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Abstract

This work proposes a new SPI flash memory controller IP core that can be integrated into a System-
on-Chip (SoC) for running programs directly on the flash, and serving as a general-purpose permanent
data storage available to firmware programs.

The new controller features flexible synthesis and run-time parameters and supports the QSPI pro-
tocol and the Execute-In-Place mode. The core interfaces the CPU instruction bus and can be accessed
as peripheral by firmware programs. A software driver written in C has also been developed.

The core has been developed and integrated into the IOb-SoC platform, an open-source RISC-V
SoC template made available by the Lisbon-based IP company IObundle, Lda. IOb-SoC facilitates the
design of SoCs by automating the process of adding additional IP cores and software.

The IOb-SoC bootloader program has been upgraded to make use of the new software driver; it
configures the controller, loads the firmware program onto it and restarts the CPU to run the program.
The bootloader supports additional functionalities such as erasing flash memory sectors and inspecting
flash memory locations.

The FPGA implementation results are compared to a well-known commercial IP core and are shown
to be competitive as the hardware resources are quite similar. In terms of performance, the developed
IP core is four times slower but, in compensation, it dispenses with the use of two clock domains, which
reduces its complexity and brings integration benefits.
Keywords: Bootloader, SPI Flash memory controller, CPU Instructions bus, Running programs
directly on the flash, General-purpose permanent data storage

1. Introduction

IObSoC is a System on a Chip which incorporates
a RISC-V CPU, a memory system comprised by
internal SRAM and external DDR memory and ex-
ternal peripheral IP cores integration. The system
boots into a bootloader program which is able to
initialize the memory resources with a firmware pro-
gram. It then launches the firmware program. The
objective of this work is to develop support for flash
memory and its utilization into the bootloader pro-
gram. The integration of flash memory into IOb-
SoC should allow for direct firmware instructions
execution from flash. The development of a flash
memory controller IP core is required, and it must
implement the IOb-SoC specific native interface.
This work is developed on the Kintex UltraScale
KU040 FPGA prototyping board. The prototyping
board houses a User Code SPI NOR flash memory
device.

The next sections comprise information concern-
ing: Background, presenting relevant information
for a general understanding of the development
environment and system architecture, alongside a

general characterization of flash memory and asso-
ciated communications protocols; Implementation,
explaining the SPI flash memory controller core de-
velopment details and its integration into the IOb-
SoC architecture; Results, evaluating the devel-
oped controller supported features and discussing
the code execution performance and board FPGA
implementation results; Conclusions, reporting the
achievements and future work perspectives.

2. Background
2.1. IOb-SoC Architecture
The basic IOb-SoC system comprises the following
components:

� RISC-V processor, based on the PicoRV32 pro-
cessor implementation

� Memory Subsystem, consisting of a boot ROM
and internal SRAM with additional support for
external DDR memory

� Peripheral Cores (UART), comprising the
cores added to the system directories and pe-
ripheral list. The UART communications pe-
ripheral is present by default.
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� Interconnect, Instructions and Data Bus, con-
necting the system components. It implements
the Native interface protocol signals for com-
munication.

2.1.1 Native Interface

The Native Interface is the main bus protocol for
interfacing with the IOb-SoC’s processor bus. The
signals which comprise the Native Interface protocol
are summarised in the Table 1. The signal direction
is represented with respect to the CPU.

Table 1: Native Interface Bus Signals.

Signals Direction Width Function

valid output 1 Request

address output 32 Request

wdata output 32 Request

wstrb output 4 Request

rdata input 32 Response

ready input 1 Response

A master read request to a slave device based on
the Native interface protocol is illustrated in Fig-
ure 1.

clk

valid

address a0 a1 a2

wdata

wstrb 0

rdata rd0 rd1 rd2

ready

Figure 1: Native Interface Read

2.1.2 Development Environment

The IOb-SoC project development files are sepa-
rated into the following main directories: hard-
ware, which contains RTL description files, sim-
ulation testbench files, simulator files and board
specific files and scripts for synthesis/implemen-
tation; software, which contains the bootloader
and firmware C source files, headers and helper
scripts;document, which contains documentation
about IOb-SoC and components; submodules,
which gathers complementary repositories for im-
portant components and peripheral cores. The
project components’ compilation, synthesis, board
implementation and simulation processes are auto-
mated through the use of a recursive Makefiles tree
structure.

The system supports synthesis and board imple-
mentation on particular ASIC and FPGA devices.
Simulation is supported for a range of simulation
tools, namely: icarus, verilator, ncsim, modelsim.
The selected simulator for this project is icarus.

The IOb-SoC is a memory-mapped system which
assigns an address range to each connected periph-
eral and memory device.

2.1.3 Operation

The IOb-SoC general operation flow can be de-
scribed through the following steps:

1. After power-up, the Boot Controller hardware
component loads the bootloader code from the
internal Boot ROM to the internal SRAM
memory space while keeping the CPU in reset
state.

2. After the bootloader is copied to the SRAM,
the CPU starts running the bootloader code
from the SRAM.

3. The bootloader program running on the pro-
totyping board connects to a console applica-
tion running on the host computer by means of
the UART interface. The console application is
able to serve requests from the bootloader pro-
gram to send or receive data and binary files.
For example, if the INIT MEM macro is re-
set, the bootloader asks the host to send the
firmware binary file and loads it onto the mem-
ory (SRAM or DDR); else, if INIT MEM=1,
the firmware is already pre-initialised into the
memory.

4. When the bootloader program finishes execut-
ing, it restarts the system to run the firmware
from the 0x00000000 initial address.

5. The connection to the host console is termi-
nated when the firmware finishes running.

2.2. Development Board Features
The Kintex UltraScale KU040 board (from here on,
referred only as KU040) features 32MB SPI NOR
flash memory with a QSPI interface. The flash
memory device is a Micron N25Q256A family de-
vice. Figure 2 depicts the flash device signals con-
nections to the board FPGA [1].

2.3. NOR Flash Memory
Flash memory is based on EEPROM. It is a re-
programmable, cheap and non-volatile data storage
medium. There are two main types of flash mem-
ory: NAND flash and NOR flash memory. NAND
flash has more advantages for large files storage and
access of large memory blocks, while NOR flash is
more reliable and has higher access performance for
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Figure 2: User flash QSPI interface.

individual bytes. NOR flash is the best one suited
for running instructions code in embedded systems.
A flash memory limitation is the limited number of
program /erase cycles that can be performed on a
block before it becomes unreliable.

NOR flash can be offered with parallel interface
or serial interface. Parallel interface provides better
access performance at the cost of high pin count. A
common serial interface for NOR flash is SPI (Serial
Peripheral Interface) which traditionally features a
minimum of 4 signals: 2 control signals, CSn (Chip
Select) and SCLK (Serial Clock), and 2 data signals,
MOSI/SDI (Master Out Slave In/Slave Data In)
and MISO/SDO (Master In Slave Out/Slave Data
Out). A range of SPI evolution protocols have been
developed featuring an increased number of data
signals which results in greater access performance.
For instance, the QSPI (Quad SPI) protocol which
features up-to 4 data signals.

2.3.1 General SPI operation

An SPI operation is processed in the following man-
ner: the master device which may be connected
to multiple slave devices each with its independent
CSn line, asserts to 0 a selected slave device’s cor-
responding CSn line signal (this slave device is the
only one that can successfully make transfers with
the master); next, the master device starts toggling
the SCLK line signal and data is sent synchronously
to the SCLK edges. Data may be simultaneously
sent and received by both devices, though the MOSI
- SDI and MISO - SDO connections. The commu-
nication is interrupted by setting CSn back to 1.

In a SPI operation, 4 different SPI clocking modes
can be defined depending on the edge used for
transmitting and sampling, clock phase (CPHA),
and on the serial clock edge idle state, clock po-
larity (CPOL), namely the modes, format (CPOL,
CPHA): (0,0), (0,1), (1,0) and (1,1). In particular,
the most common modes for flash memory applica-
tions are SPI clocking modes (0,0) and (1,1), values
for (CPOL, CPHA), where data is transmitted on
the falling edge and sampled on the rising edge, the
difference being in the clock idle state: for CPOL=0
the clock is idle at 0 and for CPOL=1 the clock is

idle at 1. Modes (0,0) and (1,1) may also be referred
as SPI clocking modes 0 and 3, respectively.

2.4. QSPI Protocol
The QSPI (Quad SPI) protocol makes use of a sub-
set of the specifications for the xSPI (eXpanded
SPI) standard defined in [4]. The xSPI standard
defines protocols for transactions (read and write)
involving compliant low signal count high speed se-
rial devices. It is defined for a maximum of 8 data
signals.

The QSPI protocol defines 4 data signals (bidi-
rectional), plus the CSn and SCLK control signals,
instead of the traditional 2 unidirectional data sig-
nals for SPI. The signals are: CSn (Chip Select),
SCLK (Serial Clock), DQ0 (MOSI), DQ1(MISO),
DQ2 and DQ3. The extra data signals (DQ2 and
DQ3) may have added functionality depending on
the flash device.

2.4.1 QSPI Transaction Format

A QSPI transaction normally comprises a number
of the following phases (frame segments):

� Command Phase

� Address Phase

� Latency Phase

� Data Phase

Figure 3 depicts the sequence of transaction phases
for a general read or program transaction. The
displayed values refer typical values for the flash
chip [5] on board the KU040 prototyping board.

Figure 3: QSPI transaction phases

The command phase is normally the first trans-
action phase and consists of a 8 bit command code.
This command opcode determines the following
transaction phases characteristics, with some trans-
action phases omitted and others required.

In XIP (eXecute-In-Place) mode the command
phase is dropped, thus saving a few transaction
clock cycles for memory read operations.

The address phase specifies the memory loca-
tion on the flash device requested for access. Cur-
rent common flash chips allow for 24 bits or 32 bits
addresses for larger memory capacities. Examples
of operations requiring this phase are memory read
and memory program operations.

The latency phase executes a number of re-
quired wait (dummy) cycles before the flash device
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is able to correctly output requested data. On this
phase, the data lines may be left unasserted, but
can be set (mode bits) to relay certain information
about the following transactions.

On the data phase, data to be stored on flash is
transmitted from the master and sampled by the
slave device on write operations, while on mem-
ory read requests data is shifted out by the slave
device to the master device. The flash memory de-
vice characteristics and configuration determine the
maximum number of bits that may be read or writ-
ten in a single transaction while the CSn signal is
active.

Basic commands supported by SPI NOR flash de-
vices include (typical command size, address size,
latency and data size found in [5]):

� Read SFDP : command code 5Ah, address size
3 bytes, latency cycles 8, data size 1 to ∞
(bytes)

� Write Enable : command code 06h (only trans-
action segment)

� Fast Read : command code 0Bh, address size
3/4 bytes, latency cycles 8, data size 1 to ∞
(bytes)

� Page Program : command code 02h, address
size 3/4, data size 1 to 256 (bytes)

2.4.2 Transaction Waveforms

Figure 4 depicts the Write Enable command
(command code 06h) in mode single mode (1 data
lane).

CLK

CS#

DQ0 0 0 0 0 0 1 1 0

DQ1

Figure 4: Write Enable Transaction Waveform.

Figure 5 illustrates the Page Program com-
mand (02h) in single mode .

CLK

CS#

DQ0 02h A[MAX : MIN] d31 d30 d.. d0

DQ1 High-Z

command address data to be stored in flash

p q

a b c d

Figure 5: Page Program Transaction Waveform.

Figure 6 displays the transaction waveform for
a Fast Read command (BBh) in mode (1-2-2), 1
data lane for command segment, 2 for address and
2 for data, with one mode bit (at 0).

CLK

CS#

DQ0 BBh Am-1 A.. A0 0 d30 d28 d.. d0

DQ1 Am A.. A1 d31 d29 d.. d1

DQ2

DQ3

High-Z

High-Z

1

command address Latency cycles, mode bit at 0 data read from flash

t u

r s

p q

a b c d e

Figure 6: Fast Read Transaction Waveform Dual.

2.5. Flash Controller Comparative Model
The CAST xSPI-MC (memory controller) [2] core
IP is a flash memory controller core compliant
with the xSPI standard [4] which supports sev-
eral important features, including: multi-data lanes
modes support (single, dual, quad, octal, etc), STR
(Single Transfer Rate) and DTR (Double Transfer
Rate), XIP mode support, configurable transaction
segments. Complete characterization information
in [2]. This model is used as a comparative model
for the developed flash memory controller core.

3. Implementation
3.1. Flash Memory On Board
The N25Q256A flash memory device on board the
KU040 prototyping board features: 256 megabits
memory density (32MB) organized into 512 sectors
of 64KB representing 8192 subsectors of 4KB and
a total of 131,072 pages of 256 bytes; multiple I/O
data lanes; DTR mode; XIP mode support.

The flash device hosts several configuration reg-
isters that define the device’s behaviour, including:
the status register, the non-volatile and volatile con-
figuration registers, flag status register, etc. At
the initial delivery state all memory array bits
are 1 (FFh bytes), status register set to 00h and
non-volatile configuration register bits set to 1s
(FFFFh).

Full characterization in [5].

3.2. Core Developement
The developed IP core implements support for
a range of features including: multi I/O data
lanes (single, dual, quad), XIP mode, DTR mode,
CPU peripheral bus interface and CPU instruc-
tions bus interface, configurable serial clock with
synchronous clock design. The project files reposi-
tory is hosted on Github at https://github.com/
IObundle/iob-spi.

The IP core is represented by a wrapper mod-
ule (iob spi master fl.v) which incorporates CPU
peripheral bus and instructions bus interfaces, a
SPI protocol interface, software accessible registers
(SW) and the central SPI master flash controller
core.

The Peripheral interface is used to configure the
core behaviour through the SW accessible regis-
ters and perform atomic command transactions.
The Instructions interface is used to connect to the
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CPU instructions memory bus (via cache). The In-
structions interface should be used after an initial
configuration through the SW accessible registers.
Both interfaces implement the CPU’s native inter-
face protocol.

3.2.1 SW Accessible Registers

The SW accessible registers comprise the registers
described in Table 2.

Table 2: Software Accessible Registers.

Name Register Type Size

FL RESET Write 1

FL DATAIN Write 32

FL ADDRESS Write 32

FL COMMAND Write 32

FL COMMANDTP Write 32

FL VALIDFLG Write 1

FL DATAOUT Read 32

FL READY Read 1

The FL COMMAND and FL COMMANDTP
registers hold special bit fields for particular con-
figuration parameters. Table 3 describes the pa-
rameter bit fields in the FL COMMAND register
while Table 4 indicates the ones contained in the
FL COMMANDTP register.

Table 3: FL COMMAND SW Register Configura-
tion Fields.

FL COMMAND Size Description

7 : 0 8 command
code

14 : 8 7 data bits

15 1 4-byte
mode

19 : 16 4 latency cy-
cles

29 : 20 10 frame
structure

31 : 30 2 xip phase

3.3. Central Core
The central core is responsible for: registering the
inputs from the upper level modules, building the
transaction frame according to desired configura-
tion from inputs, transferring the transaction frame
through the SPI interface connected to the flash
memory device, receiving eventual data sent back
from the flash device and outputting this response
data to the upper modules. The central core

Table 4: FL COMMANDTP SW Register Config-
uration Fields.

FL COMMANDTP Size Description

2 : 0 3 transaction
type

20 1 dtr mode

21 1 4-byte
mode

31 : 30 2 spi mode

(spi master fl.v) functionalities are accomplished by
the integrating the following submodules: the serial
clock generator module (sclk gen.v), the configu-
ration decoder module (configdecoder.v) and serial
transmitter/sampler module (latchspi.v).

The core’s block diagram is presented in Figure 7.

Figure 7: SPI Core Block Diagram.

The central core accepts the following module pa-
rameters: CLKS PER HALF SCLK predefined to
2, CPOL predefined to 1 and CPHA predefined to
1. It includes the input and output ports detailed
in Table 5.

3.3.1 Global State Machine

The core bases its functioning on three main phases,
being: the IDLE state, the SETUP state and the
TRANSFER state. The IDLE state is the phase
where the core is not performing any action, no
transaction is in course and no transaction setup
registers are being set. In this phase the core awaits
for a transaction request and the tready output port
signal is set to 1. In the SETUP phase the core
has received a transaction request signal and pro-
ceeds to set the necessary transaction configuration
registers and to building the transaction frame. It
launches the TRANSFER phase when configuration
is completed (build done and counters done regis-
ters both set to 1) and asserts the r transfer start
register to 1. A transaction request signal consists
in receiving a validflag set to 1 signal in conjunc-
tion to having the tready signal to 1 (IDLE state).
In the TRANSFER phase the core proceeds to
transmitting the frame through the SPI interface
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Table 5: SPI Core Ports.
Signal Type Size

System Interface

clk Input 1

rst Input 1

CPU Interface

command Input 8

commtype Input 3

address Input 32

data in Input 32

validflag Input 1

dtr en Input 1

ndata bits Input 7

dummy cycles Input 4

frame struct Input 10

xipbit en Input 2

spimode Input 2

fourbyteaddr on Input 1

data out Output Reg 32

tready Output Reg 1

SPI Interface

sclk Output Reg 1

ss Output 1

mosi dq0 Inout 1

miso dq1 Inout 1

wp n dq2 Inout 1

hold dq3 Inout 1

to the flash device, and performs the sampling of
eventual response data bits from the flash device.
The transaction frame transfer occurs when detect-
ing serial clock edges toggling which is triggered by
the r transfer start being set to 1. When the trans-
action is finished, the r transfers done signal is as-
serted to 1 and the core returns to the IDLE state.

3.3.2 Component Modules

The sclk gen module is responsible for generating
the serial clock signal and several serial clock syn-
chronization control signals. It accepts as config-
urable module level parameters the following pa-
rameters: CLKS PER HALF SCLK predefined to
2, CPOL predefined to 1 and CPHA predefined to
1. It generates the serial clock signal and serial
clock edge enable signals to which the transaction
bits transmission and bits sampling can be synchro-
nized, particularly, the serial clock leading edge and
trailing edge signals.

The configdecoder module is responsible for de-

coding the configuration parameters, building the
transaction frame and configuring the transaction
control registers. The configdecoder module re-
ceives as input the transaction segments registers
(command, address, data) and concatenates them
to form the transaction transmission buffer. The
data register bytes are concatenated into transmis-
sion buffer register in reversed order so that the
transmitted data segment bytes when stored to the
flash memory match the the IOb-SoC CPU’s byte
ordering. The module is also responsible for out-
putting decoded control signals and configuring the
transaction control registers.

The latchspi module is responsible for transmit-
ting the transaction frame bits and sampling the
response data bits from the flash device according
to the configuration. It serializes the data to be
transmitted and drives the SPI interface signals. It
performs the latency dummy cycles synchronously
to the serial clock, and finally samples the response
data bits if any expected.

3.3.3 Command Type Configuration En-
coding

This configuration parameter, represented by the
input port ”commtype”, is a 3 bit sized parame-
ter which represents the targeted transaction frame
format to be executed. The encoding values are
described in Table 6.

Table 6: Command types Encoding Description.

Value Mnemonic

000 COMM

001 COMMANS

010 COMMADDR ANS

011 COMM DTIN

100 COMMADDR DTIN

101 COMMADDR

110 XIP ADDRANS

111 RECOVER SEQ

3.3.4 Transaction Control Registers

At the Setup state, a number of transaction con-
trol registers must be set. These registers are:
Transmit Counter Stop register (r counterstop), To-
tal Number of Serial Clock Edges (r sclk edges),
Transmit Segments Maximum Count register ar-
ray (txcntmarks) and Receive Counter Stop regis-
ter (r misoctrstop). These registers are found in the
configdecoder module.

The r counterstop register is set to value of the
total of bits for transmission by the controller to the
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flash device. In the Transfer state, while transmit-
ing bits through the SPI interface, the bits trans-
mited are counted and when the counter reaches the
r counterstop value, the transmission is stopped.
The dummy cycles phase or the receiving phase may
follow or not. The r sclk edges register is set to the
number of total expected serial clock edges. When
this value is reached while transmitting or receiving
data bits the transaction is terminated. The txc-
ntmarks register is a concatenation of three 10-bit
segments. Each 10-bit segment register holds infor-
mation for a particular transaction segment where
the 2 most significant bits hold information about
the corresponding segment’s SPI mode for trans-
mission (simple, dual or quad) while the remainder
8 bits refer the bits count value where a particular
transaction segment ends its transmission.

For instance, considering the COMMADDR ANS
command type Fast Read command in mode (1-4-
4), STR, 3 byte addressing, the Transaction Control
Registers are set to the values described hereafter:

� The r counterstop register is set to 32, as the
command segment is 8 bits and the address
segment 24 bits.

� The r sclk edges register is set to 60, as this
represents the double of the total of the serial
clock cycles for the command segment (8), plus
the address segment (6), plus the number of
dummy cycles (8) and lastly, plus the number
of receiving bits (8).

� The r misoctrstop is set to 32.

� The txcntmarks register for bit range 9 to 0 is
set to 0x008, for bit range 19 to 10 is set to
0x220 and for the segment for bit range 29 to
20 is set to 0.

3.4. Software Driver
The driver software is written in the C program-
ming language. The software driver provides two
sets of functions: basic lower level functions (plat-
form functions) which communicate directly with
the SW accessible registers, and the higher level
functions built on top of the lower functions which
allow for advanced behaviour.

The platform spiflash executecommand driver
function abstracts writing to SW registers and trig-
gers the start of a transaction on the controller de-
pending on the transaction command type.

High level functions such as spi-
flash resetmem, spiflash readfastDualInOutput,
spiflash programfastQuadInputExt implement a
transaction request for the Reset Memory (com-
mand code: 99h), Read Fast Dual Input Output
(BBh), Fast Program Quad Input Extended (12h),
respectively (using nomenclature from [5]). The

user can implement other functions on top of the
platform functions to best suit requirements.

3.5. Bootloader and Core Integration to SoC
In this section the core integration to the SoC plat-
form is detailed along with the bootloader program
upgrades for handling the flash controller core.

The core can be used on the SoC platform as a pe-
ripheral module and/or as an external instructions
memory. As a peripheral, the core is connected to
the SoC through the CPU’s peripheral bus, while as
instructions memory it is connected to the CPU’s
instructions bus.

As a peripheral, the flash controller core can be
accessed by both the bootloader and the firmware
programs. In this mode, the bootloader and the
firmware can issue the usual read and write com-
mands and configuration setting for the flash con-
troller.
As an instructions memory, the flash memory is
initially loaded with the firmware program by the
bootloader. Furthermore, the flash controller core is
configured through the peripheral interface by the
bootloader so that the flash core is able to han-
dle the instructions read requests from the CPU for
running the firmware program.

3.5.1 Core Integration to SoC as Peripheral

In order to utilize the core as a peripheral the core
repository must be added as a submodule to IOb-
SoC’s git root directory and added to the PERIPH-
ERALS LIST variable in system.mk. IOb-SoC pro-
vides special mechanisms for autonomously inte-
grating the core into its compilation and synthesis
process.

3.5.2 Core Integration to SoC as Instruc-
tions Memory

In order to integrate the core into the system’s in-
structions memory bus, it must be first added as a
peripheral core and the RUN FLASH variable set
to 1. When added as instructions memory a L1
cache memory instance is used as intermediary.

The bootloader runs from SRAM and in this
mode the firmware is executed from the flash mem-
ory, while the data bus main memory is the SRAM.
For a successful utilization of this mode the boot-
loader must preconfigure the flash memory con-
troller before running the firmware program.

3.5.3 Bootloader with Flash Functionality

The IOb-SoC bootloader program incorporating
Flash Functionality can provide four different op-
erations by enabling the respective variable. The
flash functionality operations are: preconfiguring
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the flash controller to correctly responding to the in-
structions memory bus requests (RUN FLASH vari-
able), programming the firmware to flash memory
(PROGRAM FLASH variable), inspecting the flash
memory content (CHECK FLASH) and erasing a
flash memory sector (SECTOR CLEAR).

The mentioned flash functionality operations are
defined inside C ifdef code guards in order to save
memory.

When the RUN FLASH variable is defined, the
bootloader program preconfigures the flash con-
troller for a specific transaction command. The
predefined command is fast read in quad mode for
address and data segments with XIP mode enabled.

Defining the PROGRAM FLASH variable al-
lows for programming the firmware binary received
by UART from the host computer to the flash mem-
ory starting from address 0.

The CHECK FLASH variable’s associated
functionality allows for reading the flash memory
bytes up-to the size defined by 2FIRM ADDR W . It
then sends the received file through UART. It can
thus serve for debugging purposes.

The SECTOR CLEAR variable’s associated
functionality allows for erasing a 64KB flash mem-
ory sector from address 0. It is required when re-
programming the flash memory.

4. Results

In this section, the practical implementation results
are discussed. The core’s features, verification and
validation have been done by simulation and by run-
ning it on an actual FPGA board.

Implementation results for the implemented flash
controller core are discussed and compared to the
CAST flash controller core [2], in terms of their
common features successfully implemented.

Performance results after integration into IOb-
SoC and running actual firmware are compared to
SRAM-only performance. Lastly, resource utilisa-
tion results concerning the FPGA implementation
are also presented.

4.1. Flash Core Comparative Results

Comparing the features of the CAST xSPI-MC core
presented in [2], the core successfully implements an
important feature-set, including:

� Support for multi-lane data transfers (simple,
dual and quad modes)

� Support for DTR transfers

� Support for XIP mode

� Configurable lengths for transaction segments

� Configurable data widths through defines

The core does not support the 8 data lanes mode
(Octal mode), as the flash memory device in the
prototyping board supports only a maximum of four
data lanes in quad mode. However this feature can
easily be implemented following the implementation
format for the already in place QSPI support.

The core expects a maximum data buffer width
of 32 bits with special support for 8-bit and 16-
bit widths. Data read transactions with different
bit widths other than 8 and multiples can also be
performed, but the user should be attentive of the
output format.

4.2. Performance Results

The performance results for the code running from
flash (with an L1 cache) are compared against the
code running performance on SRAM. The core sup-
ports flexible initial flash instructions for the inter-
face configuration, done by the bootloader program,
which affects the instructions read performance of
the firmware words.

4.2.1 Experimental Setup

The code running performance is tested against the
internal SRAM performance. A number of possi-
ble initial configurations of the flash controller in-
terface are set for experimentation, namely: quad
input output fast read mode with XIP disabled and
enabled, and dual input output fast read mode with
XIP activated.

All the mentioned modes are configured for 8
dummy cycles, except the first (10 dummy cycles).
The modes are entered from the simple SPI mode.

The cache configuration is set to 2 ways, 16 lines
and 16 words (32 bits) per line.

The performance is measured by using the
TIMER peripheral. The serial clock frequency is
25 MHz for 100 MHz system clock. The firmware
code used for the experiments is listed below:

int main ( )
{

// i n i t uar t
u a r t i n i t (UART BASE,FREQ/BAUD) ;
t i m e r i n i t (TIMER BASE) ;

uar t put s ( ”\n\n\nHel lo world !
\n\n\n” ) ;
int a = 11 ;
p r i n t f ( ”\nValue o f t h i s i s %d\n\n” ,
a ) ;

p r i n t f ( ”\n\nValue o f Pi = %f \n\n” ,
3 . 1 4 1 5 ) ;

p r i n t f ( ”\nExecution time : %d c l o ck
c y c l e s \n” ,
(unsigned int ) t ime r ge t count ( ) ) ;
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p r i n t f ( ”\nExecution time : %dus
@%dMHz\n” , t imer t ime us ( ) ,
FREQ/1000000) ;
u a r t f i n i s h ( ) ;

}

4.2.2 Results Analysis

As expected, running code from the flash memory
is considerably slower than from the SRAM. The
fastest running configuration mode is Quad IO Fast
Read with XIP enabled as expected. The reason is
that in this mode the flash controller uses the max-
imum 4-bit data width for the address and data
segments, and the command segment is dropped as
a result of enabling the XIP mode. Disabling the
XIP mode resulted in a 12.6% increase in clock cy-
cles, which reflects the substantial impact of the
additional 8 clock cycles for the command segment.
Nevertheless, the extra 8 clock cycles for the com-
mand segment in quad IO still results in better ef-
ficiency than for dual IO with XIP enabled.

The performance results can be improved by de-
creasing the number of dummy cycles. Running the
serial clock at 25MHz allows decreasing the default
number of dummy cycles (8 and 10) to 1. The theo-
retical fastest mode is fast Read in quad IO in DTR,
but it was not used due to only accurately working
in simulation.

4.2.3 Experimentation Setup 2

The code running performance of a FFT kernel im-
plementation is tested. The FFT kernel is a more
normal code execution case than the one featured
in the previous experimental setup and can largely
benefit from cache memory utilization.

The performance is tested against the SRAM
performance for two cache memory configurations,
namely: 2 KB cache (2 ways, 16 lines, 16 words),
and 16 KB cache (4 ways, 64 lines, 16 words). The
flash controller configuration is set to quad input
output fast read mode with XIP enabled, 10 dummy
cycles.

The performance is measured by using the
TIMER peripheral. The serial clock frequency is
25 MHz.

4.2.4 Results Analysis 2

As expected, running a cache-intensive FFT kernel
from flash reports marginal performance degrada-
tion (around 2%) compared to the SRAM perfor-
mance for sufficiently large cache. The minimal per-
formance degradation is due to cache filling which
once completed reveals very high hit rate. The 16
KB cache is more adequate than the 2 KB cache
presenting an important performance increase.

4.3. Fpga Implementation Results
Tables 7 and 8 present the implementation results
for the Kintex Ultrascale KU040 board FPGA and
the Cyclone V GT FPGA, respectively. The in-
structions interface is enabled.

Table 7: Xilinx FPGA Resource Utilization Results.
Resource Utilization

LUTs 565

Registers 519

DSPs 0

BRAM 0

Table 8: Intel FPGA Resource Utilization Results.
Resource Utilization

ALM 375

FF 561

DSPs 0

BRAM blocks 0

The Xilinx FPGA implementation could reach
384.6 MHz operation frequency. The Cyclone
V FPGA implementation can guarantee at least
152.53 MHz of operation frequency.

Comparing the resource utilization results from
the Xilinx and Intel FPGAs to the ones reported
in [2] and [3] from CAST, respectively, it can be ob-
served that the core consumes close to half the LUT
resources for the Xilinx FPGA and almost 40% of
the ALM resources for the Intel FPGA. This can
be due to the fact that the CAST flash controller
implements a more complex CPU interface (AHB)
and a more complex SPI interface that uses up-to 8
data lanes (Octal), and for being compatible with
many proprietary NOR SPI protocols.

5. Conclusions
In the present dissertation, flash memory controller
core has been implemented, and the bootloader pro-
gram of IOb-SoC, an open-source RISC-V-based
platform has been upgraded to accommodate the
flash memory core for running code and for perma-
nent data storage. Software driver functions have
been developed for the controller which are called
in the bootloader program.

Flash memory is a cheap, reprogrammable and
non-volatile memory solution, which is very use-
ful for embedded applications. Recent SPI NOR
flash memory devices offer high speed multi-bit ac-
cess and implement support for low latency read
modes specially designed for direct code execu-
tion (execute-in-place mode), avoiding the need for
RAM code shadowing.
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5.1. Achievements

Upon completion of this work, which reached all
the initially defined objectives, the following main
achievements can be enumerated:

An SPI master flash controller core has been
developed and is able to perform the basic mem-
ory read and memory write operations with ac-
ceptable performance. The controller core can be
dynamically configured in several operating modes
by means of configuration registers. The controller
supports multiple commands, multi-bit access, XIP
mode, DTR mode and multi-length transaction seg-
ments.

The controller can be connected to the processor
instruction bus and run code directly from the flash.
With a reasonably sized instruction cache, only a
few percent degradation in performance is observed
compared to running the code from SRAM. With-
out a cache or with small one the performance
penalty can be significant (up to 25x slower), but it
is still effective.

The bootloader program has been upgraded to
load code to the flash and restart the system to
run it. By using the developed flash controller core
driver functions, the bootloader features four main
additional features, namely: programming firmware
to flash, erasing flash memory blocks, flash mem-
ory inspection (useful for debugging) and flash con-
troller pre-configuration for firmware execution.

The developed controller core has been success-
fully integrated into IObundle’s IOb-SoC platform,
which now is able to execute code from a flash de-
vice, and use the same device for permanent stor-
age. This is an important feature for IOb-SoC,
which now can target stand-alone embedded sys-
tems that can boot from their own non-volatile
memory. The integration required the development
of two IOb-SoC specific native interfaces, one that
connects to the L1 instruction cache for running
code, and another that connects the controller as
a peripheral, so that programs can use the flash to
save and retrieve data in a permanent basis.

Comparing the core’s performance to a commer-
cially available implementation from CAST [2] in
terms of supported features, it can be said that both
cores implement a similar set of essential features
for multi data lane modes (simple, Dual and Quad),
multi-speed modes (STR and DTR) and XIP mode.

The commercial core can also offer other supple-
mentary features such as DMA support, auto con-
figuration support and eight data lanes modes (Oc-
tal), unsupported in the developed core. Accord-
ingly, the resource usage of the commercial IP core
is twice that of the developed flash controller.

In terms of the maximum serial clock frequency,
the commercial core can achieve 100 MHz. The
developed core achieves a maximum frequency of

one fourth of the system clock frequency. It has
been tested with a 25 MHz serial clock speed for a
100 MHz system clock.

5.2. Future Work
The present work can be further expanded in sev-
eral ways, particularly in terms of developing extra
features for the flash controller core.

The core does not support simultaneous use of
the peripheral interface and instructions interface
because of the shared SW registers configuration.
This makes it impossible for the core to respond to
read or write requests while running firmware from
the flash. The core can be extended to implement
independent instruction and peripheral interfaces.

An important development for the core is to im-
plement FIFO based transmit and receive buffers
which would allow for extended continuous read
mode support, and generally less access latency for
contiguous memory locations. The added support
for DMA and interrupts frees the CPU for other
tasks, providing overall better efficiency.

Another important missing feature is the imple-
mentation of an asynchronous serial clock solution
which would allow higher serial clock frequencies
but would incur in added complexity and resource
usage for dealing with clock domain crossings.

At the IOb-SoC level, a future development could
be the implementation of a wear leveling mechanism
to increase the flash device lifespan.

The development of a parallel flash memory con-
troller is also an interesting line of work, enabling
the prototyping with boards having parallel flash
memory devices, which offer considerably higher ac-
cess speeds.
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