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Abstract

Autonomous vehicles scan their environment with a range of sensors (e.g. camera,
LiDAR) to take the safest action on the road. Therefore, locating and predicting the
motion of other road agents has motivated plenty of research on the computer vision
tasks of object detection and object tracking. This thesis takes an existing deep learning
pipeline for 3D object detection [30] and modifies it to make location and tracking
predictions from 3D semantic point clouds only. These point clouds are obtained in a
pre-processing step which exploits the fusion of dense 2D semantic segmentation results
with 3D point clouds that naturally offer depth information. The tracking method
from [40] is embedded within the network to predict objects’ displacements between
two consecutive frames, thus, predicting their velocity. An extra input channel for a
heatmap containing the objects’ location in the previous frame was also tested. Several
ablation studies were conducted to test the model’s performance using different types of
heatmaps, and not using heatmaps in any way. Results showed that a heatmap absent
model yielded overall better results, because our model could not predict the heatmaps
correctly. Our deep learning approach allows end-to-end learning for detection and
tracking, and runs 38% faster (18 FPS) than the baseline model (13 FPS).

Keywords: LiDAR, detection, tracking, deep learning, computer vision, displace-
ment, heatmap, ablation study.
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Resumo

Os veículos autónomos analisam o seu ambiente com diversos sensores (p.e. câmeras,
LiDAR) de forma a tomar a ação mais segura na estrada. Consequentemente, localizar
e prever a trajetória de outros agentes rodoviários motivou a investigação de métodos
de deteção e tracking de objetos, no domínio de Visão por Computador. Esta tese
modifica uma rede deep learning usada para a deteção de objetos 3D de forma a fazer
simultaneamente deteção e tracking de objectos a partir de point clouds semânticas 3D
apenas. Estas point clouds são obtidas num pré-processamento que tira vantagem da
fusão de resultados densos de segmentação semântica em 2D com point clouds 3D que
oferecem naturalmente informação de profundidade. O método de tracking é incluído na
rede de forma a que sejam feitas predições de vetores de deslocamento de objectos entre
duas frames consecutivas, podendo assim prever a sua velocidade. Adicionalmente, foi
testado um canal extra de input para um heatmap que contém a posição dos objetos na
frame anterior. Foram realizados diversos estudos de ablação para testar a performance
do modelo proposto ao usar diferentes estilos de heatmaps, e ao não usar o input extra de
heatmap de todo. Os resultados demonstram que um modelo sem heatmaps oferece os
melhores resultados, porque o modelo não consegue estimar os heatmaps corretamente.
A nossa rede deep learning consiste num único modelo end-to-end para a deteção e
tracking, e corre 38% mais rápido (18 FPS) que o modelo basal (13 FPS).

Palavras-chave: LiDAR, deteção, tracking, deep learning, visão por computador,
deslocamento, heatmap, estudo de ablação.
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Chapter 1

Introduction

In this work, a deep learning architecture is proposed to perform 3D object detection
and tracking, while taking advantage of the fusion of road environment information col-
lected by different sensors, namely, camera and LiDAR (Light Detection And Ranging)
sensors. The dense representation captured by the camera and the depth information
captured by the LiDAR complement each other, thus the network takes advantage of
a rich environment representation. The idea is based on a combination of the object
detection pipeline from Complexer-YOLO [29] and the online tracking method present
in CenterTrack [40].

Initially, 2D pictures obtained by a camera are fed into an off-the-shelf, pre-trained
model [11] that performs semantic segmentation. The model outputs RGB images where
each pixel color represents a class label. Then, the 2D semantic segmentation results are
projected onto the 3D point cloud obtained by a LiDAR sensor. This is achieved by a
mapping between pixels in the image and points in the point cloud, given by the camera
projection matrix. Then, the semantic labels are copied from the 2D domain to the 3D
domain. The result of this first module is a 3D semantic point cloud where each point,
within the camera FoV (Field of View), has a class label associated with it. The 3D
semantic point clouds are obtained in this pre-processing step, i.e., they are obtained in
an offline manner. The object detection module consists of a single-shot object detector,
Complex-YOLO [30], which was altered to accept as input the 3D semantic point clouds.
With the object detection task achieved, the tracking method present in CenterTrack
[40] is embedded within the network. Thus, accomplishing the proposed deep learning
architecture that takes a sequence of road data scenes as input and outputs oriented 3D

1



1.1. MOTIVATION

objects’ locations, velocities, and tracking IDs for the respective bounding boxes. The
tracking method is online, i.e., the outputs are a consequence of the current and previous
frames only, there’s no peeking into the future.

1.1 Motivation

In recent years, autonomous driving has gathered increasing attention from the in-
dustry. Modern vehicles already perform some automated tasks such as adaptive cruise
control and assisted parking. Besides improving comfort, vehicle automation can also
improve safety on the road. A good perception of the fast-changing surroundings is
required to take the safest actions within the road environment. Consequently, today’s
vehicles pushing the envelope of automated driving are equipped with a wide range of
sensors, such as cameras and 3D LiDAR sensors, to scan their surroundings.

My thesis focuses on developing a deep learning 3D object detection and tracking
pipeline for the road environment. In a pre-processing step, the method exploits the
fusion of semantic information from RGB images with LiDAR point clouds that naturally
provide object location to achieve a 3D semantic point cloud. The goal is to make
detection and tracking predictions based on this 3D input only.

1.2 Contributions and Outline of the Thesis

The contributions of this thesis are three-fold:

• Modify Complex-YOLO pipeline to accept 3D semantic input;

• Embed tracking prediction on the Complex-YOLO architecture;

• Conduct an ablation study for the proposed 3D Object Detection and Tracking
module (see appendix Fig. A.1).

In Chapter 2, a literature review is conducted on the tasks of semantic segmentation,
object detection, and object tracking applied to the 3D point cloud. Then, in Chapter 3,
the methods on which this thesis work is based are described in further detail. In Chapter
4, the proposed pipeline is described in a sequential approach. Initially, the pipeline input
data from the KITTI dataset is presented. Then, the pipeline’s three major modules are

2



CHAPTER 1. INTRODUCTION

described: the semantic segmentation module (Sec. 4.2), the 3D Object Detection and
Tracking module (Sec. 4.3), and the 3D Object Detection and Tracking module (Sec.
4.4). With the pipeline detailed, Chapter 5 presents the experimental results obtained in
the testing stage of the proposed pipeline. Lastly, in Chapter 6, the conclusion discusses
the achieved work in retrospect.

3
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Chapter 2

Related Work

In this chapter, a literature review is performed on existing methods that explore the
3D LiDAR point cloud to achieve semantic segmentation, object detection, and object
tracking, in the three-dimensional space. The point cloud data format is introduced as
well as the techniques developed to exploit its advantages for the mentioned computer
vision tasks.

2.1 The Point Cloud

As the name indicates, a point cloud is a set of data points in space, represented in
a three dimensional coordinate system, as shown in Fig. 2.1. They are usually obtained
by 3D scanners, such as 3D LiDAR, or an RGB-D sensor. While LiDAR only provides
depth information, RGB-D sensors get the color of the scene, but has a lower range as
the LiDAR one. On the other hand, LiDAR point clouds are much sparser than RGB-D
ones.

In contrast to 2D images, which are grid-like structures, point clouds are unstruc-
tured, i.e., they are unordered and (generally) a very sparse set of points. These char-
acteristics prove to be the main challenges of handling point clouds. However, rich
underlying 3D information resides in this data format, such as the inherent depth
information and location of objects in space. Therefore, recently, several methods
[23, 24, 10, 16, 34, 12, 28, 37, 13, 29] have partially but successfully exploited some
of these characteristics and improved significantly the current State-of-the-Art (SOTA)
in 3D semantic segmentation, object detection, and object tracking. However, applying

5



2.2. 3D SEMANTIC SEGMENTATION

Figure 2.1: Example of a LIDAR point cloud mounted on a vehicle and scanning a road
scenario. Figure obtained from [35].

deep learning techniques to point clouds is still an active problem in the computer vision
community with many open problems that motivate plenty of research.

2.2 3D Semantic Segmentation

Segmentation in point clouds consists of the assignment of a class label to each 3D
point. For a better visualization of semantic segmentation on point clouds, different
classes are associated with different point colors, as shown in Fig. 2.2. Both global
geometric structure and small details of each point cloud are essential to successfully
segment the data. The goal of semantic segmentation is the division of the input point
cloud into subsets of points that share the same semantic meaning. When it comes to
dealing with point clouds as input, two main paradigms exist, projection-based methods

6



CHAPTER 2. RELATED WORK

Figure 2.2: Semantic segmentation results on a 3D point cloud. The colors represent
each different semantic score. Here, the color pink means the points belong to the road,
blue means the point represent a car, yellow is for the buildings’ points and green is for
any type vegetation. Figure obtained from [20].

and point-based methods, reviewed in Secs. 2.2.1 and 2.2.2, respectively.

2.2.1 Projection-based Methods

Due to its unstructured format, various approaches have been proposed to handle
point clouds. These consist on the projection of the input point cloud onto multiple-
views representation, spherical representation, or volumetric representation.

Multi-view representation

A semantic segmentation pipeline for 3D point clouds projected on multi-view rep-
resentation was proposed in [15]. First, it renders 2D images from the input point
cloud. Then it feeds the synthetically obtained images to a Convolutional Neural Net-
work (CNN). The network performs 2D semantic segmentation using a well established
and SOTA method, namely [19]. The pipeline is agnostic to which method is used for

7



2.2. 3D SEMANTIC SEGMENTATION

2D segmentation. It retrieves three rendered images (RGB, depth, normals) from the
original point cloud. The 2D segmentation is performed and the three scores are added,
making the final segmentation prediction of the 3D point cloud.

Instead of obtaining 2D renders of arbitrary views of the point cloud, [32] propose
a virtual orthogonal camera for each point belonging to the point cloud. The view is
obtained by generating a fixed size tangent plane to every point. Neighboring points
are projected onto the plane, obtaining a discrete signal through signal interpolation to
a 2D plane. Each of these images is then fed to a CNN that performs typical planar
convolution. Results showed great scalability for large point clouds with millions of
points.

Spherical representation

RangeNet++ [20] propose a fast, real-time, method for semantic segmentation of 3D
point clouds. It takes the raw point cloud as input; projects it onto a spherical represen-
tation, i.e, a 2D grid representation; and applies a 2D CNN as the backbone structure
that performs the semantic segmentation, thus obtaining semantic labels for each pixel
of the image. Afterwards, the point cloud is reconstructed and a post-processing step
is proposed. This step consists of a GPU-enabled k-Nearest Neighbors (kNN) based
algorithm, which tackles the discretization errors and blurry outputs from the 2D CNN.

Volumetric representaiton

The SEGCloud [33] framework applies a 3D Fully Convolutional Neural Network
(FCNN) on the voxelized 3D point cloud. This leads to coarse segmentation since all
points inside a voxel are assigned the same label, making the accuracy results dependent
on voxel size. To refine the segmentation results, a post-processing step using interpola-
tion and a Conditional Random Field (CRF) is used. The interpolation step re-projects
the coarse voxel predictions back to the point cloud to reduce information loss caused
by coarse voxelization. The CRF is used to fine-graine segmentation results and it is
modeled by an RNN that is trained alongside the FCNN.

In [7], the authors focus on the inherently sparse nature of 3D point clouds and how
inefficient, concerning the memory and computation costs, the standard dense implemen-
tations of CNNs are when applied directly on point clouds. Prior sparse implementations

8
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of CNN dilated the sparse data at each layer by applying full convolutions, they propose
a simple solution that restricts the output of the convolution only to non-empty voxels.
This novel operator designated submanifold sparse convolution is the building block of
the proposed network called Submanifold Sparse Convolutional Network (SSCN). Re-
sults showed that this method is suitable for efficient processing of high dimensional and
spatially-sparse data, including point clouds.

2.2.2 Point-based Methods

In order to take full advantage of the 3D point cloud data format and fully exploit its
intrinsic geometric and structural information, several methods work on learning from
point clouds directly without any transformation. Existing point-based methods are
split into three categories, point-wise MLP, point convolution, and graph-based.

Point-wise MLP

These type of methods usually implement shared MLP as the basic building block
of their networks due to its efficiency. This simplification comes at a cost, point fea-
tures extracted by shared MLP do not capture the local geometry nor the relationship
among neighbouring points, which is essential for the segmentation task. Therefore,
these methods employ different strategies in their networks in order to gather wider
contextual information for each point, thus learning richer local structures.

In [23], Qi proposes the PointNet, a pioneering work in learning directly from raw
point clouds. It is a deep learning architecture that takes point clouds directly as input
to avoid the increase of data volume and the introduction of quantization artifacts, when
transformed into 3D voxel grids. PointNet learns point-wise features with stacked MLP
layers, and extracts a global descriptor with a max-pooling layer. PointNet comprises
two networks: a classification network which extracts global features from the input and
a segmentation network that concatenates the global features with the point features, in
order to predict the local geometry and global semantics. The output consists of class
labels and the semantic labels for each point. Geometric transformations were considered
in order for the semantic labeling to work independently of such transformations. The
PointNet architecture is shown in Fig. 2.3.

Motivated by the success and advantages of methods that directly operate on raw

9



2.2. 3D SEMANTIC SEGMENTATION

Figure 2.3: PointNet architecture. The classification network takes n input points from
the point cloud, then input and feature transformations are applied and point-wise fea-
tures are aggregated by the max pooling operation. The output for this network consists
of classification scores for k classes. The segmentation network starts by concatenating
global and local features and outputs point-wise labels. m denotes the size of the learned
point-wise features. [23].

point clouds, the work in [3] aims to improve upon the way the point neighborhood
region is addressed to aggregate features. In contrast to PointNet [23] that performed
aggregation globally, the authors in [3] propose to define the point neighborhoods in a
dynamic manner that is adaptive and sensitive to local geometry by applying k-means
clustering on the point cloud features in the input space, and then define dynamic
neighborhoods in the learned feature space by applying kNN. Dedicated loss functions
such as pairwise distance loss and centroid loss are applied to further structure the
learned point feature space.

Point Convolution

The success of CNNs relies on the convolution operator that detects the existent
high correlation in local groups of values, represented in a regular data format such as
an array. Given the nature of point clouds, an unstructured and unordered data format,
the convolution operation cannot be easily transferred and applied to them. To avoid
information loss, associated with projections made to the point cloud, several methods
have been proposed to effectively apply convolution operations directly on point clouds.

Motivated by the universal property of the spatially-local correlation, which is inde-

10



CHAPTER 2. RELATED WORK

pendent of data representation, and the success of the convolution operator in exploiting
said correlation in regular data representations, authors at [16] address the issue of apply-
ing convolution directly on the unordered and irregular data format of point clouds and
propose the PointCNN. Direct convolution application leads to arbitrary ordering and
loss of shape information. The authors proposed a learnable X-transformation matrix
dependent on input point cloud size, using an MLP. The goal is to weight and permute
input features at the same time. Then, apply convolution on the transformed features.
This makes the X-Conv block, the basic building block of the developed PointCNN.
Results show that the learned X-transformations are not ideal. However, their use is far
better than the direct application of convolution and it is competitive with the SOTA.

Graph-based

Some methods have used graph representations of point clouds and experimented
with graph networks to capture intrinsic geometric shapes and structures embedded in
3D point clouds.

A novel graph-based structure SuperPoint Graph (SPG) is proposed at [12], for an
efficient representation of large-scale point clouds with millions of points, as shown in
Fig. 2.4(b). The first step of the proposed method takes the whole input point cloud
and efficiently partitions it into simple geometrical shapes, called superpoints, in an
unsupervised manner. From the superpoints (primitive geometric shapes), the attributed
directed SPG is built. Each node of the SPG corresponds to a small and semantically
homogeneous part of the point cloud. These smaller point clouds, the superpoints, are
fed into a PointNet [23], that learns the spatial distribution of each superpoint. The final
step consists of contextual segmentation where each superpoint is classified based on its
PointNet embedding results and its local surroundings within the SPG. This is done
by applying a graph CNN that naturally exploits the contextual relationship between
object parts, given the proposed SPG representation. Experimental results show that
the initial unsupervised partition step of the point cloud could be improved.

2.3 3D Object Detection

The 3D object detection task consists of accurately detecting the presence and lo-
cation of all objects of interest in a given scene. The object detection task predicts a
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Figure 2.4: Superpoint graph representation of a toy point cloud (a), represented by a
superpoint graph (b). Each superpoint is fed into a PointNet whose output is refined,
by considering SPG’s edges (superedges) connections, to produce the final labelling (c).
Figure obtained from [12].

Figure 2.5: Visualization of 3D bounding boxes projected on RGB images and LIDAR
point clouds, in the upper and lower row, respectively. Figure obtained from [39].

class label and estimates a 3D oriented bounding box for each object. Examples of 3D
bounding box predictions are shown in Fig. 2.5. Two main paradigms exist for 3D object
detection methods, region proposal-based methods and single shot methods. They are
addressed in Secs. 2.3.1 and 2.3.2, respectively.

2.3.1 Region Proposal-based Methods

These methods initially propose several possible regions in space that contain objects
of interest, these regions are called proposals. With the 3D search space reduced, region-
wise features are extracted to obtain the class label of each proposal. Region proposals
allow the generation of high quality detections at later detection stages. However, any
missed object instances at the proposal generation stage can’t be recovered afterward.
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Therefore, achieving a high recall during the region proposal stage is critical for these
methods. These methods can be further categorized into two categories according to
their region proposal generation approach: multiple view and frustum-based methods.

Multi-view Methods

Multi-view methods fuse proposal-wise features obtained from multiple viewpoints,
such as bird’s-eye view (BEV), the LIDAR front view or even RGB images, to estimate
the oriented 3D bounding boxes.

MV3D, presented in [2], is a framework designed for 3D object detection in a road
scene. It takes advantage of multiple views obtained from LIDAR (BEV and front view)
and from RGB images obtained from a camera. The input of the network consists of
a multi-view representation of the 3D point cloud and a 2D image. The 3D object
proposals are obtained from the BEV map and then projected onto the RGB image and
the LIDAR front view. The reasoning for using the BEV to propose 3D bounding boxes
lies in the fact that in the road scene all vehicles are on the ground level and occlusions
are much limited from this perspective. With box candidates on these three different
views, the region-wise features are fused to predict oriented 3D bounding boxes. The
multi-view features are fused by a proposed region-based fusion network that deeply
fuses the multi-view feature information to accurately predict oriented 3D bounding
boxes.

Frustum-based Methods

Frustum-based methods start generating region proposals from existing 2D object
detectors and then extract 3D frustum candidates for each 2D proposal region. Efficient
proposals from 3D frustum point clouds is possible, however, these methods’ performance
is highly limited by 2D image detectors and, in the worst case scenario, an object can
be entirely missed if it is not detected in 2D.

Qi et al., in [22], propose the Frustum PointNets, a pioneering work in taking raw
point clouds as input to localize and classify objects in 3D space. The proposed frame-
work for 3D object detection, which takes an image and a point cloud as input, consists
of three main modules: frustum proposal, 3D instance segmentation, and 3D amodal
bounding box estimation, as shown in Fig. 2.6. The first module starts by applying a
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Figure 2.6: The 3D object detection method by Frustum PointNet starts by proposing
a 2D region and then lifts it into a frustum region in the 3D space. Finally, PointNet is
applied on the frustum to perform object classification and to estimate the amodal 3D
bounding box. Figure obtained from [22].

well known 2D object detector network [17] (the whole framework is agnostic to which
one is used) to obtain 2D bounding boxes from a viewpoint. Given the camera projection
matrix, the 2D bounding box can be lifted to a frustum, whose near and far planes are
specified by the depth information from the point cloud. This frustum defines the 3D
search space for the object, thus the frustum proposal is obtained. The second module
applies PointNet, [23], to learn features directly from the point cloud and to perform
3D instance segmentation. The last module estimates the object’s amodal oriented 3D
bounding box by applying a regression PointNet.

2.3.2 Single Shot Methods

Single shot methods do not perform the region proposal generation step and as a
result, they tend to run faster and are easier to adapt to real-time applications. Since no
region proposal stage is performed, these methods directly, i.e., in a single stage, predict
the class probabilities of objects and regress their respective oriented 3D bounding boxes.

The PIXOR, [38], is a real-time 3D object detector that takes point clouds as input
in the context of autonomous driving, it outputs the bounding boxes and respective
orientations decoded from pixel-wise predictions of the 3D object estimate. To ease
computation cost, the point cloud scene is represented from the BEV, this is feasible in
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the context of autonomous driving since the objects are all on ground level and they
don’t overlap each other as it occurs in first-person view corresponding to the LIDAR
front view angle. Being a single stage dense object detector and the non usage of anchors
also lead to a simpler detection framework capable of meeting real-time requirements.

VoxelNet, in [41], is an end-to-end deep learning architecture for point cloud based
3D object detection which aims to learn features directly from a 3D voxel grid con-
structed from a LIDAR point cloud. No manual feature representations are used in
order to effectively exploit the 3D information. Due to the sparsity of point clouds, vox-
els with less than a threshold number of points are not processed to reduce memory and
computation costs. A novel Voxel Feature Encoding (VFE) layer combines point-wise
features with a locally aggregated feature thus transforming a group of points inside each
voxel into a unified feature representation. Stacking several VFE layers allows learning
more complex features that characterize 3D shape information. The 3D convolution
layers further aggregate local voxel features. The point cloud is now encoded in a tensor
like data structure and it is fed into an RPN algorithm [27] that outputs the detection
result. VoxelNet unified point cloud feature learning with the RPN algorithm used for
3D detection tasks. Results showed strong performance. However, the method is too
slow (4.4 FPS) for real-time applications, due to the 3D convolutions and the sparsity
of voxels.

Lang et al., in [13], propose a method for 3D object detection named PointPillars that
performs end-to-end learning using only convolutional layers for 2D data. The frame-
work takes point clouds as inputs and outputs predictions of oriented 3D bounding boxes
for vehicles, cyclists, and pedestrians. It comprises three main stages: a feature encoder
network that transforms the point cloud to a sparse pseudo-image, a backbone consisting
of a 2D CNN, and a detection head responsible for detecting and regressing 3D bound-
ing boxes. The novel encoder network applies PointNet, [23], to learn features of point
clouds organized in vertical columns (pillars) and it encodes the learned features as a
pseudo-image. The pseudo-image is fed into a 2D object detection pipeline that outputs
3D bounding boxes. While only using LIDAR point clouds in the training stage, results
demonstrated that the PointPillars network outperforms, in terms of Average Precision
(AP), most fusion approaches that use LIDAR and images. Moreover, PointPillars can
run at 62 FPS on both the BEV and 3D KITTI benchmarks [6], since 2D convolution
operations are extremely efficient on modern GPUs. The speed and detection perfor-
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mance make PointPillars highly suitable for practical applications in real-time driving
scenarios.

2.4 3D Object Tracking

The task of 3D object tracking is to predict the location of an object, given its
location in the previous frames. This task is dominated by methods that perform the
tracking step after the detection step. 3D object tracking is an emerging investigating
topic which has been increasingly attracting attention. An example for image-based and
another for LiDAR-based approaches are presented in Secs. 2.4.1 and 2.4.2, respectively.

2.4.1 Image-based Methods

CenterTrack, in [40], is a point-based framework for joint object detection and track-
ing. In their approach, each object is represented by a unique point located at the center
of its 2D bounding box. The point is tracked through time. A point is associated with
each detected object therefore, at each frame, there is a constellation of objects repre-
sented by a heatmap of their respective points. The object detector used works solely
on the input from two consecutive frames as well as a heatmap of previous tracklets.
The output is an array that stores the offset between the current object center point and
its center point in the previous frame. The offset is learned and the detector outputs
predictions for the position of the object in the following frame. It learns to jointly
detect objects from the current frame and their offsets relative to the previous frame.
Since only consecutive frames are considered, a trade-off is made, the ability to have
long-range tracks is discarded in favor of simplicity and speed. Results showed that this
trade-off was worth it on 2D datasets and even on monocular 3D object tracking ones.

2.4.2 LIDAR-based Methods

By using the rich and fine-grained geometric structure information of point clouds,
the 3D object tracking task should overcome the problems of 2D image-based tracking
methods which include occlusion, scale variation and illumination issues because the
geometric information captured by LIDAR prevails under bad visibility circumstances.
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Simon et al., in [29], propose a real-time 3D object detection and tracking framework
for point clouds, in the context of autonomous driving, as shown in Fig. 2.7. The
framework, named Complexer-YOLO, takes LIDAR point clouds and RGB images as
input and it is comprised of the tracking pipeline that incorporates the whole detection
pipeline in itself. The detection pipeline starts by performing 2D semantic segmentation
of the front camera images using a pre-trained and efficient off-the-shelf 2D semantic
segmentation network [21]. The input point cloud is voxelized and by fusing the semantic
scores, obtained from the front view image, a voxelized semantic point cloud is obtained.
For the final 3D bounding box prediction, the Complex YOLO, [30] by the same authors,
is used. The tracking pipeline starts by grabbing frames from the stream of LIDAR and
RGB stream, then the whole detection pipeline is executed on those frames. Lastly,
temporal information is used to improve the robustness and accuracy of multi-target
tracking. Although object detection is achieved via a deep neural network, the tracking
method is based on a classic method. Moreover, the authors noted some issues related
with the IoU metric for 3D bounding box evaluation, namely the fact that it takes too
long to process the IoU metric for rotating 3D bounding boxes and the fact that a
bounding box rotated by an angle of 180◦ has the same IoU, despite having the opposite
direction. To this end, a simplified and powerful evaluation metric for comparison of
object detections, called Scale-Rotation-Translation score (SRFs), is proposed which
speeds up inference time up to 20%.

Our method is based on the Complexer-YOLO idea. However, we do not perform
point cloud voxelization since it is computationally expensive. Instead, we project the
point cloud to the ground plane and feed it to a CNN. By doing this, we increase the
FPS during inference by 38%. Moreover, we propose a deep learning network to achieve
end-to-end joint detection and tracking, based on 3D semantic point clouds, in a faster
way.
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Figure 2.7: Complexer-YOLO framework. The 3D object detection pipeline is used in
our proposed pipeline. Figure obtained from [29].
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Methods

In this chapter, a selection of the relevant methods is presented in more detail com-
pared to the methods presented in Sec. 2, since these are the methods on which this
thesis is based. Therefore, a full understanding of these methods is essential. Based on
Complexer-YOLO [29], our pipeline feeds a 3D semantic point cloud to the Complex-
YOLO [30] model, which is a 3D object detector. Since Complex-YOLO expands on
YOLOv2 [25], the latter is detailed first in Sec. 3.1 and the former is presented in 3.2.
No official code was released for Complex-YOLO. However, several implementations
can be found online. Some are true to the original paper, thus, using YOLOv2 as the
base for Complex-YOLO, while others, more recent versions, are based on YOLOv3 and
YOLOv4, which are newer versions of the YOLO model. The chosen and later adapted
source code1 was an implementation of Complex-YOLO based on YOLOv4 [1] since it
was the most recent version of YOLO at the time. The third and fourth versions of
YOLO are consecutive improvements over YOLOv2. However, most aspects of the ob-
ject detector remain the same. Key differences from YOLOv2 to YOLOv3 and YOLOv4
are detailed in Sec. 3.3 and Sec. 3.4, respectively.

3.1 YOLOv2

YOLOv2 [25] is a real-time 2D object detector whose input is a single RGB (Red
Green Blue) image, I ∈ RH×W×3. The network architecture comprises convolutional
and pooling operations only. The final layer is a 1× 1 convolutional layer with N filters.

1https://github.com/maudzung/Complex-YOLOv4-Pytorch
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Figure 3.1: Given a square image I ∈ RH×W×3, a single forward pass through the
YOLOv2 network produces an output feature map F̂ ∈ RS×S×N , where S = H/32 =
W/32. Each grid predicts B = 5 bounding boxes based on five different anchors. Each
cell predicts N = B × (5 + C) parameters, including the boxes’ spatial information, an
objectness score, and C conditional class probabilities given there is an object inside the
predicted box.

In the middle of the feature extraction, the input image I is downsampled throughout
the network by a factor of 32, producing an output feature map F̂ ∈ RH

32
×W

32
×N . This

feature map depicts a grid where each cell is responsible for predicting B bounding boxes.
YOLOv2 uses anchor boxes to predict bounding boxes. These anchor boxes are selected
via k-means clustering on the training set bounding boxes to generate fitting anchor
boxes. The authors chose k = 5 as a good trade-off between high recall and model
complexity. Therefore, for each cell in the output feature map, the network predicts
B = 5 bounding boxes based on the k = 5 anchor boxes. For each bounding box, the
network predicts its coordinates and dimensions, tx, ty, tw, th, an objectness score to, and
C class probabilities, one for each class of the dataset. Therefore, the number of channels
in the output feature map is given by

N = B × (5 + C). (3.1)

The output feature map F̂ consists of a division of the input image I onto a grid, whose
cells represent regions that propose bounding box candidates. Therefore, YOLOv2 works
like a single-shot RPN (Region Proposal Network), as illustrated in Fig. 3.1.

Each box predicts its coordinates, (tx, ty), in the output feature map as well as its
dimensions, (tw, th), based on the anchor box’s dimensions. This process is detailed in
Fig. 3.2. Besides the spatial information, each box predicts its objectness score, to, given
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Figure 3.2: Example of YOLOv2’s bounding box prediction (blue) based on an anchor
box (dotted line). The coordinates predictions, tx and ty, pass through a sigmoid ac-
tivation function to bound the values between [0, 1], thus giving their relative location
inside the grid cell. In the grid-like feature map, the bounding box coordinates bx and
by are obtained by their relative location inside the current cell, σ(tx) and σ(ty), added
to the offset (cx, cy) from the top left corner of the grid, in order to obtain the location
amid the whole feature map. The width and height of the bounding box, bw and bh, re-
spectively, are scaled from the anchor box’s dimensions. These results are then upscaled
to the original input size. Figure taken from [25].

by

to = Pr(Object)× IoUground truth
prediction , (3.2)

which reflects how confident the model is that the box contains an object and how
accurate the predicted box is. If no objects exist in a cell, the objectness score should be
zero, otherwise, it should equal the IoU (Intersection over Union) between the ground
truth and the predicted bounding box. Lastly, a class probability is predicted as a
conditional probability of a detected object belonging to a class given that there is an
object inside the predicted box, i.e., P (Classc|Object), with c ∈ C.
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3.1.1 YOLOv2 Loss Function

Each cell in the output feature map predicts B = 5 bounding boxes. Thus, the
network predicts many irrelevant boxes that either (1) do not contain any object or (2)
contain an object, but other boxes capture the object better, i.e., have higher IoU with
the ground truth box. Therefore, the authors introduce the concept of a bounding box
responsible for predicting an object. Should the center of an object fall into a grid cell
of the output feature map, that grid cell is designated the responsible cell for detecting
that object. This leads to B = 5 boxes within that responsible cell. At training time,
only one box is chosen to be responsible for predicting an object. It is the one with the
highest IoU between itself and the ground truth. YOLOv2’s loss function is given by

LYOLOv2 = λcoord
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(3.3)

where 1obj
i depicts a binary variable which equals to one if an object appears in cell i

and 1
obj
ij denotes that the jth bounding box is responsible for that object prediction.

Moreover, 1noobj
ij equals to one if (i) there is no object inside cell i or (ii) there is an

object, but the jth box of cell i is not responsible for that object. Otherwise, it equals
zero. Therefore, the loss function only penalizes coordinate error for responsible boxes,
and classification error is only penalized if an object exists in that grid cell, hence the
conditional class probability mentioned above.

The loss function (3.3) consists of a multipart loss whose first and second terms repre-
sent the localization loss, the third and fourth terms represent the confidence (objectness)
loss, and the last term depicts the classification loss. Localization and confidence loss
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terms consist of the SSE (Sum of Squared Errors) in the model output. SSE equally
weights width and height errors in large and small boxes. However, small variations of
the boxes’ dimensions should be penalized more in small boxes than in large ones. To
remedy this, the model predicts the square root of the bounding box width and height
instead of directly predicting the width and height of the bounding box. Lastly, the
classification loss is only computed for a class given that there is an object in the cell i.
It consists of the cross-entropy loss to measure the performance of the output probability
value for each class.

In the YOLOv2 paradigm, the majority of predicted boxes are not responsible for
detecting objects. This sets their objectness scores (confidence scores) to zero, thus,
overwhelming the gradient from cells that contain objects. This leads to model in-
stability, making the training diverge early on. To tackle this issue, a smaller weight
is attributed to the confidence loss of non-responsible boxes, by multiplying its term
with λnoobj = 0.5. Similarly, the localization loss is multiplied by λcoord = 5 to assign
more weight to the localization error in the backward propagation of errors to assure
convergence in the early stages of training.

At test time, the C conditional class probabilities are multiplied by the box’s object-
ness score (3.2):

P (Classc|Object)× P (Object)× IoUground truth
prediction =

P (Classc,Object)× IoUground truth
prediction , c ∈ C. (3.4)

This results in class-specific confidence (objectness) scores for each predicted box. These
scores reflect the probability of a given class appearing in the box and how well the pre-
dicted box captures the object. Lastly, the iterative NMS (Non-Maximum Suppression)
algorithm is applied. It filters the best fitting bounding box, for each object, out of all
the predicted bounding boxes. It works by selecting the box whose objectness score is
higher and then removing similar boxes with high IoU with the selected box.

3.2 Complex-YOLO

Complex-YOLO [30] is a real-time 3D object detector whose input is LiDAR-based
only. It expands on YOLOv2, by predicting the orientation of the regressed bounding
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Figure 3.3: The Complex-YOLO pipeline. It takes as input the RGB-encoded hand-
crafted features of the point cloud, feeds it into a modified YOLOv2 network which
predicts two extra box parameters: the real and imaginary part, tre and tim, of the
heading angle of the predicted bounding box. Figure taken from [30].

boxes. The input point cloud is pre-processed into a BEV RGB image where each chan-
nel encodes handcrafted features. These channels encode the points’ height, intensity,
and density, respectively. The resulting BEV RGB map is fed into the Complex-YOLO
network whose novel E-RPN (Euler Region Proposal Network) is responsible for esti-
mating the heading of the object by adding a real and an imaginary fraction, tre and
tim, to the regression network. With the oriented bounding boxes obtained on the BEV
perspective, a pre-defined height for each class is attributed to the objects to output 3D
bounding boxes. Complex-YOLO’s pipeline is illustrated in Fig. 3.3.

Following YOLOv2, Complex-YOLO also predictsB = 5 bounding boxes per grid cell
based on five different anchor boxes. Since boxes now comprise their orientation angle,
the degrees of freedom increased, i.e., the number of possible anchors increased. However,
Complex-YOLO keeps the number of predicted bounding boxes B = 5 for efficiency
reasons. Therefore, based on the KITTI dataset box distribution, three different sizes
and two angle directions were selected for anchor boxes, w.r.t BEV orientation: (1) car
size (heading up), (2) car size (heading down), (3) cyclist size (heading up), (4) cyclist
size (heading down), and (5) pedestrian size (heading left).

The novel E-RPN extends the Grid-RPN, used in YOLOv2, by also predicting a
complex angle

bφ = arg(|z|eibφ) = atan2(tim, tre) (3.5)
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Figure 3.4: Example of a Complex-YOLO’s bounding box prediction (blue solid line)
based on an anchor box (black dashed line). The transition from the 2D BEV map to
3D is done by a predefined height for each class (blue dashed line). The new predicted
parameters, tim and tre, encode the complex number tre + itim, whose phase is given by
(3.5). Figure taken from [30].

encoded by an imaginary and real part, tim and tre, respectively, which are predicted
by the output feature map. The estimated angle corresponds to the orientation of the
predicted bounding box, as illustrated in Fig. 3.4. With the two added parameters to
predict for each bounding box, the number of filters in the output feature map is now
given by

N = B × (7 + C). (3.6)

Complex-YOLO loss function extends YOLOv2’s loss function (3.3) by adding an
Euler regression part:

LComplex-YOLO = LYOLO + LEuler. (3.7)

Complex-YOLO predicts a complex number |ẑ| eib̂φ encoded by tim and tre. However,
the predicted modulus |ẑ| value is irrelevant to the orientation of the proposed bounding
box, consequently, the loss function assumes that both the predicted and ground truth
complex numbers fall onto the unit circle, i.e |ẑ| = 1 and |z| = 1. Consequently, only
phase estimation is penalized. The network aims to minimize the absolute value of the
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squared error to get a real loss:
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Similarly to (3.3), the Euler loss term is also scaled by the factor λcoord to guarantee
convergence in early training stages. Moreover, the prediction of tim and tre is only
penalized for responsible bounding boxes, i.e., 1obj

nj equals to one only if the jth bounding
box predictor in cell n has the highest IoU between itself and the ground truth box.

3.3 YOLOv3

YOLOv3 [26] is the follow-up work of YOLOv2. Similarly, it takes as input a single
RGB image, I ∈ RH×W×3, and performs bounding box regression in the same way from
an output feature map. However, YOLOv3 innovates by making predictions at three
different scales, i.e., an output feature map, F̂ ∈ RH

R
×W
R
×N , is obtained for each scale.

R denotes the downscaling factor of the feature maps and N denotes the number of
channels, which, similarly to YOLOv2, is given by (3.1) with B = 3, i.e., it predicts
B = 3 bounding boxes per grid cell of the output feature map.

YOLOv3’s architecture (illustrated in Fig. 3.5) takes advantage of residual connec-
tions between lower-level features and higher-level features to build the output feature
maps at each scale. Downscaling of the feature maps is achieved by convolutional op-
erations to prevent the loss of low-level features attributed to pooling. The first scale
outputs a feature map, F̂ , with a similar downscaling factor to YOLOv2, i.e., R = 32.
This scale is adequate at detecting large objects but lacks in detecting small objects.
Consequently, a second and third scale with downscaling factors R = 16 and R = 8,
respectively, are introduced in the network. Predicting at a higher resolution feature
map allows fine-grained bounding box regression, which results in better detection of
small objects in the image.

2https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b. Accessible on
July 10, 2021.
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Figure 3.5: Simplified YOLOv3 architecture. From a single input image, three output
feature maps are obtained, one for each scale. The network takes advantage of residual
connections, i.e., shortcut connections, to concatenate low-level features with high-level
features. The first scale, the shallowest of the three, detects large objects more easily but
struggles with smaller objects. Deeper in the network, the second scale detects objects
of medium size. The deepest of the three, the third scale, contains the higher-level
features, which together with a higher resolution feature map allow better detection of
small objects. Figure taken from2.

As stated in Sec. 3.1.1, YOLOv2 computes its loss function in (3.3) concerning the
output feature map. The same idea is applied in YOLOv3, thus, the following loss
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function is computed for each scale of the output feature maps:
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(3.9)

It is identical to (3.3), however, the objectness (confidence) and classification terms
(the last three terms) are now optimized by the Binary Cross-Entropy (BCE) loss. For
classification, the BCE loss is used with logistic activation (sigmoid function) to allow for
multi-label prediction, i.e., prediction of overlapping classes such as ’Car’ and ’Vehicle’,
for the same object. YOLOv3 aims to optimize the sum of the three loss functions
corresponding to each output scale. Consequently, its loss function is given by

LYOLOv3 =
3∑
s=1

LYOLOv3_Scale_s. (3.10)

3.4 YOLOv4

YOLOv4 [1] has an identical pipeline to its predecessor. However, it presented some
modifications to increase the model performance. These innovations are two-fold: (i)
changes that only increase the training cost and (ii) changes that slightly increase the
inference cost but result in a significant accuracy improvement.

The changes which increase the training cost comprise essentially data augmentation
techniques, which increase the variability of an image to increase the model’s robustness
and improve its generalization. Besides applying the usual techniques (crop, rotation,
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hue, saturation), the authors introduced two novel types of data augmentation, mosaic
augmentation and Self-Adversarial Training (SAT). Mosaic data augmentation stitches
four images together, thus, letting the model learning to find smaller objects while
paying less attention to neighboring scenes that are not immediately around the object.
SAT works in two forward-backward stages. In the first stage, the network modifies the
original image instead of its weights, to obscure the object present in the image. In the
second stage, the network is trained to detect the object in the noisy image with the
correct label, thus forcing the network to generalize to new features.

Despite having an identical working pipeline, YOLOv4 significantly altered the YOLOv3
network. These modifications significantly improve the accuracy of the model, with a
slight increase in the inference cost. The feature extractor is redesigned to accommodate
Cross-stage Partial (CSP) connections, a Spatial Pyramid Pooling (SPP) module, and
a Path Aggregation Network (PANet).

CSP originated from CSPNet [36] which is based on DenseNet [9]. DenseNet was
proposed to connect layers in CNN’s to (i) reduce the vanishing gradient problem (i.e.,
the difficulty of backpropagating loss signals in very deep networks), (ii) reinforce fea-
ture propagation, (iii) promote features reuse, and (iv) reduce the number of network
parameters. PANet was introduced in [18] to boost the propagation of low-level feature
information to higher-level feature maps. In the original implementation of PANet, the
low-level feature maps are added to the higher-level feature maps. YOLOv4 changes the
addition operation to a concatenation operation. SPP was introduced in [8] as a means
of eliminating the requirement of a fixed size input image to a CNN. YOLOv4 adds an
SPP block after the feature extractor because it increases the receptive field, filters the
most important context features obtained by the feature extractor while adding a very
low cost to the network inference speed.

Despite the significant changes promoted to the architecture, YOLOv4 still predicts
bounding boxes at three different scales. Applying the same equation term names from
Sec. 3.1.1, YOLOv4 changed from SSE to MSE (Mean Square Error) for the localization
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loss terms of each scale (the first two terms), and it is now given by:

LYOLOv4_Scale_s = λcoord
1
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(3.11)

where N denotes the number of predicted bounding boxes. YOLOv4 loss function is
given by

LYOLOv4 =
3∑
s=1

LYOLOv4_Scale_s. (3.12)
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Proposed Pipeline

Our pipeline performs semantic segmentation on a 2D image and fuses this informa-
tion (using a camera projection matrix) with a 3D point cloud to obtain a 3D semantic
point cloud. Then, it performs 3D object detection and tracking on this rich environ-
ment representation that offers both semantic and depth information. In this chapter,
the developed pipeline is described, and the choices behind the design are justified. The
dataset of choice, the Semantic Segmentation module, the 3D Object Detection, and the
3D Object Detection and Tracking module are described in detail in Sec. 4.1, Sec. 4.2,
Sec. 4.3, and Sec. 4.4, respectively.

4.1 KITTI dataset

The KITTI dataset [6] was chosen due to its popularity and widespread use among
research methods that apply deep learning techniques focused on autonomous driving
scenarios. Two branches of the dataset were used, the 3D Object Detection and the 3D
Multi-Object Tracking datasets. The former is a set of unordered frames and was used
to train and evaluate the object detector. The latter is a set of sequences of frames and
was used to train and evaluate the proposed joint object detector and tracker. A third
branch of the KITTI dataset, the semantic segmentation dataset, was used only by the
pre-trained semantic segmentation model. The contents of these three branches of the
KITTI dataset are described in Table 4.1.

The 3D Object Detection and 3D Multi-Object Tracking datasets consist of frames
from the KITTI vehicle’s environment. An RGB image and a 3D point cloud for an
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Table 4.1: This table summarizes the contents of each branch of the KITTI dataset,
relevant to the proposed pipeline. Only the 3D Object Detection and 3D Multi-Object
Tracking datasets include 3D information (point clouds).

Labeled frames Frame contents

Semantic Segmentation 200 RGB Image
Pixel-wise Label

3D Object Detection 7481

RGB Image
Velodyne Point Cloud
Calibration Matrices
3D Object-wise Label

3D Multi-Object Tracking 8004

RGB Image
Velodyne Point Cloud
Calibration Matrices

3D Object-wise Label with Track ID

example frame are illustrated in Fig. 4.4 and 4.6, respectively. Each frame corresponds
to a full spin of the LiDAR scanner, with a sampling frame rate equal to 10 Hz. As
seen in Fig. 4.1, the vehicle is equipped with two grayscale cameras (indexed 0 and
1) and two color cameras (indexed 2 and 3). The monocular RGB images used are
captured by Camera 2. Every time the Velodyne laser scanner (LiDAR) rotates to the
vehicle’s forward position, the cameras are triggered to capture one image, guaranteeing
the synchronization between the camera and LiDAR sensors.

4.1.1 Class Distribution

Both 3D Object Detection and 3D Multi-object Tracking datasets label seven differ-
ent classes: Car, Van, Truck, Cyclist, Pedestrian, Person Sitting, and Tram. The class
distribution for these datasets is detailed in Table 4.2. The dominance of the Car class
will reflect on the experimental results, as detailed in Chapter 5.

4.1.2 Calibration Matrices

To project a 3D point x = [x, y, z, 1]T in the world, in homogeneous coordinates, to
a 2D point y = [u, v, 1]T in the ith camera image plane, the equation

y ∼ P
(i)
rectR

(0)
rectT

velo
camx (4.1)
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Figure 4.1: Sensor setup of the KITTI dataset: sensors illustrated in red and transfor-
mations among sensors shown in purple. All cameras lie on the same xy plane. (Figure
taken from [5])

Table 4.2: Dataset class distribution (percentage) of the relevant KITTI branches. Clear
domination of the Car class, on both datasets, makes them imbalanced datasets.

Dataset Class Distribution (%)
Class 3D Object Detection 3D Multi-object Tracking
Car 72.7 70.5
Van 7.3 8
Truck 2.8 3.8
Cyclist 4 4.1

Pedestrian 11.4 12.8
Person Sitting 0.6 0

Tram 1.2 0.8

is applied. Here, ∼ means the equation is defined up to a scale factor, P(i)
rect ∈ R3×4

denotes the camera projection matrix, after rectification, of the ith camera, and is given
by

P
(i)
rect =

f (i)
u 0 c

(i)
u −f (i)

u b
(i)
x

0 f
(i)
v c

(i)
v 0

0 0 1 0

 . (4.2)

This matrix describes the mapping of 3D points in the world, through a pinhole camera
model (as shown in Fig. 4.2), to 2D points in the ith camera image plane. Following
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Figure 4.2: The pinhole camera model. The pinhole is located at the origin of the camera
coordinate system. The focal length parameter is defined as the distance between the
pinhole and the image plane. Figure taken from [31].

the pinhole camera model (Fig. 4.2), the pair (u, v) denotes the pixel coordinate system
on the image plane, f (i)

u and f
(i)
v denote the focal length along the u axis and v axis,

respectively. Moreover, the pair (c
(i)
u , c

(i)
v ) denotes the principal point of the camera.

Lastly, b(i)x denotes the baseline w.r.t the reference camera, i.e., the distance, in meters,
between the ith camera and camera number 0. Its value is 0.06m (as illustrated in
Fig. 4.1) and it adds the offset relative only to the x axis, since all cameras lie on the
same xy plane and their displacement is along the x axis, in the camera coordinate
system.

R
(0)
rect ∈ R4×4 is the rectifying rotation matrix of the reference camera, i.e., camera

number 0. Rectification consists of applying a rotation to make images of distinct
cameras lie on the same plane [4].

Finally, Tcam
velo ∈ R4×4 denotes the 3D rigid-body transformation that takes points

from the Velodyne coordinate system to the camera coordinate system. This transfor-
mation matrix is given by

Tcam
velo =

[
Rcam

velo tcamvelo
0 1

]
(4.3)

where Rcam
velo ∈ R3×3 denotes the rotation matrix from the Velodyne coordinate system

to the camera coordinate system and tcamvelo ∈ R3×1 denotes the translation vector from
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Figure 4.3: Semantic Segmentation Module

the Velodyne coordinate system to the camera coordinate system.

4.2 Semantic Segmentation Module

In this module, the goal is to obtain a 3D semantic point cloud, i.e., a point cloud
whose points contain not only their location information (x, y, z) but also their class
label. To take advantage of the dense environment representation, the semantic segmen-
tation is performed, pixel-wise, on 2D images and then projected to the respective 3D
points. The proposed 3D Semantic Segmentation module is depicted in Fig. 4.3.

4.2.1 MSeg model

Following the SOTA methods for semantic segmentation [15, 19, 32, 23, 3, 16, 12],
which are all based on deep learning techniques, using a deep learning network to per-
form semantic segmentation was the obvious choice. Since the semantic segmentation
module will be fed with images from the KITTI domain, the semantic segmentation net-
work should be trained on RGB images from the Semantic Segmentation branch of the
KITTI dataset. However, the KITTI Semantic Segmentation dataset is quite limited,
as it only provides 200 labeled RGB images (see Table 4.1). Training a deep learning
network on such a low number of samples would lead to poor results in the task at hand.
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Figure 4.4: RGB image captured by Camera 2 of the KITTI sensor setup.

A solution to this problem is presented by the MSeg dataset [11]. The authors intro-
duce a composite dataset that combines several existing semantic segmentation datasets,
including the KITTI dataset, into a unified domain. Their composite dataset enables
training a single semantic segmentation network, which is effective even when tested on
individual datasets.

Besides solving the scarce dataset problem, the authors in [11] also offer a plethora
of pre-trained models1, ready to use with the KITTI dataset. The available semantic
segmentation models, similarly named MSeg, are evaluated by the mean Intersection
over Union (mIoU) metric. For the semantic segmentation task, the Intersection over
Union (IoU) metric is given by

IoU = 100 · TruePositives
TruePositives+ FalseNegatives+ FalsePositives

(4.4)

which is calculated, for each class, at pixel-level. The mIoU is then calculated by av-
eraging the IoU values of each class. The selected pre-trained model was the one that
presented the highest mIoU value for the KITTI dataset.

Performing semantic segmentation on the RGB images, from the 3D Object Detection
and 3D Multi-Object Tracking datasets, implies feeding the images to the pre-trained
MSeg model. In other words, the input of the model consists of an image, such as the
one shown in Fig. 4.4. The network outputs pixel-wise class labels, predicted from 193
different class labels. Assigning a unique color to each class allows for visualization of
the predicted semantic segmentation results (as illustrated in Fig. 4.5).

1https://github.com/mseg-dataset/mseg-semantic
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Figure 4.5: Semantic segmentation labels overlaid on the RGB image from Fig. 4.4

4.2.2 Projecting Semantic Labels to Point Cloud

With the semantic segmentation results obtained for the RGB image, the final step
of this module consists of mapping 3D points in the world to pixels in the image plane,
in order to obtain a 3D semantic point cloud (as shown in Fig. 4.6).

Initially, to simplify computation, every point in the point cloud is converted to homo-
geneous coordinates, i.e., a point x = [x, y, z]T now has the coordinates x = [x, y, z, 1]T .
Next, (4.1) is applied to project the whole point cloud onto the 2nd image plane (RGB
is captured by camera number 2). Then, the whole point cloud is normalized by the
z-coordinate to convert to pixel coordinates. Given the whole point cloud in pixel coor-
dinates of the 2nd image plane, the points that live outside the camera FoV are removed.
Finally, having every 3D point inside the camera FoV associated with a pixel from cam-
era 2, the correspondent pixel-wise class label is copied onto the respective 3D point.

4.3 3D Object Detection Module

This module picks up where the Semantic Segmentation module left off. The 3D
object detection module is based on the Complex-YOLO pipeline [30]. As stated in Sec.
3.2, Complex-YOLO is a 3D object detector that takes as input an RGB image, obtained
from a point cloud’s BEV snapshot, and outputs oriented bounding boxes in the BEV
RGB map (as illustrated in Fig. 3.3). As stated in Sec. 1, the selected Complex-
YOLO pipeline consists of an implementation based on YOLOv4. Henceforth, this
implementation will be called Complex-YOLOv4. The proposed 3D Object Detection
module is illustrated in Fig. 4.7.
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Figure 4.6: The 3D semantic point cloud was obtained by projecting the semantic seg-
mentation results on the image plane (Fig. 4.5) to the point cloud. Points outside the
camera FoV do not contain a semantic label, thus, they are filtered out.

4.3.1 Changes to the Complex-YOLOv4 implementation

The Complex-YOLOv4 pipeline was altered to accommodate the semantic informa-
tion obtained in the Semantic Segmentation module (Sec. 4.2). The main difference to
the original pipeline, to achieve 3D object detection only, lies in the network input. Fur-
ther changes to embed the tracking task to this pipeline are later explained in Sec. 4.4.
For now, only the changes made to achieve object detection on semantic point clouds are
described. Originally, the network takes as input a BEV RGB map where each channel
consists of handcrafted features, such as the points’ height, intensity, and density, re-
spectively. Now, the Complex-YOLOv4 network takes as input a BEV RGB map where
the RGB channels encode the points’ semantic class labels. A side-by-side comparison
between the two RGB encoding methods is illustrated in Fig. 4.8.

Another change promoted to the Complex-YOLOv4 pipeline is related to its network
architecture, in order to predict and detect an extra class, the Truck class. The KITTI
dataset labels seven different classes of objects: Car, Van, Truck, Cyclist, Pedestrian,
Person Sitting, and Tram. The Complex-YOLOv4 implementation follows the original
paper and predicts only three classes: Car, Pedestrian, and Cyclist. It does so by
grouping Car and Van into the same Car class, Pedestrian and Person Sitting into
the unique Pedestrian class, and Cyclist needs no further grouping. Therefore, the
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Figure 4.7: The 3D Object Detection Module takes as input a single square image
consisting of a semantic BEV snapshot of the point cloud. The three output feature
maps share the same number of channels, N , given by (3.6). With B = 3 predicted
bounding boxes and C = 4 predicted classes, N = 33. The output spatial dimensions
result from downscaling the input image with factors R = 8, R = 16, and R = 32, for
scales 1, 2, and 3, respectively.

classes Truck and Tram were ignored by the model. Since Trams are rarer than Trucks
on the dataset (see Table 4.2), only objects whose class was Truck were made to be
predicted/detected by the network. The change consists of incrementing the number of
classes, denoted by C, in (3.6). A side-by-side comparison between the test results, on
a frame containing Trucks, before and after the change took place is illustrated in Fig.
4.9.

In short, the 3D object detection module comprises the Complex-YOLO pipeline,
based on YOLOv4, whose input RGB encodes semantic labels and allows the detection
of objects from the Truck class.
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(a) Handcrafted RGB Map (b) Semantic RGB Map

Figure 4.8: Example of the same frame BEV RGB map encoded with: (a) Complex-
YOLO’s handcrafted features and (b) semantic class labels (used in our approach).
The handcrafted RGB map depicts every point inside the 50x50m square, whereas the
semantic RGB map is restricted to the 2nd Camera’s FoV, as described in Sec. 4.2.2.

4.3.2 Obtaining the BEV RGB Map

In Velodyne coordinates (illustrated in Fig. 4.1), the BEV perspective of the semantic
point cloud is obtained by discarding the z-coordinate and mapping the xy plane (ground
plane) onto an image plane. The labelled points whose coordinates fall into the square
delimited by x ∈ [0, 50]m and y ∈ [−25, 25]m are mapped onto a square image with
608 × 608 resolution, thus preserving the aspect ratio. The mapping is simply done
by converting the points’ coordinates in meters to pixel coordinates, where each pixel
corresponds to approximately 0.08m. Finally, the pixels are assigned a color according
to the respective point’s class label previously obtained in the Semantic Segmentation
module. The class-color pair association is given by a dictionary that reduces the 193
different classes output by MSeg to nine classes and consequently nine different colors.
This dictionary is detailed in Table 4.3. Figs. 4.8b and 4.9 depict BEV RGB maps
obtained by this semantic class-color dictionary.

40



CHAPTER 4. PROPOSED PIPELINE

(a) Truck objects being ignored (b) Truck objects being detected

Figure 4.9: A testing sample frame showing the difference between bounding box pre-
dictions, (a) before and (b) after the Truck class was detectable by the model. The
detections are solely made on the BEV RGB map. The bounding boxes in the RGB
image, captured by Camera 2, are for display purposes only.

4.4 3D Object Detection and Tracking Module

The 3D Object Detection and Tracking module picks up where the 3D Object Detec-
tion module left off. Further changes to the ones presented in Sec. 4.3.1 were promoted
to embed the tracking task into the 3D object detection model based on Complex-
YOLOv4. Adapting the Complex-YOLO architecture to predict object’s offsets (dx, dy)
implies adding two additional parameters to their bounding box tensor, as illustrated in
Fig. 4.11. This predicted offset between two consecutive frames is the core mechanism
for our tracking method, since it allows the prediction of objects’ velocity, as detailed in
Sec. 4.4.3. Besides the offset prediction, heatmap prediction was also embedded within
the network, and the input was changed to accept two consecutive BEV frames and a
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Table 4.3: Dictionary responsible for reducing the 193 semantic class labels to 9 meaning-
ful classes for the road environment. Irrelevant classes, such as indoors’ object classes,
that don’t show up in the road scenario, are discarded, thus painted white. Minute
classes such as Wall, Pillar, and Window convert to the unique Building class. Bright
and contrasting colors are attributed to the four classes to be detected (Car, Pedestrian,
Cyclist, Truck), whereas dim and similar colors are attributed to non-detectable classes.

Class Label Pixel Color
Car Red

Pedestrian Green
Cyclist Blue
Truck Yellow
Road Dark Grey

Sidewalk Grey
Building Light Grey
Terrain Brown

Vegetation Dark Green
Everything Else White

heatmap from the previous frame.
Based on CenterTrack [40], the goal is to predict object-wise bounding boxes, their

offsets relative to the previous frame, and a heatmap depicting the objects’ locations in
the current frame. The input consists of (i) the frame whose objects will be detected,
(ii) the previous frame, and (iii) the heatmap with the objects’ location on the previous
frame. In our case, the current and previous frames consist of Semantic BEV RGB
maps. The 3D Object Detection and Tracking module is illustrated in Fig. 4.10. At test
time, it comprises a feedback loop that feeds the pipeline on instant t with the heatmap
predicted on the previous instant, t-1. During training, the input heatmap consisted of
the ground truth. Consequently, a heatmap dataset was produced to train the network.

4.4.1 Heatmap Dataset and Prediction

The goal of the heatmaps is to feed the network the location in the previous frame
of the objects to be detected in the current frame. A dataset of ground truth heatmaps
was generated so the network could compare its output with the ground truth, therefore,
learning how to predict heatmaps. Ground truth heatmaps are also used during training
as the input heatmap from the previous frame. In other words, the feedback loop does
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Figure 4.10: 3D Object Detector and Tracking module. The three-fold input is con-
catenated to enter the network as a single stacked tensor. The circuit switch breaker
before the heatmap concatenation highlights the conducted ablation studies relative to
the model input. Heatmap prediction is solely made on the deepest feature maps, i.e.,
on the third scale. The sigmoid activation function after the upsample operation bounds
the values of the heatmap between 0 and 1.

Figure 4.11: A bounding box predicted by the 3D Object Detector and Tracking module.
Two extra parameters are learned in order to predict a bounding box’s displacement
between two consecutive frames, tdx and tdy.

not exist during training. Thus, it is performed in an offline manner.

Ground truth heatmaps are fed to the network with the same orientation as the
Semantic BEV RGB maps to make the learning task easier. Should the heatmaps have
a different orientation than the Semantic BEV inputs, the network would have to learn
this rotation as well. A heatmap is a 4 channel tensor, where each channel corresponds
to the C = 4 different classes. Each of these channels consists of a grayscale image where
the background is white and the splattered objects’ centroids are colored in shades of
gray.

Two different heatmap styles were generated and tested. Initially, centroids were
depicted as ellipses to better resemble the rectangular bounding boxes. Results showed
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(a) Elliptical Heatmap (Ours) (b) Circular Heatmap (CenterTrack)

Figure 4.12: Comparison between (a) an heatmap with elliptical centroids and (b) the
same heatmap with circular centroids. Both heatmaps depict the same frame illustrated
in Fig. 4.8. The difference in their generation lives in the standard deviation parameter
which directly defines the shape of the gaussian blob.

that this idea didn’t work so well, as detailed in Sec. 5.4. Consequently, the second
type of heatmaps was tested where the centroids depict circular shapes adaptive to the
object’s dimensions, similarly to CenterTrack’s method. A comparison between the two
heatmap styles is illustrated in Fig. 4.12.

Objects’ locations are splat onto the heatmap using a 2D gaussian kernel

g(x, y) = A · exp
(
−
(
a(x− x0)2 + 2b(x− x0)(y − y0) + c(y − y0)2

))
(4.5)

where,

a =
cos2 θ

2σ2
X

+
sin2 θ

2σ2
Y

b = −sin 2θ

4σ2
X

+
sin 2θ

4σ2
Y

c =
sin2 θ

2σ2
X

+
cos2 θ

2σ2
X

.

(4.6)

In (4.5), the pair (x0, y0) denotes the mean value of the normal distribution and it
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equals to the coordinates of the splattered object’s centroid. The amplitude value A = 1

in order to get normalized values, i.e., within the range [0, 1]. In (4.6), the standard
deviation parameter is what gives the centroids’ gaussian blobs different shapes. For the
elliptical centroids, σX = w/2 and σY = l/2, where w and l depict the object’s width
and length, respectively. For circular centroids, σX = σY and their value is a function
of the object size [14]. Finally, the angle θ = ry, where ry depicts the rotation over the
y axis in camera coordinates (as illustrated in Fig. 4.1).

The generated ground truth heatmaps have a resolution of 152×152, i.e., a resolution
four times smaller than the input heatmap resolution of 608 × 608. Comparing lower
resolution heatmaps, in the loss function, lead to smaller loss values for the heatmap
loss, and, consequently, overall better loss convergence. During the training stage, the
input ground truth heatmaps were upsampled using nearest-neighbor interpolation, in
order to keep the centroid’s peak value equal to 1. At test time, the predicted heatmaps
are also upsampled using nearest-neighbor interpolation, for the same reason.

As illustrated in Fig. 4.10, the network predicts a heatmap directly from the output
feature map. This is achieved by downsampling the number of channels via convo-
lution operations and upsampling the spatial dimensions using bilinear interpolation.
Bilinear interpolation upsampling keeps fine-grained features better due to its smaller
sampling step compared to Nearest Neighbor interpolation which would lose fine-grained
features from the output feature map, consequently, producing a worse prediction for
the heatmap. Finally, the heatmap is fed to a sigmoid activation function to bound the
values in the range [0, 1].

4.4.2 Loss Function

The goal of the 3D Object Detection and Tracking module is to predict (i) bounding
boxes, (ii) their displacements between consecutive frames, and (iii) a heatmap with the
objects’ centroids location. Therefore, the loss function is given by

L = LYOLOv4 + LEuuler + LOffsets + LHeatmap (4.7)

where LYOLOv4 is given by (3.12), LEuler is given by (3.8),

LOffsets =
1

N

S2∑
i=0

B∑
j=0

1
obj
ij

[
(dxij − d̂xij)2 + (dyij − d̂yij)2

]
(4.8)
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is similarly computed to the localization loss in (3.11). LOffsets consists of the MSE loss
for every responsible bounding box (as detailed in Sec. 3.1.1), and

LHeatmap = −λhm
1

M

X∑
x=1

Y∑
y=1

C∑
c=1

{
(1− Ĥxyc)

α log(Ĥxyc) if Hxyc = 1

(1−Hxyc)
β(Ĥxyc)

α log(1− Ĥxyc) otherwise
(4.9)

depicts the loss function for the predicted heatmap. It consists of an adapted focal loss
function, introduced in a CenterTrack’s predecessor [14], with parameters α = 2 and
β = 4. It iterates over each cell of every channel in the predicted heatmap, with C = 4

classes and X = Y = 152 pixels/cells. M denotes the number of objects in the current
frame, and λhm = 0.5 is responsible for decreasing the weight of the heatmap loss value.
The minus sign, in the beginning, is to invert the logarithmic growth. Fig. 4.13 plots
the loss values against the predicted value Ĥxyc, for several examples of ground truth
values Hxyc.

4.4.3 Velocity Vector and Track ID

The predicted offset (dx, dy) for a given object consists of its displacement relative to
the ego-vehicle. Knowing the sampling frame rate is f = 10Hz (T = 0.1s), the velocity
of an object relative to the ego-vehicle is given by

~vobject_ego =

[
dx
T
dy
T

]
. (4.10)

Applying the relative velocity equation

~vobject_ego = ~vobject − ~vego, (4.11)

and using the ego-vehicle velocity (given by the IMU depicted in Fig. 4.1)

~vego =

[
vego_right

vego_forward

]
, (4.12)

we can compute the velocity of an object

~vobject = ~vobject_ego + ~vego =

[
dx
T
dy
T

]
+

[
vego_right

vego_forward

]
. (4.13)

As detailed in Sec. 4.3.2, a pixel in the BEV RGB map corresponds to 0.08m. Given
this ratio, the predicted velocities of the detected objects can be drawn onto the BEV
RGB map, as shown in Fig. 4.14.
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Figure 4.13: Adapted Focal Loss plot. For a given cell of the heatmap, the different
curves, depicting variable ground truth values, plot the loss value against the predicted
value in that cell of the heatmap. It is visible that a high penalty is given when a ground
truth peak (H = 1) is wrongly predicted and a low ground truth value is predicted as a
peak or a neighboring point to the peak. However, any predicted values near the peaks
(0.7 < H < 0.9) are barely and equally penalized for either a right or wrong prediction.

The track ID’s are obtained by matching bounding boxes between frames. The
matching is done using Euclidean distance between centroids. However, before compar-
ing distances, the predicted offsets are subtracted for each object before computing the
distance to the centroids’ location in the previous frame.
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Figure 4.14: Example of the output predicting the objects’ bounding boxes, track ID’s,
and velocity. The predictions are uniquely based on the Semantic BEV RGB map. The
RGB image by camera 2 is for illustration purposes only.
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Chapter 5

Experimental Results

In this chapter, the metrics needed for the evaluation of an object detector are
detailed. Then, the detection results obtained for the 3D Object Detection module are
presented. Lastly, the results obtained for the 3D Object Detection and Tracking module
are detailed along with empirical results that justify design choices and an ablation study
for the model architecture. A final comparison between our model and the baseline
model, Complexer-YOLO, is also performed.

5.1 Metrics

Intersection over Union (IoU) between a predicted bounding box (Bpred) and the
ground truth box (Btruth) is given by

IoU =
area(Bpred ∩Btruth)

area(Bpred ∪Btruth)
, (5.1)

thus, 0 ≤ IoU ≤ 1. Computing the IoU between the predicted and ground truth boxes
gives us a metric for how good the overlapping between the two boxes is.

The confidence score predicted by the 3D object detector (3.2) depicts a probability
that a given predicted box contains an object.

Predicting a bounding box for a given object implies predicting its (i) location, (ii)
dimensions, (iii) confidence score, and (iv) class of the object. A detection is considered
a True Positive (TP ) if it satisfies three conditions: (i) the predicted confidence score
is above a given threshold (e.g., Confthresh = 0.5), (ii) the predicted bounding box has
an IoU greater than a given threshold (e.g., IoUthresh = 0.5) with the ground truth,

49



5.1. METRICS

(iii) the predicted class matches the ground truth class. Failing either of the latter two
conditions makes the detection a False Positive (FP ). A detection is considered a False
Negative (FN) when the confidence score of a given box that is supposed to detect a
ground truth object is lower than a given threshold (e.g., Confthresh = 0.5). A True
Negative (TN) detection occurs when a predict box whose confidence score is below a
given threshold and there’s no object captured inside the predicted bounding box. The
TN metric is irrelevant in the object detection task.

The precision metric is given by

Precision =
TP

TP + FP
. (5.2)

It represents the ratio between correctly predicted positives and the total number of
predicted positives. For example, if there’s a total of 120 ground truth objects to de-
tect, the model makes 100 positive predictions, and 20 of those predicted positives are
incorrect. This example returns a precision of 80%. Should the number of ground truth
objects be 4000, the precision value would still be 80% because the precision metric does
not account for the total number of existing objects in the ground truth and should
be detected. Another metric needs to be used to give us a better understanding of a
model’s performance. The recall metric is given by

Recall =
TP

TP + FN
. (5.3)

It represents the ratio between correctly predicted positives and the total number of
ground truth positives. For the example given above, when there are 120 ground-truth
objects to detect, recall equals 67%. When there are 4000 ground-truth objects to detect,
the recall value is equal to 2%. The recall metric gives us a better look at the model’s
capability of detecting all objects in the data.

Setting the confidence threshold at different levels results in varying values for the
pair precision and recall. Plotting the precision values against the recall values while
varying the confidence threshold results in the precision-recall curve. Comparing the
precision-recall curves of two object detection models can be tricky when the curves
intersect each other. Therefore, a better way to compare these models is by comparing
the area under the precision-recall curve, which gives us the Average Precision (AP )
metric.
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Average Precision is computed for each class. Object detectors usually detect multiple
classes. The mean Average Precision (mAP ) metric is given by

mAP =
1

C

C∑
i=1

APi (5.4)

where C depicts the number of classes. It represents the arithmetic mean of the Average
Precision values across all C classes. F1 score is given by

F1_score = 2 · Precision · Recall
Precision+ Recall

(5.5)

and it depicts a weighted average between precision and recall values. It equally weights
precision and recall values. However, for object detection recall is usually given more
emphasis than precision, thus, the AP metric is more relevant than the F1 score.

5.2 Training and Hyperparameters

All models were trained for 300 epochs on an NVIDIA GeForce GTX 1070, with a
batch size equal to 2, using the Adam optimizer. A cosine learning rate decay is applied
and its initial value is 0.001, as illustrated in Fig. 5.1. Other hyperparameters include
the weights associated to the loss functions (3.11) and (4.9).

5.3 3D Object Detection Module

In this section, the stock Complex-YOLOv4 is compared to the different modified
versions that were tested before reaching the final 3D Object Detection module, which
is described in Sec. 4.3.

Initially, the 3D object detection Complex-YOLOv4 was only altered to accept Se-
mantic BEV RGB maps instead of the handcrafted features encoded in the RGB map
of stock Complex-YOLOv4. Then, as shown in Fig 4.9, we added the Truck class as an
extra class to be detected. Finally, the FoV filtering was applied to filter out ground
truth objects whose locations were outside the camera FoV. If the objects live outside
the FoV they do not have semantic features, therefore, do not appear in the BEV RGB
map. Before the FoV filtering, the network was penalized for not predicting objects
not visible in the BEV RGB map, i.e., feature-less objects. This change was promoted
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Figure 5.1: Cosine learning rate decay starting at 0.001 and decaying throughout the
300 epochs of the training stage.

to both the 3-class and 4-class models, and in both cases, it increased the mAP. The
experimental results are detailed in Table 5.1.

Average Precision (AP) values for each class and model are depicted in Fig. 5.2. It is
visible that the overall better-detected class is the Car class, for any of the tested object
detection modules. This occurs due to the imbalanced class distribution (see Table 4.2)
present in the 3D Object Detection of the KITTI dataset. The Car class (Car and Van
together) make up for over 80% of the available ground truth objects, while Pedestrians,
Cyclists, and Trucks comprise 11%, 4%, and 2% of the labeled objects, respectively.
Eventhough there are more Pedestrian than Cyclist and Truck instances combined in
the dataset, the tested 3D object detection models yielded better results for Cyclist and
Truck detection than for Pedestrian detection. This happens because the size of the
objects also plays a role in the model’s performance at detecting them. In the point
clouds, the Pedestrian object instances comprise the least amount of points among the
four detectable classes.

Although the stock Complex-YOLOv4 model achieves the highest mAP (88.77%) out
of all the tested models, unlike Complex-YOLOv4, our method does not use handcrafted
features to build the BEV RGB maps. Instead, it exploits semantic information to obtain
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Table 5.1: For every model, the thresholds detailed in Sec. 5.1 are set to Confthresh = 0.5
and IoUthresh = 0.5.

Model Input Class Precision↑ Recall↑ AP↑ F1↑ mAP↑

Complex
YOLOv4
(3 classes)

Handcraft

Car 91.15 97.53 96.88 94.23

88.77Pedestr. 69.61 93.06 78.48 79.64
Cyclist 80.00 93.77 90.96 86.34
Truck - - - -

Ours
(3 classes) Semantic

Car 85.50 96.52 95.47 90.68

83.47Pedestr. 56.45 90.16 71.24 69.43
Cyclist 61.20 93.04 83.71 73.84
Truck - - - -

Ours
(3 classes
FoV)

Semantic

Car 85.53 97.74 96.66 91.23

85.65Pedestr. 51.92 92.66 72.10 66.55
Cyclist 59.71 93.82 88.18 72.97
Truck - - - -

Ours
(4 classes) Semantic

Car 88.27 97.15 96.43 92.50

84.91Pedestr. 65.35 78.59 67.06 71.36
Cyclist 65.86 89.74 85.83 75.97
Truck 73.83 92.44 90.31 82.09

Ours
(4 classes
FoV)

Semantic

Car 87.95 97.35 96.45 92.41

85.52Pedestr. 56.56 86.82 68.11 68.50
Cyclist 65.51 94.59 89.41 77.41
Truck 70.00 91.59 88.09 79.35

the BEV RGB maps and achieves an on-par mAP result (85.52%).

5.4 3D Object Detection and Tracking Module

In this section, empirical results that dictated the choice of the interpolation method
used to upsample the heatmaps are presented, as well as empirical results that validate
the chosen loss function and respective weight tuning. Finally, the results obtained from
the conducted ablation study for the 3D Object Detection and Tracking module are
presented and discussed.
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Figure 5.2: AP per class per 3D Object Detection Model.

5.4.1 Heatmap Generation Across Scales

As illustrated in Fig. 4.10, the bounding boxes and respective offsets are predicted
across every scale. Then, from a large number of predictions, only a few are selected,
to display detections, by the NMS algorithm. Following the same principle, we tested
heatmap prediction across the three output scales. Through empirical observation, it was
noted that the deeper the scale, the better the heatmap prediction was. This follows the
underlying logic of neural networks that higher-level features live in the deepest layers
of a network.

5.4.2 Heatmap Loss Function and Tuning

Initially, the heatmap loss function was implemented as the MSE loss for each cell
in the output heatmap. Since the heatmaps are mostly comprised of background pixels
whose value is close to 0 and every pixel of the heatmap is bounded between 0 and 1,
the MSE loss leads to the heatmap loss decreasing rapidly and establishing itself in a
divergent cycle of nearly zero values, as illustrated in Fig. 5.3.

To try to fix this issue, a higher weight value was attributed to the heatmap loss by
multiplying its value by a factor λhm. Several values were tested, and through empirical
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Figure 5.3: Heatmap MSE loss diverging (blue curve). The loss plummets and does not
converge afterwards, thus, the training was stopped at the 30th epoch.

observation, it was noted that changing this value would result in good early convergence
for the heatmap loss curve. However, it only delayed the divergent course for the heatmap
MSE loss curve. Identical results were obtained by changing the loss function to the
L1 loss. Finally, the adapted focal loss proposed in [14] was implemented, tested, and
resulted in convergence for the heatmap loss. Contrary to the MSE loss, which penalized
errors equally, the focal loss penalized predictions more heavily when the predicted and
ground truth values were far apart (see Fig. 4.13). Although converging, the loss values
for the heatmap loss were still too high compared to the other losses. Ideally, the loss
curves should converge at about the same rate. Therefore, the factor λhm was set to 0.5.
Thus, decreasing the weight given to the heatmap loss function. Fig. 5.4 depicts the
loss curves converging as intended.

As detailed in Sec. 4.4.1, computing the loss function for each cell of a high-resolution
heatmap leads to high loss values for the heatmap loss. Consequently, a dataset of low
resolution (4 times smaller) ground truth heatmaps was generated to compare the output
heatmap with the target heatmap directly. This lead to a decrease by a factor of 16 of
the heatmap loss value since the square-shaped heatmaps decreased both their spatial
dimensions by a factor of 4.
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Figure 5.4: Heatmap adapted focal loss converging (blue curve).

5.4.3 Heatmap Upsampling

As explained in Sec. 5.4.2, the predicted heatmaps output by the network have a
low resolution of 152 × 152. Therefore, they must be upsampled to the input heatmap
resolution of 608 × 608, to close the feedback loop present during the testing phase.
The generated ground truth heatmaps also have a resolution of 152 × 152 to prevent
the need for downsampling them when computing the heatmap loss function between
the target and the predicted heatmap. Therefore, both of these heatmaps (the target
during training and the predicted during testing) need to be upsampled to match the
BEV RGB maps resolution of 608 × 608 before concatenating with them. Through
empirical observation, the nearest-neighbor interpolation method was chosen for these
upsampling steps since it kept the heatmap peaks (object’ centroids whose value is 1
on the heatmap). Keeping these peaks during the training stage is crucial because the
adapted focal loss applied to the heatmap loss needs to have these peaks where the
target heatmap is 1, to correctly compute the loss and, consequently, correctly predict
the heatmaps.

As depicted in Fig. 4.10, the output feature map of scale 3 has its spatial dimen-
sions upsampled and the number of channels downsampled to reach the desired output
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(a) Nearest Neighbor Interpolation (b) Bilinear Interpolation

Figure 5.5: Comparison between (a) nearest-neighbor interpolation and (b) bilinear
interpolation of the output feature map, from scale 3, to obtain the predicted heatmap.

heatmap shape of 4× 608× 608. Applying the coarser nearest-neighbor interpolation to
the output feature maps would render the loss of features, whereas the application of the
finer bilinear interpolation to the output feature maps leads to maintaining the important
features needed to mimic the gaussian blobs of the target heatmaps. Through empirical
observation, bilinear interpolation leads to better heatmap prediction, as shown in Fig.
5.5.

5.4.4 Train-Test Split

The 3D Multi-object Tracking branch from the KITTI dataset (detailed in Sec. 4.1)
contains 21 labeled sequences of frames. These sequences can be divided into four
different categories, according to the environment where they were obtained. These
categories include (i) urban, (ii) fast-lane, (iii) highway, and (iv) pedestrian zones.

The train-test split was performed following the rule of thumb that 80% of the
samples should be used for training and the remaining 20% for testing. This results in
17 sequences used for training and 4 sequences used for testing purposes. Besides the
80/20 split, each of the four sequences selected for the testing stage belongs to the four
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Table 5.2: Class distribution of the test split from the 3D Multi-Object Tracking Dataset.

Class Test Split Class Distribution (%)
Car 81.52
Van 3.58
Truck 0.59
Cyclist 3.71

Pedestrian 10.60
Person Sitting 0.00

Tram 0.00

environment categories stated above. The resulting class distribution for the test split
is detailed in Table 5.2.

5.4.5 Ablation Study

Initially, a dataset of elliptical style heatmaps was generated to train the network
within the 3D Object Detection and Tracking module depicted in Fig. 4.10. The ablation
study conducted came to be because the heatmap prediction, from this model, was sub-
par. An illustrative experimental result is depicted in Fig. 5.6. It is visible that the
network predicts the objects’ centroids. However, it failed to predict the spread of
the gaussian blob, dictated by the standard deviation parameter. The feedback loop
was broken and the ground truth heatmap was fed to the network to test whether the
poor location and offset predictions were caused by the poor heatmap prediction (which
would feed the network on the next iteration). An illustrative result for this experiment
is depicted in Fig. 5.7. This experiment confirmed that (i) the network could not predict
the spread given by the centroids’ standard deviation parameter and, consequently, (ii)
the poor location and offset predictions were caused by the poor input heatmap coming
from the feedback loop.

The next logical step was taken, a dataset of circular style heatmaps was generated.
The circular centroids within these heatmaps have a reduced standard deviation value
which decreases the spread of the gaussian blobs. The network was trained using this
heatmap style. An illustrative result, obtained using the feedback loop to feed the
predicted maps to the network, is depicted in Fig. 5.8. Just from observation, it is
visible that (i) the predicted heatmaps, that go through the feedback loop, are quite
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Figure 5.6: Elliptical heatmap model with predicted heatmap on the input.

Figure 5.7: Elliptical heatmap model with ground truth heatmap on the input.

similar to the ground truth (target) heatmaps and, consequently, (ii) more objects are
detected, using this type of heatmaps. Another experiment was conducted, in which the
ground truth circular heatmap was fed to the network. An illustrative result is depicted
in Fig. 5.9.

A final heatmap experiment was conducted in which the input heatmap at instant t
is obtained via a post-processing of the heatmap predicted at t− 1. Instead of directly
injecting the predicted heatmap in the following instant, it injected a new heatmap
generated from the predicted centroids in the heatmap and bounding box dimensions.
It increased the mAP value for the elliptical style heatmap models, since it feeds the
network a true elliptical style heatmap. However, many centroids are still missing in
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Figure 5.8: Circular heatmap model with predicted heatmap on the input.

Figure 5.9: Circular heatmap model with ground truth heatmap on the input.

the predicted heatmap, thus, they are not present on the post-processing heatmap,
consequently, degrading the object detection performance of the model. In the case of
the post-processed heatmap for the circular heatmap model, themAP yielded a similarly
poor result to the direct feeding of heatmaps without post-processing.

Lastly, the heatmaps were completely removed from the 3D Object Detection and
Tracking module. Therefore, the location and offset predictions were based on the
semantic BEV RGB maps from instants t and t− 1 only.

The results obtained for the three different models are detailed in Table 5.3. The
domination of the Car class in the dataset makes every model perform significantly
better for this class. The poor detection of the other classes is explained by the class
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distribution as well (see Table 4.2). This lowers the mAP value significantly since it
averages the AP value across all classes.

Feeding the heatmap models with the ground truth heatmap leads to a significant
improvement of the recall value, i.e., more and more occluded objects are being detected
correctly. This demonstrates that the features from the heatmap influence the detection
and offset prediction. Moreover, the elliptical model fares better than the circular model
when both take the ground truth heatmap as input (mAP = 67.60% vs. mAP =

46.07%). This happens because the elliptical model comprises heatmaps whose centroids
mimic the orientation and shape of the bonding boxes, thus, making the bounding box
regression task easier.

The heatmap feedback improves the detection by feeding the network the location
of the objects in the previous frame. However, the best performing model was the
no-heatmap model (mAP = 28.38%) because the network cannot predict heatmaps
correctly, therefore, decreasing the performance of the heatmap-based models.

The confusion matrices for the different models are depicted in Fig. 5.10. The
low recall values, caused by the small number of correct detections, are reflected in the
confusion matrices. The majority of the objects are not detected at all, i.e., the predicted
label is non-existent when there should be an object detected. The results detailed in
Table 5.3, for the poorly detected Cyclist class, are visible in the confusion matrix.
When the ground truth label is Cyclist, the detection is not achieved. Moreover, from
the confusion matrices, it is visible that some Truck objects are detected as belonging
to the Car class.

5.5 Complexer-YOLO vs. Ours

As a final evaluation, we are comparing our method to the baseline method, Complexer-
YOLO. On one hand, Complexer-YOLO (see Fig. 2.7) voxelizes the semantic point
cloud, which is computationally expensive. Instead, we project the semantic point cloud
to the ground plane to feed it to the CNN. On the other hand, Complexer-YOLO uses
a non-deep learning approach to the tracking method, whereas our tracking method is
based on a deep learning approach which allows for an end-to-end model capable of
joint 3D object detection and tracking. This results in a faster joint object detection
and tracking module, as explained below.
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Table 5.3: Only 4% of labelled objects belong to the Cyclist class (see Table 4.2). The
resulting test split (detailed in Sec. 5.4.4), used to evaluate these models, contains only
one cyclist across the four test sequences. All heatmap related tests were conducted by
initializing the feedback loop with the ground truth heatmap of the very first frame in
the sequence.

Model Input Class Precision↑ Recall↑ AP↑ F1↑ mAP↑

No
Heatmap

BEV (t)
BEV(t-1)

Car 90.95 72.27 71.03 80.54

28.38Pedestrian 53.05 50.36 30.61 51.67
*Cyclist 16.00 1.89 1.65 3.38
Truck 22.22 40.00 10.22 28.57

Elliptical
Heatmap

BEV (t)
BEV (t-1)
HGT (t-1)

Car 94.47 95.01 94.01 94.99

67.60Pedestrian 63.88 74.58 54.52 68.82
*Cyclist 42.78 37.74 24.39 40.10
Truck 83.33 100.00 97.50 90.91

BEV (t)
BEV (t-1)
HPred (t-1)

Car 92.55 13.79 13.48 24.01

4.69Pedestrian 45.45 1.81 1.14 3.48
*Cyclist 0.00 0.00 0.00 0.00
Truck 28.57 13.33 4.13 18.18

BEV (t)
BEV (t-1)
HPost (t-1)

Car 76.56 25.74 22.51 38.53

10.41Pedestrian 45.43 19.76 9.92 27.54
*Cyclist 28.57 0.94 0.37 1.83
Truck 14.29 20.00 8.83 16.67

Circular
Heatmap

BEV (t)
BEV (t-1)
HGT (t-1)

Car 87.22 92.81 90.47 89.93

46.07Pedestrian 53.84 66.75 38.69 59.60
*Cyclist 26.04 32.55 15.43 28.93
Truck 47.62 66.67 39.69 55.56

BEV (t)
BEV (t-1)
HPred (t-1)

Car 89.62 54.1 52.58 67.47

15.56Pedestrian 10.30 17.23 3.01 12.89
*Cyclist 0.00 0.00 0.00 0.00
Truck 100.00 6.67 6.67 12.50

BEV (t)
BEV (t-1)
HPost (t-1)

Car 85.37 38.78 37.56 53.33

13.43Pedestrian 59.32 16.87 13.48 26.27
*Cyclist 100.00 0.47 0.47 0.94
Truck 25.00 6.67 2.22 10.53

Complexer-YOLO runs the real-time ENet for semantic segmentation at 90 FPS. We
applied the MSeg model since it was the one readily available to deploy. Complexer-
YOLO performs object detection (predicting on voxelized input) at 15 FPS and runs
the tracking method at 100 FPS. Consequently, their bottleneck relies on the detection
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task, which added to the tracking task amounts to 13 FPS. Our method runs the pro-
posed joint detection and tracking network at 18 FPS. Therefore, our method improves
the bottleneck computational time of the Complexer-YOLO pipeline, while performing
detection and tracking with an end-to-end trainable deep network.
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(a) No Heatmap

(b) Elliptical Heatmap with ground truth as input (c) Elliptical Heatmap with prediction as input

(d) Circular Heatmap with ground truth as input (e) Circular Heatmap with prediction as input

Figure 5.10: Confusion matrices from the ablation study conducted.
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Chapter 6

Conclusion

In recent years, deep learning methods have surpassed classic methods in terms of
accuracy and speed, especially when using powerful GPUs capable of massively parallel
computations. The goal of this thesis consists of applying deep learning methods to
perform semantic segmentation and tracking, in the road environment. Uses for this
technology include obstacle avoidance, assisted braking, among other tasks that improve
safety on the road. To this end, we based our method on the state-of-the-art YOLO
object detector. Since we aimed to perform tracking as well, we followed the Complexer-
YOLO method. However, we ditched the voxelization of the point cloud and replaced
the classic tracking method with a deep learning approach, consequently, achieving a
higher inference speed.

This work exploits the fusion of dense 2D semantic information with 3D geometric
data to achieve robust object detection in the three-dimensional space. Then, the track-
ing paradigm from CenterTrack was embedded within the Complex-YOLO architecture
to achieve a joint 3D object detection and tracking pipeline. One of the major contribu-
tions of this thesis is the proposed pipeline. The input now consists of a concatenation
of two consecutive BEV frames of the point cloud and the predictions are made on three
different scales, to improve the prediction of differently sized objects.

The KITTI dataset was used to train the deep learning method. Based on the raw
data from KITTI, a dataset of heatmaps was generated to train the network to predict
heatmaps depicting the objects’ locations. The semantic information obtained in the 2D
image was projected to the 3D point cloud, to obtain a 3D semantic point cloud that
would become the input to the proposed pipeline. As a rule of thumb, the 80/20 split
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was applied to divide the labeled dataset into train and test samples. The test samples
were used to evaluate the model and were never seen during training.

Results demonstrated that input heatmaps, containing objects’ locations in the pre-
vious frame, help the detection task because they explicitly offer a feature map that helps
to detect more occluded objects. However, the achieved heatmap prediction presented
poor results, which degraded the model’s performance. Therefore, the heatmap absent
model yielded overall better results. Comparing with the baseline method of Complexer-
YOLO, our method improved their bottleneck computational time from 13 FPS to 18
FPS, by performing joint object detection and tracking in an end-to-end fashion using
a deep neural network.

Future work can be done towards experimenting with other heatmap loss functions
to improve the heatmap prediction. Another possible solution could be the integration
of an Auto-Regressive model as a way to improve the results of heatmap prediction,
when using this model. The network would be fed with more than just one past frame,
for instance, k = 5 past frames, in order to obtain more consistent heatmaps. Lastly,
data augmentation techniques could be used to counter the bad class distribution in the
dataset, thus, improving the model generalization.
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Appendix A

Full Proposed Pipeline
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Figure A.1: Pipeline for the proposed 3D Object Detection and Tracking module.
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