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Resumo

Este trabalho propõe um novo subsistema IP de controlador de memória flash SPI que pode ser

integrado num Sistema-num-Chip (SnC) para executar programas diretamente na flash, e servir como

um meio de armazenamento permanente de dados de uso geral.

O novo controlador apresenta parâmetros flexı́veis de sı́ntese e de tempo de execução, e suporta o

protocolo QSPI e o modo Executar-no-Sı́tio. O subsistema faz interface ao barramento de instruções do

CPU e pode ser acessado como um periférico por programas firmware. Um driver de software escrito

em C também foi desenvolvido.

O subsistema foi desenvolvido e integrado na plataforma IOb-SoC, um template de SnC RISC-V

de código aberto disponibilizado pela empresa de IP, IObundle, sediada em Lisboa. IOb-SoC facilita o

design de SnCs automatizando o processo de inclusão de subsistemas IP adicionais e software.

O programa bootloader do IOb-SoC foi melhorado para fazer uso do novo driver de software; o

programa configura o controlador, carrega o programa firmware nele e reinicia o CPU para executar

o programa. O bootloader suporta funcionalidades adicionais tais como apagar sectores de memória

flash e inspecionar localizações de memória flash.

Os resultados de implementação em FPGA e ASIC são comparados com um muito conhecido sub-

sistema IP comercial e são mostrados serem competitivos dado que os recursos de hardware são muito

similares. Em termos de performance, o subsistema é quatro vezes mais lento mas, em compensação,

dispensa o recurso a dois domı́nios de clocks, o que reduz a sua complexidade e traz benefı́cios de

integração.

Palavras-chave: Bootloader, controlador de memória flash SPI, Barramento de Instruções

do CPU, Executar programas diretamente na flash, armazenamento permanente de dados de uso geral
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Abstract

This work proposes a new SPI flash memory controller IP core that can be integrated into a System-

on-Chip (SoC) for running programs directly on the flash, and serving as a general-purpose permanent

data storage available to firmware programs.

The new controller features flexible synthesis and run-time parameters and supports the QSPI proto-

col and the Execute-In-Place mode. The core interfaces the CPU instruction bus and can be accessed

as peripheral by firmware programs. A software driver written in C has also been developed.

The core has been developed and integrated into the IOb-SoC platform, an open-source RISC-V

SoC template made available by the Lisbon-based IP company IObundle, Lda. IOb-SoC facilitates the

design of SoCs by automating the process of adding additional IP cores and software.

The IOb-SoC bootloader program has been upgraded to make use of the new software driver; it

configures the controller, loads the firmware program onto it and restarts the CPU to run the program.

The bootloader supports additional functionalities such as erasing flash memory sectors and inspecting

flash memory locations.

The FPGA and ASIC implementation results are compared to a well-known commercial IP core and

are shown to be competitive as the hardware resources are quite similar. In terms of performance,

the developed IP core is four times slower but, in compensation, it dispenses with the use of two clock

domains, which reduces its complexity and brings integration benefits.

Keywords: Bootloader, SPI Flash memory controller, CPU Instructions bus, Running programs

directly on the flash, General-purpose permanent data storage
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Chapter 1

Introduction

1.1 Topic Overview

In recent years, there have been many vital advances in open-source and free of charge tools for

hardware and embedded software design.

One of the crucial developments in this area is the RISC-V ISA, which is an open Instruction Set

Architecture (ISA), aimed at standardising a RISC instruction set while still delivering excellent perfor-

mance in a diverse application space, ranging from embedded programs to supercomputer applications.

A RISC instruction set has become a commodity and all related patents have expired; there is no point

in investing money, time and resources in something that does not add value in itself. This way organi-

sations and individuals can focus on creating new things that add value (software and specific hardware

engines), without having to “pay a rent” for using a RISC-V CPU.

These developments allow for accelerated production of Intellectual Property (IP) cores and software,

standardisation, System-on-Chip (SoC) integration and prototyping in general by a larger community of

developers.

IObundle, a Lisbon-based system design company, has developed IOb-SoC, an open-source 32-bit

SoC, which uses the PicoRV32 RISC-V CPU, with the goal to serve as a platform for further System-on-

a-Chip developments such as accelerator IP cores and other functionalities.

The IOb-SoC hardware components are written in Verilog, and their software drivers are written in

C/C++. Numerous auxiliary files and configuration files make up the project’s development environment,

which helps automate the simulation, synthesis and implementation flows. IOb-SoC supports a range of

simulators, open-source (Icarus Verilog and Verilator) and commercial (Modelsim and Xcelium), FPGA

boards (Cyclone V GT, Kintex UltraScale, Spartan-6 SP605 and others), and supports one ASIC tech-

nology (UMC 130 nm).

IOb-SoC features a simple Bootloader Program. A bootloader program is usually a small program

that is the first program run by the computer system on boot. The bootloader is responsible for the

initialisation of system components and loading and giving control to the main program, which can be

a bare-metal firmware program or an Operating System program for more complex embedded applica-
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tions. The program must be fetched from permanent storage (disk, flash, or network, for example) and

loaded to temporary storage (RAM) for execution.

Flash memory is a widely used non-volatile memory solution that is cheap and offers comparatively

low power consumption. These are great advantage points, especially for embedded system applica-

tions.

1.2 Motivation

Presently, the IOb-SoC system allows for the execution of a bootloader program loaded from internal

ROM, which can receive a firmware program from its Universal Asynchronous Receive Transmit (UART)

communications module, and store it in internal RAM or external memory such as DDR for execution.

Although the present IOb-SoC functionality helps verify and test applications, in the production of

an embedded system, one often needs a non-volatile memory to permanently store the firmware and

eventually some data.

The motivation of this work is thus to create an interface to an external non-volatile memory and

modify the IOb-SoC bootloader program so it can also load and run firmware programs from this memory.

1.3 Objectives and Deliverables

The primary objective of the present work is to design and integrate flash memory controller into

IOb-SoC’s memory subsystem, and modify the bootloader program so that program instructions can be

stored onto flash storage and executed directly from it.

As a second objective, the flash memory controller can also be accessed as an IOb-SoC peripheral

to serve as an unspecified data storage medium for firmware programs. This way, programs can store

data to be used later after a power cycle.

In order to successfully attain the above objectives, the following list of deliverables are expected:

• a flash controller core, which includes a peripheral interface and an instruction memory interface.

• an IOb-SoC instance, with the necessary modifications to integrate the flash memory controller,

with access to the instruction and peripheral buses.

• an upgraded bootloader program, run programs from the flash, update the cache with new pro-

grams, or both.

This work is developed on the Xilinx Kintex UltraScale KU040 FPGA development board, which

houses an SPI NOR-flash memory chip. Synthesis results for a low-cost Intel Cyclone V GT device are

also presented. The work is easily extensible to other boards.

1.4 Thesis Outline

This document comprises seven chapters, as detailed below:
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• Chapter 1 - Introduction

• Chapter 2 - Background: examine the relevant information for developing this work, including the

IOb-SoC architecture, flash memory and flash memory controllers

• Chapter 3 - On-Board Flash Memory: present the on-board flash memory device main features

• Chapter 4 - Core Development: detail the implementation specifications for the controller core

• Chapter 5 - Bootloader and Core Integration to SoC: describe the core integration into IOb-SoC

and the modified bootloader program

• Chapter 6 - Results: performance and implementation results are discussed and compared with a

competitive solution

• Chapter 7 - Conclusions: summary, achievements and future work perspectives.
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Chapter 2

Background

In this chapter, the relevant background information for the development of the SPI controller core

is introduced. It is divided into four main sections, namely: IOb-SoC Architecture, Development Board

Characterisation, SPI protocol details, Flash Memory and SPI Flash Memory Controllers.

2.1 IOb-SoC Architecture

IOb-SoC is a System on a Chip architecture based on the RISC-V CPU architecture. IOb-SoC serves

as a platform for the development of complex applications by adding relevant IP cores and software. The

hardware source components are written in the Verilog HDL, and the software source components are

written in the C/C++ languages. IOb-SoC uses the RISC-V toolchain and many other free and open-

source tools in a completely open and free of charge development environment. A general presentation

of the various elements that are part of the IOb-SoC hardware/software platform and its development

environment is given next.

2.1.1 Architecture Components

The IOb-SoC block diagram is shown in Figure 2.1 and illustrates the system’s organisation. The

base architecture of the system is formed by the following components:

• RISC-V CPU

• Memory Subsystem

• Peripherals (IP cores)

• Interconnect, Instruction and Data Buses

2.1.1.1 RISC-V CPU

IOb-SoC targets small embedded systems, using a small RISC-V CPU, which consumes reduced

hardware resources. The processor implementation currently at use is the PicoRV32 [1] architecture,

but others can also be used such as the DarkRV [2] implementation. The platform is CPU-agnostic.
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Figure 2.1: IOb-SoC architecture diagram.

2.1.1.2 Memory Subsystem

The memory subsystem consists of configurable SRAM, Boot ROM and optional DDR and cache

memory integration. A boot controller system is coupled with the Boot ROM.

2.1.1.3 Peripheral Cores

Peripheral cores can be added to the system to implement additional functionalities. One of the

important peripheral cores, used for basic system functions, is the UART core.

The UART communications peripheral is the only peripheral component included in the basic IOb-

SoC configuration. The UART core is responsible for the communication with the host computer, sending

and receiving runtime information such as commands, status data, firmware and other data.

2.1.1.4 Interconnect and Buses

The processor is connected to the memory components and other peripherals through the data and

instruction buses. An interconnect sub-module implements the hardware interfaces used by the compo-

nents. Although the interconnect component makes available standard hardware interfaces such as the

AXI4 [3] bus, most interfaces use a native, memory-like and simpler hardware handshake protocol.

2.1.1.4.1 Native Interface

The Native Interface is the main bus protocol for interfacing with the IOb-SoC’s processor bus. The

signals which comprise the Native Interface protocol are summarised in the Table 2.1. The signal direc-

tion is represented with respect to the CPU.

Figure 2.2 illustrates the Native Interface signals and protocol. The left waveform describes a master

core reading from a slave core, and the right waveform describes a master writing to a slave.
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Table 2.1: Native Interface Bus Signals.
Signals Direction Width Description

valid output 1 Slave operation request trigger
address output 32 Slave memory address requested for access
wdata output 32 Data to write to slave
wstrb output 4 Byte to write (0000 for read)
rdata input 32 Slave response data
ready input 1 Slave ready state

clk

valid

address a0 a1 a2

wdata

wstrb 0

rdata rd0 rd1 rd2

ready

(a) Master reading from slave

clk

valid

address a0 a1 a2

wdata wd0 wd1 wd2

wstrb F

rdata

ready

(b) Master writing to slave

Figure 2.2: Native Interface Protocols

IOb-SoC makes use of Harvard architecture [4] where there are separate address spaces for program

code and data. The CPU is connected to the other components via the instruction bus and the data

bus. The data bus is further split into external data memory, internal data memory and peripheral

data memory buses. The instruction bus can be split into external instructions memory and internal

instructions memory buses.

2.1.2 File Structure

The IOb-SoC repository is hosted on Github [5]. The project files consist of source and header files,

in the Verilog and C languages for hardware and software, respectively, makefiles and other scripts

(Python, bash, tcl, etc). The project root directory is divided into the following subdirectories:

• hardware: contains the hardware components RTL description files, simulation testbench files,

simulator specific files in directories with the simulator’s name (for example, the icarus directory)

and, board specific synthesis/implementation source and script files (ASIC and FPGA implemen-

tations) in the directories with the board’s name (for example, the AES-KU040-DB-G directory).

• software: contains the bootloader and firmware C source files plus header files, helper python

scripts, macros defining top header files and linker script files.

• submodules: gathers complementary repositories for important components and peripheral cores,

for instance, the CPU or cache sub-modules.

• document: contains documentation about IOb-SoC core and components.

Other important files are:
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• system.mk: found at the root directory, this makefile segment contains user defined variables/-

macros for the makefiles that include this segment. These variables define the overall operation

modes of the system and influence the synthesis/compilation processes.

• Makefiles: the project adopts a recursive makefile tree structure for automating the compila-

tion/synthesis processes. There are Makefiles distributed in many of the project directories. For a

component compilation process, its respective makefile is called (sub-makefile). The sub-makefile

defines the dependencies required uniquely for this specific component, and includes a makefile

segment in some ancestor directory. The makefile segment defines the dependencies which are

common to the children directories. At the root directory, there is the main Makefile, which presents

the overarching system tools interface, triggering the components’ compilation processes.

2.1.3 Operating Modes

The IOb-SoC general operation flow can be described through the following steps:

1. After power-up, the Boot Controller hardware component loads the bootloader code from the inter-

nal Boot ROM to the internal SRAM memory space while keeping the CPU in reset state.

2. After the bootloader is copied to the SRAM, the CPU starts running the bootloader code from the

SRAM.

3. The bootloader program running on the prototyping board connects to a console application run-

ning on the host computer by means of the UART interface. The console application is able to

serve requests from the bootloader program to send or receive data and binary files. For exam-

ple, if the INIT MEM macro is reset, the bootloader asks the host to send the firmware binary

file and loads it onto the memory (SRAM or DDR); else, if INIT MEM=1, the firmware is already

pre-initialised into the memory.

4. When the bootloader program finishes executing, it restarts the system to run the firmware from

the 0x00000000 initial address.

5. The connection to the host console is terminated when the firmware finishes running.

2.1.3.1 Memory Operating Modes

IOb-SoC features several operating modes depending on the memory resources put to use when

running the firmware [5]. IOb-SoC can make use of internal SRAM or external DDR memory for running

code or accessing data. The operation modes are established by the variables USE DDR, RUN DDR

and INIT MEM, present in the root configuration file (system.mk). The project establishes two memory

classifications: main memory and extra memory. Main memory is the memory resource from which the

code is executed, while an extra memory is only accessed for data starting from a certain address. The

system determines the following memory operating modes:

8



• USE DDR=0 RUN DDR=0: the internal SRAM memory is the main system memory used both as

the data and instruction memory.

• USE DDR=1 RUN DDR=0: the internal SRAM is used as the main memory but the DDR is also

available as an extra data memory space.

• USE DDR=1 RUN DDR=1: the DDR is the main memory for data and instructions. The SRAM

stands as an extra usable memory.

2.1.4 Memory Map

IOb-SoC uses a 32-bit address space. Three main derived variables are used to determine and

derive the components memory mappings, depending on the operating mode. They are: E (for Extra

Bit), P (for Peripherals) and B (for Bootloader). These variables are found in the system.mk file. Next,

the memory maps for two setup configurations are presented:

• USE DDR=0, RUN DDR=0: In this mode, the SRAM is used as the main memory and there is

no extra memory source. For this configuration, the above mentioned variables are derived as

E=31, P=31 and B=30. These configuration values result in a system memory map illustrated in

Table 2.2. UART, SPI and TIMER represent peripheral submodules added to the system.

Table 2.2: Memory map for USE DDR=0, RUN DDR=0 mode.
Memory Component Address Space

Main Memory (SRAM) 0x00000000 - 0x3FFFFFFF
BOOTCTR 0x40000000 - 0x7FFFFFFF
UART 0x80000000 - 0x9FFFFFFF
SPI 0xA0000000 - 0xBFFFFFFF
TIMER 0xC0000000 - 0xFFFFFFFF

• USE DDR=1, RUN DDR=1: In this mode, the DDR memory is used as the main memory and the

SRAM as an extra memory. The configuration variables are set as E=31, P=30 and B=29. The

resulting memory map is shown in Table 2.3.

Table 2.3: Memory map for USE DDR=1, RUN DDR=1 mode.
Memory Component Address Space

Main Memory (DDR) 0x00000000 - 0x1FFFFFFF
BOOTCTR 0x20000000 - 0x3FFFFFFF
UART 0x40000000 - 0x4FFFFFFF
SPI 0x50000000 - 0x5FFFFFFF
TIMER 0x60000000 - 0x7FFFFFFF
Extra Memory (SRAM) 0x80000000 - 0xFFFFFFFF
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2.1.5 Development Flow

When developing a new core for IOb-SoC, the system provides facilitated ways and automated pro-

cesses to integrate and test the new core into the system architecture. To test the new functionalities

provided by a core, the core’s independent development repository is added as an IOb-SoC git sub-

module repository, placed in the submodules directory. Then, the core must be added to the IOb-SoC

peripherals list in the system.mk file. By providing certain auxiliary files in the core directories, IOb-SoC

can automatically integrate the core into the system for simulation and FPGA implementation purposes.

System description source files incorporating the core instances are automatically produced. At the

current version, IOb-SoC integrates several simulation tools, namely: icarus [6], ncsim, verilator and

modelsim.

2.2 Development Board

IOb-SoC can be implemented into FPGA chips and ASICs. At the current IOb-SoC codebase ver-

sion [5], the following development boards are supported: Kintex UltraScale KU040 Development

Board [7], Basys 3 Artix-7 board, Cyclone V GT FPGA development board, Terasic DE10-Lite de-

velopment board, Spartan-6 SP605 Evaluation Kit; plus, the UMC 130 nm ASIC. The present work

was developed on the Kintex UltraScale KU040 board, hereafter referred as the KU040 board, the

target FPGA prototyping board.

2.2.1 Xilinx KU040 board features

The KU040 board houses a Xilinx XCKU040-1FBVA676 -1 speed grade FPGA device. The pins that

are connected to the FPGA device are grouped into pin banks (6 I/O banks and 4 GTH banks). The

board presents several power, programming, clocking, interfaces and memory resources [7], which can

be utilized according to each project’s needs. Particularly, the board presents the following memory

resources:

• 1GB DDR4 SDRAM

• 32MB of Configuration QSPI Flash

• 32MB of User Code/Data QSPI Flash

2.2.1.1 User Code/Data QSPI Flash

The board can house two different flash memory devices, depending on availability: the Micron

N25Q256 or the Cypress S25FL256SAGMFIR0. Unlike the Configuration flash, which is used for the

FPGA configuration bitstream, the User Code/Data flash can be used for storing used code and data in

a persistent manner. The flash device is interfaced through the QSPI protocol, which is an evolution of

the SPI protocol. QSPI uses 4 bidirectional data lanes, in contrast with the 2 unidirectional data lanes
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used by SPI. Both use the traditional clock and chip select control signals. The following table exhibits

the User Code/Data flash device pins connections:

Table 2.4: Board Flash Pins Assignments.
User QSPI interface FPGA Bank FPGA Pin

QSPI 2 DQ3 66 H12
QSPI 2 DQ2 66 J11
QSPI 2 DQ1 66 H11
QSPI 2 DQ0 66 G11
QSPI 2 CS 66 D19
QSPI 2 CLK 66 F10

2.3 Flash memory

Flash memory is a non-volatile memory technology based on EEPROM, which is both electrically

erasable and reprogrammable. It is usually significantly cheaper than EEPROM, and is preferred when

many rewrites are expected. The technology was initially developed at Toshiba in 1980. Since then, it

has become a ubiquitous storage medium, found on a wide range of applications. The flash memory

cell design is based on floating gate MOSFETs. The memory cells interconnection scheme defines two

dominating types of flash memory: NAND flash and NOR flash.

2.3.1 NOR vs NAND Flash

NAND flash is arranged in blocks. Write, read and erase operations are also performed in blocks.

While NAND flash provides whole memory page access (block access), NOR flash is able to provide

random memory access for individual bytes. Due to the memory cells configuration, NAND flash cells

occupy approximately 40% less silicon area than the equivalent NOR flash cell for a similar process

technology. NAND flash is cheaper.

NOR flash provides for faster read access and has higher storage reliability and retention. NAND

flash [8] provides much higher memory densities but requires ECC management to ensure better relia-

bility. NAND flash usually presents a number of bad memory blocks which must be managed.

These characteristics help define more appropriate application areas for each of the flash memory

types. NOR flash are more appropriate for systems where faster random access is required, and are

commonly used for code storage and execution. This type of flash memory is commonly found on

microcontroller boards in embedded applications. NAND flash is more commonly used in file storage

applications such as USB flash drives, smartphones or solid-state drives (SSDs).

A severe limitation of flash memory is the limited number of program and erase cycles of memory

blocks; the memory block becomes unreliable after this number is exceeded. Typically, for NOR flash

devices, the maximum number of program/erase cycles is around 100.000. To circumvent this limitation

and extend a flash device lifespan, wear-levelling mechanisms are employed. These mechanisms track

the memory blocks usage level and relocate data to less used or unused memory block addresses [9].
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2.3.2 NOR flash interfaces

Typical NOR flash memory densities range from 512 Kb to 2Gb. There are parallel and serial NOR

flash memory interface solutions provided. Parallel flash interfaces tend to provide higher access per-

formance but have much higher pin-counts. Serial NOR flash interfaces have much lower pin-counts,

and therefore smaller PCB footprints, and they tend to present comparatively lower access performance.

Traditionally, the interface used for serial flash is SPI. An SPI serial NOR flash device typically has four

required signal pins, though for recent extended SPI protocols, it is common to find devices with ten or

eleven pins [10] [11]; a parallel flash device may present 40+ pins [12].

2.4 SPI communications protocol

Numerous hardware protocols are employed for communication between electronic devices, each

with a different set of advantages and constraints. Among the most widely used are the following: I2C

(Inter-Integrated Circuit), UART (Universal Synchronous Receiver/Transmitter) and SPI (Serial Periph-

eral Interface).

SPI is a serial communication protocol widely utilized in several applications, including memory chip

interfaces, microcontroller interfaces, Analog to Digital Converters and various sensor device interfaces.

It was originally specified by Motorola [13].

2.4.1 SPI signals description

Figure 2.3 illustrates a master and multi slave configuration and the involved signals.

Figure 2.3: SPI Signals Master-Slave Connection.

The SPI protocol communications are based on the signals listed next:

• Serial Clock (SCLK)

• Chip Select / Slave Select (CSn/SSn)

• Master Out, Slave In (MOSI); or Slave Data In (SDI)
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• Master In, Slave Out (MISO); or Slave Data Out (SDO)

2.4.2 SPI Transaction

An SPI transaction is performed as described next: The master generates the clock signal (SCLK).

The transmitted and received data between the master and a slave is synchronized to this clock.

A chip select or Slave Select (SS) signal selects the corresponding target communication slave

device. The SPI protocol allows for a multiple slave configuration, each with its independent SS signal.

The master then transmits data through the MOSI data line, and the slave device receives it through

the SDI data line.

The master device receives data through the MISO data line from the slave. The slave device trans-

mits data through the SDO data line.

The communication transaction is started by generating the clock signal by the master and asserting

(normally low) the chip select signal of the target slave. Data on the data lines can be simultaneously

transmitted and received by the master and the slave devices (full-duplex).

2.4.3 SPI Clocking modes

As the data is transacted (shifted-out and sampled) synchronously to the clock, the SPI protocol

can define four operation modes according to different clock polarity (CPOL) and clock phase (CPHA)

configurations. Table 2.5 outlines the possible CPOL and CPHA configurations.

Table 2.5: SPI Modes according to Clock Polarity and Clock Phase
CPOL CPHA SPI Mode Description

0 0 0 Clock idle at logic low. Data latched out at falling
edge and sampled at rising edge

0 1 1 Clock idle at logic low. Data latched out at rising
edge and sampled at falling edge

1 0 2 Clock idle at logic high. Data latched out at rising
edge and sampled at falling edge

1 1 3 Clock idle at logic high. Data latched out at falling
edge and sampled at rising edge

2.4.4 xSPI standard

Due to access performance limitations for the traditional SPI protocol, newer SPI-based protocols

were developed. Usually the new protocols add additional data pins for increased transmission band-

width in a single serial clock cycle. The eXpanded Serial Protocol Interface (xSPI) has eight data lines,

and is a JEDEC [14] standard, a body that specifies a series of protocols for communication between

devices. The xSPI standard specifies a low pin-count interface with multiple data lanes for high data

transfer bandwidths, bypassing the traditional SPI transfer bandwidth limitations. The standard is de-

fined in the JEDEC JESD251A document [15].
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The standard specifies commands for read and write operations for communication with compliant

peripherals, and commands for specific functions for non-volatile memory devices. It also includes

limited backward compatibility with SPI master controllers. It defines commands involving 1-bit wide

and 8-bit wide data signals. The standard establishes the following signals: serial clock, chip select, a

maximum of 8 data signals, and data strobe signal for timing reference. HyperBus [10] and Xccela [11]

are some of the proprietary standards compliant with xSPI.

2.4.5 Quad SPI

QSPI (Quad SPI) is a single master multiple slave interface protocol that extends and has backward

compatibility with the traditional SPI standard. It uses a subset of signals and commands for read and

write operations from the xSPI standard and follows the xSPI standard transaction frame format.

2.4.5.1 Signals description

QSPI is specified based on the following signals:

• Serial Clock (Sclk)

• Chip Select (CSn)

• DQ0, DQ1, DQ2 and DQ3

The DQ0-3 signals are bidirectional data lines that can function as both inputs and outputs. Usually,

flash chips that support QSPI also support the simpler SPI or Dual SPI protocols. On the simpler SPI

protocol, one data line is used as an input to the flash chip (DQ0) and another as an output (DQ1),

while on the Dual SPI protocol both data lines are used as inputs and outputs, thus increasing the data

throughput capacity.

Some data lines may carry other functionalities offered commonly by many vendors. These function-

alities include: a Word Protect (WPn) signal (usually on DQ2), a Reset (Rstn) signal or a Hold (Holdn)

signal (DQ3).

Some manufacturers that offer NOR flash chip products that support QSPI, or, recently, the newer

8-bit SPI evolution protocols (Octal SPI), include: Micron Technology, Cypress Semiconductor, Macronix

International, Winbound Electronics and GigaDevice.

2.4.6 Serial Flash Operation Modes

A communication transaction is started by the master device by activating the CSn (LOW) signal

connected to the corresponding target slave device. The signal is held active while the transaction is

taking place, and it is deactivated by the master at the end of the transaction or to interrupt it.

While the CSn signal is active, the serial clock signal is kept toggling during the transaction, taking

into account the flash chip’s supported SPI modes defined by CPOL and CPHA. It is not required that

the clock signal toggles when the slave device is not selected (CSn HIGH).
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The data is transmitted and sampled by the involved devices at the positive or negative edges of the

clock, depending on the SPI mode in use. Usually, NOR flash chips support the SPI modes (0,0) and

(1,1), where the first number refers to the clock polarity and the other to the clock phase. For instance,

on mode (1,1), the first data bits are sent by the master on the first negative edge of the serial clock and

sampled by the slave device on the following positive clock edge. The data is transmitted in 1-bit, 2-bit

or 4-bit widths, depending on the current mode (simple, Dual or Quad), or the operation opcode.

Along with the normal SDR (Single Data Rate) mode, many flash chips offer support for DDR (Double

Data Rate) mode. In DDR mode, the data is sent twice a clock cycle resulting in double the throughput.

In DDR SPI mode (1,1) for instance, the data is sampled by the devices on both the negative serial clock

edge and again on the following positive clock edge, which unfavourably results in smaller time windows

for successfully reading the data.

2.4.7 QSPI Transaction Format

A QSPI transaction normally involves a number of the following phases (frame segments):

• Command Phase

• Address Phase

• Latency Phase

• Data Phase

Figure 2.4 depicts the sequence of transaction phases for a general read operation or program

transaction. The displayed values refer to typical values for the code flash chip family [16] on the KU040

prototyping board.

Figure 2.4: QSPI transaction phases

2.4.7.1 Command Phase

For QSPI transactions, the command phase is normally the first phase. It is usually represented

by an 8-bit opcode. The opcode determines the following transaction phases, with some transaction

phases omitted and others required. The command opcode can be transmitted at one bit, two bits or

four bits per cycle, depending on the operating mode (simple, dual or quad), requiring 8, 4 or 2 cycles,

respectively, for a complete transfer.

Many serial NOR flash devices support a special mode where the command phase is not required

for memory read operations, thus saving a few clock cycles. This mode is commonly designated as the
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XIP (eXecute-In-Place) mode. Commonly, transactions requiring command, address, latency and a data

phases are memory read operations. Other operations such as reading or writing to registers may only

require a command and a data phase.

2.4.7.2 Address Phase

This phase segment specifies the address in the flash memory requested for access. Current com-

mon flash chips allow for 24-bit or 32-bit addresses for larger memory capacities. Some commands

do not require this phase. Examples of operations requiring this phase are memory read and memory

program operations.

2.4.7.3 Latency Phase

This phase executes a number of required wait (dummy) cycles before the flash device is able to

correctly output requested data. Some commands don’t require this phase and the length of this phase

has a default value that may be adjustable depending on the operating serial clock frequency on some

flash devices.

On this phase, the data lines may be left unasserted, but can be asserted to relay certain information

about the following transactions.

2.4.7.4 Data Phase

In this phase, the data to be stored on flash is transmitted from the master and sampled by the slave

device on write operations, while on memory read requests the data is shifted out by the slave device to

the master device. The flash memory device characteristics and configuration determine the maximum

number of bits that may be read or written in a single transaction while the CSn signal is active.

The flash memory device datasheet should be referred to, for the complete characterisation of the

transactions [16].

Table 2.6 lists the basic commands supported by SPI NOR flash devices.

Table 2.6: Commands Characterisation Details.
Function Command Code Address Bytes Latency Cycles Data Bytes

Read SFDP 5A 3 8 1 to∞
Read 02 3/4 0 1 to∞
Write Enable 06 0 0 0
Page Program 02 3/4 0 1 to 256
Read Status Register 05 0 0 1 to∞
Fast Read 0B 3/4 8 1 to∞
Enter Deep Power Down B9 0 0 0
Exit Deep Power Down AB 0 0 0
Reset Enable 66 0 0 0
Reset Mem 99 0 0 0

For Table 2.6, the following should be noted:
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• The reference values are relative to the flash device model (N25Q256A) available on the KU040

board. The command nomenclature is the one used in the datasheet [16]. The nomenclature is

consonant to the nomenclature used in the standard [15].

• The number of latency cycles are the default values and may be adjustable for higher or lower

values (depending on the operation frequency).

• Some commands require that the Write Enable command be issued beforehand, for instance, the

Program and Erase commands.

• The Read command (02h) does not require latency cycles and, as a consequence, has limited

operation frequency.

• The 256 bytes limit for the Page Program command refers to the flash memory page size limit [16].

Only one page can be programmed at a time by a single command.

2.4.8 Command Transaction Waveforms

Below, a series of waveforms for some of the commands and the data lane usage modes introduced

above is presented. The adopted terminology for some commands is the one presented in the datasheet

in [16]. The clocking scheme is the SPI mode (1,1). The referred modes follow a (X-X-X) framing where

X indicates the number of data lanes used during a particular phase. For multi data lanes transfers the

most significant bit is sent on the DQ1 or DQ3 data lanes for dual or quad modes, respectively.

2.4.8.1 Write Enable on mode (1-1-1)

The Write Enable command (06h) is transmitted in a single data line. The command is often required

before issuing a program or erase command as a memory protection mechanism. The waveform in

Figure 2.5 displays the behaviour of the involved signals for the selected transmission mode.

CLK

CS#

DQ0 0 0 0 0 0 1 1 0

DQ1

Figure 2.5: Write Enable Transaction Waveform.

2.4.8.2 Reset Enable on mode (2-2-2)

The Reset Enable command (66h) is often required before issuing a Reset Memory command. The

figure 2.6 depicts its waveform.

2.4.8.3 Read Status Register mode (4-4-4)

The Read Status Register command (05h) in quad mode, where both the command and data phases

utilise four data lanes, is illustrated in Figure 2.7.
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CLK

CS#

DQ0 0 0 1 0

DQ1 0 0 0 1

Figure 2.6: Reset Enable Transaction Waveform.

CLK

CS#

DQ0 0 1 Bit4 Bit0

DQ1 0 0 Bit5 Bit1

DQ2 0 1 Bit6 Bit2

DQ3 0 0 Bit7 Bit3

command responsea b c

Figure 2.7: Read Status Register Waveform.

2.4.8.4 Page Program mode (1-1-1)

The Page Program (02h) command in simple mode is illustrated in Figure 2.8, which shows the

signals waveform for a 32 data bits phase and a variable number of address bits where A[max : min]

can refer to a 3-byte or 4-byte address.

CLK

CS#

DQ0 02h A[MAX : MIN] d31 d30 d.. d0

DQ1 High-Z

command address data to be stored in flash

p q

a b c d

Figure 2.8: Page Program Transaction Waveform.

2.4.8.5 Fast Read (1-2-2)

Fast Read commands allow for greater serial clock speeds but require latency cycles. The Fast Read

command (BBh) in mode (1-2-2) operates in simple mode but admits the address phase and data phase

to be transmitted in dual mode. The figure 2.9 presents the transaction waveform and includes a mode

bit (0) in the latency phase named XIP confirmation bit.

CLK

CS#

DQ0 BBh Am-1 A.. A0 0 d30 d28 d.. d0

DQ1 Am A.. A1 d31 d29 d.. d1

DQ2

DQ3

High-Z

High-Z

1

command address Latency cycles, mode bit at 0 data read from flash

t u

r s

p q

a b c d e

Figure 2.9: Fast Read Dual IO Transaction Waveform.
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2.4.8.6 Fast Read (1-4-4)

The Fast Read command in mode (1-4-4), with command opcode EBh, admits an address phase

and data phase in quad mode. The waveform in Figure 2.10 also includes a XIP confirmation bit set to

1.

CLK

CS#

DQ0 EBh Am-3 A.. A0 1 d28 d24 d.. d0

DQ1 Am-2 A.. A1 d29 d25 d.. d1

DQ2 Am-1 A.. A2 d30 d26 d.. d2

DQ3 Am A.. A3 d31 d27 d.. d3

High-Z

High-Z

1

command address Latency cycles, mode bit at 1 data read from flash

r s

t u

x v

a b c d e

Figure 2.10: Fast Read Quad IO Transaction Waveform.

2.4.9 Flash Device Functionalities (SFDP)

One important JEDEC standard for flash vendors is the JEDEC Serial Flash Discoverable Parame-

ters standard, defined in [17]. This standard establishes a method for organising and presenting flash

device functionalities and features, and also establishes the access protocol for the host system con-

troller. The standard defines the SFDP Database, a set of headers and tables stored in the flash device

memory.

Below, the description of some of the SFDP Basic Flash Parameter Table fields is presented:

• 1st WORD: Its value describes the following flash device features: Write Buffer Size, DTR support,

uniform 4KB block erase, number of address bytes, fast read support for different data lanes use

modes, etc.

• 2nd WORD: Flash device memory density

• 3rd WORD: Fast Read on modes (1-4-4) and (1-1-4) characterisation (number of latency cycles,

mode bits, command code)

• 4th WORD: Fast Read on modes (1-1-2) and (1-2-2) characterisation

• 5th WORD: Fast Read on modes (2-2-2) and (4-4-4) support

• 6th WORD: Fast Read on mode (2-2-2) characterisation

• 7th WORD: Fast Read on mode (4-4-4) characterisation

• 8th WORD: Erase Type 1 and 2 (block size and respective command code)

The JESD216D document [17] uses the (n1 - n2 - n3) terminology for indicating the number of data

lanes used for each transaction phase segment, where n1 refers to the number of data lanes used for the

command phase, n2 to the address phase and n3 to the data phase (1, 2, 4 or 8 data lanes possible for

the newer flash devices). For the complete SFDP standard description, the JESD216D document [17]
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should be referred. The SFDP standard compliant Parameter Table for the KU040 on-board flash device

can be checked in [16]. The SFDP Headers and Tables information is accessed by the Read SFDP

command described earlier.

2.5 SPI Flash Memory Controllers

An SPI Flash Memory Controller is a device which serves as an interface between the CPU and a

flash memory device. It normally provides a slave interface implementation to communicate to the CPU,

and additionally an SPI master interface to communicate with the flash memory device. It allows for the

CPU to read from and write data to the flash device. Traditionally, SPI flash memory controllers comprise

the logical blocks shown in Figure 2.11 below:

Figure 2.11: Traditional SPI Flash Controller Block Diagram.

Traditional SPI flash memory controllers have a minimum of two interfaces: the CPU interface and a

master SPI interface connected to the flash device. The controller normally hosts a transmit (TX) and

receive (RX) buffer which can be based on registers or FIFOs. The TX buffer stores the transmission bit

sequence and the RX buffer stores the response data bits from the flash memory device. The SPI Phy

is responsible for serially shifting out the TX bits and for sampling the response bits and storing them in

the RX buffer.

2.5.1 Comparative Flash Controller Model

The xSPI-MC flash memory controller [18] from CAST is a flash memory controller that can be

taken as a reference implementation. Figure 2.12 below illustrates the controller’s block diagram (taken

from [18]).

This memory controller supports several features, in particular the following, as specified in its prod-

uct brief [18]:

• Support and compatibility for a number of proprietary SPI protocols and standards (in particular

xSPI and Xccela).

• Multiple data lanes modes support (single, dual, quad, twin-quad and Octal).
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Figure 2.12: CAST xSPI memory controller.

• Single Data Rate (STR) and Dual Data Rate (DTR) modes support

• XIP (eXecute-In-Place) support

• DMA usage support

• AHB slave interface for communication with CPU; AHB master interface for DMA

• Auto-configuration for particular flash device capability

• Configurable reset values for configuration registers and configurable AHB interface bus widths.

The complete features description can referred at [18] datasheet. This implementation reports the

following FPGA resources usage and performance metrics:

• Implementation device : Xilinx Kintex-7 7k420-ffg1156-2; Area : 1200 LUTs; Clock frequency

(MHz): AHB:250, SPI:100. Implementation Configuration: XIP on, DMA off, auto-configuration off.

The CAST flash controller core hosts a set features commonly found on several commercially avail-

able flash controller IPs. Other flash controller IP designers include Digital Blocks, Xilinx, and numerous

others.
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Chapter 3

On-Board Flash Memory

This chapter introduces the main features of the flash device present on the prototyping FPGA board.

The flash device is a flash memory device from Micron and the complete characterisation information

can be found in [16].

3.1 N25Q256A Features Introduction

The flash device on the FPGA prototyping board is a flash memory device of the N25Q256A family.

The flash device has a density of 256 megabits, 1.8V supply voltage, multiple IO, 4 KB, Sector Erase,

Serial NOR flash memory, and supports the following set of features:

• SPI-compatible serial bus interface

• Multiple IO data lanes

• Simple SPI (designated Extended mode), Dual and Quad modes protocols

• DTR mode support

• XIP mode support

• Configurable latency cycles

• Burst read support (continuous read)

• 3-byte/4-byte addresses support

• 4 KB sub-sector, 64 KB and full chip Sector Erase capability

• Write Protection functionalities

• OTP memory storage

The flash memory interface can be seen in Figure 3.1, taken from [7].
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Figure 3.1: User flash QSPI interface.

3.2 Memory Configuration

The memory is composed of 33,554,432 bytes, 512 sectors (64 KB), 8192 sub-sectors (4KB each),

and 131,072 pages (256 bytes each) and an additional 64 bytes of OTP memory.

The memory is divided into 2 memory segments: the upper memory segment (16 MB) and the

lower memory segment (16 MB). The lower memory segment is accessible by the initial 24-bit (3 bytes)

addresses, while accessing the upper memory requires an extra address bit (4-byte address mode).

Bits are programmed from the initial state 1 to 0, and are erased setting them back from 0 to 1.

The flash memory implements numerous write protection mechanisms including the write enable

command, the write-protect hardware signal and the sector blocking configuration mechanism.

When reading from and writing to the flash memory array, the corresponding accessed byte ad-

dresses are incremented from the input base address. For instance, when trying to read more than

one byte of information from the flash memory, while asserting the address segment to 0x100, the re-

sponse bytes will be from the flash byte memory location 0x100, followed by 0x101, 0x102 and so on,

contiguously, with a byte’s most significant bit being shifted-out first.

3.3 Status and Configuration Registers

The flash memory device comprises several registers, namely:

• Status Register

• Flag Status Register

• Nonvolatile Configuration Register

• Volatile Configuration Registers

• Enhanced Volatile Configuration Register

• Extended Address Register

• Internal Configuration Register
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The device behaviour parameters depend on the Internal Configuration Register. The Internal Reg-

ister configuration is downloaded from the Nonvolatile Configuration Register or from the Volatile Con-

figuration Register or Enhanced Volatile Configuration Register.

The flash memory device initial state from factory is the following: all memory array bits are set to 1

(FFh bytes), the status register is set to 00h, and the nonvolatile configuration register has all bits set to

1 (FFFFh).
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Chapter 4

Core Development

In this chapter, the SPI flash controller core development is described, referring details about the

core’s components and the development environment. It comprises five main sections: core functionality

features, files directory structure, top module, central core module and, lastly, software driver. The

project files repository is hosted on Github at https://github.com/IObundle/iob-spi.

4.1 Core functionality features

The developed core provides the following features:

• Single, Dual, Quad SPI protocol modes.

• XIP mode support.

• DTR mode support.

• 3 bytes and 4 bytes addressing modes support.

• Facilitated transaction frame encoding through predefined frame types

• CPU Peripheral bus interface and CPU Instruction bus interface.

• Zero Overhead Read Operations interface (Instruction Bus interface).

• Configurable transaction frame parameters: command code, number of dummy cycles, number of

data bytes/bits.

• Synthesis configurable parameters: serial clock SPI mode (polarity and phase), serial clock fre-

quency ratio, data bus widths.

• Synchronous clock design (one clock domain).
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4.2 Files Directory Structure

The core’s directory file structure presents a clear separation of concerns for the components de-

scription modules. The core’s files and subdirectories structure is presented in Appendix A.

4.3 Top Module

The core’s top module is a wrapper module that integrates the SPI master controller components

and the required interfaces for the CPU (software accessible registers). The top module is designated

IOb-spimaster.

The IOb-spimaster module presents three different interfaces: two for communicating with the CPU,

and one multi data lane SPI interface for connecting to the SPI flash memory device. The block diagram

is shown in Figure 4.1:

Figure 4.1: SPI controller core IOb Wrapper.

4.3.1 Blocks Description

The peripheral interface and the instructions interface implement the CPU’s native slave interface

protocol. The peripheral bus interface is utilized by the CPU for general read and write memory op-

erations, while the instructions interface is designed for the purpose of zero overhead instruction code

fetching. The Software (SW) Accessible Registers Block features a set of registers used to configure the

core behaviour. When accessing the core through the instructions interface, the central core behaviour

is defined by a fixed SW accessible registers pre-configuration. The component blocks are described

next.

4.3.1.1 Peripheral Interface Description of Signals

The peripheral interface is connected to the CPU’s peripherals bus, and is used for atomic transac-

tions between the CPU and the flash controller. It incorporates the set of signals exhibited in Table 4.1.
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Table 4.1: IOb Wrapper native slave interface signals.
Name Type Size Description

valid Input 1 Triggers the module to register wdata input to SW registers
address Input 4 (ADDR W) Selects the target SW register
wdata Input 32 (WDATA W) Carries the data from CPU to be registered
wstrb Input 4 (DATA W/8) Indicates the operation direction: 1111 for writes, 0000 for

reads from the SW registers
rdata Output 32 (DATA W) Holds the response data to be read by the CPU
ready Output 1 Indicates if the SW registers have accepted new data after a

valid input pulse

4.3.1.2 Instructions Interface Description of Signals

This interface is connected to the CPU’s instructions bus. It provides capabilities for successive

memory read transactions. These transactions use a fixed configuration set through the SW accessible

registers in the bootloader program. This interface is optional and depends on setting the RUN FLASH

variable to 1. It incorporates the set of signals indicated in Table 4.2 :

Table 4.2: IOb Wrapper native slave instruction interface signals.
Name Type Size Description

valid cache Input 1 Triggers a flash memory read request
address cache Input 24 (FLASH CACHE ADDR W) Address for the flash memory location

requested for access
wdata cache Input 32 (WDATA W) Not in use. Only reads from flash mem-

ory expected
wstrb cache Input 4 (DATA W/8) Only read operations expected (0000

binary value)
rdata cache Output 32 (DATA W) Outputs data from requested flash

memory address
ready cache Output 1 Pulses for 1 clock cycle to indicate

response read data available after a
valid cache pulse

This interface can be connected to a cache system to provide improved access performance for the

CPU’s instruction bus.

4.3.1.3 SPI master interface

This interface is used to connect the core to the flash memory device. It comprises the signals

described in Table 4.3.

4.3.1.4 SW Accessible Registers

The SW accessible registers are accessed through the peripheral interface and are used to hold

configuration data set by the CPU, and to hold data read from the flash memory array coming from

the central controller. These registers also store values representing the current configuration state of
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Table 4.3: IOb Wrapper SPI interface.
Name Type Size Description

SS Output 1 Connects to the CSn flash device pin
SCLK Output 1 Connects to the serial clock pin
MOSI Bidir 1 Connects to the DQ0 pin
MISO Bidir 1 Connects to the DQ1 pin
WP N Bidir 1 Connects to the DQ2 pin
HOLD N Bidir 1 Connects to the DQ3 pin

the controller. The configuration data is used to modify the controller’s behaviour. The SW accessible

registers are comprised by the registers described in Table 4.4.

Table 4.4: Software Accessible Registers.
Name Register Type Size Description

FL RESET Write 1 Set to 1 for a controller reset
FL DATAIN Write 32 Carries the data to be written to the flash device
FL ADDRESS Write 32 Holds the flash memory address requested for access
FL COMMAND Write 32 Holds the command and other transaction configura-

tions
FL COMMANDTP Write 32 Holds the command type and other transaction config-

urations
FL VALIDFLG Write 1 Registers and triggers a CPU access request
FL DATAOUT Read 32 Holds the response data for the CPU
FL READY Read 1 Communicates if the core is busy running a transaction

(1: not busy, 0: busy)

The FL COMMAND and FL COMMANDTP SW accessible registers feature special configuration bit

fields. In Table 4.5 and Table 4.6 below, the configuration parameters fields are explained.

Table 4.5: FL COMMAND SW Register Configuration Fields.
FL COMMAND Size Description

7 : 0 8 command code: sets the command code to
be used on the transaction frame

14 : 8 7 data bits: configures the number of bits in a
transmit or receive transaction

15 1 4-byte mode: activates the 3-byte or 4-byte
mode

19 : 16 4 latency/dummy cycles: specifies the num-
ber of dummy cycles for a transaction

29 : 20 10 frame structure: controls the number of data
lanes to be used on each transaction phase

31 : 30 2 xip phase: enables xip mode bit phase
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Table 4.6: FL COMMANDTP SW Register Configuration Fields.
FL COMMANDTP Size Description

2 : 0 3 transaction type : sets the command type
20 1 dtr mode: enables dtr transactions
21 1 4-byte mode : enables the 4-byte address

mode
31 : 30 2 SPI mode : sets the SPI mode (single, dual

or quad)

4.4 Central Core

The central core houses several functional components which represent the capabilities of the core.

The core is responsible for: registering the inputs from the upper level modules, building the transaction

frame according to desired configuration from the inputs, transferring the transaction frame through the

SPI interface connected to the flash memory device, receiving eventual data sent back from the flash

device and, finally, outputting the response data to the upper modules. The block diagram representing

the logical components of the core is exhibited in Figure 4.2.

Figure 4.2: SPI Core Block Diagram.

4.4.1 Central Core Inputs and Outputs

The core comprises the input and output ports gathered in Table 4.7 .

The central core features 3 configurable module synthesis parameters, namely: CLKS PER HALF SCLK

predefined to 2, CPOL predefined to 1 and CPHA predefined to 1.

4.4.2 Global State Machine

The core bases its functioning on three main phases, being: the IDLE state, the SETUP state and

the TRANSFER state. The diagram in Figure 4.3 illustrates the state machine through its states and

state transition signal conditions.

The IDLE state is the phase where the core is not performing any action, no transaction is in course

and no transaction setup registers are being set. In this phase, the core awaits for a transaction request
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Table 4.7: SPI Core Ports.
Signal Type Size Description

System Interface
clk Input 1 System clock signal
rst Input 1 System reset signal

CPU Interface
command Input 8 (SPI COM W) Command segment opcode
commtype Input 3 (SPI CTYP W) Transaction frame type selector (command

type)
address Input 32 (SPI ADDR W) Transaction address segment bits
data in Input 32 (SPI DATA W) Transaction Transmission data segment bits
validflag Input 1 Transaction trigger signal
dtr en Input 1 Enable DTR mode transaction
ndata bits Input 7 Number of transmitted or received data bits
dummy cycles Input 4 Number of transaction dummy cycles
frame struct Input 10 Controls the number of data lanes used per

transaction segment
xipbit en Input 2 Enables and sets the xip mode bit
spimode Input 2 Selects the SPI data lanes mode (single, dual

or quad)
fourbyteaddr on Input 1 Enables 4-byte addressing mode
data out Output Reg 32 (SPI DATA W) Holds response data bits received from flash

memory
tready Output Reg 1 Indicates busy state

SPI Interface
sclk Output Reg 1 serial clock
ss Output 1 slave select (chip select)
mosi dq0 Inout 1 Connected to flash device’s data lane 0
miso dq1 Inout 1 Flash device’s data lane 1
wp n dq2 Inout 1 Flash device’s data lane 2
hold dq3 Inout 1 Flash device’s data lane 3

Figure 4.3: Global Core State Machine.
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and the tready output port signal is set to 1.

In the SETUP phase, the core has received a transaction request signal and proceeds to set the nec-

essary transaction configuration registers and to build the transaction frame. It launches the TRANSFER

phase when the configuration is completed (build done and counters done registers both set to 1) and

sets the r transfer start register to 1. A transaction request signal consists in receiving the validflag set

to 1 signal in conjunction with having the tready signal set to 1 (IDLE state).

In the TRANSFER phase, the core proceeds to transmit the frame through the SPI interface to the

flash device, and performs the sampling of eventual response data bits from the flash device. The

transaction frame transfer occurs when the serial clock toggles, which is triggered by the r transfer start

being set to 1. When the transaction is finished, the r transfers done signal is asserted and the core

returns to the IDLE state.

The functionality described above is achieved by means of the internal integration of different com-

ponent modules, namely: the sclk gen module, the configdecoder module and the latchspi module.

The component modules characterization is discussed hereafter.

4.4.3 Component Modules

The central core module, spi master fl module (spi master fl.v source file), includes the sclk gen,

configdecoder and latchspi modules. The component modules are described next.

4.4.3.1 Sclk gen module description

The sclk gen module is responsible for generating the serial clock signal and several serial clock

synchronisation control signals. It accepts as configurable synthesis parameters the following parame-

ters: CLKS PER HALF SCLK predefined to 2, CPOL predefined to 1 and CPHA predefined to 1. This

module comprises the ports described in Table 4.8.

Table 4.8: SCLK GEN Module Ports.
Signal Type Size Description

clk Input 1 System clock
rst Input 1 System reset
sclk edges Input 9 Total number of transaction serial clock edges
sclk en Input 1 Enables serial clock toggling
op start Input 1 Transaction frame transmission start
dtr edge0 Output Reg 1 Serial clock edge synchronization for DTR mode
dtr edge1 Output Reg 1 Serial clock edge synchronization for DTR mode
op done Output Reg 1 Total number of serial clock edges reached
sclk leadedge Output Reg 1 Serial clock edge synchronization
sclk trailedge Output Reg 1 Serial clock edge synchronization
sclk int Output Reg 1 Internal serial clock signal (one clock cycle in advance to core

output sclk)

The sclk gen module provides the signals to which the data transmission and sampling is syn-

chronised. Namely, the module provides the following set of relevant signals for synchronisation: se-
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rial clock leading edge (represented by sclk leadedge), serial clock trailing edge (represented by

sclk trailedge), dtr edge0 and dtr edge1 and sclk int. The serial clock leading edge and the serial

clock trailing edge may represent a falling clock edge or a rising clock edge, respectively, depending on

the CPOL and CPHA parameters. For instance, for CPOL=1 and CPHA=1, the leading edge pulses

are falling edges and the trailing edge pulses are rising edges. The dtr edge0 and dtr edge1 signals are

used for similar tasks, but are exclusive for DTR transactions. The sclk int signal represents the serial

clock signal. It toggles for every leading edge and trailing edge pulses and it is one system clock cycle in

retard. It is used as clock-synchronous input for the SPI interface’s sclk output register. This clock enable

serial clock generation mechanism is robust and more portable than using PLL clocking resources, but

has a comparatively limited maximum clocking frequency. For instance, for a 100Mhz system clock in-

put, the maximum serial clock frequency is 25Mhz (the serial clock frequency can be adjusted by setting

the module’s CLKS PER HALF SCLK parameter, but the minimum working parameter value is 2).

4.4.3.2 Configdecoder module descrition

The configdecoder module is responsible for decoding the configuration parameters, building the

transaction frame and configuring the transaction control registers. The configdecoder module ports are

listed in Table 4.9.

The configdecoder modules receives as input the transaction segments registers (command, ad-

dress, data in), and concatenates them to form the r str2sendbuild register, which serves as the trans-

action transmission buffer. The data in register bytes are concatenated into the r str2sendbuild register

in reversed order, so that the transmitted data segment bytes, when stored to the flash memory, match

the IOb-SoC CPU’s byte ordering. The module is also responsible for outputting the decoded control

signals and configuring the transaction control registers (explained in Section 4.4.5).

4.4.3.3 Latchspi module description

The latchspi module is responsible for transmitting the transaction frame bits and sampling the

response data bits from the flash device according to the configuration. It serializes the data to be

transmitted and drives the SPI interface signals. It performs the latency dummy cycles synchronously to

the serial clock and, finally, it samples the response data bits if any are expected. Table 4.10 summarizes

the module ports.

The latchspi modules starts transmitting the transaction frame bits when it detects the serial clock

edge toggling. The first bit is sent on the first leading clock edge pulse. When the bits transmission

counter reaches the maximum pre-configured stop value, it signals completion by setting the send-

ing done and mosifinish signals to 1. This enables the performing of the pre-configured dummy cycles

if they are not 0. When the dummy cycles counter reaches 0, the sampling of the response bits depend

on the pre-configured command type, remaining expected number of serial clock edges, and number of

expected response bits. Finally, the module outputs the received response bits, if available, through the

read data and read datarev (with the sampled bytes in reverse order).
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Table 4.9: ConfigDecoder Module Ports.
Signal Type Size Description

clk Input 1 System clock
rst Input 1 System reset
command Input 8 (SPI COM W) command segment opcode
commtype Input 3 (SPI CTYP W) Transaction frame type selector
address Input 32 (SPI ADDR W) Transaction address segment bits
data in Input 32 (SPI DATA W) Transaction Transmission data segment bits
spimode Input 2 Selects the SPI data lanes mode (single, dual

or quad)
nmiso bits Input 7 Number of received data bits
ndatatx bits Input 7 Number of transmitted data bits
frame struct Input 10 Controls the number of data lanes used per

transaction segment
dummy cycles Input 4 Number of transaction dummy cycles
dtr en Input 1 Enables DTR mode transaction
fourbyteaddr on Input 1 Enables 4-byte addressing mode
setup start Input 1 Indicates entering SETUP phase
dualrx Output 1 Receiving data bits in two data lanes enabled
quadrx Output 1 Receiving data bits in two data lanes enabled
dualcommand Output 1 Transmitting command segment in two data

lanes enabled
quadcommand Output 1 Tranmitting command segment in four data

lanes enabled
dualaddr Output 1 Transmitting address segment in two data

lanes enabled
quadaddr Output 1 Transmitting address segment in four data

lanes enabled
dualdatatx Output 1 Transmitting data segment in two data lanes

enabled
quaddatatx Output 1 Transmiitting data segment in four data lanes

enabled
dualalt Output 1 Transmitting data bits in two data lanes en-

abled (Not used)
quadalt Output 1 Transmitting data bits in four data lanes en-

abled (Not used)
r str2sendbuild Output Reg 72 Transmission frame buffer
txcntmarks Output Reg 30 Transaction transmission segments maximum

transmitted bits count and segment SPI mode
r build done Output 1 SETUP phase’s transmission buffer formation

complete
r counters done Output 1 SETUP phase’s transaction control registers

configuration complete
r sclk edges Output Reg 9 Total number of serial clock edges
r counterstop Output Reg 8 Total number of transmitted transaction bits

count
r misoctrstop Output Reg 7 Total number of receiving bits count
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Table 4.10: Latchspi Module Ports.
Signal Type Size Description
clk Input 1 System clock
rst Input 1 System reset
sclk en Input 1 Serial clock toggling enable
latchin en Input 1 Serial clock sampling edge
latchout en Input 1 Serial clock transmission edge
latchout dtr en Input 1 Serial clock transmission edges in DTR mode
dtr en Input 1 Enable DTR transaction modes
setup rst Input 1 Reset transaction control registers
loadtxdata en Input 1 Transmission buffer loading enable
mosistop cnt Input 8 Transmission bits maximum count
txstr Input 72 Transmission buffer
dualrx Input 1 Data bits received from flash in two data lanes
quadrx Input 1 Data bits received from flash in four data lanes
dummy cycles Input 4 Dummy clock cycles count
misostop cnt Input 7 Received bits maximum count
xipbit en Input 2 Xip bit enable and set bit
txcntmarks Input 30 Maximum bit counts for transmission segments and segment SPI

mode
spimode Input 2 SPI data lanes modes selector
numrxbits Input 7 Number of received bits count
data rx Input 4 Concatenates the SPI data lanes for sampling bits
data tx Output 4 Concatenates the SPI data lanes for transmitting bits
dualtx en Output 1 Transmission in two data lanes enabled
quadtx en Output 1 Transmission in four data lanes enabled
xipbit phase Output 1 Xip bit transmission window
sending done Output 1 Transmitting bits from controller completed
mosifinish Output 1 Transmitting bits from controller completed after flash device sam-

pling edge
mosicounter Output 8 Transaction transmission bits counter
read data Output 32 Sampled received bits
read datarev Output 32 Sampled received bits in reverse order

4.4.4 Configuration Parameters Encoding

The configuration registers encode information about the desired operation for the flash controller.

This information is input to the configuration decoder module which translates it into transaction control

values. In this section, the encoding of the configuration registers is described.

4.4.4.1 Command type

This configuration parameter, represented by the input port ”commtype”, is a 3 bit sized parameter,

which represents the target transaction frame format to be executed. The encoding values are described

in Table 4.11.

4.4.4.2 SPI Data Lanes modes

This 2-bit input parameter (spimode input port) represents the desired transaction mode, which can

be: single SPI mode, dual SPI mode or quad SPI mode. The SPI mode configuration overrides the

frame struct configuration. Table 4.12 shows the encoding values details.
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Table 4.11: Command types Encoding Description.
Value Mnemonic Description

000 COMM Refers to transaction frame with only the command segment.
Examples Reset Enable command (command code: 66h),
Write Enable command (06h)

001 COMMANS Transaction frame with command segment and data bytes
from flash (ANS, answer). Examples Read Status Register
command (05h)

010 COMMADDR ANS Transaction frame including command segment, address seg-
ment and data received from flash (answer). May also include
dummy cycles. Memory Read operations fall into this specifi-
cation. Example Read (03h), DTR Fast Read (0Dh)

011 COMM DTIN Transaction frame including the command segment and the
data for flash segment. Usually commands which refer writing
specific values to the flash device registers fall into this speci-
fication. Examples Write Status Register (01h), Write Volatile
Register (81h)

100 COMMADDR DTIN Transaction frame including command segment, address seg-
ment, transmit data segment. Memory program operations fall
into this category. Example Page Program (02h), Extended
Quad Input Fast Program (12h)

101 COMMADDR Transaction frame including command segment and address
segment. This is the command type configuration used for
Erase operations. Examples Sector Erase (D8h), Bulk Erase
(C7h)

110 XIP ADDRANS Transaction Frame including address frame, data received
from flash segment. This mode is set for read operations in
XIP mode

111 RECOVER SEQ Free format transaction frame. This configuration mode can
be used for manually setting the frame bits with no predefined
information. Can also be used for recover sequences sup-
port by many flash devices used to for instance, reset he flash
device after a power failure.

Table 4.12: SPI data lane modes Encoding.
Value Description

00 default mode (single mode): segments on one
data lane or, command segment on one lane with
subsequent segments on two/four data lanes

01 dual mode: all segments transmitted or received
on two data lanes

10 quad mode: all segments transmitted or received
on four data lanes

11 default mode (single mode)

4.4.4.3 Transaction Frame Struct

This configuration parameter is 10-bit sized input parameter, which gives information about the SPI

mode to be used on each transaction frame segment. Several current NOR SPI flash memory devices

support transaction frames where the segments are transmitted or received on different SPI modes. For

instance, the N25Q256A Micron family flash devices [16] support the ”Fast Read Dual Output” (command
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code: 3Bh) where in the default flash device configuration, the command segment is sent on the on the

mosi (dq0) data lane, the address segment also on the mosi (dq0) data lane, but the received data bits

segments is on both the dq0 and dq1 data lanes. Another example, is the ”Extended Quad Input Fast

Program” (command code: 12h) command, where the command segment is trasmitted on the dq0 lane,

the address segment on all the data lanes (dq0, dq1, dq2 and dq3), and the data bits also on all 4 data

lanes (dq0, dq1, dq2 and dq3).

Table 4.13 gives the corresponding transaction frame segment for each 2-bit configuration interval

and Table 4.14 gives the configuration value effects.

Table 4.13: Frame Structure Bit Fields.
Bit interval

9 : 8 7 : 6 5 : 4 3 : 2 1 : 0
command address tx data rx data alt

Table 4.14: Frame Structure Encoding Description.
Value Description

00 Segment in single mode
01 Segment in dual mode
10 Segment in quad mode
11 Segment in single mode

4.4.4.4 DTR mode enable

The DTR mode enable is a 1 bit input signal (input port dtr en), which supports transaction frames for

DTR, as illustrated in the N25Q256 datasheet [16] for DTR commands. The address and data segments

are transferred in two serial clock cycles. Table 4.15 describes the possible values and effects.

Table 4.15: DTR Mode Enable Encoding.
Value Description

0 DTR mode deactivated
1 DTR mode activated (address and data bits transfered twice a clock cycle)

4.4.4.5 4-byte address mode

The 1-bit fourbyteaddr on input input signal indicates the address segment bytes size. The N25Q256A

flash device family [16] supports 3-byte and 4-byte addressing modes. Table 4.16 describes the settings.

Table 4.16: 4-byte Address Mode Enable.
Value Description

0 3-byte address mode
1 4-byte address mode
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4.4.4.6 XIP mode

This 2-bit configuration input parameter (input port xipbit en) enables XIP mode transactions (ad-

dress segment, data segment) and also sets a mode bit. The most significant bit enables the XIP bit

effect, and the least significant bit sets the value of the mode bit; in the N25Q256A flash devices fam-

ily [16], it is called the XIP confirmation bit. Table 4.17 describes the possible configuration values and

respective effects.

Table 4.17: XIP Mode Enable Encoding.
Value Description

0x xip mode bit not enabled
10 xip mode bit set to 0
11 xip mode bit set to 1

4.4.4.7 Number of data bits

This 7-bit configuration input parameter specifies the number of data bits for the data segment. It

represents the number of data bits to be sent with a PROGRAM/WRITE command type, or the number

of data bits to be received, for example, with READ commands.

4.4.4.8 Number of dummy cycles

The 4-bit dummy cycles input signal gives the number of dummy cycles for the transaction frame.

For the N25Q256A flash device family, the typical default dummy cycles value is 8 cycles for single and

dual modes and 10 for quad modes.

4.4.4.9 Serial Clock Edges

The r sclk edges register is an internal configuration register loaded with double the sum of the

number of expected bits for each frame segment present in the transaction. Its value depends on the

different configuration parameters, in particular the command type setting.

4.4.5 Transaction Control Registers

At the Setup state, a number of transaction control registers must be set. These registers are the

following: Transmit Counter Stop (r counterstop), Total Number of Serial Clock Edges (r sclk edges),

Transmit Segments Maximum Count register (txcntmarks) and Receive Counter Stop (r misoctrstop).

These registers are found in the configdecoder module.

The r counterstop register is set to the value of the total number of bits the controller transmits to the

flash device. In the Transfer state, while transmitting bits through the SPI interface, the bits are counted

and, when the counter reaches the r counterstop value, the transmission is stopped. The dummy cycles

phase or the receiving phase may follow or not. The r sclk edges register is set to the number of total

expected serial clock edges. When this value is reached, while transmitting or receiving data bits, the
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transaction is terminated. The txcntmarks register is a concatenation of three 10-bit segments. Each

10-bit segment holds information for a particular transaction segment, where the 2 most significant bits

hold information about the corresponding segment’s SPI mode for transmission (simple, dual or quad).

The remaining 8 bits tell the bit-count value when a particular transaction segment ends its transmission.

For instance, considering the COMMADDR ANS command type, Fast Read command in mode (1-4-

4), STR, 3-byte addressing, the Transaction Control Registers are set to the values described hereafter:

• The r counterstop register is set to 32, as the command segment is 8 bits and the address segment

24 bits.

• The r sclk edges register is set to 60, as this represents the double of the total of the serial clock

cycles for the command segment (8), plus the address segment (6), plus the number of dummy

cycles (8) and lastly, plus the number of receiving bits cycles (8).

• The r misoctrstop is set to 32.

• For the txcntmarks register, the 10-bit segment at index range 9 to 0 is set to 0x008 (most signif-

icant 2 bits encode the simple SPI mode, 8 for the maximum count for the command segment),

the segment at index range 19 to 10 is set to 0x220 (quad SPI mode and 32 bits for the transmis-

sion counter) and the segment at index range 29 to 20 is set to 0 as there are no further transmit

segments after the address segment.

4.5 Software Driver

The software driver is written in the C programming language. The driver abstracts away the low-level

details of the communication with the flash controller hardware core.

The driver functions are divided into two groups: the basic lower level functions (platform functions)

which communicate directly with the SW registers, and the higher levels functions built on top of the

lower level functions and which allow for advanced behaviour. New functions can be built on top of the

lower level functions that best suit the user requirements.

The base functions which directly get or set values to the software accessible registers and basic

auxiliary functions are displayed below (content of software/iob spiplatform.h):

/ / Funct ions

void s p i f l a s h r e s e t ( ) ;

void s p i f l a s h i n i t ( i n t base address ) ;

/ / Se t te rs

void spi f lash setDATAIN ( unsigned i n t data in ) ;

void spiflash setADDRESS ( unsigned i n t address ) ;

void spiflash setCOMMAND ( unsigned i n t command ) ;
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void spiflash setCOMMTYPE ( unsigned i n t commtype ) ;

void sp i f lash se tVALIDIN ( unsigned i n t v a l i d i n ) ;

/ / Get ter

unsigned i n t spiflash getDATAOUT ( ) ;

unsigned i n t spif lash getVALIDOUT ( ) ;

unsigned i n t spif lash getREADY ( ) ;

/ / General command execut ion t r i g g e r f u n c t i o n

void spif lash executecommand ( i n t typecode , unsigned i n t data in ,

unsigned i n t address , unsigned i n t command, unsigned * dataout ) ;

The spiflash executecommand triggers the execution of a command on the flash controller core,

depending on the command type value, by setting FL VALIDFLAG to 1. This function also checks the

controller ready state (FL READY) to verify if it is able to accept a new command request, performing

wait cycles while the controller is not ready. It is useful for simplifying the code, so that new functions

can support new command codes. The implementation code for the function is exhibited below:

void spif lash executecommand ( i n t typecode , unsigned i n t data in ,

unsigned i n t address , unsigned i n t command, unsigned * dataout )

{

spiflash setCOMMAND (command ) ;

spiflash setCOMMTYPE ( typecode ) ;

while ( ( ! spif lash getREADY ( ) ) ) ;

switch ( typecode )

{

case COMM:

sp i f lash se tVALIDIN ( 1 ) ;

sp i f lash se tVALIDIN ( 0 ) ;

break ;

case COMMANS:

sp i f lash se tVALIDIN ( 1 ) ;

sp i f lash se tVALIDIN ( 0 ) ;

while ( ! spif lash getREADY ( ) ) ;

* dataout = spiflash getDATAOUT ( ) ;

break ;

case COMMADDR ANS:

spiflash setADDRESS ( address ) ;

sp i f lash se tVALIDIN ( 1 ) ;
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sp i f lash se tVALIDIN ( 0 ) ;

while ( ! spif lash getREADY ( ) ) ;

* dataout = spiflash getDATAOUT ( ) ;

break ;

case COMM DTIN:

spi f lash setDATAIN ( da ta in ) ;

sp i f lash se tVALIDIN ( 1 ) ;

sp i f lash se tVALIDIN ( 0 ) ;

break ;

case COMMADDR DTIN:

spiflash setADDRESS ( address ) ;

sp i f lash setDATAIN ( da ta in ) ;

sp i f lash se tVALIDIN ( 1 ) ;

sp i f lash se tVALIDIN ( 0 ) ;

break ;

case COMMADDR:

spiflash setADDRESS ( address ) ;

sp i f lash se tVALIDIN ( 1 ) ;

sp i f lash se tVALIDIN ( 0 ) ;

break ;

case XIP ADDRANS:

spiflash setADDRESS ( address ) ;

sp i f lash se tVALIDIN ( 1 ) ;

sp i f lash se tVALIDIN ( 0 ) ;

while ( ! spif lash getREADY ( ) ) ;

* dataout = spiflash getDATAOUT ( ) ;

break ;

case RECOVER SEQ:

spi f lash setDATAIN ( da ta in ) ;

sp i f lash se tVALIDIN ( 1 ) ;

sp i f lash se tVALIDIN ( 0 ) ;

break ;

defaul t :

sp i f lash se tVALIDIN ( 1 ) ;

sp i f lash se tVALIDIN ( 0 ) ;

}

}
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The spiflash executecommand function receives the required arguments and proceeds to set the

FL COMMAND and FL COMMANDTP registers for configuration. It then awaits for the controller’s ready

signal (IDLE state) by reading the FL READY register. Then, it triggers the flash controller operation by

setting the FL VALIDFLG to 1. For commands that result in response data from the controller, it reads

the FL DATAOUT register to get the response data after the controller has returned to the IDLE state

(FL READY set to 1).

4.5.1 Software Driver Global Variables and High Level Functions

The iob spi.c source file defines a set of global variables and high level functions. The global vari-

ables are used to hold configuration information that is persistent for many functions calls, and reflect

the flash device configuration state. The global variables are shown below:

s t a t i c unsigned i n t base ;

unsigned x i p f r a m e s t r u c t = 0 ;

unsigned commtypeReg = 0;

The base global variable is used to store the core’s base address assigned by system’s memory

mapping. The xipframestruct global variable is set to express the defined frame structure for a pre-

viously activated XIP mode, otherwise it is reset. It can be updated through the numerous fast-read

high-level functions defined in file iob spi.c The commtypeReg variable holds the persistent configura-

tion information for the FL COMMANDTP register. These configuration fields are the SPI mode (simple,

dual or quad) in the 2 most significant bits (bits 31 and 30), and the 4-byte address enable in bit posi-

tion 20. The commtypeReg variable should be updated every time the mentioned internal flash device

configuration fields are set.

The high-level functions (defined in iob spi.c) provide support for particular command codes. These

functions are implemented on top of a function call to spiflash executecommand. Illustrative examples

are given next:

• Reset Memory command (command code 99h). This command requires that a Reset Enable (66h)

command is performed before the flash device can successfully accept a Reset Memory request.

The code is displayed below:

vo id spi f lash resetmem ( )

{

/ / execute RESET ENABLE

spif lash executecommand ( commtypeReg |COMM, 0 , 0 ,

RESET ENABLE, NULL ) ;

/ / execute RESET MEM

spif lash executecommand ( commtypeReg |COMM, 0 , 0 ,

RESET MEM, NULL ) ;

}
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• Fast Read Command in Dual Input and Output format (command code BBh), waveform illustrated

in 2.9. The command segment is transmitted in one lane, while the address and data segments are

sent in two lanes (the command segment is transmitted in two lanes if the dual mode is selected).

The code is illustrated next:

unsigned i n t sp i f l a sh read fas tDua l I nOu tpu t ( unsigned address ,

unsigned a c t i v a t e X i p )

{

unsigned misobytes = 4 , data =0;

unsigned f r a m e s t r u c t = 0x00000044 ; / / u i n t 8 l a t e r

unsigned dummy cycles = 8;

unsigned x i p b i t = 1 ;

/ / 2−> Ac t i va te / keep ac t i ve , 3−> te rmina te Xip , o thers ignore

i f ( a c t i v a t e X i p == ACTIVEXIP | | a c t i v a t e X i p == TERMINATEXIP)

{

x i p b i t = a c t i v a t e X i p ;

x i p f r a m e s t r u c t = ( a c t i v a t e X i p == ACTIVEXIP ) ? f r a m e s t r u c t : 0 ;

}

else

x i p b i t = 0 ;

unsigned command = ( x i p b i t << 30) | ( f r ame s t ruc t <<20)|

( dummy cycles<<16) |(( misobytes *8)<<8)|READFAST DUALINOUT;

spif lash executecommand ( commtypeReg |COMMADDR ANS, 0 , address ,

command, &data ) ;

r e t u r n data ;

}

• Fast Extended Quad Memory Program (command code 12h). The address and data segments

are transmited in four lanes. This command requires that a Write Enable is issued first. The code

illustrated next:

vo id sp i f lash programfas tQuadInputEx t ( unsigned i n t word , unsigned address )

{

/ / execute WRITE ENABLE

spif lash executecommand ( commtypeReg |COMM, 0 , 0 , WRITE ENABLE, NULL ) ;

/ / execute PAGE PROGRAM

unsigned f r a m e s t r u c t = 0x000000a0 ;

unsigned numbytes = 4;

unsigned command = ( f r a m e s t r u c t << 20) | ( numbytes *8 << 8)
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| PROGRAMFAST QUADINEXT;

spif lash executecommand ( commtypeReg |COMMADDR DTIN, word ,

address , command, NULL ) ;

}

A firmware source code (software/test firmware.c) is also provided in the core’s software directory.

The firmware can be run when the core is integrated into a SoC, and hosts a set of function calls that

can test the system’s interaction with the flash controller.
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Chapter 5

Bootloader and Core Integration to

SoC

In this chapter, the core integration to the SoC platform is detailed along with the bootloader program

upgrades for handling the flash controller core. It comprises four main sections: core integration to SoC

as peripheral, core integration as an instruction memory, bootloader with flash functionality and, lastly,

simulation and board run.

The core can be used on the SoC platform as a peripheral module and/or as an interface to an

external instruction memory. As a peripheral, the core is connected to the SoC through the CPU’s

peripheral bus, while as an instruction memory interface it is connected to the CPU’s instructions bus.

As a peripheral, the flash controller core can be accessed by both the bootloader and the firmware

programs. In this mode, the bootloader and the firmware can issue the usual read and write commands

and the configuration setting for the flash controller.

As an instruction memory interface, the the bootloader initially loads the flash memory with the

firmware program. Furthermore, the flash controller core is configured through the peripheral interface

by the bootloader, so that the flash core is able to handle the instruction read requests from the CPU

when running the firmware program.

5.1 Core Integration to SoC as Peripheral

In this section, the flash controller core integration details to the IOb-SoC platform as a peripheral

are presented.

To add and utilize a core as a peripheral to the IOb-SoC, there are two required steps that must be

done:

1. adding the core as a git submodule in the IOb-SoC’s submodules directory

2. adding the core to the peripherals list on the IOb-SoC’s system.mk file
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The core can be added as a submodule to the IOb-SoC’s submodules directory by issuing the fol-

lowing command:

$ g i t submodule add gi t@gi thub . com: IObundle / IOb−sp i . g i t submodules

With this command the core’s directory is registered as a git submodule for IOb-SoC, and it is cloned

into the submodules directory.

After the core has been added as a submodule, it can be referenced in the peripherals list on the

system.mk file as illustrated below:

#PERIPHERAL LIST

#must match respec t i ve submodule or f o l d e r name i n the submodules d i r e c t o r y

#and CORE NAME i n the core .mk f i l e o f the submodule

PERIPHERALS ?=UART SPI TIMER

With these two steps completed, and provided that the core presents certain interfacing auxiliary

files, the core can be integrated into IOb-SoC and its functionality tested both on simulation and on

FPGA board runs.

The flash controller core’s interfacing auxiliary files mentioned above are listed below:

hardware/include/inst.v : describes a Verilog instantiation of the IOb spi master fl core to be included

in the IOb-SoC’s system module as a peripheral.

hardware/include/pio.v : presents the core pins that require instantiation in IOb-SoC’s ports list for

external interfacing.

software/iob spidefs.h : defines constants that represent core configuration parameters, particularly,

the set of encoding of the implemented commands.

software/iob spi.h : presents a list of function headers for functionalities such as the READ and WRITE

operations on the flash registers or on the flash memory array, among others.

software/iob spiplatform.h : presents the set of basic low-level flash controller interfacing function

headers.

5.2 Core Integration to SoC as an Instruction Memory Interface

This mode is activated by setting the RUN FLASH variable to 1. The core is connected to IOb-SoC’s

instruction bus and the code is run directly from the flash memory. The data bus is connected to the

SRAM. The interconnection between the CPU’s instruction bus and the flash controller interface goes

through the instruction cache, which improves the instruction memory access performance.

5.2.1 Cache Integration

The L1 instruction cache is instantiated in the ext flash module. The ext flash module interfaces

with the CPU’s instruction bus signals, and the flash controller core’s instruction interface, a native slave
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interface. The ext flash module instantiation depends on the RUN FLASH being set to 1. The ext flash

module exhibits the list of ports described in Table 5.1.

Table 5.1: Ext flash Module Ports.
Signal Type Size

System Interface
clk Input 1
rst Input 1

Instructions Bus Interface
i req Input 54 (1+FIRM ADDR W+WRITE W -2)
i resp Input 33 (RESP W)

Flash controller interface
mem valid Output 1
mem addr Output 24 (FLASH ADDR W)
mem wdata Output 32 (DATA W)
mem wstrb Output 4 (DATA W/8)
mem rdata Input 32 (DATA W)
mem ready Input 1

The cache component is an instance of the iob cache module from IObundle [19]. The iob cache

module features a set of configuration parameters, namely: front-end address width, back-end ad-

dress width, number of ways, line offset width, word offset width, FIFO’s depth width, cache

control access enable and cache control counter enable. The instruction cache is instantiated with

the following configuration values: front-end address width set to FIRM ADDR W, back-end address

width set to FLASH ADDR W, back-end address width set to 2, line offset width set to 4 resulting

in 16 lines for each way table, word offset width set to 4 resulting in 16 words for each word, FIFO’s

depth width set to 5 which enables BRAM FIFO implementation, cache control access enable set to

0 and cache control counter enable set to 0.

5.2.2 Modifications to the CPU module

To successfully implement the RUN FLASH mode, additional lines of code were introduced in the

CPU wrapper module Verilog file. These modifications allow the firmware code to be read from the flash

controller’s instruction interface when the RUN FLASH is set to 1 and the CPU is not running bootloader

code. The code lines introduced are the following:

i f d e f RUN DDR USE SRAM

assign i bus req = {CPU i req [ ‘V BIT ] , ˜ boot , CPU i req [ ‘REQ W−3:0 ]} ;

assign dbus req = {CPU d req [ ‘V BIT ] ,

( CPU d req [ ‘E BIT ] ˆ ˜ boot )&˜ CPU d req [ ‘P BIT ] , CPU d req [ ‘REQ W−3:0 ]} ;

‘ e l s i f RUN FLASH

assign i bus req = {CPU i req [ ‘V BIT ] , ˜ boot , CPU i req [ ‘REQ W−3:0 ]} ;

assign dbus req = CPU d req ;

‘ e lse
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assign i bus req = CPU i req ;

assign dbus req = CPU d req ;

‘ end i f

5.3 Bootloader with Flash Functionality

The bootloader program runs from the internal SRAM memory. When completed it reboots the CPU.

From this point, the CPU starts executing the firmware program from the internal memory or external

memory. The additional flash functionalities are defined inside ifdef code guards and are enabled by

setting to 1 the corresponding variable (in the system.mk file), namely: the RUN FLASH variable, the

PROGRAM FLASH variable, the CHECK FLASH variable or the SECTOR ERASE variable. The con-

cerned variables and functionalities are described next.

5.3.1 Bootloader RUN FLASH function

When the RUN FLASH variable is set to 1, the CPU is enabled to run the firmware from the flash

memory, after the bootloader reboots the system. In this running mode, the CPU’s instruction memory

becomes the flash memory, while the CPU’s data memory remains the internal SRAM. In this mode,

the bootloader executes a code segment to configure the flash controller SW accessible registers for

running READ commands and activating low-latency running modes. The code segment is presented

next.

# i f d e f RUN FLASH

/ / Conf igure f l a s h f o r u t i l i z a t i o n

u a r t p u t s (PROGNAME) ;

u a r t p u t s ( ” : c o n f i g u r i n g f l a s h parameters\n ” ) ;

unsigned f r a m e s t r u c t = 0x00000088 ;

unsigned numbytes = 4; / / max 4

unsigned dummy cycles = 8;

unsigned command = ( f r a m e s t r u c t << 20) |

( dummy cycles << 1 6 ) | ( ( numbytes *8 ) << 8) | READFAST QUADINOUT;

s p i f l a s h i n i t ( SPI BASE ) ;

s p i f l a s h r e s e t ( ) ;

/ / se t Xip mode i n Conf ig . Reg is te r

sp i f l ash X ipEnab le ( ) ;

/ / Fast Read con f i rma t i on b i t 0 to a c t i v a t e XIP mode

unsigned f i r s t w o r d = sp i f l ash read fas tQuadInOutpu t (0 , ACTIVEXIP ) ;

command |= ( ACTIVEXIP << 30 ) ;

spiflash setCOMMAND (command ) ;
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spiflash setCOMMTYPE (XIP ADDRANS ) ;

/ / spiflash setCOMMTYPE ( ( 0 x01 << 20 ) |COMMADDR ANS) ;

u a r t p u t s (PROGNAME) ;

u a r t p u t s ( ” : c o n f i g u r a t i o n complete\n ” ) ;

#endif

The code segment above illustrates the configuration of the controller core for fast read quad IO with

XIP enabled mode.

5.3.2 Bootloader PROGRAM FLASH function

Setting the PROGRAM FLASH variable to 1 enables the bootloader to program the firmware binary

file received from the host computer via UART onto the flash memory. The firmware binary file is stored

into the flash memory starting at address 0.

# i f d e f PROGRAM FLASH

/ / Assumes f i rmware . b in rece ived by UART

s p i f l a s h i n i t ( SPI BASE ) ;

unsigned i n t f l a sh add r = 0 ;

i n t pages programmed = 0;

i n t l a s t a d d r = 0 ;

u a r t p u t s (PROGNAME) ;

u a r t p u t s ( ” : Programming f i rmware to f l a s h . . . \ n ” ) ;

l a s t a d d r = spiflash memProgram ( p r o g s t a r t a d d r [ 0 ] , f i l e s i z e , f l a sh add r ) ;

u a r t p u t s (PROGNAME) ;

p r i n t f ( ” I n i t i a l address : %x\nLast address : %x\n ” , f l ash addr , l a s t a d d r ) ;

u a r t p u t s ( ” Test ing f i rmware program\n ” ) ;

u a r t p u t s (PROGNAME) ;

u a r t p u t s ( ” : Flash programming done . . . \ n ” ) ;

#endif

5.3.3 Bootloader CHECK FLASH function

Setting the CHECK FLASH to 1 enables the bootloader to read the previously stored firmware data

content from the flash memory and send it back to the host computer via UART. The file sent back is

named ”flash firm.bin”. The file size read from the flash is the value 2FIRM ADDR W .

# i f d e f CHECK FLASH

/ / i n i t SPI
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s p i f l a s h i n i t ( SPI BASE ) ;

unsigned s t a r t a d d r = 0 ;

u a r t p u t s (UART PROGNAME) ;

u a r t p u t s ( ” : reques t ing to send f i l e \n ” ) ;

/ / send f i l e t r ansm i t command

u a r t p u t c (FTX ) ;

/ / send f i l e name

char f l a s h f i l e n a m e [ ] = ” f l a s h f i r m . b in ” ;

i n t j =0;

do

u a r t p u t c ( f l a s h f i l e n a m e [ j ] ) ;

while ( f l a s h f i l e n a m e [ j + + ] ) ;

/ / c a l c u l a t e f i rmware s ize

i n t f l a s h f i l e s i z e = 0;

i n t power of2 = 0;

for ( i n t i =0; i < FIRM ADDR W; i ++)

{

i f ( i ==0) power of2 = 1;

else power of2 *= 2 ;

}

f l a s h f i l e s i z e = power of2 ;

/ / send f i l e s ize

u a r t p u t c ( ( char ) ( f l a s h f i l e s i z e & 0 x 0 f f ) ) ;

u a r t p u t c ( ( char ) ( ( f l a s h f i l e s i z e & 0 x0 f f00 ) >> 8 ) ) ;

u a r t p u t c ( ( char ) ( ( f l a s h f i l e s i z e & 0x0f f0000 ) >> 1 6 ) ) ;

u a r t p u t c ( ( char ) ( ( f l a s h f i l e s i z e & 0x0ff000000 ) >> 2 4 ) ) ;

/ / send f i l e contents

unsigned mem word = 0;

for ( unsigned i n t i = 0 ; i < f l a s h f i l e s i z e ; i +=4)

{

mem word = sp i f l ash read fas tQuadInOutpu t ( i , ACTIVEXIP ) ;

u a r t p u t c ( ( char ) ( mem word & 0 x 0 f f ) ) ;

u a r t p u t c ( ( char ) ( ( mem word & 0 x0 f f00 ) >> 8 ) ) ;

u a r t p u t c ( ( char ) ( ( mem word & 0x0f f0000 ) >> 1 6 ) ) ;
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u a r t p u t c ( ( char ) ( ( mem word & 0x0ff000000 ) >> 2 4 ) ) ;

}

u a r t p u t s (UART PROGNAME) ;

u a r t p u t s ( ” : f i l e sent \n ” ) ;

#endif

5.3.4 Bootloader SECTOR CLEAR function

Setting the SECTOR CLEAR variable to 1, allows the bootloader to erase 64KB flash memory sector,

starting from address 0.

# i f d e f SECTOR CLEAR

s p i f l a s h i n i t ( SPI BASE ) ;

u a r t p u t s (PROGNAME) ;

u a r t p u t s ( ” : Erasing f l a s h sec to r 0\n ” ) ;

/ / Erase f i r s t sec to r (64Kb , from addr 0)

unsigned i n t f l ash addr0 = 0;

unsigned i n t statusReg = 0;

s p i f l a s h e r a s e s e c t o r ( f l ash addr0 ) ;

sp i f lash readSta tusReg (& statusReg ) ;

i f ( statusReg != 0){

do{

sp i f lash readSta tusReg (& statusReg ) ;

}while ( statusReg != 0 ) ;

}

u a r t p u t s (PROGNAME) ;

u a r t p u t s ( ” : Flash sec to r erase complete\n ” ) ;

#endif

The above code segment erases the first 64 KB flash memory sector with a spiflash erase sector

function call, and proceeds to verify the completion of the erasing process by reading the flash status

register state (spiflash readStatusReg function call).
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5.4 Simulation and Board Run

Among the several simulation tools directly supported by IOb-SoC for local and remote simulation,

the Icarus Verilog simulation and synthesis tool has been selected for this work. The Icarus Verilog

simulator produces a VCD-format signal dump file. Additionally, the Gtkwave waveform viewer tool has

been selected for displaying and examining the simulation waveforms.

5.4.1 Core Simulation

Currently, the SPI flash controller core only supports the Icarus Verilog simulator and the Gtkwave

waveform viewer. These tools are integrated into the core’s Makefile. The following make commands can

be used in the core repository for simulation purposes: make sim, which runs the synthesis and test-

bench simulation; make sim-waves, which can be used to view the produced VCD simulation waveform

in Gtkwave; make sim-clean, used to clean the files produced in simulation.

The hardware/testbench/spi fl tb.v file can be edited to test the core’s behaviour for specific op-

eration commands. After setting the appropriate registers, the validflag input signal should be asserted

and de-asserted shortly to create an input pulse. The valigflag input pulse and the core’s internal ready

signal being asserted triggers the core operation. After the operation is started, the user can issue a

wait for ready call to detect if the core has finished executing (ready signal returning to 1).

A flash memory model from Micron [16] for the N25Q256 flash memory family can also be instanti-

ated in the testbench file for simulation. To best use the model, the user should specify the particular

flash device present on the prototyping board, by defining it in the UserData.h file. To simulate the core,

it has been defined as N25Q256A11E. Additional memory initialisation files can be specified by defining

the FILENAME mem and FILENAME sfdp constants. The FILENAME mem constant indicates the

flash memory initialisation file, read by a readmemh Verilog function call; FILENAME sfdp refers to the

SFDP table information initialisation file, read through a readmemb Verilog function call.

5.4.1.1 Testbench file code segment

A testbench file code segment, illustrating the assignment of configuration values to input registers

and triggering the operation, is shown below.

/ / New command

spimode = 2 ’b11 ;

d a t a i n =32 ’haabbccdd ;

command=8 ’h6b ;

address =24 ’h555555 ;

commtype = 3 ’ b100 ;

f r a m e s t r u c t = 10 ’h260 ;

x i p b i t e n = 2 ’b00 ;
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nmiso b i t s = 7 ’d32 ;

dummy cycles = 4 ’d0 ;

d t r en = 0;

#50

v a l i d f l a g =1 ’b1 ;

#20

v a l i d f l a g =1 ’b0 ;

#100

wait ( t ready ) ;

5.4.2 Core FPGA Synthesis and Implementation

The core can be synthesised for FPGA implementation locally or on a remote server. The relevant

Makefile commands are: make fpga and make fpga-clean. Board synthesis configuration variables

are set in the core.mk file. The target server hosts a Xilinx KU040 FPGA board. The spi.xdc is the

implementation constraints file.

The core supports the USE NETLIST board synthesis flag variable. An IOb-SoC instance inte-

grating this core can set this flag active to use its netlist description instead of performing a complete

re-compilation.

5.4.3 IOb-SoC Simulation and FPGA Board Running

The IOb-SoC instance integrating the SPI flash controller core, IOb-SoC-flash, can be simulated and

run on an FPGA board to test the core functionalities.

To run the provided firmware file in the flash controller repository instead of the firmware file in IOb-

SoC’s software/firmware directory, the former should be listed in the software/firmware/Makefile file, and

the latter commented out.

When using the flash model for simulation, a new python script, makehex flash.py (based on make-

hex.py), is executed to generate the firmware flash.hex file, which contains a formatted version of the

firmware binary and can be be used to initialize the flash model.
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Chapter 6

Results

In this chapter, the practical implementation results are discussed. The core’s features, verification

and validation have been done by simulation and by running it on an actual FPGA board.

Implementation results for the implemented flash controller core are discussed and compared to the

CAST flash controller core [18], in terms of their common features successfully implemented.

Performance results after integration into IOb-SoC and running actual firmware are compared to

SRAM-only performance. Lastly, resource utilisation results concerning FPGA and ASIC implementa-

tions are also presented.

6.1 Flash Core Comparative Results

Comparing the features of the CAST xSPI-MC core presented in [18], the core successfully imple-

ments an important feature-set, including:

• Support for multi-lane data transfers (simple, dual and quad modes)

• Support for DTR transfers

• Support for XIP mode

• Configurable lengths for transaction segments

• Configurable data widths through defines

The core does not support the 8 data lanes mode (Octal mode), as the flash memory device in the

prototyping board supports only a maximum of four data lanes in quad mode. However this feature can

easily be implemented following the implementation format for the already in place QSPI support.

The core expects a maximum data buffer width of 32 bits with special support for 8-bit and 16-bit

widths. Data read transactions with different bit widths other than 8 and multiples can also be performed,

but the user should be attentive of the output format.

Considering that numerous flash devices support continuous (burst) read modes, where long con-

tiguous memory locations can be read in one transaction, implementing the buffers through FIFOs would
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allow the core to take advantage of the additional storage capacity, and of the first-in-first-out mecha-

nism, to make more data available with fewer transactions and less overhead.

Basic framework functions are available, on top of which the user can implement support for other

command codes.

6.2 Performance Results

In this section, the code execution performance comparative results are presented. The performance

results for the code running from flash (with an L1 cache) are compared against the code running

performance on SRAM. The core supports flexible initial flash instructions for the interface configuration,

done by the bootloader program, which affects the instructions read performance of the firmware words.

The experiments are run on the KU040 board.

6.2.1 Experimental Setup

The code running performance is tested against the internal SRAM running performance baseline.

A number of possible initial configurations of the flash controller interface are set for experimentation,

namely: quad input output fast read mode with XIP disabled and enabled, and dual input output fast

read mode with XIP activated.

All the mentioned modes are configured for 8 dummy cycles, except the first. Also, the modes are

entered from the simple SPI mode.

The instructions cache configuration is set to 2 ways, 16 lines and 16 words (32 bits) per line.

The performance is measured by using the TIMER peripheral to track the time duration for the

firmware execution. The serial clock frequency is 25 MHz, based on a 100 MHz system clock. The

firmware code used for the experiments is listed below:

i n t main ( )

{

/ / i n i t ua r t

u a r t i n i t (UART BASE,FREQ/BAUD) ;

t i m e r i n i t (TIMER BASE ) ;

u a r t p u t s ( ” \n\n\nHel lo wor ld !\n\n\n ” ) ;

i n t a = 11;

p r i n t f ( ” \nValue of t h i s i s %d\n\n ” , a ) ;

p r i n t f ( ” \n\nValue of Pi = %f \n\n ” , 3 .1415) ;

p r i n t f ( ” \nExecut ion t ime : %d c lock cyc les \n ” ,

( unsigned i n t ) t ime r ge t coun t ( ) ) ;

p r i n t f ( ” \nExecut ion t ime : %dus @%dMHz\n ” , t ime r t ime us ( ) , FREQ/1000000) ;

u a r t f i n i s h ( ) ;
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}

6.2.2 Results Analysis

Table 6.1 summarises the performance results obtained for the configurations presented above and

fixed cache parameters. The results are reported for board implementation runs.

Table 6.1: Performance Results.

Configuration
Execution time Performance Comparison

clock cycles duration(us) clock cycles duration

SRAM 568235 8916 – –
Quad IO Fast Read XIP enabled 768514 11178 +35.2% +25.3%
Quad IO Fast Read XIP disabled 840129 12022 +47.8% +34.8%
Dual IO Fast Read XIP enabled 876801 12453 +54.3% +39.6%

As expected, running code from the flash memory is considerably slower than from the SRAM. The

fastest running configuration mode is Quad IO Fast Read with XIP enabled as expected. The reason

is that in this mode the flash controller uses the maximum 4-bit data width for the address and data

segments, and the command segment is dropped as a result of enabling the XIP mode. Disabling

the XIP mode resulted in a 12.6% increase in clock cycles, which reflects the substantial impact of

the additional 8 clock cycles for the command segment. Nevertheless, the extra 8 clock cycles for the

command segment in quad IO still results in better efficiency than for dual IO with XIP enabled.

The performance results can be improved by decreasing the number of dummy cycles. The flash

memory device on the prototyping board supports adjusting the number of dummy cycles depending on

the operational serial clock frequency. Running the serial clock at 25MHz allows decreasing the default

number of dummy cycles (8 and 10) to 1. Adjusting the number of dummy cycles can be done through

the flash device’s Non-volatile Configuration Register and the Volatile Configuration Register.

The performance results could also be improved by supporting the continuous word (32 bits) read

mode (burst reads), which would allow the controller core to provide the cache with more memory words

for fewer controller transactions. The cache configuration also affects the performance.

The fastest mode is theoretically the quad IO fast read in DTR mode. It can spare a few clock cycles

compared to quad IO fast read mode with XIP enabled. The DTR mode was not used for the experiments

as it currently only accurately works in simulation.

6.2.3 Experimentation Setup 2

The code running performance of a FFT kernel implementation is tested. The FFT kernel is a more

normal code execution case than the one featured in the previous experimental setup and can largely

benefit from cache memory utilization.

The performance is tested against the SRAM performance for two cache memory configurations,

namely: 2 KB cache (2 ways, 16 lines, 16 words), and 16 KB cache (4 ways, 64 lines, 16 words). The
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flash controller configuration is set to quad input output fast read mode with XIP enabled, 10 dummy

cycles.

The performance is measured by using the TIMER peripheral. The serial clock frequency is 25 MHz.

The FFT kernel firmware code FFT and main functions are listed below:

void FFT( void ){

short i t e r , blocks , b u t t e r f l y s ;

short b max , bf max ;

short index , index 2 , index ROM ;

i n t re 1 , im 1 , re 2 , im 2 , mult 1 , mul t 2 ;

bf max = 1;

b max = N>>1;

for ( i t e r = 0 ; i t e r < i max ; i t e r ++){

for ( b locks = 0 , index = 0; b locks < b max ; b locks ++){

for ( b u t t e r f l y s = 0 , index ROM = 0; b u t t e r f l y s < bf max ;

b u t t e r f l y s ++ , index ++){

index 2 = index + ( b locks << i t e r ) ;

i f ( i t e r == 0){

re 1 = x [ 2 * reversed ( ( i n t ) index 2 ) ] ;

im 1 = x [ 2 * reversed ( ( i n t ) index 2 ) + 1 ] ;

re 2 = x [ 2 * reversed ( ( i n t ) ( index 2+bf max ) ) ] ;

im 2 = x [ 2 * reversed ( ( i n t ) ( index 2+bf max ) ) + 1 ] ;

}else{

re 1 = X[ 2 * index 2 ] ;

im 1 = X[ 2 * index 2 + 1 ] ;

re 2 = X [ 2 * ( index 2+bf max ) ] ;

im 2 = X [ 2 * ( index 2+bf max ) + 1 ] ;

}

mul t 1 = mult ( re 2 ,w[ 2 * index ROM ] ) ;

mul t 2 = mult ( im 2 ,w[ 2 * index ROM + 1 ] ) ;

/ * Real pa r t * /

X[ 2 * index 2 ] = mul t 1 − mul t 2 + re 1 ;
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X[ 2 * ( index 2+bf max ) ] = re 1 − ( mul t 1 − mul t 2 ) ;

mul t 1 = mult ( im 2 ,w[ 2 * index ROM ] ) ;

mul t 2 = mult ( re 2 ,w[ 2 * index ROM + 1 ] ) ;

/ * Imaginary pa r t * /

X[ 2 * index 2 +1] = mul t 1 + mul t 2 + im 1 ;

X [ 2 * ( index 2+bf max )+1 ] = im 1 − ( mul t 1 + mul t 2 ) ;

index ROM = index ROM + b max ;

}

}

bf max = bf max<<1;

b max = b max>>1;

}

return ;

}

i n t main ( void ){

/ / i n i t ua r t

u a r t i n i t (UART BASE, FREQ/BAUD) ;

t i m e r i n i t (TIMER BASE ) ;

p r i n t f ( ” \nCalcu la te FFT\n ” ) ;

FFT ( ) ;

p r i n t f ( ” \nExecut ion t ime : %d c lock cyc les \n ” ,

( unsigned i n t ) t ime r ge t coun t ( ) ) ;

p r i n t f ( ” \nExecut ion t ime : %dus @%dMHz\n ” , t ime r t ime us ( ) , FREQ/1000000) ;

u a r t f i n i s h ( ) ;

return 0;

}
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6.2.4 Results Analysis 2

Table 6.2 summarises the performance results obtained for the configurations presented.

Table 6.2: Performance Results.

Configuration
Execution time Performance Comparison

clock cycles duration(us) clock cycles duration

SRAM 2239800 25637 – –
Cache 2KB 2270865 26305 +1.386% +2.6%
Cache 16KB 2267595 26191 +1.24% +2.16%

As expected, running a cache-intensive FFT kernel from flash reports marginal performance degra-

dation compared to the SRAM performance for sufficiently large cache. The minimal performance degra-

dation is due to cache filling which once completed reveals very high hit rate. The 16 KB cache is more

adequate than the 2 KB cache presenting an important performance increase.

The average 32-bit word access overhead for the flash memory is around 100 clock cycles in the

selected mode (quad input output fast read mode with XIP enabled). While SRAM has 4 clock cycles

access latency. Thus, cache memory utilization is essential for approximating the SRAM and flash

memory code running performance levels.

6.3 FPGA Implementation Results

Tables 6.3 and 6.4 present the implementation results for the Kintex Ultrascale KU040 board FPGA

and the Cyclone V GT FPGA, respectively. The instructions interface is enabled.

Table 6.3: Xilinx FPGA Resource Utilization Results.
Resource Utilization

LUTs 565
Registers 519
DSPs 0
BRAM 0

Table 6.4: Intel FPGA Resource Utilization Results.
Resource Utilization

ALM 375
FF 561
DSPs 0
BRAM blocks 0

The Xilinx FPGA implementation could reach 384.6 MHz operation frequency. The Cyclone V FPGA

implementation can guarantee at least 152.53 MHz of operation frequency.

Comparing the resource utilization results from the Xilinx and Intel FPGAs to the ones reported

in [18] and [20] from CAST, respectively, it can be observed that the core consumes close to half the
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LUT resources for the Xilinx FPGA and almost 40% of the ALM resources for the Intel FPGA. This is

due to the fact that the CAST flash controller implements a more complex CPU interface (AHB) and a

more complex SPI interface that uses up-to 8 data lanes (Octal), and for being compatible with many

proprietary NOR SPI protocols.

6.4 ASIC Implementation Results

Table 6.5 presents the implementation results for the UMC 130 nm ASIC, with the instruction interface

enabled.

Table 6.5: UMC Asic Resource Utilization Results.
Type Instances Area(um2) Area %

sequential 518 16928.000 60.3
inverter 84 328.960 1.2
tristate 4 25.600 0.1
logic 996 10769.920 38.4
total 1602 28052.480 100.0

The CAST ASIC implementation [21] reports 11,500 Gates (Area) utilisation. To obtain comparable

values, the UMC ASIC total area (28052.480) should be divided by the area of NAND2 gate (5.12µm2)

which results in 5,479 Gates. The developed core ASIC implementation consumes nearly half the

resources compared to the CAST IP core, which is consistent with the FPGA results above and can

be explained in the same way.

The above results have been obtained for a 200 MHz system clock constraint. The maximum achiev-

able clock frequency has not been obtained but it should be much higher than this.
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Chapter 7

Conclusions

In the present dissertation, a new flash memory controller design is proposed and implemented, and

the bootloader program of IOb-SoC, an open-source RISC-V-based platform, is upgraded to accommo-

date the flash memory core for running code and permanent data storage. Software driver functions

have been developed for the controller, which is called in the bootloader program.

Flash memory is a cheap, reprogrammable and non-volatile memory solution, which is very useful for

embedded applications. Recent SPI NOR flash memory devices offer high-speed multi-bit access and

implement support for low latency read modes specially designed for direct code execution (execute-in-

place mode), avoiding the need for RAM code shadowing.

7.1 Achievements

Upon completion of this work, which reached all the initially defined objectives, the following main

achievements can be enumerated:

An SPI master flash controller core has been developed and can perform the basic memory-read

and memory-write operations with acceptable performance. The controller core can be dynamically

configured in several operating modes using configuration registers. The controller supports multiple

commands, multi-bit access, XIP mode, DTR mode and multi-length transaction segments.

The controller can be connected to the processor instruction bus and run code directly from the flash.

With a reasonably sized instruction cache, only a few per cent degradation in performance is observed

compared to running the code from SRAM. Without a cache or a small one, the performance penalty

can be significant (up to 25x slower), but it is still effective.

The bootloader program has been upgraded to load code to the flash and restart the system to run it.

By using the developed flash controller core driver functions, the bootloader features four main additional

features, namely: programming firmware to flash, erasing flash memory blocks, flash memory inspection

(useful for debugging) and flash controller pre-configuration for firmware execution.

The developed controller core has been successfully integrated into IObundle’s IOb-SoC platform,

which can now execute code from a flash device, and use the same device for permanent storage. This
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feature is vital for IOb-SoC to target stand-alone embedded systems that can boot from their own non-

volatile memory. The integration required the development of two IOb-SoC specific native interfaces,

one that connects to the L1 instruction cache for running code, and another that connects the controller

as a peripheral so that programs can use flash to save and retrieve non-volatile data.

Comparing the core’s performance to a commercially available implementation from CAST [18] in

terms of supported features, it can be said that both cores implement a similar set of essential features

for multi-data lane modes (simple, Dual and Quad), multi-speed modes (STR and DTR) and XIP mode.

The commercial core can also offer other supplementary features such as DMA support, auto-

configuration support and eight data-lane modes (Octal), unsupported in the developed core. Accord-

ingly, the resource usage of the commercial IP core is twice that of the developed flash controller.

In terms of the maximum serial clock frequency, the commercial core can achieve 100 MHz. The

developed core achieves a maximum frequency of one-fourth of the system clock frequency. It has been

tested with a 25 MHz serial clock speed for a 100 MHz system clock.

7.2 Future Work

The present work can be further expanded in several ways, particularly in terms of developing extra

features for the flash controller core.

The core does not support simultaneous use of the peripheral interface and instructions interface

because of the shared SW registers configuration. This limitation makes it impossible for the core to

respond to read or write requests while running firmware from the flash. The core can be extended to

implement independent instruction and peripheral interfaces.

A significant development for the core is to implement FIFO based transmit and receive buffers

which would allow for extended continuous read mode support, and generally less access latency for

contiguous memory locations. The added support for DMA and interrupts frees the CPU for other tasks,

providing overall better efficiency.

Another important missing feature is the implementation of an asynchronous serial clock solution,

which would allow higher serial clock frequencies but would incur in added complexity and resource

usage for dealing with clock domain crossings.

At the IOb-SoC level, a wear-levelling mechanism to increase the flash device lifespan is an interest-

ing future development. Flash memories specify a limited number of Program or Erase operations over

a particular memory block before the block becomes unreliable. Such a mechanism is accomplished by

distributing the Program or Erase operations into multiple memory sectors. By spreading the usage into

many sectors, the quick wearing of a particular memory sector is avoided.

The development of a parallel flash memory controller is also an interesting line of work, enabling the

prototyping with boards having parallel flash memory devices, which offer considerably higher access

speeds.
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