all the keys and certificates neces-
sary to perform the protocol.

The server-client architecture was implemented
using the TLS component and makes use of a con-
figuration file to select which features will be used.

The communication endpoints enable the hand-
shake and record protocols to be executed multiple
times.

The user needs to send some parameters to
these programs for them to work. These parame-
ters are: ciphersuite, sec lvl, max sec lvl, msg size,
max msg size, n tests, path and debug lvl. Cipher-
suite is the only parameter that is mandatory and
it serves to indicate which ciphersuite will be used
for the TLS session.

By using the algorithms with bigger keys it is
possible to provide more robust security. The secu-
rity level is a value that represents the size of the
cryptographic keys, and thus the degree of security,
that will be used.

Table 2 shows the security levels considered in
this work, along with their security strength, mea-
sured in bits[1], and corresponding key sizes for all
the algorithms used in the handshake protocol. The
current minimum required security level is 1.

Key size (in bits)
Security Level Security Strength (in bits) PSK RSA, DHE ECDSA, ECDH(E)

0 80 80 1K = 1024 192
1 112 112 2K = 2048 224
2 128 128 3K = 3072 256
3 192 192 7.5K = 7680 384
4 256 256 15K = 15360 521

Table 2: Security levels with their corresponding
security strength and key sizes for all algorithms
used during the handshake.

These endpoints use self-signed certificates as this
work does not focus on analysing the impacts of
certificate validation.

3.3. Data Analysis Module
The data analysis can be done using two method-
ologies. By grouping the data into the security ser-
vices provided by each algorithm or ciphersuite, or
by grouping the data into the algorithm type. Each
algorithm can provide one or more security services.

With this in mind, each individual function was
assigned to a single security service. All functions
in each Mbed TLS algorithm module were analysed,
regarding their purpose in implementing the algo-
rithm and assigned to a single security service. Ta-
ble 1 shows all the security services that each al-
gorithm provides. Table 3 shows all the algorithms
and their respective algorithm type.

Algorithm Type List of implemented algorithms
Cipher AES, ARIA, CAMELLIA, DES, RC4, 3DES-EDE
MAC MD5, SHA, SHA256, SHA512

Key Exchange
DHE-PSK, DHE-RSA, ECDH-ECDSA, ECDH-RSA, ECDHE-ECDSA,

ECDHE-PSK, ECDHE-RSA, PSK, RSA, RSA-PSK

Table 3: List of algorithm types and the respective
list of algorithms that belong to it.

Some tools that make use of these grouping

4



methodologies were developed. These tools will
generate all the relevant statistics and plots relative
to a ciphersuite. Tools that allow the automation
of the data acquisition process were also developed.

All tools use a basic data grouping procedure,
depending on the grouping methodology they use.
The idea of this procedure is to group the data by
security service or algorithm type, as well as metric,
operation and id.

The operation is the entity that performed the
algorithm in case the service is provided in the
handshake protocol, i.e ”authentication”, ”key es-
tablishment” or ”perfect forward secrecy”, or the
algorithm type is ”key exchange”. The operation
is the algorithm operation if the service is provided
during the record protocol, i.e ”confidentiality” and
”integrity”, or the algorithm type is ”cipher” or
”MAC”.

The id corresponds to the security level or
strength of the keys used in algorithms during the
handshake protocol and the size of the message used
as input in the algorithms during the record proto-
col.

A graphical user interface (GUI) was also devel-
oped to make the use of the tools more intuitive to
the users.

4. Results
4.1. Scenario 1: Analysis of the Security Services

Provided by the Handshake Protocol

For the first scenario, it was decided to use the de-
veloped system to analyse the performance of each
security service provided during the handshake pro-
tocol. The services that can be provided during
the handshake are authentication, key establish-
ment and perfect forward secrecy.

For this scenario, each key exchange algorithm
that can be used in a ciphersuite will be tested. Ta-
ble 3 contains all the key exchange algorithms that
were tested. The server and client authenticated
themselves mutually, when possible, and used the
same symmetric encryption and MAC algorithms.

Additionally, each key exchange algorithm was
tested using keys that provide security levels from
1 to 3. Table 2 contains the respective key sizes for
each algorithm. The services profiler tool was used
to acquire the data. This implies that no data dis-
crepancies were created by compiler optimizations
as the code was only compiled once.

The metric used was the number of cycles per
algorithm execution, which was obtained using
the PAPI library. The tests were executed using
the VirtualBox software to virtualize a pre-built
Ubuntu (32-bits) virtual machine image provided
by SEED Labs. The host device uses an Intel(R)
Core(TM) i7-4720HQ processor and the virtual en-
vironment made use of all 4 CPU cores.

After generating the data, the services analyser

and comparator tools were used to generate the
plots. Figures 2, 3 and 4 show the performance of
each key exchange algorithm when using keys that
provide 112, 128 and 192 bits of security, respec-
tively. Each layer of a stacked bar represents the
performance of an individual algorithm and each
bar has an extra label that indicates which security
services are provided by that algorithm.

(a) Server-side

(b) Client-side

Figure 2: Performance of each key exchange algo-
rithm for security strength of 112 bits, in number
of CPU cycles.

(a) Server-side

(b) Client-side

Figure 3: Performance of each key exchange algo-
rithm for security strength of 128 bits, in number
of CPU cycles.

As can be seen from all those plots, the most tax-
ing key exchange algorithm is DHE-RSA followed
by DHE-PSK. This is due to the use of the ex-
tremely large keys by DHE and, in the case of DHE-
RSA, RSA. DHE and RSA need to generate a key
that is around 30 times bigger than the ones used
by ECDHE and ECDSA to produce the same level

5



(a) Server-side

(b) Client-side

Figure 4: Performance of each key exchange algo-
rithm for security strength of 192 bits, in number
of CPU cycles.

of security.

Figures 5, 6 and 7 show the performance of each
algorithm used to provide the authentication, key
establishment and perfect forward secrecy services,
respectively. The plots use a logarithmic scale and
group the bars by security strength. The bars also
contain an error bar corresponding to the standard
deviation of the data sample.

(a) Server-side

(b) Client-side

Figure 5: Performance of each algorithm that pro-
vides the authentication security service for all se-
curity strengths, in number of CPU cycles.

As can be seen in figures 5 and 6, PSK is the least
taxing algorithm when used to provide authentica-
tion and key establishment, respectively. This is
due to the operations that are used by this algo-
rithm being mostly simple data reading and pars-
ing. In Figure 7, the effect of the difference between
DHE and ECDHE key sizes can be seen again.

(a) Server-side

(b) Client-side

Figure 6: Performance of each algorithm that pro-
vides the key establishment security service for all
security strengths, in number of CPU cycles.

(a) Server-side

(b) Client-side

Figure 7: Performance of each algorithm that pro-
vides the perfect forward secrecy security service for
all security strengths, in number of CPU cycles.

All the produced statistics have expected values,
relative to each other, except for the ones produced
by DHE. The DHE bars for the client-side of Fig-
ures 2 and 3 show an abnormal difference in per-
formance when using the DHE-PSK and DHE-RSA
algorithms. This can also be seen by the large DHE
error bars in the client-side of Figure 7.

Upon further inspection of the data produced, it
was discovered that the sample standard deviation
for the client-side DHE-PSK data using security lev-
els 1 and 2, and for the server-side DHE-PSK and
DHE-RSA data using security level 2 was relatively
high. This points out inconsistencies in the data
itself. This is most likely due to the processor mak-
ing unexpected calls when running tests for one of
the ciphersuites as both key exchange algorithms

6



use DHE in the same way, i.e. they make the same
calls to the DHE module.

The statistics produced by the ECDHE and
ECDH algorithms are reasonable since their values
are similar for all ciphersuites that use them.

As for the ECDSA algorithm, the difference in
values in Figures 2, 3 and 4 and the reasonably
sized error bar in Figure 5 exists due to the fact
that ECDHE-ECDSA performs the signing of the
ServerKeyExchange message, while ECDH-ECDSA
does not.

The RSA and RSA-PSK key exchange algorithms
encrypt the ClientKeyExchange message using the
server public key, while the DHE-RSA and ECDHE-
RSA sign the ServerKeyExchange message using
the server private key. The ECDH-RSA key ex-
change algorithm does not send the ServerKeyEx-
change message nor it encrypts or signs the Clien-
tKeyExchange message. Additionally, the RSA,
DHE-RSA, ECDH-RSA and ECDHE-RSA algo-
rithms perform a signature in the CertificateVerify
message, while RSA-PSK cannot perform this op-
eration.

Therefore, the client-side in RSA-PSK cipher-
suites only use RSA to encrypt the ClientKeyEx-
change message using the public key from the
server. Meanwhile, server-side in ECDH-RSA ci-
phersuites only use RSA to verify the CertificateV-
erify message using the public key from the client.
This makes RSA-PSK and ECDH-RSA ciphersuites
the ones with the least taxing use of the RSA al-
gorithm for the client and server endpoint, respec-
tively.

The above analysis can be seen in Figures 2, 3
and 4. The analysis also explains the error bars in
Figure 5.

The PSK and SHA256 have such little impact,
relative to the other algorithms that they can not
be seen in Figures 2, 3 and 4. In Figures 5 and
6 it can be seen that these two algorithms have a
relatively high standard deviation.

Upon further inspection of the data produced,
it was discovered that the sample standard devia-
tion of many key exchange algorithms that use the
SHA256 algorithm was relatively high. For the PSK
algorithm, this issue is also seen in some key ex-
change algorithms. This points out inconsistencies
in the data itself, likely caused by the same reason
as the DHE data inconsistencies.

In the case of the client-side PSK algorithm, the
relatively large standard deviations are also due to
PSK and RSA-PSK key exchanges not sending the
ServerKeyExchange message while the DHE-PSK
and ECDHE-PSK do so.

Concluding, the key exchange algorithm that pro-
vides the best trade-off between security and perfor-
mance is the ECDHE-ECDSA. This key exchange

algorithm provides all of the mentioned security ser-
vices and also adds an extra layer of security by
signing the ServerKeyExchange message. Addition-
ally, it uses the algorithms that have the best per-
formance taking into account the services provided.

From all this data, it can also be concluded that,
overall, ECC algorithms have much better perfor-
mance than RSA or DHE algorithms, since they can
use much smaller keys to provide equivalent levels
of security.

4.2. Scenario 2: Comparative Analysis of Different
AES and SHA-2 Implementations

For the second scenario, it was decided to use the
developed tool to analyse the performance of differ-
ent implementations of the AES and SHA-2 algo-
rithms.

For this scenario, it was decided to use two differ-
ent implementations of the algorithms being tested.
For both algorithms, the first implementation of
both algorithms is the native Mbed TLS implemen-
tation. This implementation will be mentioned as
the native implementation for the duration of this
section.

The second SHA-2 implementation was created
using the code from an open-source project. The
second AES implementation was created using the
example code found in a white paper [3] that makes
use of the AES-NI instruction set created by Intel.
The code from both algorithms was adapted to be
used in the Mbed TLS library.

The adaptations were made using the alternate
implementation method described in section ”3.2”.
These implementations will be mentioned as alter-
nate implementations for the duration of this sec-
tion.

The algorithms profiler tool was used to acquire
the data for this scenario. To generate the data,
only the TLS-PSK-WITH-AES-256-CBC-SHA384
ciphersuite was tested. The tool needed to be used
twice, once for the native implementations and an-
other use for the alternate implementations.

To get a better understanding of the performance
of both implementations, various message sizes were
tested. The tested message sizes range from 256B
to 16KB.

The metric used for this scenario was CPU time,
in microseconds, using the time.h standard library
from C. The tests were performed using the host
device mentioned in the previous scenario. After
getting the data, the algorithms plotter and com-
parator tools were used to generate plots.

Figures 8, 9 and 10 show the plots relative to
the implementations of the AES algorithm, while
Figures 11, 12 and 13 show the plots relative to the
implementations of the SHA-2 algorithm. The data
coloured in red represents the encrypt or hash op-
erations, whereas the blue coloured data represents

7



the decrypt or verify operations. For the rest of
this section, the encrypt and hash operations will
be referred to as out operations while the decrypt
and verify operations will be referred as to in oper-
ations.

(a) Native Implementation

(b) Alternate Implementation

Figure 8: Data distribution of the AES operations
for all message sizes, in microseconds.

(a) Native Implementation

(b) Alternate Implementation

Figure 9: Mean and standard deviation of the AES
operations for all message sizes, in microseconds.

(a) Native Implementation

(b) Alternate Implementation

Figure 10: Mean, median and mode of the AES
operations for all message sizes, in microseconds.

(a) Native Implementation

(b) Alternate Implementation

Figure 11: Data distribution of the SHA-2 opera-
tions for all message sizes, in microseconds.

As can be seen in Figures 10 and 13, the in oper-
ations are slightly slower than the out operations.
For the decrypt operations only, this might be be-
cause the data set has high standard deviations and
the data points are also more dispersed than the
ones from the encrypt operations, as can be seen in
Figures 8 and 9.

No proper reason could be pointed out as to why
all decrypt operations have such values. Every sin-
gle operation is done separately so there is no in-
terference from multiples operations being executed
at the same time. Additionally, it was noted that

8



(a) Native Implementation

(b) Alternate Implementation

Figure 12: Mean and standard deviation of the
SHA-2 operations for all message sizes, in microsec-
onds.

(a) Native Implementation

(b) Alternate Implementation

Figure 13: Mean, median and mode of the SHA-2
operations for all message sizes, in microseconds.

this behaviour is persistent no matter the number
of that were run when acquiring the data. Apart
from this particularity, all the generated plots show
reasonable results.

Figures 14 and 15 show the performance of the
AES and SHA-2 algorithms, respectively, using the
native and alternate implementation. The native
implementations are represented in blue while the
alternate ones are represented in orange. All the
plots present in both figures use a logarithmic scale.

As can be seen in Figure 14 the alternate AES

(a) Encryption Operation

(b) Decryption Operation

Figure 14: Comparison of the performance of both
AES implementations for all message sizes, in mi-
croseconds.

(a) Hash Operation

(b) Verify Operation

Figure 15: Comparison of the performance of both
SHA-2 implementations for all message sizes, in mi-
croseconds.

implementation is a lot less taxing on the device,
as it takes around half the time to perform the op-
erations than the native implementation. This can
also be seen when comparing the scale on of the
plots in Figure 10. This result is as expected since
the alternate implementation uses the AES-NI in-
struction set which optimizes the use of the AES
algorithm in Intel processors.

As can be seen in Figure 15, the alternate im-
plementation of the SHA-2 algorithm is marginally
slower than the native implementation, as there is
not even that much of a difference between their
performances. This result is within expectations as
the SHA-2 alternate implementation only focused
on implementing the algorithm and not on optimiz-
ing it.

9



Concluding, for this device, the best implemen-
tations, from the ones tested, is the alternate AES
implementation and the native SHA-2 implemen-
tation. It can also be concluded that the AES-NI
instruction set provides a great optimization for the
performance AES algorithm of devices that use In-
tel or AMD processors.

5. Conclusions
This work proposes a system that allows its users
to get a detailed analysis of the TLS protocol, in all
its phases. After providing the analysis, the system
creates a list of possible TLS configurations that
can be used by a given device.

The system provides a dynamic performance
analysis as it allows its users to enable and disable
the metrics that are going to be evaluated, as well
as implement new ones. The analysis given by the
system is not only limited to the performance of
algorithms that are used during TLS sessions, but
also to the security services that are provided dur-
ing the session.

Through this system, devices, particularly IoT
ones, can secure their communications by properly
configuring a TLS session. Other devices, that have
access to more resources, can also use this system to
further increase the performance and/or robustness
of their TLS sessions.

This work also provides the most extensive anal-
ysis of the Mbed TLS 2.16.5 library, to date.
The analysis includes a detailed explanation of the
mechanisms used by the library, as well as its struc-
ture and how its modules are connected.

This work also demonstrates the capabilities of
the developed system by using it to analyse the per-
formance of the TLS protocol in two different sce-
narios. The first scenario focuses more on the anal-
ysis of the security services provided by the hand-
shake protocol, while the second scenario focuses
on the analysis of different algorithm implementa-
tions, with the particularity of using the AES-NI
instruction set developed by Intel.

6. Future Work
For future work, it would be interesting to extend
the profiling capability of the system by including
other relevant metrics. As it stands, the system
can only generate data regarding time or CPU clock
cycles. These metrics are strongly related and may
not provide enough relevant information to allow its
users to chose a good TLS configuration.

The most interesting metrics to include would be
power consumption and memory usage. Both of
these metrics are relevant because these are also two
resources that are usually lacking in IoT devices,
due to their nature, and can even, ultimately, be
the bottlenecks of those devices.

Another relevant study that this project did not

cover, due to time constraints, would be analysing
the use of AEAD ciphersuites within Mbed TLS. Al-
though AEAD algorithms are more relevant in TLS
1.3, they can still be used in version 1.2 and are even
supported by Mbed TLS. This study would allow to
further increase the scope of possible configurations
that devices may use and simultaneously strengthen
the TLS sessions, since AEAD algorithms are con-
sidered safer than using both an encryption and
message authentication algorithm.

Lastly, it would be interesting to use this system
to evaluate the performance of an actual IoT device,
since the testing performed in this work was all done
using a general-purpose computer. Although the
system can also be used to profile the performance
of general devices, its main focus is still to be used
within an IoT environment and understand how it
can truly benefit that device.

Acknowledgements
I would like to thank the supervisors of my work,
professor Ricardo Chaves and Aleksander Ilic for all
the guidance and help they have given me through
this dissertation. I would also like to express my
gratitude to my family, especially my mother and
father, and all my close friends for all the support,
motivation and encouragement they have given me
through this work.

References
[1] E. Barker. Recommendation for key manage-

ment: Part 1 - general. Special Publication
(NIST SP), National Institute of Standards and
Technology, Gaithersburg, MD, [online], may
2020. doi:10.6028/NIST.SP.800-57pt1r5.

[2] W. Diffie and M. Hellman. New directions
in cryptography. IEEE Transactions on In-
formation Theory, 22(6):644–654, Nov. 1976.
doi:10.1109/tit.1976.1055638.

[3] S. Gueron. Intel advanced encryption standard
(AES) instruction set white paper, 2010. Intel.
Last accessed: 29.07.2021.

[4] I. Hajjeh and M. Badra. ECDHE PSK cipher
suites for transport layer security (TLS). IETF
RFC 5489, mar 2009.

[5] B. Moeller, N. Bolyard, V. Gupta, S. Blake-
Wilson, and C. Hawk. Elliptic curve cryptog-
raphy (ECC) cipher suites for transport layer
security (TLS). IETF RFC 4492, may 2006.

[6] E. Rescorla and T. Dierks. The transport layer
security (TLS) protocol version 1.2. IETF RFC
5246, aug 2008.

[7] H. Tschofenig and P. Eronen. Pre-shared key
ciphersuites for transport layer security (TLS).
IETF RFC 4279, dec 2005.

10


